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Preface: General Chair

In 2005, the Human Language Technology Conference (HLT) and the Conference on Empirical
Methods in Natural Language Processing (EMNLP) were held together as a joint conference for the
first time. The conference was co-sponsored by the organization traditionally behind HLT, the Human
Language Technology Advisory Board, and the organization traditionally behind EMNLP, SIGDAT:
The Association for Computational Linguistics (ACL) Special Interest Group on linguistic data and
corpus-based approaches to natural-language processing. The joint conference was held in Vancouver,
B.C., Canada on October 6–8, co-located with the 2005 Document Understanding Conference (DUC)
and the 9th International Workshop on Parsing Technologies (IWPT).

In the HLT tradition, the conference especially encouraged submissions involving synergistic
combinations of language technologies from the sometimes disjoint areas of natural-language
processing, speech processing, and information retrieval. To encourage such cross-fertilization, each of
the major chair positions were filled by three people, one from each of these research areas.

First, I would like to thank the Program Chairs,Chris Brew, Lee-Feng Chien, andKatrin Kirchhoff ,
for handling the unexpectedly large number of submissions under a very tight schedule and putting
together an excellent program for the conference. Please see their preface for further information on
the submissions, the program committee, and the conference program.

Priscilla Rasmussendeserves our enduring gratitude for agreeing to serve as a remote Local
Arrangements Chair, and gracefully handling the multitude of responsibilities that this important
position requires.

Joyce Chaidid an excellent job as Publications Chair and managing the myriad of details required to
assemble this proceedings in the small amount of time allotted for this important step. Thanks also go
to Chen Zhang andShaolin Qu for helping with the proceedings and toJason EisnerandPhilipp
Koehn for making the publication software available and providing many good suggestions.

Donna Byron, Anand Venkataraman, andDell Zhang served as Demonstrations Chairs and carefully
reviewed 31 proposals to select 20 interesting demos that were a great addition to the conference
program.

David Elworthy andMarius Pascaserved in the important role of Sponsorship and Exhibits Chairs
and helped raise important corporate financial support for the conference. Thanks are also due to our
corporate sponsors (listed on the previous page) for their gracious support.

Srinivas Bangalore, Zak Shafran, and Hsin-Min Wang served as Publicity Chairs and provided
important support in advertising the conference to the NLP, speech, and IR communities.

Anoop Sarkar andFred Popowichserved as Local Preparation and Student Volunteer Coordinators,
providing important local support in Vancouver and assembling and managing a team of student
volunteers that provided important services at the conference. The students volunteers themselves also
deserve our gratitude.

Yuk Wah Wong, Razvan Bunescu, Ruifang Ge, and Rohit Kate dedicated significant effort as
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Webmasters, putting together and constantly updating the conference web site.

Graeme Hirst provided important support and advice as Chair of the HLT Board, particularly in the
site selection and initial formation of the conference committee. The members of the HLT Board,
Karen Kukich , Donna Harman, Mary Harper , Julia Hirschberg, Sanjeev Khudanpur, Joseph
Olive, John Prange, Drago Radev, andEllen Riloff , also provided important support and advice.

Ken Church also provided important support and advice as chair of SIGDAT in the initial formation
of the conference committee and continuing advice on conference organization.

Also thanks toDonna Harman for organizing the co-located DUC meeting andHarry Bunt , Rob
Malouf andAlon Lavie for organizing the co-located IWPT meeting.

Finally, I would to thank all of the authors, demo presenters, and conference attendees for helping to
make the first joint HLT/EMNLP meeting a successful and engaging scientific venue!

Raymond J. Mooney
HLT/EMNLP-05 General Chair
August 24, 2005
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Preface: Program Co-chairs

It is our pleasure to welcome you to HLT/EMNLP 2005 in the beautiful city of Vancouver. For the
third time, HLT is being held in combination with a conference sponsored by an ACL organization,
thus continuing the tradition of bringing together researchers from three different communities: natural
language processing, information retrieval, and speech processing. During the last few years, these
fields have experienced a growing trend towards interaction across their traditional boundaries, as
evidenced by the exchange of approaches and methodologies, and the development of large-scale
systems integrating speech and language processing as well as information retrieval components.

We hope that this conference will further encourage this trend. In order to facilitate the interaction
between researchers from different fields, all papers have been organized into a single track rather
than two or three different tracks. We are also pleased to welcome three invited speakers whose work
spans several areas in the HLT/EMNLP field: Ellen Vorhees, Larry Hunter, and Sanjeev Khudanpur.
We would like to thank them again for accepting our invitation and for their exciting and stimulating
contributions to our program.

The joint organization of HLT and EMNLP generated an unusually large load of papers. A total
of 402 submissions were received, of which 127 were accepted, resulting in an acceptance rate of
31.6%. We would like to thank our technical chairs, who did an excellent job at selecting the program
committee and managed to handle the large number of submissions efficiently and on time. Our thanks
also go to the program committee members for their expert reviews. We are particularly grateful
to those PC members who were willing to take on additional reviews beyond their original assignments.

For the demonstrations track, thirty-one submissions were received, twenty of which were accepted.
Donna Byron, Anand Venkataramanan and Dell Zhang did a superb job at managing the demo
submissions and reviews, and we are looking forward to a very interesting session.

We are please to announce that, for the first time, a prize for the best student paper will be awarded at
this year’s conference. We are especially grateful to IBM for sponsoring this award – educating future
generations of researchers in our community is of prime importance, and the public acknowledgment
of students’ research achievements is a significant contribution towards this goal.

Finally, we would like to thank our general chair, Ray Mooney, for his help and guidance, and all
organizers, PC members, technical chairs, authors, and attendees for their efforts and contributions. We
wish you a pleasant time at HLT/EMNLP 2005!

Chris Brew, Lee-Feng Chien, and Katrin Kirchhoff
Program Co-chairs
August 24, 2005

v





Conference Organizers

General Chair

Raymond J. Mooney, The University of Texas at Austin

Program Chairs

Chris Brew, The Ohio State University
Lee-Feng Chien, Academia Sinica
Katrin Kirchhoff, University of Washington

Demonstrations Chairs

Donna Byron, The Ohio State University
Anand Venkataraman, SRI International
Dell Zhang, Birkbeck, University of London

Publications Chair

Joyce Chai, Michigan State University

Publicity Chairs

Srinivas Bangalore, AT&T Labs - Research
Zak Shafran, Johns Hopkins University
Hsin-Min Wang, Academia Sinica

Sponsorship and Exhibits Chairs

Marius Pasca, Google
David Elworthy, Google

Local Arrangements Chair

Priscilla Rasmussen, Assoc. for Computational Linguistics

Local Preparation and Student Volunteer Coordinators

Fred Popowich, Simon Fraser University
Anoop Sarkar, Simon Fraser University

Webmasters

Yuk Wah Wong, The University of Texas at Austin
Razvan Bunescu, The University of Texas at Austin
Ruifang Ge, The University of Texas at Austin
Rohit Kate, The University of Texas at Austin

vii



viii



Program Committee

Chairs

Chris Brew, The Ohio State University
Lee-Feng Chien, Academia Sinica
Katrin Kirchhoff, University of Washington

Area Chairs

Ricardo Baeza-Yates, University of Chile
Regina Barzilay, Massachusetts Institute of Technology
Jennifer Chu-Carroll, IBM T. J. Watson Research Center
Pascale Fung, Hong Kong University of Science and Technology
Timothy Hazen, Massachusetts Institute of Technology
Rebecca Hwa, University of Pittsburgh
Frank Keller, University of Edinburgh
Elizabeth D. Liddy, University of Syracuse
Dan Melamed, New York University
Helen Meng, Chinese University of Hong Kong
Mark-Jan Nederhof, University of Groningen
Hwee Tou Ng, National University of Singapore
Dan Roth, University of Illinois at Urbana/Champaign
Murat Saraclar, AT&T Labs - Research
Simone Teufel, University of Cambridge
Wayne Ward, University of Colorado
Janyce Wiebe, University of Pittsburgh
Cheng Xiang Zhai, University of Illinois at Urbana/Champaign
Ming Zhou, Microsoft Research Asia

Program Committee Members

Alex Acero (Microsoft Research), Gilles Adda (LIMSI/CNRS, France), Lars Ahrenberg (Linkop-
ing University), Shlomo Argamon (Illinois Institute of Technology)

Michiel Bacchiani (IBM), Ricardo Baeza-Yates (ICREA-UPF & CWR/DCC-Univ. de Chile),
Srinivas Bangalore (AT&T Labs - Research), Regina Barzilay (Massachusetts Institute of Tech-
nology), Frederic Bechet (LIA, University of Avignon, France), Jerome Bellegarda (Apple Com-
puter), Dan Bikel (IBM Research), Patrick Blackburn (INRIA Lorraine, France), Johan Bos (Uni-
versity of Edinburgh), Antal van den Bosch (Tilburg University, Netherlands), Herve Bourlard
(IDIAP Research Institute), Chris Brew (The Ohio State University), Ralf Brown (Carnegie Mel-
lon University), Bill Byrne (The Johns Hopkins University), Donna Byron (The Ohio State Uni-
versity)

Jamie Callan (Carnegie Mellon University), Claire Cardie (Cornell University), Rolf Carlson
(Royal Institute of Technology, Sweden), Xavier Carreras Perez (Universitat Politècnica de Catalunya),
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5:05–5:30 Mining Context Specific Similarity Relationships Using The World Wide Web
Dmitri Roussinov, Leon J. Zhao and Weiguo Fan

Session 6C: Statistical Parsing

4:15–4:40 Hidden-Variable Models for Discriminative Reranking
Terry Koo and Michael Collins

4:40–5:05 Disambiguation of Morphological Structure using a PCFG
Helmut Schmid

5:05–5:30 Non-Projective Dependency Parsing using Spanning Tree Algorithms
Ryan McDonald, Fernando Pereira, Kiril Ribarov and Jan Hajic

xxviii



Friday, October 7, 2005 (continued)

Reception and Posters (6:30-8:00)

Making Computers Laugh: Investigations in Automatic Humor Recognition
Rada Mihalcea and Carlo Strapparava

Optimizing to Arbitrary NLP Metrics using Ensemble Selection
Art Munson, Claire Cardie and Rich Caruana

Word Sense Disambiguation Using Sense Examples Automatically Acquired from a Second
Language
Xinglong Wang and John Carroll

Using MONA for Querying Linguistic Treebanks
Stephan Kepser

KnowItNow: Fast, Scalable Information Extraction from the Web
Michael J. Cafarella, Doug Downey, Stephen Soderland and Oren Etzioni

A Cost-Benefit Analysis of Hybrid Phone-Manner Representations for ASR
Eric Fosler-Lussier and C. Anton Rytting

Emotions from Text: Machine Learning for Text-based Emotion Prediction
Cecilia Ovesdotter Alm, Dan Roth and Richard Sproat

Combining Multiple Forms of Evidence While Filtering
Yi Zhang and Jamie Callan

Handling Biographical Questions with Implicature
Donghui Feng and Eduard Hovy

The Use of Metadata, Web-derived Answer Patterns and Passage Context to Improve Read-
ing Comprehension Performance
Yongping Du, Helen Meng, Xuanjing Huang and Lide Wu

Identifying Semantic Relations and Functional Properties of Human Verb Associations
Sabine Schulte im Walde and Alissa Melinger

Accurate Function Parsing
Paola Merlo and Gabriele Musillo

xxix



Friday, October 7, 2005 (continued)

Recognising Textual Entailment with Logical Inference
Johan Bos and Katja Markert

A Self-Learning Context-Aware Lemmatizer for German
Praharshana Perera and René Witte
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Abstract

We propose an approach to summarization
exploiting both lexical information and
the output of an automatic anaphoric re-
solver, and using Singular Value Decom-
position (SVD) to identify the main terms.
We demonstrate that adding anaphoric
information results in significant perfor-
mance improvements over a previously
developed system, in which only lexical
terms are used as the input toSVD. How-
ever, we also show that how anaphoric in-
formation is used is crucial: whereas using
this information to add new terms does re-
sult in improved performance, simple sub-
stitution makes the performance worse.

1 Introduction

Many approaches to summarization can be very
broadly characterized asTERM-BASED: they at-
tempt to identify the main ‘topics,’ which gen-
erally are TERMS, and then to extract from the
document the most important information about
these terms (Hovy and Lin, 1997). These ap-
proaches can be divided again very broadly in ‘lex-
ical’ approaches, among which we would include
LSA-based approaches, and ‘coreference-based’ ap-
proaches . Lexical approaches to term-based sum-
marization use lexical relations to identify cen-
tral terms (Barzilay and Elhadad, 1997; Gong and
Liu, 2002); coreference- (or anaphora-) based ap-
proaches (Baldwin and Morton, 1998; Boguraev and

Kennedy, 1999; Azzam et al., 1999; Bergler et al.,
2003; Stuckardt, 2003) identify these terms by run-
ning a coreference- or anaphoric resolver over the
text.1 We are not aware, however, of any attempt to
use both lexical and anaphoric information to iden-
tify the main terms. In addition, to our knowledge no
authors have convincingly demonstrated that feed-
ing anaphoric information to a summarizer signif-
icantly improves the performance of a summarizer
using a standard evaluation procedure (a reference
corpus and baseline, and widely accepted evaluation
measures).

In this paper we compare two sentence extraction-
based summarizers. Both use Latent Semantic
Analysis (LSA) (Landauer, 1997) to identify the
main terms of a text for summarization; however,
the first system (Steinberger and Jezek, 2004), dis-
cussed in Section 2, only uses lexical information
to identify the main topics, whereas the second sys-
tem exploits both lexical and anaphoric information.
This second system uses an existing anaphora reso-
lution system to resolve anaphoric expressions,GUI-
TAR (Poesio and Kabadjov, 2004); but, crucially,
two different ways of using this information for
summarization were tested. (Section 3.) Both sum-
marizers were tested over theCAST corpus (Orasan
et al., 2003), as discussed in Section 4, and sig-

1The terms ’anaphora resolution’ and ’coreference resolu-
tion’ have been variously defined (Stuckardt, 2003), but the lat-
ter term is generally used to refer to the coreference task as de-
fined inMUC andACE. We use the term ’anaphora resolution’ to
refer to the task of identifying successive mentions of the same
discourse entity, realized via any type of noun phrase (proper
noun, definite description, or pronoun), and whether such dis-
course entities ’refer’ to objects in the world or not.
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nificant improvements were observed over both the
baselineCAST system and our previousLSA-based
summarizer.

2 An LSA-based Summarizer Using
Lexical Information Only

LSA (Landauer, 1997) is a technique for extracting
the ‘hidden’ dimensions of the semantic representa-
tion of terms, sentences, or documents, on the basis
of their contextual use. It is a very powerful tech-
nique already used forNLP applications such as in-
formation retrieval (Berry et al., 1995) and text seg-
mentation (Choi et al., 2001) and, more recently,
multi- and single-document summarization.

The approach to usingLSA in text summariza-
tion we followed in this paper was proposed in
(Gong and Liu, 2002). Gong and Liu propose to
start by creating a term by sentences matrixA =
[A1, A2, . . . , An], where each column vectorAi rep-
resents the weighted term-frequency vector of sen-
tencei in the document under consideration. If there
are a total ofm terms andn sentences in the docu-
ment, then we will have anm × n matrix A for the
document. The next step is to apply Singular Value
Decomposition (SVD) to matrixA. Given anm× n

matrixA, theSVD of A is defined as:

(1) A = UΣV T

whereU = [uij ] is anm × n column-orthonormal
matrix whose columns are called left singular vec-
tors, Σ = diag(σ1, σ2, . . . , σn) is an n × n di-
agonal matrix, whose diagonal elements are non-
negative singular values sorted in descending order,
andV = [vij ] is ann×n orthonormal matrix, whose
columns are called right singular vectors.

From a mathematical point of view, applying
SVD to a matrix derives a mapping between them-
dimensional space spawned by the weighted term-
frequency vectors and ther-dimensional singular
vector space. From aNLP perspective, what theSVD

does is to derive thelatent semantic structureof the
document represented by matrixA: a breakdown
of the original document intor linearly-independent
base vectors (‘topics’). Each term and sentence from
the document is jointly indexed by these ‘topics’.

A unique SVD feature is that it is capable of cap-
turing and modelling interrelationships among terms
so that it can semantically cluster terms and sen-

tences. Furthermore, as demonstrated in (Berry et
al., 1995), if a word combination pattern is salient
and recurring in document, this pattern will be cap-
tured and represented by one of the singular vec-
tors. The magnitude of the corresponding singular
value indicates the importance degree of this pattern
within the document. Any sentences containing this
word combination pattern will be projected along
this singular vector, and the sentence that best repre-
sents this pattern will have the largest index value
with this vector. As each particular word combi-
nation pattern describes a certain topic in the doc-
ument, each singular vector can be viewed as repre-
senting a salient topic of the document, and the mag-
nitude of its corresponding singular value represents
the degree of importance of the salient topic.

The summarization method proposed by Gong
and Liu (2002) should now be easy to understand.
The matrixV T describes the importance degree of
each ’implicit topic’ in each sentence: the summa-
rization process simply chooses the most informa-
tive sentence for each term. In other words, thekth
sentence chosen is the one with the largest index
value in thekth right singular vector in matrixV T .

The summarization method proposed by Gong
and Liu has some disadvantages as well, the main of
which is that it is necessary to use the same number
of dimensions as is the number of sentences we want
to choose for a summary. However, the higher the
number of dimensions of reduced space is, the less
significant topic we take into a summary. In order
to remedy this problem, we (Steinberger and Jezek,
2004) proposed the following modifications to Gong
and Liu’s summarization method. After computing
theSVD of a term by sentences matrix, we compute
the length of each sentence vector in matrixV . This
is to favour the index values in the matrixV that
correspond to the highest singular values (the most
significant topics). Formally:

(2) sk =
√

∑r
i=1 v2

k,i · σ
2
i ,

wheresk is the length of the vector ofk’th sentence
in the modified latent vector space, and its signif-
icance score for summarization too. The level of
dimensionality reduction (r) is essentially learned
from the data. Finally, we put into the summary the
sentences with the highest values in vectors. We
showed in previous work (Steinberger and Jezek,
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2004) that this modification results in a significant
improvement over Gong and Liu’s method.

3 Using Anaphora Resolution for
Summarization

3.1 The case for anaphora resolution

Words are the most basic type of ’term’ that can
be used to characterize the content of a document.
However, being able to identify the most important
objectsmentioned in the document clearly would
lead to an improved analysis of what is important in
a text, as shown by the following news article cited
by Boguraev and Kennedy (1999):

(3) PRIEST IS CHARGED WITH POPE ATTACK

A Spanish priestwas charged here today with attempt-

ing to murder the Pope.Juan Fernandez Krohn, aged

32, was arrested after a man armed with a bayonet ap-

proached the Pope while he was saying prayers at Fa-

tima on Wednesday night. According to the police,Fer-

nandeztold the investigators today thathe trained for

the past six months for the assault. . . . If found guilty,

the Spaniardfaces a prison sentence of 15-20 years.

As Boguraev and Kennedy point out, the title of the
article is an excellent summary of the content: an en-
tity (the priest) did something to another entity (the
pope). Intuitively, understanding that Fernandez and
the pope are the central characters is crucial to pro-
vide a good summary of texts like these.2 Among
the clues that help us to identify such ‘main charac-
ters’, the fact that an entity is repeatedly mentioned
is clearly important.

Purely lexical methods, including theLSA-based
methods discussed in the previous section, can only
capture part of the information about which enti-
ties are frequently repeated in the text. As exam-
ple (3) shows, stylistic conventions forbid verbatim
repetition, hence the six mentions of Fernandez in
the text above contain only one lexical repetition,
’Fernandez’. The main problem are pronouns, that
tend to share the least lexical similarity with the
form used to express the antecedent (and anyway are
usually removed by stopword lists, therefore do not

2It should be noted that for many newspaper articles, indeed
many non-educational texts, only a ‘entity-centered’ structure
can be clearly identified, as opposed to a ‘relation-centered’
structure of the type hypothesized in Rhetorical Structures The-
ory (Knott et al., 2001; Poesio et al., 2004).

get included in theSVD matrix). The form of defi-
nite descriptions (the Spaniard) doesn’t always over-
lap with that of their antecedent, either, especially
when the antecedent was expressed with a proper
name. The form of mention which more often over-
laps to a degree with previous mentions is proper
nouns, and even then at least some way of dealing
with acronyms is necessary (cfr.European Union
/ E.U.). The motivation for anaphora resolution is
that it should tell us which entities are repeatedly
mentioned.

In this work, we tested a mixed approach to in-
tegrate anaphoric and word information: using the
output of the anaphoric resolverGUITAR to modify
the SVD matrix used to determine the sentences to
extract. In the rest of this section we first briefly in-
troduceGUITAR, then discuss the two methods we
tested to use its output to help summarization.

3.2 GUITAR: A General-Purpose Anaphoric
Resolver

The system we used in these experiments,GUITAR

(Poesio and Kabadjov, 2004), is an anaphora resolu-
tion system designed to be high precision, modular,
and usable as an off-the-shelf component of a NL
processing pipeline. The current version of the sys-
tem includes an implementation of the MARS pro-
noun resolution algorithm (Mitkov, 1998) and a par-
tial implementation of the algorithm for resolving
definite descriptions proposed by Vieira and Poe-
sio (2000). The current version ofGUITAR does not
include methods for resolving proper nouns.

3.2.1 Pronoun Resolution

Mitkov (1998) developed a robust approach to
pronoun resolution which only requires input text
to be part-of-speech tagged and noun phrases to be
identified. Mitkov’s algorithm operates on the ba-
sis of antecedent-tracking preferences (referred to
hereafter as ”antecedent indicators”). The approach
works as follows: the system identifies the noun
phrases which precede the anaphor within a distance
of 2 sentences, checks them for gender and number
agreement with the anaphor, and then applies genre-
specific antecedent indicators to the remaining can-
didates (Mitkov, 1998). The noun phrase with the
highest aggregate score is proposed as antecedent.
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3.2.2 Definite Description Resolution

The Vieira / Poesio algorithm (Vieira and Poesio,
2000) attempts to classify each definite description
as either direct anaphora, discourse-new, or bridg-
ing description. The first class includes definite de-
scriptions whose head is identical to that of their an-
tecedent, as ina house. . . the house. Discourse-
new descriptions are definite descriptions that refer
to objects not already mentioned in the text and not
related to any such object. Bridging descriptions are
all definite descriptions whose resolution depends
on knowledge of relations between objects, such as
definite descriptions that refer to an object related
to an entity already introduced in the discourse by
a relation other than identity, as inthe flat . . . the
living room. The Vieira / Poesio algorithm also at-
tempts to identify the antecedents of anaphoric de-
scriptions and the anchors of bridging ones. The
current version ofGUITAR incorporates an algorithm
for resolving direct anaphora derived quite directly
from Vieira / Poesio, as well as a statistical version
of the methods for detecting discourse new descrip-
tions (Poesio et al., 2005).

3.3 SVD over Lexical and Anaphoric Terms

SVD can be used to identify the ‘implicit topics’ or
main terms of a document not only when on the basis
of words, but also of coreference chains, or a mix-
ture of both. We tested two ways of combining these
two types of information.

3.3.1 The Substitution Method

The simplest way of integrating anaphoric in-
formation with the methods used in our earlier
work is to use anaphora resolution simply as a pre-
processing stage of the SVD input matrix creation.
Firstly, all anaphoric relations are identified by the
anaphoric resolver, and anaphoric chains are identi-
fied. Then a second document is produced, in which
all anaphoric nominal expressions are replaced by
the first element of their anaphoric chain. For exam-
ple, suppose we have the text in (4).

(4) S1: Australia’s new conservative governmenton
Wednesday began sellingits tough deficit-slashing bud-
get, which sparkedviolent protests by Aborigines,
unions, students and welfare groupseven beforeit was
announced.

S2: Two days ofanti-budget street protestspreceded
spending cutsofficially unveiled by Treasurer Peter

Costello.

S3: ”If wedon’t do it now, Australia is going to be in
deficitand debt into the next century.”

S4: As the protestershad feared,Costellorevealed a
cut tothe government’sAboriginal welfare commission
amongthe hundreds of measures implemented to claw
back the deficit.

An ideal resolver would find 8 anaphoric chains:

Chain 1 Australia- we- Australia

Chain 2 its new conservative government (Australia’s new
conservative government)- the government

Chain 3 its tough deficit-slashing budget (Australia’s tough
deficit-slashing budget)- it

Chain 4 violent protests by Aborigines, unions, students and
welfare groups- anti-budget street protests

Chain 5 Aborigines, unions, students and welfare groups- the
protesters

Chain 6 spending cuts- it - the hundreds of measures imple-
mented to claw back the deficit

Chain 7 Treasurer Peter Costello- Costello

Chain 8 deficit- the deficit

By replacing each element of the 8 chains above
in the text in (4) with the first element of the chain,
we get the text in (5).
(5) S1: Australia’s new conservative governmenton

Wednesday began sellingAustralia’s tough deficit-
slashing budget, which sparkedviolent protests by Abo-
rigines, unions, students and welfare groupseven be-
fore Australia’s tough deficit-slashing budgetwas an-
nounced.

S2: Two days ofviolent protests by Aborigines, unions,
students and welfare groupsprecededspending cutsof-
ficially unveiled byTreasurer Peter Costello.

S3: ”If Australia doesn’t dospending cutsnow, Aus-
tralia is going to be indeficit and debt into the next
century.”

S4: As Aborigines, unions, students and welfare
groupshad feared,Treasurer Peter Costellorevealed a
cut toAustralia’s new conservative government’sAbo-
riginal welfare commission amongthe spending cuts.

This text is then used to create theSVD input matrix,
as done in the first system.

3.3.2 The Addition Method

An alternative approach is to useSVD to identify
‘topics’ on the basis of two types of ’terms’: terms in
the lexical sense (i.e., words) and terms in the sense
of objects, which can be represented by anaphoric
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chains. In other words, our representation of sen-
tences would specify not only if they contain a cer-
tain word, but also if they contain a mention of a
discourse entity (See Figure 1.) This matrix would
then be used as input toSVD.

Figure 1: Addition method.

The chain ‘terms’ tie together sentences that con-
tain the same anaphoric chain. If the terms are
lexically the same (direct anaphors - likedeficit
and the deficit) the basic summarizer works suffi-
ciently. However, Gong and Liu showed that the best
weighting scheme is boolean (i.e., all terms have the
same weight); our own previous results confirmed
this. The advantage of the addition method is the
opportunity to give higher weights to anaphors.

4 Evaluation

4.1 The CAST Corpus

To evaluate our system, we used the corpus of
manually produced summaries created by theCAST

project3 (Orasan et al., 2003). TheCAST cor-
pus contains news articles taken from the Reuters
Corpus and a few popular science texts from the
British National Corpus. It contains information
about the importance of the sentences (Hasler et
al., 2003). Sentences are marked asessentialor im-
portant . The corpus also contains annotations for

3The goal of this project was to investigate to what extent
Computer-Aided Summarization can help humans to produce
high quality summaries with less effort.

linked sentences, which are not significant enough
to be marked as important/essential, but which have
to be considered as they contain information essen-
tial for the understanding of the content of other sen-
tences marked as essential/important.

Four annotators were used for the annotation,
three graduate students and one postgraduate. Three
of the annotators were native English speakers, and
the fourth had advanced knowledge of English. Un-
fortunately, not all of the documents were annotated
by all of the annotators. To maximize the reliability
of the summaries used for evaluation, we chose the
documents annotated by the greatest number of the
annotators; in total, our evaluation corpus contained
37 documents.

For acquiring manual summaries at specified
lengths and getting the sentence scores (for relative
utility evaluation) we assigned a score 3 to the sen-
tences marked as essential, a score 2 to important
sentences and a score 1 to linked sentences. The
sentences with highest scores are then selected for
ideal summary (at specified lenght).

4.2 Evaluation Measures

Evaluating summarization is a notoriously hard
problem, for which standard measures like Preci-
sion and Recall are not very appropriate. The main
problem with P&R is that human judges often dis-
agree what are the top n% most important sentences
in a document. Using P&R creates the possibility
that two equally good extracts are judged very dif-
ferently. Suppose that a manual summary contains
sentences [1 2] from a document. Suppose also that
two systems, A and B, produce summaries consist-
ing of sentences [1 2] and [1 3], respectively. Us-
ing P&R, system A will be ranked much higher than
system B. It is quite possible that sentences 2 and 3
are equally important, in which case the two systems
should get the same score.

To address the problem with precision and recall
we used a combination of evaluation measures. The
first of these, relative utility (RU) (Radev et al.,
2000) allows model summaries to consist of sen-
tences with variable ranking. With RU, the model
summary represents all sentences of the input doc-
ument with confidence values for their inclusion in
the summary. For example, a document with five
sentences [1 2 3 4 5] is represented as [1/5 2/4 3/4
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Evaluation Lexical LSA Manual Manual
Method Substitution Additition

Relative Utility 0.595 0.573 0.662
F-score 0.420 0.410 0.489
Cosine Similarity 0.774 0.806 0.823
Main Topic Similarity 0.686 0.682 0.747

Table 1: Evaluation of the manual annotation improvement - summarization ratio: 15%.

Evaluation Lexical LSA Manual Manual
Method Substitution Addition

Relative Utility 0.645 0.662 0.688
F-score 0.557 0.549 0.583
Cosine Similarity 0.863 0.878 0.886
Main Topic Similarity 0.836 0.829 0.866

Table 2: Evaluation of the manual annotation improvement - summarization ratio: 30%.

4/1 5/2]. The second number in each pair indicates
the degree to which the given sentence should be
part of the summary according to a human judge.
This number is called the utility of the sentence.
Utility depends on the input document, the summary
length, and the judge. In the example, the system
that selects sentences [1 2] will not get a higher score
than a system that chooses sentences [1 3] given
that both summaries [1 2] and [1 3] carry the same
number of utility points (5+4). Given that no other
combination of two sentences carries a higher util-
ity, both systems [1 2] and [1 3] produce optimal
extracts. To compute relative utility, a number of
judges,(N ≥ 1) are asked to assign utility scores to
all n sentences in a document. The tope sentences
according to utility score4 are then called a sentence
extract of sizee. We can then define the following
system performance metric:

(6) RU =

∑n

j=1
δj

∑N

i=1
uij

∑n

j=1
ǫj

∑N

i=1
uij

,

whereuij is a utility score of sentencej from anno-
tatori, ǫj is 1 for the tope sentences according to the
sum of utility scores from all judges andδj is equal
to 1 for the tope sentences extracted by the system.
For details see (Radev et al., 2000).

The second measure we used is Cosine Similarity,
according to the standard formula:

(7) cos(X, Y ) =

∑

i
xi·yi

√
∑

i
(xi)2·

√
∑

i
(yi)2

,

4In the case of ties, some arbitrary but consistent mecha-
nism is used to decide which sentences should be included in
the summary.

where X and Y are representations of a system sum-
mary and its reference summary based on the vector
space model. The third measure is Main Topic Sim-
ilarity. This is a content-based evaluation method
based on measuring the cosine of the angle between
first left singular vectors of a system summary’s
and its reference summary’s SVDs. (For details see
(Steinberger and Jezek, 2004).) Finally, we mea-
suredROUGEscores, with the same settings as in the
Document Understanding Conference (DUC) 2004.

4.3 How Much May Anaphora Resolution
Help? An Upper Bound

We annotated all the anaphoric relations in the 37
documents in our evaluation corpus by hand us-
ing the annotation toolMMAX (Mueller and Strube,
2003).5 Apart from measuring the performance of
GUITAR over the corpus, this allowed us to establish
the upper bound on the performance improvements
that could be obtained by adding an anaphoric re-
solver to our summarizer. We tested both methods
of adding the anaphoric knowledge to the summa-
rizer discussed above. Results for the 15% and 30%
ratios6 are presented in Tables 1 and 2. The baseline
is our own previously developedLSA-based sum-
marizer without anaphoric knowledge. The result
is that the substitution method did not lead to sig-
nificant improvement, but the addition method did:

5We annotated personal pronouns, possessive pronouns, def-
inite descriptions and also proper nouns, who will be handled by
a futureGUITAR version.

6We used the same summarization ratios as inCAST.
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Evaluation Lexical LSA CAST GUITAR GUITAR
Method Substitution Addition

Relative Utility 0.595 0.527 0.530 0.640
F-score 0.420 0.348 0.347 0.441
Cosine Similarity 0.774 0.726 0.804 0.805
Main Topic Similarity 0.686 0.630 0.643 0.699

Table 3: Evaluation of theGUITAR improvement - summarization ratio: 15%.

Evaluation Lexical LSA CAST GUITAR GUITAR
Method Substitution Addittion

Relative Utility 0.645 0.618 0.626 0.678
F-score 0.557 0.522 0.524 0.573
Cosine Similarity 0.863 0.855 0.873 0.879
Main Topic Similarity 0.836 0.810 0.818 0.868

Table 4: Evaluation of theGUITAR improvement - summarization ratio: 30%.

addition could lead to an improvement in Relative
Utility score from .595 to .662 for the 15% ratio, and
from .645 to .688 for the 30% ratio. Both of these
improvements were significant by t-test at 95% con-
fidence.

4.4 Results with GUITAR

To useGUITAR, we first parsed the texts using Char-
niak’s parser (Charniak, 2000). The output of the
parser was then converted into theMAS-XML for-
mat expected byGUITAR by one of the preproces-
sors that come with the system. (This step includes
heuristic methods for guessing agreement features.)
Finally, GUITAR was ran to add anaphoric infor-
mation to the files. The resulting files were then
processed by the summarizer.

GUITAR achieved a precision of 56% and a recall
of 51% over the 37 documents. For definite descrip-
tion resolution, we found a precision of 69% and
a recall of 53%; for possessive pronoun resolution,
the precision was 53%, recall was 53%; for personal
pronouns, the precision was 44%, recall was 46%.

The results with the summarizer are presented
in Tables 3 and 4 (relative utility, f-score, cosine,
and main topic). The contribution of the differ-
ent anaphora resolution components is addressed in
(Kabadjov et al., 2005). All versions of our summa-
rizer (the baseline version without anaphora resolu-
tion and those using substitution and addition) out-
performed theCAST summarizer, but we have to em-
phasize thatCAST did not aim at producing a high-
performance generic summarizer; only a system that

could be easily used for didactical purposes. How-
ever, our tables also show that usingGUITAR and the
addition method lead to significant improvements
over our baselineLSA summarizer. The improve-
ment in Relative Utility measure was significant by
t-test at 95% confidence. Using the ROUGE mea-
sure we obtained improvement (but not significant).
On the other hand, the substitution method did not
lead to significant improvements, as was to be ex-
pected given that no improvement was obtained with
’perfect’ anaphora resolution (see previous section).

5 Conclusion and Further Research

Our main result in this paper is to show that using
anaphora resolution in summarization can lead to
significant improvements, not only when ’perfect’
anaphora information is available, but also when
an automatic resolver is used, provided that the
anaphoric resolver has reasonable performance. As
far as we are aware, this is the first time that such
a result has been obtained using standard evaluation
measures over a reference corpus. We also showed
however that the way in which anaphoric informa-
tion is used matters: with our set of documents at
least, substitution would not result in significant im-
provements even with perfect anaphoric knowledge.

Further work will include, in addition to extend-
ing the set of documents and testing the system with
other collections, evaluating the improvement to be
achieved by adding a proper noun resolution algo-
rithm to GUITAR.
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Abstract

This paper investigates automatic identi-
fication of Information Structure (IS) in
texts. The experiments use the Prague
Dependency Treebank which is annotated
with IS following the Praguian approach
of Topic Focus Articulation. We auto-
matically detect t(opic) and f(ocus), us-
ing node attributes from the treebank as
basic features and derived features in-
spired by the annotation guidelines. We
present the performance of decision trees
(C4.5), maximum entropy, and rule in-
duction (RIPPER) classifiers on all tec-
togrammatical nodes. We compare the re-
sults against a baseline system that always
assigns f(ocus) and against a rule-based
system. The best system achieves an ac-
curacy of 90.69%, which is a 44.73% im-
provement over the baseline (62.66%).

1 Introduction

Information Structure (IS) is a partitioning of the
content of a sentence according to its relation to
the discourse context. There are numerous theo-
retical approaches describing IS and its semantics
(Halliday, 1967; Sgall, 1967; Vallduv´ı, 1990; Steed-
man, 2000) and the terminology used is diverse —
see (Kruijff-Korbayová and Steedman, 2003) for an
overview. However, all theories consider at least one
of the following two distinctions: (i) a Topic/Focus1

distinction that divides the linguistic meaning of the
sentence into parts that link the sentence content

 We use the Praguian terminology for this distinction.

to the discourse context, and other parts that ad-
vance the discourse, i.e., add or modify informa-
tion; and (ii) a background/kontrast2 distinction be-
tween parts of the utterance which contribute to dis-
tinguishing its actual content from alternatives the
context makes available.

Information Structure is an important factor in de-
termining the felicity of a sentence in a given con-
text. Applications in which IS is crucial are text-
to-speech systems, where IS helps to improve the
quality of the speech output (Prevost and Steedman,
1994; Kruijff-Korbayová et al., 2003; Moore et al.,
2004), and machine translation, where IS improves
target word order, especially that of free word order
languages (Stys and Zemke, 1995).

Existing theories, however, state their principles
using carefully selected illustrative examples. Be-
cause of this, they fail to adequately explain how
different linguistic dimensions cooperate to realize
Information Structure.

In this paper we describe data-driven, machine
learning approaches for automatic identification of
Information Structure; we describe what aspects of
IS we deal with and report results of the performance
of our systems and make an error analysis. For our
experiments, we use the Prague Dependency Tree-
bank (PDT) (Hajič, 1998). PDT follows the theory
of Topic-Focus Articulation (Hajiˇcová et al., 1998)
and to date is the only corpus annotated with IS.
Each node of the underlying structure of sentences
in PDT is annotated with a TFA value: t(opic), dif-
ferentiated in contrastive and non-contrastive, and
f(ocus). Our system identifies these two TFA val-
ues automatically. We trained three different clas-

 The notion ‘kontrast’ with a ‘k’ has been introduced in (Vall-
duvı́ and Vilkuna, 1998) to replace what Steedman calls ‘fo-
cus’, and to avoid confusion with other definitions of focus.
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sifiers, C4.5, RIPPER and MaxEnt using basic fea-
tures from the treebank and derived features inspired
by the annotation guidelines. We evaluated the per-
formance of the classifiers against a baseline sys-
tem that simulates the preprocessing procedure that
preceded the manual annotation of PDT, by always
assigning f(ocus), and against a rule-based system
which we implemented following the annotation in-
structions. Our best system achieves a 90.69% accu-
racy, which is a 44.73% improvement over the base-
line (62.66%).

The organization of the paper is as follows.
Section 2 describes the Prague Dependency Tree-
bank and the Praguian approach of Topic-Focus Ar-
ticulation, from two perspectives: of the theoreti-
cal definition and of the annotation guidelines that
have been followed to annotate the PDT. Section 3
presents our experiments, the data settings, results
and error analysis. The paper closes with conclu-
sions and issues for future research (Section 4).

2 Prague Dependency Treebank

The Prague Dependency Treebank (PDT) consists of
newspaper articles from the Czech National Corpus
(Čermák, 1997) and includes three layers of annota-
tion:

1. The morphological layer gives a full mor-
phemic analysis in which 13 categories are
marked for all sentence tokens (including punc-
tuation marks).

2. The analytical layer, on which the “surface”
syntax (Hajič, 1998) is annotated, contains an-
alytical tree structures, in which every token
from the surface shape of the sentence has a
corresponding node labeled with main syntac-
tic functions like SUBJ, PRED, OBJ, ADV.

3. The tectogrammatical layer renders the deep
(underlying) structure of the sentence (Sgall et
al., 1986; Hajičová et al., 1998). Tectogram-
matical tree structures (TGTSs) contain nodes
corresponding only to the autosemantic words
of the sentence (e.g., no preposition nodes) and
to deletions on the surface level; the condi-
tion of projectivity is obeyed, i.e., no cross-
ing edges are allowed; each node of the tree is
assigned a functor such as ACTOR, PATIENT,
ADDRESSEE, ORIGIN, EFFECT, the repertoire

of which is very rich; elementary coreference
links are annotated for pronouns.

2.1 Topic-Focus Articulation (TFA)

The tectogrammatical level of the PDT was moti-
vated by the ever increasing need for large corpora to
include not only morphological and syntactic infor-
mation but also semantic and discourse-related phe-
nomena. Thus, the tectogrammatical trees have been
enriched with features indicating the information
structure of sentences which is a means of showing
their contextual potential.

In the Praguian approach to IS, the content of the
sentence is divided into two parts: the Topic is “what
the sentence is about” and the Focus represents the
information asserted about the Topic. A prototypical
declarative sentence asserts that its Focus holds (or
does not hold) about its Topic: Focus(Topic) or not-
Focus(Topic).

The TFA definition uses the distinction between
Context-Bound (CB) and Non-Bound (NB) parts of
the sentence. To distinguish which items are CB and
which are NB, the question test is applied, (i.e., the
question for which a given sentence is the appropri-
ate answer is considered). In this framework, weak
and zero pronouns and those items in the answer
which reproduce expressions present in the question
(or associated to those present) are CB. Other items
are NB.

In example (1), (b) is the sentence under investi-
gation, in which CB and NB items are marked. Sen-
tence (a) is the context in which the sentence (b) is
uttered, and sentence (c) is the question for which
the sentence (b) is an appropriate answer:

(1) (a) Tom and Mary both came to John’s party.

(b) JohnCB invitedCB onlyNB herNB .

(c) Whom did John invite?

It should be noted that the CB/NB distinction is
not equivalent to the given/new distinction, as the
pronoun “her” is NB although the cognitive entity,
Mary, has already been mentioned in the discourse
(therefore is given).

The following rules determine which lexical items
(CB or NB) belong to the Topic or to the Focus of the
sentence (Hajiˇcová et al., 1998; Hajiˇcová and Sgall,
2001):
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1. The main verb and any of its direct dependents
belong to the Focus if they are NB;

2. Every item that does not depend directly on the
main verb and is subordinated to a Focus el-
ement belongs to the Focus (where “subordi-
nated to” is defined as the irreflexive transitive
closure of “depend on”);

3. If the main verb and all its dependents are CB,
then those dependentsdi of the verb which
have subordinated itemssm that are NB are
called ‘proxi foci’; the itemssm together with
all items subordinated to them belong to the Fo-
cus (i,m > 1);

4. Every item not belonging to the Focus accord-
ing to 1 – 3 belongs to the Topic.

Applying these rules for the sentence (b) in exam-
ple (1) we find the Topic and the Focus of the sen-
tence: [John invited]Topic [only her]Focus.

It is worth mentioning that although most of the
time, CB items belong to the Topic and NB items
belong to the Focus (as it happens in our exam-
ple too), there may be cases when the Focus con-
tains some NB items and/or the Topic contains some
CB items. Figure 1 shows such configurations: in
the top-left corner the tectogrammatical representa-
tion of sentence (1) (b) is presented together with
its Topic-Focus partitioning. The other three con-
figurations are other possible tectogrammatical trees
with their Topic-Focus partitionings; the top-right
one corresponds to the example (2), the bottom-left
to (3), and bottom-right to (4).

(2) Q: Which teacher did Tom meet?

A: TomCB metCB the teacherCB of chemistryNB .

(3) Q: What did he think about the teachers?

A: HeCB likedNB the teacherCB of chemistryNB .

(4) Q: What did the teachers do?

A: The teacherCB of chemistryNB metNB hisCB

pupilsNB .

2.2 TFA annotation

Within PDT, the TFA attribute has been annotated
for all nodes (including the restored ones) from the
tectogrammatical level. Instructions for the assign-
ment of the TFA attribute have been specified in

Figure 1: Topic-Focus partitionings of tectogram-
matical trees.

(Buráňová et al., 2000) and are summarized in Ta-
ble 1. These instructions are based on the surface
word order, the position of the sentence stress (into-
nation center – IC)3 and the canonical order of the
dependents.

The TFA attribute has three values:

1. t — for non-contrastive CB items;

2. f — for NB items;

3. c — for contrastive CB items.

In this paper, we do not distinguish between con-
trastive and non-contrastive items, considering both
of them as being just t. In the PDT annotation, the
notation t (from topic) and f (from focus) was chosen
to be used because, as we mentioned earlier, in the
most common cases and in prototypical sentences,
t-items belong to the Topic and f-items to the Focus.

Prior the manual annotation, the PDT corpus was
preprocessed to mark all nodes with the TFA at-
tribute of f, as it is the most common value. Then
the annotators corrected the value according to the
guidelines in Table 1.

Figure 2 illustrates the tectogramatical tree struc-
ture of the following sentence:

(5) Sebevˇedom´ım
self-confidence

votroků
bastards

to
it

ale
but

neotřáslo.
not shake

‘But it did not shake the self-confidence of those bas-

tards’.

 In the PDT the intonation center is not annotated. However,
the annotators were instructed to use their judgement where
the IC would be if they uttered the sentence.
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1. The bearer of the IC (typically, the rightmost child of the verb) f
2. If IC is not on the rightmost child, everything after IC t
3. A left-side child of the verb (unless it carries IC) t
4. The verb and the right children of the verb before the f-node (cf. 1) that are canon-

ically ordered
f

5. Embedded attributes (unless repeated or restored) f
6. Restored nodes t
7. Indexical expressions (já I, ty you, tědnow,tadyhere), weak pronouns, pronominal

expressions with a general meaning (ňekdosomebody,jednouonce) (unless they
carry IC)

t

8. Strong forms of pronouns not preceded by a preposition (unless they carry IC)t

Table 1: Annotation guidelines; IC = Intonation Center.

Each node is labeled with the corresponding word’s
lemma, the TFA attribute, and the functor attribute.
For example,votrok̊u has lemmavotrok, the TFA at-
tribute f, and the functorAPP(appurtenance).

Figure 2: Tectogramatical tree annotated with t/f.

In order to measure the consistency of the annota-
tion, Interannotator Agreement has been measured
(Veselá et al., 2004).4 During the annotation pro-
cess, there were four phases in which parallel anno-
tations have been performed; a sample of data was
chosen and annotated in parallel by three annotators.

AGREEMENT 1 2 3 4 AVG

t/c/f 81.32 81.89 76.21 89.57 82.24
t/f 85.42 83.94 84.18 92.15 86.42

Table 2: Interannotator Agreement for TFA assign-
ment in PDT 2.0.

The agreement for each of the four phases, as well
as an average agreement, is shown in Table 2. The
second row of the table displays the percentage of
nodes for which all three annotators assigned the
 In their paper the authors don’t give Kappa values, nor the

complete information needed to compute a Kappa statistics
ourselves.

same TFA value (be it t, c or f). Because in our
experiments we do not differentiate between t and c,
considering both as t, we computed, in the last row
of the table, the agreement between the three anno-
tators after replacing the TFA value c with t.5

3 Identification of topic and focus

In this section we present data-driven, machine
learning approaches for automatic identification of
Information Structure. For each tectogrammatical
node we detect the TFA value t(opic) or f(ocus) (that
is CB or NB). With these values one can apply the
rules presented in Subsection 2.1 in order to find the
Topic-Focus partitioning of each sentence.

3.1 Experimental settings

Our experiments use the tectogrammatical trees
from The Prague Dependency Treebank 2.0.6 Statis-
tics of the experimental data are shown in Table 3.

Our goal is to automatically label the tectogram-
matical nodes with topic or focus. We built ma-
chine learning models based on three different well
known techniques, decision trees (C4.5), rule induc-
tion (RIPPER) and maximum entropy (MaxEnt), in
order to find out which approach is the most suitable
for our task. For C4.5 and RIPPER we use the Weka
implementations (Witten and Frank, 2000) and for
MaxEnt we use the openNLP package.7

 In (Veselá et al., 2004), the number of cases when the anno-
tators disagreed when labeling t or c is reported; this allowed
us to compute the t/f agreement, by disregarding this number.

 We are grateful to the researchers at the Charles University in
Prague for providing us the data before the PDT 2.0 official
release.

 http://maxent.sourceforge.net/
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PDT DATA TRAIN DEV EVAL TOTAL

#files
2,536
80%

316
10%

316
10%

3,168
100%

#sentences
38,737
78.3%

5,228
10.6%

5,477
11.1%

49,442
100%

#tokens
652,700
78.3%

87,988
10.6%

92,669
11.1%

833,356
100%

#tecto-nodes
494,759
78.3%

66,711
10.5%

70,323
11.2%

631,793
100%

Table 3: PDT data: Statistics for the training, devel-
opment and evaluation sets.

All our models use the same set of 35 features (pre-
sented in detail in Appendix A), divided in two
types:

1. Basic features, consisting of attributes of the
tectogrammatical nodes whose values were
taken directly from the treebank annotation.
We used a total of 25 basic features, that may
have between 2 and 61 values.

2. Derived features, inspired by the annotation
guidelines. The derived features are computed
using the dependency information from the tec-
togrammatical level of the treebank and the
surface order of the words corresponding to
the nodes.8 We also used lists of forms of
Czech pronouns that are used as weak pro-
nouns, indexical expressions, pronouns with
general meaning, or strong pronouns. All the
derived features have boolean values.

3.2 Results

The classifiers were trained on 494,759 instances
(78.3%) (cf. Table 3) (tectogrammatical nodes) from
the training set. The performance of the classifiers
was evaluated on 70,323 instances (11.2%) from the
evaluation set. We compared our models against a
baseline system that assigns focus to all nodes (as it
is the most common value) and against a determinis-
tic, rule-based system, that implements the instruc-
tions from the annotation guidelines.

Table 4 shows the percentages of correctly classi-
fied instances for our models. We also performed a

 In the tectogramatical level in the PDT, the order of the nodes
has been changed during the annotation process of the TFA
attribute, so that all t items precede all f items. Our fea-
tures use the surface order of the words corresponding to the
nodes.

10-fold cross validation, which for C4.5 gives accu-
racy of 90.62%.

BASELINE RULE-BASED C4.5 RIPPER MAX ENT

62.66 58.92 90.69 88.46∗ 88.97

Table 4: Correctly classified instances (the numbers
are given as percentages).∗The RIPPER classifier
was trained with only 40% of the training data.

The baseline value is considerably high due to the
topic/focus distribution in the test set (a similar dis-
tribution characterizes the training set as well). The
rule-based system performs very poorly, although it
follows the guidelines according to which the data
was annotated. This anomaly is due to the fact that
the intonation center of the sentence, which plays a
very important role in the annotation, is not marked
in the corpus, thus the rule-based system doesn’t
have access to this information.

The results show that all three models perform
much better than the baseline and the rule-based sys-
tem. We used theχ test to examine if the dif-
ference between the three classifiers is statistically
significant. The C4.5 model significantly outper-
forms the MaxEnt model (χ = 113.9,p < 0.001)
and the MaxEnt model significantly outperforms the
RIPPER model although with a lower level of confi-
dence (χ = 9.1,p < 0.01).

The top of the decision tree generated by C4.5 in
the training phase looks like this:

coref = true
| is_member = true
| | POS = ...
| is_member = false
| | is_rightmost = ...
coref = false
| is_generated = true
| | nodetype = ...
| is_generated = false
| | iterativeness = ...

It is worth mentioning that the RIPPER classifier
was built with only 40% of the training set (with
more data, the system crashes due to insufficient
memory). Interestingly and quite surprisingly, the
values of all three classifiers are actually greater than
the interannotator agreement which has an average
of 86.42%.

What is the cause of the classifiers’ success? How
come that they perform better than the annotators
themselves? Is it because they take advantage of a
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large amount of training data? To answer this ques-
tion we have computed the learning curves. They
are shown in the figure 3, which shows that, actu-
ally, after using only 1% of the training data (4,947
instances), the classifiers already perform very well,
and adding more training data improves the results
only slightly. On the other hand, for RIPPER,
adding more data causes a decrease in performance,
and as we mentioned earlier, even an impossibility
of building a classifier.
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Figure 3: Learning curves for C4.5 (+),
RIPPER(×), MaxEnt(∗) and a na¨ıve predictor
(�) (introduced in Section 3.3).

3.3 Error Analysis

If errors don’t come from the lack of training data,
then where do they come from? To answer this ques-
tion we performed an error analysis. For each in-
stance (tectogrammatical node), we considered its
contextas being the set of values for the features pre-
sented in Appendix A. Table 5 displays in the second
column the number of all contexts. The last three
columns divide the contexts in three groups:

1. Only t — all instances having these contexts are
assigned t;

2. Only f — all instances having these contexts
are assigned f;

3. Ambiguous — some instances that have these
contexts are assigned t and some other are as-
signed f.

The last row of the table shows the number of in-
stances for each type of context, in the training data.

All Only t Only f Ambiguous
#contexts 27,901 9,901 13,009 4,991

#instances
494,759
100%

94,056
19.01%

42,048
8.49%

358,655
72.49%

Table 5: Contexts & Instances in the training set.

Table 5 shows that the source of ambiguity (and
therefore of errors) stays in 4,991 contexts that cor-
respond to nodes that have been assigned both t and
f. Moreover these contexts yield the largest amount
of instances (72.49%). We investigated further these
ambiguous contexts and we counted how many of
them correspond to a set of nodes that are mostly as-
signed t (#t> #f), respectively f (#t< #f), and how
many are highly ambiguous (half of the correspond-
ing instances are assigned t and the other half f (#t=
#f)). The numbers, shown in Table 6, suggest that in
the training data there are 41,851 instances (8.45%)
(the sum of highlighted numbers in the third row of
the Table 6) that are exceptions, meaning they have
contexts that usually correspond to instances that are
assigned the other TFA value. There are two ex-
planations for these exceptions: either they are part
of the annotators disagreement, or they have some
characteristics that our set of features fail to capture.

#t > #f #t = #f #t < #f
#ambiguous
contexts 998 833 3,155

#instances

t=50,722
f=4,854

all=55,576
11.23%

t=602
f=602

all=1,204
0.24%

t=35,793
f=266,082

all=301,875
61.01%

Table 6: Ambiguous contexts in the training data.

The error analysis led us to the idea of implementing
a na¨ıve predictor. This predictor trains on the train-
ing set, and divides the contexts into five groups. Ta-
ble 7 describes these five types of contexts and dis-
plays the TFA value assigned by the na¨ıve predictor
for each type.

If an instance has a context of type #t= #f, we
decide to assign f because this is the most common
value. Also, for the same reason, new contexts in
the test set that don’t appear in the training set are
assigned f.

The performance of the na¨ıve predictor on the
evaluation set is 89.88% (correctly classified in-
stances), a value which is significantly higher than
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Context Type
In the training set, instances with
a context of this type are:

Predicted
TFA value

Only t all t t
Only f all f f
#t > #f more t than f t
#t = #f half t, half f f
#t < #f more f than t f
unseen not seen f

Table 7: Na¨ıve Predictor: its TFA prediction for
each type of context.

the one obtained by the MaxEnt and RIPPER clas-
sifiers (χ = 30.7, p < 0.001 and respectivelyχ

= 73.3,p < 0.001), and comparable with the C4.5
value, although the C4.5 classifier still performs sig-
nificantly better (χ = 26.3,p < 0.001).

To find out whether the na¨ıve predictor would im-
prove if we added more data, we computed the learn-
ing curve, shown in Figure 3. Although the curve
is slightly more abrupt than the ones of the other
classifiers, we do not have enough evidence to be-
lieve that more data in the training set would bring
a significant improvement. We calculated the num-
ber of new contexts in the development set, and al-
though the number is high (2,043 contexts), they
correspond to only 2,125 instances. This suggests
that the new contexts that may appear are very rare,
therefore they cannot yield a big improvement.

4 Conclusions

In this paper we investigated the problem of learn-
ing Information Structure from annotated data. The
contribution of this research is to show for the first
time that IS can be successfuly recovered using
mostly syntactic features. We used the Prague De-
pendency Treebank which is annotated with Infor-
mation Structure following the Praguian theory of
Topic Focus Articulation. The results show that we
can reliably identify t(opic) and f(ocus) with over
90% accuracy while the baseline is at 62%.

Issues for further research include, on the one
hand, a deeper investigation of the Topic-Focus Ar-
ticulation in the Prague Dependency Treebank of
Czech, by improving the feature set, considering
also the distinction between contrastive and non-
contrastive t items and, most importantly, by inves-
tigating how we can use the t/f annotation in PDT
(and respectively our results) in order to detect the

Topic/Focus partitioning of the whole sentence.
We also want to benefit from our experience with

the Czech data in order to create an English corpus
annotated with Information Structure. We have al-
ready started to exploit a parallel English-Czech cor-
pus, in order to transfer to the English version the
topic/focus labels identified by our systems.
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dency Treebank. In Eva Hajiˇcová, editor,Issues of valency and Meaning.
Studies in Honor of Jarmila Panevov´a. Karolinum, Prague.
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Appendix A
In this appendix we provide a full list of the feature names and the values they take (a feature for MaxEnt being a
combination of the name, value and the prediction).

BASIC FEATURE POSSIBLE VALUES

nodetype complex, atom, dphr, list, qcomplex
is generated true, false
functor ACT, LOC, DENOM, APP, PAT, DIR1, MAT, RSTR, THL, TWHEN, REG,

CPHR, COMPL, MEANS, ADDR, CRIT, TFHL, BEN, ORIG, DIR3, TTILL,
TSIN, MANN, EFF, ID, CAUS, CPR, DPHR, AIM, EXT, ACMP, THO, DIR2,
RESTR, TPAR, PAR, COND, CNCS, DIFF, SUBS, AUTH, INTT, VOCAT,
TOWH, ATT, RHEM, TFRWH, INTF, RESL, PREC, PRED, PARTL, HER,
MOD, CONTRD

coref true, false
afun Pred, Pnom, AuxV, Sb, Obj, Atr, Adv, AtrAdv, AdvAtr, Coord, AtrObj, ObjAtr,

AtrAtr, AuxT, AuxR, AuxP, Apos, ExD, AuxC, Atv, AtvV, AuxO, AuxZ, AuxY,
AuxG, AuxK, NA

POS N, A, R, V, D, C, P, J, T, Z, I, NA
SUBPOS NN, AA, NA, RR, VB, Db, Vp, C=, Dg, PD, Vf, J, Ĵ, P7, P4, PS, Cl, TT, RV, PP,

P8, Vs, Cr, AG, Cn, PL, PZ, Vc, AU, PH, Z:, PW, AC, NX, Ca, PQ, P5, PJ, Cv,
PK, PE, P1, Vi, P9, A2, CC, P6, Cy, C?, RF, Co, Ve, II, Cd, Ch, J*, AM, Cw,
AO, Vt, Vm

is member true, false
is parenthesis true, false
sempos n.denot, n.denot.neg, n.pron.def.demon, n.pron.def.pers, n.pron.indef,

n.quant.def, adj.denot, adj.pron.def.demon, adj.pron.indef, adj.quant.def,
adj.quant.indef, adj.quant.grad, adv.denot.grad.nneg, adv.denot.ngrad.nneg,
adv.denot.grad.neg, adv.denot.ngrad.neg, adv.pron.def, adv.pron.indef, v, NA

number sg, pl, inher, nr, NA
gender anim, inan, fem, neut, inher, nr, NA
person 1, 2, 3, inher, NA
degcmp pos, comp, acomp, sup, nr, NA
verbmod ind, imp, cdn, nr, NA
aspect proc, cpl, nr, NA
tense sim, ant, post, nil, NA
numertype basic, set, kind, ord, frac, NA
indeftype relat, indef1, indef2, indef3, indef4, indef5, indef6, inter, negat, total1, total2,

NA
negation neg0, neg1, NA
politeness polite, basic, inher, NA
deontmod deb, hrt, vol, poss, perm, fac, decl, NA
dispmod disp1, disp0, nil, NA
resultative res1, res0, NA
iterativeness it1, it0, NA
DERIVED FEATURE POSSIBLE VALUES

is rightmost true, false
is rightsidefrom verb true, false
is leftsidedependent true, false
is embeddedattribute true, false
hasrepeatedlemma true, false
is in canonicalorder true, false
is weakpronoun true, false
is indexicalexpression true, false
is pronounwith generalmeaning true, false
is strongpronounwith no prep true, false
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Abstract 

We present a novel mechanism for im-
proving reference resolution by using the 
output of a relation tagger to rescore 
coreference hypotheses. Experiments 
show that this new framework can im-
prove performance on two quite different 
languages -- English and Chinese. 

1 Introduction 

Reference resolution has proven to be a major 
obstacle in building robust systems for information 
extraction, question answering, text summarization 
and a number of other natural language processing 
tasks.  

Most reference resolution systems use represen-
tations built out of the lexical and syntactic attrib-
utes of the noun phrases (or “mentions”) for which 
reference is to be established. These attributes may 
involve string matching, agreement, syntactic dis-
tance, and positional information, and they tend to 
rely primarily on the immediate context of the 
noun phrases (with the possible exception of sen-
tence-spanning distance measures such as Hobbs 
distance). Though gains have been made with such 
methods (Tetreault 2001; Mitkov 2000; Soon et al. 
2001; Ng and Cardie 2002), there are clearly cases 
where this sort of local information will not be suf-
ficient to resolve coreference correctly. 

Coreference is by definition a semantic 
relationship: two noun phrases corefer if they both 
refer to the same real-world entity. We should 
therefore expect a successful coreference system to 
exploit world knowledge, inference, and other 

forms of semantic information in order to resolve 
hard cases. If, for example, two nouns refer to 
people who work for two different organizations, 
we want our system to infer that these noun 
phrases cannot corefer. Further progress will likely 
be aided by flexible frameworks for representing 
and using the information provided by this kind of 
semantic relation between noun phrases.  

This paper tries to make a small step in that di-
rection. It describes a robust reference resolver that 
incorporates a broad range of semantic information 
in a general news domain. Using an ontology that 
describes relations between entities (the Auto-
mated Content Extraction program1 relation ontol-
ogy) along with a training corpus annotated for 
relations under this ontology, we first train a classi-
fier for identifying relations. We then apply the 
output of this relation tagger to the task of refer-
ence resolution.  

The rest of this paper is structured as follows. 
Section 2 briefly describes the efforts made by 
previous researchers to use semantic information in 
reference resolution.  Section 3 describes our own 
method for incorporating document-level semantic 
context into coreference decisions. We propose a 
representation of semantic context that isolates a 
particularly informative structure of interaction 
between semantic relations and coreference. Sec-
tion 4 explains in detail our strategies for using 
relation information to modify coreference deci-
sions, and the linguistic intuitions behind these 
strategies. Section 5 then presents the system archi-
tectures and algorithms we use to incorporate rela-
tional information into reference resolution. 

                                                           
1
 The ACE task description can be found at 

http://www.itl.nist.gov/iad/894.01/tests/ace/  and the ACE guidelines at 
http://www.ldc.upenn.edu/Projects/ACE/ 
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Section 6 presents the results of experiments on 
both English and Chinese test data. Section 7 pre-
sents our conclusions and directions for future 
work.  

2 Prior Work 

Much of the earlier work in anaphora resolution 
(from the 1970’s and 1980’s, in particular) relied 
heavily on deep semantic analysis and inference 
procedures (Charniak 1972; Wilensky 1983; 
Carbonell and Brown 1988; Hobbs et al. 1993).  
Using these methods, researchers were able to give 
accounts of some difficult examples, often by 
encoding quite elaborate world knowledge.  
Capturing sufficient knowledge to provide 
adequate coverage of even a limited but realistic 
domain was very difficult. Applying these 
reference resolution methods to a broad domain 
would require a large scale knowledge-engineering 
effort. 

The focus for the last decade has been primarily 
on broad coverage systems using relatively shallow 
knowledge, and in particular on corpus-trained sta-
tistical models.  Some of these systems attempt to 
apply shallow semantic information. (Ge et al. 
1998) incorporate gender, number, and animaticity 
information into a statistical model for anaphora 
resolution by gathering coreference statistics on 
particular nominal-pronoun pairs. (Tetreault and 
Allen 2004) use a semantic parser to add semantic 
constraints to the syntactic and agreement con-
straints in their Left-Right Centering algorithm. 
(Soon et al. 2001) use WordNet to test the seman-
tic compatibility of individual noun phrase pairs. In 
general these approaches do not explore the possi-
bility of exploiting the global semantic context 
provided by the document as a whole. 

Recently Bean and Riloff (2004) have sought to 
acquire automatically some semantic patterns that 
can be used as contextual information to improve 
reference resolution, using techniques adapted 
from information extraction.  Their experiments 
were conducted on collections of texts in two topic 
areas (terrorism and natural disasters). 

3 Relational Model of Semantic Context 

Our central goal is to model semantic and corefer-
ence structures in such a way that we can take ad-
vantage of a semantic context larger than the 

individual noun phrase when making coreference 
decisions. Ideally, this model should make it possi-
ble to pick out important features in the context 
and to distinguish useful signals from background 
noise. It should, for example, be able to represent 
such basic relational facts as whether the (possibly 
identical) people referenced by two noun phrases 
work in the same organization, whether they own 
the same car, etc.  And it should be able to use this 
information to resolve references even when sur-
face features such as lexical or grammatical attrib-
utes are imperfect or fail altogether.  

In this paper we present a Relational Corefer-
ence Model (abbreviated as RCM) that makes pro-
gress toward these goals.  To represent semantic 
relations, we use an ontology (the ACE 2004 rela-
tion ontology) that describes 7 main types of rela-
tions between entities and 23 subtypes (Table 1).2 
These relations prove to be more reliable guides 
for coreference than simple lexical context or even 
tests for the semantic compatibility of heads and 
modifiers. The process of tagging relations implic-
itly selects relevant items of context and abstracts 
raw lists of modifiers into a representation that is 
deeper, but still relatively lightweight.  
 

Relation Type Example 
Agent-Artifact 
(ART) 

Rubin Military Design, the 
makers of the Kursk 

Discourse (DISC) each of whom 
Employment/ 
Membership 
(EMP-ORG) 

Mr. Smith, a senior pro-
grammer at Microsoft 

Place-Affiliation 
(GPE-AFF) 

Salzburg Red Cross offi-
cials 

Person-Social  
(PER-SOC) 

relatives of the dead 
 

Physical 
(PHYS) 

a town some 50 miles south 
of Salzburg 

Other-Affiliation 
(Other-AFF) 

Republican senators 

 
Table 1. Examples of the ACE Relation Types 
 
Given these relations we can define a semantic 

context for a candidate mention coreference pair 
(Mention 1b and Mention 2b) using the structure 

                                                           
2 See http://www.ldc.upenn.edu/Projects/ACE/docs/Eng-
lishRDCV4-3-2.PDF for a more complete description of ACE 
2004 relations. 
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depicted in Figure 1. If both mentions participate 
in relations, we examine the types and directions of 
their respective relations as well as whether or not 
their relation partners (Mention 1a and Mention 
2a) corefer. These values (which correspond to the 
edge labels in Figure 1) can then be factored into a 
coreference prediction. This RCM structure 
assimilates relation information into a coherent 
model of semantic context. 
 
 
 
 
 
 
 
 

Figure 1. The RCM structure 

4 Incorporating Relations into Reference 
Resolution 

Given an instance of the RCM structure, we need 
to convert it into semantic knowledge that can be 
applied to a coreference decision. We approach 
this problem by constructing a set of RCM patterns 
and evaluating the accuracy of each pattern as 
positive or negative evidence for coreference. The 
resulting knowledge sources fall into two catego-
ries: rules that improve precision by pruning incor-
rect coreference links between mentions, and rules 
that improve recall by recovering missed links.  

To formalize these relation patterns, based on 
Figure 1, we define the following clauses: 

 
A: RelationType1 = RelationType2 
B: RelationSubType1 = RelationSubType2 
C: Two Relations have the same direction 
Same_Relation: CBA ∧∧  
CorefA: Mention1a and Mention2a corefer 
CorefBMoreLikely: Mention1b and Mention2b are 
more likely to corefer 
CorefBLessLikely: Mention1b and Mention2b are 
less likely to corefer 
 
From these clauses we can construct the follow-

ing plausible inferences: 
 
Rule (1) 

LikelyCorefBLessCorefAlationSame ⇒¬∧Re_  
Rule (2) 

LikelyCorefBLessCorefAlationSame ⇒∧¬ Re_  

Rule (3) 
LikelyCorefBMoreCorefAlationSame ⇒∧Re_   

 
Rule (1) and (2) can be used to prune corefer-

ence links that simple string matching might incor-
rectly assert; and (3) can be used to recover missed 
mention pairs.  

The accuracy of Rules (1) and (3) varies depend-
ing on the type and direction of the particular rela-
tion shared by the two noun phrases. For example, 
if Mention1a and Mention 2a both refer to the 
same nation, and Mentions 1b and 2b participate in 
citizenship relations (GPE-AFF) with Mentions 1a 
and 2a respectively, we should not necessarily 
conclude that 1b and 2b refer to the same person.  
If 1a and 2a refer to the same person, however, and 
1b and 2b are nations in citizenship relations with 
1a and 2a, then it would indeed be the rare case in 
which 1b and 2b refer to two different nations. In 
other words, the relation of a nation to its citizens 
is one-to-many.  

Our system learns broad restrictions like these 
by evaluating the accuracy of Rules (1) and (3) 
when they are instantiated with each possible rela-
tion type and direction and used as weak classifi-
ers. For each such instantiation we use cross-
validation on our training data to calculate a reli-
ability weight defined as: 

 
| Correct decisions by rule for given instance | 

 
| Total applicable cases for given instance | 

 
  We count the number of correct decisions for a 
rule instance by taking the rule instance as the only 
source of information for coreference resolution 
and making only those decisions suggested by the 
rule’s implication (interpreting CorefBMoreLikely 
as an assertion that mention 1b and mention 2b do 
in fact corefer, and interpreting CorefBLessLikely 
as an assertion that they do not corefer). 

Every rule instance with a reliability weight of 
70% or greater is retained for inclusion in the final 
system. Rule (2) cannot be instantiated with a 
single type because it requires that the two relation 
types be different, and so we do not perform this 
filtering for Rule (2) (Rule (2) has 97% accuracy 
across all relation types). 

This procedure yields 58 reliable (reliability 
weight > 70%) type instantiations of Rule (1) and 
(3), in addition to the reliable Rule 2. We can 

Relation? 
Type2/Subtype2 

Mention1a 

Mention2a 

 
 
 

Candidate 

Mention1b 

Mention2b 

Relation? 
Type1/Subtype1

  Contexts: Corefer?  
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recover an additional 24 reliable rules by 
conjoining additional boolean tests to less reliable 
rules. Tests include equality of mention heads, 
substring matching, absence of temporal key words 
such as “current” and “former,” number 
agreement, and high confidence for original 
coreference decisions (Mention1b and Mention2b). 
For each rule below the reliability threshold, we 
search for combinations of 3 or fewer of these 
restrictions until we achieve reliability of 70% or 
we have exhausted the search space.  

We give some examples of particular rule 
instances below. 
 
Example for Rule (1) 

 
Bush campaign officials ... decided to tone down a 
post-debate rally, and were even considering can-
celing it. 
… 
The Bush and Gore campaigns did not talk to each 
other directly about the possibility of postpone-
ment, but went through the debate commission's di-
rector, Janet Brown...Eventually, Brown 
recommended that the debate should go on, and 
neither side objected, according to campaign offi-
cials. 

 
Two mentions that do not corefer share the same 

nominal head (“officials”). We can prune the 
coreference link by noting that both occurrences of 
“officials” participate in an Employee-
Organization (EMP-ORG) relation, while the Or-
ganization arguments of these two relation in-
stances do not corefer (because the second 
occurrence refers to officials from both cam-
paigns). 

 
Example for Rule (2) 

 
Despite the increases, college remains affordable 
and a good investment, said College Board Presi-
dent Gaston Caperton in a statement with the sur-
veys. … 
A majority of students need grants or loans -- or 
both -- but their exact numbers are unknown, a 
College Board spokesman said. 
 

  “Gaston Caperton” stands in relation EMP-
ORG/Employ-Executive with “College Board”, 
while "a College Board spokesman" is in relation 
EMP-ORG/Employ-Staff with the same organiza-

tion. We conclude that “Gaston Caperton” does not 
corefer with "spokesman." 
 
Example for Rule (3) 

 
In his foreign policy debut for Syria, this Sunday 
Bashar Assad met Sunday with Egyptian President 
Hosni Mubarak in talks on Mideast peace and the 
escalating violence in the Palestinian territories. 
… 
The Syrian leader's visit came on a fourth day of 
clashes that have raged in the West Bank, Gaza 
Strip and Jerusalem……  
 

  If we have detected a coreference link between 
“Syria” and “Syrian,” as well as EMP-ORG/ 
Employ-Executive relations between this country 
and two noun phrases “Bashar Assad” and 
“leader”, it is likely that the two mentions both 
refer to the same person. Without this inference, a 
resolver might have difficulty detecting this 
coreference link. 

5 Algorithms 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  System Pipeline (Test Procedure) 
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Final coreference decisions 

Entities 
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In this section we will describe our algorithm for 
incorporating semantic relation information from 
the RCM into the reference resolver. In a nutshell, 
the system applies a baseline statistical resolver to 
generate multiple coreference hypotheses, applies a 
relation tagger to acquire relation information, and 
uses the relation information to rescore the 
coreference hypotheses. This general system archi-
tecture is shown in Figure 2.  

In section 5.1 below we present our baseline 
coreference system. In Section 5.2 we describe a 
system that combines the output of this baseline 
system with relation information to improve per-
formance. 

5.1 Baseline System 

Baseline reference resolver 

As the first stage in the resolution process we 
apply a baseline reference resolver that uses no 
relation information at all. This baseline resolver 
goes through two successive stages.  

First, high-precision heuristic rules make some 
positive and negative reference decisions. Rules 
include simple string matching (e.g., names that 
match exactly are resolved), agreement constraints 
(e.g., a nominal will never be resolved with an en-
tity that doesn't agree in number), and reliable syn-
tactic cues (e.g., mentions in apposition are 
resolved). When such a rule applies, it assigns a 
confidence value of 1 or 0 to a candidate mention-
antecedent pair. 

The remaining pairs are assigned confidence 
values by a collection of maximum entropy mod-
els. Since different mention types have different 
coreference problems, we separate the system into 
different models for names, nominals, and pro-
nouns. Each model uses a distinct feature set, and 
for each instance only one of these three models is 
used to produce a probability that the instance 
represents a correct resolution of the mention. 
When the baseline is used as a standalone system, 
we apply a threshold to this probability: if some 
resolution has a confidence above the  threshold, 
the highest confidence resolution will be made. 
Otherwise the mention is assumed to be the first 
mention of an entity. When the baseline is used as 
a component of the system depicted in figure 2, the 
confidence value is passed on to the rescoring 
stage described in 5.2 below. 

Both the English and the Chinese coreference 
models incorporate features representing agree-
ment of various kinds between noun phrases 
(number, gender, humanness), degree of string 
similarity, synonymy between noun phrase heads, 
measures of distance between noun phrases (such 
as the number of intervening sentences), the pres-
ence or absence of determiners or quantifiers, and 
a wide variety of other properties. 

Relation tagger 

The relation tagger uses a K-nearest-neighbor algo-
rithm. We consider a mention pair as a possible 
instance of a relation only when: (1) there is at 
most one other mention between their heads, and 
(2) the coreference probability produced for the 
pair by the baseline resolver is lower than a thresh-
old.  Each training / test example consists of the 
pair of mentions and the sequence of intervening 
words. We defined a distance metric between two 
examples based on: 

� whether the heads of the mentions match 
� whether the ACE types of the heads of the 

mentions match (for example, both are people 
or both are organizations) 

� whether the intervening words match 

To tag a test example, we find the k nearest 
training examples, use the distance to weight each 
neighbor, and then select the most heavily 
weighted class in the weighted neighbor set. 

Name tagger and noun phrase chunker  

Our baseline name tagger consists of a HMM 
tagger augmented with a set of post-processing 
rules.  The HMM tagger generally follows the 
Nymble model (Bikel et al. 1997), but with a larger 
number of states (12 for Chinese, 30 for English) 
to handle name prefixes and suffixes, and, for 
Chinese, transliterated foreign names separately.  
For Chinese it operates on the output of a word 
segmenter from Tsinghua University. Our nominal 
mention tagger (noun phrase chunker) is a 
maximum entropy tagger trained on treebanks 
from the University of Pennsylvania. 

5.2 Rescoring stage 

To incorporate information from the relation tagger 
into the final coreference decision, we split the 
maxent classification into two stages. The first 
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stage simply applies the baseline maxent models, 
without any relation information, and produces a 
probability of coreference. This probability 
becomes a feature in the second (rescoring) stage 
of maxent classification, together with features 
representing the relation knowledge sources. If a 
high reliability instantiation of one of the RCM 
rules (as defined in section 4 above) applies to a 
given mention-antecedent pair, we include the 
following features for that pair: the type of the 
RCM rule, the reliability of the rule instantiation, 
the relation type and subtype, the direction of the 
relation, and the tokens for the two mentions. 

The second stage helps to increase the margin 
between correct and incorrect links and so effects 
better disambiguation. See figure 3 below for a 
more detailed description of the training and test-
ing processes. 

 
 

 Training  
1. Calculate reliability weights of relation knowl-
edge sources using cross-validation (for each of k 
divisions of training data, train relation tagger on k 
– 1 divisions, tag relations in remaining division 
and compute reliability of each relation knowledge 
source using this division). 
2. Use high reliability relation knowledge sources 
to generate relation features for 2nd stage Maxent 
training data. 
3. Apply baseline coreference resolver to 2nd stage 
training data. 
4. Using output of both 2 and 3 as features, train 
2nd stage Maxent resolver. 

 
Test 
1. Tag relations. 
2. Convert relation knowledge sources into fea-
tures for second stage Maxent models. 
3. Use baseline Maxent models to get coreference 
probabilities for use as features in second stage 
Maxent models. 
4. Using output of 2 and 3 as features for 2nd stage 
Maxent model, apply 2nd stage resolver to make 
final coreference decisions. 
 

Figure 3.  Training and Testing Processes 
 

 
 

6 Evaluation Results 

6.1 Corpora 

We evaluated our system on two languages: 
English and Chinese. The following are the 
training corpora used for the components in these 
two languages. 

English 

For English, we trained the baseline maxent 
coreference model on 311 newswire and 
newspaper texts from the ACE 2002 and ACE 
2003 training corpora. We trained the relation 
tagger on 328 ACE 2004 texts. We used 126 
newswire texts from the ACE 2004 data to train the 
English second-stage model, and 65 newswire 
texts from the ACE 2004 evaluation set as a test set 
for the English system.  

Chinese 

For Chinese, the baseline reference resolver was 
trained on 767 texts from ACE 2003 and ACE 
2004 training data. Both the baseline relation 
tagger and the rescoring model were trained on 646 
texts from ACE 2004 training data. We used 100 
ACE texts for a final blind test. 

6.2 Experiments 

We used the MUC coreference scoring metric 
(Vilain et al 1995) to evaluate3 our systems.  

To establish an upper limit for the possible 
improvement offered by our models, we first did 
experiments using perfect (hand-tagged) mentions 
and perfect relations as inputs. The algorithms for 

                                                           
3
 In our scoring, we use the ACE keys and only score mentions which appear in 

both the key and system response.  This therefore includes only mentions identi-
fied as being in the ACE semantic categories by both the key and the system 
response.  Thus these scores cannot be directly compared against coreference 
scores involving all noun phrases. (Ng 2005) applies another variation on the 
MUC metric to several systems tested on the ACE data by scoring all response 
mentions against all key mentions. For coreference systems that don’t restrict 
themselves to mentions in the ACE categories (or that don’t succeed in so re-
stricting themselves), this scoring method could lead to some odd effects. For 
example, systems that recover more correct links could be penalized for this 
greater recall because all links involving non-ACE mentions will be incorrect 
according to the ACE key. For the sake of comparison, however, we present 
here English system results measured according to this metric: On newswire 
data, our baseline had an F of 62.8 and the rescoring method had an F of 64.2. 
Ng’s best F score (on newspaper data) is 69.3. The best F score of  the (Ng and 
Cardie 2002)  system (also on newspaper data) is 62.1. On newswire data the 
(Ng 2005) system had an F score of 54.7 and the (Ng and Cardie 2002) system 
had an F score of 50.1. Note that Ng trained and tested these systems on differ-
ent ACE data sets than those we used for our experiments. 
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these experiments are identical to those described 
above except for the omission of the relation tagger 
training. Tables 2 and 3 show the performance of 
the system for English and Chinese.  
 
Performance Recall Precision F-measure 
Baseline 74.5 86.6 80.1 
Rescoring 78.3 87.0 82.4 

 
Table 2. Performance of English system 

with perfect mentions and perfect relations 
 
 
Performance Recall Precision F-measure 
Baseline 87.5 83.2 85.3 
Rescoring 88.8 84.7 86.7 

 
Table 3. Performance of Chinese system 

with perfect mentions and perfect relations 
 
We can see that the relation information 

provided some improvements for both languages. 
Relation information increased both recall and 
precision in both cases. 

We then performed experiments to evaluate the 
impact of coreference rescoring when used with 
mentions and relations produced by the system. 
Table 4 and Table 5 list the results.4 
 
 
Performance Recall Precision F-measure 
Baseline 77.2 87.3 81.9 
Rescoring 80.3 87.5 83.7 

 
Table 4. Performance of English system 

with system mentions and system relations 
 

 
Performance Recall Precision F-measure 
Baseline 75.0 76.3 75.6 
Rescoring 76.1 76.5 76.3 

 
Table 5. Chinese system performance with 

system mentions and system relations 
 

                                                           
4 Note that, while English shows slightly less relative gain from rescoring when 
using system relations and mentions, all of these scores are higher than the 
perfect mention/perfect relation scores. This increase may be a byproduct of the 
fact that the system mention tagger output contains almost 8% fewer scoreable 
mentions than the perfect mention set (see footnote 3). With a difference of this 
magnitude, the particular mention set selected can be expected to have a sizable 
impact on the final scores. 

The improvement provided by rescoring in trials 
using mentions and relations detected by the 
system is considerably less than the improvement 
in trials using perfect mentions and relations, 
particularly for Chinese. The performance of our 
relation tagger is the most likely cause for this 
difference. We would expect further gain after 
improving the relation tagger. 

A sign test applied to a 5-way split of each of the 
test corpora indicated that for both languages, for 
both perfect and system mentions/relations, the 
system that exploited relation information signifi-
cantly outperformed the baseline (at the 95% con-
fidence level, judged by F measure). 

6.3 Error Analysis 

Errors made by the RCM rules reveal both the 
drawbacks of using a lightweight semantic 
representation and the inherent difficulty of 
semantic analysis. Consider the following instance: 
 

Card's interest in politics began when he became 
president of the class of 1965 at Holbrook High 
School…In 1993, he became president and chief 
executive of the American Automobile Manufac-
turers Association, where he oversaw the lobbying 
against tighter fuel-economy and air pollution regu-
lations for automobiles… 
 

The two occurrences of “president” should core-
fer even though they have EMP-ORG/Employ-
Executive relations with two different organiza-
tions. The relation rule (Rule 1) fails here because 
it doesn't take into account the fact that relations 
change over time (in this case, the same person 
filling different positions at different times). In 
these and other cases, a little knowledge is a dan-
gerous thing: a more complete schema might be 
able to deal more thoroughly with temporal and 
other essential semantic dimensions. 

Nevertheless, performance improvements indi-
cate that the rewards of the RCM’s simple seman-
tic representation outweigh the risks. 

7 Conclusion and Future Work 

We have outlined an approach to improving refer-
ence resolution through the use of semantic rela-
tions, and have described a system which can 
exploit these semantic relations effectively. Our 
experiments on English and Chinese data showed 
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that these small inroads into semantic territory do 
indeed offer performance improvements. Further-
more, the method is low-cost and not domain-
specific. 

  These experiments also suggest that some gains 
can be made through the exploration of new archi-
tectures for information extraction applications. 
The “resolve coreference, tag relations, resolve 
coreference” procedure described above could be 
seen as one and a half iterations of a “resolve 
coreference then tag relations” loop. Seen in this 
way, the system poses the question of whether fur-
ther gains could be made by pushing the iterative 
approach further. Perhaps by substituting an itera-
tive procedure for the pipeline architecture’s linear 
sequence of stages we can begin to address the 
knotty, mutually determining nature of the interac-
tion between semantic relations and coreference 
relations. This approach could be applied more 
broadly, to different NLP tasks, and also more 
deeply, going beyond the simple one-and-a-half-
iteration procedure we present here. Ultimately, we 
would want this framework to boost the perform-
ance of each component automatically and signifi-
cantly. 

We also intend to extend our method both to 
cross-document relation detection and to event de-
tection. 
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Abstract

The paper proposesa ConstrainedEntity-
Alignment F-Measure(CEAF) for evaluating
coreferenceresolution. The metric is com-
putedby aligningreferenceandsystementities
(or coreferencechains)with theconstraintthat
a system(reference)entity is alignedwith at
mostonereference(system)entity. We show
that thebestalignmentis a maximumbipartite
matchingproblemwhich canbe solvedby the
Kuhn-Munkresalgorithm.Comparativeexper-
imentsareconductedto show that thewidely-
known MUC F-measurehas seriousflaws in
evaluatingacoreferencesystem.Theproposed
metric is alsocomparedwith the ACE-Value,
the official evaluationmetric in the Automatic
ContentExtraction (ACE) task, and we con-
cludethat theproposedmetricpossessessome
propertiessuchas symmetryand better inter-
pretabilitymissingin theACE-Value.

1 Intr oduction

A working definition of coreferenceresolutionis parti-
tioning thenounphraseswe areinterestedin into equiv-
alenceclasses,eachof which refersto a physicalentity.
We adoptthe terminologiesusedin the AutomaticCon-
tent Extraction(ACE) task(NIST, 2003a)andcall each
individual phrasea mention andequivalenceclassanen-
tity. For example,in thefollowing text segment,

(1): “The AmericanMedicalAssociation
voted yesterdayto install theheirapparentas
its president-elect, rejecting a strong, upstart
challengeby a district doctorwho arguedthat
the nation’s largest physicians’ group needs
strongerethicsandnew leadership.”

mentionsare underlined,“American Medical Associa-
tion”, “its” and “group” refer to the sameorganization

(object)andthey form anentity. Similarly, “the heir ap-
parent”and“president-elect”referto thesamepersonand
they form anotherentity. It is worth pointingout that the
entity definition hereis different from what usedin the
MessageUnderstandingConference(MUC) task(MUC,
1995; MUC, 1998) – ACE entity is called coreference
chainor equivalenceclassin MUC, andACE mentionis
calledentity in MUC.

An importantproblemin coreferenceresolutionis how
to evaluateasystem’sperformance.A goodperformance
metricshouldhave thefollowing two properties:

� Discriminativity: This refersto theability to differ-
entiatea goodsystemfrom a badone. While this
criterionsoundstrivial, not all performancemetrics
usedin thepastpossessthis property.

� Interpretability:A goodmetricshouldbeeasyto in-
terpret.Thatis, thereshouldbeanintuitivesenseof
how gooda systemis whena metricsuggeststhata
certainpercentageof coreferenceresultsarecorrect.
For example,whena metric reports

�����
or above

correctfor a system,we would expectthat the vast
majority of mentionsarein right entitiesor corefer-
encechains.

A widely-usedmetricis thelink-basedF-measure(Vi-
lain etal.,1995)adoptedin theMUC task.It is computed
by first countingthe numberof commonlinks between
the reference(or “truth”) andthe systemoutput(or “re-
sponse”);the link precisionis the numberof common
links divided by the numberof links in the systemout-
put, and the link recall is the numberof commonlinks
divided by the numberof links in the reference.There
are known problemsassociatedwith the link-basedF-
measure.First, it ignoressingle-mentionentitiessince
no link canbefoundin theseentities;Second,andmore
importantly, it fails to distinguishsystemoutputswith
differentqualities:thelink-basedF-measureintrinsically
favors systemsproducingfewer entities,andmay result
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in higherF-measuresfor worsesystems.We will revisit
theseissuesin Section3.

To countertheseshortcomings,Baggaand Baldwin
(1998)proposeda B-cubedmetric,which first computes
a precisionand recall for eachindividual mention,and
then takes the weightedsum of theseindividual preci-
sionsandrecallsasthe final metric. While the B-cubed
metric fixes someof the shortcomingsof the MUC F-
measure,it hasits own problems:for example,themen-
tion precision/recallis computedby comparingentities
containingthe mention and thereforean entity can be
usedmorethanonce. The implication of this drawback
will berevisitedin Section3.

In the ACE task, a value-basedmetric called ACE-
value (NIST, 2003b) is used. The ACE-value is com-
putedby countingthe numberof false-alarm,the num-
ber of miss,andthe numberof mistaken entities. Each
error is associatedwith a cost factor that dependson
things suchas entity type (e.g., “LOCATION”, “PER-
SON”), andmentionlevel (e.g.,“NAME,” “NOMIN AL,”
and“PRONOUN”). Thetotal costis thesumof thethree
costs,whichis thennormalizedagainstthecostof anom-
inal systemthat doesnot outputany entity. The ACE-
valueis finally computedby subtractingthe normalized
cost from � . A perfect coreferencesystemwill get a
���	� �

ACE-valuewhile a systemoutputsno entitieswill
geta � ACE-value.A systemoutputtingmany erroneous
entitiescould even get negative ACE-value. The ACE-
value is computedby aligning entitiesand thus avoids
theproblemsof theMUC F-measure.TheACE-valueis,
however, hardto interpret:asystemwith

� � �
ACE-value

doesnotmeanthat
� � �

of systementitiesormentionsare
correct,but thatthecostof thesystem,relative to theone
outputtingno entity, is �
� �

.
In this paper, we aim to developan evaluationmetric

thatis ableto measurethequalityof acoreferencesystem
– that is, an intuitively bettersystemwould get a higher
scorethanaworsesystem,andis easyto interpret.To this
end,weobservethatcoreferencesystemsareto recognize
entities andproposea metric calledConstrainedEntity-
Aligned F-Measure(CEAF).At thecoreof themetric is
theoptimalone-to-onemapbetweensubsetsof reference
andsystementities:systementitiesandreferenceentities
arealignedby maximizingthe total entity similarity un-
der the constraintthat a referenceentity is alignedwith
at mostonesystementity, andvice versa. Oncethe to-
tal similarity is defined,it is straightforwardto compute
recall,precisionandF-measure.Theconstraintimposed
in theentityalignmentmakesit impossibleto “cheat” the
metric: a systemoutputtingtoo many entitieswill bepe-
nalizedin precisionwhile a systemoutputtingtwo few
entitieswill be penalizedin recall. It alsohasthe prop-
erty that a perfectsystemgetsan F-measure� while a
systemoutputtingno entity or no commonmentionsgets
anF-measure� . TheproposedCEAF hasa clearmean-
ing: for mention-basedCEAF, it reflectsthe percentage

of mentionsthat are in the correctentities; For entity-
basedCEAF, it reflectsthepercentageof correctlyrecog-
nizedentities.

The restof the paperis organizedasfollows. In Sec-
tion 2, the ConstrainedEntity-Alignment F-Measureis
presentedin detail: the constraintentity alignmentcan
be representedby a bipartite graph and the optimal
alignment can be found by the Kuhn-Munkresalgo-
rithm (Kuhn, 1955; Munkres, 1957). We also present
two entity-pair similarity measuresthat can be usedin
CEAF: oneis theabsolutenumberof commonmentions
betweentwo entities,andtheotherisa“local” mentionF-
measurebetweentwo entities.Thetwo measuresleadto
the mention-basedandentity-basedCEAF, respectively.
In Section3, we comparethe proposedmetric with the
MUC link-basedmetricandACE-valueon bothartificial
and real data,and point out the problemsof the MUC
F-measure.

2 ConstrainedEntity-Alignment
F-Measure

Somenotationsare neededbeforewe presentthe pro-
posedmetricandthealgorithmto computethemetric.

Let referenceentitiesin a document� be

��
 ��������������������� �!�#"$"�"���% ��
 �&�'%)(��
andsystementitiesbe

* 
 �&�+����,-���������.�/�!�#"$"$"0�#% * 
 ��� %1(�2
To simplify typesetting,we will omit thedependency on
� whenit is clearfrom context, andwrite

��
 �&� as
�

and* 
 ��� as
*

.
Let

3 �5476)89��% � %:�#% * %1(; �547<	=0�	% � %1��% * %)(��
andlet

�?>A@B�
and

* >C@ *
beany subsetswith 3 enti-

ties.Thatis, % �?> %!� 3 and % * > %-� 3 . Let D 
E�?> � * > �
bethesetof one-to-oneentitymapsfrom

� >
to

* >
, and

D >
be the setof all possibleone-to-onemapsbetween

thesize-3 subsetsof
�

and
*

. Or

D 
E� > � * > ���F�HGI� � >AJK * > (��
D > �ML+N OQPSR TUPWV�D 
X�?> � * > �Y2

The requirementof one-to-onemapmeansthat for any
G[Z\D 
E�?> � * > � , and any �]Z �?>

and ��^_Z �?>
,

we have that �a`�b�S^ implies that G 
 �c�d`�eG 
 ��^f� , and
G 
 �c��`�gG 
 ��^f� impliesthat �e`�h��^ . Clearly, thereare35i
one-to-onemapsfrom

�?>
to

* >
(or %:D 
E�?> � * > �'%c�3Bi ), and %1D > %-� j > 3Bi .

Let k 
 �l��,m� bea“similarity” measurebetweentwo en-
tities � and , . k 
 �l�$,m� takesnon-negative value: zero
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valuemeansthat � and , have nothingin common.For
example,k 
 �n��,m� couldbethenumberof commonmen-
tionssharedby � and , , and k 
 �l�$�c� thenumberof men-
tionsin entity � .

For any G_ZoD >
, thetotal similarity p 
 G9� for a mapG

is thesumof similaritiesbetweenthealignedentitypairs:
p 
 G9��� q�r O P k 
 �l�YG 
 �c� � . Givena document� , and
its referenceentities

�
andsystementities

*
, wecanfind

thebestalignmentmaximizingthetotal similarity:

Gtsu�5<	v/wx47<	=y r.z P p 
 Gt�
�5<	v/wx47<	=y r.z P q�r OQP k 
 �n�'G 
 �c� �Y2 (1)

Let
� s> and

* s> �bG s 
X� s> � denotethe referenceand
systementity subsetswhere G s is attained,respectively.
Thenthemaximumtotal similarity is

p 
 G s �+� q�r O�{P k 
 �l�YG s 
 �c� �'2 (2)

If we insist that k 
 �l�$,S�B�|� whenever � or , is
empty, then the non-negativity requirementof k 
 �l�$,S�
makesit unnecessaryto considerthepossibilityof map-
ping oneentity to an emptyentity sincethe one-to-one
mapmaximizing p 
 Gt� mustbein D >

.
Since we can compute the entity self-similarity

k 
 �l�$�c� and k 
 ,t�$,m� for any �}Z �
and ,~Z *

(i.e.,
usingthe identity map),we arenow readyto definethe
precision,recallandF-measureasfollows:

� � p 
 G s �
� k 
 ,0� ��,-� � (3)

� � p 
 G s �
� k 
 ���/�$��� � (4)

� � � �������� 2 (5)

The optimal alignment G s involves only 3 �
47618���% � %:�#% * %)( referenceandsystementities,andentities
not aligneddo not getcredit.ThustheF-measure(5) pe-
nalizesacoreferencesystemthatproposestoomany (i.e.,
lower precision)or too few entities(i.e., lower recall),
which is adesiredproperty.

In the above discussion,it is assumedthat the sim-
ilarity measurek 
 �l��,m� is computedfor all entity pair
 �l��,m� . In practice, computationof k 
 �n��,m� can be
avoidedif it is clearthat � and , havenothingin common
(e.g.,if no mentionin � and , overlaps,then k 
 �l��,m�+�
� ). Theseentity pairs are not linked and they will not
beconsideredwhensearchingfor theoptimalalignment.
Consequentlythe optimal alignmentcould involve less
than 3 referenceandsystementities.This canspeedup
considerablythe F-measurecomputationwhen the ma-
jority of entity pairshave zerosimilarity. Nevertheless,

summingover 3 entity pairsin thegeneralformulae(2)
doesnot changethe optimal total similarity between

�
and

*
andhencetheF-measure.

In formulae(3)-(5), thereis only onedocumentin the
testcorpus. Extensionto corpuswith multiple testdoc-
umentsis trivial: just accumulatestatisticson the per-
documentbasisfor bothdenominatorsandnumeratorsin
(3) and(4), andfind theratioof thetwo.

Sofar, wehavetacitly keptabstractthesimilarity mea-
sure k 
 �l�$,m� for entity pair � and , . We will deferthe
discussionof this metric to Section2.2. Instead,we first
presentthealgorithmcomputingtheF-measure(3)-(5).

2.1 Computing Optimal Alignment and F-measure

A naive implementationof (1) would enumerateall the
possibleone-to-onemaps(or alignments)betweensize-3 (recall that 3 ��4�6)89�	% � %1��% * %)( ) subsetsof

�
and

size-3 subsetsof
*

, and find the bestalignmentmax-
imizing the similarity. Since this requirescomputing
the similarities between3 ;

entity pairs and thereare
%1D > %t� j > 35i possibleone-to-onemaps,thecomplex-
ity of this implementationis � 
'; 3|� j > 3Bi � . This
is not satisfactoryeven for a documentwith a moderate
numberof entities: it will have about�-2 � million opera-
tions for

; � 3 ����� , a documentwith only ��� refer-
enceand ��� systementities.

Fortunately, the entity alignmentproblem under the
constraintthat an entity canbe alignedat mostonceis
the classicalmaximumbipartite matchingproblemand
thereexists an algorithm(Kuhn, 1955; Munkres,1957)
(henceforthKuhn-MunkresAlgorithm) that canfind the
optimal solution in polynomial time. Castingthe entity
alignmentproblemasthemaximumbipartitematchingis
trivial: eachentity in

�
and

*
is a vertex andthe node

pair

 �n��,m� , where ��Z �

, ,�Z *
, is connectedby an

edgewith the weight k 
 �l�$,m� . Thusthe problem(1) is
exactly themaximumbipartitematching.

With the Kuhn-Munkresalgorithm, the procedureto
computethe F-measure(5) can be describedas Algo-
rithm 1.

Algorithm 1 ComputingtheF-measure(5).
Input : referenceentities:

�
; systementities:

*
Output : optimalalignmentG s ; F-measure(5).
1:Initialize: G s �M� ; p 
 G s �+�o� .
2:For ���M� to % � %
3: For ����� to % * %
4: Compute k 
 ���'��,-�.� .
5:[G s , p 
 G s � ]=KM { �&�X�c�H�W�t��������������� } .
6: ��X�x�9¡ ¢0£�¤��&�X�c�¥�l� ;  ��X���W¡ ¦§£�¨u�U�'�!�©�W� .
7:ªn¡C«U¬®­ {#¯«&¬ ¤ ¯ ; °c¡C«U¬®­ {#¯«&¬ ¨ ¯ ; ±�¡�²¥³©´³Hµ!´ .
8:return ¶�· and± .

Theinput to thealgorithmarereferenceentities
�

and
systementities

*
. Thealgorithmreturnsthebestone-to-
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onemap G s andF-measurein equation(5). Loop from
line 2 to 4 computesthe similarity betweenall the pos-
sible referenceandsystementity pairs. The complexity
of this loop is � 
Y; 3 � . Line 5 calls theKuhn-Munkres
algorithm, which takes as input the entity-pair scores
��k 
 �n��,m�'( and outputsthe bestmap G s and the corre-
spondingtotal similarity p 
 G s � . The worst case(i.e.,
whenall entriesin ��k 
 �n��,m�'( arenon-zeros)complexity
of theKuhn-Algorithmis � 
'; 3¹¸tº)» w 3 � . Line 6 com-
putes“self-similarity” p 
E� � and p 
 * � neededin the F-
measurecomputationat Line 7.

The coreof the F-measurecomputationis the Kuhn-
Munkresalgorithmat line 5. The algorithm is initially
discoveredby Kuhn(1955)andMunkres(1957)to solve
thematching(a.k.aassignment)problemfor squarema-
trices. Since then, it has beenextendedto rectangu-
lar matrices(Bourgeoisand Lassalle,1971) and paral-
lelized(Balasetal., 1991).A recentreview canbefound
in (GuptaandYing, 1999),which alsodetailsthe tech-
niquesof fastimplementation.A shortdescriptionof the
algorithmis includedin Appendix for the sake of com-
pleteness.

2.2 Entity Similarity Metric

In this sectionwe considerthe entity similarity metric
k 
 �l�$,S� definedon an entity pair


 �l��,m� . It is desirable
that k 
 �l�$,m� is largewhen � and , are“close” andsmall
when � and , arevery different.Somestraight-forward
choicescouldbe

kt¼ 
 �l�$,m����� ��� if �M��,
�-� otherwise2 (6)

k ¸ 
 �l�$,m����� ��� if �¾½I,F`���
�-� otherwise2 (7)

(6) insiststhattwo entity arethesameif all thementions
are the same,while (7) goesto the otherextreme: two
entitiesare the sameif they shareat leastonecommon
mention.

(6) doesnot offer a goodgranularityof similarity: For
example, if �¿�À��Á§��Â
�$Ã�( , and one systemresponse
is , ¼ �Ä��Á��$Â$( , and the other systemresponse, ¸ �
��Á&( , then clearly , ¼ is more similar to � than , ¸ , yet
k 
 �l�$,Å¼$�Æ�Çk 
 �n��, ¸ ���È� . For the samereason,(7)
lacksof thedesireddiscriminativity aswell.

From the above argument,it is clear that we want to
have a metric that canmeasurethe degreeto which two
entitiesare similar, not a binary decision. One natural
choice is measuringhow many commonmentionstwo
entitiesshare,andthis canbe measuredby the absolute
numberor relativenumber:

k§É 
 �l��,m�Ê��%1�¾½I,�% (8)

k§Ë 
 �l��,m�Ê� �-%1�¾½?,�%
%1��% � %1,�% 2 (9)

Metric (8) simply countsthe numberof commonmen-
tions sharedby � and , , while (9) is the mention F-
measurebetween� and , , a relative numbermeasuring
how similar � and , are.For theabovementionedexam-
ple,

k É 
 �l�$, ¼ ���Fk É 
 ��Á§��Â
�$Ã�(�����Á��$Â$(§�9�B�
k�É 
 �l�$, ¸ ���Fk�É 
 ��Á§��Â
�$Ã�(�����Á&(	�9���
k�Ë 
 �l�$,�¼����Fk�Ë 
 ��Á§��Â
�$Ã�(�����Á��$Â$(§�9�B�!2 Ì
k Ë 
 �l�$, ¸ ���Fk Ë 
 ��Á§��Â
�$Ã�(�����Á&(	�9�B�!2 � �

thus both metrics give the desired ranking
k É 
 �l�$, ¼ �ÊÍ�k É 
 �l�$, ¸ � , k Ë 
 �l��, ¼ �ÊÍMk Ë 
 �n��, ¸ � .

If k�É 
 "1��"X� is adoptedin Algorithm 1, p 
 G s � is thenum-
berof total commonmentionscorrespondingto thebest
one-to-onemapG s while thedenominatorsof (3) and(4)
are the numberof proposedmentionsand the number
of systemmentions,respectively. The F-measurein (5)
canbeinterpretedastheratio of mentionsthatarein the
“right” entities. Similarly, if k�Ë 
 ":�#")� is adoptedin Algo-
rithm 1, the denominatorsof (3) and(4) arethenumber
of proposedentitiesand the numberof systementities,
respectively, andtheF-measurein (5) canbeunderstood
as the ratio of correctentities. Therefore,(5) is called
mention-basedCEAF andentity-basedCEAF when(8)
and(9) areused,respectively.

k É 
 "1��"X� and k Ë 
 ":�#")� aretwo reasonableentitysimilarity
measures,but by no meansthe only choices. At men-
tion level, partial credit could be assignedto two men-
tionswith differentbut overlappingspans;or whenmen-
tion typeis available,weightsdefinedon thetypeconfu-
sion matrix canbe incorporated.At entity level, entity
attributes,if avaiable,canbe weightedin the similarity
measureaswell. For example,ACE datadefinesthree
entityclasses:NAME, NOMINAL andPRONOUN.Dif-
ferentweightscanbeassignedto thethreeclasses.

No matterwhat entity similarity measureis used,it
is crucial to have the constraintthat the document-level
similarity betweenreferenceentitiesandsystementities
is calculatedover the bestone-to-onemap. We will see
examplesin Section3 that misleadingresultscould be
producedwithout thealignmentconstraint.

Another observation is that the same evaluation
paradigmcanbeusedin any scenariothatneedsto mea-
surethe “closeness”betweena setof systemandrefer-
enceobjects,providedthata similarity betweentwo ob-
jectsis defined.For example,the2004ACEtasksinclude
detectingandrecognizingrelationsin text documents.A
relationinstancecanbetreatedasanobjectandthesame
evaluationparadigmcanbeapplied.

3 Comparison with Other Metrics

In thissection,wecomparetheproposedF-measurewith
the MUC link-basedF-measure(and its variation B-
cubeF-measure)and the more recentACE-value. The
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(1)  truth
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(2) system response (a)
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(3) system response (b)

1 2 3 4 5

6 7

8 9 A B C

(5) system response (d)

Figure1: Exampleentities:(1)truth; (2)systemresponse
(a); (3)systemresponse(b); (4)systemresponse(c);
(5)systemresponse(d)

proposedmetric hasfixed problemsassociatedwith the
MUC andB-cubeF-measure,andhasbetterinterpretabil-
ity thantheACE-value.

3.1 Comparisonwith the MUC F-measureand
B-cubeMetric on Artificial Data

We use the example in Figure 1 to compare the
MUC link-basedF-measure,B-cube,and the proposed
mention- and entity-basedCEAF. In Figure 1, men-
tions are representedin circles and mentionsin an en-
tity are connectedby arrows. Intuitively, if eachmen-
tion is treatedequally, the systemresponse(a) is bet-
ter than the systemresponse(b) since the latter mixes
two big entities, �	��� �!�/�!�/Î!� � ( and �
Ì-� � �$Ïu��Ð���Ñc( , while
the former mixesa small entity �$�!�ÓÒ�( with onebig en-
tity �$Ì!� � �$ÏQ�$Ð���Ñc( . Systemresponse(b) is clearlybetter
thansystemresponse(c) sincethelatterputsall themen-
tionsinto asingleentitywhile (b) hascorrectlyseparated
the entity �$�!�ÓÒ�( from the rest. The systemresponse(d)
is the worst: the systemdoesnot link any mentionsand
outputs��� single-mentionentities.

Table1 summarizesvariousF-measuresfor systemre-
sponse(a) to (d): the first column containsthe indices
of the systemresponsesfound in Figure 1; the second
andthird columnsarethe MUC F-measureandB-cubic
F-measurerespectively; thelasttwo columnsarethepro-
posedCEAFF-measures,usingtheentitysimilarity met-
ric k É 
 "1��"X� and k Ë 
 ":�#")� , respectively.

As shown in Table1, the MUC link-basedF-measure
failsto distinguishthesystemresponse(a)andthesystem
response(b) asthetwo areassignedthesameF-measure.
The systemresponse(c) representsa trivial output: all
mentionsareput in thesameentity. Yet theMUC metric
will leadto a ���	� �

recall (
�

out of
�

referencelinks are

System CEAF
response MUC B-cube k É 
 "1��"X� k Ë 
 "1��"X�

(a) 0.947 0.865 0.833 0.733
(b) 0.947 0.737 0.583 0.667
(c) 0.900 0.545 0.417 0.294
(d) – 0.400 0.250 0.178

Table1: Comparisonof coreferenceevaluationmetrics

correct)anda Ì0��2 � �
precision(

�
out of ��� systemlinks

arecorrect),which givesrise to a
� � �

F-measure.It is
striking that a “bad” systemresponsegetssucha high
F-measure.Anotherproblemwith the MUC link-based
metric is thatit is not ableto handlesingle-mentionenti-
ties,asthereis no link for asinglementionentity. Thatis
why theentryfor systemresponse(d) in Table1 is empty.

B-cube F-measureranks the four systemresponses
in Table 1 as desired. This is becauseB-cube met-
ric (Baggaand Baldwin, 1998) is computedbasedon
mentions(asopposedto links in the MUC F-measure).
But B-cube uses the same entity “intersecting” pro-
cedurefound in computing the MUC F-measure(Vi-
lain et al., 1995), and it sometimescan give counter-
intuitive results. To seethis, let us take a look at re-
call and precisionfor systemresponse(c) and (d) for
B-cube metric. Notice that all the referenceentities
are found after intersectingwith the systemresponsce
(c): ���§�.�/�!� �-� Î-� � (����$�!�#Ò�(��#��Ì!� � �$ÏQ�$Ð���Ñc(�( . Therefore,
B-cube recall is ����� �

(the correspondingprecisionis¼¼ ¸�Ô 
 ��� ÔCÕ¼ ¸ � � Ô ¸¼ ¸ �B�|�!2 �0Ò � ). This is counter-
intuitivebecausethesetof referenceentitiesis notasub-
set of the proposedentities, thus the systemresponse
shouldnot have gottena �
��� �

recall. The sameprob-
lem exists for the systemresponse(d): it getsa �
��� �
B-cube precision (the correspondingB-cube recall is¼¼ ¸ 
 � Ô ¼

Õ
� � Ô ¼¸ � � Ô ¼

Õ �����!2 � � � , but clearly not all
theentitiesin thesystemresponse(d) arecorrect!These
numebrsaresummarizedin Table2, wherecolumnswith
� and Ö representrecallandprecision,respectively.

System B-cube CEAF
response R P ×ÓØ -R ×ÓØ -P ×ÓÙ -R ×ÓÙ -P

(c) 1.0 0.375 0.417 0.417 0.196 0.588
(d) 0.25 1.0 0.250 0.250 0.444 0.111

Table 2: Exampleof counter-intuitive B-cuberecall or
precision:systemrepsonse(c) gets �
��� �

recall(column
R) while systemrepsonse(d) gets �
��� �

precision(col-
umnP).Theproblemis fixedin bothCEAF metrics.

Thecounter-intuitiveresultsassociatedwith theMUC
and B-cubeF-measuresare rooted in the procedureof
“intersecting”thereferenceandsystementities,whichal-
lows anentity to beusedmorethanonce! We will come
backto this afterdiscussingtheCEAF numbers.

From Table1, we seethat both mention-based( col-
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umn under k É 
 ":�#")� ) CEAF and entity-based( k Ë 
 "1��"X� )
CEAF are able to rank the four systemsproperly: sys-
tem (a) to (d) are increasinglyworse. To seehow the
CEAF numbersarecomputed,let us take thesystemre-
sponse(a) asan example: first, the bestone-oneentity
map is determined. In this case,the bestmap is: the
referenceentity �§�.� �-� �-� Î!� � ( is aligned to the system
entity �§�.� �-� �-� Î!� � ( , the referenceentity �$Ì!� � �$ÏQ�$ÐÚ�$Ñc(
is aligned to the system �$�!�#Ò�� Ì-� � ��Ïu��Ð��$Ñc( and the
reference entity �
�!�ÓÒ�( is unaligned. The number
of common mentions is therefore �
� which results
in a mention-based( k§É 
 "1��"X� ) recall ÕÛ and precision

ÕÛ . Since k Ë 
 �§�.� �-� �-� Î!� � (����	��� �-� �!�/Î!� � (	��� � , and
k Ë 
 �
Ì-� � ��Ïu��Ð��$Ñc(����$�!�#Ò�� Ì-� � ��Ïu��Ð��$Ñc(§�t� ¼¥Ü¼ ¸ , p 
 G s ���
� � ¼¥Ü¼ ¸ (c.f. equation(4) and(3)), andtheentity-basedF-
measure(c.f. equation(9)) is therefore

� Ô 
 � � ¼¥Ü¼ ¸ �
� � � � ���

� � �B�!2EÒ����-2
CEAFfor othersystemresponsesarecomputedsimilarly.

CEAF recall andprecisionbreakdown for system(c)
and(d)arelistedin column4 through7 of Table1. Ascan
be seen,neithermention-basednor entity-basedCEAF
hasthe abovementionedproblemassociatedwith the B-
cube metric, and the recall and precisionnumbersare
moreor lesscompatiblewith our intuition: for instance,
for system(c), basedon k É -CEAF number, we cansay
that about Î��.2EÒ � mentionsare in the right entity, and
basedon the k�Ë -CEAF recallandprecision,we canstate
thatabout � � 2 � �

of “true” entitiesarerecovered(recall)
andabout

� Ì!2 Ì �
of theproposedentitiesarecorrect.

A comparisonof the proceduresof computing the
MUC F-measure/B-cubeandCEAF revealsthat thecru-
cial differenceis that the MUC and B-cubeF-measure
allow anentity to beusedmultiple timeswhile CEAFin-
siststhatentitymapbeone-to-one.Soanentitywill never
getdoublecredit. Take thesystemrepsonse(c) asanex-
ample,intersectingthreereferenceentity in turn with the
referenceentitiesproducesthesamesetof referenceenti-
ties,which leadsto �
��� �

recall. In theintersectionstep,
thesystementity is effectively usedthreetimes. In con-
trast, the systementity is alignedto only onereference
entity whencomputingCEAF.

3.2 ComparisonsOn RealData

3.2.1 MUC F-measureand CEAF

We have seenthe differentbehaviors of the MUC F-
measure,B-cubeF-measureandCEAF on the artificial
data.We now comparetheMUC F-measure,CEAF, and
ACE-valuemetricson realdata(compasionbetweenthe
MUC and B-cubeF-measurecan be found in (Bagga
andBaldwin, 1998)). ComparsionbetweentheMUC F-
measureandCEAFisdoneontheMUC6 coreferencetest
set,while comparisonbetweentheCEAFandACE-value
is doneon the2004ACE data.Thesetupreflectsthefact

thattheofficial MUC scorerandACEscorerrunon their
own dataformat andarenot easilyportableto the other
dataset. All theexperimentsin this sectionaredoneon
truementions.

Penalty #sys-ent MUC-F k�É -CEAF
-0.6 561 .851 0.750
-0.8 538 .854 0.756
-0.9 529 .853 0.753
-1 515 .853 0.753

-1.1 506 .856 0.764
-1.2 483 .857 0.768
-1.4 448 .863 0.761
-1.5 425 .862 0.749
-1.6 411 .864 0.740
-1.7 403 .865 0.741
-10 113 .902 0.445

Table3: MUC F-measureandmention-basedCEAF on
theofficial MUC6 testset.Thefirst columncontainsthe
penaltyvalue in decreasingorder. The secondcolumn
containsthe numberof system-proposedentities. The
columnunderMUC-F is theMUC F-measurewhile k É -
CEAF is themention-basedCEAF.

The coreferencesystemis similar to the one used
in (Luo et al., 2004). Resultsin Table 3 are produced
by asystemtrainedontheMUC6 trainingdataandtested
on the ��� official MUC6 test documents. The test set
containsÎ���� referenceentities. The coreferencesystem
usesa penaltyparameterto balancemissandfalsealarm
errors: the smallerthe parameter, the fewer entitieswill
begenerated.We vary theparameterfrom Ý��-2 � to Ýc�
� ,
listedin thefirst columnof Table3, andcomparethesys-
tem performancemeasuredby the MUC F-measureand
theproposedmention-basedCEAF.

As canbe seen,the mention-basedCEAF hasa clear
maximumwhenthenumberof proposedentitiesis close
to the truth: at the penlatyvalue Ýc��2 � , the systempro-
ducesÎ	Ì�� entities,very closeto Î	��� , andthe k É -CEAF
achievesthe maximum �!2EÒ��	Ì . In contrast,the MUC F-
measureincreasesalmostmonotonicallyas the system
proposesfewerandfewerentities.In fact,thebestsystem
accordingto the MUC F-measureis the one proposing
only �	��� entities.This demonstratesa fundamentalflaw
of the MUC F-measure:the metric intrinsically favors
a systemproducingfewer entitiesandthereforelacksof
discriminativity.

3.2.2 ACE-Value and CEAF
Now let us turn to ACE-value. Resultsin Table4 are

producedby asystemtrainedon theACE2002and2004
trainingdataandtestedon a separatetestset,whichcon-
tains Ì � � referenceentities. Both ACE-value and the
mention-basedCEAF penalizessystemsover-producing
or under-producing entities: ACE-value is maximum
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Penalty #sys-ent ACE-value(%) k�É -CEAF
0.6 1221 88.5 0.726
0.4 1172 89.1 0.749
0.2 1145 89.4 0.755
0 1105 89.7 0.766

-0.2 1050 89.7 0.775
-0.4 1015 89.7 0.780
-0.6 990 89.5 0.782
-0.8 930 88.6 0.794
-1 891 86.9 0.780

-1.2 865 86.7 0.778
-1.4 834 85.6 0.769
-1.6 790 83.8 0.761

Table4: Comparisonof ACE-valueandmention-based
CEAF. Thefirst columncontainsthepenaltyvaluein de-
creasingorder. Thesecondcolumncontainsthenumber
of system-proposedentities.ACE-valuesarein percent-
age.Thenumberof referenceentitiesis Ì � � .

whenthe penaltyvalueis Ý��!2 � andCEAF is maximum
when the penaltyvalue is Ý��!2 Ì . However, the optimal
CEAF systemproduces

� ��� entities while the optimal
ACE-valuesystemproduces��� � � entities.Judgingfrom
thenumberof entities,theoptimalCEAFsystemis closer
to the“truth” thanthecounterpartof ACE-value.This is
notverysurprisingsinceACE-valueis aweightedmetric
while CEAF treatseachmentionandentity equally. As
such,thetwo metricshaveveryweakcorrelation.

While we canmake a statementsuchas “the system
with penalty Ý��-2 Ì puts about Ò � 2 Î �

mentionsin right
entities”,it is hardto interprettheACE-valuenumbers.

Another differenceis that CEAF is symmetric1, but
ACE-Valueis not. Symmetryis a desirableproperty. For
example,when comparinginter-annotatoragreement,a
symmetricmetric is independentof theorderof two sets
of input documents,while anasymmetricmetricsuchas
ACE-Valueneedsto statethe input orderalongwith the
metricvalue.

4 Conclusions

A coreferenceperformancemetric– CEAF– is proposed
in thispaper. TheCEAFmetricis computedbasedonthe
bestone-to-onemapbetweenreferenceentitiesandsys-
tementities.Findingthebestone-to-onemapis a maxi-
mumbipartitematchingproblemandcanbesolvedby the
Kuhn-Munkresalgorithm.Two exampleentity-pairsim-
ilarity measures(i.e., k�É 
 ":�#")� and k§Ë 
 "1��"X� ) areproposed,
resultingonemention-basedCEAF andoneentity-based
CEAF, respectively. It has beenshown that the pro-
posedCEAF metric hasfixed problemsassociatedwith
the MUC link-basedF-measureandB-cubeF-measure.

1This waspointedoutby NandaKambhatla.

Theproposedmetricalsohasbetterinterpretabilitythan
ACE-value.
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Appendix: Kuhn-Munkr esAlgorithm

Let � index the referenceentities
�

and � index thesys-
tem entities

*
, and k 
 �
�'�!� be the similarity betweenthe

�/ÞEß referenceentity and the �	ÞEß systementity. Alge-
braically, themaximumbipartitematchingcanbestated
asanintegerprogrammingproblem:

4�<	=àfá�â®ã©ä k 
 �
�Y�-�)åt�1� (10)

subjectto: � åW�)�næ����'ç&� (11)

� å �)� æ����'ç&� (12)

åt�1�nZÆ�
�-�#��(��'ç&�
�'�.2 (13)

If åW�)�o�è� , the � ÞEß referenceentity and the � ÞEß system
entityarealigned.Constraint(11) (or (12)) impliesthata
reference(or system)entity cannotbealignedmorethan
oncewith asystem(or reference)entity.

Observe that thecoefficientsof (11) and(12) areuni-
modular. Thus,Constraint(13)canbereplacedby

å �)�Qé �!� ç&�
�Y��2 (14)

Thedual (cf. pp. 219of (Fletcher, 1987))to theopti-
mizationproblem(10)with constraints(11),(12)and(14)
is:

47618àfê â ä R àfë ã ä �
ì � �

�
í � (15)

î 2 ï$20� ì � ��í �ué k 
 �
�Y�-�'�'ç&�
�Y� (16)ì � é �!�'çU� (17)í � é �!�'çU�.2 (18)

Thedualhasthesameoptimalobjectivevalueasthepri-
mal.

It canbeshown thattheoptimalconditionsfor thedual
problem(andhencethemaximumsimilarity match)are:

ì � ��í �l�hk 
 �
�Y�-�'� if 
 �
�'�!� is aligned (19)ì � �B�!� if � is free(i.e.,not aligned) (20)í � �B�!� if � is free. (21)

The Kuhn-Munkresalgorithm starts with an empty
matchandan initial feasiblesetof � ì � ( and � í �Ó( , and
iteratively increasesthe cardinality of the matchwhile

satisfyingthe optimal conditions(19)-(21). Notice that
conceptually, a matching problem with a rectangular
matrix ðñk 
 �
�'�!�óò can always reduceto a squareone by
paddingzeros(this is not necessaryin practice,see,for
instance(BourgeoisandLassalle,1971)). For this rea-
son,we statethe Kuhn-Munkresalgorithmfor the case
where % � %0��% * % (or

; � 3 ) in Algorithm 2. Theproof
of correctnessis omitteddueto spacelimit.

Note that ÖWô ê y 
 �
�Y�-� on line 9 standsfor theaugment-
ing (i.e., a free nodefollowed by an alignednode,fol-
lowed by a free node,...) pathfrom � to � in the corre-
spondingbipartitegraph. Ï�õ_ÖWô ê y 
 ���'�-� is understoodas
edge“exclusive-or:” if an edge


Yö �$÷ø� is in Ï andon the
path Ö ô ê y 
 �
�Y�-� , it will beremovedfrom Ï ; if theedgeis
in either Ï or Ö�ô ê y 
 �
�'�!� , it will beadded.

Algorithm 2 Kuhn-MunkresAlgorithm

Input : similarity matrix: ð:k 
 �
�Y�-�óò
Output : bestmatch ÏM��� ���'�-�'( andsimilarity p .
1:Initialize: ç&� , ì ���547<�=&��k 
 �
�Y�-� ; ç&� , í �Q�B� ; Ï���� .
2:For ���M� to

;
3: If � is not free,Continue;EndIF .
4: ùÇ�����$( , úC�M� ;
5: While true
6: û 
 ùh���F��÷t�!ü ö Z�ù�� î 2 ï$2)k 
Yö ��÷ø��� ì9ýl�¹í§þ (
7: If ú @ û 
 ùÿ�
8: pick �7Z�û 
 ùÿ����ú
9: If � is free
10: Ï��FÏBõ¾Ö ô ê y 
 �
�Y�-� ; break
11: Else
12: Find �'^ suchthat


 �'^ �'�!�ÊZÆÏ .
13: ù �oùbL?���Y^f(���úA�FúFLI�H�!( .
14: Gotoline 6.
15: EndIf
16: Else úC���hû 
 ùÿ�
17: ���5476)8 ý r�� R þ r��� � ì ý �¹í þ Ý¾k 
Yö ��÷ø�'(
18:


	���� ��-���FÁ � GS476)8 ý r�� R þ r
�� � ì ý �¹í þ Ý¾k 
'ö �$÷f�'(
19: ì9ý � ì9ý Ý�� for

ö Z�ù .
20: í§þ � í§þ0� � for ÷tZdú .
21: �x� �� . Gotoline 9.
22: EndIf
23: EndWhile
24:EndFor
25:p¾� N ý R þ V r���k 
'ö �$÷f� .
26:ReturnÏ and p .
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Abstract

In this paper, we use the information re-
dundancy in multilingual input to correct
errors in machine translation and thus im-
prove the quality of multilingual sum-
maries. We consider the case of multi-
document summarization, where the input
documents are in Arabic, and the output
summary is in English. Typically, infor-
mation that makes it to a summary appears
in many different lexical-syntactic forms
in the input documents. Further, the use of
multiple machine translation systems pro-
vides yet more redundancy, yielding dif-
ferent ways to realize that information in
English. We demonstrate how errors in the
machine translations of the input Arabic
documents can be corrected by identify-
ing and generating from such redundancy,
focusing on noun phrases.

1 Introduction
Multilingual summarization is a relatively nascent
research area which has, to date, been addressed
through adaptation of existing extractive English
document summarizers. Some systems (e.g. SUM-
MARIST (Hovy and Lin, 1999)) extract sentences
from documents in a variety of languages, and trans-
late the resulting summary. Other systems (e.g.
Newsblaster (Blair-Goldensohn et al., 2004)) per-
form translation before sentence extraction. Read-
ability is a major issue for these extractive systems.
The output of machine translation software is usu-
ally errorful, especially so for language pairs such
as Chinese or Arabic and English. The ungrammati-
cality and inappropriate word choices resulting from

the use of MT systems leads to machine summaries
that are difficult to read.

Multi-document summarization, however, has in-
formation available that was not available during the
translation process and which can be used to im-
prove summary quality. A multi-document summa-
rizer is given a set of documents on the same event
or topic. This set provides redundancy; for example,
each document may refer to the same entity, some-
times in different ways. It is possible that by ex-
amining many translations of references to the same
entity, a system can gather enough accurate informa-
tion to improve the translated reference in the sum-
mary. Further, as a summary is short and serves as
a surrogate for a large set of documents, it is worth
investing more resources in its translation; readable
summaries can help end users decide which docu-
ments they want to spend time deciphering.

Current extractive approaches to summarization
are limited in the extent to which they address qual-
ity issues when the input is noisy. Some new sys-
tems attempt substituting sentences or clauses in
the summary with similar text from extraneous but
topic related English documents (Blair-Goldensohn
et al., 2004). This improves readability, but can only
be used in limited circumstances, in order to avoid
substituting an English sentence that is not faith-
ful to the original. Evans and McKeown (2005)
consider the task of summarizing a mixed data set
that contains both English and Arabic news reports.
Their approach is to separately summarize informa-
tion that is contained in only English reports, only
Arabic reports, and in both. While the only-English
and in-both information can be summarized by se-
lecting text from English reports, the summaries of
only-Arabic suffer from the same readability issues.

In this paper, we use principles from information
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theory (Shannon, 1948) to address the issue of read-
ability in multilingual summarization. We take as
input, multiple machine translations into English of
a cluster of news reports in Arabic. This input is
characterized by high levels of linguistic noise and
by high levels of information redundancy (multiple
documents on the same or related topics and mul-
tiple translations into English). Our aim is to use
automatically acquired knowledge about the English
language in conjunction with the information redun-
dancy to perform error correction on the MT. The
main benefit of our approach is to make machine
summaries of errorful input easier to read and com-
prehend for end-users.

We focus on noun phrases in this paper. The
amount of error correction possible depends on the
amount of redundancy in the input and the depth of
knowledge about English that we can utilize. We
begin by tackling the problem of generating refer-
ences to people in English summaries of Arabic texts
( � 2). This special case involves large amounts of re-
dundancy and allows for relatively deep English lan-
guage modeling, resulting in good error correction.
We extend our approach to arbitrary NPs in � 3.

The evaluation emphasis in multi-document sum-
marization has been on evaluating content (not read-
ability), using manual (Nenkova and Passonneau,
2004) as well as automatic (Lin and Hovy, 2003)
methods. We evaluate readability of the generated
noun phrases by computing precision, recall and f-
measure of the generated version compared to mul-
tiple human models of the same reference, comput-
ing these metrics on n-grams. Our results show that
our system performs significantly better on precision
over two baselines (most frequent initial reference
and randomly chosen initial reference). Precision is
the most important of these measures as it is impor-
tant to have a correct reference, even if we don’t re-
tain all of the words used in the human models.

2 References to people
2.1 Data
We used data from the DUC 2004 Multilingual
summarization task. The Document Understanding
Conference (http://duc.nist.gov) has been run annu-
ally since 2001 and is the biggest summarization
evaluation effort, with participants from all over the
world. In 2004, for the first time, there was a multi-

lingual multi-document summarization task. There
were 25 sets to be summarized. For each set con-
sisting of 10 Arabic news reports, the participants
were provided with 2 different machine translations
into English (using translation software from ISI
and IBM). The data provided under DUC includes
4 human summaries for each set for evaluation pur-
poses; the human summarizers were provided a hu-
man translation into English of each of the Arabic
New reports, and did not have to read the MT output
that the machine summarizers took as input.

2.2 Task definition
An analysis of premodification in initial references
to people in DUC human summaries for the mono-
lingual task from 2001–2004 showed that 71% of
premodifying words were either title or role words
(eg. Prime Minister, Physicist or Dr.) or temporal
role modifying adjectives such as former or desig-
nate. Country, state, location or organization names
constituted 22% of premodifying words. All other
kinds of premodifying words, such as moderate or
loyal constitute only 7%. Thus, assuming the same
pattern in human summaries for the multilingual
task (cf. section 2.6 on evaluation), our task for each
person referred to in a document set is to:

1. Collect all references to the person in both translations of
each document in the set.

2. Identify the correct roles (including temporal modifica-
tion) and affiliations for that person, filtering any noise.

3. Generate a reference using the above attributes and the
person’s name.

2.3 Automatic semantic tagging
As the task definition above suggests, our approach
is to identify particular semantic attributes for a per-
son, and generate a reference formally from this se-
mantic input. Our analysis of human summaries tells
us that the semantic attributes we need to identify
are role, organization, country, state,
location and temporal modifier. In addi-
tion, we also need to identify the person name.
We used BBN’s IDENTIFINDER (Bikel et al., 1999)
to mark up person names, organizations and lo-
cations. We marked up countries and (American)
states using a list obtained from the CIA factsheet1 .

1http://www.cia.gov/cia/publications/factbook provides a
list of countries and states, abbreviations and adjectival forms,
for example United Kingdom/U.K./British/Briton and Califor-
nia/Ca./Californian.
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To mark up roles, we used a list derived from Word-
Net (Miller et al., 1993) hyponyms of the person
synset. Our list has 2371 entries including multi-
word expressions such as chancellor of the exche-
quer, brother in law, senior vice president etc. The
list is quite comprehensive and includes roles from
the fields of sports, politics, religion, military, busi-
ness and many others. We also used WordNet to ob-
tain a list of 58 temporal adjectives. WordNet classi-
fies these as pre- (eg. occasional, former, incoming
etc.) or post-nominal (eg. elect, designate, emeritus
etc.). This information is used during generation.
Further, we identified elementary noun phrases us-
ing the LT TTT noun chunker (Grover et al., 2000),
and combined NP of NP sequences into one com-
plex noun phrase. An example of the output of our
semantic tagging module on a portion of machine
translated text follows:

... � NP � � ROLE � representative ��� ROLE � of� COUNTRY � Iraq ��� COUNTRY � of the � ORG �
United Nations ��� ORG ��� PERSON � Nizar Hamdoon��� PERSON ����� NP � that � NP � thousands of people��� NP � killed or wounded in � NP � the � TIME � next��� TIME � few days four of the aerial bombardment of� COUNTRY � Iraq ��� COUNTRY �	��� NP � ...

Our principle data structure for this experiment is
the attribute value matrix (AVM). For example, we
create the following AVM for the reference to Nizar
Hamdoon in the tagged example above:
���
������ �������������! �"$#%#'&(%)+* � �-,�./�-,�01,2&�34�53-��6+,7!)�8 
%9 (': ; �4�'< =?>�@5ACB5D)�(+E ��
/F5G��!9$F ) 
 H�&��I3-,�"J����3-��#'&/0 =?>$@5A/K'D

LNMO
Note that we store the relative positions (arg 1

and arg 2) of the country and organization attributes.
This information is used both for error reduction and
for generation as detailed below. We also replace
adjectival country attributes with the country name,
using the correspondence in the CIA factsheet.

2.4 Identifying redundancy and filtering noise
We perform coreference by comparing AVMs. Be-
cause of the noise present in MT (For example,
words might be missing, or proper names might be
spelled differently by different MT systems), simple
name comparison is not sufficient. We form a coref-
erence link between two AVMs if:

1. The last name and (if present) the first name match.

2. OR, if the role, country, organization and time attributes
are the same.

The assumption is that in a document set to be
summarized (which consists of related news re-
ports), references to people with the same affiliation
and role are likely to be references to the same per-
son, even if the names do not match due to spelling
errors. Thus we form one AVM for each person, by
combining AVMs. For Nizar Hamdoon, to whom
there is only one reference in the set (and thus two
MT versions), we obtain the AVM:
���
$�2��� ���������P���! �"$#%#'& =QK!D(�)'* � �-,2./�-,�01,�&%34�53-�N6', =QK'D7')58 
%9 (+: ; �4�'< =QK'DR=?>$@5ACB5D)!('E ��
/F�G%�!9$F ) 
 H�&��I3-,�"J�S�53-��#'&�0 =QK!DT=?>�@�A/K!D

LNMO
where the numbers in brackets represents the

counts of this value across all references. The arg
values now represent the most frequent ordering of
these organizations and countries in the input refer-
ences. As an example of a combined AVM for a
person with a lot of references, consider:
����� 
������ UV,2�-#!WX��Y =QK5Z%D\[^] �N�! P��&/,_UC,2�-#'W��!Y =QK!`'D(%)+* � ./�-,�01�N"/,2&�3 =QK�a+D\[ Y�,��'"$,2� =QK'D7!)�8 
%9 (': b Y�c',2�-�N� =dB�e+DT=?>�@5ACB5D)�(+E ��
/F5G��!9$F ) 
 f�,�&/#56'�53-�N#!&�gh���13ji =QK!Dk=?>�@�ACB�D\[b�l g =dB5Dk=?>�@5ACB5D9�F2��� mn#!�- P,\� =dB5D

LNMMMMO
This example displays common problems when

generating a reference. Zeroual has two affiliations -
Leader of the Renovation Party, and Algerian Presi-
dent. There is additional noise - the values AFP and
former are most likely errors. As none of the organi-
zation or country values occur in the same reference,
all are marked arg1; no relative ordering statistics
are derivable from the input. For an example demon-
strating noise in spelling, consider:
��������


������ oTWX�! P ��5��pS�!"�"��5q =dB�`+D\[oTWX�! P ��5��rS�!"�"��5q =dB�`+D\[pS�'"�"/��q =?Z%D\[ rS�!"�"/��q =?Z+D(%)+* � YN,��'"/,\�Ps�#'Y�#!&�,�Y =dB5K!D\[ s�#!YN#!&�,�Y =?Z+DYN,��'"/,\� =ta+D\[  P�N&/��0d3-,2� =QK'D\[nu W�0d3-��s�, =dB�D7!)�8 
%9 (': ] ��v%i�� =Qw!DR=?>�@�ACB�D)�(+E ��
/F5G��!9$F ) 
 gx,��!s�,_yz#'W�&%31�1i =QK'D�=?>�@�A/K!D\[yz#'W�&%31�1i�gx,���s�, =dB�DT=?>$@5ACB5D
LNMMMMMMMO

Our approach to removing noise is to:
1. Select the most frequent name with more than one word

(this is the most likely full name).
2. Select the most frequent role.
3. Prune the AVM of values that occur with a frequency be-

low an empirically determined threshold.

Thus we obtain the following AVMs for the three
examples above:
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���
������ �������������! �"$#%#'&(%)+* � �-,�./�-,�01,2&�34�53-��6+,7!)�8 
%9 (': ; �4�'< =?>�@5ACB5D)�(+E ��
/F5G��!9$F ) 
 H�&��I3-,�"J����3-��#'&/0 =?>$@5A/K'D
LNMO{ 
������ ] �N�! P��&/,_UC,2�-#'W��!Y(%)+* � ./�-,�01�N"$,�&%37!)�8 
%9 (':|b Y�c',\�-�}� =?>�@�ACB�D ~{ 
������ oTWX�� P �����pS�!"�"/��q(%)+* � Y�,��'"$,2�Ps�#!YN#!&�,�Y7!)�8 
%9 (': ] ��v%i�� =?>�@�ACB�D ~

This is the input semantics for our generation mod-
ule described in the next section.

2.5 Generating references from AVMs
In order to generate a reference from the words in an
AVM, we need knowledge about syntax. The syn-
tactic frame of a reference to a person is determined
by the role. Our approach is to automatically acquire
these frames from a corpus of English text. We used
the Reuters News corpus for extracting frames. We
performed the semantic analysis of the corpus, as in� 2.3; syntactic frames were extracted by identifying
sequences involving locations, organizations, coun-
tries, roles and prepositions. An example of auto-
matically acquired frames with their maximum like-
lihood probabilities for the role ambassador is:

ROLE=ambassador
(p=.35) COUNTRY ambassador PERSON

(.18) ambassador PERSON
(.12) COUNTRY ORG ambassador PERSON
(.12) COUNTRY ambassador to COUNTRY PERSON
(.06) ORG ambassador PERSON
(.06) COUNTRY ambassador to LOCATION PERSON
(.06) COUNTRY ambassador to ORG PERSON
(.03) COUNTRY ambassador in LOCATION PERSON
(.03) ambassador to COUNTRY PERSON

These frames provide us with the required syn-
tactic information to generate from, including word
order and choice of preposition. We select the most
probable frame that matches the semantic attributes
in the AVM. We also use a default set of frames
shown below for instances where no automatically
acquired frames exist:

ROLE= � Default �
COUNTRY ROLE PERSON
ORG ROLE PERSON
COUNTRY ORG ROLE PERSON
ROLE PERSON

If no frame matches, organizations, countries and
locations are dropped one by one in decreasing or-
der of argument number, until a matching frame is

found. After a frame is selected, any prenominal
temporal adjectives in the AVM are inserted to the
left of the frame, and any postnominal temporal ad-
jectives are inserted to the immediate right of the
role in the frame. Country names that are not ob-
jects of a preposition are replaced by their adjectival
forms (using the correspondences in the CIA fact-
sheet). For the AVMs above, our generation module
produces the following referring expressions:� Iraqi United Nations representative Nizar Hamdoon� Algerian President Liamine Zeroual� Libyan Leader Colonel Muammar Qaddafi

2.6 Evaluation
To evaluate the referring expressions generated by
our program, we used the manual translation of each
document provided by DUC. The drawback of us-
ing a summarization corpus is that only one human
translation is provided for each document, while
multiple model references are required for automatic
evaluation. We created multiple model references
by using the initial references to a person in the
manual translation of each input document in the
set in which that person was referenced. We cal-
culated unigram, bigram, trigram and fourgram pre-
cision, recall and f-measure for our generated ref-
erences evaluated against multiple models from the
manual translations. To illustrate the scoring, con-
sider evaluating a generated phrase “a b d” against
three model references “a b c d”, “a b c” and “b c
d”. The bigram precision is �$�X�����x�N� (one out of
two bigrams in generated phrase occurs in the model
set), bigram recall is �V�C�����x�N�C�C� (two out of 7 bi-
grams in the models occurs in the generated phrase)
and f-measure ( �����!�������x�}�	����� ) is �x�N�C��� . For
fourgrams, P, R and F are zero, as there is a fourgram
in the models, but none in the generated NP.

We used 6 document sets from DUC’04 for devel-
opment purposes and present the average P, R and F
for the remaining 18 sets in Table 1. There were 210
generated references in the 18 testing sets. The table
also shows the popular BLEU (Papineni et al., 2002)
and NIST2 MT metrics. We also provide two base-
lines - most frequent initial reference to the person
in the input (Base1) and a randomly selected initial
reference to the person (Base2). As Table 1 shows,
Base1 performs better than random selection. This

2http://www.nist.gov/speech/tests/mt/resources/scoring.htm
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UNIGRAMS ���j  ¡¢�j  £¤�j 
Generated 0.847*@ 0.786 0.799*@
Base1 0.753* 0.805 0.746*
Base2 0.681 0.767 0.688
BIGRAMS ���j  ¡¢�j  £¤�j 
Generated 0.684*@ 0.591 0.615*
Base1 0.598* 0.612 0.562*
Base2 0.492 0.550 0.475
TRIGRAMS ���j  ¡¢�j  £¤�j 
Generated 0.514*@ 0.417 0.443*
Base1 0.424* 0.432 0.393*
Base2 0.338 0.359 0.315
FOURGRAMS ���j  ¡¢�j  £¤�j 
Generated 0.411*@ 0.336 0.351*
Base1 0.320 0.360* 0.302
Base2 0.252 0.280 0.235

@ Significantly better than Base1
* Significantly better than Base2

(Significance tested using unpaired t-test at 95% confidence)

MT Metrics Generated Base1 Base2
BLEU 0.898 0.499 0.400
NIST 8.802 6.423 5.658

Table 1: Evaluation of generated reference

is intuitive as it also uses redundancy to correct er-
rors, at the level of phrases rather than words. The
generation module outperforms both baselines, par-
ticularly on precision - which for unigrams gives an
indication of the correctness of lexical choice, and
for higher ngrams gives an indication of grammati-
cality. The unigram recall of �x�}�X�C� indicates that we
are not losing too much information at the noise fil-
tering stage. Note that we expect a low ¥§¦5¨ for our
approach, as we only generate particular attributes
that are important for a summary. The important
measure is ©ª¦�¨ , on which we do well. This is also
reflected in the high scores on BLEU and NIST.

It is instructive to see how these numbers vary as
the amount of redundancy increases. Information
theory tells us that information should be more re-
coverable with greater redundancy. Figure 1 plots
f-measure against the minimum amount of redun-
dancy. In other words, the value at X=3 gives the
f-measure averaged over all people who were men-
tioned at least thrice in the input. Thus X=1 includes
all examples and is the same as Table 1.

As the graphs show, the quality of the generated
reference improves appreciably when there are at
least 5 references to the person in the input. This is a
convenient result for summarization because people
who are mentioned more frequently in the input are
more likely to be mentioned in the summary.
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Figure 1: Improvement in F-measure for n-grams in
output with increased redundancy in input.

2.7 Advantages over using extraneous sources
Our approach performs noise reduction and gener-
ates a reference from information extracted from the
machine translations. Information about a person
can be obtained in other ways; for example, from a
database, or by collecting references to the person
from extraneous English-language reports. There
are two drawbacks to using extraneous sources:

1. People usually have multiple possible roles and affilia-
tions, so descriptions obtained from an external source
might not be appropriate in the current context.

2. Selecting descriptions from external sources can change
perspective — one country’s terrorist is another country’s
freedom fighter.

In contrast, our approach generates references
that are appropriate and reflect the perspectives ex-
pressed in the source.

3 Arbitrary noun phrases
In the previous section, we showed how accurate ref-
erences to people can be generated using an infor-
mation theoretic approach. While this is an impor-
tant result in itself for multilingual summarization,
the same approach can be extended to correct errors
in noun phrases that do not refer to people. This ex-
tension is trickier to implement, however, because:

1. Collecting redundancy: Common noun coreference is a
hard problem, even within a single clean English text, and
harder still across multiple MT texts.
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2. Generating: The semantics for an arbitrary noun phrase
cannot be defined sufficiently for formal generation;
hence our approach is to select the most plausible of the
coreferring NPs according to an inferred language model.
When sufficient redundancy exists, it is likely that there
is at least one option that is superior to most.

Interestingly, the nature of multi-document sum-
marization allows us to perform these two hard
tasks. We follow the same theoretical framework
(identify redundancy, and then generate from this),
but the techniques we use are necessarily different.

3.1 Alignment of NPs across translations
We used the BLAST algorithm (Altschul et al., 1997)
for aligning noun phrases between two translations
of the same Arabic sentence. We obtained the best
results when each translation was analyzed for noun
chunks, and the alignment operation was performed
over sequences of words and « NP ¬ and « /NP ¬
tags. BLAST is an efficient alignment algorithm that
assumes that words in the two sentences are roughly
in the same order from a global perspective. As nei-
ther of the MT systems used performs much clause
or phrase reorganization, this assumption is not a
problem for our task. An example of two aligned
sentences is shown in figure 2. We then extract core-
ferring noun phrases by selecting the text between
aligned « NP ¬ and « /NP ¬ tags; for example:

1. the Special Commission in charge of disarmament of
Iraq’s weapons of mass destruction

2. the Special Commission responsible disarmament Iraqi
weapons of mass destruction

3.2 Alignment of NPs across documents
This task integrates well with the clustering ap-
proach to multi-document summarization (Barzilay,
2003), where sentences in the input documents are
first clustered according to their similarity, and then
one sentence is generated from each cluster. This
clustering approach basically does at the level of
sentences what we are attempting at the level of
noun phrases. After clustering, all sentences within
a cluster should represent similar information. Thus,
similar noun phrases in sentences within a cluster
are likely to refer to the same entities. We do noun
phrase coreference by identifying lexically similar
noun phrases within a cluster. We use SimFinder
(Hatzivassiloglou et al., 1999) for sentence cluster-
ing and the f-measure for word overlap to compare
noun phrases. We set a threshold for deciding coref-
erence by experimenting on the 6 development sets

(cf. � 2.6)– the most accurate coreference occurred
with a threshold of f=0.6 and a constraint that the
two noun phrases must have at least 2 words in com-
mon that were neither determiners nor prepositions.
For the reference to the UN Special Commission in
figure 2, we obtained the following choices from
alignments and coreference across translations and
documents within a sentence cluster:

1. the United nations Special Commission in charge of dis-
armament of Iraq’s weapons of mass destruction

2. the the United Nations Special Commission responsible
disarmament Iraqi weapons of mass destruction

3. the Special Commission in charge of disarmament of
Iraq’s weapons of mass destruction

4. the Special Commission responsible disarmament Iraqi
weapons of mass destruction

5. the United nations Special Commission in charge of dis-
armament of Iraq’s weapons of mass destruction

6. the Special Commission of the United Nations responsi-
ble disarmament Iraqi weapons of mass destruction

Larger sentence clusters represent information
that is repeated more often across input documents;
hence the size of a cluster is indicative of the impor-
tance of that information, and the summary is com-
posed by considering each sentence cluster in de-
creasing order of size and generating one sentence
from it. From our perspective of fixing errors in
noun phrases, there is likely to be more redundancy
in a large cluster; hence this approach is likely to
work better within clusters that are important for
generating the summary.

3.3 Generation of noun phrases
As mentioned earlier, formal generation from a set
of coreferring noun phrases is impractical due to the
unrestricted nature of the underlying semantics. We
thus focus on selecting the best of the possible op-
tions — the option with the least garbled word order;
for example, selecting 1) from the following:

1. the malicious campaigns in some Western media

2. the campaigns tendentious in some of the media Western
European

The basic insight that we utilize is — when two
words in a NP occur together in the original docu-
ments more often than they should by chance, it is
likely they really should occur together in the gen-
erated NP. Our approach therefore consists of iden-
tifying collocations of length two. Let the number
of words in the input documents be ­ . For each

38



<S1> <NP> Ivanov </NP> stressed <NP> it </NP> should be to <NP> Baghdad </NP> to resume <NP> work </NP> with
| | | | | | | | | | | | | | | |

<S2> <NP> Ivanov </NP> stressed however <NP> it </NP> should to <NP> Baghdad </NP> reconvening <NP> work </NP> with

<NP> the Special Commission in charge of disarmament of Iraq’s weapons of mass destruction </NP> . </S1>
| | | | | | | | | |

<NP> the Special Commission </NP> <NP> responsible disarmament Iraqi weapons of mass destruction </NP> . </S2>

Figure 2: Two noun chunked MT sentences (S1 and S2) with the words aligned using BLAST.

pair of words ® and ¯ , we use maximum likelihood
to estimate the probabilities of observing the strings° ®¢¯'± , ° ®^± and

° ¯'± . The observed frequency of these
strings in the corpus divided by the corpus size ­
gives the maximum likelihood probabilities of these
events ���d®�²�¯%� , �S�d®x� and �S�1¯+� . The natural way to de-
termine how dependent the distributions of ® and ¯
are is to calculate their mutual information (Church
and Hanks, 1991):³ �d®�²�¯%�¢�µ´t¶C·�¸ �S�d®¤²�¯%����d®h�ª�¹���1¯%�

If the occurrences of ® and ¯ were completely
independent of each other, we would expect the
maximum likelihood probability ���d®�²�¯+� of the string° ®º¯'± to be ���d®h�R�	�S�1¯+� . Thus mutual information
is zero when ® and ¯ are independent, and positive
otherwise. The greater the value of

³ �d®¤²�¯%� , the more
likely that

° ®»¯'± is a collocation. Returning to our
problem of selecting the best NP from a set of core-
ferring NPs, we compute a score for each NP (con-
sisting of the string of words ¼¾½��?�?�I¼P¿ ) by averaging
the mutual information for each bigram:ÀSÁ+Â �VÃ��j¼Ä½��?�?�I¼P¿Å�Æ�ÈÇÊÉ?Ë ¿ÍÌÎ½É?Ë ½

³ �j¼ É ²�¼ ÉtÏ ½'�ÐÒÑ �
We then select the NP with the highest score. This

model successfully selects the malicious campaigns
in some Western media in the example above and
the United nations Special Commission in charge of
disarmament of Iraq’s weapons of mass destruction
in the example in � 3.2.

3.4 Automatic Evaluation
Our approach to evaluation is similar to that for
evaluating references to people. For each collection
of coreferring NPs, we identified the corresponding
model NPs from the manual translations of the input
documents by using the BLAST algorithm for word
alignment between the MT sentences and the cor-
responding manually translated sentence. Table 2
below gives the average unigram, bigram, trigram
and fourgram precision, recall and f-measure for the

UNIGRAMS �^Ó�Ô ¡�Ó�Ô £^Ó�Ô
Mutual information 0.615*@ 0.658 0.607*
Base1 0.584 0.662 0.592
Base2 0.583 0.652 0.586
BIGRAMS �^Ó�Ô ¡�Ó�Ô £^Ó�Ô
Mutual information 0.388*@ 0.425* 0.374*@
Base1 0.340 0.402 0.339
Base2 0.339 0.387 0.330
TRIGRAMS � Ó�Ô ¡ Ó�Ô £ Ó�Ô
Mutual information 0.221*@ 0.204* 0.196*@
Base1 0.177 0.184 0.166
Base2 0.181 0.171 0.160
FOURGRAMS � Ó�Ô ¡ Ó�Ô £ Ó�Ô
Mutual information 0.092* 0.090* 0.085*
Base1 0.078 0.080 0.072
Base2 0.065 0.066 0.061

@ Significantly better than Base1
* Significantly better than Base2

(Significance tested using unpaired t-test at 95% confidence)

MT Metrics Mutual information Base1 Base2
BLEU 0.276 0.206 0.184
NIST 5.886 4.979 4.680

Table 2: Evaluation of noun phrase selection

selected NPs, evaluated against the models. We ex-
cluded references to people as these were treated for-
mally in � 2. This left us with 961 noun phrases from
the 18 test sets to evaluate. Table 2 also provides the
BLEU and NIST MT evaluation scores.

We again provide two baselines - most frequent
NP in the set (Base1) and a randomly selected NP
from the set (Base2). The numbers in Table 2 are
lower than those in Table 1. This is because generat-
ing references to people is a more restricted problem
– there is less error in MT output, and a formal gen-
eration module is employed for error reduction. In
the case of arbitrary NPs, we only select between the
available options. However, the information theo-
retic approach gives significant improvement for the
arbitrary NP case as well, particularly for precision,
which is an indicator of grammaticality.

3.5 Manual Evaluation
To evaluate how much impact the rewrites have on
summaries, we ran our summarizer on the 18 test
sets, and manually evaluated the selected sentences
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and their rewritten versions for accuracy and flu-
ency. There were 118 sentences, out of which 94
had at least one modification after the rewrite pro-
cess. We selected 50 of these 94 sentences at ran-
dom and asked 2 human judges to rate each sen-
tence and its rewritten form on a scale of 1–5 for
accuracy and fluency3. We used 4 human judges,
each judging 25 sentence pairs. The original and
rewritten sentences were presented in random order,
so judges did not know which sentences were rewrit-
ten. Fluency judgments were made before seeing the
human translated sentence, and accuracy judgments
were made by comparing with the human transla-
tion. The average scores before and after rewrite
were �^���V� and �^�N�C� respectively for fluency and �^���C�
and �^�t��Õ respectively for accuracy. Thus the rewrite
operations increases both scores by around 0.2.

4 Conclusions and future work
We have demonstrated how the information redun-
dancy in the multilingual multi-document summa-
rization task can be used to reduce MT errors. We
do not use any related English news reports for sub-
stituting text; hence our approach is not likely to
change the perspectives expressed in the original
Arabic news to those expressed in English news re-
ports. Further, our approach does not perform any
corrections specific to any particular MT system.
Thus the techniques described in this paper will re-
main relevant even with future improvements in MT
technology, and will be redundant only when MT is
perfect. We have used the Arabic-English data from
DUC’04 for this paper, but our approach is equally
applicable to other language pairs. Further, our tech-
niques integrate easily with the sentence clustering
approach to multi-document summarization – sen-
tence clustering allows us to reliably identify noun
phrases that corefer across documents.

In this paper we have considered the case of noun
phrases. In the future, we plan to consider other
types of constituents, such as correcting errors in
verb groups, and in the argument structure of verbs.
This will result in a more generative and less ex-

3We followed the DARPA/LDC guidelines from http://
ldc.upenn.edu/Projects/TIDES/Translation/TranAssessSpec.pdf.
For fluency, the scale was 5:Flawless, 4:Good, 3:Non-native,
2:Disfluent, 1:Incomprehensible. The accuracy scale for
information covered (comparing with human translation) was
5:All, 4:Most, 3:Much, 2:Little, 1:None.

tractive approach to summarization - indeed the case
for generative approaches to summarization is more
convincing when the input is noisy.
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Abstract

Recognition errors hinder the prolifera-
tion of speech recognition (SR) systems.
Based on the observation that recogni-
tion errors may result in ungrammatical
sentences, especially in dictation appli-
cation where an acceptable level of ac-
curacy of generated documents is indis-
pensable, we propose to incorporate two
kinds of linguistic features into error de-
tection: lexical features of words, and syn-
tactic features from a robust lexicalized
parser. Transformation-based learning is
chosen to predict recognition errors by in-
tegrating word confidence scores with lin-
guistic features. The experimental results
on a dictation data corpus show that lin-
guistic features alone are not as useful as
word confidence scores in detecting er-
rors. However, linguistic features provide
complementary information when com-
bined with word confidence scores, which
collectively reduce the classification error
rate by 12.30% and improve the F measure
by 53.62%.

1 Introduction

The proliferation of speech recognition (SR) sys-
tems is hampered by the ever-presence of recogni-
tion errors and the significant amount of effort in-
volved in error correction. A user study (Sears et al.,
2001) showed that users spent one-third of their time

finding and locating errors and another one-third of
the time correcting errors in a hand-free dictation
task. Successfully detecting SR errors can speed up
the entire process of error correction. Therefore, we
focus on error detection in this study.

A common approach to detecting SR errors is an-
notating confidence at the word level. The major-
ity of confidence annotation methods are based on
feature combination, which follows two steps: (i)
extract useful features characteristics of the correct-
ness of words either from the inner components of
an SR system (SR-dependent features) or from the
recognition output (SR-independent features); and
(ii) develop a binary classifier to separate words into
two groups: correct recognitions and errors.

Various features extracted from different compo-
nents of an SR system, such as the acoustic model,
the language model, and the decoder, have been
proven useful to detecting recognition errors (Chase,
1997; Pao et al., 1998; San-Segundo et al., 2001).
Nonetheless, merely using these features is inade-
quate, because the information conveyed by these
features has already been considered when SR sys-
tems generate the output. A common observation is
that the combination of SR-dependent features can
only marginally improve the performance achieved
by using only the best single feature (Zhang and
Rudnicky, 2001; Sarikaya et al., 2003). Hence in-
formation sources beyond the SR system are desired
in error detection.

High-level linguistic knowledge is a good candi-
date for additional information sources. It can be
extracted from the SR output via natural language
processing, which compensates for the lack of high-
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level linguistic knowledge in a typical SR system.
A user study (Brill et al., 1998) showed that hu-
mans can utilize linguistic knowledge at various lev-
els to improve the SR output by selecting the best
utterance hypotheses from N-best lists. Linguistic
features from syntactic, semantic, and dialogue dis-
course analyses have proven their values in error de-
tection in domain specific spoken dialogue systems,
e.g. (Rayner et al., 1994; Carpenter et al., 2001;
Sarikaya et al., 2003). However, few studies have in-
vestigated the merit of linguistic knowledge for error
detection in dictation, a domain-independent appli-
cation.

Transformation-based learning (TBL) is a rule-
based learning method. It has been used in error
correction (Mangu and Padmanabhan, 2001) and er-
ror detection (Skantze and Edlund, 2004). The rules
learned by TBL show good interpretability as well
as good performance. Although statistical learning
methods have been widely used in confidence an-
notation (Carpenter et al., 2001; Pao et al., 1998;
Chase, 1997), their results are difficult to interpret.
Therefore, we select TBL to derive error patterns
from the SR output in this study.

The rest of the paper is organized as follows. In
Section 2, we review the extant work on utilizing lin-
guistic features in error detection. In Section 3, we
introduce linguistic features used in this study. In
Section 4, we describe transformation-based learn-
ing and define the transformations, followed with
reporting the experimental results in Section 5. Fi-
nally, we summarize the findings of this study and
suggest directions for further research in Section 6.

2 Related Work

When the output of an SR system is processed, the
entire utterance is available and thus utterance-level
contextual information can be utilized. Features
generated from high-level language processing such
as syntactic and semantic analyses may complement
the low-level language knowledge (usually n-gram)
used in the SR systems.

Most of the previous work on utilizing linguis-
tic features in error detection focused on utterance-
level confidence measures. Most of features were
extracted from the output of syntactic or semantic
parsers, including full/robust/no parse, number of

words parsed, gap number, slot number, grammar
rule used, and so on (Rayner et al., 1994; Pao et
al., 1998; Carpenter et al., 2001; San-Segundo et al.,
2001). Some discourse-level features were also em-
ployed in spoken dialogue systems such as number
of turns, and dialog state (Carpenter et al., 2001).

Several studies incorporated linguistic features
into word-level confidence measures. Zhang and
Rudnicky (2001) selected two features, i.e., pars-
ing mode and slot backoff mode, extracted from the
parsing result of Phoenix, a semantic parser. The
above two features were combined with several SR-
dependent features using SVM, which achieved a
7.6% relative classification error rate reduction over
SR-dependent features on the data from CMU Com-
municator system.

Sarikaya et al. (2003) explored two sets of seman-
tic features: one set from a statistical classer/parser,
and the other set from a maximum entropy based
semantic-structured language model. When com-
bined with the posterior probability using the deci-
sion tree, both sets achieved about 13-14% absolute
improvement on correct acceptance at 5% false ac-
ceptance over the baseline posterior probability on
the data from IBM Communicator system.

Skantze and Edlund (2004) focused on lexical
features (e.g., part-of-speech, syllables, and con-
tent words) and dialogue discourse features (e.g.,
previous dialogue act, and mentioned word), but
did not consider parser-based features. They em-
ployed transformation-based learning and instance-
based learning as classifiers. When combined with
confidence scores, the linguistic features achieved
7.8% absolute improvement in classification accu-
racy over confidence scores on one of their dialogue
corpora.

It is shown from the related work that linguis-
tic features have merit in judging the correctness
of words and/or utterances. However, such features
have only been discussed in the context of conver-
sational dialogue in specific domains such as ATIS
(Rayner et al., 1994), JUPITER (Pao et al., 1998),
and Communicator (Carpenter et al., 2001; San-
Segundo et al., 2001; Zhang and Rudnicky, 2001;
Sarikaya et al., 2003).

In an early study, we investigated the usefulness
of linguistic features in detecting word errors in dic-
tation recognition (Zhou et al., 2005). The linguis-
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tic features were extracted from the parsing result
of the link grammar. The combination of linguis-
tic features with various confidence score based fea-
tures using SVM can improve F measure for error
detection from 42.2% to 55.3%, and classification
accuracy from 80.91% to 83.53%. However, parser-
based features used were limited to the number of
links that a word has.

3 Linguistic Features

For each output word, two sets of linguistic features
are extracted: lexical features and syntactic features.

3.1 Lexical Features

For each word w, the following lexical features are
extracted:

• word: w itself

• pos: part-of-speech tag from Brill’s tagger
(Brill, 1995)

• syllables: number of syllables in w, estimated
based on the distribution patterns of vowels and
consonants

• position: the position of w in the sentence: be-
ginning, end, and middle

3.2 Syntactic Features

Speech recognition errors may result in ungrammat-
ical sentences under the assumption that the speaker
follows grammar rules while speaking. Such an as-
sumption holds true especially for dictation appli-
cation because the general purpose of dictation is
to create understandable documents for communi-
cation.

Syntactic parsers are considered as the closest ap-
proximation to this intuition since there is still a lack
of semantic parsers for the general domain. More-
over, robust parsers are preferred so that an error
in a recognized sentence does not lead to failure in
parsing the entire sentence. Furthermore, lexicalized
parsers are desired to support error detection at the
word level. As a result, we select Link Grammar1 to
generate syntactic features.

1Available via http://www.link.cs.cmu.edu/link/

3.2.1 Link Grammar

Link Grammar is a context-free lexicalized gram-
mar without explicit constituents (Sleator and Tem-
perley, 1993). In link grammar, rules are expressed
as link requirements associated with words. A link
requirement is a set of disjuncts, each of which rep-
resents a possible usage of the word. A sequence of
words belongs to the grammar if the result linkage is
a planar, connected graph in which at most one link
is between each word pair and no cross link exists.
Link grammar supports robust parsing by incorpo-
rating null links (Grinberg et al., 1995).

3.2.2 Features from Link Grammar

We hypothesize that a word without any link in
a linkage of the sentence is a good indicator of
the occurrence of errors. Either the word itself
or words around it are likely to be erroneous. It
has been shown that null links can successfully ig-
nore false starts and connect grammatical phrases in
ungrammatical utterances, which are randomly se-
lected from the Switchboard corpus (Grinberg et al.,
1995).

A word with links may still be an error, and
its correctness may affect the correctness of words
linked to it, especially those words connected with
the shortest links that indicate the closest connec-
tions.

Accordingly, for each word w, the following fea-
tures are extracted from the parsing result:

• haslink: whether w has left links, right links, or
no link

• llinkto/rlinkto: the word to which w links via
the shortest left/right link

An example of parsing results is illustrated in Fig-
ure 1. Links are represented with dotted lines which
are annotated with labels (e.g., Wd, Xp) represent-
ing link types. In Figure 1, word “since” has no
link, and word “around” has one left link and one
right link. The word that has the shortest left link to
“world” is “the”.

43



LEFT-WALL [since] people.p will.v come.v from around the world.n .

Wd Sp I MVp FM Ds

Js
Xp

Figure 1: An Example of Parsing Results of Link Grammar

4 Error Detection based on
Transformation-Based Learning

4.1 Transformation-Based Learning
Transformation-Based Learning is a rule-based ap-
proach, in which rules are automatically learned
from the data corpus. It has been successfully used
in many natural language applications such as part-
of-speech tagging (Brill, 1995). Three prerequisites
for using TBL are: an initial state annotator, a set of
possible transformations, and an objective function
for choosing the best transformations.

Before learning, the initial state annotator adds la-
bels to the training data. The learning goes through
the following steps iteratively until no improvement
can be achieved: (i) try each possible transformation
on the training data, (ii) score each transformation
with the objective function and choose the one with
the highest score, and (iii) apply the selected trans-
formation to update the training data and append it
to the learned transformation list.

4.2 Error Detection Based on TBL
Pre-defined transformation templates are the rules
allowed to be used, which play a vital role in TBL.
The transformation templates are defined in the fol-
lowing format:

Change the word label of a word w from X to Y , if
condition C is satisfied

where, X and Y take binary values: 1 (correct
recognition) and -1 (error). Each condition C is the
conjunction of sub-conditions in form of f op v,
where f represents a feature, v is a possible cate-
gorical value of f , and op is the possible operations
such as <, > and =.

In addition to the linguistic features introduced in
Section 3, two other features are used:

• word confidence score (CS): an SR dependent
feature generated by an SR system.

• word label (label): the target of the transfor-
mation rules. Using it as a feature enables the
propagation of the effect of preceding rules.

As shown in Table 1, conditions are classified into
three categories based on the incrementally enlarged
context from which features are extracted: word
alone, local context, and sentence context. The three
categories are further split into seven groups accord-
ing to the features they used.

• L: the correctness of w depends solely on itself.
Conditions only include lexical features of w.

• Local: the correctness of w depends not only
on itself but also on its surrounding words.
Conditions incorporate lexical features of sur-
rounding words as well as those of w. Fur-
thermore, word labels of surrounding words are
also employed as a feature to capture the effect
of the correctness of surrounding words of w.

• Long: the scope of conditions for the correct-
ness of w is expanded to include syntactic fea-
tures. Syntactic features of w and its surround-
ing words as well as the features in Local are
incorporated into conditions. In addition, the
lexical features and word labels of words that
have the shortest links to w are also incorpo-
rated.

• CS: the group in which conditions only include
confidence scores of w.

• LCS, CSLocal, CSLong: these three groups
are generated by combining the features from
L, Local, and Long with the confidence scores
of w as an additional feature respectively.

lrHaslink and llinkLabel are combinations of
basic features. lrHaslink represents whether the
preceding word and the following word have links,
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Category Group Example
Word CS cs(wi) < ci

Alone L position(wi) = ti & syllables(wi) = si

LCS cs(wi) < ci & pos(wi) = pi

Local Local position(wi) = ti & label(wi−1) = li−1 & word(wi) = di

Context CSLocal cs(wi) < ci & position(wi) = ti & label(wi−1) = li−1 & label(wi+1) =
li+1

Sentence Long position(wi) = ti & lrHaslink(wi) = hi & haslink(wi) = hli
Context CSLong cs(wi) < ci & position(wi) = ti & llinkLabel(wi) = lli & pos(wi) = pi

Table 1: Condition Categories and Examples

and llinkLabel represents the label of the word to
which w has the shortest left link. ci, ti, si, pi, li, di,
hi, hli, and lli are possible values of the correspond-
ing features.

The initial state annotator initializes all the words
as correct words. A Prolog based TBL tool, µ-
TBL (Lager, 1999) 2 is used in this study. Classi-
fication accuracy is adopted as the objective func-
tion. For each transformation, its positive effect
(PE) is the number of words whose labels are cor-
rectly updated by applying it, and its negative ef-
fect (NE) is the number of words wrongly updated.
Two cut-off thresholds are used to select transfor-
mations with strong positive effects: net positive ef-
fect (PE − NE), and the ratio of positive effect
(PE/(PE + NE)).

5 Experimental Results and Discussion

Experiments were conducted at several levels. Start-
ing with transformation rules with word alone con-
ditions, additional rules with local context and sen-
tence context conditions were incorporated incre-
mentally by enlarging the scope of the context. As
such, the results help us not only identify the ad-
ditional contribution of each condition group to the
task of error detection but also reveal the importance
of enriching contextual information to error detec-
tion.

5.1 Data Corpus

The data corpus was collected from a user study
on a composition dictation task (Feng et al., 2003).
A total of 12 participants were native speakers and

2Available via http://www.ling.gu.se/˜lager/mutbl.html

none of them used their voice for professional pur-
poses. Participants spoke to IBM ViaVoice (Millen-
nium edition), which contains a general vocabulary
of 64,000 words. The dictation task was completed
in a quiet lab environment with high quality micro-
phones.

During the study, participants were given one pre-
designed topic and instructed to compose a docu-
ment of around 400 words on that topic. Before
starting the dictation, they completed enrollments to
build personal profiles and received training on fin-
ishing the task with a different topic. They were
asked to make corrections only after they finished
composing a certain length of text. The data cor-
pus consists of the recognition output of their dicta-
tions excluding corrections. Word recognition errors
were first marked by the participants themselves and
then validated by researchers via cross-referencing
the recorded audios. The data corpus contains 4,804
words.

5.2 Evaluation Metrics
To evaluate the overall performance of the error de-
tection, classification error rate (CER) (Equation 1),
commonly used metric to evaluate classifiers, is
used. CER is the percentage of words that are
wrongly classified.

CER =
# of wrongly classified words

total# of words
(1)

The baseline CER is derived by assuming all the
words are correct, and it has the value as the ratio of
the total number of insertion and substitution errors
to the total number of output words.

Precision (PRE) and recall (REC) on errors are
used to measure the performance of identifying er-
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rors. PRE is the percentage of words classified as er-
rors that are in fact recognition errors. REC denotes
the proportion of actual recognition errors that are
categorized as errors by the classifier. In addition,
F measure (Equation 2), a single-valued metric re-
flecting the trade-off between PRE and REC, is also
used. The baselines of PRE, REC, and F for error
are zeros, for all of the output words are assumed
correct.

F =
2 ∗ PRE ∗REC

PRE + REC
(2)

5.3 Results

3-fold cross-validation was used to test the system.
When dividing the data corpus, sentence is treated
as an atomic unit. The 3-fold cross-validation was
run 9 times, and the average performance is reported
in Table 2. The labels of rule combinations are de-
fined by the connections of several symbols defined
in Section 4.2. For each rule combination, the types
of rules can be included are decided by all the possi-
ble combinations of those symbols which are in Ta-
ble 1. For example, L-CS-Local-Long includes rules
with conditions L, CS, Local, Long, LCS, CSLocal
and CSLong.

The threshold of net positive effect is set to 5 to
ensure that enough evidence has been observed, and
that of the ratio of the positive effect is set to 0.5 to
ensure that selected transformations have the posi-
tive effects.

For the combinations without CS, L-Local-Long
achieves the best performance in terms of both CER
and F measure. A relative improvement of 4.85% is
achieved over the baseline CER, which is relatively
small. One possible explanation concerns the large
vocabulary size in the data set. Although the par-
ticipants were asked to compose the documents on
the same topic, the word usage was greatly diversi-
fied. An analysis of the data corpus shows that the
vocabulary size is 993.

Despite its best performance in linguistic feature
groups, L-Local-Long produces worse performance
than CS in both CER and F measure. Therefore, lin-
guistic features by themselves are not as useful as
confidence scores.

When linguistic features are combined with
CS, they provide additional improvement. L-CS
achieves a 4.58% relative improvement on CER and

a 31.37% relative improvement on F measure over
CS. L-CS-Local only achieves marginal improve-
ment on CER and a 7.54% relative improvement on
F measure over L-CS.

The best performance is generated by L-CS-
Local-Long. In particular, it boosts CER by a rel-
ative improvement of 12.30% over CS and a relative
improvement of 7.02% over L-CS-Local. In addi-
tion, it improves F measure by 53.62% and 8.74%
in comparison with CS and L-CS-Local respectively.
Therefore, enlarging the scope of context can lead to
improved performance on error detection.

It is revealed from Table 2 that the improvement
on F measure is due to the improvement on re-
call without hurting the precision. After combining
linguistic features with CS, L-CS and L-CS-Local-
Long achieve 43.77% and 75.57% relative improve-
ments on recall over CS separately. Hence, the
linguistic features can improve the system’s ability
in finding more errors. Additionally, L-CS-Local-
Long achieves a 7.32% relative improvement on pre-
cision over CS.

The average numbers of learned rules are shown
in Table 2. With the increased number of possible
used pre-defined rules, the number of learned rules
increases moderately. L-CS-Local-Long and L-CS-
Local have the largest number of rules, 14, which is
rather a small set of rules. As discussed above, these
rules are straightforward and easy to understand.

Figure 2 shows CERs when the learned rules are
incrementally applied in one run for L-CS-Local-
Long. Three lines represent each of the three folds
separately, and the number of learned rules differs
among folds.
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Figure 2: Relations of CERs with Number of Rules
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Combination Mean Std. Mean Mean Mean Mean #
CER (%) Dev PRE (%) REC (%) F (%) of rules

Baseline 15.66 0.06 - - - -
L 15.55 0.11 61.85 2.04 3.88 3
L-Local 15.58 0.14 60.88 2.19 4.17 4
L-Local-Long 14.90 0.10 61.67 13.83 22.37 8
CS 14.64 0.09 61.03 21.98 31.50 1
L-CS 13.97 0.15 61.48 31.60 41.38 8
L-CS-Local 13.81 0.18 61.28 35.52 44.50 14
L-CS-Local-Long 12.84 0.21 65.50 38.59 48.39 14

Table 2: Performance of Transformation Rule Combinations

After the first several rules are applied, CERs drop
significantly. Then the changes in CERs become
marginal as additional rules are applied. The fold
1 and 3 reach the lowest CER after the last rule is
applied, and fold 2 reaches the lowest CERs in the
middle. Thus, the top ranked rules are mostly useful.

One advantage of TBL is that the learning result
can be easily interpreted. The following is the top
six rules learned in fold 3 in Figure 2.

Mark a word as an error, if :

• its confidence score is less than 0; it is in the
middle of a sentence; and it is a null-link word.

• its confidence score is less than -5; it is in the
middle of a sentence; and it has links to preced-
ing words.

• its confidence score is less than 0; it is the first
word of a sentence; and it is a null-link word.

• its confidence score is less than 2; it is in the
middle of a sentence; it has 1 syllable; and the
word following it also has 1 syllable and is an
error.

• its confidence score is less than -1; and both its
preceding and following words are errors.

Mark a word as a correct word, if :

• its confidence score is greater than -1; and both
its preceding and following words are correct
words.

All of the above six rules include word confidence
score as a feature. Rule 1 and rule 3 suggest that

null-link words are good indicators of errors, which
confirms our hypothesis. Rule 2 shows that a word
with low confidence score may also be an error even
if it is part of the linkage of the sentence. Rule 4
shows continuous short words are possible errors.
Rule 5 indicates that a word with low confidence
score may be an error if its surrounding words are er-
rors. Rule 6 is a rule to compensate for the wrongly
labeled words by previous rules.

6 Conclusion and Future Works

We introduced an error detection method based on
feature combinations. Transformation-based learn-
ing was used as the classifier to combine linguistic
features with word confidence scores. Two kinds
of linguistic features were selected: lexical fea-
tures extracted from words themselves, and syntac-
tic features from the parsing result of link grammar.
Transformation templates were defined by varying
scope of the context. Experimental results on a dic-
tation corpus showed that although linguistic fea-
tures alone were not as useful as word confidence
scores to error detection, they provided complemen-
tary information when combined with word confi-
dence score. Moreover, the performance of error de-
tection was improved incrementally as the scope of
context was enlarged, and the best performance was
achieved when sentence context was considered. In
particular, enlarging the context modeled by linguis-
tic features improved the capability of error detec-
tion by finding more errors without deteriorating and
even improving the precision.

The proposed method has been tested using a dic-
tation corpus on a topic related to office environ-
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ment. We are working on evaluating the method
on spontaneous dictation utterances from the CSR-II
corpus, and other monologue corpora such as Broad-
cast News. The method can be extended by incorpo-
rating lexical semantic features from the semantic
analysis of recognition output to detect semantic er-
rors that are likely overlooked by syntactic analysis.
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Abstract 

Browsing through large volumes of spoken 
audio is known to be a challenging task for 
end users. One way to alleviate this prob-
lem is to allow users to gist a spoken audio 
document by glancing over a transcript 
generated through Automatic Speech Rec-
ognition. Unfortunately, such transcripts 
typically contain many recognition errors 
which are highly distracting and make gist-
ing more difficult. In this paper we present 
an approach that detects recognition errors 
by identifying words which are semantic 
outliers with respect to other words in the 
transcript. We describe several variants of 
this approach. We investigate a wide range 
of evaluation measures and we show that 
we can significantly reduce the number of 
errors in content words, with the trade-off 
of losing some good content words.  

1 Introduction 

Spoken audio documents are becoming more and 
more common place due to the rising popularity of 
technologies such as: video and audio conferenc-
ing, video web-casting and digital cameras for the 
consumer market. Unfortunately, speech docu-
ments are inherently hard to browse because of 
their transient nature.  For example, imagine trying 
to locate the audio segment in the recording of a 
60-minute meeting, where John talked about pro-
ject X. Typically, this would require fast forward-
ing through the audio by some amount, then 
listening and trying to remember if the current seg-

ment was spoken before or after the desired seg-
ment, then fast-forwarding or backtracking by a 
small amount, and so on.  

One way to make audio browsing of audio docu-
ments more efficient is to allow the user to navi-
gate through a textual transcript that is cross-
referenced with corresponding time points into the 
original audio (Nakatani et al. 1998; Hirschberg et 
al. 1999). Such transcripts can easily be produced 
with Automatic Speech Recognition (ASR) sys-
tems today. Unfortunately, such transcripts typi-
cally contain recognition errors that make them 
hard to browse and understand. Although Word 
Error Rates (WER) of the order of 20% can be 
achieved for broadcast quality audio, the WER for 
more common situations (ex: less-than-broadcast 
quality recordings of meetings) is typically in the 
order of 50% or more.  

The work we present in this paper aims at auto-
matically identifying recognition errors and remov-
ing them from the transcript, in order to make 
gisting and browsing of the corresponding audio 
more efficient. For example, consider the follow-
ing portion of a transcript that was produced with 
the Dragon NaturallySpeaking speech recognition 
system from the audio of a meeting: 
“Weenie to decide quickly whether local for large 
expensive plasma screen aura for a bunch of 
smaller and cheaper ones and Holland together” 

Now consider the following filtered transcript 
where recognition errors were automatically blot-
ted out using our proposed algorithm:  
“ ... to decide quickly whether ... large expensive 
plasma screen ... for a bunch of smaller and 
cheaper ones and ... together” 

We believe that transcripts like this second one 
may be more efficient for gisting and browsing the 
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content of the original audio whose correct tran-
script is: 
“We need to decide quickly whether we will go for 
a large expensive plasma screen or for a bunch of 
smaller and cheaper ones and tile them together.” 

Our approach to filtering recognition errors is to 
identify semantic outliers. By this, we mean 
words that do not cohere well semantically with 
other words in the transcript. More often than not, 
such outliers turn out to be mistranscribed words. 
We present several variants of an algorithm for 
identifying semantic outliers, and evaluate them in 
terms of how well they are able to filter out recog-
nition errors. 

2 Related Work 

Hirschberg et al. (1999), and Nakatani et al. (1998) 
proposed the idea of using automatic transcripts for 
gisting and navigating audio documents. Text-
based summarization techniques on automatic 
speech transcription have also been used. For ex-
ample, the method of Désilets et al. (2001) was 
found to produce accurate keyphrases for transcrip-
tions with Word Error Rates (WER) in the order of  
25%, but performance was less than ideal for tran-
scripts with WER in the order of 60%. With such 
transcripts, a large proportion of the extracted key-
phrases included serious transcription errors. Ink-
pen and Désilets (2004) presented an experiment 
that filters out errors in keywords extracted from 
speech, by identifying the keywords that are not 
semantically close to the rest of the keywords.  

Semantic similarity measures were used for 
many tasks. Two examples are: real-word error 
correction (Budanitsky and Hirst, 2000) and an-
swering synonym questions (Turney, 2001), 
(Jarmasz and Szpakowicz, 2003).  

There is a lot of research on confidence meas-
ures for identifying errors in speech recognition 
output. Most papers on this topic use information 
that is internal to the ASR system, generated by the 
decoder during the recognition process. Examples 
are likelihood ratios derived by a Viterbi decoder 
(Gillick et al., 1997), measures of competing 
words at a word boundary (Cox and Rose, 1996), 
word score densities in N-best lists, and various 
acoustic and phonetic features. Machine learning 
techniques were used to identify the best combina-
tions of features for classification (Chase, 1997) 
(Schaaf and Kemp, 1997) (Ma et al., 2001) 

(Skantze and Edlund, 2004) (Zhou and Meng, 
2004) (Zhou et al., 2005). Some of these methods 
achieve good performance, although they use dif-
ferent test sets and report different evaluation 
measures from the set we enumerate in Section 6.  

In our work, we use information that is external 
to the ASR system, because new knowledge seems 
likely to help in the detection of semantic outliers.  
In this respect, the work of Cox and Dasmahapatra 
(2000) is closest to ours. They compared the accu-
racy of a measure based on Latent Semantic 
Analysis (LSA) (Landauer and Dumais, 1997) to 
an ASR-based confidence measure, and found that 
the ASR-based measure (using N-best lists) outper-
formed the LSA approach. While the N-best lists 
approach was better at the high-Recall end of the 
spectrum, the LSA was better at the high-Precision 
end. They also showed that a hybrid combination 
of the two approaches worked best. Our work is 
similar to the LSA-based part of Cox and Dasma-
hapatra, except that we use Point-wise Mutual 
Information (PMI) instead of LSA. Because PMI 
scales up to very large corpora, it has been shown 
to work better than LSA for assessing the semantic 
similarity of words (Turney, 2001). Another dis-
tinguishing feature is that Cox and Dasmahapatra 
only looked at transcripts with moderate WER, 
whereas we additionally evaluate the technique for 
the purpose of doing error filtering on transcripts 
with high WER, which are more typical of non-
broadcast conversational audio.   

3 The Data 

We evaluated our algorithms on a randomly se-
lected subset of 100 stories from the TDT2 English 
Audio corpus. We conducted experiments with two 
types of automatically-generated speech tran-
scripts. The first ones were generated by the 
NIST/BBN time-adaptive speech recognizer and 
have a moderate WER (27.6%), which is represen-
tative of what can be obtained with a speaker-
independent ASR system tuned for the Broadcast 
News domain. In the rest of this paper, we refer to 
these moderate accuracy transcripts as the BBN 
dataset. The second set of transcripts was obtained 
using the Dragon NaturallySpeaking speaker-
dependent recognizer. Their WER (62.3%) was 
much higher because the voice model was not 
trained for speaker-independent broadcast quality 
audio. These transcripts approximate the type of 
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high WER seen in more casual less-than-broadcast 
quality audio. We refer to these transcripts as the 
Dragon dataset. 

4 The method 

Our algorithm tries to detect recognition errors by 
identifying and filtering semantic outliers in the 
transcripts. In other words, it declares as recogni-
tion errors all the words with low semantic similar-
ity to other words in the transcript. The algorithm 
focuses on content words, i.e., words that do not 
appear in a list of 779 stopwords (including closed-
class words, such as prepositions, articles, etc.). 
The reason to ignore stopwords is that they tend to 
co-occur with most words, and are therefore se-
mantically coherent with most words. The basic 
algorithm for determining if a word w is a recogni-
tion error is as follows.  
 
1. Compute the neighborhood N(w) of w as the 
set of content words that occur before and after w 
in a context window (including w itself).  
 
2. Compute pair-wise semantic similarity scores 
S(wi, wj) between all pairs of words wi ≠ wj (in-
cluding w) in the neighborhood N(w), using a se-
mantic similarity measure. Scale up those S(wi, wj) 
by a constant so that they are all non-negative, and 
the smallest one is 0. 
 
3. For each wi in the neighborhood N(w) (includ-
ing w), compute its semantic coherence SC(wi). 
by “aggregating” the pair-wise semantic similari-
ties S(wi, wj) of wi with all its neighbors (wi ≠ wj) 
into a single number. 
 
4. Let SCavg be the average of SC(wi) over all wi in 
the neighborhood N(w). 
 
5. Label w as a recognition error if SC(w) < 
K·SCavg, where K is a parameter that allows us to 
control the amount of error filtering (K% of the 
average semantic coherence score). Low values of 
K mean little error filtering and high values of K 
mean a lot of error filtering.  
 

We tested a number of variants of Steps 1-3. For 
Step 1, we experimented with two ways of com-
puting the neighborhood N(w). The first approach 
was to set N(w) to be all the words in the transcript 
(the All variant). The second neighborhood ap-
proach was to set N(w) to be the set of 10 content 

words before and after w in the transcript (the 
Window variant).  

For Step 2 we experimented with two different 
measures for evaluating the pair-wise semantic 
similarities S(wi, wj). The first measure used a 
hand-crafted dictionary (the Roget variant) 
whereas the second one used a statistical measure 
based on a large corpus (the PMI variant).  

For Step 3 we experimented with different 
schemes for “aggregating” the pair-wise semantic 
similarities S(wi, wj) into a single semantic coher-
ence number SC(wi) for a given word wi. The first 
aggregation scheme was simply to average the 
SC(wi) values (the AVG variant). Note that with 
this scheme, we filter words that do not cohere 
well with all the words in the neighborhood N(w). 
This might be too aggressive in the case of the All 
variant, especially for longer or multi-topic audio 
documents. Therefore, we investigated other ag-
gregation schemes that only required words to co-
here well with a subset of the words in N(w). The 
second aggregation scheme was to set SC(wi) to 
the value of the most similar neighbor in N(w) (the 
MAX variant). The third aggregation scheme was 
to set SC(wi) to the average of the 3 most similar 
neighbors in N(w) (the 3MAX variant).  

Thus, there are altogether 2x2x3 = 12 possible 
configurations of the algorithm. In the rest of this 
paper, we will refer to specific configurations us-
ing the following naming scheme: Step1Variant-
Step2Variant-Step3Variant. For example, All-
PMI-AVG means the configuration that uses the 
All variant of Step 1, the PMI variant of Step 2, 
and the AVG variant of step 3. 

It is worth noting that all configurations of this 
algorithm are computationally intensive, mainly 
because of Step 2. However, since our aim is to 
provide transcripts for browsing audio recordings, 
we do not have to correct errors in real time.  

5 Choosing a semantic similarity measure 

Semantic similarity refers to the degree with which 
two words (two concepts) are related. For example, 
most human judges would agree that paper and 
pencil are more closely related than car and 
toothbrush. We use the term semantic similarity in 
this paper in a more general sense of semantic re-
latedness (two concepts can be related by their 
context of use without necessarily being similar).  
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There are three types of semantic similarity 
measures: dictionary-based (lexical taxonomy 
structure), corpus-based, and hybrid. Most of the 
dictionary-based measures use path length in 
WordNet – for example (Leacock and Chodorow, 
1998), (Hirst and St-Onge, 1998).  The corpus-
based measures use some form of vector similarity. 
The cosine measure uses frequency counts in its 
vectors and cosine to compute similarity; the sim-
pler methods use binary vectors and compute coef-
ficients such as: Matching, Dice, Jaccard, and 
Overlap. Examples of hybrid measures, based on 
WordNet and small corpora, are: Resnik (1995), 
Jiang and Conrath (1997), Lin (1998). All diction-
ary-based measures have the disadvantage of lim-
ited coverage: they cannot deal with many proper 
names and new words that are not in the diction-
ary. For WordNet-based approaches, there is the 
additional issue that they tend to work well only 
for nouns because the noun hierarchy in WordNet 
is the most developed. Also, most of the WordNet-
based measures do not work for words with differ-
ent part-of-speech, with small exceptions such as 
the extended Lesk measure (Banerjee and Peder-
sen, 2003).  

We did a pre-screening of the various semantic 
similarity measures in order to choose the one 
measure of each type (dictionary-based and cor-
pus-based) that seemed most promising for our 
task of detecting semantic outliers in automatic 
speech transcripts. The dictionary-based ap-
proaches that we evaluated were: the WordNet-
based measure by Leacock and Chodorow (1987), 
and one other dictionary-based measure that uses 
the Roget thesaurus. The Roget measure (Jarmasz 
and Szpakowicz, 2003) has the advantage that it 
works across part-of-speech. The corpus-based 
measures we evaluated were: (a) the cosine meas-
ure based on word co-occurrence vectors (Lesk, 
1969), (b) a new method that computes the Pearson 
correlation coefficient of the co-occurrence vectors 
instead of the cosine, and (c) a measure based on 
point-wise mutual information. We computed the 
first two measures on the 100-million-words Brit-
ish National Corpus (BNC)1, and the third one on a 
much larger-corpus of Web data (one terabyte) 
accessed through the Waterloo Multitext system 
(Clarke and Terra, 2003). The reason for using 
corpora of different sizes is that PMI is the only 

                                                           
1 http://www.natcorp.ox.ac.uk/index.html 

one of the three corpus-based approaches that 
scales up to a terabyte corpus. 

We describe here in detail the PMI corpus-based 
measure, because it is the most important for this 
paper. The semantic similarity score between two 
words w1 and w2 is defined as the probability of 
seeing the two words together divided by the prob-
ability of each word separately: PMI(w1,w2) = log 
[P(w1,w2) / (P(w1)·P(w2))] =  log [C(w1,w2)⋅N / 
(C(w1)⋅C(w2))], where C(w1,w2), C(w1), C(w2) are 
frequency counts, and N is the total number of 
words in the corpus. Such counts can easily and 
efficiently be retrieved for a terabyte corpus using 
the Waterloo Multitext system. 

In order to assess how well the semantic similar-
ity measures correlate with human perception, we 
use the set of 30 word pairs of Miller and Charles 
(1991), and the 65 pairs of Rubenstein and Goode-
nough (1965). Both used humans to judge the simi-
larity. The Miller and Charles pairs were a subset 
of the Rubenstein and Goodenough pairs. Note that 
both of those sets were limited to nouns that ap-
peared in the Roget thesaurus, and they are there-
fore favorably biased towards dictionary-based 
approaches. Table 1 shows the correlation of 5 
similarity measures for the Rubenstein and Goode-
nough (R&G) and Miller and Charles (M&C) data-
set. Note that although there are many WordNet-
based semantic similarity measures, we only show 
correlations for Leacock and Chodorow (L&C) 
because it was previously shown to be better corre-
lated (Jarmasz and Szpakowicz, 2003). We do not 
show figures for hybrid measures either because 
the same study showed L&C to be better. 
 
Table 1: Correlation between human assigned and various 
machine assigned semantic similarity scores. 
 Dictionary-based Corpus-based 
 L&C Roget Cos. Corr. PMI 
M&C 0.821 0.878 0.406 0.438 0.759 
R&G 0.852 0.818 0.472 0.517 0.746 
 

We see that the WordNet-based L&C measure 
based (Leacock and Chodorow, 1998 and the Ro-
get measure (Jarmasz and Szpakowicz, 2003) both 
achieve high correlations but the two vector cor-
pus-based measures (Cosine and Pearson Correla-
tion) achieve much lower correlation. The only 
corpus-based measure that does well is PMI, 
probably because of the much larger corpus.  
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We decided to experiment with two of the meas-
ures (one corpus-based and one thesaurus based) 
for computing the semantic similarity of word 
pairs in Step 2 of the algorithm described in Sec-
tion 3. The two measures are: PMI computed on 
the Waterloo terabyte corpus and the Roget-based 
measure. These two seem the most promising 
given the nature of our task and the correlation fig-
ures reported above. 

6 Evaluation Measures 

We use several evaluation measures to determine 
how well our algorithm works for identifying se-
mantic outliers. As summarized in Table 2, the task 
of detecting recognition errors can be viewed as a 
classification task. For each word, the algorithm 
must predict whether or not that word was tran-
scribed correctly.  
 
Table 2: Recognition error detection can be seen as a classifi-
cation task. 

 
 

 Correctly 
transcribed 

(actual) 

NOT Correctly 
transcribed 

(actual) 
Correctly 

 transcribed 
 (predicted) 

True Positive 
(TP) 

False Positive 
(FP) 

NOT Correctly 
transcribed 
 (predicted) 

False Negative 
(FN) 

True Negative 
(TN) 

 
Note that we decide if a word is actually cor-

rectly transcribed or not by using the alignment of 
an automatic transcript with the manual transcript. 
A standard evaluation tool (sclite2) computes WER 
by counting the number of substitutions, deletions, 
and insertions needed to align a reference tran-
script with a hypothesis file. It also marks the 
words that are correct in automatic transcript (the 
hypothesis file). The rest of the words are the ac-
tual recognition errors (the insertions or substitu-
tions). The deletions – words that are absent from 
the automatic transcript – cannot be tagged by the 
confidence measure. 

We define the following performance measures 
in order to evaluate the improvement of the filtered 
transcripts compared to the initial transcripts:  
 
1. Word error rate in the initial transcript and in 
the filtered transcript. These measures can be com-
puted with and without stopwords (for which our 
                                                           
2 http://www.nist.gov/speech/tools/ 

algorithm does not apply). Note that WER without 
stopwords could be slightly lower than traditional 
WER mostly because content words tend to be rec-
ognized more accurately than stopwords (Désilets 
et al. 2001). When filtering out semantic outliers, 
there will be gaps in the filtered transcript, there-
fore the general WER might not improve because 
it penalizes heavily the deletions.  
 
2. Content word error rate (cWER). This is the 
error rate in an automatic transcript (initial or fil-
tered) from the point of view of the confidence 
measure, for the content words only. It penalizes 
the words in the automatic transcripts that should 
not be there, but not any missing words (no dele-
tions are penalized). In the case of a transcript fil-
tered by our algorithm, it excludes not only the 
stopwords, but also the filtered words. We com-
puted cWER with sclite without penalizing for the 
gaps created by the filtered words.  
 
3. The percentage of lost good content words 
(%Lost). This is the percentage of correctly rec-
ognized content words which are lost in the proc-
ess of filtering out recognition errors, defined as:  
%Lost = 100 * FN / (TP + FN). We could also 
compute the percent of discarded words, without 
regard if they should have been filtered out or not. 
D = (TN + FN) / (TP + FP + TN + FN). 
 
4. Precision (P), Recall (R) and F-measure. Pre-
cision is the proportion of truly correct words con-
tained in the list of content words which the 
algorithm labeled as correct. Recall is the propor-
tion of truly correct content words that the algo-
rithm was able to retain. F-measure is the 
geometric mean of P and R and expresses a trade-
off between those two measures.  P = TP / (TP + 
FP); R = TP / (TP + FN); F = 2PR / (P+R). 

7 Results 

We ran various configurations of the algorithm 
described in Section 4 on the 100 story sample 
from the TDT2 corpus. This section discusses the 
results of those experiments. We studied the Preci-
sion-Recall (P-R) curves for various configurations 
of our algorithm over the 100 stories, for the two 
types of transcripts: the BBN and Dragon datasets. 
Figures 1 and 2 show an example for each dataset. 
Each point on a P-R curve shows the Precision and 
Recall for one value of K in {0, 20, 40, 60, 80, 
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100, 120, 140, 160, 180, 200}. Points on the left 
correspond to aggressive filtering (high values of 
K), whereas points on the right correspond to leni-
ent filtering (low values of K).  

First, we looked at the relative merits of the two 
semantic similarity measures (PMI and Roget) for 
Step 2. Figures 1 and 2 plot the P-R curves for the 
All-PMI-AVG and All-Roget-AVG configurations. 
The graphs clearly indicate that PMI performs bet-
ter, especially for the high WER Dragon dataset. 
So PMI was used in the rest of the experiments.  

Next, we looked at the variants for setting up the 
neighborhood N(w) in Step 1 (All vs. Window). 
The three P-R curves for All-PMI-X and Window-
PMI-X for all aggregation approaches X in {AVG, 
MAX, 3MAX} are not shown here because they 
were similar to the P-PMI curves from Figures 1 
and 2, for the BBN dataset and for the Dragon 
dataset, respectively. The Window variant was 
marginally better for X=MAX on both datasets, as 
well as for X=3MAX on the BBN dataset. In all 
other cases, the Window and All variants per-
formed approximately the same.  

Next, we looked at the different schemes for ag-
gregating the pair-wise similarity scores in Step 3 
(AVG, MAX, 3MAX). By plotting the P-R curves 
for All-PMI-AVG, All-PMI-MAX, and All-PMI-
3MAX for both datasets we obtained again curves 
similar to the P-PMI curves from Figures 1 and 2. 
It seemed that AVG performs slightly better for 
high Recall, the difference being more marked 
when there is no windowing or when we are work-
ing on the Dragon dataset. The 3MAX and MAX 
variants seemed to be slightly better at high Preci-
sion with acceptable Recall values, with 3MAX 
being always equal or very slightly better than 
MAX. In an audio gisting and browsing context 
Precision is more important than Recall, therefore 
we can choose 3MAX. 

Having established Window-PMI-3MAX as one 
of the better configurations, we now look more 
closely at its performance.  

Figures 3 and 4 show how the content word er-
ror rate (cWER), the percentage of lost good words 
(%Lost), and the F-measure vary as we apply more 
and more aggressive error filtering (by increasing 
K) to both datasets. We see that our semantic out-
lier filtering approach is able to significantly re-
duce the number of transcription errors, while 
losing some correct words. For example, with the  
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Fig 1: P-R curves of PMI vs. Roget (with All and AVG) on 
the BBN dataset. Each P-R point corresponds to a different 
value of the threshold K (high Recall for low values of K, high 
Precision for high values of K). 
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Fig 2: P-R curves of PMI vs. Roget (with All and AVG) on 
the Dragon dataset 
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Fig.3. Content Words Error Rate (cWER), %Lost good key-
words (%Lost) and F-measure as a function of the filtering 
level K for the Window-PMI-3MAXconfiguration on the BBN 
dataset. 
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Fig.4. Content Words Error Rate (cWER), %Lost good key-
words (%Lost) and F-measure as a function of the filtering 
level K for the Window-PMI-3MAX configuration on the 
Dragon dataset. 
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moderately accurate BBN dataset, we can reduce 
cWER by 50%, while losing 45% of the good con-
tent words (K=100).  For the low accuracy Dragon 
dataset, we can reduce cWER by 50%, while los-
ing 50% of the good content words (K=120). We 
can choose lower thresholds, for smaller reduction 
in cWER but smaller percent of lost good content 
words. Even small reductions in cWER are impor-
tant, especially for less-than-broadcast conditions 
where WER is initially very high.  

In general, we were not able to show an im-
provement in WER computed in a standard way 
(item 1 in Section 6), because of the high penalty 
due to deletions for both filtered semantic outliers 
and lost good content words. The percent of lost 
good words is admittedly too high, but this seems 
to be the case for speech error confidence measures 
(which do not remove the words tagged as incor-
rect). Also, for the purpose of audio browsing and 
gisting, we believe that fewer errors even with loss 
of content are preferable for intelligibility.  

Comparing our results to those reported by Cox 
and Dasmahapatra (2000) our PMI-based measure 
seems to performs better than their LSA-based 
measure, judging by the shape of the Precision-
Recall curves. (For example, at Precision=90%, 
they obtained Recall=12%, whereas we obtain 
20%. At Precision=80%, they obtain Recall=50%, 
whereas we get Recall=100%.) Note however that 
their results and ours are not completely compara-
ble since the experiments used different audio cor-
pora (WSJCAM0 vs. TDT2), but those two 
corpora seem to exhibit similar initial WERs (the 
WER appears to be around 30% for WSJCAM0; 
the WER is 27.6% for our BBN dataset). Also, it is 
worth noting the LSA measure was computed 
based on a corpus that was very similar to the au-
dio corpus used to evaluate the performance of the 
measure (both were Wall Street Journal corpora). 
If one was to evaluate this measure on audio from 
a completely different domain (ex: news in the sci-
entific or technical domain), one would expect the 
performance to drop significantly. In contrast, our 
PMI measure was computed based on a general 
sample of the World Wide Web, which was not 
tailored to the audio corpus used to evaluate its 
performance. Therefore, our numbers are probably 
more representative of what would be experienced 
with audio corpora outside of the Wall Street Jour-
nal domain.  

8 Conclusion and Future Work 

We presented a basic method for filtering recogni-
tion errors of content words from automatic speech 
transcripts, by identifying semantic outliers. We 
described and evaluated several variants of the ba-
sic algorithm.  

In future work, we plan to run our experiments 
on other datasets when they become available to 
us. In particular, we want to experiment with 
multi-topic audio documents where we expect 
more marked advantages for windowing and alter-
native aggregation schemes like MAX and 3MAX. 
We plan to explore ways to scale up other corpus-
based semantic similarity measures to large tera-
byte corpora. We plan to explore more approaches 
to detecting semantic outliers, for example cluster-
ing or lexical chains (Hirst and St-Onge, 1997).  

The most promising direction is to combine our 
method with confidence measures that use internal 
information from the ASR system (although the 
internal information is hard to obtain when using 
an ASR as a black box, and it could be recognizer-
specific). A combination is likely to improve the 
performance, with the PMI-based measure contrib-
uting at the high-Precision end and the internal 
ASR measure contributing to the high-Recall end 
of the spectrum. To increase Recall we can also 
identify named entities and not filter them out. 
Some named entities could have high semantic 
similarity with the text if they are frequently men-
tioned in the same contexts in the Web corpus, but 
some names could be common to many contexts. 

Another future direction will be to actually cor-
rect the errors instead of just filtering them out. For 
example, we might look at the top N speech recog-
nizer hypotheses (for a fairly large N like 1000) 
and choose the one that maximizes semantic cohe-
sion. A final direction for research is to conduct 
experiments with human subjects, to evaluate the 
degree to which filtered transcripts are better than 
unfiltered ones for tasks like browsing, gisting and 
searching audio clips. 

Acknowledgments 

We thank the following people: Peter Turney and his col-
leagues for useful feedback; Gerald Penn for feedback on 
earlier versions of this paper; Egidio Terra and Charlie Clarke 
for giving us permission to use the Multitext System, the NRC 
copy; Mario Jarmasz and Stan Szpakowicz for sharing their 
code for the Roget similarity measure; Aminul Islam for the 

55



correlation figures and the correlative measure. Our research is 
supported by the Natural Sciences and Engineering Research 
Council of Canada, University of Ottawa, IBM Toronto Cen-
tre for Advanced Studies, and the National Research Council.  

References 

Alexander Budanitsky and Graeme Hirst. 2001. Semantic 
distance in WordNet: An experimental, application-
oriented evaluation of five measures. Workshop on Word-
Net and Other Lexical Resources, NAACL 2001, Pitts-
burgh, PA, USA, 29-34. 

Satanjeev Banerjee, and Ted Pedersen. 2003. Gloss overlaps 
as a measure of semantic relatedness. In Proceedings of the 
Eighteenth International Joint Conference on Artificial In-
telligence (IJCAI’03), Acapulco, Mexico. 

Charlie Clarke and Egidio Terra. 2003. Passage retrieval vs. 
document retrieval for factoid question answering. ACM 
SIGIR’03, 327-328. 

Stephen Cox and Srinandan Dasmahapatra. 2000. A Semanti-
cally-Based Confidence Measure for Speech Recognition, 
Int. Conf. on Spoken Language Processing, Beijing, China, 
vol. 4, 206-209. 

Stephen Cox and R.C. Rose. 1996. Confidence Measures for 
the SWITCHBOARD Database. IEEE Conf. on Acoustics, 
Speech, and Signal Processing, 511-515. 

Lin Chase. 1997. Word and Acoustic Confidence Annotation 
for Large Vocabulary Speech Recognition, Proceedings of 
Eurospeech'97, Rhodes, Greece, 815-818. 

Alain Désilets, Berry de Brujin, and Joel Martin. 2001. Ex-
tracting keyphrases from spoken audio documents. 
SIGIR’01 Workshop on Information Retrieval Techniques 
for Speech Applications, 36-50. 

Diana Inkpen and Alain Désilets. 2004. Extracting semanti-
cally-coherent keyphrases from speech. Canadian Acous-
tics, 32(3):130-131. 

L.Gillick, Y.Ito, and J.Young. 1997. A Probabilistic Approach 
to Confidence Estimation and Evaluation. IEEE Conf. on 
Acoustics, Speech, and Signal Processing, 266-277. 

Julia Hirschberg, Steve Whittaker, Donald Hindle, Fernando 
Pereira, Amit Singhal. 1999. Finding information in audio: 
a new paradigm for audio browsing and retrieval. Proceed-
ings of the ESCA ETRW Workshop, 26-33. 

Graeme Hirst and David St-Onge. 1998. Lexical chains as 
representations of context for the detection and correction 
of malapropisms. In: C. Fellbaum (editor), WordNet: An 
electronic lexical database and some of its applications, 
The MIT Press, Cambridge, MA, 305-332. 

Mario Jarmasz and Stan Szpakowicz. 2003. Roget's thesaurus 
and semantic similarity, Proceedings of the International 
Conference RANLP-2003 (Recent Advances in Natural 
Language Processing), Borovets, Bulgaria, 212-219. 

Jay J. Jiang and David W. Conrath. 1997. Semantic similarity 
based on corpus statistics and lexical taxonomy. In Pro-

ceedings of the International Conference on Research in 
Computational Linguistics (ROCLING X), Taiwan. 

Thomas Landauer and Susan Dumais. 1997. A solution to 
Plato’s problem: representation of knowledge.  Psychologi-
cal Review 104: 211-240. 

Claudia Leacock and Martin Chodorow. 1998. Combining 
local context and WordNet similarity for word sense identi-
fication. In C. Felbaum (editor), WordNet: An Electronic 
Lexical Database, MIT Press, Cambridge, MA, 264-283. 

M.E. Lesk. 1969. Word-word associations in document re-
trieval systems. American Documentation 20(1): 27-38.  

Dekang Lin. 1998. An information-theoretic definition of 
similarity. In Proceedings of the 15th International Confer-
ence of Machine Learning. 

Changxue Ma, Mark A. Randolph, and Joe Drish. 2001. A 
support vector machines-based rejection technique for 
speech recognition. Proceedings of ICASSP'01, Salt Lake 
City, USA, vol. 1, 381-384.  

Lidia Mangu and M. Padmanabhan. 2001. Error corrective 
mechanisms for speech recognition. Proceedings of 
ICASSP'01, Salt Lake City, USA, vol. 1, 29-32.  

George A. Miller and W.G. Charles. 1991. Contextual corre-
lates of semantic similarity, Language and Cognitive Proc-
esses, 6(1):1-28. 

Christine Nakatani, Steve Whittaker, Julia Hirshberg. 1998. 
Now you hear it, now you don’t: Empirical Studies of Au-
dio Browsing Behavior. Proceedings of the Fifth Interna-
tional Conference on Spoken Language Processing, 
(SLP’98), Sydney, Australia. 

Philip Resnik. 1995. Using information content to evaluate 
semantic similarity. In Proceedings of the 14th Joint Inter-
national Conference of Artificial Intelligence, Montreal, 
Canada, 448-453. 

Herbert Rubenstein and John B. Goodenough. 1965. Contex-
tual correlates of synonymy. Communications of ACM, 
8(10): 627-633.  

Thomas Schaaf and Thomas Kemp. 1997. Confidence meas-
ures for spontaneous speech recognition, in Proceedings of 
ICASSP’97, Munich, Germany, vol. II, 875-878. 

Gabriel Skantze and J. Edlund. 2004. Error detection on word 
level. In Proceedings of Robust 2004, Norwich. 

Peter D. Turney. 2001. Mining the Web for synonyms: PMI-
IR versus LSA on TOEFL, Proceedings of the Twelfth 
European Conference on Machine Learning (ECML-2001), 
Freiburg, Germany, 491-502.  

Lina Zhou, Jinjuan Feng, Andrew Sears, Yongmei Shi. 2005. 
Applying the Naïve Bayes Classifier to Assist Users in De-
tecting Speech Recognition Errors. Procs. of the 38th An-
nual Hawaii International Conference on System Sciences). 

Z.Y. Zhou and Helen M. Meng, 2004. A Two-Level Schema 
for Detecting Recognition Errors, Proceedings of the 8th 
International Conference on Spoken Language Processing 
(ICSLP), Korea. 

56



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 57–64, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Redundancy-based Correction of Automatically Extracted Facts

Roman Yangarber and Lauri Jokipii
Department of Computer Science
University of Helsinki, Finland

first.last@cs.helsinki.fi

Abstract

The accuracy of event extraction is lim-
ited by a number of complicating factors,
with errors compounded at all sages in-
side the Information Extraction pipeline.
In this paper, we present methods for re-
covering automatically from errors com-
mitted in the pipeline processing. Recov-
ery is achieved via post-processing facts
aggregated over a large collection of doc-
uments, and suggesting corrections based
on evidence external to the document. A
further improvement is derived from prop-
agating multiple, locally non-best slot fills
through the pipeline. Evaluation shows
that the global analysis is over 10 times
more likely to suggest valid corrections to
the local-only analysis than it is to suggest
erroneous ones. This yields a substantial
overall gain, with no supervised training.

1 Introduction

Information Extraction (IE) is a technology for find-
ing facts in plain text, and coding them in a logical
representation, such as, e.g., a relational database.
IE is typically viewed and implemented as a se-
quence of stages—a “pipeline”:

1. Layout, tokenization, lexical analysis

2. Name recognition and classification

3. Shallow (commonly,) syntactic parsing

4. Resolution of co-reference among entities

5. Pattern-based event matching and role mapping

6. Normalization and output generation

While accuracy at the lowest levels can reach high
90’s, as the stages advance, complexity increases
and performance degrades considerably.

The problem of IE as a whole, as well each of
the listed subproblems, has been studied intensively
for well over a decade, in many flavors and varieties.
Key observations about much state-of-the-art IE are:

a. IE is typically performed by a pipeline process;

b. Only one hypothesis is propagated through the
pipeline for each fact—the “best guess” the
system can make for each slot fill;

c. IE is performed in a document-by-document
fashion, applying a priori knowledge locally to
each document.

The a priori knowledge may be encoded in a set of
rules, an automatically trained model, or a hybrid
thereof. Information extracted from documents—
which may be termed a posteriori knowledge—
is usually not reused across document boundaries,
because the extracted facts are imprecise, and are
therefore not a reliable basis for future extraction.

Furthermore, locally non-best slot fills are not
propagated through the pipeline, and are conse-
quently not available downstream, nor for any global
analysis.

In most systems, these stages are performed in se-
quence. The locally-best slot fills are passed from
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the “lower-” to the “higher-level” modules, with-
out feedback. Improvements are usually sought
(e.g., the ACE research programme, (ACE, 2004))
by boosting performance at the lower levels, to reap
benefits in the subsequent stages, where fewer errors
are propagated.

The point of departure for this paper is: the
IE process is noisy and imprecise at the single-
document level; this has been the case for some time,
and though there is much active research in the area,
the situation is not likely to change radically in the
immediate future—rather, we can expect slow, in-
cremental improvements over some years.

In our experiments, we approach the performance
problem from the opposite end: start with the ex-
tracted results and see if the totality of a posteri-
ori knowledge about the domain—knowledge gen-
erated by the same noisy process we are trying to
improve—can help recover from errors that stem
from locally insufficient a priori knowledge.

The aim of the research presented in this paper
is to improve performance by aggregating related
facts, which were extracted from a large document
collection, and to examine to what extent the cor-
rectly extracted facts can help correct those that were
extracted erroneously.

The rest of the paper is organized as follows. Sec-
tion 2 contains a brief review of relevant prior work.
Section 3 presents the experimental setup: the text
corpus, the IE process, the extracted facts, and what
aspects of the the extracted facts we try to improve
in this paper. Section 4 presents the methods for im-
proving the quality of the data using global analysis,
starting with a naive, baseline method, and proceed-
ing with several extensions. Each method is then
evaluated, and the results are examined in section 5.
In section 6, we present further extensions currently
under research, followed by the conclusion.

2 Prior Work

As we stated in the introduction, typical IE sys-
tems consist of modules arranged in a cascade, or
a pipeline. The modules themselves are be based
on heuristic rules or automatically trained, there is
an abundance of approaches in both camps (and ev-
erywhere in between,) to each of the pipeline stages
listed in the introduction.

It is our view that to improve performance we
ought to depart from the traditional linear, pipeline-
style design. This view is shared by others in the
research community; the potential benefits have pre-
viously been recognized in several contexts.

In (Nahm and Mooney, 2000a; Nahm and
Mooney, 2000b), it was shown that learning rules
from a fact base, extracted from a corpus of job post-
ings for computer programmers, improves future ex-
traction, even though the originally extracted facts
themselves are far from error-free. The idea is to
mine the data base for association rules, and then to
integrate these rules into the extraction process.

The baseline system is obtained by supervised
learning from a few hundred manually annotated ex-
amples. Then the IE system is applied to succes-
sively larger sets of unlabeled examples, and associ-
ation rules are mined from the extracted facts. The
resulting combined system (trained model plus as-
sociation rules) showed an improvement in perfor-
mance on a test set, which correlated with the size
of the unlabeled corpus.

In work on improving (Chinese) named entity tag-
ging, (Ji and Grishman, 2004; Ji and Grishman,
2005), show benefits to this component from in-
tegrating decisions made in later stages, viz. co-
reference, and relation extraction.1

Tighter coupling and integration between IE and
KDD components for mutual benefit is advocated by
(McCallum and Jensen, 2003), which present mod-
els based on CRFs and supervised training.

This work is related in spirit to the work pre-
sented in this paper, in its focus on leveraging cross-
document information that information—though it
is inherently noisy—to improve local decisions. We
expect that the approach could be quite powerful
when these ideas are used in combination, and our
experiments seem to confirm this expectation.

3 Experimental Setup

In this section we describe the text corpus, the un-
derlying IE process, the form of the extracted facts,
and the specific problem under study—i.e., which
aspects of these facts we first try to improve.

1Performance on English named entity tasks reaches mid to
high 90’s in many domains.

58



3.1 Corpus

We conducted experiments with redundancy-based
auto-correction over a large database of facts ex-
tracted from the texts in ProMED-Mail, a mailing
list which carries reports about outbreaks of infec-
tious epidemics around the world and the efforts
to contain them. This domain has been explored
earlier; see, e.g., (Grishman et al., 2003) for an
overview.

Our underlying IE system is described in (Yan-
garber et al., 2005). The system is a hybrid
automatically- and manually-built pattern base for
finding facts, an HMM-based name tagger, auto-
matically compiled and manually verified domain-
specific ontology, based in part on MeSH, (MeS,
2004), and a rule-based co-reference module, that
uses the ontology.

The database is live on-line, and is continuously
updated with new incoming reports; it can be ac-
cessed at doremi.cs.helsinki.fi/plus/.

Text reports have been collected by ProMED-
Mail for over 10 years. The quality of reporting (and
editing) has been rising over time, which is easy to
observe in the text data. The distribution of the data,
aggregated by month is shown in Figure 1, where
one can see a steady increase in volume over time.2

3.2 Extracted Facts

We now describe the makeup of the data extracted
from text by the IE process, with basic terminology.

Each document in the corpus, contains a single re-
port, which may contain one or more stories. Story
breaks are indicated by layout features, and are ex-
tracted by heuristic rules, tuned for this domain and
corpus. When processing a multi-story report, the
IE system treats each story as a separate document;
no information is shared among stories, except that
the text of the main headline of a multi-story report
is available to each story. 3

Since outbreaks may be described in complex
ways, it is not obvious how to represent a single fact
in this context. To break down this problem, we use
the notion of an incident. Each story may contain

2This is beneficial to the IE process, which operates better
with formulaic, well-edited text.

3The format of the documents in the archive can be exam-
ined by browsing the source site www.promedmail.org.
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Figure 1: Distribution of data in ProMED-Mail

multiple outbreak-related incidents/facts.4

We analyze an outbreak as a series of incidents.
The incidents may give “redundant” information
about an outbreak, e.g., by covering overlapping
time intervals or geographic areas. For example, a
report may first state the number of cases within the
last month, and then give the total for the entire year.
We treat each of these statements as a separate inci-
dent; the containment relations among them are be-
yond the scope of our current goals.5

Thus each incident corresponds to a partial de-
scription of an outbreak, over a period of time and
geographic area. This makes it easy to represent
each incident/fact as a separate row in the table.

The key fields of the incident table are:
� Disease Name
� Location
� Date (start and end)
Where possible, the system also extracts informa-

tion about the victims affected in the incident—their
count, severity (affected or dead), and a descriptor
(people, animals, etc.). The system also extracts
bookkeeping information about each incident: loca-
tions of mentions of the key fields in the text, etc.

The system’s performance is currently at 71.16 F-
measure: 67% recall, 74% precision. This score is
obtained by a MUC scorer (Douthat, 1998) on a 50-
document test corpus, which was manually tagged
with correct incidents with these slots. We have

4In this paper, we use the terms fact, incident, and event
interchangeably.

5This problem is addressed in, e.g., (Huttunen et al., 2002).
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no blind-test corpus at present, but prior experience
suggests that we ought to expect about a 10% reduc-
tion in F-measure on unseen data; this is approxi-
mately borne out by our informal evaluations.

Further, the system attempts to “normalize” the
key fields. An alias for a disease name (e.g., “bird
flu”) is mapped to a canonical name (“avian in-
fluenza.”)6 Date expressions are normalized to a
standard format yyyy.mm.dd–yyyy.mm.dd.7

Note that the system may not be able to normalize
some entities, which then remain un-normalized.

Such normalization is clearly helpful for search-
ing, but it is not only a user-interface issue. Normal-
izing reduces sparseness of data; and since our intent
is to aggregate related facts across a large fact base,
excessive variation in the database fields would re-
duce the effectiveness of the proposed methods.

3.3 Experimental Focus: Location
Normalization

A more complex problem arises out of the need to
normalize location names. For each record, we nor-
malize the location field—which may be a name of
a small village or a larger area—by relating it to the
name of the containing country; we also decided to
map locations in the United States to the name of the
containing state, (rather than the name of the coun-
try, “USA”).8 This mapping will be henceforth re-
ferred to as “location–state,” for short. The ideas
presented in the introduction are explored in the re-
mainder of this paper in the context of correcting the
location–state mapping.

Section 6 will touch upon our current work on ex-
tending the methodology to slots other than state.
(Please see Section 5 for further justification of this
choice for our initial experiments.)

To make the experiments interesting and fair, we
kept the size of the gazetteer small. The a priori geo-
graphic knowledge base contains names of countries
of the world (270), with aliases for several of them; a
list of capitals and other selected major cities (300);
a list of states in the USA and acronyms (50); major

6This is done by means of a set of scenario-specific patterns
and a dictionary of about 2500 disease names with aliases.

7Some date intervals may not have a starting date, e.g., if the
text states “As of last Tuesday, the victim count is N...”

8This decision was made because otherwise records with
state = USA strongly skew the data, and complicate learning.

US cities (100); names of the (sub)continents (10),
and oceans. In our current implementation, conti-
nents are treated semantically as “states” as well.9

The IE system operates in a local, document-by-
document fashion. Upon encountering a location
name that is not in its dictionaries, the system has
two ways to map it to the state name. One way is
by matching patterns over the immediate local con-
text, (“Milan, Italy”). Failing that, it tries to find
the corresponding state by positing an “underspeci-
fied” state name (as if referred to by a kind of spe-
cial “pronoun”) and mapping the location name to
that. The reference resolution module then finds the
most likely antecedent entity, of the semantic type
“state/country,” where likelihood is determined by
its proximity to the mention of the location name.

Note that the IE system outputs only a single, best
hypothesis for the state fill for each record.

3.4 The Data

The database currently contains about
���������
	

in-
dividual facts/incidents, extracted from

�����
�����
sto-

ries, from ��� ������� reports (cf. Fig. 1). Each incident
has a location and a state filler. We say a location
name is “ambiguous” if it appears in the location slot
of at least two records, which have different names
in the state slot. The number of distinct “ambigu-
ous” location names is

���
� � � .
Note, this terminology is a bit sloppy: the fillers

to which we refer as “ambiguous location names”,
may not be valid location names at all; they may
simply be errors in the IE process. E.g., at the name
classification stage, a disease name (especially if not
in the disease dictionary) may be misclassified, and
used as a filler for the location slot.

We further group together the location fills by
stripping lower-case words that are not part of the
proper name, from the front and the end of the fill.
E.g., we group together “southern Mumbai” and
“the Mumbai area,” as referring to the same name.

After grouping and trimming insignificant words,
the number of distinct names appearing in location
fills is

�����
, which covers a total of

�������
records,

or
����� ��� of all extracted facts. As an estimate of

the potential for erroneous mapping from locations
to states, this is quite high, about

�
in

	
records.10

9By the same token, both Connecticut and USA are “states.”
10Of course, it can be higher as well, if the IE system con-
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4 Experiments and Results

We now present the methods of correcting possible
errors in the location–state relation. A method �
tries to suggest a new value for the state fill for every
incident I that contains an ambiguous location fill:

�������	��
��
���������������������
�
 �!�"$#&%('

�*),+.-/�.0��21����3�
(1)

where 4 0 ���3� is a set of all candidate states consid-
ered by � for I;

�5)6+�-/� 0 �21����3�
is the scoring func-

tion specific to � . The method chooses the candi-
date state which maximizes the score.

For each method below, we discuss how 4 0 and�*),+�-/� 0
are constructed.

4.1 Baseline: Raw Majority

We begin with a simple recovery approach. We sim-
ply assume that the correct state for an ambiguous
location name is the state most frequently associated
with it in the database. We denote by 7 the set of all
incidents in the database. For an incident

�98 7 , we
write : �;1=<>�

when location : , state
1
, etc., “belong”

to I, i.e., are extracted as fills in I. In the baseline
method, ? , for each incident

�
where : <>�

is one of
the

�����
ambiguous location names, we define:

4A@ ���3���CB.13DFEHGH�,DI8 7KJ � : �;13DL�M<N�,DPO
�*),+�-Q� @ �213D ���3�5� J B3�,DI8 7KJ � : �;13DL�M<N�,DPO J

i.e.,
1 D

is a candidate if it is a state fill in some in-
cident whose location fill is also : ; the score is the
number of times the pair

� : �;1�DL� appear together in
some incident in 7 . The majority winner is then
suggested as the “correct” state, for every record
containing : . By “majority” winner we mean the
candidate with the maximal count, rather than a state
with more than half of the votes. When the candi-
dates tie for first place, no suggestions are made—
although it is quite likely that some of the records
carrying : will have incorrect state fills.

A manual evaluation of the performance of this
method is shown in Table 1, the Baseline column.

The first row shows for how many records this
method suggested a change from the original, IE-
filled state. The baseline changed 858 incidents.

sistently always maps some location name to the same wrong
state; these cases are below the radar of our scheme, in which
the starting point is the “ambiguous” locations.

This constitutes about 13% out of the maximum
number of changeable records,

�������
.

Thus, this number represents the volume of the
potential gain or loss from the global analysis: the
proportion of records that actually get modified.

The remaining records were unchanged, either be-
cause the majority winner coincides with the origi-
nal IE-extracted state, or because there was a tie for
the top score, so no decision could be made.

We manually verified a substantial sample of the
modified records. When verifying the changes, we
referred back to the text of the incident, and, when
necessary, consulted further geographical sources to
determine exactly whether the change was correct in
each case.

For the baseline we had manually verified 27.7%
of the changes. Of these, 68.5% were a clear gain:
an incorrect state was changed to a correct state.
6.3% were a clear loss, a correct state lost to an in-
correct one. This produces quite a high baseline, sur-
prisingly difficult to beat.

The next two rows represent the “grey” areas.
These are records which were difficult to judge,
for one of two technical reasons. A: the “loca-
tion” name was itself erroneous, in which case these
redundancy-based approaches are not meaningful;
or, B: the suggestion replaces an area by its sub-
region or super-region, e.g., changing “Connecticut”
to “USA”, or “Europe” to “France.”11

Although it is not strictly meaningful to judge
whether these changes constitute a gain or a loss,
we nonetheless tried to assess whether changing the
state hurt the accuracy of the incident, since the in-
cident may have a correct state even though its loca-
tion is erroneous (case A); likewise, it may be cor-
rect to say that a given location is indeed a part of
Connecticut, in which case changing it to USA loses
information, and is a kind of loss.

That is the interpretation of the grey gain and loss
instances. The final row, no loss, indicates the pro-
portion of cases where an originally incorrect state
name was changed to a new one, also incorrect.

11Note, that for some locations, which are not within any one
state’s boundary, a continent is a “correct state”, for example,
“the Amazon Region,” or “Serengeti.”
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Records Baseline DB-filtered Confidence Multi-candidate

Changed
����� � � ��������������� ��� 	 � ��	�	���������� ��� 	 � � � � ��������� ��� ��� � � ��	 � ���������

Verified � 	 � 	 � � ����������� ����� � � ��� ������	�	 ��	 � � � � ������� � � � ��� � � � � ����� ��	 �
Gain

����� � � ������� � ��� 	���� � � ������� ��� � ����� � � �	���
� � ��� ��� ��
 � � �
	�� � � �
Loss

��� � � ����� � ��� � � ��� ��� ��� � ��� � � ��� � ��� � ��� � � ��� � � �
Grey gain

� ����� � � ��� � ��� � � � � � � ��� ��� � ����� � � � ��� � ��� ����� 	 � ����� � � �
Grey loss

��� 	 � ����� � ��� ��� � � � � � ��� � ��� � � ��� � ��� � � � � ��� � � �
No loss

	 � � � ����� � ��� ��� � � �	��� ��� � ��� 	 � ����� � ��� ��� ��� � � � � � �

Table 1: Performance of Correction Methods

4.2 Database Filtering

Next we examined a variant of baseline raw major-
ity vote, noting that simply choosing the state most
frequently associated with a location name is a bit
naive: the location–state relation is not functional—
i.e., some location names map to more than one state
in reality. There are many locations which share the
same name.12

To approach this more intelligently, we define:

4�� ���3� � 4A@ ���3��� �	��
 ���.1
��� �	� +�-�� ���3�
�*),+.-/� � �21 D ���3�5� �*),+�-/� @ �21 D ���3�

The baseline vote counting across the data base (DB)
produced a ranked list of candidate states

1 D
for the

location : < �
. We then filtered this list through�	��
��
�31���� �*� +�-�� ���3�

, the list of states mentioned in
the story containing the incident

�
. The filtered ma-

jority winner was selected as the suggested change.
For example, the name “Athens” may refer to the

city in Greece, or to the city in Georgia (USA).
Suppose that Greece is the raw majority winner.
The baseline method will always tag all instances
of Athens as being in Greece. However, in a story
about Georgia, Greece will likely not be mentioned
at all, so it is safe to rule it out. This helps a minority
winner, when the majority is not present in the story.

Surprisingly, this method did not yield a substan-
tial improvement over the baseline, (though it was
more careful by changing fewer records). This may
indicate that NWP is not an important source of er-
rors here: though many truly ambiguous locations

12We refer to this as the “New-World phenomenon” (NWP),
due to its prevalence in the Americas: “Santa Cruz” occurs in
several Latin American countries; locations named after saints
are common. In the USA, city and county names often appear
in multiple states—Winnebago County, Springfield; many cities
are named after older European cities.

do exist, they do not account for many instances in
this DB.

4.3 Confidence-Based Ranking

A more clear improvement over the baseline is ob-
tained by taking the local confidence of the state–
location association into account. For each record,
we extend the IE analysis to produce a confidence
value for the state. Confidence is computed by sim-
ple, document-local heuristics, as follows:

If the location and state are both within the span
of text covered by the incident—text which was ac-
tually matched by a rule in the IE system,—or if the
state is the unique state mentioned in the story, it gets
a score of 2—the incident has high confidence in the
state. Otherwise, if the state is outside the incident’s
span, but is inside the same sentence as the incident,
and is also the unique state mentioned in that sen-
tence, it gets a score of 1. Otherwise it receives a
score of zero.

Given the confidence score for each (location : ,
state

1
) pair, the majority counting is based on the

cumulative confidence,
),+���� ���! "�!# � : �;1�� in the DB,

rather than on the cumulative count of occurrences
of this pair in the DB:

4�$ ���3��� 4�� ���3�
�*),+�-Q� $ �21 D ���3�5� %

%'&  �(*) #,+.- ��& '0/ %'&
),+���� ���! "�!# ��� D �

Filtering through the story is also applied, as in
the previous method. The resulting method favors
more correct decisions, and fewer erroneous ones.

We should note here, that the notion of confidence
of a fill (here, the state fill) is naturally extended to
the notion of confidence of a record: For each of
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the three key fills—location, date, disease name—
compute a confidence based on the same heuristics.
Then we say that a record

�
has high confidence, if it

has non-zero confidence in all three of the key fills.
The notion of record confidence is used in Section 6.

4.4 Multi-Candidate Propagation

Finally, we tried propagating multiple candidate
state hypotheses for each instance of an ambiguous
location name : :

4�� ���3�5� �
%'&  �( ) + / %'&

�	��
 ���.1
��� �	� +�-�� ��� D �

�*),+�-/� � �21 D ���3��� %
%'&  �(*) +!/ %'&�� -Q+��*�21 D ��� D �

where the proximity is inversely proportional to the
distance of

13D
from incident

��D
, in the story of

� D
:

� -�+�� �21����3��� �	

	�

��=���3��
 �� �21����3��� � � �91 <>�

� +���� ��-�� � 1��
For an incident

�
mentioning location : , the IE sys-

tem outputs the list of all states
B.1QO

mentioned in
the same story; we then rank each

1
according to

the inverse of distance
�

: the number of sentences
between

�
and

1
.
�=���3�

is a normalization factor.
The proximity for each pair

� : �;1�� , is between
�

and
�
. Rather than giving a full point to a single,

locally-best guess among the
1
’s, this point is shared

proportionately among all competing
1
’s. For exam-

ple, if states
1�� �;1����;1��

are in the same sentence as�
, one, and five sentences away, respectively, then�=���3��� ��� �� � �� � ��

, and � -Q+��	�21 � � � � 

�� � �� ,

� -Q+��	�21 � �5�
���
 �� � ���� ,and � -Q+��	�21 � ���

���
 �� � ���� .
The score for each state

1
for the given : is then

the sum of proximities of
1

to : across all stories.
The resulting performance is substantially bet-

ter than the baseline, while the number of changed
records is substantially higher than in the competing
methods. This is due to the fact that this method al-
lows for a much larger pool of candidates than the
others, and assigns to them much smoother weights,
virtually eliminating ties in the ranking among hy-
potheses.

5 Discussion

Among the four competing approaches presented
above, the baseline performs surprisingly well. We
should note that this research is not aimed specifi-
cally at improving geographic Named Entity resolu-
tion. It is the first in a series of experiments aiming
to leverage redundancy across a large fact base ex-
tracted from text, to improve the quality of extracted
data. We chose to experiment with this relation first
because of its simplicity, and because the state field
is a key field in our application.

For this reason, the a priori geographic knowl-
edge base was intentionally not as extensive as it
might have been, had we tried in earnest to match
locations with corresponding states (e.g., by incor-
porating the CIA Factbook, or other gazetteer).

The intent here is to investigate how a relation
can be improved by leveraging redundancy across
a large body of records. The support we used for ge-
ographic name resolution was therefore deliberately
modest, cf. Section 3.3.

It is quite feasible to enumerate the countries and
the larger regions, since they number in the low hun-
dreds, whereas there are many tens of thousands of
cities, towns, villages, regions, districts, etc.

6 Current Work

Three parallel lines of current research are:
1. combining evidence from multiple features
2. applying redundancy-based correction to other

fields in the database
3. back-propagation of corrected results, to repair

components that induced incorrect information.
The results so far presented show that even a

naive, intuitive approach can help correct local er-
rors via global analysis. We are currently working
on more complex extensions of these methods.

Each method exploits one main feature of the un-
derlying data: the distance from candidate state to
the mention of the location name. In the multi-
candidate hypothesis method, this distance is ex-
ploited explicitly in the scoring function. In the
other methods, it is used inside the co-reference
module of the IE pipeline, to find the (single)
locally-best state.

However, other textual features of the state can-
didate should contribute to establishing the relations
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to a location mention, besides the raw distance. For
example, at a given distance, it is very important
whether the state is mentioned before the location
(more likely to be related) vs. after the location (less
likely). Another important feature: is the state men-
tioned in the main story/report headline? If so, its
score should be raised. It is quite common for doc-
uments to declaim the focal state only once in the
headline, and never mention it again, instead men-
tioning other states, neighboring, or otherwise rele-
vant to the story. The distance measure used alone
may be insufficient in such cases.

How are these features to be combined? One path
is to use some combination of features, such as a
weighted sum, with parameters trained on a man-
ually tagged data set. As we already have a rea-
sonably sized set tagged for evaluation, we can split
it into two, train the parameter on a larger portion,
evaluate on a smaller one, and cross-validate.

We will be using this approach as a baseline.
However, we aim to use a much larger set of data to
train the parameters, without manually tagging large
training sets.

The idea is to treat the set of incidents with high
record confidence, Sec. 4.3, rather than manually
tagged data, as ground truth. Again, there “con-
fident” truth will not be completely error-free, but
because error rates are lower among the confident
records, we may be able to leverage global analy-
sis to produce the desired effect: training parame-
ters for more complex models—involving multiple
features—for global re-ranking of decisions.

Conclusion

Our approach rests on the idea that evidence aggre-
gated across documents should help resolve difficult
problems at the level of a given document.

Our experiments confirm that aggregating global
information about related facts, and propagating lo-
cally non-best analyses through the pipeline, provide
powerful sources of additional evidence, which are
able to reverse incorrect decisions, based only on lo-
cal and a priori information.

The proposed approach requires no supervision or
training of any kind. It does, however require a sub-
stantial collection of evidence across a large body
of extracted records; this approach needs a “critical

mass” of data to be effective. Although large volume
of facts is usually not reported in classic IE experi-
ments, obtaining high volume should be natural in
principle.
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Abstract

This paper presents a novel approach to
combining different word alignments. We
view word alignment as a pattern classifi-
cation problem, where alignment combi-
nation is treated as a classifier ensemble,
and alignment links are adorned with lin-
guistic features. A neural network model
is used to learn word alignments from the
individual alignment systems. We show
that our alignment combination approach
yields a significant 20-34% relative er-
ror reduction over the best-known align-
ment combination technique on English-
Spanish and English-Chinese data.

1 Introduction

Parallel texts are a valuable resource in natural lan-
guage processing and essential for projecting knowl-
edge from one language onto another. Word-level
alignment is a critical component of a wide range of
NLP applications, such as construction of bilingual
lexicons (Melamed, 2000), word sense disambigua-
tion (Diab and Resnik, 2002), projection of language
resources (Yarowsky et al., 2001), and statistical ma-
chine translation. Although word-level aligners tend
to perform well when there issufficienttraining data,
the quality decreases as the size of training data de-
creases. Even with large amounts of training data,
statistical aligners have been shown to be suscepti-
ble to mis-aligning phrasal constructions (Dorr et al.,
2002) due to many-to-many correspondences, mor-
phological language distinctions, paraphrased and

free translations, and a high percentage of function
words (about 50% of the tokens in most texts).

This paper presents a novel approach to align-
ment combination,NeurAlign, that treats each align-
ment system as a black box and merges their outputs.
We view word alignment as a pattern classification
problem and treat alignment combination as aclassi-
fier ensemble(Hansen and Salamon, 1990; Wolpert,
1992). The ensemble-based approach was devel-
oped to select the best features of different learning
algorithms, including those that may not produce a
globally optimal solution (Minsky, 1991).

We use neural networks to implement the
classifier-ensemble approach, as these have previ-
ously been shown to be effective for combining clas-
sifiers (Hansen and Salamon, 1990). Neural nets
with 2 or more layers and non-linear activation func-
tions are capable of learning any function of the
feature space with arbitrarily small error. Neural
nets have been shown to be effective with (1) high-
dimensional input vectors, (2) relatively sparse data,
and (3) noisy data with high within-class variability,
all of which apply to the word alignment problem.

The rest of the paper is organized as follows: In
Section 2, we describe previous work on improv-
ing word alignments and use of classifier ensembles
in NLP. Section 3 gives a brief overview of neu-
ral networks. In Section 4, we present a new ap-
proach,NeurAlign, that learns how to combine indi-
vidual word alignment systems. Section 5 describes
our experimental design and the results on English-
Spanish and English-Chinese. We demonstrate that
NeurAlign yields significant improvements over the
best-known alignment combination technique.
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Figure 1: Multilayer Perceptron Overview

2 Related Work

Previous algorithms for improving word alignments
have attempted to incorporate additional knowledge
into their modeling. For example, Liu (2005) uses
a log-linear combination of linguistic features. Ad-
ditional linguistic knowledge can be in the form of
part-of-speech tags. (Toutanova et al., 2002) or de-
pendency relations (Cherry and Lin, 2003). Other
approaches to improving alignment have combined
alignment models, e.g., using a log-linear combina-
tion (Och and Ney, 2003) or mutually independent
association clues (Tiedemann, 2003).

A simpler approach was developed by Ayan et
al. (2004), where word alignment outputs are com-
bined using a linear combination of feature weights
assigned to the individual aligners. Our method is
more general in that it uses a neural network model
that is capable of learning nonlinear functions.

Classifier ensembles are used in several NLP ap-
plications. Some NLP applications for classifier en-
sembles are POS tagging (Brill and Wu, 1998; Ab-
ney et al., 1999), PP attachment (Abney et al., 1999),
word sense disambiguation (Florian and Yarowsky,
2002), and parsing (Henderson and Brill, 2000).

The work reported in this paper is the first appli-
cation of classifier ensembles to the word-alignment
problem. We use a different methodology to com-
bine classifiers that is based onstacked general-
ization (Wolpert, 1992), i.e., learning an additional
model on the outputs of individual classifiers.

3 Neural Networks

A multi-layer perceptron (MLP) is a feed-forward
neural network that consists of several units (neu-
rons) that are connected to each other by weighted
links. As illustrated in Figure 1, an MLP consists

of one input layer, one or more hidden layers, and
one output layer. The external input is presented to
the input layer, propagated forward through the hid-
den layers and creates the output vector in the output
layer. Each uniti in the network computes its output
with respect to its net inputneti =

∑
j wijaj , where

j represents all units in the previous layer that are
connected to the uniti. The output of uniti is com-
puted by passing the net input through a non-linear
activation functionf , i.e. ai = f(neti).

The most commonly used non-linear activation
functions are the log sigmoid functionf(x) =

1
1+e−x or hyperbolic tangent sigmoid function

f(x) = 1−e−2x

1+e−2x . The latter has been shown to be
more suitable for binary classification problems.

The critical question is the computation of
weights associated with the links connecting the
neurons. In this paper, we use the resilient back-
propagation (RPROP) algorithm (Riedmiller and
Braun, 1993), which is based on the gradient descent
method, but converges faster and generalizes better.

4 NeurAlign Approach

We propose a new approach,NeurAlign, that learns
how to combine individual word alignment sys-
tems. We treat each alignment system as a classi-
fier and transform the combination problem into a
classifier ensemble problem. Before describing the
NeurAlign approach, we first introduce some termi-
nology used in the description below.

Let E = e1, . . . , et andF = f1, . . . , fs be two
sentences in two different languages. An alignment
link (i, j) corresponds to a translational equivalence
between wordsei and fj . Let Ak be an align-
ment between sentencesE andF , where each el-
ementa ∈ Ak is an alignment link(i, j). Let
A = {A1, . . . , Al} be a set of alignments between
E andF . We refer to the true alignment asT , where
eacha ∈ T is of the form(i, j). A neighborhood
of an alignment link(i, j)—denoted byN(i, j)—
consists of 8 possible alignment links in a3×3 win-
dow with (i, j) in the center of the window. Each
element ofN(i, j) is called aneighboring linkof
(i, j).

Our goal is to combine the information in
A1, . . . , Al such that the resulting alignment is
closer toT . A straightforward solution is to take the
intersection or union of the individual alignments, or
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perform a majority voting for each possible align-
ment link (i, j). Here, we use an additional model
to learn how to combine outputs ofA1, . . . , Al.

We decompose the task of combining word align-
ments into two steps: (1) Extract features; and (2)
Learn a classifier from the transformed data. We de-
scribe each of these two steps in turn.

4.1 Extracting Features

Given sentencesE andF , we create a (potential)
alignment instance(i, j) for all possible word com-
binations. A crucial component of building a classi-
fier is the selection of features to represent the data.
The simplest approach is to treat each alignment-
system output as a separate feature upon which we
build a classifier. However, when only a few align-
ment systems are combined, this feature space is not
sufficient to distinguish between instances. One of
the strategies in the classification literature is to sup-
ply the input data to the set of features as well.

While combining word alignments, we use two
types of features to describe each instance(i, j):
(1) linguistic features and (2) alignment features.
Linguistic features include POS tags of both words
(ei and fj) and a dependency relation for one of
the words (ei). We generate POS tags using the
MXPOST tagger (Ratnaparkhi, 1996) for English
and Chinese, and Connexor for Spanish. Depen-
dency relations are produced using a version of the
Collins parser (Collins, 1997) that has been adapted
for building dependencies.

Alignment features consist of features that are ex-
tracted from the outputs of individual alignment sys-
tems. For each alignmentAk ∈ A, the following are
some of the alignment features that can be used to
describe an instance(i, j):

1. Whether(i, j) is an element ofAk or not
2. Translation probability p(fj |ei) computed

overAk1

3. Fertility of (i.e., number of words inF that are
aligned to)ei in Ak

4. Fertility of (i.e., number of words inE that are
aligned to)fj in Ak

5. For each neighbor(x, y) ∈ N(i, j), whether
(x, y) ∈ Ak or not (8 features in total)

6. For each neighbor(x, y) ∈ N(i, j), transla-
tion probabilityp(fy|ex) computed overAk (8
features in total)

It is also possible to use variants, or combinations,
of these features to reduce feature space.

Figure 2 shows an example of how we transform
the outputs of 2 alignment systems,A1 andA2, for
an alignment link(i, j) into data with some of the
features above. We use -1 and 1 to represent the
absence and existence of a link, respectively. The
neighboring links are presented in row-by-row order.

X

XX

X

X

X

A1

A2

ei-1

ei

ei+1

fj-1 fj fj+1

1 (for A1), 0 (for A2)fertility(fj)

2 (for A1), 1 (for A2)fertility(ei)

2 (for A1), 3 (for A2)total neighbors

1, -1, -1, 1, 1, -1, -1, 1neighbors (A1∪ A2)

1, -1, -1, -1, 1, -1, -1, 1neighbors (A2)

-1, -1, -1, 1, -1, -1, -1, 1neighbors (A1)

1 (for A1), -1 (for A2)outputs of aligners

Modifierrel(ei)

Noun, Preppos(ei) , pos(fj)

Features for the alignment link ( i , j )

ei-1

ei

ei+1

fj-1 fj
fj+1

Figure 2: An Example of Transforming Alignments
into Classification Data

For each sentence pairE = e1, . . . , et andF =
f1, . . . , fs, we generates × t instances to represent
the sentence pair in the classification data.

Supervised learning requires the correct output,
which here is the true alignmentT . If an alignment
link (i, j) is an element ofT , then we set the correct
output to 1, and to−1, otherwise.

4.2 Learning A Classifier

Once we transform the alignments into a set of in-
stances with several features, the remaining task is to
learn a classifier from this data. In the case of word
alignment combination, there are important issues to
consider for choosing an appropriate classifier. First,
there is a very limited amount of manually annotated
data. This may give rise to poor generalizations be-
cause it is very likely that unseen data include lots
of cases that are not observed in the training data.

Second, the distribution of the data according to
the classes is skewed. In a preliminary study on an
English-Spanish data set, we found out that only 4%
of the all word pairs are aligned to each other by hu-
mans, among a possible 158K word pairs. More-
over, only 60% of those aligned word pairs were

1The translation probabilities can be borrowed from the ex-
isting systems, if available. Otherwise, they can be generated
from the outputs of individual alignment systems using likeli-
hood estimates.
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Figure 3: NeurAlign1—Alignment Combination
Using All Data At Once

also aligned by the individual alignment systems
that were tested.

Finally, given the distribution of the data, it is dif-
ficult to find the right features to distinguish between
instances. Thus, it is prudent to use as many features
as possible and let the learning algorithm filter out
the redundant features.

Below, we describe how neural nets are used at
different levels to build a good classifier.

4.2.1 NeurAlign1: Learning All At Once

Figure 3 illustrates how we combine align-
ments using all the training data at the same time
(NeurAlign1). First, the outputs of individual align-
ments systems and the original corpus (enriched
with additional linguistic features) are passed to the
feature extraction module. This module transforms
the alignment problem into a classification problem
by generating a training instance for every pair of
words between the sentences in the original corpus.
Each instance is represented by a set of features (de-
scribed in Section 4.1). The new training data is
passed to a neural net learner, which outputs whether
an alignment link exists for each training instance.

4.2.2 NeurAlign2: Multiple Neural Networks

The use of multiple neural networks (NeurAlign2)
enables the decomposition of a complex problem
into smaller problems.Local expertsare learned
for each smaller problem and these are then merged.
Following Tumer and Ghosh (1996), we apply spa-
tial partitioning of training instances using proxim-
ity of patterns in the input space to reduce the com-
plexity of the tasks assigned to individual classifiers.

We conducted a preliminary analysis on 100 ran-
domly selected English-Spanish sentence pairs from
a mixed corpus (UN + Bible + FBIS) to observe the

SPANISH
Adj Adv Comp Det Noun Prep Verb

E Adj 18 - - 82 40 96 66
N Adv - 8 - - 50 67 75
G Comp - - 12 - 46 37 96
L Det - - - 10 60 100 -
I Noun 42 77 100 94 23 98 84
S Prep - - - 93 70 22 100
H Verb 42 - - 100 66 78 43

Table 1: Error Rates according to POS Tags for
GIZA++ (E-to-S) (in percentages)

Classification
Data

Data
Partitioning

Output

Truth

Parta

Parti

Partz

NNa

NNz

NNi
NN

Combination

Figure 4: NeurAlign2—Alignment Combination
with Partitioning

distribution of errors according to POS tags in both
languages. We examined the cases in which the in-
dividual alignment and the manual annotation were
different—a total of 3,348 instances, where 1,320 of
those are misclassified by GIZA++ (E-to-S).2 We
use a standard measure of error, i.e., the percentage
of misclassified instances out of the total number of
instances. Table 1 shows error rates (by percentage)
according to POS tags for GIZA++ (E-to-S).3

Table 1 shows that the error rate is relatively low
in cases where both words have the same POS tag.
Except for verbs, the lowest error rate is obtained
when both words have the same POS tag (the er-
ror rates on the diagonal). On the other hand, the
error rates are high in several other cases, as much
as 100%, e.g., when the Spanish word is a deter-
miner or a preposition.4 This suggests that dividing
the training data according to POS tag, and training
neural networks on each subset separately might be
better than training on the entire data at once.

Figure 4 illustrates the combination approach
with neural nets after partitioning the data into dis-

2For this analysis, we ignored the cases where both systems
produced an output of -1 (i.e., the words are not aligned).

3Only POS pairs that occurred at least 10 times are shown.
4The same analysis was done for the other direction and re-

sulted in similar distribution of error rates.
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joint subsets (NeurAlign2). Similar to NeurAlign1,
the outputs of individual alignment systems, as well
as the original corpus, are passed to the feature ex-
traction module. Then the training data is split into
disjoint subsets using a subset of the available fea-
tures for partitioning. We learn different neural nets
for each partition, and then merge the outputs of the
individual nets. The advantage of this is that it re-
sults in different generalizations for each partition
and that it uses different subsets of the feature space
for each net.

5 Experiments and Results

This section describes our experimental design, in-
cluding evaluation metrics, data, and settings.

5.1 Evaluation Metrics

Let A be the set of alignment links for a set of sen-
tences. We takeS to be the set of sure alignment
links andP be the set of probable alignment links
(in the gold standard) for the same set of sentences.
Precision (Pr), recall (Rc) and alignment error rate
(AER) are defined as follows:

Pr =
|A ∩ P |
|A|

Rc =
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

A manually aligned corpus is used as our gold stan-
dard. For English-Spanish data, the manual annota-
tion is done by a bilingual English-Spanish speaker.
Every link in the English-Spanish gold standard is
considered a sure alignment link (i.e.,P = S).

For English-Chinese, we used 2002 NIST MT
evaluation test set. Each sentence pair was aligned
by two native Chinese speakers, who are fluent in
English. Each alignment link appearing in both an-
notations was considered a sure link, and links ap-
pearing in only one set were judged as probable. The
annotators were not aware of the specifics of our ap-
proach.

5.2 Evaluation Data and Settings

We evaluated NeurAlign1 and NeurAlign2, using 5-
fold cross validation on two data sets:

1. A set of 199 English-Spanish sentence pairs
(nearly 5K words on each side) from a mixed
corpus (UN + Bible + FBIS).

2. A set of 491 English-Chinese sentence pairs
(nearly 13K words on each side) from 2002
NIST MT evaluation test set.

We computed precision, recall and error rate on the
entire set of sentence pairs for each data set.5

To evaluate NeurAlign, we used GIZA++ in both
directions (E-to-F andF -to-E, whereF is either
Chinese (C) or Spanish (S)) as input and arefined
alignmentapproach (Och and Ney, 2000) that uses
a heuristic combination method calledgrow-diag-
final (Koehn et al., 2003) for comparison. (We
henceforth refer to the refined-alignment approach
as “RA.”)

For the English-Spanish experiments, GIZA++
was trained on 48K sentence pairs from a mixed
corpus (UN + Bible + FBIS), with nearly 1.2M of
words on each side, using 10 iterations of Model 1,
5 iterations of HMM, and 5 iterations of Model 4.
For the English-Chinese experiments, we used 107K
sentence pairs from FBIS corpus (nearly 4.1M En-
glish and 3.3M Chinese words) to train GIZA++, us-
ing 5 iterations of Model 1, 5 iterations of HMM, 3
iterations of Model 3, and 3 iterations of Model 4.

5.3 Neural Network Settings

In our experiments, we used a multi-layer percep-
tron (MLP) consisting of 1 input layer, 1 hidden
layer, and 1 output layer. The hidden layer consists
of 10 units, and the output layer consists of 1 unit.
All units in the hidden layer are fully connected to
the units in the input layer, and the output unit is
fully connected to all the units in the hidden layer.
We used hyperbolic tangent sigmoid function as the
activation function for both layers.

One of the potential pitfalls is overfitting as the
number of iterations increases. To address this, we
used theearly stopping with validation setmethod.
In our experiments, we held out (randomly selected)
1/4 of the training set as the validation set.

Neural nets are sensitive to the initial weights. To
overcome this, we performed 5 runs of learning for
each training set. The final output for each training
is obtained by a majority voting over 5 runs.

5The number of alignment links varies over each fold.
Therefore, we chose to evaluate all data at once instead of eval-
uating on each fold and then averaging.
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5.4 Results

This section describes the experiments on English-
Spanish and English-Chinese data for testing the
effects of feature selection, training on the en-
tire data (NeurAlign1) or on the partitioned data
(NeurAlign2), using two input alignments: GIZA++
(E-to-F ) and GIZA++ (F -to-E). We used the fol-
lowing additional features, as well as the outputs of
individual aligners, for an instance(i, j) (set of fea-
tures 2–7 below are generated separately for each
input alignmentAk):

1. posEi, posFj , relEi: POS tags and depen-
dency relation forei andfj .

2. neigh(i, j): 8 features indicating whether a
neighboring link exists inAk.

3. f ertEi, f ertFj : 2 features indicating the fer-
tility of ei andfj in Ak.

4. NC(i, j): Total number of existing links in
N(i, j) in Ak.

5. TP (i, j): Translation probabilityp(fj |ei) in
Ak.

6. NghTP(i, j): 8 features indicating the trans-
lation probabilityp(fy|ex) for each(x, y) ∈
N(i, j) in Ak.

7. AvTP (i, j): Average translation probability
of the neighbors of(i, j) in Ak.

We performed statistical significance tests using
two-tailed paired t-tests. Unless otherwise indi-
cated, the differences between NeurAlign and other
alignment systems, as well as the differences among
NeurAlign variations themselves, were statistically
significant within the 95% confidence interval.

5.4.1 Results for English-Spanish

Table 2 summarizes the precision, recall and
alignment error rate values for each of our two
alignment system inputs plus the three alternative
alignment-combination approaches. Note that the
best performing aligner among these is the RA
method, with an AER of 21.2%. (We include this
in subsequent tables for ease of comparison.)

Feature Selection for Training All Data At Once:
NeurAlign1 Table 3 presents the results of train-
ing neural nets using the entire data (NeurAlign1)
with different subsets of the feature space. When we
used POS tags and the dependency relation as fea-
tures, NeurAlign1 performs worse than RA. Using

Alignments Pr Rc AER
E-to-S 87.0 67.0 24.3
S-to-E 88.0 67.5 23.6
Intersection 98.2 59.6 25.9
Union 80.6 74.9 22.3
RA 83.8 74.4 21.2

Table 2: Results for GIZA++ Alignments and Their
Simple Combinations

the neighboring links as the feature set gave slightly
(not significantly) better results than RA. Using POS
tags, dependency relations, and neighboring links
also resulted in better performance than RA but the
difference was not statistically significant.

When we used fertilities along with the POS tags
and dependency relations, the AER was 20.0%—a
significant relative error reduction of 5.7% over RA.
Adding the neighboring links to the previous feature
set resulted in an AER of 17.6%—a significant rela-
tive error reduction of 17% over RA.

Interestingly, when we removed POS tags and de-
pendency relations from this feature set, there was
no significant change in the AER, which indicates
that the improvement is mainly due to the neighbor-
ing links. This supports our initial claim about the
clustering of alignment links, i.e., when there is an
alignment link, usually there is another link in its
neighborhood. Finally, we tested the effects of using
translation probabilities as part of the feature set, and
found out that using translation probabilities did no
better than the case where they were not used. We
believe this happens because the translation proba-
bility p(fj |ei) has a unique value for each pair ofei
andfj ; therefore it is not useful to distinguish be-
tween alignment links with the same words.

Feature Selection for Training on Partitioned
Data: NeurAlign2 In order to train on partitioned
data (NeurAlign2), we needed to establish appropri-
ate features for partitioning the training data. Ta-
ble 4 presents the evaluation results for NeurAlign1

(i.e., no partitioning) and NeurAlign2 with different
features for partitioning (English POS tag, Spanish
POS tag, and POS tags on both sides). For training
on each partition, the feature space included POS
tags (e.g., Spanish POS tag in the case where parti-
tioning is based on English POS tag only), depen-
dency relations, neighborhood features, and fertili-
ties. We observed that partitioning based on POS
tags on one side reduced the AER to 17.4% and
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Features Pr Rc AER
posEi, posFj , relEi 90.6 67.7 22.5
neigh(i, j) 91.3 69.5 21.1
posEi, posFj , relEi, 91.7 70.2 20.5
neigh(i, j)
posEi, posFj , relEi, 91.4 71.1 20.0
f ertEi, f ertFj
posEi, posFj , relEi, 89.5 76.3 17.6
neigh(i, j), NC(i, j)
f ertEi, f ertFj
neigh(i, j), NC(i, j) 89.7 75.7 17.9
f ertEi, f ertFj
posEi, posFj , relEi, 90.0 75.7 17.9
f ertEi, f ertFj ,
neigh(i, j), NC(i, j),
TP (i, j), AvTP (i, j)

RA 83.8 74.4 21.2

Table 3: Combination with Neural Networks:
NeurAlign1 (All-Data-At-Once)

17.1%, respectively. Using POS tags onboth sides
reduced the error rate to 16.9%—a significant rel-
ative error reduction of 5.6% over no partitioning.
All four methods yielded statistically significant er-
ror reductions over RA—we will examine the fourth
method in more detail below.

Alignment Pr Rc AER
NeurAlign1 89.7 75.7 17.9
NeurAlign2[posEi] 91.1 75.4 17.4
NeurAlign2[posFj ] 91.2 76.0 17.1
NeurAlign2[posEi, posFj ] 91.6 76.0 16.9
RA 83.8 74.4 21.2

Table 4: Effects of Feature Selection for Partitioning

Once we determined that partitioning by POS tags
on both sides brought about the biggest gain, we ran
NeurAlign2 using this partitioning, but with differ-
ent feature sets. Table 5 shows the results of this
experiment. Using dependency relations, word fer-
tilities and translation probabilities (both for the link
in question and the neighboring links) yielded a sig-
nificantly lower AER (18.6%)—a relative error re-
duction of 12.3% over RA. When the feature set
consisted of dependency relations, word fertilities,
and neighborhood links, the AER was reduced to
16.9%—a 20.3% relative error reduction over RA.
We also tested the effects of adding translation prob-
abilities to this feature set, but as in the case of
NeurAlign1, this did not improve the alignments.

In the best case, NeurAlign2 achieved substan-
tial and significant reductions in AER over the in-
put alignment systems: a 28.4% relative error re-
duction overS-to-E and a 30.5% relative error re-

Features Pr Rc AER
relEi, f ertEi, f ertFj , 91.9 73.0 18.6
TP (i, j), AvTP (i, j),
NghTP (i, j)
neigh(i, j) 90.3 74.0 18.7
relEi, f ertEi, f ertFj , 91.6 76.0 16.9
neigh(i, j), NC(i, j)
relEi, f ertEi, f ertFj , 91.4 76.1 16.9
neigh(i, j), NC(i, j),
TP (i, j), AvTP (i, j)

RA 83.8 74.4 21.2

Table 5: Combination with Neural Networks:
NeurAlign2 (Partitioned According to POS tags)

duction overE-to-S. Compared to RA, NeurAlign2
also achieved significantly better results over RA:
relative improvements of 9.3% in precision, 2.2% in
recall, and 20.3% in AER.

5.4.2 Results for English-Chinese

The results of the input alignments to NeurAlign,
i.e., GIZA++ alignments in two different directions,
NeurAlign1 (i.e., no partitioning) and variations of
NeurAlign2 with different features for partitioning
(English POS tag, Chinese POS tag, and POS tags
on both sides) are shown in Table 6. For compar-
sion, we also include the results for RA in the table.
For brevity, we include only the features resulting
in the best configurations from the English-Spanish
experiments, i.e., POS tags, dependency relations,
word fertilities, and neighborhood links (the features
in the third row of Table 5). The ground truth used
during the training phase consisted of all the align-
ment links with equal weight.

Alignments Pr Rc AER
E-to-C 70.4 68.3 30.7
C-to-E 66.0 69.8 32.2
NeurAlign1 85.0 71.4 22.2
NeurAlign2[posEi] 85.7 74.6 20.0
NeurAlign2[posFj ] 85.7 73.2 20.8
NeurAlign2[posEi, posFj ] 86.3 74.7 19.7
RA 61.9 82.6 29.7

Table 6: Results on English-Chinese Data

Without any partitioning, NeurAlign achieves an
alignment error rate of 22.2%—a significant relative
error reduction of 25.3% over RA. Partitioning the
data according to POS tags results in significantly
better results over no partitioning. When the data is
partitioned according to both POS tags, NeurAlign
reduces AER to 19.7%—a significant relative error
reduction of 33.7% over RA. Compared to the input
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alignments, the best version of NeurAlign achieves
a relative error reduction of 35.8% and 38.8%, re-
spectively.

6 Conclusions

We presented NeurAlign, a novel approach to com-
bining the outputs of different word alignment sys-
tems. Our approach treats individual alignment sys-
tems as black boxes, and transforms the individual
alignments into a set of data with features that are
borrowed from their outputs and additional linguis-
tic features (such as POS tags and dependency re-
lations). We use neural nets to learn the true align-
ments from these transformed data.

We show that using POS tags to partition the
transformed data, and learning a different classifier
for each partition is more effective than using the en-
tire data at once. Our results indicate that NeurAlign
yields a significant 28-39% relative error reduction
over the best of the input alignment systems and
a significant 20-34% relative error reduction over
the best known alignment combination technique on
English-Spanish and English-Chinese data.

We should note that NeurAlign is not a stand-
alone word alignment system but a supervised learn-
ing approach to improve already existing alignment
systems. A drawback of our approach is that it re-
quires annotated data. However, our experiments
have shown that significant improvements can be
obtained using a small set of annotated data. We
will do additional experiments to observe the effects
of varying the size of the annotated data while learn-
ing neural nets. We are also planning to investigate
whether NeurAlign helps when the individual align-
ers are trained using more data.

We will extend our combination approach to com-
bine word alignment systems based on different
models, and investigate the effectiveness of our tech-
nique on other language pairs. We also intend to
evaluate the effectiveness of our improved alignment
approach in the context of machine translation and
cross-language projection of resources.

Acknowledgments This work has been supported in

part by ONR MURI Contract FCPO.810548265, Coopera-

tive Agreement DAAD190320020, and NSF ITR Grant IIS-

0326553.

References
Steven Abney, Robert E. Schapire, and Yoram Singer. 1999.

Boosting applied to tagging and PP attachment. InProceed-
ings of EMNLP’1999, pages 38–45.

Necip F. Ayan, Bonnie J. Dorr, and Nizar Habash. 2004. Multi-
Align: Combining linguistic and statistical techniques to
improve alignments for adaptable MT. InProceedings of
AMTA’2004, pages 17–26.

Eric Brill and Jun Wu. 1998. Classifier combination for im-
proved lexical disambiguation. InProc. of ACL’1998.

Colin Cherry and Dekang Lin. 2003. A probability model to
improve word alignment. InProceedings of ACL’2003.

Micheal Collins. 1997. Three generative lexicalized models for
statistical parsing. InProceedings of ACL’1997.

Mona Diab and Philip Resnik. 2002. An unsupervised method
for word sense tagging using parallel corpora. InProceed-
ings of ACL’2002.

Bonnie J. Dorr, Lisa Pearl, Rebecca Hwa, and Nizar Habash.
2002. DUSTer: A method for unraveling cross-language di-
vergences for statistical word–level alignment. InProceed-
ings of AMTA’2002.

Radu Florian and David Yarowsky. 2002. Modeling consensus:
Classifier combination for word sense disambiguation. In
Proceedings of EMNLP’2002, pages 25–32.

L. Hansen and P. Salamon. 1990. Neural network ensembles.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12:993–1001.

John C. Henderson and Eric Brill. 2000. Bagging and boosting
a treebank parser. InProceedings of NAACL’2000.

Philip Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. InProceedings of
NAACL/HLT’2003.

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-linear models
for word alignment. InProceedings of ACL’2005.

I. Dan Melamed. 2000. Models of translational equivalence
among words.Computational Linguistics, 26(2):221–249.

Marvin Minsky. 1999. Logical Versus Analogical or Symbolic
Versus Connectionist or Neat Versus Scruffy.AI Magazine,
12:34–51.

Franz J. Och and Hermann Ney. 2000. Improved statistical
alignment models. InProceedings of ACL’2000.

Franz J. Och and Hermann Ney. 2003. A systematic compari-
son of various statistical alignment models.Computational
Linguistics, 29(1):9–51, March.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of EMNLP’1996.

Martin Riedmiller and Heinrich Braun. 1993. A direct adaptive
method for faster backpropagation learning: The RPROP al-
gorithm. InProceedings of the IEEE Intl. Conf. on Neural
Networks, pages 586–591.

Jorg Tiedemann. 2003. Combining clues for word alignment.
In Proceedings of EACL’2003, pages 339–346.

Kristina Toutanova, H. Tolga Ilhan, and Christopher D. Man-
ning. 2002. Extensions to HMM-based statistical word
alignment models. InProceedings of EMNLP’2002.

Kagan Tumer and Joydeep Ghosh. 1996. Error correlation and
error reduction in ensemble classifiers.Connection Science,
Special Issue on Combining Artificial Neural Networks: En-
semble Approaches, 8(3–4):385–404, December.

David H. Wolpert. 1992. Stacked generalization.Neural Net-
works, 5(2):241–259.

David Yarowsky, Grace Ngai, and Richard Wicentowski. 2001.
Inducing multilingual text analysis tools via robust projec-
tion across aligned corpora. InProceedings of HLT’2001.

72



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 73–80, Vancouver, October 2005. c©2005 Association for Computational Linguistics

A Discriminative Matching Approach to Word Alignment

Ben Taskar Simon Lacoste-Julien Dan Klein
Computer Science Division, EECS Department

University of California, Berkeley
Berkeley, CA 94720

Abstract

We present a discriminative, large-
margin approach to feature-based
matching for word alignment. In this
framework, pairs of word tokens re-
ceive a matching score, which is based
on features of that pair, including mea-
sures of association between the words,
distortion between their positions, sim-
ilarity of the orthographic form, and so
on. Even with only 100 labeled train-
ing examples and simple features which
incorporate counts from a large unla-
beled corpus, we achieve AER perfor-
mance close to IBM Model 4, in much
less time. Including Model 4 predic-
tions as features, we achieve a relative
AER reduction of 22% in over inter-
sected Model 4 alignments.

1 Introduction

The standard approach to word alignment from
sentence-aligned bitexts has been to construct
models which generate sentences of one lan-
guage from the other, then fitting those genera-
tive models with EM (Brown et al., 1990; Och
and Ney, 2003). This approach has two primary
advantages and two primary drawbacks. In its
favor, generative models of alignment are well-
suited for use in a noisy-channel translation sys-
tem. In addition, they can be trained in an un-
supervised fashion, though in practice they do
require labeled validation alignments for tuning

model hyper-parameters, such as null counts or
smoothing amounts, which are crucial to pro-
ducing alignments of good quality. A primary
drawback of the generative approach to align-
ment is that, as in all generative models, explic-
itly incorporating arbitrary features of the in-
put is difficult. For example, when considering
whether to align two words in the IBM models
(Brown et al., 1990), one cannot easily include
information about such features as orthographic
similarity (for detecting cognates), presence of
the pair in various dictionaries, similarity of the
frequency of the two words, choices made by
other alignment systems on this sentence pair,
and so on. While clever models can implicitly
capture some of these information sources, it
takes considerable work, and can make the re-
sulting models quite complex. A second draw-
back of generative translation models is that,
since they are learned with EM, they require
extensive processing of large amounts of data
to achieve good performance. While tools like
GIZA++ (Och and Ney, 2003) do make it eas-
ier to build on the long history of the generative
IBM approach, they also underscore how com-
plex high-performance generative models can,
and have, become.

In this paper, we present a discriminative ap-
proach to word alignment. Word alignment is
cast as a maximum weighted matching problem
(Cormen et al., 1990) in which each pair of words
(ej , fk) in a sentence pair (e, f) is associated
with a score sjk(e, f) reflecting the desirability
of the alignment of that pair. The alignment
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for the sentence pair is then the highest scoring
matching under some constraints, for example
the requirement that matchings be one-to-one.

This view of alignment as graph matching is
not, in itself, new: Melamed (2000) uses com-
petitive linking to greedily construct matchings
where the pair score is a measure of word-
to-word association, and Matusov et al. (2004)
find exact maximum matchings where the pair
scores come from the alignment posteriors of
generative models. Tiedemann (2003) proposes
incorporating a variety of word association
“clues” into a greedy linking algorithm.

What we contribute here is a principled ap-
proach for tractable and efficient learning of the
alignment score sjk(e, f) as a function of ar-
bitrary features of that token pair. This con-
tribution opens up the possibility of doing the
kind of feature engineering for alignment that
has been so successful for other NLP tasks. We
first present the algorithm for large margin es-
timation of the scoring function. We then show
that our method can achieve AER rates com-
parable to unsymmetrized IBM Model 4, using
extremely little labeled data (as few as 100 sen-
tences) and a simple feature set. Remarkably,
by including bi-directional IBM Model 4 predic-
tions as features, we achieve an absolute AER
of 5.4 on the English-French Hansards alignment
task, a relative reduction of 22% in AER over in-
tersected Model 4 alignments and, to our knowl-
edge, the best AER result published on this task.

2 Algorithm

We model the alignment prediction task as a
maximum weight bipartite matching problem,
where nodes correspond to the words in the
two sentences. For simplicity, we assume here
that each word aligns to one or zero words in
the other sentence. The edge weight sjk repre-
sents the degree to which word j in one sentence
can translate into the word k in the other sen-
tence. Our goal is to find an alignment that
maximizes the sum of edge scores. We represent
a matching using a set of binary variables yjk

that are set to 1 if word j is assigned to word
k in the other sentence, and 0 otherwise. The

score of an assignment is the sum of edge scores:
s(y) =

∑
jk sjkyjk. The maximum weight bi-

partite matching problem, arg maxy∈Y s(y), can
be solved using well known combinatorial algo-
rithms or the following linear program:

max
z

∑

jk

sjkzjk (1)

s.t.
∑

j

zjk ≤ 1,
∑

k

zjk ≤ 1, 0 ≤ zjk ≤ 1,

where the continuous variables zjk correspond to
the binary variables yjk. This LP is guaranteed
to have integral (and hence optimal) solutions
for any scoring function s(y) (Schrijver, 2003).
Note that although the above LP can be used to
compute alignments, combinatorial algorithms
are generally more efficient. However, we use
the LP to develop the learning algorithm below.

For a sentence pair x, we denote position
pairs by xjk and their scores as sjk. We let
sjk = w�f(xjk) for some user provided fea-
ture mapping f and abbreviate w�f(x,y) =
∑

jk yjkw�f(xjk). We can include in the fea-
ture vector the identity of the two words, their
relative positions in their respective sentences,
their part-of-speech tags, their string similarity
(for detecting cognates), and so on.

At this point, one can imagine estimating a
linear matching model in multiple ways, includ-
ing using conditional likelihood estimation, an
averaged perceptron update (see which match-
ings are proposed and adjust the weights ac-
cording to the difference between the guessed
and target structures (Collins, 2002)), or in
large-margin fashion. Conditional likelihood es-
timation using a log-linear model P (y | x) =

1
Zw(x) exp{w�f(x,y)} requires summing over all
matchings to compute the normalization Zw(x),
which is #P-complete (Valiant, 1979). In our
experiments, we therefore investigated the aver-
aged perceptron in addition to the large-margin
method outlined below.

2.1 Large-margin estimation

We follow the large-margin formulation of
Taskar et al. (2005a). Our input is a set of
training instances {(xi,yi)}m

i=1, where each in-
stance consists of a sentence pair xi and a target
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alignment yi. We would like to find parameters
w that predict correct alignments on the train-
ing data:

yi = arg max
ȳi∈Yi

w�f(xi, ȳi), ∀i,

where Yi is the space of matchings appropriate
for the sentence pair i.

In standard classification problems, we typi-
cally measure the error of prediction, �(yi, ȳi),
using the simple 0-1 loss. In structured prob-
lems, where we are jointly predicting multiple
variables, the loss is often more complex. While
the F-measure is a natural loss function for this
task, we instead chose a sensible surrogate that
fits better in our framework: Hamming distance
between yi and ȳi, which simply counts the
number of edges predicted incorrectly.

We use an SVM-like hinge upper bound on
the loss �(yi, ȳi), given by maxȳi∈Yi [w

�fi(ȳi) +
�i(ȳi)−w�fi(yi)], where �i(ȳi) = �(yi, ȳi), and
fi(ȳi) = f(xi, ȳi). Minimizing this upper bound
encourages the true alignment yi to be optimal
with respect to w for each instance i:

min
||w||≤γ

∑

i

max
ȳi∈Yi

[w�fi(ȳi) + �i(ȳi)]−w�fi(yi),

where γ is a regularization parameter.
In this form, the estimation problem is a mix-

ture of continuous optimization over w and com-
binatorial optimization over yi. In order to
transform it into a more standard optimization
problem, we need a way to efficiently handle the
loss-augmented inference, maxȳi∈Yi [w

�fi(ȳi) +
�i(ȳi)]. This optimization problem has pre-
cisely the same form as the prediction prob-
lem whose parameters we are trying to learn
— maxȳi∈Yi w

�fi(ȳi) — but with an additional
term corresponding to the loss function. Our as-
sumption that the loss function decomposes over
the edges is crucial to solving this problem. In
particular, we use weighted Hamming distance,
which counts the number of variables in which
a candidate solution ȳi differs from the target
output yi, with different cost for false positives
(c+) and false negatives (c-):

�i(ȳi) =
∑

jk

[
c-yi,jk(1− ȳi,jk) + c+ȳi,jk(1− yi,jk)

]

=
∑

jk

c-yi,jk +
∑

jk

[c+ − (c- + c+)yi,jk]ȳi,jk.

The loss-augmented matching problem can then
be written as an LP similar to Equation 1 (with-
out the constant term

∑
jk c-yi,jk):

max
z

∑

jk

zi,jk[w�f(xi,jk) + c+ − (c- + c+)yi,jk]

s.t.
∑

j

zi,jk ≤ 1,
∑

k

zi,jk ≤ 1, 0 ≤ zi,jk ≤ 1.

Hence, without any approximations, we have a
continuous optimization problem instead of a
combinatorial one:

max
ȳi∈Yi

w�fi(ȳi)+�i(ȳi) = di+max
zi∈Zi

(w�Fi+ci)�zi,

where di =
∑

jk c-yi,jk is the constant term, Fi

is the appropriate matrix that has a column of
features f(xi,jk) for each edge jk, ci is the vector
of the loss terms c+ − (c- + c+)yi,jk and finally
Zi = {zi :

∑
j zi,jk ≤ 1,

∑
k zi,jk ≤ 1, 0 ≤

zi,jk ≤ 1}.
Plugging this LP back into our estimation

problem, we have

min
||w||≤γ

max
z∈Z

∑

i

w�Fizi + c�i zi −w�Fiyi, (2)

where z = {z1, . . . , zm}, Z = Z1× . . .×Zm. In-
stead of the derivation in Taskar et al. (2005a),
which produces a joint convex optimization
problem using Lagrangian duality, here we
tackle the problem in its natural saddle-point
form.

2.2 The extragradient method

For saddle-point problems, a well-known solu-
tion strategy is the extragradient method (Ko-
rpelevich, 1976), which is closely related to
projected-gradient methods.

The gradient of the objective in Equation 2
is given by:

∑
i Fi(zi − yi) (with respect to w)

and F�
i w + ci (with respect to each zi). We de-

note the Euclidean projection of a vector onto
Zi as PZi(v) = arg minu∈Zi

||v − u|| and pro-
jection onto the ball ||w|| ≤ γ as Pγ(w) =
γw/max(γ, ||w||).
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An iteration of the extragradient method con-
sists of two very simple steps, prediction:

w̄t+1 = Pγ(wt + βk

∑

i

Fi(yi − zt
i));

z̄t+1
i = PZi(z

t
i + βk(F�

i wt + ci));

and correction:

wt+1 = Pγ(wt + βk

∑

i

Fi(yi − z̄t+1
i ));

zt+1
i = PZi(z

t
i + βk(F�

i w̄t+1 + ci)),

where βk are appropriately chosen step sizes.
The method is guaranteed to converge linearly
to a solution w∗, z∗ (Korpelevich, 1976; He and
Liao, 2002; Taskar et al., 2005b). Please see
www.cs.berkeley.edu/~taskar/extragradient.pdf

for more details.
The key subroutine of the algorithm is Eu-

clidean projection onto the feasible sets Zi. In
case of word alignment, Zi is the convex hull of
bipartite matchings and the problem reduces to
the much-studied minimum cost quadratic flow
problem (Bertsekas et al., 1997). The projection
problem PZi(z

′
i) is given by

min
z

∑

jk

1
2
(z′i,jk − zi,jk)2

s.t.
∑

j

zi,jk ≤ 1,
∑

k

zi,jk ≤ 1, 0 ≤ zi,jk ≤ 1.

We can now use a standard reduction of bipar-
tite matching to min cost flow by introducing a
source node connected to all the words in one
sentence and a sink node connected to all the
words in the other sentence, using edges of ca-
pacity 1 and cost 0. The original edges jk have
a quadratic cost 1

2(z′i,jk − zi,jk)2 and capacity 1.
Now the minimum cost flow from the source to
the sink computes projection of z′i onto Zi We
use standard, publicly-available code for solving
this problem (Guerriero and Tseng, 2002).

3 Experiments

We applied this matching algorithm to word-
level alignment using the English-French
Hansards data from the 2003 NAACL shared
task (Mihalcea and Pedersen, 2003). This

corpus consists of 1.1M automatically aligned
sentences, and comes with a validation set of 39
sentence pairs and a test set of 447 sentences.
The validation and test sentences have been
hand-aligned (see Och and Ney (2003)) and are
marked with both sure and possible alignments.
Using these alignments, alignment error rate
(AER) is calculated as:

AER(A,S, P ) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

Here, A is a set of proposed index pairs, S is
the sure gold pairs, and P is the possible gold
pairs. For example, in Figure 1, proposed align-
ments are shown against gold alignments, with
open squares for sure alignments, rounded open
squares for possible alignments, and filled black
squares for proposed alignments.

Since our method is a supervised algorithm,
we need labeled examples. For the training data,
we split the original test set into 100 training
examples and 347 test examples. In all our ex-
periments, we used a structured loss function
�(yi, ȳi) that penalized false negatives 3 times
more than false positives, where 3 was picked by
testing several values on the validation set. In-
stead of selecting a regularization parameter γ
and running to convergence, we used early stop-
ping as a cheap regularization method, by set-
ting γ to a very large value (10000) and running
the algorithm for 500 iterations. We selected a
stopping point using the validation set by simply
picking the best iteration on the validation set in
terms of AER (ignoring the initial ten iterations,
which were very noisy in our experiments). All
selected iterations turned out to be in the first
50 iterations, as the algorithm converged fairly
rapidly.

3.1 Features and Results

Very broadly speaking, the classic IBM mod-
els of word-level translation exploit four primary
sources of knowledge and constraint: association
of words (all IBM models), competition between
alignments (all models), zero- or first-order pref-
erences of alignment positions (2,4+), and fer-
tility (3+). We model all of these in some way,
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(a) Dice only (b) Dice and Distance
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(c) Dice, Distance, Orthographic, and BothShort (d) All features

Figure 1: Example alignments for each successive feature set.

except fertility.1

First, and, most importantly, we want to in-
clude information about word association; trans-
lation pairs are likely to co-occur together in
a bitext. This information can be captured,
among many other ways, using a feature whose

1In principle, we can model also model fertility, by
allowing 0-k matches for each word rather than 0-1, and
having bias features on each word. However, we did not
explore this possibility.

value is the Dice coefficient (Dice, 1945):

Dice(e, f) =
2CEF (e, f)
CE(e)CF (f)

Here, CE and CF are counts of word occurrences
in each language, while CEF is the number of
co-occurrences of the two words. With just this
feature on a pair of word tokens (which depends
only on their types), we can already make a stab
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at word alignment, aligning, say, each English
word with the French word (or null) with the
highest Dice value (see (Melamed, 2000)), sim-
ply as a matching-free heuristic model. With
Dice counts taken from the 1.1M sentences, this
gives and AER of 38.7 with English as the tar-
get, and 36.0 with French as the target (in line
with the numbers from Och and Ney (2003)).

As observed in Melamed (2000), this use of
Dice misses the crucial constraint of competi-
tion: a candidate source word with high asso-
ciation to a target word may be unavailable for
alignment because some other target has an even
better affinity for that source word. Melamed
uses competitive linking to incorporate this con-
straint explicitly, while the IBM-style models
get this effect via explaining-away effects in EM
training. We can get something much like the
combination of Dice and competitive linking by
running with just one feature on each pair: the
Dice value of that pair’s words.2 With just a
Dice feature – meaning no learning is needed
yet – we achieve an AER of 29.8, between the
Dice with competitive linking result of 34.0 and
Model 1 of 25.9 given in Och and Ney (2003).
An example of the alignment at this stage is
shown in Figure 1(a). Note that most errors lie
off the diagonal, for example the often-correct
to-à match.

IBM Model 2, as usually implemented, adds
the preference of alignments to lie near the di-
agonal. Model 2 is driven by the product of a
word-to-word measure and a (usually) Gaussian
distribution which penalizes distortion from the
diagonal. We can capture the same effect us-
ing features which reference the relative posi-
tions j and k of a pair (ej , fk). In addition to a
Model 2-style quadratic feature referencing rela-
tive position, we threw in the following proxim-
ity features: absolute difference in relative posi-
tion abs(j/|e|−k/|f |), and the square and square
root of this value. In addition, we used a con-
junction feature of the dice coefficient times the
proximity. Finally, we added a bias feature on
each edge, which acts as a threshold that allows

2This isn’t quite competitive linking, because we use
a non-greedy matching.
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Figure 2: Example alignments showing the ef-
fects of orthographic cognate features. (a) Dice
and Distance, (b) With Orthographic Features.

sparser, higher precision alignments. With these
features, we got an AER of 15.5 (compare to 19.5
for Model 2 in (Och and Ney, 2003)). Note that
we already have a capacity that Model 2 does
not: we can learn a non-quadratic penalty with
linear mixtures of our various components – this
gives a similar effect to learning the variance of
the Gaussian for Model 2, but is, at least in
principle, more flexible.3 These features fix the
to-à error in Figure 1(a), giving the alignment
in Figure 1(b).

On top of these features, we included other
kinds of information, such as word-similarity
features designed to capture cognate (and ex-
act match) information. We added a feature for
exact match of words, exact match ignoring ac-
cents, exact matching ignoring vowels, and frac-
tion overlap of the longest common subsequence.
Since these measures were only useful for long
words, we also added a feature which indicates
that both words in a pair are short. These or-
thographic and other features improved AER to
14.4. The running example now has the align-
ment in Figure 1(c), where one improvement
may be attributable to the short pair feature – it
has stopped proposing the-de, partially because
the short pair feature downweights the score of
that pair. A clearer example of these features
making a difference is shown in Figure 2, where
both the exact-match and character overlap fea-

3The learned response was in fact close to a Gaussian,
but harsher near zero displacement.
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tures are used.
One source of constraint which our model still

does not explicitly capture is the first-order de-
pendency between alignment positions, as in the
HMM model (Vogel et al., 1996) and IBM mod-
els 4+. The the-le error in Figure 1(c) is symp-
tomatic of this lack. In particular, it is a slightly
better pair according to the Dice value than the
correct the-les. However, the latter alignment
has the advantage that major-grands follows it.
To use this information source, we included a
feature which gives the Dice value of the words
following the pair.4 We also added a word-
frequency feature whose value is the absolute
difference in log rank of the words, discourag-
ing very common words from translating to very
rare ones. Finally, we threw in bilexical features
of the pairs of top 5 non-punctuation words in
each language.5 This helped by removing spe-
cific common errors like the residual tendency
for French de to mistakenly align to English the
(the two most common words). The resulting
model produces the alignment in Figure 1(d).
It has sorted out the the-le / the-les confusion,
and is also able to guess to-de, which is not the
most common translation for either word, but
which is supported by the good Dice value on
the following pair (make-faire).

With all these features, we got a final AER
of 10.7, broadly similar to the 8.9 or 9.7 AERs
of unsymmetrized IBM Model 4 trained on the
same data that the Dice counts were taken
from.6 Of course, symmetrizing Model 4 by in-
tersecting alignments from both directions does
yield an improved AER of 6.9, so, while our
model does do surprisingly well with cheaply ob-
tained count-based features, Model 4 does still
outperform it so far. However, our model can

4It is important to note that while our matching algo-
rithm has no first-order effects, the features can encode
such effects in this way, or in better ways – e.g. using as
features posteriors from the HMM model in the style of
Matusov et al. (2004).

5The number of such features which can be learned
depends on the number of training examples, and since
some of our experiments used only a few dozen training
examples we did not make heavy use of this feature.

6Note that the common word pair features affected
common errors and therefore had a particularly large im-
pact on AER.

Model AER
Dice (without matching) 38.7 / 36.0
Model 4 (E-F, F-E, intersected) 8.9 / 9.7/ 6.9

Discriminative Matching
Dice Feature Only 29.8
+ Distance Features 15.5
+ Word Shape and Frequency 14.4
+ Common Words and Next-Dice 10.7
+ Model 4 Predictions 5.4

Figure 3: AER on the Hansards task.

also easily incorporate the predictions of Model
4 as additional features. We therefore added
three new features for each edge: the prediction
of Model 4 in the English-French direction, the
prediction in the French-English direction, and
the intersection of the two predictions. With
these powerful new features, our AER dropped
dramatically to 5.4, a 22% improvement over the
intersected Model 4 performance.

Another way of doing the parameter estima-
tion for this matching task would have been
to use an averaged perceptron method, as in
Collins (2002). In this method, we merely run
our matching algorithm and update weights
based on the difference between the predicted
and target matchings. However, the perfor-
mance of the average perceptron learner on the
same feature set is much lower, only 8.1, not
even breaking the AER of its best single feature
(the intersected Model 4 predictions).

3.2 Scaling Experiments

We explored the scaling of our method by learn-
ing on a larger training set, which we created by
using GIZA++ intersected bi-directional Model
4 alignments for the unlabeled sentence pairs.
We then took the first 5K sentence pairs from
these 1.1M Model 4 alignments. This gave us
more training data, albeit with noisier labels.
On a 3.4GHz Intel Xeon CPU, GIZA++ took
18 hours to align the 1.1M words, while our
method learned its weights in between 6 min-
utes (100 training sentences) and three hours
(5K sentences).
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4 Conclusions

We have presented a novel discriminative, large-
margin method for learning word-alignment
models on the basis of arbitrary features of word
pairs. We have shown that our method is suit-
able for the common situation where a moder-
ate number of good, fairly general features must
be balanced on the basis of a small amount of
labeled data. It is also likely that the method
will be useful in conjunction with a large labeled
alignment corpus (should such a set be created).
We presented features capturing a few separate
sources of information, producing alignments on
the order of those given by unsymmetrized IBM
Model 4 (using labeled training data of about
the size others have used to tune generative
models). In addition, when given bi-directional
Model 4 predictions as features, our method
provides a 22% AER reduction over intersected
Model 4 predictions alone. The resulting 5.4
AER on the English-French Hansarks task is,
to our knowledge, the best published AER fig-
ure for this training scenario (though since we
use a subset of the test set, evaluations are not
problem-free). Finally, our method scales to
large numbers of training sentences and trains
in minutes rather than hours or days for the
higher-numbered IBM models, a particular ad-
vantage when not using features derived from
those slower models.
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Abstract

Bilingual word alignment forms the foun-
dation of most approaches to statistical
machine translation. Current word align-
ment methods are predominantly based
on generative models. In this paper,
we demonstrate a discriminative approach
to training simple word alignment mod-
els that are comparable in accuracy to
the more complex generative models nor-
mally used. These models have the the
advantages that they are easy to add fea-
tures to and they allow fast optimization
of model parameters using small amounts
of annotated data.

1 Motivation

Bilingual word alignment is the first step of most
current approaches to statistical machine translation.
Although the best performing systems are “phrase-
based” (e.g, Och and Ney, 2004), possible phrase
translations are normally first extracted from word-
aligned bilingual text segments. The standard ap-
proach to word alignment makes use of various com-
binations of five generative models developed at
IBM by Brown et al. (1993), sometimes augmented
by an HMM-based model or Och and Ney’s “Model
6” (Och and Ney, 2003). The best combinations of
these models can produce high accuracy alignments,
at least when trained on a large corpus of fairly di-
rect translations in related languages.

These standard models are less than ideal, how-
ever, in a number of ways, two of which we address

in this paper. First, although the standard models can
theoretically be trained without supervision, in prac-
tice various parameters are introduced that should
be optimized using annotated data. For, example,
Och and Ney (2003) suggest supervised optimiza-
tion of a number of parameters, including the prob-
ablity of jumping to the empty word in the HMM
model, as well as smoothing parameters for the dis-
tortion probabilities and fertility probabilities of the
more complex models. Since the values of these pa-
rameters affect the values of the translation, align-
ment, and fertility probabilities trained by EM, there
is no effective way to optimize them other than to
run the training procedure with a particular combi-
nation of values and evaluate the accuracy of the re-
sulting alignments. Since evaluating each combina-
tion of parameter values in this way can take hours to
days on a large training corpus, it seems safe to say
that these parameters are rarely if ever truly jointly
optimized for a particular alignment task.

The second problem we address is the difficulty
of adding features to the standard generative models.
Generative models require a generative “story” as to
how the observed data is generated by an interrelated
set of stochastic processes. For example, the gener-
ative story for IBM Models 1 and 2 and the HMM
alignment model is that a target language translation
of a given source language sentence is generated by
first choosing a length for the target language sen-
tence, then for each target sentence position choos-
ing a source sentence word, and then choosing the
corresponding target language word. When Brown
et al. (1993) wanted to add a fertility component to
create Models 3, 4, and 5, however, this generative
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story didn’t fit any longer, because it does not in-
clude how many target language words to align to
each source language word as a separate decision.
To model this explicitly, they had to come up with a
different generative story.

In this paper, we take a different approach to
word alignment, based on discriminative training of
a weighted linear combination of a small number
of features. For a given parallel sentence pair, for
each possible word alignment considered, we sim-
ply multiply the values of each of these features by a
corresponding weight to give a score for that feature,
and sum the features scores to give an overall score
for the alignment. The possible alignment having
the best overall score is selected as the word align-
ment for that sentence pair. Thus, for a sentence pair
(e, f) we seek the alignment â such that

â = argmaxa

n∑

i=1

λifi(a, e, f)

where the fi are features and the λi are weights.
We optimize the model weights using a modified

version of averaged perceptron learning as described
by Collins (2002). This is fast to train, because se-
lecting the feature weights is the last step in build-
ing the model and the “online” nature of perceptron
learning allows the parameter optimization to con-
verge quickly. Furthermore, no generative story has
to be invented to explain how the features generate
the data, so new features can be easily added without
having to change the overall structure of the model.

In theory, a disadvantage of a discrimintative ap-
proach compared to a generative approach is that
it requires annotated data for training. In practice,
however, effective discriminative models for word
alignment require only a few parameters, which can
be optimized on a set of annotated sentence pairs
comparable in size to what is needed to tune the free
parameters used in the generative approach. As we
will show, a simple sequence of two such models
can achieve alignment accuracy comparable to that
of a combination of more complex standard models.

2 Discriminative Alignment Models

We develop two word alignment models, incorpo-
rating different word association features intended
to indicate how likely two words or groups of words

are to be mutual translations, plus additional features
measuring how much word reordering is required by
the alignment1, and how many words are left un-
linked. One of the models also includes a feature
measuring how often one word is linked to several
words.

Each of our feature scores have analogs in the
IBM and HMM models. The association scores cor-
responds to word translation probabilities; the re-
ordering scores correspond to distortion probabili-
ties; the scores for words left unlinked corresponds
to probabilities of words being linked to the null
word; and the scores for one-to-many links corre-
spond to fertility probabilities.

2.1 The Log-Likelihood-Based Model

In our first model, we use a log-likelihood-ratio
(LLR) statistic as our measure of word association.
We chose this statistic because it has previously been
found to be effective for automatically construct-
ing translation lexicons (e.g., Melamed, 2000). We
compute LLR scores using the following formula
presented by Moore (2004):

LLR(f, e) =
∑

f?∈{f,¬f}

∑

e?∈{e,¬e}
C(f?, e?) log

p(f?|e?)
p(f?)

In this formula f and e mean that the words whose
degree of association is being measured occur in the
respective target and source sentences of an aligned
sentence pair, ¬f and ¬e mean that the correspond-
ing words do not occur in the respective sentences,
f? and e? are variables ranging over these values,
and C(f?, e?) is the observed joint count for the val-
ues of f? and e?. All the probabilities in the for-
mula refer to maximum likelihood estimates. The
LLR score for a pair of words is high if the words
have either a strong positive association or a strong
negative association. Since we expect translation
pairs to be positively associated, we discard any
negatively associated word pairs by requiring that
p(f, e) > p(f) · p(e). To reduce the memory re-
quirements of our algorithms we discard any word
pairs whose LLR score is less than 1.0.

1We will use the term “alignment” to mean an overall word
alignment of a sentence pair, and the term “link” to mean the
alignment of a particular pair of words or small group of words.
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In our first model, the value of the word associa-
tion feature for an alignment is simply the sum of all
the individual LLR scores for the word pairs linked
by the alignment. The LLR-based model also in-
cludes the following features:

nonmonotonicity features It may be observed
that in closely related languages, word alignments
of sentences that are mutual translations tend to be
approximately monotonic (i.e., corresponding words
tend to be in nearly corresponding sentence posi-
tions). Even for distantly related languages, the
number of crossing links is far less than chance,
since phrases tend to be translated as contiguous
chunks. To model these tendencies, we introduce
two nonmonotonicity features.

To find the points of nonmonotonicity of a word
alignment, we arbitrarily designate one of the lan-
guages as the source and the other as the target. We
sort the word pairs in the alignment, first by source
word position, and then by target word position. We
then iterate through the sorted alignment, looking
only at the target word positions. The points of
nonmonotonicity in the alignment will be the places
where there are backward jumps in this sequence
of target word positions. For example, suppose we
have the sorted alignment ((1,1)(2,4)(2,5)(3,2)(5,6)).
The sequence of target word positions in this sorted
alignment is (1,4,5,2,6); hence, there is one point of
nonmonotonicity where target word position 2 fol-
lows target word position 5.

We still need to decide how to measure the degree
of nonmonotonicity of an alignment. Two meth-
ods immediately suggest themselves. One is to sum
the magnitudes of the backward jumps in the target
word sequence; the other is to simply count the num-
ber of backward jumps. Rather than choose between
them, we use both features.

the one-to-many feature It has often been ob-
served that word alignment links tend to be one-to-
one. Indeed, word alignment results can often be
improved by restricting more general models to per-
mit only one-to-one links. For example, Och and
Ney (2003) found that the intersection of the align-
ments found training the IBM models in both direc-
tions always outperformed either direction alone in
their experiments. Since the IBM models allow one-
to-many links only in one direction, this intersection

can contain only one-to-one links.
To model the tendency for links to be one-to-one,

we define a one-to-many feature as the number of
links connecting two words such that exactly one
of them participates in at least one other link. We
also define a many-to-many feature as the number of
links that connect two words that both participate in
other links. We don’t use this directly in the model,
but to cut down on the number of alignments we
need to consider, we discard any alignments having
a non-zero value of the many-to-many feature.

the unlinked word feature To control the number
of words that get linked to something, we introduce
an unlinked word feature that simply counts the total
number of unlinked words in both sentences in an
aligned sentence pair.

2.2 The Conditional-Link-Probability-Based
Model

In this model we replace the LLR-based word asso-
ciation statistic with the logarithm of the estimated
conditional probability of two words (or combina-
tions of words) being linked, given that they co-
occur in a pair of aligned sentences. These estimates
are derived from the best alignments according to
some other, simpler model. For example, if for-
mer occurs 1000 times in English sentences whose
French translations contain ancien, and the simpler
alignment model links them in 600 of those sentence
pairs, we might estimate the conditional link proba-
bility (CLP) for this word pair as 0.6. We find it
better, however, to adjust these probabilities by sub-
tracting a small fixed discount from the link count:

LPd(f, e) =
links1(f, e)− d

cooc(f, e)

LPd(f, e) represents the estimated conditional link
probability for the words f and e, links1(f, e) is
the number of times they are linked by the simpler
alignment model, d is the discount, and cooc(f, e)
is the number of times they co-occur. This adjust-
ment prevents assigning high probabilities to links
between pairs of words that rarely co-occur.

An important difference between the LLR-based
model and CLP-based model is that the LLR-based
model considers each word-to-word link separately,
but allows multiple links per word, as long as they
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lead to an alignment consisting only of one-to-one
and one-to-many links (in either direction). In the
CLP-based model, however, we allow conditional
probabilities for both one-to-one and one-to-many
clusters, but we require all clusters to be disjoint.

For example, we estimate the conditional proba-
bility of linking not to ne...pas by considering the
number of sentence pairs in which not occurs in the
English sentence and both ne and pas occur in the
French sentence, compared to the number of times
not is linked to both ne and pas in pairs of corre-
sponding sentences. However, when we make this
estimate in the CLP-based model, we do not count a
link between not and ne...pas if the same instance of
not, ne, or pas is linked to any other words.

The CLP-based model incorporates the same ad-
dtional features as the LLR-based model, except that
it omits the one-to-many feature, since we assume
that the one-to-one vs. one-to-many trade-off is al-
ready modeled in the conditional link probabilities
for particular one-to-one and one-to-many clusters.

We have developed two versions of the CLP-
based model, using two different estimates for the
conditional link probabilities. One estimate of the
conditional link probabilities comes from the LLR-
based model described above, optimized on an an-
notated development set. The other estimate comes
from a heuristic alignment model that we previously
developed (Moore, 2005).2 Space does not permit
a full description of this heuristic model here, but
in brief, it utilizes a series of greedy searches in-
spired by Melamed’s competitive linking algorithm
(2000), in which constraints limiting alignments to
being one-to-one and monotonic are applied at dif-
ferent thresholds of the LLR score, with a final cut-
off of the LLR score below which no alignments are
made.

3 Alignment Search

While the discriminative models presented above
are very simple to describe, finding the optimal
alignment according to these models is non-trivial.
Adding a link for a new pair of words can affect the
nonmonotonicity scores, the one-to-many score, and
the unlinked word score differently, depending on

2The conditional link probabilities used in the current work
are those used in Method 4 of the earlier work. Full details are
provided in the reference.

what other links are present in the alignment. Never-
theless, we have found a beam-search procedure that
seems highly effective in finding good alignments
when used with these models.

For each sentence pair, we create a list of associa-
tion types and their corresponding scores, consisting
of the associations for which we have determined a
score and for which the words involved in the asso-
ciation type occur in the sentence pair.3 We sort the
resulting list of association types from best to worst
according to their scores.

Next, we initialize a list of possible alignments
with the empty alignment, assigning it a score equal
to the number of words in the sentence pair multi-
plied by the unlinked word weight. We then iterate
through our sorted list of association types from best
to worst, creating new alignments that add links for
all instances of the association type currently being
considered to existing alignments, potentially keep-
ing both the old and new alignments in our set of
possible alignments.

Without pruning, we would soon be overwhelmed
by a combinatorial explosion of alignments. The
set of alignments is therefore pruned in two ways.
First, we keep track at all times of the score of the
best alignment we have seen so far, and any new
alignment whose overall score is worse than the best
score so far by more than a fixed difference D is im-
mediately discarded. Second, for each instance of a
particular alignment type, when we have completed
creating modified versions of previous alignments to
include that instance, we merge the set of new align-
ments that we have created into the set of previous
alignments. When we do this merge, the resulting
set of alignments is sorted by overall score, and only
the N best alignments are kept, for a fixed N .

Some details of the search differ between the
LLR-based model and the CLP-based model. One
difference is how we add links to existing align-
ments. In both cases, if there are no existing links
involving any of the words involved in the new link,
we simply add it (keeping a copy of the original
alignment, subject to pruning).

If there are existing links involving word in-
stances also involved in the new link, the two mod-

3By association type we mean a possible link between a pair
of words, or, in the case of the CLP-based models, a possible
one-to-many or many-to-one linkage of words.
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els are treated differently. For the CLP-based model,
each association score is for a cluster of words that
must be disjoint from any other association cluster,
so when we add links for a new cluster, we must
remove any other links involving the same word in-
stances. For the LLR-based model, we can add ad-
ditional links without removing old ones, but the re-
sulting alignment may be worse due to the degra-
dation in the one-to-many score. We therefore add
both an alignment that keeps all previous links, and
an additional set of alignments, each of which omits
one of the previous links involving one of the word
instances involved in the new link.

The other difference in how the two models are
treated is an extra pruning heuristic we use in the
LLR-based model. In generating the list of associ-
ation types to be used in aligning a given sentence
pair, we use only association types which have the
best association score for this sentence pair for one
of the word types involved in the association. We
initially explored limiting the number of associa-
tions considered for each word type simply as an ef-
ficiency heuristic, but we were surprised to discover
that the most extreme form of such pruning actually
reduced alignment error rate over any less restrictive
form or not pruning on this basis at all.

4 Parameter Optimization

We optimize the feature weights using a modified
version of averaged perceptron learning as described
by Collins (2002). Starting with an initial set of
feature weight values, perceptron learning iterates
through the annotated training data multiple times,
comparing, for each sentence pair, the best align-
ment ahyp according to the current model with the
reference alignment aref . At each sentence pair, the
weight for each feature is is incremented by the dif-
ference between the value of the feature for the best
alignment according to the model and the value of
the feature for the reference alignment:

λi ← λi + (fi(aref , e, f)− fi(ahyp, e, f))

The updated feature weights are used to compute
ahyp for the next sentence pair.

Iterating through the data continues until the
weights stop changing, because aref = ahyp for
each sentence pair, or until some other stopping con-
dition is met. In the averaged perceptron, the feature

weights for the final model are the average of the
weight values over all the data rather than simply
the values after the final sentence pair of the final
iteration.

We make a few modifications to the procedure as
described by Collins. First, we average the weight
values over each pass through the data, rather than
over all passes, as we found this led to faster con-
vergence. After each pass of perceptron learning
through the data, we make another pass through the
data with feature weights fixed to their average val-
ues for the previous learning pass, to evaluate cur-
rent performance of the model. We iterate this pro-
cedure until a local optimum is found.

Next, we used a fixed weight of 1.0 for the word-
association feature, which we expect to be most im-
portant feature in the model. Allowing all weights to
vary allows many equivalent sets of weights that dif-
fer only by a constant scale factor. Fixing one weight
eliminates a spurious apparent degree of freedom.
This necessitates, however, employing a version of
perceptron learning that uses a learning rate param-
eter. As described by Collins, the perceptron up-
date rule involves incrementing each weight by the
difference in the feature values being compared. If
the feature values are discrete, however, the mini-
mum difference may be too large compared to the
unweighted association score. We therefore multi-
ply the feature value difference by a learning rate pa-
rameter η to allow smaller increments when needed:

λi ← λi + η(fi(aref , e, f)− fi(ahyp, e, f))

For the CLP-based model, based on the typical
feature values we expected to see, we guessed that
0.01 might be a good value for the learning rate pa-
rameter. That seemed to produce good results, so we
did not attempt to further optimize the learning rate
parameter for this model.

The situation with the LLR-based model was
more complicated. Our previous experience using
LLR scores in statistical NLP applications indicated
that with large data sets, LLR values can get very
high (upwards of 100000 for our 500000 sentence
pair corpus), but small difference could be signifi-
cant, which led us to believe that the same would
be true of the weight values we were trying to learn.
That meant that a learning rate small enough to let
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us converge on the desired weight values might take
a very large number of iterations through the data
to reach those values. We addressed this problem,
by using a progression of learning rates, starting at
1000, reducing each successive weight by an order
of magnitude, until we ended with a learning rate of
1.0. At each transition between learning rates, we re-
initialized the weights to the optimum values found
with the previous learning rate.

We experimented with one other idea for opti-
mizing the weight values. Perceptron learning does
not directly optimize error rate, but we have only
a small number of parameters that we need to op-
timize. We therefore thought it might be helpful
to apply a general optimization procedure directly
to the error rate, starting from the best parame-
ter values found by perceptron learning, using the
N -best alignments found with these parameter val-
ues. We experimented with both the downhill sim-
plex method (Press et al., 2002, Section 10.4) and
Powell’s method (Press et al., 2002, Section 10.5),
but we obtained slightly better results with a more
heuristic method designed to look past minor local
minima. We found that using this approach on top of
perceptron learning led to slightly lower error rates
on the development set with the CLP-based model,
but not with the LLR-base model, so we used it only
with the former in our final evaluations.

5 Data and Methodology for Evaluation

We evaluated our models using data from the bilin-
gual word alignment workshop held at HLT-NAACL
2003 (Mihalcea and Pedersen, 2003). We used
a subset of the Canadian Hansards bilingual cor-
pus supplied for the workshop, comprising 500,000
English-French sentences pairs, including 447 man-
ually word-aligned sentence pairs designated as test
data. The test data annotates particular pairs of
words either as “sure” or “possible” links. Auto-
matic sentence alignment of the training data was
provided by Ulrich Germann, and the hand align-
ments of the words in the test data were created by
Franz Och and Hermann Ney (Och and Ney, 2003).

Since our discriminative training approach re-
quires a small amount of annotated data for parame-
ter optimization, we split the test data set into two
virtually equal subsets, by randomly ordering the

test data pairs, and assigning alternate pairs from the
random order to the two subsets. We used one of
these subsets as a development set for parameter op-
timization, and held out the other for a final test set.

We report the performance of our alignment mod-
els in terms of precision, recall, and alignment error
rate (AER) as defined by Och and Ney (2003):

recall =
|A ∩ S|
|S|

precision =
|A ∩ P |
|A|

AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

In these definitions, S denotes the set of alignments
annotated as sure, P denotes the set of alignments
annotated possible or sure, and A denotes the set of
alignments produced by the method under test. Fol-
lowing standard practice in the field, we take AER,
which is derived from F-measure, as the primary
evaluation metric that we are attempting to optimize.

6 Experimental Results

We first trained the LLR-based model by perceptron
learning, using an N -best value of 20 and an un-
bounded allowable score difference in the alignment
search, using the development set as annotated train-
ing data. We then aligned all the sentences of length
100 or less in our 500,000 sentence pair corpus, us-
ing an N -best value of 20 and a maximum allowable
score difference of 125000. We collected link counts
and co-occurrence counts from these alignments for
estimating conditional link probabilities. We trained
CLP-based models from these counts for a range of
values for the discount used in the conditional link
probability estimation, finding a value of 0.4 to be a
roughly optimal value of the discount parameter for
the development set. We also trained a CLP-based
model using the conditional link probabilities from
the heuristic alignment model mentioned previously.
In training both CLP-based models, we also used
an N -best value of 20 and an unbounded allowable
score difference in the alignment search.

We evaluated three models on the final test data:
the LLR-based model (LLR) and the two CLP-based
models, one with conditional link probabilities from
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Alignment Recall Precision AER
LLR 0.829 0.848 0.160
CLP1 0.889 0.934 0.086
CLP2 0.898 0.947 0.075

Table 1: Discriminative Model Results.

Alignment Recall Precision AER
E→ F 0.870 0.890 0.118
F→ E 0.876 0.907 0.106
Union 0.929 0.845 0.124
Intersection 0.817 0.981 0.097
Refined 0.908 0.929 0.079

Table 2: IBM Model 4 Results.

the LLR-based model (CLP1), and one with condi-
tional link probabilities from the heuristic alignment
model (CLP2). All parameters were optimized on
the development set. Recall, precision, and align-
ment error rates on the test set are shown in Table 1.

For comparison, we aligned our parallel corpus
with IBM Model 4 using Och’s Giza++ software
package (Och and Ney, 2003).4 We used the de-
fault configuration file included with the version of
Giza++ that we used, which resulted in five itera-
tions of Model 1, followed by five iterations of the
HMM model, followed by five iterations of Model 4.
We trained the models in both directions, English-
to-French and French-to-English, and computed the
union, intersection, and what Och and Ney (2003)
call the “refined” combination of the two align-
ments. We evaluated the resulting alignments of the
final test set, with the results shown in Table 2.

As these tables show, our discriminatively trained
CLP-based models compare favorably to IBM
Model 4 on this data set. The one with condi-
tional link probabilities from the heuristic alignment
model, CLP2, performs slightly better than the best
of the Model 4 combinations, and the one with
conditional link probabilities from the LLR-based
model, CLP1, performs only slightly worse.

An interesting question is why CLP2 outper-
formed CLP1. CLP1 is the more “principled” model,
so one might have expected it to perform better. We
believe the most likely explanation is the fact that

4Thanks to Chris Quirk for carrying out this alignment.

CLP2 received 403,195 link probabilities from the
heuristic model, while CLP1 received only 144,051
link probabilities from the LLR-based model. Hence
CLP2 was able to consider more possible links.

In light of our claims about the ease of optimiz-
ing the models, we should make some comments
on the time need to train the parameters. Our cur-
rent implementation of the alignment search is writ-
ten in Perl, and is therefore quite slow. Alignment
of our 500,000 sentence pair corpus with the LLR-
based mode took over a day on a 2.8 GHz Pentium
IV workstation. Nevertheless, the parameter opti-
mization was still quite fast, since it took only a few
iterations over our 224 sentence pair development
set. With either the LLR-based or CLP-based mod-
els, one combined learning/evaluation pass of per-
ceptron training always took less than two minutes,
and it never took more that six passes to reach the
local optimum we took to indicate convergence. To-
tal training time was greater since we used multiple
runs of perceptron learning with different learning
rates for the LLR-based model and different condi-
tional link probability discounts for CLP1, but total
training time for each model was around an hour.

7 Related Work

When the first version of this paper was submitted
for review, we could honestly state, “We are not
aware of any previous work on discriminative word
alignment models.” Callison-Burch et al. (2004) had
investigated the use of small amounts of annotated
data to help train the IBM and HMM models, but the
models were still generative and were trained using
maximum-likelihood methods.

Recently, however, three efforts nearly simultane-
ous with ours have made use of discriminative meth-
ods to train alignment models. Fraser and Marcu
(2005) modify Model 4 to be a log-linear combina-
tion of 11 submodels (5 based on standard Model 4
parameters, and 6 based on additional features) and
discriminatively optimize the submodel weights on
each iteration of a Viterbi approximation to EM.

Liu et al. (2005) also develop a log-linear model,
based on IBM Model 3. They train Model 3 us-
ing Giza++, and then use the Model 3 score of a
possible alignment as a feature value in a discrim-
inatively trained log-linear model, along with fea-
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tures incorporating part-of-speech information, and
whether the aligned words are given as translations
in a bilingual dictionary. The log-linear model is
trained by standard maximum-entropy methods.

Klein and Taskar (2005), in a tutorial on maxi-
mum margin methods for natural-language process-
ing, described a weighted linear model incorporat-
ing association, position, and orthography features,
with its parameters trained by a structured-support-
vector-machine method. This model is in some re-
spects very similar to our LLR-based model, us-
ing Dice coefficient association scores where we use
LLR scores, and absolute position differences where
we use nonmonotonicity measures.

8 Conclusions

The results of our work and other recent efforts
on discriminatively trained alignment models show
that results comparable to or better than those ob-
tained with the IBM models are possible within a
framework that makes it easy to add arbitrary ad-
ditional features. After many years using the same
small set of alignment models, we now have an easy
way to experiment with a wide variety of knowledge
sources to improve word-alignment accuracy.
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Abstract

This paper presents a maximum entropy
word alignment algorithm for Arabic-
English based on supervised training data.
We demonstrate that it is feasible to cre-
ate training material for problems in ma-
chine translation and that a mixture of su-
pervised and unsupervised methods yields
superior performance. The probabilistic
model used in the alignment directly mod-
els the link decisions. Significant improve-
ment over traditional word alignment tech-
niques is shown as well as improvement on
several machine translation tests. Perfor-
mance of the algorithm is contrasted with
human annotation performance.

1 Introduction

Machine translation takes a source sequence,

S = [s1 s2 . . . sK ]

and generates a target sequence,

T = [t1 t2 . . . tM ]

that renders the meaning of the source sequence into
the target sequence. Typically, algorithms operate
on sentences. In the most general setup, one or more
source words can generate 0, 1 or more target words.
Current state of the art machine translation systems
(Och, 2003) use phrasal (n-gram) features extracted
automatically from parallel corpora. These phrases
are extracted using word alignment algorithms that
are trained on parallel corpora. Phrases, or phrasal
features, represent a mapping of source sequences
into a target sequences which are typically a few
words long.

In this paper, we investigate the feasibility of train-
ing alignment algorithms based on supervised align-
ment data. Although there is a modest cost associ-
ated with annotating data, we show that a reduction
of 40% relative in alignment error (AER) is possible
over the GIZA++ aligner (Och and Ney, 2003).

Although there are a number of other applications
for word alignment, for example in creating bilingual
dictionaries, the primary application continues to be
as a component in a machine translation system. We
test our aligner on several machine translation tests
and show encouraging improvements.

2 Related Work

Most of the prior work on word alignments has been
done on parallel corpora where the alignment at the
sentence level is also done automatically. The IBM
models 1-5 (Brown et al., 1993) produce word align-
ments with increasing algorithmic complexity and
performance. These IBM models and more recent
refinements (Moore, 2004) as well as algorithms that
bootstrap from these models like the HMM algo-
rithm described in (Vogel et al., 1996) are unsuper-
vised algorithms.

The relative success of these automatic techniques
together with the human annotation cost has delayed
the collection of supervised word-aligned corpora for
more than a decade.

(Cherry and Lin, 2003) recently proposed a di-
rect alignment formulation and state that it would
be straightforward to estimate the parameters given
a supervised alignment corpus. In this paper, we ex-
tend their work and show that with a small amount
of annotated data, together with a modeling strat-
egy and search algorithm yield significant gains in
alignment F-measure.
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Figure 1: Alignment example.

3 Algorithm

In order to describe the algorithm, we will need to
first describe the direct link model. Figure 1 shows
two sequences where the top sequence is considered
the source sequence and the bottom sequence the
target sequence. Each sequence can have auxilliary
information such as Arabic segmentation or English
WordNet (Miller, 1990) information as shown. Given
the source and target sequences, there are a number
of different ways to link each target word to a source
word. Each target word has a link li which indi-
cates which source position it links to. The range
of li is from 0 to K and there are M of these links.
The source word position 0 is used to indicate NULL
which we imagine gives rise to unaligned English
words. In this paper, we refer to these words as be-
ing spontaneous. A valid link configuration has M
links. Define L to be the set of all possible valid link
configurations, and L to be a member of that set.
We seek to maximize the alignment probability by
finding the optimum link configuration Lopt,

p(Lopt|S, T ) = argmax
L∈L

p(L|S, T )

= p(lMi |tM
1
, sK

1
)

=
M
∏

i=0

p(li|t
M
1
, sK

1
, li−1

1
).

We factor this into a transition model and an obser-
vation model,

p(L|S, T ) =
1

Z

M
∏

i=0

p(li|li−1)
αp(li|t

M
1
, sK

1
, li−1

1
)1−α.

where Z is the normalizing constant.

We factor the model as above so that the tran-
sition model computation, which uses information
available on the search hypotheses, is reduced during
the search process. In the aligner presented here, α
is always set to 0.5. Next we will describe the tran-
sition model, then the observation model and finally
the experiments in alignment and machine transla-
tion.

In the IBM Model 1 aligner, the choice of the lan-
guage to serve as states of the search algorithm is not
prescribed, but practically the choice is important as
it affects performance. To see this, note that in gen-
erative models an input word can only be aligned to
a single state in the search. In our current situa-
tion, we are interested in aligning unsegmented Ara-
bic words and typical words have a few affixes to
indicate for example pronouns, definiteness, prepo-
sitions and conjunctions. In English these are sepa-
rate words, and therefore to maximize performance
the unsegmented Arabic words serve as states in the
search algorithm and we align English words to these
states.

3.1 Transition Model

The transition model tends to keep the alignments
close together and penalizes alignments in which ad-
jacent words in the target language come from very
distant words in the source language. Also, we would
like to penalize many English words coming from the
same Arabic state; we call this the state visit penalty
and will be described later. In this paper, we use a
parametric form for the transition model,

p(li|li−1) =
1

Z(li−1)

[

1

dist(li, li−1)
+

1

ns(li)

]

(1)
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where ns(i) represents the state visit penalty for
state i, Z(li−1) is the normalization constant and

dist(li, li−1) = min(|li − li−1|, |li − fi|) + a.

Here a is a penalty for a zero distance transition and
is set to 1 in the experiments below. The min op-
erator chooses the lowest cost transition distance ei-
ther from the previous state or the frontier state, fi,
which is the right most state that has been visited
(even though Arabic is normally displayed right to
left, we make our Arabic state graphs from left to
right). This is a language specific criteria and in-
tended to model the adjective noun reversal between
English and Arabic. Once the current noun phrase
is completed, the next word often aligns to the state
just beyond frontier state. As an example, in Fig-
ure 1, the verb ‘pointed’ aligns to the first Arabic
word ‘wA$Art’, and aligning the ‘to’ to its Arabic
counterpart ‘Aly’ would incur normally a distance of
3 but with the frontier notion it incurs only a penalty
of 1 on the hypothesis that aligns the word ‘second’
to ‘AlvAnyp’. In this alignment with the frontier no-
tion, there are only distance 1 transitions, whereas
the traditional shapes would incur a penalty of 2 for
alignment of ‘pointed’ and a penalty of 3 for the word
‘to’.

The state visit penalty, ns(i) is the distance be-
tween the English words aligned to this state times
the number of state visits1. This penalty controls
the fertility of the Arabic words. To determine the
English words that aligned to the Arabic position,
the search path is traced back for each hypothe-
sis and a sufficiently large beam is maintained so
that alignments in the future can correct past align-
ment decisions. This penalty allows English deter-
miners and prepositions to align to the Arabic con-
tent word while penalizing distant words from align-
ing to the state. In terms of alignment F-measure
to be described below, the state visit penalty, if re-
moved makes the performance degrade from F=87.8
to F=84.0 compared to removing the frontier notion
which only degrades performance to F=86.9.

3.2 Observation Model

The observation model measures the linkage of the
source and target using a set of feature functions
defined on the words and their context. In Figure 1,
an event is a single link from an English word to
an Arabic state and the event space is the sentence
pair. We use the maximum entropy formulation (e.g.
(Berger et al., 1996)),

1We are overloading the word ‘state’ to mean Arabic
word position.

f = ψ(li)

h =
[

ti−1

1
, sK

1

]

p(f |h) =
1

Z(h)
exp

∑

i

λiφi(h, f),

where Z(h) is the normalizing constant,

Z(h) =
∑

f

exp
∑

i

λiφi(h, f).

and φi(h, f) are binary valued feature functions. The
function ψ selects the Arabic word at the position
being linked or in the case of segmentation features,
one of the segmentations of that position. We re-
strict the history context to select from the current
English word and words to the left as well as the
current word’s WordNet (Miller, 1990) synset as re-
quired by the features defined below. As in (Cherry
and Lin, 2003), the above functions simplify the con-
ditioning portion, h by utilizing only the words and
context involved in the link li. Training is done us-
ing the IIS technique (Della Pietra et al., 1995) and
convergence often occurs in 3-10 iterations. The five
types of features which are utilized in the system are
described below.

Phrase to phrase (for example, idiomatic phrases)
alignments are intepreted as each English word com-
ing from each of the Arabic words.

3.2.1 Lexical Features

The lexical features are similar to the translation
matrix of the IBM Model 1. However, there is a sign-
ficant out of vocabulary (OOV) issue in the model
since training data is limited. All words that have
a corpus frequency of 1 are left out of the model
and classed into an unknown word class in order to
explicitly model connecting unknown words. From
the training data we obtain 50K lexical features, and
applying the Arabic segmenter obtain another 17K
lexical features of the form φ(English content word,
Arabic stem).

3.2.2 Arabic Segmentation Features

An Arabic segmenter similar to (Lee et al., 2003)
provides the segmentation features. A small dictio-
nary is used (with 71 rules) to restrict the set of Ara-
bic segments that can align to English stopwords, for
example that ‘the’ aligns to ‘Al#’ and that ‘for’, ‘in’
and ‘to’ align to ‘b#’ and ‘her’ aligns with the suf-
fix ‘+hA’. Segmentation features also help align un-
known words, as stems might be seen in the training
corpus with other prefixes or suffixes. Additionally,
the ability to align the prefix and suffix accurately,
tends to ‘drag’ the unknown stem to its English tar-
get.
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3.2.3 WordNet Features

WordNet features provide normalization on the
English words. The feature is instantiated for nouns,
adjectives, adverbs and verbs following their defini-
tions in WordNet. If the Arabic word has a seg-
mentation then the feature is φ(WordNet synset id,
Arabic stem), otherwise it is φ(WordNet synset id,
Arabic word). The feature ties together English syn-
onyms and helps improve recall of the aligner.

3.2.4 Spelling Feature

The spelling feature is applied only on unknown
words and is used to measure the string kernel dis-
tance(Lodhi et al., 2000) between romanized Arabic
and English words. The feature is designed primar-
ily to link unknown names. For example, ‘Clinton’
is written as ‘klyntwn’ in one of its romanized Ara-
bic versions. In a sentence, measuring the string ker-
nel distance shows a correlation between these names
even though there is not much overlap between the
characters. The feature has four possible values: no-
match, somematch, goodmatch, and exact.

3.2.5 Dynamic Features

Dynamic features are defined on the lattice of the
search algorithm. These features fire when the pre-
vious source and target word pair are linked. For
example, one such feature is ‘b# in’ and if on the
hypothesis we have just linked this pair and the next
English word is being aligned to the stem of the Ara-
bic word where this prefix occurs, this feature fires
and boosts the probability that the next words are
aligned. The basic intuition behind this feature is
that words inside prepositional phrases tend to align,
which is similar to the dependency structure feature
of (Cherry and Lin, 2003).

At training time, the lattice reduces to the sin-
gle path provided by the annotation. Since this fea-
ture tends to suffer from the drag of function words,
we insist that the next words that are being linked
have at least one feature that applies. All word pairs
linked in the training data have lexical features as de-
scribed above, and if both source and target words
are unknown they have a single feature for their link.
Applying dynamic features on words that have at
least one other feature prevents words which are com-
pletely unrelated from being linked because of a fea-
ture about the context of the words.

Two types of dynamic features are distinguished:
(a) English word with Arabic prefix/suffix and (b)
English word with Arabic stem.

4 Smoothing the Observation Model

Since the annotated training data for word alignment
is limited and a much larger parallel corpus is avail-
able for other aligners, we smooth the observation

Anno. 1 Anno. 1’ Anno. 2
Correction

Anno. 1 96.5 92.4 91.7
Anno. 1’ 95.2 — 93.2

Table 1: F-measure for human performance on word
alignment for Arabic-English.

probability with an IBM Model 1 estimate,

p(li|t
M
1
, sK

1
) =

1

Z
pME(li|t

M
1
, sK

1
)βpM1(s|ti)

1−β .

where β is set to 0.9 in the experiments below. In
the equation above, the s represents the Arabic word
that is being linked from the English word ti.

When β is set to 1.0 there is no smoothing per-
formed and performance degrades to F=84.0 from
the best system performance (F=87.8). When β is
set to 0, the model uses only the IBM Model 1 distri-
bution and the resulting aligner is similar to an HMM
aligner with the transition shape discussed above and
yields performance of F=73.2.

5 Search Algorithm

A beam search algorithm is utilized with the English
words consumed in sequence and the Arabic word
positions serving as states in the search process. In
order to take advantage of the transition model de-
scribed above, a large beam must be maintained. To
see this, note that English words often repeat in a
sentence and the models will tend to link the word
to all Arabic positions which have the same Ara-
bic content. In traditional algorithms, the Markov
assumption is made and hypothesis are merged if
they have the same history in the previous time step.
However, here we maintain all hypotheses and merge
only if the paths are same for 30 words which is the
average sentence length.

6 Experimental Data

We have word aligned a portion of the Arabic Tree-
bank (4300 sentences) and material from the LDC
news sources (LDC, 2005) to obtain a total of 10.3K
sentence pairs for training. As a test of alignment,
we use the first 50 sentences of the MT03 Evaluation
test set which has 1313 Arabic words and 1528 En-
glish words 2. In terms of annotation guidelines, we
use the following instructions: (a) Align determiners
to their head nouns, (b) Alignments are done word
by word unless the phrase is idiomatic in which case
the entire phrase to phrase alignment was marked,
(c) spontaneous words are marked as being part of a

2The test data is available by contacting the authors.
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1K 3K 5K 7K 9K 10.3K
# of features 15510 32111 47962 63140 73650 80321
English % OOV 15.9 8.2 5.5 4.4 4.05 3.6
Arabic % OOV 31 19.6 15.6 13.2 10.8 10.3
F-measure 83.2 85.4 86.5 87.4 87.5 87.8

Table 2: Varying Training data size.

phrase wherever possible but left unaligned if there
is no evidence to link the word.

In order to measure alignment performance, we
use the standard AER measure (Och and Ney, 2000)
but consider all links as sure. This measure is then
related to the F-measure which can be defined in
terms of precision and recall as

Precision The number of correct word links over
the total number of proposed links.

Recall The number of correct word links over the
total number of links in the reference.

and the usual definition of the F-measure,

F =
2PR

(R+ P )

and define the alignment error as AER = 1 − F .
In this paper, we report our results in terms of F-
measure over aligned links. Note that links to the
NULL state (unaligned English words) are not in-
cluded in the F-measure. Systems are compared rel-
ative to the reduction in AER.

6.1 Annotator Agreement

We measure intra/inter-annotator agreement on the
test set in order to determine the feasibility of hu-
man annotation of word links. These are shown in
Table 1. In the table, the column for ‘Annotator 1
Correction’ is the first annotator correcting his own
word alignments after a span of a year. After two
weeks, the annotator (Annotator 1’) was given the
same material with all the links removed and asked
to realign and we see that there is more discrepancy
in resulting alignments. The differences are largely
on the head concept where determiners are attached
and the alignment of spontaneous words. The perfor-
mance with a second annotator is in the same range
as the reannotation by a single annotator.

7 Experiments

In order to evaluate the performance of the algo-
rithm, we investigate the effect due to: (a) increasing
the training data size, (b) additional feature types,
and (c) comparable algorithms.

7.1 Training Data Size

We varied the training data size from 1K sentences to
the complete set in Table 2. Each batch re-estimates
the unknown word class by creating a vocabulary
on the training set. The trend indicates a reasonable
progression of performance and more data is required
to determine the saturation point.

7.2 Feature Types

The results obtained by different feature sets are
shown in Table 3. Each feature type was added incre-
mentally (Add Feature column) to the line above to
determine the effect of the individual feature types
and then removed incrementally from the full sys-
tem (Subtract Feature column) in order to see the
final effect. The results indicate that lexical features
are the most important type of feature; segmenta-
tion features further reduce the AER by 15.8%. The
other features add small gains in performance which,
although are not statistically significant for the align-
ment F-measure, are important in terms of feature
extraction. Segmentation features discussed above
result in both suffix and prefix features as well as
stem features. In the Subtract column, for the seg-
mentation feature, only the suffix and prefix features
were removed. This result indicates that most of the
alignment improvement from the segmentation fea-
ture comes in the form of new lexical features to link
Arabic stems and English words.

7.3 Comparison to other alignment

algorithms

In order to gauge the performance of the algorithm
with respect to other alignment strategies, we pro-
vide results using GIZA++ and an HMM Max Poste-
rior Algorithm (Ge, 2004). These algorithms, as well
as the Model 1 smoothing for the MaxEnt aligner,
are all trained on a corpus of 500K sentence pairs
from the UN parallel corpus and the LDC news cor-
pora released for 2005 (LDC, 2005). Note that these
algorithms are unsupervised by design but we utilize
them to have a baseline for comparing the perfor-
mance of this supervised approach.

7.3.1 HMM Max Posterior Aligner

The maximum-posterior word alignments are ob-
tained by finding the link configuration that maxi-
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System # of Add Subtract
feats Feature Feature

Word pairs 50070 85.03 76.3
Spelling 4 85.11 87.7
Segmentation 70 87.39 87.5(*)
WordNet 13789 87.54 87.5
Dynamic-Words 1952 87.80 87.1
Dynamic-Segmentation 42 87.84 87.8

Table 3: Alignment performance in terms of the feature types utilized.

F-Measure
GIZA++ 79.5
HMM 76.3
MaxEnt 87.8

Table 4: Alignment performance

mizes the posterior state probability. In contrast, in
performing a Viterbi alignment, we compute the best
state sequence given the observation. The maximum
posterior computes the best state one at a time and
iterates over all possible combinations. Once we find
the maximum in the posterior probability matrix,
we also know the corresponding state and observa-
tion which is nothing but the word pair (sj , ti). We
will then align the pair and continue to find the next
posterior maximum and align the resulting pair. At
each iteration of the process, a word pair is aligned.
The process is repeated until either every word in one
(or both) language is aligned or no more maximum
can be found, whichever happens first.

7.3.2 GIZA Alignment

In order to contrast our algorithm, we ran
GIZA++ in the standard configuration which im-
plies 5 iterations of IBM Model 1, HMM, Model 3
and Model 4. All parameters are left to their default
values.

The results using the three different aligners is
shown in Table 4. The reduction in AER over the
GIZA++ system is 40.5% and over the HMM sys-
tem is 48.5%. The Wilcoxon signed-rank test yields
a probability of 0.39 for rejecting the GIZA++ align-
ment over the HMM alignment, whereas the MaxEnt
algorithm should be rejected with a probability of
1.7e-6 over the HMM algorithm and similarly Max-
Ent should be rejected with a probability of 0.9e-
6 over the GIZA++ algorithm. These significance
tests indicate that the MaxEnt algorithm presented
above is significantly better than either GIZA++ or
HMM.

Figure 2: An alignment showing a split link from an
Arabic word.

8 Phrase Extraction

Once an alignment is obtained, phrases which sat-
isfy the inverse projection constraint are extracted
(although earlier this constraint was called consis-
tent alignments (Och et al., 1999)). This constraint
enforces that a sequence of source words align to a
sequence of target words as defined by the lowest and
highest target index, and when the target words are
projected back to the source language through the
alignment, the original source sequence is retrieved.
Examination of the hand alignment training data
showed that this criteria is often violated for Ara-
bic and English. Prepositional phrases with adjec-
tives often require a split– for example, the align-
ment shown in Figure 2 has ‘of its relations’ aligned
to a word in Arabic and ‘tense’ aligned to the next
word. The inverse projection constraint fails in this
case, and in the experiments below, we relax this con-
straint and generate features for single source words
as long as the target phrase has a gap less than 2
English words. This relaxation allows a pair of ad-
jectives to modify the head noun. In future work we
explore the use of features with variables to be filled
at decode time.

9 Translation Experiments

The experiments in machine translation are carried
out on a phrase based decoder similar to the one de-
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MT03 MT04 MT05
GIZA++ 0.454 — —
HMM 0.459 0.419 0.456
MaxEnt 0.468 0.433 0.451
Combined 0.479 0.437 0.465

Significance 0.017 0.020 —

Table 5: Machine Translation Performance using the
NIST 2005 Bleu scorer

scribed in (Tillmann and Ney, 2003). In order to con-
trast the performance of the extracted features, we
compare the translation performance to (a) a system
built from alignments proposed by an HMM Max
Posterior Aligner, and (b) a system built from GIZA
alignments. All other parameters of the decoder re-
main constant and only the feature set is changed for
these experiments. As training data, we use the UN
parallel corpus and the LDC news corpora released
in 2005. Comparison should therefore be only made
across systems reported here and not to earlier eval-
uations or other systems. The results are shown in
Table 5.

Combination of the phrasal features from the
HMM and MaxEnt alignments results in the ‘Com-
bined’ system. The Combined system performs bet-
ter in all cases; in MT03 and MT04 the MaxEnt
derived features perform better than the HMM sys-
tem. In MT05, there is a slight degradation which is
not significant and the combination system still re-
sults in an improvement over either system. Since
the MaxEnt aligner has access to a unique resource,
every attempt was made to make that resource avail-
able to the other systems. Although GIZA++ and
HMM can not directly utilize word aligned data, the
training data for MaxEnt was converted to paral-
lel sentences where each sentence has only the pair
of linked words. The resulting numbers make both
HMM and GIZA much closer in performance to the
MaxEnt aligner but the results are better for com-
paring alignment methods.

10 Error Analysis and Discussion

The alignment errors made by the system can be
attributed to

• English words that require multi-word Arabic
states, for example (a) dates which are written
in Arabic in more than one form ‘kAnwn Al-
vAny / ynAyr’ for ‘january’, and (b) compound
words like ‘rAm Allh’ in English is ‘Ramallah’.

• Rare translation of a common Arabic word as
well as a common English word used as the
translation for a rare Arabic word.

• Parallel corpora mismatch: training material for
translation is processed at a document level and
yet systems often operate at a sentence level.
Human translators often use pronouns for ear-
lier mentioned names although in the source lan-
guage the name is repeated. Information which
is sometimes repeated in the source in an ear-
lier sentence is dropped in future sentences of
the document. Document level features are re-
quired to allow the system to have information
to leave these words unaligned.

Figure 3 shows a human alignment on the left and
a machine output on the right. The columns next
to the words indicate whether the alignments are
‘good’ or ‘extra’ which indicates that these words
are aligned to the special NULL state. There are two
examples of multi-word Arabic states shown: (a) for
‘january’, and (b) the English word ‘agenda’. The
system aligns ‘the’ before committee and it seems
in this case its an annotation error. In this exam-
ple the Arabic words lnAHyp, AltnZym, wAlAEdAd
and Allwjsty are all unknown words in the vocabu-
lary yet the system managed to link 3 out 4 words
correctly.

While significant gains have been made in align-
ment performance, these gains have not directly
translated to machine translation improvements. In
fact, although the GIZA system is better than the
HMM system at alignment, the machine translation
result on MT03 indicates a slight degradation (al-
though it is not statistically significant). The prime
reason for this is that features extracted from the
alignments are aggregated over the training corpus
and this process helps good alignments to have signif-
icantly better counts than errors in alignment. Align-
ing rare words correctly should help performance but
since their count is low it is not reflected in bleu
scores.

11 Conclusion and Future Work

This paper presented a word aligner trained on anno-
tated data. While the performance of the aligner is
shown to be significantly better than other unsuper-
vised algorithms, the utility of these alignments in
machine translation is still an open subject although
gains are shown in two of the test sets. Since features
are extracted from a parallel corpus, most of the in-
formation relating to the specific sentence alignment
is lost in the aggregation of features across sentences.
Improvements in capturing sentence context could
allow the machine translation system to use a rare
but correct link appropriately.

Another significant result is that a small amount
(5K sentences) of word-aligned data is sufficient for
this algorithm since a provision is made to handle
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Figure 3: An example sentence with human output on the left and system output on the right.

unknown words appropriately.
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Abstract

Entity detection and tracking (EDT) is
the task of identifying textual mentions
of real-world entities in documents, ex-
tending the named entity detection and
coreference resolution task by consider-
ing mentions other than names (pronouns,
definite descriptions, etc.). Like NE tag-
ging and coreference resolution, most so-
lutions to the EDT task separate out the
mention detection aspect from the corefer-
ence aspect. By doing so, these solutions
are limited to using only local features for
learning. In contrast, by modeling both
aspects of the EDT task simultaneously,
we are able to learn using highly com-
plex, non-local features. We develop a
new joint EDT model and explore the util-
ity of many features, demonstrating their
effectiveness on this task.

1 Introduction
In many natural language applications, such as au-
tomatic document summarization, machine transla-
tion, question answering and information retrieval,
it is advantageous to pre-process text documents to
identify references to entities. An entity, loosely
defined, is a person, location, organization or geo-
political entity (GPE) that exists in the real world.
Being able to identify references to real-world enti-
ties of these types is an important and difficult natu-
ral language processing problem. It involves finding
text spans that correspond to an entity, identifying

what type of entity it is (person, location, etc.), iden-
tifying what type of mention it is (name, nominal,
pronoun, etc.) and finally identifying which other
mentions in the document it corefers with. The dif-
ficulty lies in the fact that there are often many am-
biguous ways to refer to the same entity. For exam-
ple, consider the two sentences below:

Bill ClintonNAM
PER–1 gave a speech today to

the SenateNAM
ORG–2 . The PresidentNOM

PER–1 outlined
hisPRO

PER–1 plan for budget reform to themPRO
ORG–2 .

There are five entity mentions in these two sen-
tences, each of which is underlined (the correspond-
ing mention type and entity type appear as super-
scripts and subscripts, respectively, with coreference
chains marked in the subscripts), but only two enti-
ties: � Bill Clinton, The president, his � and � the
Senate, them � . The mention detection task is to
identify the entity mentions and their types, without
regard for the underlying entity sets, while corefer-
ence resolution groups a given mentions into sets.

Current state-of-the-art solutions to this problem
split it into two parts: mention detection and coref-
erence (Soon et al., 2001; Ng and Cardie, 2002; Flo-
rian et al., 2004). First, a model is run that attempts
to identify each mention in a text and assign it a type
(person, organization, etc.). Then, one holds these
mentions fixed and attempts to identify which ones
refer to the same entity. This is typically accom-
plished through some form of clustering, with clus-
tering weights often tuned through some local learn-
ing procedure. This pipelining scheme has the sig-
nificant drawback that the mention detection module
cannot take advantage of information from the coref-
erence module. Moreover, within the coreference
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task, performing learning and clustering as separate
tasks makes learning rather ad-hoc.

In this paper, we build a model that solves the
mention detection and coreference problems in a
simultaneous, joint manner. By doing so, we are
able to obtain an empirically superior system as well
as integrate a large collection of features that one
cannot consider in the standard pipelined approach.
Our ability to perform this modeling is based on the
Learning as Search Optimization framework, which
we review in Section 2. In Section 3, we describe
our joint EDT model in terms of the search proce-
dure executed. In Section 4, we describe the features
we employ in this model; these include the stan-
dard lexical, semantic (WordNet) and string match-
ing features found in most other systems. We ad-
ditionally consider many other feature types, most
interestingly count-based features, which take into
account the distribution of entities and mentions
(and are not expressible in the binary classification
method for coreference) and knowledge-based fea-
tures, which exploit large corpora for learning name-
to-nominal references. In Section 5, we present our
experimental results. First, we compare our joint
system with a pipelined version of the system, and
show that joint inference leads to improved perfor-
mance. Next, we perform an extensive feature com-
parison experiment to determine which features are
most useful for the coreference task, showing that
our newly introduced features provide useful new in-
formation. We conclude in Section 6.

2 Learning as Search Optimization
When one attempts to apply current, standard ma-
chine learning algorithms to problems with combi-
natorial structured outputs, the resulting algorithm
implicitly assumes that it is possible to find the
best structures for a given input (and some model
parameters). Furthermore, most models require
much more, either in the form of feature expecta-
tions for conditional likelihood-based methods (Laf-
ferty et al., 2001) or local marginal distributions
for margin-based methods (Taskar et al., 2003). In
many cases—including EDT and coreference—this
is a false assumption. Often, we are not able to find
the best solution, but rather must employ an approx-
imate search to find the best possible solution, given
time and space constraints. The Learning as Search

Algo Learn(problem, initial, enqueue, � , � , � )
nodes � MakeQueue(MakeNode(problem,initial))
while nodes is not empty do

node � RemoveFront(nodes)
if none of nodes �
	 node � is � -good or

GoalTest(node) and node is not � -good then
sibs � siblings(node, � )��� update( � , � , sibs, node � nodes)
nodes � MakeQueue(sibs)

else
if GoalTest(node) then return �
next � Operators(node)
nodes � enqueue(problem, nodes, next, � )

end if
end while

Figure 1: The generic search/learning algorithm.

Optimization (LaSO) framework exploits this diffi-
culty as an opportunity and seeks to find model pa-
rameters that are good within the context of search.

More formally, following the LaSO framework,
we assume that there is a set of input structures 

and a set of output structures � (in our case, ele-
ments ����
 will be documents and elements �����
will be documents marked up with mentions and
their coreference sets). Additionally, we provide the
structure of a search space � that results in elements
of � (we will discuss our choice for this component
later in Section 3). The LaSO framework relies on
a monotonicity assumption: given a structure �����
and a node � in the search space, we must be able
to calculate whether it is possible for this node � to
eventually lead to � (such nodes are called � -good).

LaSO parameterizes the search process with a
weight vector ������� , where weights correspond
to features of search space nodes and inputs. Specif-
ically, we write ��� 
"!��$#%�&� as a function that
takes a pair of an input � and a node in the search
space � and produces a vector of features. LaSO
takes a standard search algorithm and modifies it to
incorporate learning in an online manner to the algo-
rithm shown in Figure 1. The key idea is to perform
search as normal until a point at which it becomes
impossible to reach the correct solution. When this
happens, the weight vector � is updated in a correc-
tive fashion. The algorithm relies on a parameter up-
date formula; the two suggested by (Daumé III and
Marcu, 2005) are a standard Perceptron-style update
and an approximate large margin update of the sort
proposed by (Gentile, 2001). In this work, we only
use the large margin update, since in the original
LaSO work, it consistently outperformed the sim-
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pler Perceptron updates. The update has the form
given below:�'� proj ()�+*-,/.1032547698;:8�< proj

=?>@BA sibs C ()�3DFE :G
sibs

G�H >@IA nodes C ()�3DJE :G
nodes

GLK
Where M is the update number, N is a tunable param-
eter and proj projects a vector into the unit sphere.

3 Joint EDT Model
The LaSO framework essentially requires us to spec-
ify two components: the search space (and corre-
sponding operations) and the features. These two are
inherently tied, since the features rely on the search
space, but for the time being we will ignore the issue
of the feature functions and focus on the search.

3.1 Search Space
We structure search in a left-to-right decoding
framework: a hypothesis is a complete identifica-
tion of the initial segment of a document. For in-
stance, on a document with O words, a hypothesis
that ends at position P-QR�$Q�O is essentially what
you would get if you took the full structured output
and chopped it off at word � . In the example given in
the introduction, one hypothesis might correspond to
“Bill Clinton gave a” (which would be a � -good hy-
pothesis), or to “Bill Clinton gave a” (which would
not be a � -good hypothesis).

A hypothesis is expanded through the application
of the search operations. In our case, the search pro-
cedure first chooses the number of words it is going
to consume (for instance, to form the mention “Bill
Clinton,” it would need to consume two words).
Then, it decides on an entity type and a mention type
(or it opts to call this chunk not an entity (NAE), cor-
responding to non-underlined words). Finally, as-
suming it did not choose to form an NAE, it decides
on which of the foregoing coreference chains this
entity belongs to, or none (if it is the first mention of
a new entity). All these decisions are made simulta-
neously, and the given hypothesis is then scored.

3.2 An Example
For concreteness, consider again the text given in
the introduction. Suppose that we are at the word
“them” and the hypothesis we are expanding is cor-
rect. That is, we have correctly identified “Bill Clin-
ton” with entity type “person” and mention type

“name;” that we have identified “the Senate” with
entity type “organization” and mention type “name;”
and that we have identified both “The President” and
“his” as entities with entity type “person” and men-
tion types “nominal” and “pronoun,” respectively,
and that “The President” points back to the chainS
Bill Clinton T and that “his” points back to the chainS
Bill Clinton, The President T .

At this point of search, we have two choices for
length: one or two (because there are only two words
left: “them” and a period). A first hypothesis would
be that the word “them” is NAE. A second hypothe-
sis would be that “them” is a named person and is a
new entity; a third hypothesis would be that “them”
is a named person and is coreference with the “Bill
Clinton” chain; a fourth hypothesis would be that
“them” is a pronominal organization and is a new
entity; next, “them” could be a pronominal organiza-
tion that is coreferent with “the Senate”; and so on.
Similar choices would be considered for the string
“them .” when two words are selected.

3.3 Linkage Type

One significant issue that arises in the context of as-
signing a hypothesis to a coreference chain is how to
compute features over that chain. As we will discuss
in Section 4, the majority of our coreference-specific
features are over pairs of chunks: the proposed new
mention and an antecedent. However, since in gen-
eral a proposed mention can have well more than one
antecedent, we are left with a decision about how to
combine this information.

The first, most obvious solution, is to essentially
do nothing: simply compute the features over all
pairs and add them up as usual. This method, how-
ever, intuitively has the potential for over-counting
the effects of large chains. To compensate for this,
one might advocate the use of an average link com-
putation, where the score for a coreference chain is
computed by averaging over its elements. One might
also consider a max link or min link scenario, where
one of the extrema is chosen as the value. Other re-
search has suggested that a simple last link, where a
mention is simply matched against the most recent
mention in a chain might be appropriate, while first
link might also be appropriate because the first men-
tion of an entity tends to carry the most information.

In addition to these standard linkages, we also
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consider an intelligent link scenario, where the
method of computing the link structure depends on
the mention type. The intelligent link is computed
as follow, based on the mention type of the current
mention, U :

If UWV NAM then: match first on NAM elements
in the chain; if there are none, match against the
last NOM element; otherwise, use max link.

If UWV NOM then: match against the max NOM in
the chain; otherwise, match against the most
last NAM; otherwise, use max link.

If UWV PRO then: use average link across all PRO
or NAM; if there are none, use max link.

The construction of this methodology as guided
by intuition (for instance, matching names against
names is easy, and the first name tends to be the most
complete) and subsequently tuned by experimenta-
tion on the development data. One might consider
learning the best link method, and this may result in
better performance, but we do not explore this op-
tion in this work. The initial results we present will
be based on using intelligent link, but we will also
compare the different linkage types explicitly.

4 Feature Functions
All the features we consider are of the form base-
feature ! decision-feature, where base features are
functions of the input and decisions are functions of
the hypothesis. For instance, a base feature might be
something like “the current chunk contains the word
’Clinton”’ and a decision feature might be some-
thing like “the current chunk is a named person.”

4.1 Base Features
For pedagogical purposes and to facility model com-
parisons, we have separated the base features into
eleven classes: lexical, syntactic, pattern-based,
count-based, semantic, knowledge-based, class-
based, list-based, inference-based, string match fea-
tures and history-based features. We will deal with
each of these in turn. Finally, we will discuss how
these base features are combined into meta-features
that are actually used for prediction.

Lexical features. The class of lexical features
contains simply computable features of single
words. This includes: the number of words in the
current chunk; the unigrams (words) contained in

this chunk; the bigrams; the two character prefixes
and suffixes; the word stem; the case of the word,
computed by regular expressions like those given by
(Bikel et al., 1999); simple morphological features
(number, person and tense when applicable); and, in
the case of coreference, pairs of features between the
current mention and an antecedent.

Syntactic features. The syntactic features are
based on running an in-house state of the art part
of speech tagger and syntactic chunker on the data.
The words include unigrams and bigrams of part of
speech as well as unigram chunk features. We have
not used any parsing for this task.

Pattern-based features. We have included a
whole slew of features based on lexical and part of
speech patterns surrounding the current word. These
include: eight hand-written patterns for identifying
pleonastic “it” and “that” (as in “It is raining” or
“It seems to be the case that . . . ”); identification
of pluralization features on the previous and next
head nouns (this is intended to help make decisions
about entity types); the previous and next content
verb (also intended to help with entity type identi-
fication); the possessor or possessee in the case of
simple possessive constructions (“The president ’s
speech” would yield a feature of “president” on the
word “speech”, and vice-versa; this is indented to
be a sort of weak sub-categorization principle); a
similar feature but applied to the previous and next
content verbs (again to provide a weak sort of sub-
categorization); and, for coreference, a list of part of
speech and word sequence patterns that match up to
four words between nearby mentions that are either
highly indicative of coreference (e.g., “of,” “said,”
“am” “, a”) or highly indicative of non-coreference
(e.g., “’s,” “and,” “in the,” “and the”). This last set
was generated by looking at intervening strings and
finding the top twenty that had maximal mutual in-
formation with with class (coreferent or not corefer-
ent) across the training data.

Count-based features. The count-based features
apply only to the coreference task and attempt to
capture regularities in the size and distribution of
coreference chains. These include: the total num-
ber of entities detected thus far; the total number
of mentions; the entity to mention ratio; the entity
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to word ratio; the mention to word ratio; the size
of the hypothesized entity chain; the ratio of the
number of mentions in the current entity chain to
the total number of mentions; the number of inter-
vening mentions between the current mention and
the last one in our chain; the number of intervening
mentions of the same type; the number of interven-
ing sentence breaks; the Hobbs distance computed
over syntactic chunks; and the “decayed density”
of the hypothesized entity, which is computed asXRY[Z]\ P_^a`cbed Y&fhg X�Y P_^a`cbed Y[f , where U ranges over
all previous mentions (constrained in the numerator
to be in the same coreference chain as our mention)
and ikjlU�m is the number of entities away this men-
tion is. This feature is captures that some entities
are referred to consistently across a document, while
others are mentioned only for short segments, but it
is relatively rare for an entity to be mentioned once
at the beginning and then ignored again until the end.

Semantic features. The semantic features used
are drawn from WordNet (Fellbaum, 1998). They
include: the two most common synsets from Word-
Net for all the words in a chunk; all hypernyms of
those synsets; for coreference, we also consider the
distance in the WordNet graph between pairs of head
words (defined to be the final word in the mention
name) and whether one is a part of the other. Finally,
we include the synset and hypernym information of
the preceding and following verbs, again to model a
sort of sub-categorization principle.

Knowledge-based features. Based on the hypoth-
esis that many name to nominal coreference chains
are best understood in terms of background knowl-
edge (for instance, that “George W. Bush” is the
“President”), we have attempted to take advantage
of recent techniques from large scale data mining
to extract lists of such pairs. In particular, we use
the name/instance lists described by (Fleischman et
al., 2003) and available on Fleischman’s web page to
generate features between names and nominals (this
list contains noU pairs mined from pI` GBs of news
data). Since this data set tends to focus mostly on
person instances from news, we have additionally
used similar data mined from a pIq1r GB web corpus,
for which more general “ISA” relations were mined
(Ravichandran et al., 2005).

Class-based features. The class-based features
we employ are designed to get around the sparsity
of data problem while simultaneously providing new
information about word usage. The first class-based
feature we use is based on word classes derived from
the web corpus mentioned earlier and computed as
described by (Ravichandran et al., 2005). The sec-
ond attempts to instill knowledge of collocations in
the data; we use the technique described by (Dun-
ning, 1993) to compute multi-word expressions and
then mark words that are commonly used as such
with a feature that expresses this fact.

List-based features. We have gathered a collec-
tion of about 40 lists of common places, organiza-
tion, names, etc. These include the standard lists
of names gathered from census data and baby name
books, as well as standard gazetteer information list-
ing countries, cities, islands, ports, provinces and
states. We supplement these standard lists with
lists of airport locations (gathered from the FAA)
and company names (mined from the NASDAQ and
NYSE web pages). We additionally include lists of
semantically plural but syntactically singular words
(e.g., “group”) which were mined from a large cor-
pus by looking for patterns such as (“members of the
. . . ”). Finally, we use a list of persons, organizations
and locations that were identified at least 100 times
in a large corpus by the BBN IdentiFinder named
entity tagger (Bikel et al., 1999).

These lists are used in three ways. First, we use
simple list membership as a feature to improve de-
tection performance. Second, for coreference, we
look for word pairs that appear on the same list but
are not identical (for instance, “Russia” and “Eng-
land” appearing on the “country” list but not being
identical hints that they are different entities). Fi-
nally, we look for pairs where one element in the pair
is the head word from one mention and the other el-
ement in the pair is a list. This is intended to capture
the notion that a word that appears on out “country
list” is often coreferent with the word “country.”

Inference-based features. The inference-based
features are computed by attempting to infer an un-
derlying semantic property of a given mention. In
particular, we attempt to identify gender and seman-
tic number (e.g., “group” is semantically plural al-
though it is syntactically singular). To do so, we cre-
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ated a corpus of example mentions labels with num-
ber and gender, respectively. This data set was auto-
matically extracted from our EDT data set by look-
ing for words that corefer with pronouns for which
we know the number or gender. For instance, a men-
tion that corefers with “she” is known to be singu-
lar and female, while a mention that corefers with
“they” is known to be plural. In about 5% of the
cases, this was ambiguous – these cases were thrown
out. We then used essentially the same features as
described above to build a maximum entropy model
for predicting number and gender. The predictions
of this model are used both as features for detec-
tion as well as coreference (in the latter case, we
check for matches). Additionally, we use several
pre-existing classifiers as features. This are simple
maximum entropy Markov models trained off of the
MUC6 data, the MUC7 data and our ACE data.

String match features. We use the standard string
match features that are described in every other
coreference paper. These are: string match; sub-
string match; string overlap; pronoun match; and
normalized edit distance. In addition, we also use
a string nationality match, which matches, for in-
stance “Israel” and “Israeli,” “Russia” and “Rus-
sian,” “England” and “English,” but not “Nether-
lands” and “Dutch.” This is done by checking
for common suffixes on nationalities and match-
ing the first half of the of the words based on ex-
act match. We additionally use a linguistically-
motivated string edit distance, where the replace-
ment costs are lower for vowels and other easily con-
fusable characters. We also use the Jaro distance as
an additional string distance metric. Finally, we at-
tempt to match acronyms by looking at initial letters
from the words in long chunks.

History-based features. Finally, for the detection
phase of the task, we include features having to
do with long-range dependencies between words.
For instance, if at the beginning of the document
we tagged the word “Arafat” as a person’s name
(perhaps because it followed “Mr.” or “Palestinian
leader”), and later in the document we again see the
word “Arafat,” we should be more likely to call this
a person’s name, again. Such features have previ-
ously been explored in the context of information
extraction from meeting announcements using con-

ditional random fields augmented with long-range
links (Sutton and McCallum, 2004), but the LaSO
framework makes no Markov assumption, so there
is no extra effort required to include such features.

4.2 Decision Features
Our decision features are divided into three classes:
simple, coreference and boundary features.

Simple. The simple decision features include: is
this chunk tagged as an entity; what is its entity type;
what is its entity subtype; what is its mention type;
what is its entity type/mention type pair.

Coreference. The coreference decision features
include: is this entity the start of a chain or con-
tinuing an existing chain; what is the entity type of
this started (or continued) chain; what is the entity
subtype of this started (or continued) chain; what is
the mention type of this started chain; what is the
mention type of this continued chain and the men-
tion type of the most recent antecedent.

Boundary. The boundary decision features in-
clude: the second and third order Markov features
over entity type, entity subtype and mention type;
features appearing at the previous (and next) words
within a window of three; the words that appear and
the previous and next mention boundaries, specified
also by entity type, entity subtype and mention type.

5 Experimental Results
5.1 Data
We use the official 2004 ACE training and test set
for evaluation purposes; however, we exclude from
the training set the Fisher conversations data, since
this is very different from the other data sets and
there is no Fisher data in the 2004 test set. This
amounts to q1s1n training documents, consisting ofr3^tpIM sentences and pIucPvM words. There are a total
of nowxM mentions in the data corresponding to pyPvM
entities (note that the data is not annotated for cross-
document coreference, so instances of “Bill Clinton”
appearing in two different documents are counted as
two different entities). Roughly half of the entities
are people, a fifth are organizations, a fifth are GPEs
and the remaining are mostly locations or facilities.
The test data is pIs1n documents, q3^a`1M sentences anduowxM words, with pyPvM mentions to wz^a`1M entities. In
all cases, we use a beam of 16 for training and test,
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and ignore features that occur fewer than five times
in the training data.

5.2 Evaluation Metrics

There are many evaluation metrics possible for this
data. We will use as our primary measure of quality
the ACE metric. This is computed, roughly, by first
matching system mentions with reference mentions,
then using those to match system entities with ref-
erence entities. There are costs, once this matching
is complete, for type errors, false alarms and misses,
which are combined together to give an ACE score,
ranging from P to pyP1P , with pyP1P being perfect (we
use v.10 of the ACE evaluation script).

5.3 Joint versus Pipelined

We compare the performance of the joint system
with the pipelined system. For the pipelined sys-
tem, to build the mention detection module, we use
the same technique as for the full system, but sim-
ply don’t include in the hypotheses the coreference
chain information (essentially treating each mention
as if it were in its own chain). For the stand-alone
coreference system, we assume that the correct men-
tions and types are always given, and simply hypoth-
esize the chain (though still in a left-to-right man-
ner).1 Run as such, the joint model achieves an
ACE score of {cs3^|w and the pipelined model achieves
an ACE score of {cr3^tp , a reasonably substantial im-
provement for performing both task simultaneously.
We have also computed the performance of these
two systems, ignoring the coreference scores (this
is done by considering each mention to be its own
entity and recomputing the ACE score). In this
case, the joint model, ignoring its coreference out-
put, achieves an ACE score of r1`3^au and the pipelined
model achieves a score of r1`3^aq . The joint model

1One subtle difficulty with the joint model has to do with
the online nature of the learning algorithm: at the beginning of
training, the model is guessing randomly at what words are enti-
ties and what words are not entities. Because of the large num-
ber of initial errors made in this part of the task, the weights
learned by the coreference model are initially very noisy. We
experimented with two methods for compensating for this ef-
fect. The first was to give the mention identification model as
“head start”: it was run for one full pass through the training
data, ignoring the coreference aspect and the following itera-
tions were then trained jointly. The second method was to only
update the coreference weights when the mention was identified
correctly. On development data, the second was more efficient
and outperformed the first by }B~ � ACE score, so we use this for
the experiments reported in this section.

Figure 2: Comparison of performance as different
feature classes are removed.

does marginally better, but it is unlikely to be sta-
tistically significant. In the 2004 ACE evaluation,
the best three performing systems achieved scores
of {cs3^as , {cs3^�{ and {cr3^an ; it is unlikely that our system
is significantly worse than these.

5.4 Feature Comparison for Coreference
In this section, we analyze the effects of the differ-
ent base feature types on coreference performance.
We use a model with perfect mentions, entity types
and mention types (with the exception of pronouns:
we do not assume we know pronoun types, since
this gives away too much information), and measure
the performance of the coreference system. When
run with the full feature set, the model achieves an
ACE score of r1s3^tp and when run with no added fea-
tures beyond simple biases, it achieves u1`3^|w . The
best performing system in the 2004 ACE competi-
tion achieved a score of s_pc^a` on this task; the next
best system scored r1r3^an , which puts us squarely in
the middle of these two (though, likely not statis-
tically significantly different). Moreover, the best
performing system took advantage of additional data
that they labeled in house.

To compute feature performance, we begin with
all feature types and iteratively remove them one-
by-one so that we get the best performance (we do
not include the “history” features, since these are
not relevant to the coreference task). The results are
shown in Figure 2. Across the top line, we list the
ten feature classes. The first row of results shows
the performance of the system after removing just
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one feature class. In this case, removing lexical fea-
tures reduces performance to r1r3^as , while removing
string-match features reduces performance to r1q3^au .
The non-shaded box (in this case, syntactic features)
shows the feature set that can be removed with the
least penalty in performance. The second row re-
peats this, after removing syntactic features.

As we can see from this figure, we can freely re-
move syntax, semantics and classes with little de-
crease in performance. From that point, patterns are
dropped, followed by lists and inference, each with
a performance drop of about P_^|w or P_^a` . Removing
the knowledge based features results in a large drop
from rv{ ^au down to r1`3^au and removing count-based
features drops the performance another P_^�{ points.
Based on this, we can easily conclude that the most
important feature classes to the coreference problem
are, in order, string matching features, lexical fea-
tures, count features and knowledge-based features,
the latter two of which are novel to this work.

5.5 Linkage Types

As stated in the previous section, the coreference-
only task with intelligent link achieves an ACE score
of r1s3^tp . The next best score is with min link ( r1r3^�{ )
followed by average link with a score of r1r3^tp . There
is then a rather large drop with max link to r1u3^an ,
followed by another drop for last link to r1q3^a` and
first link performs the poorest, scoring r_pc^a` .

6 Discussion
In this paper, we have applied the Learning as
Search Optimization (LaSO) framework to the entity
detection and tracking task. The framework is an ex-
cellent choice for this problem, due to the fact that
many relevant features for the coreference task (and
even for the mention detection task) are highly non-
local. This non-locality makes models like Markov
networks intractable, and LaSO provides an excel-
lent framework for tackling this problem. We have
introduced a large set of new, useful features for this
task, most specifically the use of knowledge-based
features for helping with the name-to-nominal prob-
lem, which has led to a substantial improvement in
performance. We have shown that performing joint
learning for mention detection and coreference re-
sults in a better performing model that pipelined
learning. We have also provided a comparison of the

contributions of our various feature classes and com-
pared different linkage types for coreference chains.
In the process, we have developed an efficient model
that is competitive with the best ACE systems.

Despite these successes, our model is not perfect:
the largest source of error is with pronouns. This
is masked by the fact that the ACE metric weights
pronouns low, but a solution to the EDT problem
should handle pronouns well. We intend to explore
more complex features for resolving pronouns, and
to incorporate these features into our current model.
We also intend to explore more complex models for
automatically extracting knowledge from data that
can help with this task and applying this technique
to a real application, such as summarization.
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Abstract

A challenge for search systems is to de-
tect not only when an item is relevant to
the user’s information need, but also when
it contains something new which the user
has not seen before. In the TREC novelty
track, the task was to highlight sentences
containing relevant and new information in
a short, topical document stream. This
is analogous to highlighting key parts of a
document for another person to read, and
this kind of output can be useful as input to
a summarization system. Search topics in-
volved both news events and reported opin-
ions on hot-button subjects. When peo-
ple performed this task, they tended to se-
lect small blocks of consecutive sentences,
whereas current systems identified many
relevant and novel passages. We also found
that opinions are much harder to track than
events.

1 Introduction

The problem of novelty detection has long been a sig-
nificant one for retrieval systems. The “selective dis-
semination of information” (SDI) paradigm assumed
that the people wanted to be able to track new in-
formation relating to known topics as their primary
search task. While most SDI and information filter-
ing systems have focused on similarity to a topical
profile (Robertson, 2002) or to a community of users
with a shared interest (Belkin and Croft, 1992), re-
cent efforts (Carbonell and Goldstein, 1998; Allan et
al., 2000; Kumaran et al., 2003) have looked at the
retrieval of specifically novel information.

The TREC novelty track experiments were con-
ducted from 2002 to 2004 (Harman, 2002; Soboroff
and Harman, 2003; Soboroff, 2004). The basic task
was defined as follows: given a topic and an ordered

set of documents related to that topic, segmented
into sentences, return those sentences that are both
relevant to the topic and novel given what has al-
ready been seen previously in that document set.
This task models an application where a user is skim-
ming a set of documents, and the system highlights
new, on-topic information.

There are two problems that participants must
solve in this task. The first is identifying relevant
sentences, which is essentially a passage retrieval
task. Sentence retrieval differs from document re-
trieval because there is much less text to work with,
and identifying a relevant sentence may involve ex-
amining the sentence in the context of those sur-
rounding it. The sentence was specified as the unit
of retrieval in order to standardize the task across a
variety of passage retrieval approaches, as well as to
simplify the evaluation.

The second problem is that of identifying those rel-
evant sentences that contain new information. The
operational definition of “new” here is information
that has not appeared previously in this topic’s set
of documents. In other words, we allow the system to
assume that the user is most concerned about find-
ing new information in this particular set of docu-
ments, and is tolerant of reading information he al-
ready knows because of his background knowledge.
Since each sentence adds to the user’s knowledge,
and later sentences are to be retrieved only if they
contain new information, novelty retrieval resembles
a filtering task.

Novelty is an inherently difficult phenomenon to
operationalize. Document-level novelty detection,
while intuitive, is rarely useful because nearly ev-
ery document contains something new, particularly
when the domain is news. Hence, our decision to
use sentences as the unit of retrieval. Moreover, de-
termining ground truth for a novelty detection task
is more difficult than for topical relevance, because
one is forced not only to face the idiosyncratic na-
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ture of relevance, but also to rely all the more on
the memory and organizational skills of the assessor,
who must try and remember everything he has read.
We wanted to determine if people could accomplish
this task to any reasonable level of agreement, as well
as to see what computational approaches best solve
this problem.

2 Input Data

The first year of the novelty track (Harman, 2002)
was a trial run in several ways. First, this was a new
task for the community and participating groups had
no training data or experience. But second, it was
unclear how humans would perform this task and
therefore creating the “truth” data was in itself a
large experiment. NIST decided to minimize the cost
by using 50 old topics from TRECs 6, 7, and 8.

The truth data was created by asking NIST asses-
sors (the humans performing this task) to identify
the set of relevant sentences from each relevant doc-
ument and then from that set of relevant sentences,
mark those that were novel. Specifically, the asses-
sors were instructed to identify a list of sentences
that were:

1. relevant to the question or request made in the
description section of the topic,

2. their relevance was independent of any sur-
rounding sentences,

3. they provided new information that had not
been found in any previously picked sentences.

Most of the NIST assessors who worked on this
task were not the ones who created the original top-
ics, nor had they selected the relevant documents.
This turned out to be a major problem. The as-
sessors’ judgments for the topics were remarkable
in that only a median of 2% of the sentences were
judged to be relevant, despite the documents them-
selves being relevant. As a consequence, nearly ev-
ery relevant sentence (median of 93%) was declared
novel. This was due in large part to assessor dis-
agreement as to relevancy, but also that fact that
this was a new task to the assessors. Additionally,
there was an encouragement not to select consecu-
tive sentences, because the goal was to identify rel-
evant and novel sentences minimally, rather than to
try and capture coherent blocks of text which could
stand alone. Unfortunately, this last instruction only
served to confuse the assessors. Data from 2002 has
not been included in the rest of this paper, nor are
groups encouraged to use that data for further ex-
periments because of these problems.

In the second year of the novelty track (Soboroff
and Harman, 2003), the assessors created their own
new topics on the AQUAINT collection of three con-
temporaneous newswires. For each topic, the asses-
sor composed the topic and selected twenty-five rele-
vant documents by searching the collection. Once se-
lected, the documents were ordered chronologically,
and the assessor marked the relevant sentences and
those relevant sentences that were novel. No instruc-
tion or limitation was given to the assessors concern-
ing selection of consecutive sentences, although they
were told that they did not need to choose an other-
wise irrelevant sentence in order to resolve a pronoun
reference in a relevant sentence. Each topic was in-
dependently judged by two different assessors, the
topic author and a “secondary” assessor, so that the
effects of different human judgments could be mea-
sured. The judgments of the primary assessor were
used as ground truth for evaluation, and the sec-
ondary assessor’s judgments were taken to represent
a ceiling for system performance in this task.

Another new feature of the 2003 data set was a di-
vision of the topics into two types. Twenty-eight of
the fifty topics concerned events such as the bombing
at the 1996 Olympics in Atlanta, while the remain-
ing topics focused on opinions about controversial
subjects such as cloning, gun control, and same-sex
marriages. The topic type was indicated in the topic
description by a <toptype> tag.

This pattern was repeated for TREC 2004 (Sobo-
roff, 2004), with fifty new topics (twenty-five events
and twenty-five opinion) created in a similar man-
ner and with the same document collection. For
2004, assessors also labeled some documents as irrel-
evant, and irrelevant documents up through the first
twenty-five relevant documents were included in the
document sets distributed to the participants. These
irrelevant documents were included to increase the
“noise” in the data set. However, the assessors only
judged sentences in the relevant documents, since,
by the TREC standard of relevance, a document is
considered relevant if it contains any relevant infor-
mation.

3 Task Definition

There were four tasks in the novelty track:

Task 1. Given the set of documents for the topic,
identify all relevant and novel sentences.

Task 2. Given the relevant sentences in all docu-
ments, identify all novel sentences.

Task 3. Given the relevant and novel sentences in
the first 5 documents only, find the relevant
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and novel sentences in the remaining documents.
Note that since some documents are irrelevant,
there may not be any relevant or novel sentences
in the first 5 documents for some topics.

Task 4. Given the relevant sentences from all doc-
uments, and the novel sentences from the first
5 documents, find the novel sentences in the re-
maining documents.

These four tasks allowed the participants to test
their approaches to novelty detection given different
levels of training: none, partial, or complete rele-
vance information, and none or partial novelty infor-
mation.

The test data for a topic consisted of the topic
statement, the set of sentence-segmented documents,
and the chronological order for those documents. For
tasks 2-4, training data in the form of relevant and
novel “sentence qrels” were also given. The data was
released and results were submitted in stages to limit
“leakage” of training data between tasks. Depending
on the task, the system was to output the identifiers
of sentences which the system determined to contain
relevant and/or novel relevant information.

4 Evaluation

Because novelty track runs report their relevant and
novel sentences as an unranked set, traditional mea-
sures of ranked retrieval effectiveness such as mean
average precision can’t be used. One alternative is
to use set-based recall and precision. Let M be the
number of matched sentences, i.e., the number of
sentences selected by both the assessor and the sys-
tem, A be the number of sentences selected by the
assessor, and S be the number of sentences selected
by the system. Then sentence set recall is R = M/A
and precision is P = M/S.

However, set-based recall and precision do not av-
erage well, especially when the assessor set sizes A
vary widely across topics. Consider the following ex-
ample as an illustration of the problems. One topic
has hundreds of relevant sentences and the system
retrieves 1 relevant sentence. The second topic has 1
relevant sentence and the system retrieves hundreds
of sentences. The average for both recall and preci-
sion over these two topics is approximately .5 (the
scores on the first topic are 1.0 for precision and es-
sentially 0.0 for recall, and the scores for the second
topic are the reverse), even though the system did
precisely the wrong thing. While most real systems
wouldn’t exhibit this extreme behavior, the fact re-
mains that set recall and set precision averaged over
a set of topics is not a robust diagnostic indicator
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Figure 1: The F measure, plotted according to its
precision and recall components. The lines show con-
tours at intervals of 0.1 points of F. The black num-
bers are per-topic scores for one TREC system.

of system performance. There is also the problem
of how to define precision when the system returns
no sentences (S = 0). Leaving that topic out of the
evaluation for that run would mean that different
systems would be evaluated over different numbers
of topics. The standard procedure is to define preci-
sion to be 0 when S = 0.

To avoid these problems, the primary measure
used in the novelty track was the F measure. The
F measure (which is itself derived from van Rijsber-
gen’s E measure (van Rijsbergen, 1979)) is a function
of set recall and precision, together with a parameter
β which determines the relative importance of recall
and precision:

F =
(β2 + 1)PR

β2P + R

A β value of 1, indicating equal weight, is used in
the novelty track:

Fβ=1 =
2PR

P + R

Alternatively, this can be formulated as

Fβ=1 =
2× (# relevant retrieved)

(# retrieved) + (# relevant)

For any choice of β, F lies in the range [0, 1], and
the average of the F measure is meaningful even when
the judgment sets sizes vary widely. For example,
the F measure in the scenario above is essentially
0, an intuitively appropriate score for such behavior.
Using the F measure also deals with the problem of
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what to do when the system returns no sentences
since recall is 0 and the F measure is legitimately 0
regardless of what precision is defined to be.

Note, however, that two runs with equal F scores
do not indicate equal precision and recall. The con-
tour lines in Figure 1 illustrate the shape of the F
measure in recall-precision space. An F score of 0.5,
for example, can describe a range of precision and re-
call scores. Figure 1 also shows the per-topic scores
for a particular TREC run. It is easy to see that
topics 98, 83, 82, and 67 exhibit a wide range of per-
formance, but all have an F score of close to 0.6.
Thus, two runs with equal F scores may be perform-
ing quite differently, and a difference in F scores can
be due to changes in precision, recall, or both. In
practice, if F is used, precision and recall should also
be examined, and we do so in the analysis which fol-
lows.

5 Analysis

5.1 Analysis of truth data

Since the novelty task requires systems to automat-
ically select the same sentences that were selected
manually by the assessors, it is important to ana-
lyze the characteristics of the manually-created truth
data in order to better understand the system re-
sults. Note that the novelty task is both a passage
retrieval task, i.e., retrieve relevant sentences, and
a novelty task, i.e., retrieve only relevant sentences
that contain new information.

In terms of the passage retrieval part, the TREC
novelty track was the first major investigation into
how users select relevant parts of documents. This
leads to several obvious questions, such as what per-
centage of the sentences are selected as relevant, and
do these sentences tend to be adjacent/consecutive?
Additionally, what kinds of variation appear, both
across users and across topics. Table 1 shows the
median percentage of sentences that were selected
as relevant, and what percentage of these sentences
were consecutive. Since each topic was judged by two
assessors, it also shows the percentage of sentences
selected by assessor 1 (the “official” assessor used in
scoring) that were also selected by assessor 2. The
table gives these percentages for all topics and also
broken out into the two types of topics (events and
opinions).

First, the table shows a large variation across the
two years. The group in 2003 selected more rele-
vant sentences (almost 40% of the sentences were se-
lected as relevant), and in particular selected many
consecutive sentences (over 90% of the relevant sen-
tences were adjacent). The median length of a string

of consecutive sentences was 2; the mean was 4.252
sentences. The following year, a different group of
assessors selected only about half as many relevant
sentences (20%), with fewer consecutive sentences.
This variation across years may reflect the group of
assessors in that the 2004 set were TREC “veterans”
and were more likely to be very selective in terms of
what was considered relevant.

The table also shows a variation across topics, in
particular between topics asking about events versus
those asking about opinions. The event topics, for
both years, had more relevant sentences, and more
consecutive sentences (this effect is more apparent in
2004).

Agreement between assessors on which sentences
were relevant was fairly close to what is seen in docu-
ment relevance tasks. There was slightly more agree-
ment in 2003, but there were also many more relevant
sentences so the likelihood of a match was higher.
There is more agreement on events than on opinions,
partially for the same reason, but also because there
is generally less agreement on what constitutes an
opinion. These medians hide a wide range of judging
behavior across the assessors, particularly in 2003.

The final two rows of data in the table show the
medians for novelty. There are similar patterns to
those seen in the relevant sentence data, with the
2003 assessors clearly being more liberal in judging.
However, the pattern is reversed for topic types, with
more sentences being considered relevant and novel
for the opinion topics than for the event topics. The
agreement on novelty is less than on relevance, par-
ticularly in 2004 where there were smaller numbers
of novel and relevant sentences selected.

Another way to look at agreement is with the
kappa statistic (Cohen, 1960). Kappa computes
whether two assessors disagree, with a correction for
“chance agreement” which we would expect to occur
randomly. Kappa is often interpreted as the degree
of agreement between assessors, although this inter-
pretation is not well-defined and varies from field
to field (Di Eugenio, 2000). For relevant sentences
across all topics in the 2004 data set, the kappa value
is 0.549, indicating statistically significant agreement
between the assessors but a rather low-to-moderate
degree of agreement by most scales of interpretation.
Given that agreement is usually not very high for
relevance judgments (Voorhees, 1998), this is as ex-
pected.

5.2 Analysis of participants results

Most groups participating in the 2004 novelty track
employed a common approach, namely to measure
relevance as similarity to the topic and novelty as
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2003 2004
Relevant all topics 0.39 0.20

events only 0.47 0.25
opinions only 0.38 0.15

Consecutive all topics 0.91 0.70
events only 0.93 0.85
opinions only 0.91 0.65

Relevant all topics 0.69 0.60
agreement events only 0.82 0.68

opinions only 0.63 0.50
Novelty all topics 0.68 0.40

events only 0.61 0.38
opinions only 0.73 0.42

Novelty all topics 0.56 0.35
agreement events only 0.65 0.45

opinions only 0.48 0.29

Table 1: Median fraction of sentences which were
relevant and novel, fraction of consecutive relevant
sentences, and proportion of agreement by the sec-
ondary assessor.

dissimilarity to past sentences. On top of this frame-
work the participants used a wide assortment of
methods which may be broadly categorized into sta-
tistical and linguistic methods. Statistical methods
included using traditional retrieval models such as
tf.idf and Okapi coupled with a threshold for retriev-
ing a relevant or novel sentence, expansion of the
topic and/or document sentences using dictionaries
or corpus-based methods, and using named entities
as features. Some groups also used machine learning
algorithms such as SVMs in parts of their detection
process. Semantic methods included deep parsing,
matching discourse entities, looking for particular
verbs and verb phrases in opinion topics, coreference
resolution, normalization of named entities, and in
one case manual construction of ontology’s for topic-
specific concepts.

Figure 2 shows the Task 1 results for the top run
from each group in TREC 2004. Groups employing
statistical approaches include UIowa, CIIR, UMich,
and CDVP. Groups employing more linguistic meth-
ods include CLR, CCS, and LRI. THU and ICT took
a sort of kitchen-sink approach where each of their
runs in each task tried different techniques, mostly
statistical.

The F scores for both relevance and novelty re-
trieval are fairly uniform, and they are dominated by
the precision component. The top scoring systems by
F score are largely statistical in nature; for example,
see (Abdul-Jaleel et al., 2004) (CIIR) and (Eichmann
et al., 2004) (UIowa). CLR (Litkowski, 2004) and
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Figure 2: Task 1 precision, recall, and F scores for
the top run from each group in TREC 2004

LRI (Amrani et al., 2004), which use much stronger
linguistic processing, achieve the highest precision at
the expense of recall. Overall, precision is quite low
and recall is high, implying that most systems are
erring in favor of retrieving many sentences.

A closer comparison of the runs among them-
selves and to the truth data confirms this hypothe-
sis. While the 2004 assessors were rather selective in
choosing relevant and novel sentences, often selecting
just a handful of sentences from each document, the
systems were not. The systems retrieved an average
of 49.5% of all sentences per topic as relevant, com-
pared to 19.2% chosen by the assessor. Furthermore,
the runs chose 41% of all sentences (79% of their own
relevant sentences) as novel, compared to the asses-
sor who selected only 8.4%. While these numbers
are a very coarse average that ignores differences be-
tween the topics and between the documents in each
set, it is a fair summary of the data. Most of the sys-
tems called nearly every sentence relevant and novel.
By comparison, the person attempting this task (the
second assessor, scored as a run and shown as hor-
izontal lines in Figure 2) was much more effective
than the systems.

The lowest scoring run in this set, LRIaze2, actu-
ally has the highest precision for both relevant and
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novel sentences. The linguistics-driven approach of
this group included standardizing acronyms, build-
ing a named-entity lexicon, deep parsing, resolving
coreferences, and matching concepts to manually-
built, topic-specific ontologies (Amrani et al., 2004).
A close examination of this run’s pattern shows that
they retrieved very few sentences, in line with the
amounts chosen by the assessor. They were not of-
ten the correct sentences, which accounts for the low
recall, but by not retrieving too many false alarms,
they managed to achieve a high precision.

Our hypothesis here is that the statistical systems,
which are essentially using algorithms designed for
document retrieval, approached the sentences with
an overly-broad term model. The majority of the
documents in the data set are relevant, and so many
of the topic terms are present throughout the docu-
ments. However, the assessor was often looking for
a finer-grained level of information than what ex-
ists at the document level. For example, topic N51
is concerned with Augusto Pinochet’s arrest in Lon-
don. High-quality content terms such as Pinochet,
Chile, dictator, torture, etc appear in nearly every
sentence, but the key relevant ones — which are very
few — are those which specifically talk about the ar-
rest. Most systems flagged nearly every sentence as
relevant, when the topic was much narrower than the
documents themselves.

One explanation for this may be in how thresholds
were learned for this task. Since task 1 provides no
data beyond the topic statement and the documents
themselves, it is possible that systems were tuned
to the 2003 data set where there are more relevant
sentences. However, this isn’t the whole story, since
the difference in relevant sentences between 2003 and
2004 is not so huge that it can explain the rates of re-
trieval seen here. Additionally, in task 3 some topic-
specific training data was provided, and yet the ef-
fectiveness of the systems was essentially the same.

Of those systems that tried a more fine-grained
approach, it appears that it is complicated to learn
exactly which sentences contain the relevant informa-
tion. For example, nearly every system had trouble
identifying relevant opinion sentences. One might
expect that those systems which analyzed sentence
structure more closely would have done better here,
but there is essentially no difference. Identifying rel-
evant information at the sentence level is a very hard
problem.

We see very similar results for novel sentence re-
trieval. Rather than looking at task 1, where systems
retrieved novel from their own selection of relevant
sentences, it’s better to look at runs in task 2 (Fig-
ure 3). Since in this task the systems are given all rel-
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Figure 3: Task 2 scores for the top run from each
group in TREC 2004

evant sentences and just search for novelty, the base-
line performance for comparison is just labeling all
the sentences as novel. Most systems, surprisingly in-
cluding the LRI run, essentially do retrieve nearly ev-
ery sentence as novel. The horizontal lines show the
baseline performance; the baseline recall is 1.0 and is
at the top of the Y axis. All the runs except clr04n2
are just above this baseline, with cdvp4NTerFr1 and
novcolrcl the most discriminating.

The approach of Dublin City University
(cdvp4NTerFr1) is essentially to set a thresh-
old on the tf.idf value of the unique words in the
given sentence, but their other methods which incor-
porate the history of unique terms and the difference
in sentence frequencies between the current and
past sentences perform comparably (Blott et al.,
2004). Similarly, Columbia University (novcolrcl)
focuses on previously unseen words in the current
sentence as the main evidence of novelty (Schiffman
and McKeown, 2004). As opposed to the ad hoc
threshold in the DCU system, Columbia employs
a hill-climbing approach to learning the threshold.
This particular run is optimized for recall; another
optimized for precision achieved the highest preci-
sion of all task 2 runs, but with very low recall. In
general, we conclude that most systems achieving
high scores in novelty detection are recall-oriented
and as a result still provide the user with too much
information.

As was mentioned above, opinion topics proved
much harder than events. Every system but one did
better on event topics than on opinions in task 1
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Figure 4: F scores for event and opinion topics in
task 1.

(Figure 4). In task 2, where all relevant sentences
were provided, many runs do as well or better on
opinion topics than events. Thus, the complexity for
opinions is more in finding which sentences contain
them, than determining which opinions are novel.

6 Conclusion

The novelty track in TREC examined a particular
kind of novelty detection, that is, finding novel, on-
topic sentences within documents that the user is
reading. Both statistical and linguistic techniques, as
well as filtering and learning approaches can be ap-
plied to detecting novel relevant information within
documents, but nevertheless it is a hard problem for
several reasons. First, because the unit of interest
is a sentence, there is not a lot of data in each unit
on which to base the decision. When the document
as a whole is relevant, techniques designed for docu-
ment retrieval seem unable to make fine distinctions
about which sentences within the document contain
the relevant information. Initial threshold setting is
critical and difficult.

When we examined human performance on this
task, it is clear that users do make very fine distinc-
tions. Looking particularly at the 2004 set of relevant
and novel sentences, less than 20% of the sentences
in relevant documents were marked as relevant, and

only 40% of those (or 8% of the total sentences) were
marked as both relevant and novel.

The TREC novelty data sets themselves support
some interesting uses outside of the novelty track.
Whereas the data from 2002 is clearly flawed and
should not be used, the data from 2003 and 2004
can be regarded as valid samples of user input in
terms of relevant sentence selection, and further re-
duction of those sentences to those presenting new
information. One obvious use is in the passage re-
trieval arena, e.g., using the relevant sentences for
testing passage retrieval, either at the single sentence
level or using the consecutive sentences to test when
to retrieve multiple sentences. A second use is for
summarization, where the relevant AND novel sen-
tences can serve as the truth data for the extraction
phase (and then compressed in some manner). Other
uses of the data include manual analysis of user be-
havior when processing documents in response to a
question, or looking further into the user agreement
issues, particularly in the summarization area.

The novelty data is also unique in that it delib-
erately contains a mix of topics on events and on
opinions regarding controversial subjects. The opin-
ions topics are quite different in this regard than
other TREC topics, which have historically focused
on events or narrative information on a subject or
person. This exploration has been an interesting and
fruitful one. By mixing the two topic types within
each task, we see that identifying opinions within
documents is hard, even with training data, while
detecting new opinions (given relevance) seems anal-
ogous to detecting new information about an event.
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Abstract

New Event Detection (NED) involves
monitoring chronologically-ordered news
streams to automatically detect the stories
that report on new events. We compare
two stories by finding three cosine simi-
larities based on names, topics and the full
text. These additional comparisons sug-
gest treating the NED problem as a bi-
nary classification problem with the com-
parison scores serving as features. The
classifier models we learned show statis-
tically significant improvement over the
baseline vector space model system on all
the collections we tested, including the lat-
est TDT5 collection.

The presence of automatic speech recog-
nizer (ASR) output of broadcast news in
news streams can reduce performance and
render our named entity recognition based
approaches ineffective. We provide a so-
lution to this problem achieving statisti-
cally significant improvements.

1 Introduction

The instant and automatic detection of new events
is very useful in situations where novel informa-
tion needs to be detected from a real-time stream
of rapidly growing data. These real-life situations
occur in scenarios like financial markets, news anal-
yses, and intelligence gathering. In this paper we
focus on creating a system to immediately identify

stories reporting new events in a stream of news
- a daunting task for a human analyst given the
enormous volume of data coming in from various
sources.

The Topic Detection and Tracking (TDT) pro-
gram, a DARPA funded initiative, seeks to develop
technologies that search, organize and structure mul-
tilingual news-oriented textual materials from a va-
riety of broadcast news media. One of the tasks in
this program, New Event Detection (NED), involves
constant monitoring of streams of news stories to
identify the first story reporting topics of interest.
A topic is defined as “a seminal event or activity,
along with directly related events and activities” (Al-
lan, 2002). An earthquake at a particular place is
an example of a topic. The first story on this topic
is the story that first carries the report on the earth-
quake’s occurrence. The other stories that make up
the topic are those discussing the death toll, the res-
cue efforts, the reactions from different parts of the
world, scientific discussions, the commercial impact
and so on. A good NED system would be one that
correctly identifies the article that reports the earth-
quake’s occurrence as the first story.

NED is a hard problem. For example, to dis-
tinguish stories about earthquakes in two different
places, a vector space model system would rely on a
tf-idf weighting scheme that will bring out the dif-
ference by weighting the locations higher. More
often then not, this doesn’t happen as the differ-
ences are buried in the mass of terms in common
between stories describing earthquakes and their af-
termath. In this paper we reduce the dependence on
tf-idf weighting by showing the utility of creating
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three distinct representations of each story based on
named entities. This allows us to view NED as a bi-
nary classification problem - i.e., each story has to
be classified into one of two categories - old or new,
based on features extracted using the three different
representations.

The paper starts by summarizing the previous
work on NED in Section 2. In Section 3, we explain
the rationale behind our intuition. Section 4 de-
scribes the experimental setup, data pre-processing,
and our baseline NED system. We then briefly de-
scribe the evaluation methodology for NED in Sec-
tion 5. Model creation and the results of applying
these models to test data are detailed in Section 6.
In the same section, we describe the effect on perfor-
mance if the manually transcribed version of broad-
cast news is replaced with ASR output. Since its
hard to recognize named entities from ASR data,
performance expectedly deteriorates. We follow a
novel approach to work around the problem result-
ing in statistically significant improvement in per-
formance. The results are analyzed in Section 7. We
wrap up with conclusions and future work in Sec-
tion 8.

2 Previous Research

Previous approaches to NED have concentrated on
developing similarity metrics or better document
representations or both. A summer workshop on
topic-based novelty detection held at Johns Hop-
kins University extensively studied the NED prob-
lem. Similarity metrics, effect of named entities,
pre-processing of data, and language and Hidden
Markov Models were explored (Allan et al., 1999).
Combinations of NED systems were also discussed.
In the context of this paper, selective re-weighting of
named entities didn’t bring about expected improve-
ment.

Improving NED by better comparison of stories
was the focus of following papers. In an approach
to solve on-line NED, when a new document was
encountered it was processed immediately to ex-
tract features and build up a query representation
of the document’s content (Papka and Allan, 1998).
The document’s initial threshold was determined by
evaluating it with the query. If the document did not
trigger any previous query by exceeding this partic-

ular threshold, it was marked as a new event. Un-
like the previous paper, good improvements on TDT
benchmarks were shown by extending a basic in-
cremental TF-IDF model to include source-specific
models, similarity score normalization techniques,
and segmentation of documents (Brants et al., 2003).

Other researchers have attempted to build better
document models. A combination of evidence de-
rived from two distinct representations of a docu-
ment’s content was used to create a new representa-
tion for each story (Stokes and Carthy, 2001). While
one of the representations was the usual free text
vector, the other made use of lexical chains (created
using WordNet) to obtain the most prevalent topics
discussed in the document. The two vectors were
combined in a linear fashion and a marginal increase
in effectiveness was observed.

NED approaches that rely on exploiting existing
news tracking technology were proved to inevitably
exhibit poor performance (Allan et al., 2000). Given
tracking error rates, the lower and upper bounds
on NED error rates were derived mathematically.
These values were found to be good approximations
of the true NED system error rates. Since track-
ing and filtering using full-text similarity compar-
ison approaches were not likely to make the sort
of improvements that are necessary for high-quality
NED results, the paper concluded that an alternate
approach to NED was required. This led to a se-
ries of research efforts that concentrated on building
multi-stage NED algorithms and new ways to com-
bine evidence from different sources.

In the topic-conditioned novelty detection ap-
proach, documents were classified into broad top-
ics and NED was performed within these categories
(Yang et al., 2002). Additionally, named entities
were re-weighted relative to the normal words for
each topic, and a stop list was created for each topic.
The experiments were done on a corpus different
from the TDT corpus and, apparently didn’t scale
well to the TDT setting.

The DOREMI research group treated named enti-
ties like people and locations preferentially and de-
veloped a new similarity measure that utilized the
semantics classes they came up with (Makkonen et
al., 2002). They explored various definitions of the
NED task and tested their system accordingly. More
recently, they utilized a perceptron to learn a weight
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function on the similarities between different seman-
tic classes to obtain a final confidence score for each
story (Makkonen et al., 2004).

The TDT group at UMass introduced multiple
document models for each news story and modified
similarity metrics by splitting up stories into only
named entities and only terms other than named en-
tities (Kumaran and Allan, 2004). They observed
that certain categories of news were better tackled
using only named entities, while using only topic
terms for the others helped.

In approaches similar to named entity tagging,
part-of-speech tagging (Farahat et al., 2003) has also
been successfully used to improve NED.

Papers in the TDT2003 and TDT2004 work-
shops validated the hypothesis that ensemble single-
feature classifiers based on majority voting exhibited
better performance than single classifiers working
with a number of features on the NED task (Braun
and Kaneshiro, 2003; Braun and Kaneshiro, 2004).
Examples of features they used are cosine similarity,
text tiling output and temporally-weighted tf-idf.

Probabilistic models for online clustering of doc-
uments, with a mechanism for handling creation of
new clusters have been developed. Each cluster was
assumed to correspond to a topic. Experimental re-
sults did not show any improvement over baseline
systems (Zhang et al., 2005).

3 Features for NED

Pinning down the character of new stories is a tough
process. New events don’t follow any periodic cy-
cle, can occur at any instant, can involve only one
particular type of named entity (people, places, or-
ganizations etc.) or a combination, can be reported
in any language, and can be reported as a story of
any length by any source1 . Apart from the source,
date, and time of publication or broadcast of each
news story, the TDT corpora do not contain any
other clues like placement in the webpage, the num-
ber of sources reporting the same news and so on.
Given all these factors, we decided that the best fea-

1It could be argued that articles from a source, say NYTimes,
are much longer than news stories from CNN, and hence the
length of stories is a good candidate for use as a feature. How-
ever, when there is no pattern that indicates that either of the
two sources reports new stories preferentially, the use of length
as a feature is moot.

tures to use would be those that were not particular
to the story in question only, but those that measure
differences between the story and those it is com-
pared with.

Category-specific rules that modified the baseline
confidence score assigned to each story have been
developed (Kumaran and Allan, 2004). The mod-
ification was based on additional evidence in the
form of overlap of named entities and topic terms
(terms in the document not identified as named en-
tities) with the closest story reported by a base-
line system. We decided to use these three scores:
namely the baseline confidence score, named en-
tity overlap, and topic-term overlap as features. The
named entities considered were Event, Geopolitical
Entity, Language, Location, Nationality, Organiza-
tion, Person, Cardinal, Ordinal, Date, and Time.
These named entities were detected in stories using
BBN IdentiFinderTM(Bikel et al., 1999). Irrespec-
tive of their type, all named entities were pooled to-
gether to form a single named entity vector.

The intuition behind using these features is that
we believe every event is characterized by a set of
people, places, organizations, etc. (named entities),
and a set of terms that describe the event. While
the former can be described as the who, where, and
when aspects of an event, the latter relates to the
what aspect. If two stories were on the same topic,
they would share both named entities as well as topic
terms. If they were on different, but similar, topics,
then either named entities or topic terms will match
but not both.

We illustrate the above intuition with examples.
Terms in bold face are named entities common to
both stories, while those in italics are topic terms
in common. We start with an example showing
that for old stories both the named entities as well
as topic terms overlap with a story on the same topic.

Story 1. : Story on a topic already reported
While in Croatia today, Pope John Paul II called
on the international community to help end the
fighting in the Yugoslavia’s Kosovo province.
Story 2. : Story on the same topic

Pope John Paul II is urging the international
community to quickly help the ethnic Albanians in
Kosovo. He spoke in the coastal city of Split, where
he ended a three-day visit to Croatia.
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Story 1 is an old story about Pope John Paul II’s
visit to Yugoslavia. Story 2 was the first story on the
topic and it shares both named entities likes Pope
John Paul II and Croatia and also topic terms like
international community and help.

Our next example shows that for new stories,
either the named entities or topic terms match with
an earlier story.

Story 3. : Topic not seen before
Turkey has sent 10,000 troops to its southern border
with Syria amid growing tensions between the two
neighbors, newspapers reported Thursday. Defense
Minister Ismet Sezgin denied any troop movement
along the border, but said Turkey’s patience was
running out. Turkey accuses Syria of harboring
Turkish Kurdish rebels fighting for autonomy in
Turkey’s southeast; it says rebel leader Abdullah
Ocalan lives in Damascus.
Story 4. : Closest Story due to Named Entities
A senior Turkish government official called Mon-
day for closer military cooperation with neighboring
Bulgaria. After talks with President Petar Stoyanov
at the end of his four-day visit, Turkish Deputy Pre-
mier and National Defense Minister Ismet Sezgin
expressed satisfaction with the progress of bilateral
relations and the hope that Bulgarian-Turkish
military cooperation will be promoted.

Story 3 is a new story about the rising ten-
sions between Turkey and Syria. The closest story
as reported by a (baseline) basic vector space model
NED system using cosine similarity is Story 4,
a story about Turkish-Bulgarian relations. The
named entities Turkey and Ismet Sezgin caused
this match. We see that none of the topic terms
match. However, the system reported with a high
confidence score that Story 3 is old. This is because
of the matching of high IDF-valued named entities.
Determining that the topic terms didn’t match would
have helped the system avoid this mistake.

4 Experimental Setup and Baseline

We used the TDT2, TDT3, TDT4, and TDT5 cor-
pora for our experiments. They contain a mix of
broadcast news (bn) and newswire (nwt) stories.
Only the English stories in the multi-lingual collec-

tions were considered for the NED task. The broad-
cast news material is provided in the form of an au-
dio sampled data signal, a manual transcription of
the audio signal (bn-man), and a transcription cre-
ated using an automatic speech recognizer (bn-asr).

We used version 3.0 of the open source Lemur
system2 to tokenize the data, remove stop words,
stem and create document vectors. We used the 418
stopwords included in the stop list used by InQuery
(Callan et al., 1992), and the Krovetz-stemmer algo-
rithm implementation provided as part of Lemur.

Documents were represented as term vectors with
incremental TF-IDF weighting (Brants et al., 2003;
Yang et al., 1998). We used the cosine similarity
metric to judge the similarity of a story S with those
seen in the past.

Sim(S, X) =

∑

w
weight(w, S) ∗ weight(w, X)

√

∑

w
weight(w,S)

2

√

∑

w
weight(w, X)

2

(1)

where

weight(w, d) =tf ∗ idf

tf =log(termfrequency + 1.0)

idf = log((docCount+1)
(documentfreq+0.5)

The maximum similarity of the story S with stories
seen in the past was taken as the confidence score
that S was old. This constituted our baseline system.

We extracted three features for each incoming
story S. The first was the confidence score reported
by the baseline system. The second and third fea-
tures were the cosine similarity between only the
named entities in S and X and the cosine similarity
between only the topic terms in S and X. We trained
a Support Vector Machine (SVM) (Burges, 1998)
classifier on these features. We chose to use SVMs
as they are considered state-of-the-art for text clas-
sification purposes (Mladeni et al., 2004), and pro-
vide us with options to consider both linear and non-
linear decision boundaries. To develop SVM models
we used SV MLight(Joachims, 1999), which is an
implementation of SVMs in C. SV MLight is an im-
plementation of Vapnik’s Support Vector Machine
(Vapnik, 1995).

For training, we used the TDT3 and TDT4 cor-
pora. There were 115 and 70 topics respectively giv-
ing us a total of 185 positive examples (new stories)

2http://www.lemurproject.org
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and 7800 negative examples (old stories). We bal-
anced the number of positive and negative examples
by oversampling the minority class until there were
equal number of positive and negative training in-
stances. Testing was done on the TDT2 and TDT5
corpora (96 and 126 topics resp.).

5 NED Evaluation

The official TDT evaluation requires a NED system
to assign a confidence score between 0 (new) and
1 (old) to every story upon its arrival in the time-
ordered news stream. This assignment of scores
is done either immediately upon arrival or after a
fixed look-ahead window of stories. To evaluate per-
formance, the stories are sorted according to their
scores, and a threshold sweep is performed. All
stories with scores above the threshold are declared
old, while those below it are considered new. At
each threshold value, the misses and false alarms are
identified, and a cost Cdet is calculated as follows.

Cdet = Cmiss ∗Pmiss ∗Ptarget + CFA ∗ PFA ∗ Pnon−target

where CMiss and CFA are the costs of a Miss
and a False Alarm, respectively, PMiss and PFA

are the conditional probabilities of a Miss and a
False Alarm, respectively, and Ptarget and Pnon−target

are the a priori target probabilities (Pnon−target = 1 -

Ptarget).
The threshold that results in the least cost is se-

lected as the optimum one. Different NED systems
are compared based on their minimum cost. In other
words, the lower the Cdet score reported by a system
on test data, the better the system.

6 Results

Our first set of experiments were performed on data
consisting of newswire text and manual transcrip-
tion of broadcast news (nwt+bn-man). We used
the features mentioned in Section 3 to build SVM
models in the classification mode. We experimented
with linear, polynomial, and RBF kernels. The out-
put from the SVM classifiers was normalized to fall
within the range zero and one.

We found that using certain kernels improved per-
formance over the baseline system significantly. The
results for both corpora, TDT2 and TDT5, were
consistently and significantly improved by using the

TDT2 TDT5
Kernel Type (nwt+bn-man) (nwt)
Baseline System 0.585 0.701
Linear Kernel 0.548 0.696
Poly. of deg. 1 0.548 0.696
Poly. of deg. 2 0.543 0.688
Poly. of deg. 3 0.545 0.684
Poly. of deg. 4 0.535 0.694
Poly. of deg. 5 0.533 0.688
Poly. of deg. 6 0.534 0.693
RBF with γ = 1 0.540 0.661
RBF with γ = 5 0.530 0.699

Table 1: Summary of the results of using SVM classifier mod-

els for NED on the TDT2 and TDT5 collections. The numbers

are the minimum cost (Cdet) values (lower is better). The sign

test, with α = 0.05, was performed to compare the baseline sys-

tem with only a classifier using RBF kernels with γ = 1. For

both collections, the improvements were found to be statisti-

cally significant (shown in bold). While there are better per-

forming kernels for TDT2, we chose to perform significance

tests for only one kernel to show that significant improvement

over the baseline can be obtained using a single kernel across

different test collections.

classification models. The 2004 NED evaluations
conducted by the National Institute of Standards and
Technology was on the TDT5 collection. The large
size of the collection and existence of a large num-
ber of topics with a single story made the task very
challenging. The best system fielded by the partici-
pating sites was the baseline system used here. Ta-
ble 1 summarizes the results we obtained.

All statistical significance testing was done using
the sign test. We counted the number of topics for
which using the SVM classifier improved over the
baseline (in terms of detecting more previously un-
detected new and old stories), and also the num-
ber of topics for which using the SVM classifier
actually converted originally correct decisions into
wrong ones. These were used as input for the sign
test. The test were used to check whether improve-
ment in performance using the classifier-based sys-
tem was spread across a significant number of top-
ics, and not confined to a few. Table 2 gives some
examples of topics and the associated improvements
in detecting them.
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Topic ID Number of Num. detected Num. detected Improvement
old stories by baseline system by SVM classifier (Higher the better)

55105 420 407 403 -4
55010 21 21 20 -1
55023 5 5 4 -1
55089 226 226 225 -1
55125 120 114 120 6
55107 331 327 331 7
55106 808 787 795 8
55200 196 185 193 8

Table 2: Examples of improvements due to using the SVM classifier on a per-topic basis. Shown here are the
four topics each in which the greatest degradation and improvements in performance were seen. The topics
vary in size. The SVM classifier resulted in overall (statistically significant, refer Table 1) improvement as
it corrected more errors than introduced them.
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Figure 1: Distribution of new story scores for the
baseline and SVM model systems.

7 Analysis

The main goal of our effort was to come up with a
way to correctly identify new stories based on fea-
tures we thought characterized them. To understand
what we had actually achieved by using these mod-
els, we studied the distribution of the confidence
scores assigned to new and old stories for the base-
line and a classifier-based NED system for the TDT5
collection (Figures 1 and 2 respectively).

We observe that the scores for a small fraction
of new stories that were initially missed (between
scores 0.8 and 1) are decreased by the model-based
NED system while a larger fraction (between scores
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Figure 2: Distribution of old story scores for the
baseline and SVM model systems.

0.1 and 0.4) is also decreased by a small amount.
However, the major impact of using SVM model-
based NED systems appears to be in detecting old
stories. We observe that the scores of a significant
number of old stories (between scores 0.2 and 0.55)
have been increased to be closer to one. This had the
effect of increasing the score difference between old
and new stories, and hence improved classification
accuracy as measured by the minimum cost.

We investigated the relative importance of the
three features by looking that the linear kernel SVM
model. While the original cosine similarity metric
CS remained the prominent feature, the contribution
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of the third feature non-NE-CS was slightly more
than if not equal to the contribution of named en-
tities NE-CS (Table 3). This explains why simple
re-weighting of named entities alone (Allan et al.,
1999) doesn’t suffice to improved performance.

Feature CS NE-CS non-NE-CS

Weight 5.4 1.58 1.83

Table 3: Weights assigned to features by the linear
kernel SVM.

If this method of harnessing named entities and
topic terms were indeed so effective, then we should
have been able to detect every old story in every
topic. However, analysis reveals that this approach
makes an assumption about the way stories in a
topic are related. Not all topics are dense, with both
named entities and topic terms threading the stories
together. Examples of such topics are natural dis-
aster topics. While the first story might report on
the actual calamity and the region it affected, suc-
cessive stories might report on individual survivor
tales. These stories might be connected to the orig-
inal story of the topic by as tenuous a link as only
the name of the calamity, or the place. Such topic
structures are very common in newswire. Hence our
approach will fail in such topics with loosely con-
nected stories. Much more advanced processing of
story content is required in such cases. Mistakes
made by the named entity recognizer also impede
performance.

Given that its impractical to expect manual tran-
scriptions of all broadcast news, we tested our base-
line and classifier systems on a version of TDT2
with newswire stories and ASR output of the broad-
cast news (nwt+bn-asr). TDT5 was left out as it
doesn’t have any broadcast news. As shown in Ta-
ble 4, the baseline system performed significantly
worse when manual transcription was replaced with
ASR output. The classifier systems did even worse
than the nwt +bn-asr baseline result. An analysis
of the named entities extracted revealed that the ac-
curacy was very poor - worse than extraction from
bn-man documents. This was primarily because the
version of IdentiFinder (IdentiFinder-man) we used
was by default trained on nwt.

To alleviate this problem we re-trained Identi-

Kernel Type TDT2 (nwt+bn-asr)
Baseline System 0.640

IdentiFinder-man IdentiFinder-asr

Linear Kernel 0.653 0.608
Poly. of deg. 1 0.654 0.608
Poly. of deg. 2 0.658 0.619
Poly. of deg. 3 0.659 0.616
Poly. of deg. 4 0.671 0.632
Poly. of deg. 5 0.676 0.640
Poly. of deg. 6 0.682 0.652
RBF with γ = 1 0.649 0.636
RBF with γ = 5 0.668 0.679

Table 4: The baseline system was the same used for
the nwt+bn-man collection. We find that using a lin-
ear kernel for the procedure using IdentiFinder-asr
to tag named entities results in statistically signifi-
cant improvement.

Finder using a simulated ASR corpus with named
entities identified correctly. Since the amount of
training data required was huge, we obtained the
training data from the bn-man version of TDT3.
We ran IdentiFinder-man on the bn-man version of
TDT3 and tagged the named entities. We then re-
moved punctuation and converted all the text to up-
percase to simulate ASR to a limited degree. We
re-trained IdentiFinder on this simulated ASR cor-
pus and used it to tag named entities in only the
bn-asr stories in TDT2. We retained the use of
IdentiFinder-man for the nwt stories. The same three
features were then extracted and we re-ran the classi-
fiers. The results are shown in Table 4 in the column
titled IdentiFinder-asr.

8 Conclusions and Future Work

We have shown the applicability of machine learn-
ing classification techniques to solve the NED prob-
lem. Significant improvements were made over the
baseline systems on all the corpora tested on. The
features we engineered made extensive use of named
entities, and reinforced the importance and need to
effectively harness their utility to solve problems in
TDT. NED requires not only detection and report-
ing of new events, but also suppression of stories
that report old events. From the study of the distri-
butions of scores assigned to stories by the baseline
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and SVM model systems, we can see that we now do
a better job of detecting old stories (reducing false
alarms). Thus we believe that attacking the prob-
lem as “old story detection” might be a better and
more fruitful approach. We have shown the effects
of ASR output in the news stream, and demonstrated
a procedure to alleviate the problem.

A classifier with RBF kernel with γ set to one ex-
hibited the best performance. The reason for this
superior performance over other kernels needs to be
investigated. Engineering of better features is also
a definite priority. In the future NED can also be
extended to other interesting domains like scientific
literature to detect the emerge of new topics and in-
terests.
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Abstract

We propose a generalized bootstrapping
algorithm in which categories are de-
scribed by relevant seed features. Our
method introduces two unsupervised steps
that improve the initial categorization step
of the bootstrapping scheme: (i) using La-
tent Semantic space to obtain a general-
ized similarity measure between instances
and features, and (ii) the Gaussian Mixture
algorithm, to obtain uniform classification
probabilities for unlabeled examples. The
algorithm was evaluated on two Text Cate-
gorization tasks and obtained state-of-the-
art performance using only the category
names as initial seeds.

1 Introduction

Supervised classification is the task of assigning cat-
egory labels, taken from a predefined set of cate-
gories (classes), to instances in a data set. Within the
classical supervised learning paradigm, the task is
approached by providing a learning algorithm with
a training data set of manually labeled examples. In
practice it is not always easy to apply this schema
to NLP tasks. For example supervised systems for
Text Categorization (TC) require a large amount of
hand labeled texts, while in many applicative cases
it is quite difficult to collect the required amounts of
hand labeled data. Unlabeled text collections, on the
other hand, are in general easily available.

An alternative approach is to provide the neces-
sary supervision by means of sets of “seeds” of in-
tuitively relevant features. Adopting terminology

from computability theory, we refer to the stan-
dard example-based supervision mode asExten-
sional Learning(EL), as classes are being specified
by means of examples of their elements (theirex-
tension). Feature-based supervision is referred to as
Intensional Learning(IL), as features may often be
perceived as describing theintensionof a category,
such as providing the name or prominent key terms
for a category in text categorization.

The IL approach reflects on classical rule-based
classification methods, where the user is expected
to specify exact classification rules that operate in
the feature space. Within the machine learning
paradigm, IL has been incorporated as a technique
for bootstrapping an extensional learning algorithm,
as in (Yarowsky, 1995; Collins and Singer, 1999;
Liu et al., 2004). This way the user does not
need to specify exact classification rules (and fea-
ture weights), but rather perform a somewhat sim-
pler task of specifying few typical seed features for
the category. Given the list of seed features, the
bootstrapping scheme consists of (i) preliminary un-
supervised categorization of the unlabeled data set
based on the seed features, and (ii) training an (ex-
tensional) supervised classifier using the automatic
classification labels of step (i) as the training data
(the second step is possibly reiterated, such as by
an Expectation-Maximization schema). The core
part of IL bootstrapping is step (i), i.e. the initial
unsupervised classification of the unlabeled dataset.
This step was often approached by relatively sim-
ple methods, which are doomed to obtain mediocre
quality. Even so, it is hoped that the second step of
supervised training would be robust enough to the
noise in the initial training set.
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The goal of this paper is to investigate additional
principled unsupervised mechanisms within the ini-
tial classification step, applied to the text catego-
rization. In particular, (a) utilizing a Latent Se-
mantic Space to obtain better similarity assessments
between seeds and examples, and (b) applying a
Gaussian Mixture (GM) algorithm, which provides a
principled unsupervised estimation of classification
probability. As shown in our experiments, incor-
porating these steps consistently improved the ac-
curacy of the initial categorization step, which in
turn yielded a better final classifier thanks to the
more accurate training set. Most importantly, we ob-
tained comparable or better performance than previ-
ous IL methods usingonly the category names as the
seed features; other IL methods required collecting
a larger number of seed terms, which turns out to be
a somewhat tricky task.

Interesting results were revealed when compar-
ing our IL method to a state-of-the-art extensional
classifier, trained on manually labeled documents.
The EL classifier required 70 (Reuters dataset) or
160 (Newsgroup dataset) documents per category to
achieve the same performance that IL obtained using
only the category names. These results suggest that
IL may provide an appealing cost-effective alterna-
tive when sub-optimal accuracy suffices, or when it
is too costly or impractical to obtain sufficient la-
beled training. Optimal combination of extensional
and intensional supervision is raised as a challeng-
ing topic for future research.

2 Bootstrapping for Text Categorization

The TC task is to assign category labels to docu-
ments. In the IL setting, a categoryCi is described
by providing a set of relevant features, termed an
intensional description(ID), idci ⊆ V , whereV
is the vocabulary. In addition a training corpus
T = {t1, t2, . . . tn} of unlabeledtexts is provided.
Evaluation is performed on a separate test corpus
of labeled documents, to which standard evaluation
metrics can be applied.

The approach of categorizing texts based on lists
of keywords has been attempted rather rarely in the
literature (McCallum and Nigam, 1999; Ko and Seo,
2000; Liu et al., 2004; Ko and Seo, 2004). Several
names have been proposed for it – such asTC by
bootstrapping with keywords, unsupervised TC, TC
by labelling words– where the proposed methods

fall (mostly) within the IL settings described here1.

It is possible to recognize a common structure of
these works, based on a typical bootstrap schema
(Yarowsky, 1995; Collins and Singer, 1999):

Step 1: Initial unsupervised categorization.This
step was approached by applying some similar-
ity criterion between the initial category seed
and each unlabeled document. Similarity may
be determined as a binary criterion, consider-
ing each seed keyword as a classification rule
(McCallum and Nigam, 1999), or by applying
an IR style vector similarity measure. The re-
sult of this step is an initial categorization of (a
subset of) the unlabeled documents. In (Ko and
Seo, 2004) term similarity techniques were ex-
ploited to expand the set of seed keywords, in
order to improve the quality of the initial cate-
gorization.

Step 2: Train a supervised classifier on the ini-
tially categorized set. The output of Step
1 is exploited to train an (extensional) su-
pervised classifier. Different learning algo-
rithms have been tested, including SVM, Naive
Bayes, Nearest Neighbors, and Rocchio. Some
works (McCallum and Nigam, 1999; Liu et
al., 2004) performed an additional Expectation
Maximization algorithm over the training data,
but reported rather small incremental improve-
ments that do not seem to justify the additional
effort.

(McCallum and Nigam, 1999) reported catego-
rization results close to human agreement on the
same task. (Liu et al., 2004) and (Ko and Seo,
2004) contrasted their word-based TC algorithm
with the performance of an extensional supervised
algorithm, achieving comparable results, while in
general somewhat lower. It should be noted that it
has been more difficult to define a common evalua-
tion framework for comparing IL algorithms for TC,
due to the subjective selection of seed IDs and to the
lack of common IL test sets (see Section 4).

1The major exception is the work in (Ko and Seo, 2004),
which largely follows the IL scheme but then makes use of la-
beled data to perform a chi-square based feature selection be-
fore starting the bootstrap process. This clearly falls outside the
IL setting, making their results incomparable to other IL meth-
ods.
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3 Incorporating Unsupervised Learning
into Bootstrap Schema

In this section we show how the core Step 1 of the IL
scheme – the initial categorization – can be boosted
by two unsupervised techniques. These techniques
fit the IL setting and address major constraints of it.
The first is exploiting a generalized similarity metric
between category seeds (IDs) and instances, which
is defined in a Latent Semantic space. Applying
such unsupervised similarity enables to enhance the
amount of information that is exploited from each
seed feature, aiming to reduce the number of needed
seeds. The second technique applies the unsuper-
vised Gaussian Mixture algorithm, which maps sim-
ilarity scores to a principled classification probabil-
ity value. This step enables to obtain a uniform scale
of classification scores across all categories, which
is typically obtained only through calibration over
labeled examples in extensional learning.

3.1 Similarity in Latent Semantic Space

As explained above, Step 1 of the IL scheme as-
sesses a degree of “match” between the seed terms
and a classified document. It is possible first to
follow the intuitively appealing and principled ap-
proach of (Liu et al., 2004), in which IDs (category
seeds) and instances are represented by vectors in a
usual IR-style Vector Space Model (VSM), and sim-
ilarity is measured by the cosine function:

simvsm(idci , tj) = cos (~idci , ~tj) (1)

where~idci ∈ R|V | and~tj ∈ R|V | are the vectorial
representations in the spaceR|V | respectively of the
category IDidci and the instancetj , andV is the set
of all the features (the vocabulary).

However, representing seeds and instances in a
standard feature space is severely affected in the IL
setting by feature sparseness. In general IDs are
composed by short lists of features, possibly just
a single feature. Due to data sparseness, most in-
stances do not contain any feature in common with
any category’s ID, which makes the seeds irrelevant
for most instances (documents in the text categoriza-
tion case). Furthermore, applying direct matching
only for a few seed terms is often too crude, as it ig-
nores the identity of the other terms in the document.

The above problems may be reduced by consid-
ering some form of similarity in the feature space,
as it enables to compare additional document terms

with the original seeds. As mentioned in Section
2, (Ko and Seo, 2004) expanded explicitly the orig-
inal category IDs with more terms, using a con-
crete query expansion scheme. We preferred using a
generalized similarity measure based on represent-
ing features and instances a Latent Semantic (LSI)
space (Deerwester et al., 1990). The dimensions of
the Latent Semantic space are the most explicative
principal components of the feature-by-instance ma-
trix that describes the unlabeled data set. In LSI
both coherent features (i.e. features that often co-
occur in the same instances) and coherent instances
(i.e. instances that share coherent features) are rep-
resented by similar vectors in the reduced dimen-
sionality space. As a result, a document would be
considered similar to a category ID if the seed terms
and the document terms tend to co-occur overall in
the given corpus.

The Latent Semantic Vectors for IDs and docu-
ments were calculated by an empirically effective
variation (self-reference omitted for anonymity) of
thepseudo-documentmethodology to fold-in docu-
ments, originally suggested in (Berry, 1992). The
similarity functionsimlsi is computed by the cosine
metric, following formula 1, where~idci and ~tj are
replaced by their Latent Semantic vectors. As will
be shown in section 4.2, using such non sparse rep-
resentation allows to drastically reduce the number
of seeds while improving significantly the recall of
the initial categorization step.

3.2 The Gaussian Mixture Algorithm and the
initial classification step

Once having a similarity function between category
IDs and instances, a simple strategy is to base the
classification decision (of Step 1) directly on the
obtained similarity values (as in (Liu et al., 2004),
for example). Typically, IL works adopt in Step 1
a single-label classification approach, and classify
each instance (document) to only one category. The
chosen category is the one whose ID is most simi-
lar to the classified instance amongst all categories,
which does not require any threshold tuning over la-
beled examples. The subsequent training in Step 2
yields a standard EL classifier, which can then be
used to assign multiple categories to a document.

Using directly the output of the similarity func-
tion for classification is problematic, because the ob-
tained scales of similarity values vary substantially
across different categories. The variability in sim-
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ilarity value ranges is caused by variations in the
number of seed terms per category and the levels of
their generality and ambiguity. As a consequence,
choosing the class with the highest absolute similar-
ity value to the instance often leads to selecting a
category whose similarity values tend to be gener-
ally higher, while another category could have been
more similar to the classified instance if normalized
similarity values were used.

As a solution we propose using an algorithm
based on unsupervised estimation of Gaussian Mix-
tures (GM), which differentiates relevant and non-
relevant category information using statistics from
unlabeled instances. We recall that mixture mod-
els have been widely used in pattern recognition and
statistics to approximate probability distributions. In
particular, a well-known nonparametric method for
density estimation is the so-called Kernel Method
(Silverman, 1986), which approximates an unknow
density with a mixture of kernel functions, such as
gaussians functions. Under mild regularity condi-
tions of the unknown density function, it can be
shown that mixtures of gaussians converge, in a sta-
tistical sense, toanydistribution.

More formally, letti ∈ T be an instance described
by a vector of features~ti ∈ R|V | and letidci ⊂ V
be the ID of categoryCi; let sim(idci , tj) ∈ R be
a similarity function among instances and IDs, with
the only expectation that it monotonically increases
according to the “closeness” ofidci andtj (see Sec-
tion 3.1).

For each categoryCi, GM induces a mapping
from the similarity scores between its ID and any
instancetj , sim(idci , tj), into the probability ofCi
given the texttj , P (Ci|tj). To achieve this goal GM
performs the following operations: (i) it computes
the setSi = {sim(idci , tj)|tj ∈ T} of the sim-
ilarity scores between the IDidci of the category
Ci and all the instancestj in the unlabeled train-
ing setT ; (ii) it induces from the empirical distri-
bution of values inSi a Gaussian Mixture distribu-
tion which is composed of two “hypothetic” distri-
butionsCi andCi, which are assumed to describe re-
spectively the distributions of similarity scores for
positive and negative examples; and (iii) it estimates
the conditional probabilityP (Ci|sim(idci , tj)) by
applying the Bayes theorem on the distributionsCi
andCi. These steps are explained in more detail be-
low.

The core idea of the algorithm is in step (ii). Since

we do not have labeled training examples we can
only obtain the setSi which includes the similar-
ity scores for all examples together, both positive
and negative. We assume, however, that similar-
ity scores that correspond to positive examples are
drawn from one distribution,P (sim(idci , tj)|Ci),
while the similarity scores that correspond to neg-
ative examples are drawn from another distribution,
P (sim(idci , tj)|Ci). The observed distribution of
similarity values inSi is thus assumed to be a mix-
ture of the above two distributions, which are recov-
ered by the GM estimation.

Figure 1 illustrates the mapping induced by GM
from the empirical mixture distribution: dotted lines
describe the Probability Density Functions (PDFs)
estimated by GM forCi, Ci, and their mixture from
the empirical distribution (Si) (in step (ii)). The
continuous line is the mapping induced in step (iii)
of the algorithm from similarity scores between in-
stances and IDs (x axis) to the probability of the in-
stance to belong to the category (y axis).
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Figure 1: Mapping induced by GM for the category
rec.motorcyclesin the 20newsgroups data set.

The probabilistic mapping estimated in step (iii)
for a categoryCi given an instancetj is computed
by applying Bayes rule:

P (Ci|tj) = P (Ci|sim(idci , tj)) = (2)

=
P (sim(idci ,tj)|Ci)P (Ci)

P (sim(idci ,tj)|Ci)P (Ci)+P (sim(Ci,tj)|Ci)P (Ci)

where P (sim(idci , tj)|Ci) is the value of
the PDF of Ci at the point sim(idci , tj),
P (sim(idci , tj)|Ci) is the value of thePDF of Ci at
the same point,P (Ci) is the area of the distribution
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Ci andP (Ci) is the area of the distributionCi. The
mean and variance parameters of the two distribu-
tionsCi andCi, used to evaluate equation 2, are esti-
mated by the rather simple application of the Expec-
tation Maximization (EM) algorithm for Gaussian
Mixtures, as summarized in (Gliozzo et al., 2004).

Finally, following the single-labeled categoriza-
tion setting of Step 1 in the IL scheme, the most
likely category is assigned to each instance, that is,
argmaxCiP (Ci|tj).

3.3 Summary of the Bootstrapping Algorithm

step 1.a: Latent Semantic Space. Instances and
Intensional Descriptions of categories (the seeds) are
represented by vectors in Latent Semantic space. As
an option, the algorithm can work with the classi-
cal Vector Space Model using the original feature
space. Similarity scores between IDs and instances
are computed by the Cosine measure.

step 1.b: GM. The mapping functionsP (Ci|tj)
for each category, conditioned on instancestj , are
induced by the GM algorithm. To that end, an Ex-
pectation Maximization algorithm estimates the pa-
rameters of the two component distributions of the
observed mixture, which correspond to the distribu-
tions of similarity values for positive and negative
examples. As an option, the GM mapping can be
avoided.

step 1.c: Categorization. Each instance
is classified to the most probable category -
argmaxCiP (Ci|tj).

step 2: Bootstrapping an extensional classifier.
An EL classifier (SVM) is trained on the set of la-
beled instances resulting from step 1.c.

4 Evaluation

4.1 Intensional Text Categorization Datasets

Even though some typical data sets have been used
in the TC literature (Sebastiani, 2002), the datasets
used for IL learning were not standard. Often there
is not sufficient clarity regarding details such as the
exact version of the corpus used and the training/test
splitting. Furthermore, the choice of categories was
often not standard: (Ko and Seo, 2004) omitted 4
categories from the 20-Newsgroup dataset, while
(Liu et al., 2004) evaluated their method on 4 sepa-
rate subsets of the 20-Newsgroups, each containing

only 4-5 categories. Such issues make it rather diffi-
cult to compare thoroughly different techniques, yet
we have conducted several comparisons in Subsec-
tion 4.5 below. In the remainder of this Subsection
we clearly state the corpora used in our experiments
and the pre-processing steps performed on them.

20newsgroups. The 20 Newsgroups data set is
a collection of newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. As
suggested in the dataset Web site2, we used the
“bydate” version: the corpus (18941 documents)
is sorted by date and divided in advance into a
training (60%) set and a chronologically follow-
ing test set (40%) (so there is no randomness in
train/test set selection), it does not include cross-
posts (duplicates), and (more importantly) does not
include non-textual newsgroup-identifying headers
which often help classification (Xref, Newsgroups,
Path, Followup-To, Date).

We will first report results usinginitial seeds
for the category ID’s, which were selected using
only the words in the category names, with some
trivial transformations (i.e.cryptography#n
for the categorysci.crypt , x-windows#n
for the category comp.windows.x ). We
also tried to avoid “overlapping” seeds, i.e.
for the categories rec.sport.baseball
and rec.sport.hockey the seeds are only
{baseball#n } and {hockey#n } respec-
tively and not {sport#n, baseball#n } and
{sport#n, hockey#n }3.

Reuters-10. We used the top 10 categories
(Reuters-10) in the Reuters-21578 collection
Aptè split4. The complete Reuters collection
includes 12,902 documents for 90 categories,
with a fixed splitting between training and test
data (70/30%). Both the Aptè and Apt̀e-10
splits are often used in TC tasks, as surveyed
in (Sebastiani, 2002). To obtain the Reuters-10

2The collection is available at
www.ai.mit.edu/people/jrennie/20Newsgroups .

3One could propose as a guideline for seed selection
those seeds that maximize their distances in the LSI vec-
tor space model. On this perspective the LSI vectors
built from {sport#n, baseball#n } and {sport#n,
hockey#n } are closer than the vectors that represent
{baseball#n } and {hockey#n }. It may be noticed that
this is a reason for the slight initial performance decrease in the
learning curve in Figure 2 below.

4available athttp://kdd.ics.uci.edu/databases/-
reuters21578/reuters21578.html ).
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Aptè split we selected the 10 most frequent cate-
gories: Earn, Acquisition, Money-fx,
Grain, Crude, Trade, Interest,
Ship, Wheat and Corn . The final data set
includes 9296 documents. The initial seeds are only
the words appearing in the category names.

Pre-processing. In both data sets we tagged the
texts for part-of-speech and represented the docu-
ments by the frequency of each pos-tagged lemma,
considering only nouns, verbs, adjectives, and ad-
verbs. We induced the Latent Semantic Space from
the training part5 and consider the first 400 dimen-
sions.

4.2 The impact of LSI similarity and GM on IL
performance

In this section we evaluate the incremental impact
of LSI similarity and the GM algorithm on IL per-
formance. When avoiding both techniques the algo-
rithm uses the simple cosine-based method over the
original feature space, which can be considered as a
baseline (similar to the method of (Liu et al., 2004)).
We report first results using only the names of the
categories as initial seeds.

Table 1 displays the F1 measure for the 20news-
groups and Reuters data sets, with and without LSI
and with and without GM. The performance figures
show the incremental benefit of both LSI and GM. In
particular, when starting with just initial seeds and
do not exploit the LSI similarity mechanism, then
the performance is heavily penalized.

As mentioned above, the bootstrapping step of the
algorithm (Step 2) exploits the initially classified in-
stances to train a supervised text categorization clas-
sifier based on Support Vector Machines. It is worth-
while noting that the increment of performance after
bootstrapping is generally higher when GM and LSI
are incorporated, thanks to the higher quality of the
initial categorization which was used for training.

4.3 Learning curves for the number of seeds

This experiment evaluates accuracy change as a
function of the number of initial seeds. The ex-

5From a machine learning point of view, we could run the
LSA on the full corpus (i.e. training and test), the LSA being a
completely unsupervised technique (i.e. it does not take into ac-
count the data annotation). However, from an applicative point
of view it is much more sensible to have the LSA built on the
training part only. If we run the LSA on the full corpus, the
performance figures increase in about 4 points.

Reuters 20 Newsgroups
LSI GM F1 F1
no no 0.38 0.25

+ bootstrap 0.42 0.28
no yes 0.41 0.30

+ bootstrap 0.46 0.34
yes no 0.46 0.50

+ bootstrap 0.47 0.53
yes yes 0.58 0.60

+ bootstrap 0.74 0.65

Table 1: Impact of LSI vector space and GM
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Figure 2: Learning curves on initial seeds for 20
newsgroups, LSI and Classical VSM (no LSI)

periment was performed for the 20 newsgroups cor-
pus using both the LSI and the Classical vector
space model. Additional seeds, beyond the cate-
gory names, were identified by two lexicographers.
For each category, the lexicographers were provided
with a list of 100 seeds produced by the LSI similar-
ity function applied to the category name (one list of
100 candidate terms for each category). From these
lists the lexicographers selected the words that were
judged as significantly related to the respective cat-
egory, picking a mean of 40 seeds per category.

As seen in Figure 2, the learning curve using
LSI vector space model dramatically outperforms
the one using classical vector space. As can be
expected, when using the original vector space (no
generalization) the curve improves quickly with a
few more terms. More surprisingly, with LSI sim-
ilarity the best performance is obtained using the
minimal initial seeds of the category names, while
adding more seeds degrades performance. This
might suggest that category names tend to be highly
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indicative for the intensional meaning of the cate-
gory, and therefore adding more terms introduces
additional noise. Further research is needed to find
out whether other methods for selecting additional
seed terms might yield incremental improvements.
The current results, though, emphasize the bene-
fit of utilizing LSI and GM. These techniques ob-
tain state-of-the-art performance (see comparisons
in Section 4.5) using only the category names as
seeds, allowing us to skip the quite tricky phase of
collecting manually a larger number of seeds.

4.4 Extensional vs. Intensional Learning

A major point of comparison between IL and EL is
the amount of supervision effort required to obtain a
certain level of performance. To this end we trained
a supervised classifier based on Support Vector Ma-
chines, and draw its learning curves as a function
of percentage of the training set size (Figure 3). In
the case of 20newsgroups, to achieve the 65% F1
performance of IL the supervised settings requires
about 3200 documents (about 160 texts per cate-
gory), while our IL method requires only the cate-
gory name. Reuters-10 is an easier corpus, there-
fore EL achieves rather rapidly a high performance.
But even here using just the category name is equal
on average to labeling 70 documents per-category
(700 in total). These results suggest that IL may pro-
vide an appealing cost-effective alternative in prac-
tical settings when sub-optimal accuracy suffices, or
when it is too costly or impractical to obtain suffi-
cient amounts of labeled training sets.

It should also be stressed that when using the
complete labeled training corpus state-of-the-art EL
outperforms our best IL performance. This result
deviates from the flavor of previous IL literature,
which reported almost comparable performance rel-
ative to EL. As mentioned earlier, the method of (Ko
and Seo, 2004) (as we understand it) utilizes labeled
examples for feature selection, and therefore cannot
be compared with our strict IL setting. As for the
results in (Liu et al., 2004), we conjecture that their
comparable performance for IL and EL may not be
sufficiently general, for several reasons: the easier
classification task (4 subsets of 20-Newsgroups of
4-5 categories each); the use of the usually weaker
Naive-Bayes as the EL device; the use of cluster-
ing as an aid for selecting the seed terms from the
20-Newsgroup subsets, which might not scale up
well when applied to a large number of categories
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4.5 Comparisons with other algorithms

As mentioned earlier it is not easy to conduct a thor-
ough comparison with other algorithms in the litera-
ture. Most IL data sets used for training and evalua-
tion are either not available (McCallum and Nigam,
1999) or are composed by somewhat arbitrary sub-
sets of a standard data set. Another crucial aspect
is the particular choice of the seed terms selected to
compose an ID, which affects significantly the over-
all performance of the algorithm.

As a baseline system, we implemented a rule
based approach in the spirit of (McCallum and
Nigam, 1999). It is based on two steps. First, all
the documents in the unlabeled training corpus con-
taining at least one word in common with one and
only one category ID are assigned to the respective
class. Second, a supervised classifier based on SVM
is trained on the labeled examples. Finally, the su-
pervised classifier is used to perform the final cate-
gorization step on the test corpus. Table 2 reports
the F1 measure of our replication of this method, us-
ing the category name as seed, which is substantially
lower than the performance of the method we pre-
sented in this paper.

Reuters 20 Newsgroups
0.34 0.30

+ bootstrap 0.42 0.47

Table 2: Rule-based baseline performance
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We also tried to replicate two of the non-standard
data sets used in (Liu et al., 2004)6. Table 3 displays
the performance of our approach in comparison to
the results reported in (Liu et al., 2004). Follow-
ing the evaluation metric adopted in that paper we
report here accuracy instead of F1. For each data
set (Liu et al., 2004) reported several results vary-
ing the number of seed words (from 5 to 30), as well
as varying some heuristic thresholds, so in the ta-
ble we report their best results. Notably, our method
obtained comparable accuracy by using just the cat-
egory name as ID for each class instead of multiple
seed terms. This result suggests that our method en-
ables to avoid the somewhat fuzzy process of col-
lecting manually a substantial number of additional
seed words.

Our IDs per cat. Liu et al. IDs per cat.
REC 0.94 1 0.95 5
TALK 0.80 1 0.80 20

Table 3: Accuracy on 4 “REC” and 4 “TALK” news-
groups categories

5 Conclusions

We presented a general bootstrapping algorithm for
Intensional Learning. The algorithm can be applied
to any categorization problem in which categories
are described by initial sets of discriminative fea-
tures and an unlabeled training data set is provided.
Our algorithm utilizes a generalized similarity mea-
sure based on Latent Semantic Spaces and a Gaus-
sian Mixture algorithm as a principled method to
scale similarity scores into probabilities. Both tech-
niques address inherent limitations of the IL setting,
and leverage unsupervised information from an un-
labeled corpus.

We applied and evaluated our algorithm on some
text categorization tasks and showed the contribu-
tion of the two techniques. In particular, we obtain,
for the first time, competitive performance using
only the category names as initial seeds. This mini-
mal information per category, when exploited by the
IL algorithm, is shown to be equivalent to labeling
about 70-160 training documents per-category for
state of the art extensional learning. Future work is

6We used sequential splitting (70/30) rather than random
splitting and did not apply any feature selection. This setting
might be somewhat more difficult than the original one.

needed to investigate optimal procedures for collect-
ing seed features and to find out whether additional
seeds might still contribute to better performance.
Furthermore, it may be very interesting to explore
optimal combinations of intensional and extensional
supervision, provided by the user in the forms of
seed featuresand labeled examples.
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Abstract

We present a method for speeding up the
calculation of tree kernels during train-
ing. The calculation of tree kernels is still
heavy even with efficient dynamic pro-
gramming (DP) procedures. Our method
maps trees into a small feature space
where the inner product, which can be cal-
culated much faster, yields the same value
as the tree kernel formosttree pairs. The
training is sped up by using the DP pro-
cedure only for the exceptional pairs. We
describe an algorithm that detects such ex-
ceptional pairs and converts trees into vec-
tors in a feature space. We propose tree
kernels onmarked labeled ordered trees
and show that the training of SVMs for
semantic role labeling using these kernels
can be sped up by a factor of several tens.

1 Introduction

Many NLP tasks such as parse selection and tag-
ging can be posed as the classification of labeled
ordered trees. Several tree kernels have been pro-
posed for building accurate kernel-based classifiers
(Collins and Duffy, 2001; Kashima and Koyanagi,
2002). They have the following form in common.

K(T1, T2) =
∑

Si

W (Si) ·#Si(T1) ·#Si(T2), (1)

whereSi is a possible subtree,#Si(Tj) is the num-
ber of timesSi is included in Tj , andW (Si) is
the weight ofSi. That is, tree kernels are inner
products in a subtree feature space where a tree is

mapped to vectorV (Tj) =
(√

W (Si)#Si(Tj)
)
i
.

With tree kernels we can take global structures into
account, while alleviating overfitting with kernel-
based learning methods such as support vector ma-
chines (SVMs) (Vapnik, 1995).

Previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002) showed that although
it is difficult to explicitly calculate the inner product
in Eq. (1) because we need to consider an exponen-
tial number of possible subtrees, the tree kernels can
be computed inO(|T1||T2|) time by using dynamic
programming (DP) procedures. However, these DP
procedures are time-consuming in practice.

In this paper, we present a method for speeding
up the training with tree kernels. Our target ap-
plication is node relation labeling, which includes
NLP tasks such as semantic role labeling (SRL)
(Gildea and Jurafsky, 2002; Moschitti, 2004; Ha-
cioglu et al., 2004). For this purpose, we designed
kernels onmarked labeled ordered treesand derived
O(|T1||T2|) procedures. However, the lengthy train-
ing due to the cost of kernel calculation prevented us
from assessing the performance of these kernels and
motivated us to make the training practically fast.

Our speed-up method is based on the observation
that very few pairs in the training set have a great
many common subtrees (we call such pairsmali-
ciouspairs) and most pairs have a very small number
of common subtrees. This leads to a drastic vari-
ance in kernel values, e.g., whenW (Si) = 1. We
thus call this property of dataunbalanced similarity.
Fast calculation based on the inner product is possi-
ble for non-malicious pairs since we can convert the
trees into vectors in a space of a small subset of all
subtrees. We can speed up the training by using the
DP procedure only for the rare malicious pairs.

We developed the FREQTM algorithm, a modifi-
cation of the FREQT algorithm (Asai et al., 2002),
to detect the malicious pairs and efficiently convert
trees into vectors by enumerating only the subtrees
actually needed (feature subtrees). The experiments
demonstrated that our method makes the training of
SVMs for the SRL task faster by a factor of several
tens, and that it enables the performance of the ker-
nels to be assessed in detail.
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2 Kernels for Labeled Ordered Trees

The tree kernels proposed so far differ in how sub-
tree inclusion is defined. For instance, Kashima and
Koyanagi (2002) used the following definition.

DEFINITION 2.1 S is included inT iff there exists
a one-to-one functionψ from a node ofS to a node
of T such that (i)pa(ψ(ni)) = ψ(pa(ni)) (pa(ni)
returns the parent of nodeni), (ii) ψ(ni) º ψ(nj) iff
ni º nj (ni º nj means thatni is an elder sibling
of nj), and (iii) l(ψ(ni)) = l(ni) (l(ni) returns the
label ofni).

We refer to the tree kernel based on this definition as
Klo. Collins and Duffy (2001) used a more restric-
tive definition where the preservation of CFG pro-
ductions, i.e.,nc(ψ(ni)) = nc(ni) if nc(ni) > 0
(nc(ni) is the number of children ofni), is required
in addition to the requirements in Definition 2.1. We
refer to the tree kernel based on this definition asKc.

It is pointed that extremely unbalanced kernel val-
ues cause overfitting. Therefore, Collins and Duffy
(2001) usedW (Si) = λ(# of productions inSi),
and Kashima and Koyanagi (2002) usedW (Si) =
λ|Si|, whereλ (0 ≤ λ ≤ 1) is a factor to alleviate
the unbalance by penalizing large subtrees.

To calculate the tree kernels efficiently, Collins
and Duffy (2001) presented anO(|T1||T2|) DP pro-
cedure forKc. Kashima and Koyanagi (2002) pre-
sented one forKlo. The point of these procedures is
that Eq. (1) can be transformed:

K(T1, T2) =
∑

n1∈T1

∑

n2∈T2

C(n1, n2),

C(n1, n2)≡P
Si
W (Si) ·#Si(T1 M n1) ·#Si(T2 M n2),

where#Si(Tj M nk) is the number of timesSi is
included inTj with ψ(root(Si)) = nk. C(n1, n2)
can then be calculated recursively from those of the
children ofn1 andn2.

3 Kernels for Marked Labeled Ordered
Trees for Node Relation Labeling

3.1 Node Relation Labeling

The node relation labeling finds relations among
nodes in a tree. Figure 1 illustrates the concept of
node relation labeling with the SRL task as an ex-
ample. A0, A1, and AM-LOC are the semantic roles
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Figure 1: Node relation labeling.
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Figure 2: Semantic roles encoded by marked labeled
ordered trees.

of the arguments of the verb “see (saw)”. We repre-
sent an argument by the node that is the highest in
the parse tree among the nodes that exactly cover
the words in the argument. The node for the verb
is determined similarly. For example, the node la-
beled “PP” represents the AM-LOC argument “in
the sky”, and the node labeled “VBD” represents the
verb “see (saw)”. We assume that there is a two-
node relation labeled with the semantic role (repre-
sented by the arrow in the figure) between the verb
node and the argument node.

3.2 Kernels on Marked Labeled Ordered Trees

We define a marked labeled ordered tree as a labeled
ordered tree in which each node has a mark in ad-
dition to a label. We usem(ni) to denote the mark
of nodeni. If ni has no mark,m(ni) returns the
special markno-mark. We also use the function
marked(ni), which returnstrue iff m(ni) is not
no-mark. We can encode ak-node relation by using
k distinct marks. Figure 2 shows how the semantic
roles illustrated in Figure 1 can be encoded using
marked labeled ordered trees. We used the mark *1
to represent the verb node and *2 to represent the
argument node.

The node relation labeling task can be posed as
the classification of marked trees that returns+1
when the marks encode the correct relation and−1

138



Algorithm 3.1: KERNELLOMARK(T1, T2)

(nodes are ordered by the post-order traversal)
for n1 ← 1 to |T1| do

for n2 ← 1 to |T2| do —————————————(A)8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

if lm(n1) 6= lm(n2) then
C(n1, n2)← 0 Cr(n1, n2)← 0

else ifn1 andn2 are leaf nodesthen
C(n1, n2)← λ
if marked(n1) andmarked(n2) then
Cr(n1, n2)← λ elseCr(n1, n2)← 0

else
S(0, j)← 1 S(i, 0)← 1
if marked(n1) andmarked(n2) then
Sr(0, j)← 1 Sr(i, 0)← 1

elseSr(0, j)← 0 Sr(i, 0)← 0
for i← 1 to nc(n1) do

for j ← 1 to nc(n2) do
S(i, j)←
S(i− 1, j) + S(i, j − 1)− S(i− 1, j − 1)
+S(i− 1, j − 1) · C(chi(n1), chj(n2))
Sr(i, j)← ——————————(B)
Sr(i− 1, j)+Sr(i, j − 1)−Sr(i− 1, j − 1)
+Sr(i− 1, j − 1) · C(chi(n1), chj(n2))
+S(i− 1, j − 1) · Cr(chi(n1), chj(n2))
−Sr(i− 1, j − 1) · Cr(chi(n1), chj(n2))

C(n1, n2)← λ · S(nc(n1), nc(n2))
Cr(n1, n2)← λ · Sr(nc(n1), nc(n2))

return (
P|T1|
n1=1

P|T2|
n2=1 C

r(n1, n2))

otherwise. To enable such classification, we need
tree kernels that take into account the node marks.
We thus propose mark-aware tree kernels formu-
lated as follows.

K(T1, T2) =
∑

Si:marked(Si)

W (Si)·#Si(T1)·#Si(T2),

wheremarked(Si) returnstrue iff marked(ni) =
true for at least one node in treeSi. In these ker-
nels, we requirem(ψ(ni)) = m(ni) in addition to
l(ψ(ni)) = l(ni) for subtreeSi to be regarded as in-
cluded in treeTj . In other words, these kernels treat
lm(ni) ≡ (l(ni),m(ni)) as the new label of node
ni and sum only over subtrees that have at least one
marked node. We refer to the marked version ofKlo

asKr
lo and the marked version ofKc asKr

c .
We can deriveO(|T1||T2|) DP procedures for the

above kernels as well. Algorithm 3.1 shows the DP
procedure forKr

lo, which is derived by extending
the DP procedure forKlo (Kashima and Koyanagi,
2002). The key is the use ofCr(n1, n2), which
stores the sum over only marked subtrees, and its re-
cursive calculation usingC(n1, n2) andCr(n1, n2)
(B). An O(|T1||T2|) procedure forKr

c can also be
derived by extending (Collins and Duffy, 2001).

Table 1: Malicious and non-malicious pairs in the
1k data (3,136 trees) used in Sec. 5.2. We used
K(Ti, Tj) = 104 with λ = 1 as the threshold for
maliciousness. (A): pairs(i, i). (B): pairs from the
same sentence except(i, i). (C): pairs from different
sentences. Some malicious pairs are from different
but similar sentences, which are difficult to detect.

Kr
lo Kr

c

# pairs avg.K(Ti, Tj) # of pairs avg.K(Ti, Tj)

≥
104

(A) 3,121 1.17× 1052 3,052 2.49× 1032

(B) 7,548 7.24× 1048 876 1.26× 1032

(C) 6,510 6.80× 109 28 1.82× 104

<

104

(A) 15 4.19× 103 84 3.06× 103

(B) 4,864 2.90× 102 11,536 1.27× 102

(C) 9,812,4381.82× 101 9,818,9201.84× 10−1

4 Fast Training with Tree Kernels

4.1 Basic Idea

As mentioned, we define two types of tree pairs: ma-
licious and non-malicious pairs. Table 1 shows how
these two types of pairs are distributed in an actual
training set. There is a clear distinction between ma-
licious and non-malicious pairs, and we can exploit
this property to speed up the training.

We define subsetF = {Fi} (feature subtrees),
which includes only the subtrees that appear as
a common included subtree in the non-malicious
pairs. We convert a tree to feature vectorV (Tj) =(√

W (Fi)#Fi(Tj)
)
i

using onlyF . Then we use a

procedure that chooses the DP procedure or the in-
ner product procedure depending on maliciousness:

K(Ti, Tj)=

{
K(Ti, Tj) (DP) if (i, j) is malicious.

〈V (Ti), V (Tj)〉 otherwise

This procedure returns the same value as the origi-
nal calculation. Naively, if|V (Ti)| (the number of
feature subtrees such that#Fi(Ti) 6= 0) is small
enough, we can expect a speed-up because the cost
of calculating the inner product isO(|V (Ti)| +
|V (Tj)|). However, since|V (Ti)| might increase as
the training set becomes larger, we need a way to
scale the speed-up to large data. In most kernel-
based methods, such as SVMs, we actually need
to calculate the kernel values with all the train-
ing examples for a given exampleTi: KS(Ti) =
{K(Ti, T1), . . . ,K(Ti, TL)}, whereL is the num-
ber of training examples. Usingoccurrence pat-
ternOP (Fi) = {(k,#Fi(Tk))|#Fi(Tk) 6= 0} pre-
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Algorithm 4.1: CALCULATE KS(Ti)

for eachF such that#F (Ti) 6= 0 do
for each (j,#F (Tj)) ∈ OP (F ) do
KS(j)← KS(j) +W (F ) ·#F (Ti) ·#F (Tj) (A)

for j = 1 to L do
if (i, j) is malicious thenKS(j)← K(Ti, Tj) (DP)

pared beforehand, we can calculateKS(Ti) effi-
ciently (Algorithm 4.1). A similar technique was
used in (Kudo and Matsumoto, 2003a) to speed up
the calculation of inner products.

We can show that the per-pair cost of Algorithm
4.1 isO(c1Q + rmc2|Ti||Tj |), whereQ is the av-
erage number of common feature subtrees in a tree
pair, rm is the rate of malicious pairs,c1 andc2 are
the constant factors for vector operations and DP op-
erations. This cost is independent of the number of
training examples. We expect from our observations
that bothQ andrm are very small and thatc1 ¿ c2.

4.2 Feature Subtree Enumeration with
Malicious Pair Detection

To detect malicious pairs and enumerate feature sub-
treesF (and to convert each tree to a feature vector),
we developed an algorithm based on the FREQT al-
gorithm (Asai et al., 2002). The FREQT algorithm
can efficiently enumerate subtrees that are included
(Definition 2.1) in more than a pre-specified number
of trees in the training examples by generating can-
didate subtrees usingright most expansions(RMEs).
FREQT-based algorithms have recently been used
in methods that treat subtrees as features (Kudo and
Matsumoto, 2004; Kudo and Matsumoto, 2003b).

To develop the algorithm, we made the defini-
tion of maliciousness more search-oriented since it
is costly to check for maliciousness based on the ex-
act number of common subtrees or the kernel values
(i.e., by using the DP procedure for allL2 pairs).
Whatever definition we use, the correctness is pre-
served as long as we do not fail to enumerate the
subtrees that appear in the pairs we consider non-
malicious. First, we consider pairs(i, i) to always
be malicious. Then, we use a FREQT search that
enumerates the subtrees that are included in at least
two trees as a basis. Next, we modify FREQT so that
it stops the search if candidate subtreeFi is too large
(larger than sizeD, e.g., 20), and we regard the pairs
of the trees whereFi appears as malicious because
having a large subtree in common implies having a

Algorithm 4.2: FREQTM(D,R)

procedure GENERATECANDIDATE(Fi)
for each (j, n) ∈ occ(Fi) do

for each (Fk, nr) ∈ RME(Fi, Tj , n) do
S ← S ∪ {Fk}; occ(Fk)← occ(Fk) ∪ (j, nr)
if |occ(Fk)|/|sup(Fi)| > R then

return ((φ, false))————————————(R)
return (({Fk|Fk ∈ S, |sup(Fk)| ≥ 2}, true ))

procedure SEARCH(Fi, precheck)
if |Fi| ≥ D then REGISTERMAL(Fi) return ( false)–(P)
(C, suc)← GENERATECANDIDATE(Fi)
if not suc then REGISTERMAL(Fi) return ( false)—(S)
for eachFk ∈ C do

if malicious(Fk) then goto nextFk —————-(P2)
suc←SEARCH(Fk, precheck)
if not suc and |sup(Fi)| = |sup(Fk)| then

return ( false)——————————————–(P1)
if not precheck andmarked(Fi) then

REGISTERSUBTREE(Fi)————————————(F)
return ( true )

main
M← φ (a set of malicious pairs)
F1 ← {Fi||Fi| = 1 and|sup(Fi)| ≥ 2}
for eachFi ∈ F1 do SEARCH(Fi, true )—————-(PC)
for eachFi ∈ F1 do SEARCH(Fi, false)
M←M∪ {(i, i)|1 ≤ i ≤ l}
return (M, {V (Ti)}, {W (fi)})

Table 2: Functions in FREQTM.
• occ(Fi) returns occurrence list ofFi whose element

(j, n) indicates thatFi appears inTj and thatn (of Tj)
is the node added to generatedFi in Tj by the RME (n
works as the position ofFi in Tj).

• sup(Fi) returns the IDs of distinct trees inocc(Fi).

• malicious(Fi) returnstrue iff all pairs in sup(Fi) are
already registered in the set of malicious pairs,M. (Cur-

rently, this returnsfalse if |sup(Fi)| > M whereM is the maximum

support size of the malicious subtrees so far. We will remove this check

since we found that it did not affect efficiency so much.)

• RME(Fi, Tj , n) is a set of subtrees generated by RMEs
of Fi in Tj (permitted when previously expanded node to
generateFi is n).

possibly exponential number of subtrees of that sub-
tree in common. Although this test is heuristic and
conservative in that it ignores the shape and marks
of a tree, it works fine empirically.

Algorithm 4.2 is our algorithm, which we call
FREQTM. The differences from FREQT are under-
lined. Table 2 summarizes the functions used. To
make the search efficient, pruning is performed as
follows (see also Figure 3). The basic idea behind is
that if malicious(Fi) is true thenmalicious(Fk)
is alsotrue for Fk that is expanded fromFi by an
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RME sincesup(Fk) ⊆ sup(Fi). This means we do
not need to enumerateFi nor any descendant ofFi.

• (P) Once|Fi| ≥ D and the malicious pairs are
registered, we stop searching further.

• (P1) If the search fromFk (expanded fromFi)
found a malicious subtree and if|sup(Fi)| =
|sup(Fk)|, we stop the search from any other
subtreeFm (expanded fromFi) since we can
prove thatmalicious(Fm) = true without ac-
tually testing it (proof omitted).

• (P2) If malicious(Fk) = true, we prune
the search fromFk. To prune even when
malicious(Fk) becomestrue as a result of
succeeding searches, we first run a search only
for detecting malicious pairs (see(PC)).

• (S) We stop searching when the occurrence
list becomes too long (larger than thresholdR)
since it causes a severe search slowdown.

Note that we use a depth-first version of FREQT as
a basis to first find the largest subtrees and to detect
malicious pairs at early points in the search. Enu-
meration of unnecessary subtrees is avoided because
the registration of subtrees is performed at the post-
order position(F). The conversion to vectors is per-
formed by assigning an ID to subtreeFi when regis-
tering it at (F) and distributing the ID to all the exam-
ples inocc(Fi). Finally,D should be large enough
to makerm sufficiently small but should not be so
large that too many feature subtrees are enumerated.

We expect that the cost of FREQTM is offset by
the faster training, especially when training on the
same data is repeatedly performed as in the tuning
of hyperparameters.

ForKr
c , we use a similar search procedure. How-

ever, the RME is modified so that all the children of
a CFG production are expanded at once. Although
the modification is not trivial, we omit the explana-
tion due to space limitations.

4.3 Feature Compression

Additionally, we use a simple but effective feature
compression technique to boost speed-up. The idea
is simple: feature subtreesFi andFj can be treated
as one featurefk, with weightW (fk) = W (Fi) +
W (Fj) if OP (Fi) = OP (Fj). This drastically re-
duces the number of features. Although this is sim-

sup = {1, 2, 3, 4}
sup = {2, 3} (2, 3) /∈ M

(1, 2) (1, 3) (2, 3)

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 3} {2, 4}

> D

� �

Figure 3: Pruning in FREQTM.

ilar to finding closed and maximal subtrees (Chi et
al., 2004), it is easy to implement since we need only
the occurrence pattern,OP (Fi), which is easily ob-
tained fromocc(Fi) in the FREQTM search.

4.4 Alternative Methods

Vishwanathan and Smola (2004) presented the
O(|T1| + |T2|) procedure that exploits suffix trees
to speed up the calculation of tree kernels. However,
it can be applied to only a few types of subtrees that
can be represented as a contiguous part in a string
representation of a tree. Therefore, neitherKr

lo nor
Kr
c can be sped up by using this procedure.
Another method is to change an inner loop, such

as(B) in Algorithm 3.1, so that it iterates only over
nodes inT2 that havel(n1). We use this as the base-
line for comparison, since we found that this is about
two times faster than the standard implementation.1

4.5 Remaining Problem

Note that the method described here cannot speed up
classification, since the converted vectors are valid
only for calculating the kernels between trees in the
training set. However, when we classify the same
trees repeatedly, we can convert the trees in the train-
ing set and the classified trees at the same time and
use the obtained vectors for classification.

5 Evaluation

We first evaluated the speed-up by our method for
the semantic role labeling (SRL) task. We then
demonstrated that the speed-up method enables a de-
tailed comparison ofKr

lo andKr
c for the SRL task.

1ForKr
c , it might be possible to speed up comparisons in

the algorithm by assigning IDs for CFG rules. We leave this for
future work since it complicates implementation.
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Table 3: Conversion statistics and speed-up for semantic role A2.
Kr
lo Kr

c

size (# positive examples) 1,000 2,000 4,000 8,000 12,000 1,000 2,000 4,000 8,000 12,000
# examples 3,136 6,246 12,521 25,034 34,632 3,136 6,246 12,521 25,034 34,632

# feature subtrees (×104) 804.4 2,427.3 6,542.9 16,750.1 26,146. 5 3.473 9.009 21.867 52.179 78.440
# features (compressed) (×104) 20.7 67.3 207.2 585.9 977.0 0.580 1.437 3.426 8.128 12.001
avg. |V | (compressed) 468.0 866.5 1,517.3 2,460.5 3,278.3 10.5 14.0 17.9 23.1 25.9
rate of malicious pairsrm (%) 0.845 0.711 0.598 0.575 1.24 0.161 0.0891 0.0541 0.0370 0.0361
conversion time (sec.) 208.0 629.2 1,921.1 6,519.8 14,824.9 3.8 8.7 20.4 46.5 70.4
SVM time (DP+lookup) (sec.) 487.9 1,716.2 4,526.4 79,800.7 92,542.2 360.7 1,263.5 5,893.3 53,055.5 47,089.2
SVM time (proposed) (sec.) 17.5 68.6 186.4 1,721.7 2,531.8 4.9 25.7 119.5 982.8 699.1
speed-up factor 27.8 25.0 24.3 46.4 36.6 73.3 49.1 49.3 53.98 67.35

5.1 Setting

We used the data set provided for the CoNLL05 SRL
shared task (Carreras and Màrquez, 2005). We used
only the training part and divided it into our training,
development, and testing sets (23,899, 7,966, and
7,967 sentences, respectively). As the tree structure,
we used the output of Collins’ parser (with WSJ-
style non-terminals) provided with the data set. We
also used POS tags by inserting the nodes labeled by
POS tags above the word nodes. The average num-
ber of nodes in a tree was about 82. We ignored any
arguments (and verbs) that did not match any node
in the tree (the rate of such cases was about 3.5%).2

The words were lowercased.
We used TinySVM3 as the implementation of

SVM and added our tree kernels,Kr
lo andKr

c . We
implemented FREQTM based on the implementa-
tion of FREQT by Kudo.4 We normalized the kernel
values:K(Ti, Tj)/

√
K(Ti, Ti)×K(Tj , Tj). Note

that this normalization barely affected the training
time since we can calculateK(Ti, Ti) beforehand.

We assumed two-step labeling where we first find
the argument node and then we determine the label
by using a binary classifier for each semantic role. In
this experiment, we focused on the performance for
the classifiers in the latter step. We used the marked
labeled ordered tree that encoded the target role as
a positive example and the trees that encoded other
roles of the verb in the same sentence as negative
examples. We trained and evaluated the classifiers
using the examples generated as above.5

2This was caused by parse errors, which can be solved by us-
ing more accurate parsers, and by bracketing inconsistencies be-
tween parser outputs and SRL annotations (e.g., phrasal verbs),
many of which can be avoided by using heuristic transformers.

3http://chasen.org/˜taku/software/TinySVM
4http://chasen.org/˜taku/software/freqt
5The evaluation is slightly easier since the classifier for role

5.2 Training Speed-up

We calculated the statistics for the conversion by
FREQTM and measured the speed-up in SVM train-
ing for semantic role A2, for various numbers of
training examples. For FREQTM, we usedD = 20
andR = 20. For SVM training, we used conver-
gence tolerance0.001 (-e option in TinySVM), soft
margin costC = 1.0 × 103 (-c), maximum num-
ber of iterations105, kernel cache size 512 MB (-
m), and decay factorλ = 0.2 for the weight of
each subtree. We compared the time with our fast
method (Algorithm 4.1) with that with the DP pro-
cedure with the node lookup described in Section
4.4. Note that these two methods yield almost iden-
tical SVM models (there are very slight differences
due to the numerical computation). The time was
measured using a computer with 2.4-GHz Opterons.

Table 3 shows the results forKr
lo andKr

c . The
proposed method made the SVM training substan-
tially faster for bothKr

lo andKr
c . As we expected,

the speed-up factor did not decrease even though|V |
increased as the amount of data increased. Note
that FREQTM actually detected non-trivial mali-
cious pairs such as those from very similar sentences
in addition to trivial ones, e.g.,(i, i). FREQTM con-
version was much faster and the converted feature
vectors were much shorter forKr

c , presumably be-
causeKr

c restricts the subtrees more.
The compression technique described in Section

4.3 greatly reduced the number of features. Without
this compression, the storage requirement would be
impractical. It also boosted the speed-up. For ex-
ample, the training time withKr

lo for the size 1,000
data in Table 3 was 86.32 seconds without compres-
sion. This means that the compression boosted the

X is evaluated only on the examples generated from the sen-
tences that contain a verb that hasX as a role.
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Figure 4: Scaling of conversion time and SVM train-
ing time. Left:Kr
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Figure 5: Relation betweenD and conversion time,
SVM training time, andrm. Left: Kr

lo. Right:Kr
c

speed-up by a factor of more than 5.
The cost of FREQTM is much smaller than that

of SVM training with DP. Therefore, our method is
beneficial even if we train the SVM only once.

To see how our method scales to large amounts
of data, we plotted the time for the conversion and
the SVM training w.r.t. data size on a log-log scale.
As shown in Figure 4, the scaling factor was about
1.7 for the conversion time, 2.1 for SVM training
with DP, and 2.0 for the proposed SVM training for
Kr
lo. ForKr

c , the factors were about 1.3, 2.1, and
2.0, respectively. Regardless of the method, the cost
of SVM training was aboutO(L2), as reported in
the literature. Although FREQTM also has a super-
linear cost, it is smaller than that of SVM training.
Therefore, the cost of SVM training will become a
problem before the cost of FREQTM does.

As we mentioned, the choice ofD is a trade-off.
Figure 5 shows the relationships betweenD and the
time of conversion by FREQTM, the time of SVM
training using the converted vectors, and the rate of
malicious pairs,rm. We can see that the choice ofD
is more important in the case ofKlo and thatD = 20
used in our evaluation is not a bad choice.

5.3 Semantic Role Labeling

We assessed the performance ofKr
lo andKr

c for se-
mantic roles A1, A2, AM-ADV, and AM-LOC us-
ing our fast training method. We tuned soft mar-
gin costC andλ by using the development set (we

used the technique described in Section 4.5 to en-
able fast classification of the development set). We
experimented with two training set sizes (4,000 and
8,000). For eachλ (0.1, 0.15, 0.2, 0.25, and 0.30),
we tested 40 different values ofC (C ∈ [2 . . . 103]
for size 4,000 andC ∈ [0.5 . . . 103] for size 8,000),
and we evaluated the accuracy of the best setting for
the test set.6 Fast training is crucial since the per-
formance differs substantially depending on the val-
ues of these hyperparameters. Table 4 shows the re-
sults. The accuracies are shown byF1. We can see
thatKr

lo outperformedKr
c in all cases, presumably

becauseKr
c allows only too restrictive subtrees and

therefore causes data sparseness. In addition, as one
would expect, larger training sets are beneficial.

6 Discussion

The proposed speed-up method can also be applied
to labeled ordered trees (e.g., for parse selection).
However, the speed-up might be smaller since with-
out node marks the number of subtrees increases
while the DP procedure becomes simpler. On the
other hand, the FREQTM conversion for marked la-
beled ordered trees might be made faster by exploit-
ing the mark information for pruning. Although our
method is not a complete solution in a classification
setting, it might be in a clustering setting (in a sense
it is training only). However, it is an open question
whether unbalanced similarity, which is the key to
our speed-up, is ubiquitous in NLP tasks and under
what conditions our method scales better than the
SVMs or other kernel-based methods.

Several studies claim that learning using tree ker-
nels and other convolution kernels tends to overfit
and propose selecting or restricting features (Cumby
and Roth, 2003; Suzuki et al., 2004; Kudo and Mat-
sumoto, 2004). Sometimes, the classification be-
comes faster as a result (Suzuki et al., 2004; Kudo
and Matsumoto, 2004). We do not disagree with
these studies. The fact that smallλ values resulted in
the highest accuracy in our experiment implies that
too large subtrees are not so useful. However, since
this tendency depends on the task, we need to assess
the performance of full tree kernels for comparison.
In this sense, our method is of great importance.

Node relation labeling is a generalization of node
6We used106 as the maximum number of iterations.
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Table 4: Comparison betweenKr
lo andKr

c .
training set size = 4,000 training set size = 8,000

best setting F1 (dev) F1 (test) best setting F1 (dev) F1 (test)

A1 Kr
lo λ = 0.2, C = 13.95 87.89 87.90 λ = 0.25, C = 8.647 89.80 89.81

Kr
c λ = 0.15, C = 3.947 85.36 85.56 λ = 0.2, C = 17.63 87.93 87.96

A2 Kr
lo λ = 0.20, C = 13.95 85.65 84.70 λ = 0.20, C = 57.82 87.94 87.26

Kr
c λ = 0.10, C = 7.788 84.79 83.51 λ = 0.15, C = 1.0× 103 87.37 86.23

AM-ADV Kr
lo λ = 0.25, C = 8.647 86.20 86.64 λ = 0.15, C = 45.60 86.91 87.01

Kr
c λ = 0.20, C = 3.344 83.58 83.72 λ = 0.20, C = 2.371 84.34 84.08

AM-LOC Kr
lo λ = 0.15, C = 20.57 91.11 92.92 N/A

Kr
c λ = 0.15, C = 13.95 89.59 91.32 AM-LOC does not have more than 4,000 positive examples.

marking where we determine the mark (tag) of a
node. Kashima and Koyanagi (2002) dealt with this
task by inserting the node representing the mark
above the node to be tagged and classifying the
transformed tree using SVMs with tree kernels such
asKlo. For the SRL task, Moschitti (2004) applied
the tree kernel (Kc) to tree fragments that are heuris-
tically extracted to reflect the role of interest. For re-
lation extraction, Culotta and Sorensen (2004) pro-
posed a tree kernel that operates on only the smallest
tree fragment including two entities for which a re-
lation is assigned. Our kernels on marked labeled
ordered trees differ in what subtrees are permitted.
Although comparisons are needed, we think our ker-
nels are intuitive and general.

There are many possible structures for which tree
kernels can be defined. Shen et al. (2003) proposed
a tree kernel for LTAG derivation trees to focus only
on linguistically meaningful structures. Culotta and
Sorensen (2004) proposed a tree kernel for depen-
dency trees. An important future task is to find suit-
able structures for each task (the SRL task in our
case). Our speed-up method will be beneficial as
long as there is unbalanced similarity.

7 Conclusion

We have presented a method for speeding up the
training with tree kernels. Using the SRL task, we
demonstrated that our speed-up method made the
training substantially faster.
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Abstract

In order to promote the study of auto-
matic summarization and translation, we
need an accurate automatic evaluation
method that is close to human evalua-
tion. In this paper, we present an eval-
uation methodthat is based on convolu-
tion kernels that measurethe similarities
betweentexts considering their substruc-
tures. We conducted an experiment us-
ing automatic summarization evaluation
data developed for Text Summarization
Challenge3 (TSC-3).A comparisonwith
conventional techniques shows that our
methodcorrelatesmore closely with hu-
manevaluationsandis morerobust.

1 Introduction

Automaticsummarization, machinetranslation,and
paraphrasinghaveattractedmuchattentionrecently.
Thesetasks include text-to-text language genera-
tion. Evaluation workshops are held in the U.S.
andJapan, e.g.,theDocumentUnderstanding Con-
ference (DUC)1, NIST MachineTranslation Evalu-
ation2 aspart of the TIDES project, the Text Sum-
marization Challenge(TSC)3 of theNTCIR project,
and the International Workshop on Spoken Lan-
guageTranslation (IWSLT)4.

Theseevaluation workshopsemploy humaneval-
uations, which are essential in termsof achieving

1http://duc.nist.gov
2http://www.nist.gov/speech/tests/mt/
3http://www.lr.titech.ac.jp/tsc
4http://www.slt.atr.co.jp/IWSLT2004

high quality evaluations results. However, human
evaluationsrequire ahugeeffort andthecostis con-
siderable. Moreover, we cannot automatically eval-
uatea new systemeven if we usethe corpora built
for theseworkshops, and we cannot conduct re-
evaluation experiments.

To copewith this situation, there is a particular
needto establish a high quality automatic evalua-
tion method. Oncethis is done, we canexpectgreat
progressto bemadeonnatural languagegeneration.

In this paper, we propose a novel automatic
evaluation methodfor natural languagegeneration
technologies. Our method is based on the Ex-
tended String SubsequenceKernel (ESK) (Hirao
et al., 2004b) which is a kind of convolution ker-
nel (Collins and Duffy, 2001). ESK allows us to
calculatethesimilaritiesbetweenapairof texts tak-
ing accountof wordsequences,their wordsensese-
quencesandtheir combinations.

We conductedan experimental evaluation using
automaticsummarizationevaluation datadeveloped
for TSC-3 (Hirao et al., 2004a). The results of the
comparison with ROUGE-N (Lin andHovy, 2003;
Lin, 2004a;Lin, 2004b),ROUGE-S(U)(Lin, 2004b;
Lin and Och, 2004) and ROUGE-L (Lin, 2004a;
Lin, 2004b) show that our methodcorrelatesmore
closely with humanevaluationsandis morerobust.

2 Related Work

Automatic evaluation methods for automatic sum-
marization andmachinetranslationaregroupedinto
two classes. One is the longest commonsubse-
quence (LCS) basedapproach (Hori et al., 2003;
Lin, 2004a; Lin, 2004b; Lin andOch, 2004). The
other is theN-grambasedapproach(Papineni et al.,
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Table1: Componentsof vectorscorresponding to S1andS2.Bold subsequencesarecommonto S1andS2.�
subsequence S1 S2

�
subsequence S1 S2

�
subsequence S1 S2

Becoming 1 1 Becoming-is � � � � astronaut-DREAM 0 � �
DREAM 1 1 Becoming-my ������� astronaut-ambition 0 � �
SPACEMAN 1 1 SPACEMAN-DREAM ����� � astronaut-is 0 1
a 1 0 SPACEMAN-ambition 0 � � astronaut-my 0 �
ambition 0 1 SPACEMAN-dream � � 0 cosmonaut-DREAM � � 0

1
an 0 1 SPACEMAN-great � � 0 cosmonaut-dream � � 0
astronaut 0 1 SPACEMAN-is 1 1 cosmonaut-great � � 0
cosmonaut 1 0 SPACEMAN-my ��� cosmonaut-is 1 0
dream 1 0 a-DREAM � � 0 cosmonaut-my � 0
great 1 0 a-SPACEMAN 1 0 great-DREAM 1 0
is 1 1 2 a-cosmonaut 1 0 2 great-dream 1 0
my 1 1 a-dream � � 0 is-DREAM � � �
Becoming-DREAM ����� � a-great � � 0 is-ambition 0 �
Becoming-SPACEMAN ��� a-is � 0 is-dream � � 0
Becoming-a 1 0 a-my � � 0 is-great � 0
Becoming-ambition 0 � � an-DREAM 0 � � is-my 1 1

2 Becoming-an 0 1 an-SPACEMAN 0 1 my-DREAM � 1
Becoming-astronaut 0 � an-ambition 0 � � my-ambition 0 1
Becoming-cosmonaut � 0 an-astronaut 0 1 my-dream � 0
Becoming-dream ��� 0 an-is 0 � my-great 1 0
Becoming-great � � 0 an-my 0 � �

2002; Lin andHovy, 2003; Lin, 2004a; Lin, 2004b;
SoricutandBrill, 2004).

Hori et. al (2003) proposedan automatic eval-
uation method for speech summarization based on
word recognition accuracy. They reportedthat their
methodis superior to BLEU (Papineni et al., 2002)
in termsof the correlation between humanassess-
mentandautomatic evaluation. Lin (2004a; 2004b)
andLin andOch(2004)proposedanLCS-basedau-
tomaticevaluation measurecalledROUGE-L. They
applied ROUGE-L to theevaluation of summariza-
tion and machinetranslation. The results showed
that the LCS-based measure is comparable to N-
gram-basedautomatic evaluation methods. How-
ever, thesemethods tend to be strongly influenced
by wordorder.

Various N-gram-based methods have beenpro-
posedsinceBLEU, whichisnow widelyusedfor the
evaluation of machinetranslation. Lin et al. (2003)
proposed a recall-oriented measure, ROUGE-N,
whereasBLEU is precision-oriented.They reported
thatROUGE-Nperformedwell asregardsautomatic
summarization. In particular, ROUGE-1, i.e., uni-
gram matching, provides the bestcorrelation with
humanevaluation. Soricut et. al (2004) proposed
a unified measure. They integrated a precision-
orientedmeasure with a recall-orientedmeasure by
using anextension of theharmonicmeanformula.It
performswell in evaluationsof machine translation,
automatic summarization, andquestion answering.

However, N-gram basedmethods have a critical
problem; they cannot consider co-occurrenceswith
gaps,althoughtheLCS-basedmethod candealwith
them. Therefore, Lin and Och (2004) introduced
skip-bigram statistics for theevaluation of machine
translation. However, they did not consider longer
skip-n-gramssuch asskip-trigrams.Moreover, their
methoddoes not distinguish betweenbigramsand
skip-bigrams.

3 Kernel-based Automatic Evaluation

The above N-gram-based methods correlated
closely with human evaluations. However, we
think someskip-n-grams(n	�
 ) areuseful. In this
paper, we employ theExtendedStringSubsequence
Kernel (ESK), which considers both n-grams and
skip-n-grams. In addition, theESK allows usto add
word sensesto eachword. The useof word senses
enables flexible matching even when paraphrasing
is used.

TheESK is a kind of convolution kernel (Collins
andDuffy, 2001). Convolutionkernelshaverecently
attractedattention asa novel similarity measurein
natural languageprocessing.

3.1 ESK

TheESK is anextensionof theStringSubsequence
Kernel(SSK)(Lodhi et al., 2002) andtheWord Se-
quenceKernel(WSK) (Canceddaetal., 2003).

The ESK receivestwo node sequencesasinputs
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andmapseachof theminto ahigh-dimensionalvec-
tor space. The kernel’s value is simply the inner
product of the two vectors in the vectorspace. In
order to discount long-skip-n-grams,the decay pa-
rameter� is introduced.

We explain the computation of the ESK’s value
whoseinputs are the sentences(S1 andS2) shown
below. In the example, word senses are shownin
braces.

S1 Becoming a cosmonaut:
 SPACEMAN� is my great
dream:
 DREAM�

S2 Becoming an astronaut:
 SPACEMAN � is my ambi-
tion: 
 DREAM�

In this case, “cosmonaut”and “astronaut” share
the samesense � SPACEMAN� and“ambition” and
“dream” alsosharethesamesense � DREAM � . We
canuseWordNetfor English andGoitaikei (Ikehara
etal., 1997) for Japanese.

Table1 shows thesubsequencesderivedfrom S1
andS2 andits weights. Note that the subsequence
length is two or less. From the table, there arefif-
teensubsequences5 thatarecommonto S1 andS2.
Therefore, �����������������! "��#%$'&)(�*+�,*-#%� � *+�/.�*
�/01*)�321*4�351*6�37 . For reference,therearethree
unigrams,onebigram, zerotrigramsandthreeskip-
bigramscommonto S1andS2.

Formally, theESK is definedasfollows. 8 and 9
arenodesequences.

ESK:�;=<?>�@BADC :
EGFIH JLKNMPO QSRSMUT

V E ;=WYXZ>Z[/\SA (1)

V E ;=W]XZ>Z[/\^ADC _"`
a ;=WYXb>Z[/\�A if cdCfeVhgEji�H ;=W]XZ>Z[3\�A/k _"`

a ;=W]XZ>Z[3\�A otherwise
(2)

Here,l is theupperboundof thesubsequencelength
and monp �Nq�r] ]sutv$ is definedasfollows. q^r is the w -th
nodeof 8 . sxt is the y -th nodeof 9 . The functionzx{�| ��}� ]q"$ returnsthenumberof attributescommonto
givennodes } andq .
V gE ;=W]XZ>Z[3\SADC

~
if �UC'e

� V gE ;=W X >b[ \ i/H A3� V g gE ;=W X >Z[ \ i�H A otherwise
(3)

mon np �Nq^r] ]sxt�$ is definedasfollows:

V g gE ;=W]XZ>Z[3\SADC
~

if ��Cfe
� Vhg gE ;=W]X i�H >Z[/\SA3� V E ;=W]X i�H >b[/\SA�� (4)

5Bold subsequencesin Table1.

Finally, wedefinethesimilarity measurebetween
8 and 9 by normalizing ESK.Thissimilarity canbe
regarded asanextension of thecosinemeasure.

Sim:�Z��� ;=<?>^@BADC ESK: ;=<�>]@BA
ESK: ;=<?>Z<�A ESK: ;�@�>^@BA � (5)

3.2 Automatic Evaluation based on ESK

Suppose, � is a system output, which consistsof�
sentences, and � is a humanwritten reference,

which consists of � sentences. �^r is a sentencein
� , and� t is a sentencein � . We definetwo scoring
functions for automaticevaluation. First, we define
aprecision-orientedmeasureasfollows:

� :�Z��� ;=��>Z�1ADC e�
�
X FIH��1���HD� \ ��E Sim:�b�=� ;=� X >Z� \ A (6)

Symmetrically, we definea recall-orientedmea-
sureasfollows:

� :�b�=� ;=��>b�1ADC ec
E
\ FIH �1���HD� X � � Sim:�Z��� ;=��XN>b��\�A (7)

Finally, we define a unified measure, i.e., F-
measure,asfollows:

  :�b�=� ;=��>Z�1ADC ;De¡�h¢
� Au£ � �Z��� ;=��>Z�1Au£ � �Z��� ;=��>¤�1A� �b�=� ;=��>¤�1A/�1¢ � £ � �b�=� ;=��>¤�1A (8)¥

is a costparameter for ¦¨§�©Nª and «�§�©Nª . ¥ ’s value
is selecteddependingon theevaluation task. Since
summary should not miss important information
given in thehumanreference,recall is moreimpor-
tant than precision. Therefore,a large

¥
will yield

goodresults.

3.3 Extension for Multiple References

Whenmultiple humanreferences(correct answers)
areavailable,we definea simplefunction for multi-
ple referencesasfollows:

 �¬ �Z­D®�b�=� ;=��> � ADC e¯
°
X FIH

  �Z�=� ;=��>Z� X A�> (9)

Here,equation (9) givestheaveragescore. ¦ in-
dicatesasetof references; ¦±&6���³²P "´"´"´U ]�¶µ�� .
4 Experimental Evaluation

To confirm and discuss the effectiveness of our
method, we conducted an experimental evalua-
tion usingTSC-3multiple document summarization
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evaluation dataandouradditionaldata.

4.1 Task and Evaluation Metrics in TSC-3

Thetaskof TSC-3is multiple documentsummariza-
tion. Participants were given a set of documents
about a certain event and required to generatetwo
different length summariesfor the entire document
set.Thelengthswereabout 5%and10%of thetotal
numberof characters in the documentset, respec-
tively. Thirty documentsetswereprovided for the
official run evaluation. Therewere ten participant
systems; oneprovided by the TSC organizersasa
baseline system.

The evaluation metric follows DUC’s SEEeval-
uation scheme(HarmanandOver, 2004). For each
documentset,onehumansubjectmakesa reference
summaryand usesit as a basisfor evaluating ten
system outputs. This humanevaluation procedure
consistsof thefollowing steps:

Step 1 For eachreferencesentence�·tU��¸¹�³$ , repeat
Steps2 and3.

Step 2 For ��t , the humanassessor finds the most
relevant sentenceset º from thesystem output.

Step 3 The assessor assigns a score, »v�N�·t� "º'$ ,¼  ¼%½ �% "´"´"´· "� ½L¼%½ 1.0 meansperfect. in termsof
how much of the content of ��t can be repro-
ducedby using only sentencesin º .

Step 4 Finally, the evaluation score of
output � for reference � is defined¾ �N�¿ ]�f$�& t »��N� t  "º'$�À�Á �-Á .

The final score of a system is calculated by
applying the above procedure and normalized by
the number of topics, i.e., .�ÂÃ � ²

¾ �N� Ã  ]� Ã $�À%
 ¼ .
When multiple references ¦���&1���¿�% "´"´"´· ]�oµ��%$
are available, the scores are given as follows:¾�Ä §�Å�Æ ��¦� ]�f$�& Ç ¾ �N� Ç  ]�f$�À�Á ¦�Á .
4.2 Variation of Human Assessors

In TSC-3’s official run evaluation, system outputs
were compared with one humanwritten reference
summaryfor eachtopic. Therewerefive topic sets
andfive humanassessors(A-E in Table2) for each
topic set.

Before we usethe one humanwritten reference
summaryas the gold-standard-reference, to exam-
ine variationsamonghumanassessors, we prepared
two additionalhumansummariesfor eachtopicsets.

Table2: Therelationship between topics andrefer-
encesummarycreators,i.e., humanassessors.º'��ÈÉ$
indicatesa subject A’s evaluation scorefor all sys-
temsfor corresponding topics.

topic-ID Ê H Ê � Ê � Ê�ËYÌ]Í
1 - 6 Î (A) Î (E) Î (C) mean(Î (A), Î (E),Î (C))

7 - 12 Î (B) Î (A) Î (D) mean(Î (B), Î (A), Î (D))
13 - 18 Î (C) Î (B) Î (E) mean(Î (C),Î (B), Î (E))
19 - 24 Î (D) Î (C) Î (A) mean(Î (D), Î (C),Î (A))
25 - 30 Î (E) Î (D) Î (B) mean(Î (E),Î (D), Î (B))

Table3: Correlationsbetween humanjudgments.

correlation rankcorrelation
coefficient (� ) coefficient (Ï )

shortÊ H Ê � Ê � Ê ­bÐYÑ Ê H Ê � Ê � Ê ­bÐYÑÊ H 1.00 .968 .902 .988 1.00 .976 .697 .988Ê � Ò 1.00 .910 .996 Ò 1.00 .733 .988Ê � Ò Ò 1.00 .914 Ò Ò 1.00 .758Ê ­bÐYÑ Ò Ò Ò 1.00 Ò Ò Ò 1.00
longÊ H Ê � Ê � Ê ­bÐYÑ Ê H Ê � Ê � Ê ­bÐYÑÊ H 1.00 .908 .822 .964 1.00 .964 .939 .964Ê � Ò 1.00 .963 .987 Ò 1.00 .952 1.00Ê � Ò Ò 1.00 .931 Ò Ò 1.00 .932Ê ­bÐYÑ Ò Ò Ò 1.00 Ò Ò Ò 1.00

Therefore, we obtained threereferencesummaries
andevaluation results for eachtopic sets(Table2).

Moreover, we preparedunifiedevaluation results
of threehumanjudgmentas Ó ÅYÔ�Õ , which is calcu-
latedastheaverageof threehumanscores.

Therelationship between topicsandhumanasses-
sorsis shown in Table 2. For example,subject B
generatessummaries and evaluates all systemsfor
topics 7-12, 13-18 and 25-30 on Ó ² , Ó � , and Ó .
respectively. Note that eachhumansubject, A to
E, wasa retiredprofessional journalist; that is, they
shared acommonbackground.

Table 3 showsthe Pearson’s correlation coeffi-
cient(� ) andSpearman’srankcorrelation coefficientÖ for thehumansubjects. Theresults showthatev-
ery pair hasa high correlation. Therefore,changing
thehumansubjecthaslittl e influenceasregardscre-
ating referencesandevaluating system summaries.
Theevaluation by humansubjectsis stable. This re-
sult agreeswith DUC’sadditional evaluation results
(HarmanandOver, 2004). However, the behavior
of the correlations betweenhumanswith different
backgrounds is uncertain. Thecorrelationmight be
fragile if we introduceahumansubjectwhoseback-
ground is different from theothers.
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4.3 Compared Automatic Evaluation Methods

We compared our method with ROUGE-N and
ROUGE-L describedbelow. We used only content
words to calculate the ROUGE scores because the
correlation coefficient decreasedif we did not re-
move functionalwords.

WSK-based method

WeuseWSK insteadof ESK in equation (6)-(8).

ROUGE-N

ROUGE-N is an N-gram-based evaluation mea-
suredefinedasfollows (Lin, 2004b):

ROUGE-N;=��>Z�1ADC × MSØ ÑDÙ=­ ¬�Ú M ×
Û�Ü�Ý·ÞUß ¬ ­NàLá¤â ;�ã�ä ���hå A

× M�Ø ÑDÙL­ ¬ Ú M ×
Û�Ü�Ý·ÞUß ;�ã�ä ��� å A

(10)

Here, æBç%è�é�êv�Në%ì�í%î�ï¨$ is thenumber of anN-gram
and æBç%è�é�ê Ä Å�ðbñóòô�Në%ì�í%î1ï¨$ denotesthe numberof n-
gramco-occurrencesin asystem output andtheref-
erence.

ROUGE-S

ROUGE-S is an extension of ROUGE-2defined
asfollows (Lin, 2004b):

ROUGE-S;=��>b�1ADC ;De¡�h¢
� A¡£ � �=�]õ ö � ;=��>b�1A¡£ � �=�Yõ ö � ;=��>¤�1A� ���]õ ö � ;=��>Z�1A3�h¢ � � �=�Yõ ö � ;=��>b�1A

(11)

Where ¦¨©Nªø÷úù � and «�©Zª�÷úù � aredefinedasfollows:

û �=�Yõ ö � ;=��>Z�1ADC üøýUþ ÿ � ;=��>Z�1A
# of skipbigram ��� (12)

� ���]õ ö � ;=��>Z�1ADC üSývþ ÿ � ;=��>Z�1A
# of skipbigram � � (13)

Here,function Skip2 returns thenumberof skip-
bi-gramsthatarecommonto � and� .

ROUGE-SU

ROUGE-SU is anextension of ROUGE-S,which
includes unigrams as a feature defined as fol-
lows (Lin, 2004b):

ROUGE-SU ;=��>Z�1ADC ;De¡�1¢
� Au£ � ��� ;=��>b�1AG£ � ��� ;=��>b�1A� ��� ;=��>Z�1A/�1¢ � � ��� ;=��>¤�1A

(14)

Where ¦ ©�� and « ©�� aredefinedasfollows:

û ��� ;=��>b�1ADC ü 	 ;=��>Z�1A
(# of skipbigrams+ # of unigrams)� � (15)

� ��� ;=��>Z�1ADC ü 	 ;=��>Z�1A
(# of skipbigrams+ # of unigrams)� � (16)

Here,function SU returns thenumber of skip-bi-
gramsandunigramsthatarecommonto � and� .

ROUGE-L

ROUGE-L is an LCS-basedevaluation measure
definedasfollows (Lin, 2004b):

ROUGE-L;=��>Z�1ADC ;De¡�1¢
� A¡£ ��
 áZ� ;=��>Z�1A¡£ ��
 áZ� ;=��>b�1A��
 áZ� ;=��>Z�1A/�1¢ � ��
 áb� ;=��>Z�1A

(17)

where ¦�
úñ�© and «�
úñ�© aredefinedasfollows:

��
 áb� ;=��>b�1ADC e[ � K M�Ø LCS�ô;=� X >Z��A (18)

��
 áb� ;=��>b�1ADC e
_ � KNMSØ

LCS� ;=�"XN>b��A (19)

Here,LCS�ô�N�·r] ]�f$ is theLCS scoreof theunion
longest common subsequence betweenreference
sentences��r and� . s andz arethenumber of words
containedin � , and� , respectively.

The multiple referenceversion of ROUGE-N S,
SU or L, RN

Ä §�Å�Æ  RS
Ä §�Å�Æ  RSU

Ä §�Å�Æ  RL
Ä §�Å�Æ can

bedefinedin accordancewith equation(9).

4.4 Evaluation Measures

We evaluate automatic evaluation methods by
using Pearson’s correlation coefficient (� )
and Spearman’s rank correlation coefficient
(Ö ). Since we have ten systems, we make a
vector �B&1���f²P �� �  "´"´"´v ��ur^ "´"´"´U ��B² Â $ from the
results of an automatic evaluation. Here,
�xr]&1�%À%
 ¼ .�ÂÃ � ²

� �N� Ã  ]�ôr�� Ã $ . � Ã indicates a ref-
erence for the q -th topic.

�
indicatesan automatic

evaluation function suchas ��§�©Zª , ����©Nª , ROUGE-N,
ROUGE-S, ROUGE-SU andROUGE-L. Next, we
make another vector �'&h��� ²  �� �  "´"´"´U �� r  "´"´"´v �� ² Â $
from the human evaluation results. Here,
�3r]&��%À%
 ¼ .�ÂÃ � ²

¾ �N� Ã  ]�Ir�� Ã $ . Finally, we com-
pute� andÖ between � and � 6.

4.5 Evaluation Results and Discussions

Table 4 shows the evaluation results obtained by
using Pearson’s correlation coefficient � . Table 5
shows the evaluation results obtainedwith Spear-
man’s rank correlation coefficient Ö . The ta-

6When using multiple references,functions � and � for
makingvectors and ! aresubstitutedfor � ¬ �Z­D® and � ¬ �N­D® ,
respectively.
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Table4: Results obtainedwith Pearson’s correlationcoefficient.“stop” indicateswith stop word exclusion,
“case” indicatesw/o stopwordexclusion.

short longÊ H Ê � Ê � Ê ­¤Ð]Ñ Ê H Ê � Ê � Ê ­¤Ð]Ñ
stop case stop case stop case stop case stop case stop case stop case stop case

ROUGE-1 .965 .884 .931 .888 .937 .879 .956 .906 .906 .876 .919 .916 .897 .891 .918 .948
ROUGE-2 .943 .960 .836 .880 .861 .906 .904 .937 .886 .930 .788 .941 .834 .616 .856 .929
ROUGE-3 .906 .936 .759 .814 .786 .846 .862 .900 .873 .909 .717 .849 .826 .431 .844 .885
ROUGE-4 .878 .914 .725 .752 .729 .794 .837 .871 .850 .890 .651 .787 .836 .292 .836 .865
ROUGE-L .919 .777 .789 .683 .875 .867 .898 .852 .917 .840 .861 .812 .847 .829 .910 .848
ROUGE-S(" ) .934 .914 .805 .888 .872 .938 .867 .917 .812 .863 .744 .954 .709 .547 .757 .900
ROUGE-S(9) .929 .935 .783 .899 .808 .917 .856 .939 .840 .903 .735 .951 .730 .617 .787 .927
ROUGE-S(4) .936 .943 .802 .891 .839 .917 .877 .940 .876 .920 .778 .945 .814 .663 .840 .932
ROUGE-SU(" ) .934 .914 .805 .887 .872 .937 .867 .917 .811 .864 .743 .954 .707 .547 .756 .900
ROUGE-SU(9) .926 .938 .765 .890 .789 .906 .845 .936 .829 .904 .705 .948 .701 .586 .766 .925
ROUGE-SU(4) .930 .945 .772 .865 .810 .889 .861 .927 .868 .921 .730 .928 .785 .620 .818 .925  : F ��b�=� ;=¢�C � A .942 .927 .921 .957 .941 .957 .967 .969  : F ��b�=� ;=¢�C$#�A .929 .943 .928 .965 .939 .962 .959 .967  : F ��b�=� ;=¢�C � A .939 .923 .919 .962 .926 .954 .953 .966  : F ��b�=� ;=¢�C$#�A .927 .933 .920 .964 .920 .947 .904 .949  : F ��b�=� ;=¢�C � A .921 .900 .897 .955 .900 .932 .890 .946  : F ��b�=� ;=¢�C$#�A .909 .900 .888 .950 .892 .921 .819 .922  : F �% ��� ;=¢�C � A .939 .900 .897 .942 .931 .923 .936 .939  : F �% ��� ;=¢�C$#�A .928 .921 .909 .958 .932 .939 .950 .950  : F �% ��� ;=¢�C � A .938 .902 .886 .947 .924 .921 .934 .944  : F �% ��� ;=¢�C$#�A .928 .922 .895 .960 .920 .929 .919 .942  : F �% ��� ;=¢�C � A .929 .896 .873 .947 .910 .913 .908 .938  : F �% ��� ;=¢�C$#�A .918 .915 .879 .956 .903 .913 .865 .925

bles show results obtained with and without stop
word exclusion for the entire ROUGE family. For
ROUGE-S and ROUGE-SU, we use three varia-
tionsfollowing (Lin, 2004b): themaximumskipdis-
tances are4, 9 andinfinity 7. In addition, we exam-
ine

¥ & # and
 for theESK-basedandWSK-based
methods. Thedecayparameter � for ��§�©Zª and �&��©Nª
is setat 0.5. We will discusstheseparameter values
in Section 4.6.

From the tables, ROUGE-N’s � and Ö decrease
monotonically with N whenweexcludestopwords.
In mostcases,the performanceis improved by in-
cluding stop words for N ( 	1# ). There is a large
differencebetween ROUGE-1 andROUGE-4. The
ROUGE-S family is comparable to theROUGE-SU
family and their performanceis closeto ROUGE-
1 without stop words and ROUGE-2 with stop
words.ROUGE-L is betterthanbothROUGE-3and
ROUGE-4 but worsethanROUGE-1or ROUGE-2.

On theother hand, ��§�©Nª ’s correlation coefficients
(� ) donotchangeverymuchwith respectto l . Even
if l is set at 4, we can obtain good correlations.
The behavior of rank correlation coefficients(Ö ) is

7We use ¢ =1,2, and3. However thereare little difference
amongcorrelationcoefficient regardlessof ¢ because thenum-
ber of the words in referenceandthe number of the words in
systemoutputarealmostthesame.

similar to the above. The differencebetweenthe
ROUGEfamily andourmethod is particularly large
for long summaries. By setting l/&1# , our method
gives the good results. The optimal

¥
is varied in

thedatasets. However, thedifferencebetween
¥ &6#

and
¥ &1
 is small.

For Ö , our methodoutperformstheROUGEfam-
ily except for Ó�² . By contrast,we cansee l/&1
 or
l3&(' provided the bestresults. The differencesbe-
tweenourmethodandtheROUGEfamily arelarger
thanfor � .

For both � and Ö , when multiple references are
available,ourmethod outperformstheROUGEfam-
ily.

Although ROUGE-1 sometimesprovides better
results than our method for short summaries, it has
a critical problem; ROUGE-1 disregardsword se-
quencesmaking it easyto cheat. For instance,we
caneasily obtaina high ROUGE-1 scoreby using
a sequenceof high InverseDocument Frequency
(IDF) words. Sucha summaryis incomprehensi-
bleandmeaninglessbut weobtainagoodROUGE-1
scorecomparableto thoseof thetopTSC-3systems.
By contrast,it is difficult to cheatothermembersof
theROUGEfamily or ourmethod.

Our evaluation results imply that ��§�©Nª is robust

150



Table5: Resultsobtainedwith Spearman’s correlation coefficient. “stop” indicateswith stop word exclu-
sion, “case” indicatesw/o stopwordexclusion.

short longÊ H Ê � Ê � Ê ­¤Ð]Ñ Ê H Ê � Ê � Ê ­¤Ð]Ñ
stop case stop case stop case stop case stop case stop case stop case stop case

ROUGE-1 .988 .964 .842 .891 .842 .855 .927 .903 .818 .830 .903 .806 .867 .855 .842 .915
ROUGE-2 .927 .976 .770 .794 .855 .842 .879 .903 .721 .891 .721 .855 .794 .648 .818 .903
ROUGE-3 .879 .927 .588 .697 .818 .818 .867 .927 .758 .842 .636 .745 .806 .564 .709 .855
ROUGE-4 .818 .879 .721 .697 .745 .745 .867 .867 .685 .794 .564 .612 .830 .455 .709 .758
ROUGE-L .927 .830 .661 .600 .806 .818 .879 .806 .842 .770 .576 .612 .636 .709 .879 .697
ROUGE-S(" ) .939 .939 .673 .818 .794 .818 .818 .927 .770 .879 .636 .818 .697 .527 .709 .867
ROUGE-S(9) .879 .952 .600 .745 .721 .794 .733 .939 .758 .806 .576 .806 .673 .564 .745 .855
ROUGE-S(4) .891 .964 .600 .794 .794 .794 .794 .939 .709 .842 .576 .770 .770 .733 .758 .842
ROUGE-SU(" ) .939 .939 .673 .818 .794 .818 .818 .927 .770 .879 .636 .818 .697 .553 .709 .867
ROUGE-SU(9) .879 .964 .600 .745 .721 .794 .745 .939 .745 .806 .576 .758 .612 .564 .745 .903
ROUGE-SU(4) .879 .988 .600 .745 .721 .770 .794 .903 .758 .855 .576 .794 .709 .612 .794 .842  : F ��b�=� ;=¢�C � A .952 .879 .855 .939 .842 .927 .903 .903  : F ��b�=� ;=¢�C$#�A .952 .915 .891 .939 .855 .903 .903 .903  : F ��b�=� ;=¢�C � A .964 .867 .867 .976 .818 .927 .879 .879  : F ��b�=� ;=¢�C$#�A .964 .891 .915 .976 .758 .903 .709 .891  : F ��b�=� ;=¢�C � A .927 .830 .867 .952 .661 .903 .733 .915  : F ��b�=� ;=¢�C$#�A .927 .842 .842 .988 .588 .903 .673 .891  : F �% ��� ;=¢�C � A .976 .794 .830 .952 .818 .867 .806 .891  : F �% ��� ;=¢�C$#�A .952 .842 .830 .952 .818 .867 .794 .903  : F �% ��� ;=¢�C � A .976 .794 .818 .939 .806 .855 .733 .879  : F �% ��� ;=¢�C$#�A .976 .879 .855 .952 .806 .818 .794 .915  : F �% ��� ;=¢�C � A .964 .794 .818 .939 .806 .855 .697 .915  : F �% ��� ;=¢�C$#�A .964 .867 .855 .976 .745 .855 .770 .915

Table6: Bestscores for eachdataset.
Pearson’s CorrelationCoefficient

Length Ê H Ê � Ê � Ê ­bÐYÑ
short .945 .946 .933 .967
(
� >^�%>b¢ ) (2,0.7,2) (2,0.7,4) (2,0.1,3) (2,0.7,3)

long .941 .962 .971 .972
(
� >^�%>b¢ ) (2,0.6,2) (2,0.6,3) (2,0.7,2) (2,0.8,2)

Spearman’s RankCorrelationCoefficient
Length Ê H Ê � Ê � Ê ­bÐYÑ
short .964 .915 .915 .988
(
� >^�%>b¢ ) (3,0.9,4) (2,0.3,4) (3,0.5,3) (4,0.7,4)

long .855 .927 .915 .939
(
� >^�%>b¢ ) (2,0.8,4) (3,0.5,2) (2,0.5,4) (2,0.8,3)

for l andlength of summaryandcorrelatesclosely
with humanevaluationresults. Moreover, it includes
no trivial way of obtaining a good score. These
aresignificant advantagesover ROUGE family. In
addition, our method outperformedtheWSK-based
methodin mostcases. Thisresult confirmstheeffec-
tivenessof semantic informationandthesignificant
advantageof theESK.

4.6 Effects of Parameters

Our methodhasthree parameters, l3 "� , and
¥

. In
this section, we discussthe effects of these param-
eters. Figure1 shows � and Ö for various � and

¥
values with respect to Ó ÅYÔ�Õ . Note that we set l at
2 in thefigurebecausethetendency is similar when
we useother values, namely l3��&1
¨ç%ì)'�$ . FromFig.
1, we canseethat

¥ &1� is not good. With automatic

summarization,‘precision’ is notnecessarily agood
evaluation measurebecausehighly redundantsum-
mariesmay obtain a very high precision. On the
other hand, ‘recall’ is notgoodwhenasystem’sout-
put is redundant.Therefore,equaltreatment of ‘pre-
cision’ and‘recall’ does not give a goodevaluation
measure. The figure shows that

¥ &h#% "
 and 5 are
goodfor � and

¥ &h
% �'� +* andinfinity aregood for Ö .
Moreover, wecanseeasignificantdifferencesbe-

tween�¶&)� andothersfromthefigure.Thisimplies
anadvantageof ourmethodcomparedto ROUGE-S
andROUGE-SU, which cannot handle decayfactor
for skip-n-grams.

FromFig. 1,wecanseethat Ö is moresensitiveto¥
than � . Here,

¥ &1
% �'� +* andinfinity obtained the
bestresults.

¥ &1� wasagainthe worst. This result
indicatesthat we have to determine the parameter
valueproperly for differenttasks. � doesnotgreatly
affect thecorrelation for l3&h
% �'� +* andinfinity asre-
gardsthemiddlerange.

Table 6 show the best results when we exam-
ined all parametercombinations. In the brackets,
we show the bestsettings of these parameter com-
binations. For � , l3&)# providesthe bestresultand
middlerange � and

¥ &1# or 3 aregoodin mostcases.
On theother hand, thebestsettings for Ö vary with
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Figure1: Correlationcoefficientsfor variousvaluesof , and - on .0/�132 .
thedataset. 46587 is notalwaysgoodfor 9 .

In short, we canseethat thedecay parameter for
skips is significant andlong skip-n-gramsareeffec-
tiveespecially 9 .

Theseresults show that our methodhasan ad-
vantage over the ROUGE family. In addition, our
methodis robust andsufficiently good even if close
attention is notpaidto theparameters.

5 Conclusion

In this paper, we described an automatic evalua-
tion methodbasedon the ESK, which is a method
for measuring the similarities betweentexts based
on sequences of words and word senses. Our ex-
periments showed that our methodis comparable
to ROUGE family for shortsummaries andoutper-
forms it for long summaries. In orderto prove that
our methodis languageindependent, we will con-
duct an experimental evaluation by using DUC’s
evaluation data. We believe that our methodwill
alsobeuseful for other natural languagegeneration
tasks. We arenow planning to apply our methodto
anevaluation of machine translation.
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Abstract 

We approached the problem as learning 
how to order documents by estimated 
relevance with respect to a user query. Our 
support vector machines based classifier 
learns from the relevance judgments 
available with the standard test collections 
and generalizes to new, previously unseen 
queries.  For this, we have designed a 
representation scheme, which is based on 
the  discrete representation of the local (lw) 
and global (gw) weighting functions, thus 
is capable of reproducing and enhancing 
the properties of such popular ranking 
functions as tf.idf, BM25 or those based on 
language models. Our tests with the 
standard test collections have demonstrated 
the capability of our approach to achieve 
the performance of the best known scoring 
functions solely from the labeled examples 
and without taking advantage of knowing 
those functions or their important 
properties or parameters.    

1. Introduction 
Our work is motivated by the objective to bring 
closer numerous achievements in the domains of 
machine learning and classification to the classical 
task of ad-hoc information retrieval (IR), which is 
ordering documents by the estimated degree of 
relevance to a given query. Although used with 
striking success for text categorization, 
classification-based approaches (e.g. those based on 
support vector machines, Joachims, 2001 ) have been 
relatively abandoned when trying to improve ad hoc 
retrieval in favor of empirical (e.g. vector space, 
Salton & McGill, 1983) or generative (e.g. language 
models; Zhai & Lafferty 2001; Song & Croft; 1999), 
which produce a ranking function that gives each 
document a score, rather than trying to learn a 
classifier that would help to discriminate between 
relevant and irrelevant documents and order them 
accordingly. A generative model needs to make 
assumptions that the query and document words are 
sampled from the same underlying distributions and 
that the distributions have certain forms, which entail 
specific smoothing techniques (e.g. popular 
Dirichlet-prior). A discriminative (classifier-based) 
model, on the other side, does not need to make any 

assumptions about the forms of the underlying 
distributions or the criteria for the relevance but 
instead, learns to predict to which class a certain 
pattern (document) belongs to based on the labeled 
training examples. Thus, an important advantage of a 
discriminative approach for the information retrieval 
task, is its ability to explicitly utilize the relevance 
judgments existing with standard test collections in 
order to train the IR algorithms and possibly enhance 
retrieval accuracy for the new (unseen) queries. 
Cohen, Shapire and Singer (1999) noted the 
differences between ordering and classification and 
presented a two-stage model to learn ordering. The 
first stage learns a classifier for preference relations 
between objects using any suitable learning 
mechanism (e.g. support vector machines; Vapnik, 
1998). The second stage converts preference 
relations into a rank order. Although the conversion 
may be NP complete in a general case, they 
presented efficient approximations. We limited our 
first study reported here to linear classifiers, in which 
conversion can be performed by simple ordering 
according to the score of each document. However, 
approaching the problem as “learning how to order 
things” allowed us to design our sampling and 
training mechanisms in a novel and, we believe, 
more powerful way. 
Our classifier learns how to compare every pair of 
documents with respect to a given query, based on 
the relevance indicating features that the documents 
may have. As it is commonly done in information 
retrieval, the features are derived from the word 
overlap between the query and documents.  
According to Nallapati (2004), the earliest 
formulation of the classic IR problem as a 
classification (discrimination) problem was 
suggested by Robertson and Sparck Jones (1976), 
however performed well only when the relevance 
judgments were available for the same query but not 
generalizing well to new queries. Fuhr and Buckley 
(1991) used polynomial regression to estimate the 
coefficients in a linear scoring function combining 
such well-known features as a weighted term 
frequency, document length and query length. They 
tested their “description-oriented” approach on the 
standard small-scale collections (Cranfield, NPL, 
INSPEC, CISI, CACM) to achieve the relative 
change in the average precision ranging from -17% 
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to + 33% depending on the collection tested and the 
implementation parameters. Gey (1994) applied 
logistic regression in a similar setting with the 
following results: Cranfield +12%, CACM +7.9%, 
CISI -4.4%, however he did not test them on new 
(unseen by the algorithm) queries, hypothesizing that 
splitting documents into training and testing 
collections would not be possible since “a large 
number of queries is necessary in order to train for a 
decent logistic regression approach to document 
retrieval.” Instead, he applied a regression trained on 
Cranfield to CISI collection but with a negative 
effect. 
Recently, the approaches based on learning have 
reported several important breakthroughs. Fan et al. 
(2004) applied genetic programming in order to learn 
how to combine various terms into the optimal 
ranking function that outperformed the popular 
Okapi formula on robust retrieval test collection. 
Nallapati (2004) made a strong argument in favor of 
discriminative models and trained an SVM-based 
classifier to combine 6 different components (terms) 
from the popular ranking functions (such as tf.idf 
and language models) to achieve better than the 
language model performance in 2 out of 16 test cases 
(figure 3 in Nallapati, 2004), not statistically 
distinguishable in 8 cases and only 80% of the best 
performance in 6 cases. There have been studies 
using past relevance judgements to optimize 
retrieval. For example, Joachims (2002) applied 
Support Vector Machines to learn linear ranking 
function from user click-throughs while interfacing 
with a search engine.   
In this study, we have developed a representation 
scheme, which is based on the discretization of the 
global (corpus statistics) and local (document 
statistics) weighting of term overlaps between 
queries and documents.  We have empirically shown 
that this representation is flexible enough to learn the 
properties of the popular ranking functions: tf.idf, 
BM25 and the language models.  The major 
difference of our work from Fan et al. (2004) or 
Nallapati (2004) or works on fusion (e.g. Vogt & 
Cottrell, 1999) is that we did not try to combine 
several known ranking functions (or their separate 
terms) into one, but rather we learn the weighting 
functions directly through discretization.  
Discretization allows representing a continuous 
function by a set of values at certain points. These 
values are learned by a machine learning technique 
to optimize certain criteria, e.g. average precision.   
Another important motivation behind using 
discretization was to design a representation with 
high dimensionality of features in order to combine 
our representation scheme with Support Vector 
Machines (SVM) (Vapnik, 1998), which are known 
to work well with a large number of features. SVM 
contains a large class of neural nets, radial margin 
separation (RBF) nets, and polynomial classifiers as 
special cases. They have been delivering superior 
performance in classification tasks in general 
domains, e.g. in face recognition (Hearst, 1998), and 
in text categorization (Joachims, 2001). 

Another important distinction of this work from the 
prior research is that we train our classifier not to 
predict the absolute relevance of a document d with 
respect to a query q, but rather to predict which of 
the two documents d1, d2 is more relevant to the 
query q.  The motivation for this distinction was that 
all the popular evaluation metrics in information 
retrieval (e.g. average precision) are based on 
document ranking rather than classification 
accuracy. This affected our specially designed 
sampling procedure which we empirically 
discovered to be crucial for successful learning. 
We have also empirically established that our 
combination of the representation scheme, learning 
mechanism and sampling allows learning from the 
past relevance judgments in order to successfully 
generalize to the new (unseen) queries. When the 
representation was created without any knowledge of 
the top ranking functions and their parameters, our 
approach reached the known top performance solely 
through the learning process.  When our 
representation was taking advantage of functions that 
are known to perform well and their parameters, the 
resulting combination was able to slightly exceed the 
top performance on large test collections. The next 
section formalizes our Discretization Based Learning 
(DBL) approach to Information Retrieval, followed 
by empirical results and conclusions. 
2. Formalization Of Our Approach 
2.1 Query and Document Representation 
We limit our representation to the so called lw.gw 

class: ∑
⊂

=
q t 

)()),,(( d)R(q, tGddttfL ,  

where L, local weighting, is the function of the 
number of occurrences of the term in the document 
tf, possibly combined with the other document 
statistics, e.g. word length. G(t), global weighting, 
can be any collection level statistic of the term. For 
example, in the classical tf.idf formula L(tf, d) = tf / 
|d|, where tf is the number of occurrences of the term 
t in the document, |d| is the length of the document 
vector and G(t) = log (N / df(t)), where df(t) is the 
total number of documents in the collection that have 
term t and N is the total number of documents.  
Without loss of generality it may also be extended to 
handle a number of occurrences of the term in the 
query, but we omit it here in our formalization for 
simplicity. Lw.gw class includes the BM25 Okapi 
ranking function which performs well on TREC 
collections (Robertson et al., 1996).  It can be shown 
that many of the recently introduced language 
models fall into that category as well, specifically the 
best performing in TREC ad hoc tests Dirichlet 
smoothing, Jelinek Mercer smoothing, and Absolute 
Discounting approaches can be represented that way 
(see equation 6 and table I in Zhai & Lafferty, 2001). 
An lw.gw representation of Jelinek Mercer 
smoothing was used in Nallapati (2004).  It has been 
known for a long time that the shapes of the global 
and local weighting functions can dramatically affect 
the precision in standard test collections because it in 
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fact determines the difference between such formulas 
as tf.idf, bm25 and language models. However, we 
are not aware of any attempts to learn those shapes 
directly from the labeled examples, which we 
performed in this study.  
2.2 Intuition behind the discretization-based 
learning 
The intuition behind discretization approach is to 
represent a function by values at the finite number of 
points. Then, the optimal shape of the function can 
be learned by using one of the machine learning 
techniques. Our discretization based learning (DBL) 
approach to information retrieval learns how 
important each class of an occurrence of a query 
term in a document. For example, in some very 
“primitive” DBL approach, we can define two 
classes:  Class S (“strong”), containing all multiple 
occurrences of a rare query term (e.g. 
“discretization”) in a document and Class W 
(“weak”), containing all single occurrences of a 
frequent term (e.g. “information”). Then, the 
machine learning technique should discover that the 
occurrences of Class S are much stronger indicators 
of relevance than the occurrences of Class W. In the 
DBL implementation presented in this paper, each 
occurrence of a query term is assigned to a class 
(called bin) based on the term document frequency 
in the collection (df) and the number of occurrences 
within the document (tf). The bin determines the 
weight of the contribution of each occurrence of the 
query term in the ranking score. Thus, the relevance 
score is just the weighted sum of the numbers of 
occurrences within each bin. The other way of 
looking at it is that the score is produced by a linear 
classifier, where the total number of occurrences 
within each bin serves as the feature value. By 
learning the optimal weights, a linear classifier 
effectively learns the optimal shapes of the global 
(gw) and local (lw) weighting functions.  By learning 
the discrimination properties of each bin, rather 
than separate word terms, DBL method allows 
generalization to new queries.  
2.3 Discretizing global weighting 
We discretized the shape of the G(t) function by 
assigning each term to its global weighting bin g, 
which is an integer number in the [1, |B|] range, |B| 
is the total number of global weighting bins. The 
assignment of the term t to its global weighting bin 
g(t) is performed on the log linear scale according to 
the document frequency df of the term:   

)}
log(N) 

 (df(t)) log - (1|B{|  g(t) =    (1) 

where N is the total number of documents, {.} stands 
for rounding down to the nearest integer. The 
logarithmic scale allows more even term distribution 
among bins than simple linear assignment, which is 
desirable for more efficient learning. It is motivated 
by a typical histogram of df(t) distribution, which 
looks much more uniform in a logarithmic scale. It is 
important to note that it does not have anything to do 
with the log function in the classical idf weighting 

and that the formula for g(t) does not produce any 
weights but only assigns each term occurrence to a 
specific bin based on the term document frequency. 
The weights are later trained and effectively define 
any shape of global weighting, including such simple 
functions tried in the prior heuristic explorations as 
logarithm, square root, reciprocal and others.  
2.4 Discretizing local weighting 
Similarly to the global weighting, we assigned each 
occurrence of a term to its local weighting bin l, but 
this time by simply capping tf at the total number of 
local weighting bins |L|: 
        l (tf(t, d), d) = min( tf (t, d), |L|) ) (1a) 
Let’s note that this particular representation does not 
really need rounding since tf is already a positive 
integer. However, in a more general case, tf can be 
normalized by document length (as is done in BM25 
and language models) and thus local weighting 
would become a continuous function. It is important 
to note that our discrete representation does not 
ignore the occurrences above |L| but simply treats 
them the same way as tf = |L|. The intuition behind 
capping is that increasing tf above certain value (|L|) 
would not typically indicate the higher relevance of 
the document. Typically, a certain number of 
occurrences is enough to indicate the presence of the 
relevant passage. Please note again that this bin 
assignment does not assign any heuristic weights to 
the term occurrences. 
2.5 Final discretized ranking function 
The bin assignments based on tf and df specified in 
sections 2.3 and 2.4 are straightforward and do not 
involve any significant “feature engineering.”  Each 
occurrence of a query term in a document 
corresponds to a local/global bin combination (g, l). 
Each (g,l) combination determines a feature in a 
vector representing a document-query pair f(d, q) 
and is denoted below as f( d, q) [g , l] . The 
dimensionality of the feature space is  |L| x |B|.  E.g. 
for 8 local weighting bins and 10 global weighting 
bins we would deal with the vector size of 80. A 
feature vector f(d, q) represents each document d 
with respect to query q. The value of each feature in 
the vector is just the number of the term occurrences 
assigned to the pair of bins (g, l): 

f ( d, q) [g , l]  =  ∑
==⊂ ldtlgtg ),(,)( q,t 

1  (2) 

Since our features capture local (tf) and global (df) 
term occurrence information, in order to represent a 
ranking function, we can simply use the dot product 
between the feature vector and the vector of learned 
optimal weights w:  
R(q, d) = w * f ( d, q). 
Ideally, the learning mechanism should assign higher 
weights to the more important bin combinations (e.g. 
multiple occurrence of a rare term) and low weights 
to the less important combinations (e.g. single 
occurrence of a common term). The exact learned 
values determine the optimal shape of global and 
local weighting.   
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We still can make the representation more powerful 
by considering the learned weights w[g, l] not the 
replacements but rather the adjustments to some 
other chosen global G (t) and local L (t, d) weighting 
functions: 

f ( d, q) [g , l] = ∑
==⊂ lddttflgtg

tGdtL
)),,((,)( q,t 

)(),(       (2a)  

We define the specific choice of global G() and local 
L() weighting functions as starting ranking function 
(SRF). When all the bin weights w[g, l] are set to 1, 
our ranking function is the same as its SRF. The 
learning process finds the optimal values for w[g, l]  
for the collection of training queries and their 
relevance judgments, thus adjusting the important 
shapes of the global and local weighting to achieve 
better accuracy. SRF can be chosen from one of the 
known to perform well ranking functions (e.g. tf.idf 
or BM25 or based on language models) to take 
advantage of the fact that those formulas and their 
optimal parameters on the standard test collections 
are known for the researchers. Alternatively, we can 
set SRF to the constant value (e.g. 1 in formula 2), 
thus not taking advantage of any of the prior 
empirical investigations and to see if our framework 
is able to learn reasonable (or even top-notch) 
performance purely from labeled examples. Below, 
we describe our experiments with each approach. 
Since the score is linear with respect to the feature 
values, we can train the weights w as a linear 
classifier that predicts the preference relation 
between pairs of documents with respect to the given 
query. Document d1 is more likely to be relevant 
(has a higher score) than document d2 iff  f(d1, q) * 
w > f(d1, q) * w. An important advantage of using a 
linear classifier is that rank ordering of documents 
according to the learned pairwise preferences can be 
simply performed by ordering according to the linear 
score.  Please refer to Cohen et al. (1999) for the 
ordering algorithms in a more general non linear 
case. 
We chose support vector machines (SVM) for 
training the classifier weights w[g, l] since they are 
known to work well with large numbers of features, 
ranging in our experiments from 8 to 512, depending 
on the number of bins. For our empirical tests, we 
used the SVMLight package freely available for 
academic research from Joachims (2001).  We 
preserved the default parameters coming with 
version V6.01. Although SVMLight package allows 
learning ranking, we opted for training it as a 
classifier to retain more control over sampling, 
which we found crucial for successful learning, as 
described in the section below. 
2.6 Sampling 
Since we were training a classifier to predict 
preference relations, but not the absolute value of 
relevance, we trained on the differences between 
feature vectors. Thus, for each selected (sampled) 
pair of documents (dr, di ), such that dr is a relevant 
document and di is irrelevant, the classifier was 

presented with a positive example created from the 
vector of differences of features fp = f(q, dr) –  f(q, 
di), and also with the negative example as the 
inverse of it:   fn= f(q, di) – f(q, dr). This approach 
also balances positive and negative examples.  
We also informally experimented with training on 
absolute relevance judgments, similar to the prior 
work mentioned in the Introduction but obtained 
much worse results. We explain it by the fact that 
relative judgments (pairwise comparisons) are more 
generalizable to new queries than absolute 
judgments (relevant/irrelevant). This may explain 
prior difficulties with applying discriminative 
approaches mentioned in our Introduction. 
Since presenting all pairs to the training mechanism 
would be overwhelming, we performed pseudo-
random sampling of documents by the following 
intuitive consideration. Since it is more efficient to 
present the classifier with the pairs from the 
documents that are likely to more strongly affect the 
performance metric (average precision), we first pre-
ordered the retrieved documents by any of the 
reasonably well-performing scoring function (e.g. 
tf.idf) and limited the sample of documents to the top 
1000. Then, for each query, each known relevant 
document dr from that subset was selected and 
“paired” with a certain number of randomly selected 
irrelevant documents. This number was linearly 
decreasing with the position of the relevant 
document in the pre-order. Thus, the higher the 
document was positioned in the pre-order, the more 
times it was selected for pairing (training). This 
placed more emphasis at correctly classifying the 
more important document pairs in the average 
precision computation. Again, without the correct 
emphasis during sampling the obtained results were 
much weaker. However, the choice of the ranking 
function to perform pre-order was found to be not 
important: virtually the same results were obtained 
using tf.idf or bm25 or language models. 
3. Empirical Evaluation 
3.1 Empirical setup 
We used the TREC, Disks 1 and 2, collections to test 
our framework. We used topics 101-150 for training 
and 151-200 for testing and vice-versa. For indexing, 
we used the Lemur package (Kraaij et al., 2003), 
with the default set of parameters, and no stop word 
removal or stemming. Although those procedures are 
generally beneficial for accuracy, it is also known 
that they do not significantly interfere with testing 
various ranking functions and thus are omitted in 
many studies to allow easier replication. 
We used only topic titles for queries, as it is 
commonly done in experiments, e.g. in Nallapati 
(2004). We used the most popular average (non-
interpolated) precision as our performance metric, 
computed by the script included with the Lemur 
toolkit (later verified by trec_eval). The 
characteristics of the collection after indexing are 
shown in Table 1. We also reproduced results similar 
to the reported below on the Disk 3 collection and 
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topics 101-150, but did not include them in this 
paper due to size limitations. 
 

Collection 
Number of documents 
Number of terms 
Number of unique terms 
Average doc. length 
Topics 

TREC Disks 1 and 2
741,863 
325,059,876 
697,610 
438 
101-200 

Table 1. The characteristics of the test collection: 
TREC Disks 1,2   
 

3.2 The baseline 
In this study, we were interested exclusively in the 
improvements due to learning, thus still staying 
within the “bag of words” paradigm. Although many 
enhancements can be easily combined within our 
framework, we limited our search for the baseline 
performance to “bag of words” techniques to avoid 
unfair comparison. We used the results reported in 
Nallapati (2004) as guidance and verified that the 
best performing language model on this test 
collection was the one based on the Dirichlet 
smoothing with µ = 1900. Our average precision was 
lower (0.205 vs. 0.256), most likely due to the 
different indexing parameters, stemming or using a 
different stopword list.  By experimenting with the 
other ranking functions and their parameters, we 
noticed that the implementation of BM25, available 
in Lemur, provided almost identical performance 
(0.204). Its ranking function is  
BM25 (tf, df) =  tf / (tf + K* (1 – b + b * |d| / |d|a) * 
log ( N /  (df + .5)), where |d| is the document word 
length and |d|a is its average across all documents. 
The optimal parameter values were close to the 
default K = 1.0 and b = .5. We noticed that the query 
term frequency components could be ignored 
without any noticeable loss of precision. This may be 
because the TREC topic titles are short and the 
words are very rarely repeated in the queries. Since 
the difference between this ranking function and the 
optimal from the available language models was 
negligible we selected the former as both our 
baseline and also as the starting ranking function 
(SRF) in our experiments. For simplicity, we call it 
simply BM25 throughout our paper. 
3.3 Discretization accuracy 
Before testing the learning mechanism, we verified 
that the loss due to discretization is minimal and thus 
the approach is capable of capturing global and local 
weighting. For this, we discretized our baseline 
BM25 formula replacing each score contribution of 
the occurrence of a term G(t)L(t,d) = BM25(t, d) 
with its average across all other occurrences within 

the same bin combination [g, l], which is determined 
by the formulas 1 and 1a. We discovered that for the 
|B| x |L| = 8 x 8 configuration, the loss in average 
precision did not exceed 2% (relatively). This 
demonstrates that the G(t)L(t,d) ranking functions 
can be discretized (replaced by values at certain 
points) at this level of granularity without losing 
much accuracy. We also verified that the weights 
w[g, l] can affect the performance significantly: 
when we set them to random numbers in the [0,1] 
range, the performance dropped by 50% relatively to 
the baseline. 
3.4 Ability to achieve top performance from 
scratch 
First, we were curious to see if our framework can 
learn reasonable performance without taking 
advantage of our knowledge of the top ranking 
functions and their parameters. For this, we set our 
starting ranking function (SRF) to a constant value, 
thus using only the minimum out of the empirical 
knowledge and theoretical models developed by 
information retrieval researchers during several 
decades: specifically only the fact that relevance can 
be predicted by tf and df 
Table 2 shows performance for the 16 x 8 
combination of bins. It can be  seen that our 
approach has reached 90-100% of the top 
performance (baseline) solely through the learning 
process. The original performance is the one 
obtained by assigning all the classifier weights to 1. 
It can be seen that the topics 151-200 are more 
amenable for the technique that is why they show 
better recovery when used as a test set even when the 
training set 101-150 recovers only 90%. In order to 
evaluate if more training data can help, we also ran 
tests using 90 topics for training and the remaining 
10 for testing. We ran 10 tests each time using 10 
different sequential topics for testing and averaged 
our results. In this case, the averaged performance 
was completely restored to the baseline level with 
the mean difference in precision across test queries 
+0.5% and 1% standard deviation of the mean.  
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Learning local weighting for various 

                          
Testing: 

 
101-150 

 
151-200 

Training: Original Learned Baseline Original Learned Baseline 
101-150 .119  .165 .174 .135 .180 .204 
151-200 .119 .175 .174 .135 .206 .204 

Table 2. Learning without any knowledge of ranking functions. 16 x 8 bin design.       
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numbers of bins. Learning on 101-150 and testing on 
151-200.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Learning global weighting for various 
numbers of bins. Learning on 101-150 and testing on 
151-200.   
We believe this is a remarkable result considering 
the difficulties that the prior learning based 
approaches had with the classical information 
retrieval task. We attribute our success to both 
higher flexibility and generalizability of our discrete 
representation. We also varied the number of bins to 
evaluate the effect of granularity of representation. 
Figures 1 and 2 demonstrate that 8 bins suffice for 
both global and local weighting. Higher numbers did 
not result in noticeable improvements. 
When the same set was used for training and testing 
the result obviously overestimates the learning 
capability of the framework. However, it also gives 
the upper bound of performance of a discretized 
gw.lw combination assuming that the loss due to 
discretization is negligible which can be easily 
attained by using sufficiently large number of bins. 
Thus, the results indicate that gw.lw, which includes 
practically all the popular “bag of words” ranking 
formulas such as tf.idf, BM25 or language models, 
has almost reached its upper limit and other classes 
of representations and ranking formulas need to be 
explored to attempt greater improvements. 
Figure 2. Learning global weighting for various 
numbers of bins. Learning on 101-150 and testing on 
151-200. 
3.5 Ability to surpass top performance 
In order to test whether our approach can exceed the 
baseline performance we set BM25 to be our starting 
ranking function (SRF). Thus, in this case: 
G(t) = log ( N /  (df + .5))  (6) 
L(tf, d) = tf / (tf + K  * (1 – b + b * |d| / |d|a)  
Table 3 shows performance for the 8 by 8 bin design. 
Although the improvement is relatively small (2-3%) 
it is still statistically significant at the level of alpha 
< 0.1, when the paired t-test was performed. The 

value in “% change” column shows the mean % 
improvement across all the queries and its standard 
deviation. It may differ from the % change of the 
mean performance since there is wide variability in 
the performance across queries but smaller 
variability in the improvement.  
We believe even such a small improvement is 
remarkable considering the amount of attention the 
researches have paid to optimizing the ranking 
functions for this specific data set which has been 
available for more than seven years. A number of 
recent studies reported comparable improvements on 
the same test collection by using more elaborate 
modeling or richer representations.  Of course the 
improvement due to the techniques such as those 
based on n-grams, document structures, natural 
language processing or query expansion can possibly 
achieve even better results. However in this study we 
deliberately limited our focus to the “bags of words.”  
3.6 Shape of optimal local weighting 
Figure 3 shows the optimal shape of the local 
weighting function L(tf) learned on entire set of 100 
topics and plotted against their counterparts of 
BM25(t, d) = tf / (tf + 1) and tf.idf(t, d) = tf for 
comparison.  For plotting purposes, we assumed that 
the document length was equal to its average. The 
values were linearly scaled to meet at the  tf = 8 
point. It is easy to observe that the behavior of the 
optimal function is much closer to BM25 than to 
tf.idf, which explains the good performance of the 
former on this test set. 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Learned optimal shape of local weighting. 
 
3.7 Shape of optimal global weighting 
Figure 4 shows the optimal shape of the global 
weighting function G(t) learned on the entire set of 
100 topics with |B| = 32 plotted in logarithmic scale 
against the popular idf weighting used in both tf.idf 
and BM25. The lower end of the X-axis (log10 df < 
2) corresponds to very infrequent terms, so the 
learned weights may not be very informative since 

1 2 3 4 5 6 7 8

tf

G
w

(tf
)

TF-IDFDBL (Learned)

BM25

 
                      
Testing: 

101-150 151-200 

Training: Learned Baseline % change Learned Baseline  
101-150 .180 .174 +2.3 (+/- 0.9) .208 .204 +2.3 (+/- 1.0) 
151-200 .179 .174 +1.8 (+/- 1.0) .210 .204 +3.2 (+/- 1.3) 

Table 3. Surpassing the baseline performance. 8 x 8 bin design. 
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the classifier encounters fewer occurrences of them 
and their impact on the overall accuracy is small. In 
the mid range (5,000 – 10,000), the optimal weights 
are higher than idf, which indicates that the latter has 
an overly steep shape to discount high frequency 
terms. A more detailed interpretation of the optimal 
shape may require further investigation. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Learned optimal shape of global weighting 
G(t). 
 
4. Conclusions 
We explored learning how to rank documents with 
respect to a given query using linear Support Vector 
Machines and discretization-based representation. 
Our approach represents a family of discriminative 
approaches, currently studied much less than 
heuristic (tf.idf, bm25) or generative approaches 
(language models). Our experiments indicate that 
learning from relevant judgments available with the 
standard test collections and generalizing to new 
queries is not only feasible but can be a source of 
improvement. When tested with a popular standard 
collection, our approach achieved the performance of 
the best well-known techniques (BM25 and language 
models), which have been developed as a result of 
extensive past experiments and elaborate theoretical 
modeling. When combined with the best performing 
ranking functions, our approach added a small (2-
3%), but statistically significant, improvement. 
Although practical significance of this study may be 
limited at the moment since it does not demonstrate a 
dramatic increase in retrieval performance in large 
test collections, we believe our findings have 
important theoretical contributions since they 
indicate that the power of discriminative approach is 
comparable to the best known analytical or heuristic 
apporaches. This work also lays the foundation for 
extending the discriminative approach to “richer” 
representations, such as those using word n-grams, 
grammatical relations between words, and the 
structure of documents. 
Our results also indicate that gw.lw family, which 
includes practically all the popular “bag of words” 
ranking formulas such as tf.idf, BM25 or language 
models, has almost reached its upper limit and other 
classes of representations and ranking formulas need 
to be explored in order to accomplish significant 
performance break-troughs. 
Of course, using only few test cases (topics sets and 
collections) is a limitation of this current study, 

which we are going to address in our future research. 
We view our approach as a complement, rather than 
competitive, to the analytical approaches such as 
language models. Our approach can be also used as 
an explorative tool in order to identify important 
relevance-indicating features, which can be later 
modeled analytically. We believe that our work and 
the ones referred in this paper may bring many of the 
achievements made in a more general area of 
classification and machine learning closer to the task 
of rank ordered information retrieval, thus making 
retrieval engines more helpful in reducing the 
information overload and meeting people’s needs. 
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Abstract

We describe stochastic models of local
phrase movement that can be incorpo-
rated into a Statistical Machine Transla-
tion (SMT) system. These models pro-
vide properly formulated, non-deficient,
probability distributions over reordered
phrase sequences. They are imple-
mented by Weighted Finite State Trans-
ducers. We describe EM-style parameter
re-estimation procedures based on phrase
alignment under the complete translation
model incorporating reordering. Our ex-
periments show that the reordering model
yields substantial improvements in trans-
lation performance on Arabic-to-English
and Chinese-to-English MT tasks. We
also show that the procedure scales as the
bitext size is increased.

1 Introduction

Word and Phrase Reordering is a crucial component
of Statistical Machine Translation (SMT) systems.
However allowing reordering in translation is com-
putationally expensive and in some cases even prov-
ably NP-complete (Knight, 1999). Therefore any
translation scheme that incorporates reordering must
necessarily balance model complexity against the
ability to realize the model without approximation.
In this paper our goal is to formulate models of lo-
cal phrase reordering in such a way that they can be
embedded inside a generative phrase-based model

∗ This work was supported by an ONR MURI Grant
N00014-01-1-0685.

of translation (Kumar et al., 2005). Although this
model of reordering is somewhat limited and can-
not capture all possible phrase movement, it forms
a proper parameterized probability distribution over
reorderings of phrase sequences. We show that with
this model it is possible to perform Maximum A
Posteriori (MAP) decoding (with pruning) and Ex-
pectation Maximization (EM) style re-estimation of
model parameters over large bitext collections.

We now discuss prior work on word and phrase
reordering in translation. We focus on SMT systems
that do not require phrases to form syntactic con-
stituents.

The IBM translation models (Brown et al., 1993)
describe word reordering via a distortion model de-
fined over word positions within sentence pairs. The
Alignment Template Model (Och et al., 1999) uses
phrases rather than words as the basis for transla-
tion, and defines movement at the level of phrases.
Phrase reordering is modeled as a first order Markov
process with a single parameter that controls the de-
gree of movement.

Our current work is inspired by the block
(phrase-pair) orientation model introduced by Till-
mann (2004) in which reordering allows neighbor-
ing blocks to swap. This is described as a sequence
of orientations (left, right, neutral) relative to the
monotone block order. Model parameters are block-
specific and estimated over word aligned trained bi-
text using simple heuristics.

Other researchers (Vogel, 2003; Zens and Ney,
2003; Zens et al., 2004) have reported performance
gains in translation by allowing deviations from
monotone word and phrase order. In these cases,
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1 

les exportations de 

les  exportations  de  grains  doivent  fléchir de  25  %
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grain exports are_projected_to by_25_%

grain  exports  are  projected  to  fall  by  25  %
Sentence

fall

Source Language

Target Language Sentence
Figure 1: TTM generative translation process; here,
I = 9,K = 5, R = 7, J = 9.

reordering is not governed by an explicit probabilis-
tic model over reordered phrases; a language model
is employed to select the translation hypothesis. We
also note the prior work of Wu (1996), closely re-
lated to Tillmann’s model.

2 The WFST Reordering Model

The Translation Template Model (TTM) is a genera-
tive model of phrase-based translation (Brown et al.,
1993). Bitext is described via a stochastic process
that generates source (English) sentences and trans-
forms them into target (French) sentences (Fig 1 and
Eqn 1).

P (fJ
1 , vR

1 , dK
0 , cK

0 , yK
1 , xK

1 , uK
1 ,K, eI

1) =
P (eI

1)·
Source Language ModelG

P (uK
1 ,K|eI

1)·
Source Phrase SegmentationW

P (xK
1 |uK

1 ,K, eI
1)·

Phrase Translation and ReorderingR
P (vR

1 , dK
0 , cK

0 , yK
1 |xK

1 , uK
1 ,K, eI

1)·
Target Phrase InsertionΦ
P (fJ

1 |vR
1 , dK

0 , cK
0 , yK

1 , xK
1 , uK

1 ,K, eI
1)

Target Phrase SegmentationΩ

(1)

The TTM relies on a Phrase-Pair Inventory (PPI)
consisting of target language phrases and their

source language translations. Translation is mod-
eled via component distributions realized as WFSTs
(Fig 1 and Eqn 1) : Source Language Model (G),
Source Phrase Segmentation (W ), Phrase Transla-
tion and Reordering (R), Target Phrase Insertion
(Φ), and Target Phrase Segmentation (Ω) (Kumar et
al., 2005).

TTM Reordering Previously, the TTM was for-
mulated with reordering prior to translation; here,
we perform reordering of phrase sequences follow-
ing translation. Reordering prior to translation was
found to be memory intensive and unwieldy (Kumar
et al., 2005). In contrast, we will show that the cur-
rent model can be used for both phrase alignment
and translation.

2.1 The Phrase Reordering Model

We now describe two WFSTs that allow local re-
ordering within phrase sequences. The simplest al-
lows swapping of adjacent phrases. The second al-
lows phrase movement within a three phrase win-
dow. Our formulation ensures that the overall model
provides a proper parameterized probability distri-
bution over reordered phrase sequences; we empha-
size that the resulting distribution is not degenerate.

Phrase reordering (Fig 2) takes as its input a
French phrase sequence in English phrase order
x1, x2, ..., xK . This is then reordered into French
phrase ordery1, y2, ..., yK . Note that words within
phrases are not affected.

We make the following conditional independence
assumption:

P (yK
1 |xK

1 , uK
1 ,K, eI

1) = P (yK
1 |xK

1 , uK
1 ). (2)

Given an input phrase sequencexK
1 we now as-

sociate a uniquejump sequencebK
1 with each per-

missible output phrase sequenceyK
1 . The jumpbk

measures the displacement of thekth phrasexk, i.e.

xk → yk+bk
, k ∈ {1, 2, ...,K}. (3)

The jump sequencebK
1 is constructed such thatyK

1

is a permutation ofxK
1 . This is enforced by con-

structing all models so that
∑K

k=1 bk = 0.
We now redefine the model in terms of the jump

sequence

P (yK
1 |xK

1 , uK
1 ) (4)

=

{
P (bK

1 |xK
1 , uK

1 ) yk+bk
= xk ∀k

0 otherwise,
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Figure 2: Phrase reordering and jump sequence.
-

whereyK
1 is determined byxK

1 andbK
1 .

Each jumpbk depends on the phrase-pair(xk, uk)
and preceding jumpsbk−1

1

P (bK
1 |xK

1 , uK
1 ) =

K∏
k=1

P (bk|xk, uk, φk−1), (5)

whereφk−1 is an equivalence classification (state)
of the jump sequencebk−1

1 .
The jump sequencebK

1 can be described by a
deterministic finite state machine.φ(bk−1

1 ) is the
state arrived at bybk−1

1 ; we will useφk−1 to denote
φ(bk−1

1 ).
We will investigate phrase reordering by restrict-

ing the maximum allowable jump to1 phrase and
to 2 phrases; we will refer to these reordering
models as MJ-1 and MJ-2. In the first case,
bk ∈ {0,+1,−1} while in the second case,bk ∈
{0,+1,−1,+2,−2}.

2.2 Reordering WFST for MJ-1

We first present the Finite State Machine of the
phrase reordering process (Fig 3) which has two
equivalence classes (FSM states) for any given his-
tory bk−1

1 ; φ(bk−1
1 ) ∈ {1, 2}. A jump of +1 has to

be followed by a jump of−1, and1 is the start and
end state; this ensures

∑K
k=1 bk = 0.

1
b=+1

b=−1

b=0 

2

Figure 3: Phrase reordering process for MJ-1.
Under this restriction, the probability of the jump

bk (Eqn 5) can be simplified as

P (bk|xk, uk, φ(bk−1
1 )) = (6)

β1(xk, uk) bk = +1, φk−1 = 1
1− β1(xk, uk) bk = 0, φk−1 = 1

1 bk = −1, φk−1 = 2.

There is a single parameter jump probability
β1(x, u) = P (b = +1|x, u) associated with each
phrase-pair(x, u) in the phrase-pair inventory. This
is the probability that the phrase-pair(x, u) appears
out of order in the transformed phrase sequence.

We now describe the MJ-1 WFST. In the presen-
tation, we use upper-case letters to denote the En-
glish phrases (uk) and lower-case letters to denote
the French phrases (xk andyk).

The PPI for this example is given in Table 1.

English French Parameters
u x P (x|u) β1(x, u)
A a 0.5 0.2
A d 0.5 0.2
B b 1.0 0.4
C c 1.0 0.3
D d 1.0 0.8

Table 1: Example phrase-pair inventory with trans-
lation and reordering probabilities.

The input to the WFST (Fig 4) is a lattice of
French phrase sequences derived from the French
sentence to be translated. The outputs are the cor-
responding English phrase sequences. Note that the
reordering is performed on the English side.

The WFST is constructed by adding a self-loop
for each French phrase in the input lattice, and
a 2-arc path for every pair of adjacent French
phrases in the lattice. The WFST incorporates the
translation modelP (x|u) and the reordering model
P (b|x, u). The score on a self-loop with labels
(u, x) is P (x|u) × (1 − β1(x, u)); on a 2-arc path
with labels(u1, x1) and (u2, x2), the score on the
1st arc isP (x2|u1)× β1(x2, u1) and on the 2nd arc
is P (x1|u2).

In this example, the input to this transducer is a
single French phrase sequenceV : a, b, c. We per-
form the WFST compositionR◦V , project the result
on the input labels, and remove the epsilons to form
the acceptor(R◦V )1 which contains the six English
phrase sequences (Fig 4).

TranslationGiven a French sentence, a lattice of
translations is obtained using the weighted finite
state composition:T = G ◦ W ◦ R ◦ Φ ◦ Ω ◦ T .
The most-likely translation is obtained as the path
with the highest probability inT .

AlignmentGiven a sentence-pair(E,F ), a lattice
of phrase alignments is obtained by the finite state
composition:B = S ◦ W ◦ R ◦ Φ ◦ Ω ◦ T , where

163



A : b / 0.1

A B D 0.4 x 0.6 x 0.2 = 0.480
B A D 0.4 x 0.5 x 0.2 = 0.040
A D B 0.4 x 0.8 x 0.4 = 0.128
A A B 0.4 x 0.1 x 0.4 = 0.016
A B A 0.4 x 0.6 x 0.4 = 0.096
B A A 0.4 x 0.5 x 0.4 = 0.080

VR
1

( )

A : b / 0.5

R

V a b d

B : b / 0.6
D : d / 0.2

A : d / 0.4
A : a / 0.4

B : a / 0.4

B : d / 0.4

D : b / 0.8

Figure 4: WFST for the MJ-1 model.

S is an acceptor for the English sentenceE, and
T is an acceptor for the French sentenceF . The
Viterbi alignment is found as the path with the high-
est probability inB. The WFST composition gives
the word-to-word alignments between the sentences.
However, to obtain the phrase alignments, we need
to construct additional FSTs not described here.

2.3 Reordering WFST for MJ-2

MJ-2 reordering restricts the maximum allowable
jump to 2 phrases and also insists that the reorder-
ing take place within a window of 3 phrases. This
latter condition implies that for an input sequence
{a, b, c, d}, we disallow the three output sequences:
{b, d, a, c; c, a, d, b; c, d, a, b; }. In the MJ-2 finite
state machine, a given historybk−1

1 can lead to one
of the six states in Fig 5.

b=0

1

2
3

4
5

6

b=−1

b=+1b=−1

b=+2

b=0

b=−2

b=−1

b=+1 b=−2

Figure 5: Phrase reordering process for MJ-2.

The jump probability of Eqn 5 becomes

P (bk|xk, uk, φk−1) =
β1(xk, uk) bk = 1, φk−1 = 1
β2(xk, uk) bk = 2, φk−1 = 1{

1− β1(xk, uk)
−β2(xk, uk)

bk = 0, φk−1 = 1
(7)

{
β1(xk, uk) bk = 1, φk−1 = 2

1− β1(xk, uk) bk = −1, φk−1 = 2
(8){

0.5 bk = 0, φk−1 = 3
0.5 bk = −1, φk−1 = 3.

(9){
1 bk = −2, φk−1 = 4 (10){
1 bk = −2, φk−1 = 5 (11){
1 bk = −1, φk−1 = 6 (12)

We note that the distributions (Eqns 7 and 8) are
based on two parametersβ1(x, u) andβ2(x, u) for
each phrase-pair(x, u).

Suppose the input is a phrase sequencea, b, c, the
MJ-2 model (Fig 5) allows 6 possible reorderings:
a, b, c; a, c, b; b, a, c; b, c, a; c, a, b; c, b, a. The distri-
bution Eqn 9 ensures that the sequencesb, c, a and
c, b, a are assigned equal probability. The distribu-
tions in Eqns 10-12 ensure that the maximum jump
is 2 phrases and the reordering happens within a
window of 3 phrases. By insisting that the pro-
cess start and end at state 1 (Fig 5), we ensure that
the model is not deficient. A WFST implementing
the MJ-2 model can be easily constructed for both
phrase alignment and translation, following the con-
struction described for the MJ-1 model.

3 Estimation of the Reordering Models

The Translation Template Model relies on an in-
ventory of target language phrases and their source
language translations. Our goal is to estimate the
reordering model parametersP (b|x, u) for each
phrase-pair(x, u) in this inventory. However, when
translating a given test set, only a subset of the
phrase-pairs is needed. Although there may be an
advantage in estimating the model parameters under
an inventory that covers all the training bitext, we fix
the phrase-pair inventory to cover only the phrases
on the test set. Estimation of the reordering model
parameters over the training bitext is then performed
under this test-set specific inventory.
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We employ the EM algorithm to obtain Maximum
Likelihood (ML) estimates of the reordering model
parameters. Applying EM to the MJ-1 reordering
model gives the following ML parameter estimates
for each phrase-pair(u, x).

β̂1(x, u) =
Cx,u(0,+1)

Cx,u(0,+1) + Cx,u(0, 0)
. (13)

Cx,u(φ, b) is defined for φ = 1, 2 and b =
−1, 0,+1. Any permissible phrase alignment of a
sentence pair corresponds to abK

1 sequence, which
in turn specifies aφK

1 sequence.Cx,u(φ, b) is the
expected number of times the phrase-pairx, u is
aligned with a jump ofb phrases when the jump his-
tory isφ. We do not use full EM but a Viterbi train-
ing procedure that obtains the counts for the best
(Viterbi) alignments. If a phrase-pair(x, u) is never
seen in the Viterbi alignments, we back-off to a flat
parameterβ1(x, u) = 0.05.

The ML parameter estimates for the MJ-2 model
are given in Table 2, withCx,u(φ, b) defined sim-
ilarly. In our training scenario, we use WFST op-
erations to obtain Viterbi phrase alignments of the
training bitext where the initial reordering model
parameters (β0(x, u)) are set to a uniform value of
0.05. The countsCx,u(s, b) are then obtained over
the phrase alignments. Finally the ML estimates of
the parameters are computed using Eqn 13 (MJ-1) or
Eqn 14 (MJ-2). We will refer to the Viterbi trained
models as MJ-1 VT and MJ-2 VT. Table 3 shows the
MJ-1 VT parameters for some example phrase-pairs
in the Arabic-English (A-E) task.

u x β1(x, u)
which is the closest Aqrb 1.0
internationaltrade tjArp EAlmyp 0.8

the foreign ministry wzArp xArjyp 0.6
arableague jAmEp dwl Erbyp 0.4

Table 3: MJ-1 parameters for A-E phrase-pairs.

To validate alignment under a PPI, we mea-
sure performance of the TTM word alignments
on French-English (500 sent-pairs) and Chinese-
English (124 sent-pairs) (Table 4). As desired, the
Alignment Recall (AR) and Alignment Error Rate
(AER) improve modestly while Alignment Preci-
sion (AP) remains constant. This suggests that the
models allow more words to be aligned and thus im-
prove the recall; MJ-2 gives a further improvement
in AR and AER relative to MJ-1. Alignment preci-

Reordering Metrics (%)
Frn-Eng Chn-Eng

AP AR AER AP AR AER
None 94.2 84.8 10.0 85.1 47.1 39.3

MJ-1 VT 94.1 86.8 9.1 85.3 49.4 37.5
MJ-2 VT 93.9 87.4 8.9 85.3 50.9 36.3

Table 4: Alignment Performance with Reordering.

sion depends on the quality of the word alignments
within the phrase-pairs and does not change much
by allowing phrase reordering. This experiment val-
idates the estimation procedure based on the phrase
alignments; however, we do not advocate the use of
TTM as an alternate word alignment technique.

4 Translation Experiments

We perform our translation experiments on the large
data track of the NIST Arabic-to-English (A-E) and
Chinese-to-English (C-E) MT tasks; we report re-
sults on the NIST 2002, 2003, and 2004 evaluation
test sets1.
4.1 Exploratory Experiments

In these experiments the training data is restricted to
FBIS bitext in C-E and the news bitexts in A-E. The
bitext consists of chunk pairs aligned at sentence
and sub-sentence level (Deng et al., 2004). In A-E,
the training bitext consists of3.8M English words,
3.2M Arabic words and137K chunk pairs. In C-E,
the training bitext consists of11.7M English words,
8.9M Chinese words and674K chunk pairs.

Our Chinese text processing consists of word seg-
mentation (using the LDC segmenter) followed by
grouping of numbers. For Arabic our text pro-
cessing consisted of a modified Buckwalter analysis
(LDC2002L49) followed by post processing to sep-
arate conjunctions, prepostions and pronouns, and
Al-/w- deletion. The English text is processed us-
ing a simple tokenizer based on the text processing
utility available in the the NIST MT-eval toolkit.

The Language Model (LM) training data consists
of approximately 400M words of English text de-
rived from Xinhua and AFP (English Gigaword), the
English side of FBIS, the UN and A-E News texts,
and the online archives of The People’s Daily.

Table 5 gives the performance of the MJ-1 and
MJ-2 reordering models when translation is per-
formed using a 4-gram LM. We report performance
on the 02, 03, 04 test sets and the combined test set

1http://www.nist.gov/speech/tests/mt/
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β̂1(x, u) =
Cx,u(1, +1) + Cx,u(2, +1)

Cx,u(1, +1) + Cx,u(1, 0) + Cx,u(1, +2) + Cx,u(2, +1) + Cx,u(2,−1)

β̂2(x, u) =
(Cx,u(1, 0) + Cx,u(2,−1) + Cx,u(1, +2))Cx,u(1, +2)

(Cx,u(1, +1) + Cx,u(1, 0) + Cx,u(1, +2) + Cx,u(2, +1) + Cx,u(2,−1))(Cx,u(1, +2) + Cx,u(1, 0))

Table 2: ML parameter estimates for MJ-2 model.

Reordering BLEU (%)
Arabic-English Chinese-English

02 03 04 ALL 02 03 04 ALL
None 37.5 40.3 36.8 37.8± 0.6 24.2 23.7 26.0 25.0± 0.5

MJ-1 flat 40.4 43.9 39.4 40.7± 0.6 25.7 24.5 27.4 26.2± 0.5
MJ-1 VT 41.3 44.8 40.3 41.6± 0.6 25.8 24.5 27.8 26.5± 0.5
MJ-2 flat 41.0 44.4 39.7 41.1± 0.6 26.4 24.9 27.7 26.7± 0.5
MJ-2 VT 41.7 45.3 40.6 42.0± 0.6 26.5 24.9 27.9 26.8± 0.5

Table 5: Performance of MJ-1 and MJ-2 reordering models with a 4-gram LM.

(ALL=02+03+04). For the combined set (ALL), we
also show the 95% BLEU confidence interval com-
puted using bootstrap resampling (Och, 2003).

Row 1 gives the performance when no reorder-
ing model is used. The next two rows show the in-
fluence of the MJ-1 reordering model; in row 2, a
flat probability of β1(x, u) = 0.05 is used for all
phrase-pairs; in row 3, a reordering probability is
estimated for each phrase-pair using Viterbi Train-
ing (Eqn 13). The last two rows show the effect of
the MJ-2 reordering model; row 4 uses flat proba-
bilities (β1(x, u) = 0.05, β2(x, u) = 0.01) for all
phrase-pairs; row 5 applies reordering probabilities
estimating with Viterbi Training for each phrase-pair
(Table 2).

On both language-pairs, we observe that reorder-
ing yields significant improvements. The gains from
phrase reordering are much higher on A-E relative
to C-E; this could be related to the fact that the word
order differences between English and Arabic are
much higher than the differences between English
and Chinese. MJ-1 VT outperforms flat MJ-1 show-
ing that there is value in estimating the reordering
parameters from bitext. Finally, the MJ-2 VT model
performs better than the flat MJ-2 model, but only
marginally better than the MJ-1 VT model. There-
fore estimation does improve the MJ-2 model but
allowing reordering beyond a window of 1 phrase is
not useful when translating either Arabic or Chinese
into English in this framework.

The flat MJ-1 model outperforms the no-
reordering case and the flat MJ-2 model is better
than the flat MJ-1 model; we hypothesize that phrase
reordering increases search space of translations that

allows the language model to select a higher qual-
ity hypothesis. This suggests that these models of
phrase reordering actually require strong language
models to be effective. We now investigate the inter-
action between language models and reordering.

Our goal here is to measure translation perfor-
mance of reordering models over variable span n-
gram LMs (Table 6). We observe that both MJ-1
and MJ-2 models yield higher improvements under
higher order LMs: e.g. on A-E, gains under 3g
(3.6 BLEU points on MJ-1, 0.2 points on MJ-2) are
higher than the gains with 2g (2.4 BLEU points on
MJ-1, 0.1 points on MJ-2).

Reordering BLEU (%)
A-E C-E

2g 3g 4g 2g 3g 4g
None 21.0 36.8 37.8 16.1 24.8 25.0

MJ-1 VT 23.4 40.4 41.6 16.2 25.9 26.5
MJ-2 VT 23.5 40.6 42.0 16.0 26.1 26.8

Table 6: Reordering with variable span n-gram LMs
on Eval02+03+04 set.

We now measure performance of the reorder-
ing models across the three test set genres used in
the NIST 2004 evaluation: news, editorials, and
speeches. On A-E, MJ-1 and MJ-2 yield larger im-
provements on News relative to the other genres;
on C-E, the gains are larger on Speeches and Ed-
itorials relative to News. We hypothesize that the
Phrase-Pair Inventory, reordering models and lan-
guage models could all have been biased away from
the test set due to the training data. There may also
be less movement across these other genres.
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Reordering BLEU (%)
A-E C-E

News Eds Sphs News Eds Sphs
None 41.1 30.8 33.3 23.6 25.9 30.8

MJ-1 VT 45.6 32.6 35.7 24.8 27.8 33.3
MJ-2 VT 46.2 32.7 35.5 24.8 27.8 33.7

Table 7: Performance across Eval 04 test genres.
BLEU (%)

Arabic-English Chinese-English
Reordering 02 03 04n 02 03 04n

None 40.2 42.3 43.3 28.9 27.4 27.3
MJ-1 VT 43.1 45.0 45.6 30.2 28.2 28.9

MET-Basic 44.8 47.2 48.2 31.3 30.3 30.3
MET-IBM1 45.2 48.2 49.7 31.8 30.7 31.0

Table 8: Translation Performance on Large Bitexts.

4.2 Scaling to Large Bitext Training Sets

We here describe the integration of the phrase re-
ordering model in an MT system trained on large
bitexts. The text processing and language mod-
els have been described in§ 4.1. Alignment Mod-
els are trained on all available bitext (7.6M chunk
pairs/207.4M English words/175.7M Chinese words
on C-E and 5.1M chunk pairs/132.6M English
words/123.0M Arabic words on A-E), and word
alignments are obtained over the bitext. Phrase-pairs
are then extracted from the word alignments (Koehn
et al., 2003). MJ-1 model parameters are estimated
over all bitext on A-E and over the non-UN bitext
on C-E. Finally we use Minimum Error Training
(MET) (Och, 2003) to train log-linear scaling fac-
tors that are applied to the WFSTs in Equation 1.
04news (04n) is used as the MET training set.

Table 8 reports the performance of the system.
Row 1 gives the performance without phrase re-
ordering and Row 2 shows the effect of the MJ-1
VT model. The MJ-1 VT model is used in an initial
decoding pass with the four-gram LM to generate
translation lattices. These lattices are then rescored
under parameters obtained using MET (MET-basic),
and 1000-best lists are generated. The 1000-best
lists are augmented with IBM Model-1 (Brown et
al., 1993) scores and then rescored with a second set
of MET parameters. Rows 3 and 4 show the perfor-
mance of the MET-basic and MET-IBM1 models.

We observe that the maximum likelihood phrase
reordering model (MJ-1 VT) yields significantly im-
proved translation performance relative to the mono-
tone phrase order translation baseline. This confirms
the translation performance improvements found

over smaller training bitexts.
We also find additional gains by applying MET to

optimize the scaling parameters that are applied to
the WFST component distributions within the TTM
(Equation 1). In this procedure, the scale factor ap-
plied to the MJ-1 VT Phrase Translation and Re-
ordering component is estimated along with scale
factors applied to the other model components; in
other words, the ML-estimated phrase reordering
model itself is not affected by MET, but the likeli-
hood that it assigns to a phrase sequence is scaled
by a single, discriminatively optimized weight. The
improvements from MET (see rows MET-Basic and
MET- IBM1) demonstrate that the MJ-1 VT reorder-
ing models can be incorporated within a discrimi-
native optimized translation system incorporating a
variety of models and estimation procedures.

5 Discussion

In this paper we have described local phrase reorder-
ing models developed for use in statistical machine
translation. The models are carefully formulated
so that they can be implemented as WFSTs, and
we show how the models can be incorporated into
the Translation Template Model to perform phrase
alignment and translation using standard WFST op-
erations. Previous approaches to WFST-based re-
ordering (Knight and Al-Onaizan, 1998; Kumar
and Byrne, 2003; Tsukada and Nagata, 2004) con-
structed permutation acceptors whose state spaces
grow exponentially with the length of the sentence to
be translated. As a result, these acceptors have to be
pruned heavily for use in translation. In contrast, our
models of local phrase movement do not grow ex-
plosively and do not require any pruning or approx-
imation in their construction. In other related work,
Bangalore and Ricardi (2001) have trained WF-
STs for modeling reordering within translation; their
WFST parses word sequences into trees containing
reordering information, which are then checked for
well-formed brackets. Unlike this approach, our
model formulation does not use a tree representation
and also ensures that the output sequences are valid
permutations of input phrase sequences; we empha-
size again that the probability distribution induced
over reordered phrase sequences is not degenerate.

Our reordering models do resemble those of (Till-
mann, 2004; Tillmann and Zhang, 2005) in that we
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treat the reordering as a sequence of jumps relative
to the original phrase sequence, and that the likeli-
hood of the reordering is assigned through phrase-
pair specific parameterized models. We note that
our implementation allows phrase reordering be-
yond simply a 1-phrase window, as was done by Till-
mann. More importantly, our model implements a
generative model of phrase reordering which can be
incorporated directly into a generative model of the
overall translation process. This allows us to per-
form ‘embedded’ EM-style parameter estimation,
in which the parameters of the phrase reordering
model are estimated using statistics gathered under
the complete model that will actually be used in
translation. We believe that this estimation of model
parameters directly from phrase alignments obtained
under the phrase translation model is a novel contri-
bution; prior approaches derived the parameters of
the reordering models from word aligned bitext, e.g.
within the phrase pair extraction procedure.

We have shown that these models yield improve-
ments in alignment and translation performance on
Arabic-English and Chinese-English tasks, and that
the reordering model can be integrated into large
evaluation systems. Our experiments show that dis-
criminative training procedures such Minimum Er-
ror Training also yield additive improvements by
tuning TTM systems which incorporate ML-trained
reordering models. This is essential for integrating
our reordering model inside an evaluation system,
where a variety of techniques are applied simultane-
ously.

The MJ-1 and MJ-2 models are extremely sim-
ple models of phrase reordering. Despite their sim-
plicity, these models provide large improvements
in BLEU score when incorporated into a monotone
phrase order translation system. Moreover, they
can be used to produced translation lattices for use
by more sophisticated reordering models that allow
longer phrase order movement. Future work will
build on these simple structures to produce more
powerful models of word and phrase movement in
translation.
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Abstract

HMM-based models are developed for the
alignment of words and phrases in bitext.
The models are formulated so that align-
ment and parameter estimation can be per-
formed efficiently. We find that Chinese-
English word alignment performance is
comparable to that of IBM Model-4 even
over large training bitexts. Phrase pairs
extracted from word alignments generated
under the model can also be used for
phrase-based translation, and in Chinese
to English and Arabic to English transla-
tion, performance is comparable to sys-
tems based on Model-4 alignments. Di-
rect phrase pair induction under the model
is described and shown to improve trans-
lation performance.

1 Introduction

Describing word alignment is one of the fundamen-
tal goals of Statistical Machine Translation (SMT).
Alignment specifies how word order changes when
a sentence is translated into another language, and
given a sentence and its translation, alignment spec-
ifies translation at the word level. It is straightfor-
ward to extend word alignment to phrase alignment:
two phrases align if their words align.

Deriving phrase pairs from word alignments is
now widely used in phrase-based SMT. Parameters
of a statistical word alignment model are estimated
from bitext, and the model is used to generate word
alignments over the same bitext. Phrase pairs are ex-
tracted from the aligned bitext and used in the SMT
system. With this approach the quality of the under-
lying word alignments can have a strong influence

on phrase-based SMT system performance. The
common practice therefore is to extract phrase pairs
from the best attainable word alignments. Currently,
Model-4 alignments (Brown and others, 1993) as
produced by GIZA++ (Och and Ney, 2000) are often
the best that can be obtained, especially with large
bitexts.

Despite its modeling power and widespread use,
Model-4 has shortcomings. Its formulation is such
that maximum likelihood parameter estimation and
bitext alignment are implemented by approximate,
hill-climbing, methods. Consequently parameter es-
timation can be slow, memory intensive, and diffi-
cult to parallelize. It is also difficult to compute
statistics under Model-4. This limits its usefulness
for modeling tasks other than the generation of word
alignments.

We describe an HMM alignment model devel-
oped as an alternative to Model-4. In the word align-
ment and phrase-based translation experiments to
be presented, its performance is comparable or im-
proved relative to Model-4. Practically, we can train
the model by the Forward-Backward algorithm, and
by parallelizing estimation, we can control memory
usage, reduce the time needed for training, and in-
crease the bitext used for training. We can also com-
pute statistics under the model in ways not practical
with Model-4, and we show the value of this in the
extraction of phrase pairs from bitext.

2 HMM Word and Phrase Alignment

Our goal is to develop a generative probabilistic
model of Word-to-Phrase (WtoP) alignment. We
start with anl-word source sentencee = el

1, and an
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m-word target sentencef = fm
1 , which is realized

as a sequence ofK phrases:f = vK
1 .

Each phrase is generated as a translation of one
source word, which is determined by the alignment
sequenceaK

1 : eak
→ vk . The length of each phrase

is specified by the processφK
1 , which is constrained

so that
∑K

k=1 φk = m.
We also allow target phrases to be inserted, i.e. to

be generated by a NULL source word. For this, we
define a binary hallucination sequencehK

1 : if hk =
0, then NULL→ vk ; if hk = 1 theneak

→ vk.
With all these quantities gathered into an align-

menta = (φK
1 , aK

1 , hK
1 ,K), the modeling objective

is to realize the conditional distributionP (f ,a|e).
With the assumption thatP (f ,a|e) = 0 if f 6= vK

1 ,
we writeP (f ,a|e) = P (vK

1 ,K, aK
1 , hK

1 , φK
1 |e) and

P (vK
1 ,K, aK

1 , hK
1 , φK

1 |e)

= ǫ(m|l)× P (K|m, e)

× P (aK
1 , φK

1 , hK
1 |K,m, e)

× P (vK
1 |a

K
1 , hK

1 , φK
1 ,K,m, e)

We now describe the component distributions.

Sentence Length ǫ(m|l) determines the target
sentence length. It is not needed during alignment,
where sentence lengths are known, and is ignored.

Phrase Count P (K|m, e) specifies the number of
target phrases. We use a simple, single parameter
distribution, withη = 8.0 throughout

P (K|m, e) = P (K|m, l) ∝ ηK

Word-to-Phrase Alignment Alignment is a
Markov process that specifies the lengths of phrases
and their alignment with source words

P (aK
1 , hK

1 , φK
1 |K,m, e)

=
K
∏

k=1

P (ak, hk, φk|ak−1, φk−1, e)

=

K
∏

k=1

p(ak|ak−1, hk; l) d(hk)n(φk; eak
)

The actual word-to-phrase alignment (ak) is a first-
order Markov process, as in HMM-based word-to-
word alignment (Vogel et al., 1996). It necessarily

depends on the hallucination variable

p(aj |aj−1, hj ; l)

=







1 aj = aj−1, hj = 0
0 aj 6= aj−1, hj = 0

a(aj |aj−1; l) hj = 1

This formulation allows target phrases to be in-
serted without disrupting the Markov dependencies
of phrases aligned to actual source words.

The phrase length modeln(φ; e) gives the proba-
bility that a worde produces a phrase withφ words
in the target language;n(φ; e) is defined forφ =
1, · · · , N . The hallucination process is a simple
i.i.d. process, whered(0) = p0, andd(1) = 1− p0.

Word-to-Phrase Translation The translation of
words to phrases is given as

P (vK
1 |a

K
1 , hK

1 , φK
1 ,K,m, e) =

K
∏

k=1

p(vk|eak
, hk, φk)

We introduce the notationvk = vk[1], . . . , vk[φk]
and a dummy variablexk (for phrase insertion) :

xk =

{

eak
hk = 1

NULL hk = 0

We define two models of word-to-phrase translation.
This simplest is based on context-independent word-
to-word translation

p(vk|eak
, hk, φk) =

φk
∏

j=1

t(vk[j] |xk)

We also define a model that captures foreign word
context withbigram translation probabilities

p(vk|eak
, hk, φk)

= t(vk[1] |xk)

φk
∏

j=2

t2(vk[j] | vk [j − 1], xk)

Here,t(f |e) is the usual context independent word-
to-word translation probability. The bigram trans-
lation probabilityt2(f |f

′, e) specifies the likelihood
that target wordf is to follow f ′ in a phrase gener-
ated by source worde.
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2.1 Properties of the Model and Prior Work

The formulation of the WtoP alignment model
was motivated by both the HMM word alignment
model (Vogel et al., 1996) and IBM Model-4 with
the goal of building on the strengths of each.

The relationship with the word-to-word HMM
alignment model is straightforward. For example,
constraining the phrase length componentn(φ; e)
to permit only phrases of one word would give a
word-to-word HMM alignment model. The exten-
sions introduced are the phrase count, and the phrase
length models, and the bigram translation distribu-
tion. The hallucination process is motivated by the
use of NULL alignments into Markov alignment
models as done by (Och and Ney, 2003).

The phrase length model is motivated by
Toutanova et al. (2002) who introduced ‘stay’ prob-
abilities in HMM alignment as an alternative to word
fertility. By comparison, Word-to-Phrase HMM
alignment models contain detailed models of state
occupancy, motivated by the IBM fertility model,
which are more powerful than a single staying pa-
rameter. In fact, the WtoP model is a segmental
Hidden Markov Model (Ostendorf et al., 1996), in
which states emit observation sequences.

Comparison with Model-4 is less straightforward.
The main features of Model-4 are NULL source
words, source word fertility, and the distortion
model. The WtoP alignment model includes the
first two of these. However distortion, which al-
lows hypothesized words to be distributed through-
out the target sentence, is difficult to incorporate into
a model that supports efficient DP-based search. We
preserve efficiency in the WtoP model by insisting
that target words form connected phrases; this is not
as general as Model-4 distortion. This weakness
is somewhat offset by a more powerful (Markov)
alignment process as well as by the phrase count
distribution. Despite these differences, the WtoP
alignment model and Model-4 allow similar align-
ments. For example, in Fig. 1, Model-4 would allowfe fe f f1 21 21 2 3 4
Figure 1: Word-to-Word and Word-to-Phrase Links

f1, f3, andf4 to be generated bye1 with a fertility
of 3. Under the WtoP model,e1 could generatef1

andf3f4 with phrase lengths 1 and 2, respectively:
source words can generate more than one phrase.

This alignment could also be generated via four
single word foreign phrases. The balance between
word-to-word and word-to-phrase alignments is set
by the phrase count distribution parameterη. As
η increases, alignments with shorter phrases are
favored, and for very largeη the model allows
only word-to-word alignments (see Fig. 2). Al-
though the WtoP alignment model is more com-
plex than the word-to-word HMM alignment model,
the Baum-Welch and Viterbi algorithms can still be
used. Word-to-word alignments are generated by
the Viterbi algorithm: â = argmax

a
P (f ,a|e); if

eak
→ vk , eak

is linked to all the words invk.
The bigram translation probability relies on word

context, known to be helpful in translation (Berger
et al., 1996), to improve the identification of tar-
get phrases. As an example,f is the Chinese word
for “world trade center”. Table 1 shows how the
likelihood of the correct English phrase is improved
with bigram translation probabilities; this example
is from the C→E, N=4 system of Table 2.

Model unigram bigram
P (world|f) 0.06 0.06
P (trade|world, f) 0.06 0.99
P (center|trade, f) 0.06 0.99
P (world trade center|f, 3) 0.0002 0.0588

Table 1: Context in Bigram Phrase Translation.

There are of course much prior work in translation
that incorporates phrases. Sumita et al. (2004) de-
velop a model of phrase-to-phrase alignment, which
while based on HMM alignment process, appears
to be deficient. Marcu and Wong (2002) propose a
model to learn lexical correspondences at the phrase
level. To our knowledge, ours is the first non-
syntactic model of bitext alignment (as opposed to
translation) that links words and phrases.

3 Embedded Alignment Model Estimation

We now discuss estimation of the WtoP model pa-
rameters by the EM algorithm. Since the WtoP
model can be treated as an HMM with a very com-
plex state space, it is straightforward to apply Baum-
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Welch parameter estimation. We show the forward
recursion as an example.

Given a sentence pair(el
1, f

m
1 ), the forward prob-

ability αj(i, φ) is defined as the probability of gen-
erating the firstj target words with the added con-
dition that the target wordsf j

j−φ+1 form a phrase
aligned to source wordei. It can be calculated recur-
sively (omitting the hallucination process, for sim-
plicity) as

αj(i, φ) =
{

∑

i′,φ′

αj−φ(i′, φ′)a(i|i′, l)
}

· η

· n(φ; ei) · t(fj−φ+1|ei) ·

j
∏

j′=j−φ+2

t2(fj′ |ei)

This recursion is over a trellis ofl(N + 1)m nodes.
Models are trained from a flat-start. We begin

with 10 iterations of EM to train Model-1, followed
by 5 EM iterations to train Model-2 (Brown and oth-
ers, 1993). We initialize the parameters of the word-
to-word HMM alignment model by collecting word
alignment counts from the Model-2 Viterbi align-
ments, and refine the word-to-word HMM alignment
model by 5 iterations of the Baum-Welch algorithm.
We increase the order of the WtoP model (N ) from
2 to the final value in increments of 1, by perform-
ing 5 Baum Welch iterations at each step. At the fi-
nal value ofN , we introduce the bigram translation
probability; we use Witten-Bell smoothing (1991)
as a backoff strategy fort2, and other strategies are
possible.

4 Bitext Word Alignment

We now investigate bitext word alignment perfor-
mance. We start with the FBIS Chinese/English
parallel corpus which consists of approx. 10M En-
glish/7.5M Chinese words. The Chinese side of the
corpus is segmented into words by the LDC seg-
menter1. The alignment test set consists of 124 sen-
tences from the NIST 2001 dry-run MT-eval2 set that
are manually word aligned.

We first analyze the distribution of word links
within these manual alignments. Of the Chinese
words which are aligned to more than one English
words, 82% of these words align with consecutive

1http://www.ldc.upenn.edu/Projects/Chinese
2http://www.nist.gov/speech/tests/mt

Model AER1−1 AER1−N AER
C−→E

Model-4 37.9 68.3 37.3
HMM, N=1 42.8 72.9 42.0
HMM, N=2 38.3 71.2 38.1
HMM, N=3 37.4 69.5 37.8
HMM, N=4 37.1 69.1 37.8
+ bigram t-table 37.5 65.8 37.1

E−→C
Model-4 42.3 87.2 45.0
HMM, N=1 45.0 90.6 47.2
HMM, N=2 42.7 87.5 44.5
+ bigram t-table 44.2 85.5 45.1

Table 2: FBIS Bitext Alignment Error Rate.
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Figure 2: Balancing Word and Phrase Alignments

English words (phrases). In the other direction,
among all English words which are aligned to mul-
tiple Chinese words, 88% of these align to Chinese
phrases. In this collection, at least, word-to-phrase
alignments are plentiful.

Alignment performance is measured by the
Alignment Error Rate (AER) (Och and Ney, 2003)

AER(B;B′) = 1− 2× |B ∩B′|/(|B′|+ |B|)

whereB is a set reference word links, andB′ are the
word links generated automatically.

AER gives a general measure of word alignment
quality. We are also interested in how the model
performs over the word-to-word and word-to-phrase
alignments it supports. We split the reference align-
ments into two subsets:B1−1 contains word-to-
word reference links (e.g. 1→1 in Fig 1); and
B1−N contains word-to-phrase reference links (e.g.
1→3, 1→4 in Fig 1); The automatic alignmentB′

is partitioned similarly. We define additional AERs:
AER1−1 = AER(B1−1, B

′
1−1), andAER1−N =

AER(B1−N , B′
1−N ), which measure word-to-word

and word-to-phrase alignment, separately.
Table 2 presents the three AER measurements for
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the WtoP alignment models trained as described in
Section 3. GIZA++ Model 4 alignment performance
is also presented for comparison. We note first that
the word-to-word HMM (N=1) alignment model is
worse than Model 4, as expected. For the WtoP
models in the C→E direction, we see reduced AER
for phrases lengths up to 4, although in the E→C di-
rection, AER is reduced only for phrases of length
2; performance forN > 2 is not reported.

In introducing the bigram phrase translation (the
bigram t-table), there is a tradeoff between word-
to-word and word-to-phrase alignment quality. As
mentioned, the bigram t-table increases the likeli-
hood of word-to-phrase alignments. In both transla-
tion directions, this reduces the AER1−N . However,
it also causes increases in AER1−1, primarily due to
a drop in recall: fewer word-to-word alignments are
produced. For C→E, this is not severe enough to
cause an overall AER increase; however, in E→C,
AER does increase.

Fig. 2 (C→E, N=4) shows how the 1-1 and 1-
N alignment behavior is balanced by the phrase
count parameter. Asη increases, the model favors
alignments with more word-to-word links and fewer
word-to-phrase links; the overall Alignment Error
Rate (AER) suggests a good balance atη = 8.0.

After observing that the WtoP model performs as
well as Model-4 over the FBIS C-E bitext, we inves-
tigated performance over these large bitexts :
- “NEWS” containing non-UN parallel Chi-
nese/English corpora from LDC (mainly FBIS, Xin-
hua, Hong Kong, Sinorama, and Chinese Treebank).
- “NEWS+UN01-02” also including UN parallel
corpora from the years 2001 and 2002.
- “ALL C-E” refers to all the C-E bitext available
from LDC as of his submission; this consists of the
NEWS corpora with the UN bitext from all years.

Over all these collections, WtoP alignment per-
formance (Table 3) is comparable to that of Model-
4. We do note a small degradation in the E→C WtoP
alignments. It is quite possible that this one-to-many
model suffers slightly with English as the source and
Chinese as the target, since English sentences tend to
be longer. Notably, simply increasing the amount of
bitext used in training need not improve AER. How-
ever, larger aligned bitexts can give improved phrase
pair coverage of the test set.

One of the desirable features of HMMs is that the

Bitext English Words Model C→E E→C
M-4 37.1 45.3NEWS 71M

WtoP 36.1 44.8
NEWS+ M-4 36.1 43.4
UN01-02

96M
WtoP 36.4 44.2

ALL C-E 200M WtoP 36.8 44.7

Table 3: AER Over Large C-E Bitexts.

Forward-Backward steps can be run in parallel: bi-
text is partitioned; the Forward-Backward algorithm
is run over the subsets on different CPUs; statistics
are merged to reestimate model parameters. Parti-
tioning the bitext also reduces the memory usage,
since different cooccurrence tables can be kept for
each partition. With the “ALL C-E” bitext collec-
tion, a single set of WtoP models (C→E, N=4, bi-
gram t-table) can be trained over 200M words of
Chinese-English bitext by splitting training over 40
CPUs; each Forward-Backward process takes less
than 2GB of memory and the training run finishes
in five days. By contrast, the 96M English word
NEWS+UN01-02 is about the largest C-E bitext
over which we can train Model-4 with our GIZA++
configuration and computing infrastructure.

Based on these and other experiments, in this pa-
per we set a maximum value ofN = 4 for F→E; in
E→F, we set N=2 and omit the bigram phrase trans-
lation probability;η is set to 8.0. We do not claim
that this is optimal, however.

5 Phrase Pair Induction

A common approach to phrase-based translation is
to extract an inventory of phrase pairs (PPI) from bi-
text (Koehn et al., 2003), For example, in thephrase-
extract algorithm (Och, 2002), a word alignment
âm

1 is generated over the bitext, and all word sub-
sequencesei2

i1
andf j2

j1
are found that satisfy :

âm
1 : âj ∈ [i1, i2] iff j ∈ [j1, j2] . (1)

The PPI comprises all such phrase pairs(ei2
i1

, f j2
j1

).
The process can be stated slightly differently.

First, we define a set of alignments :

A(i1, i2; j1, j2) = {am
1 : aj ∈ [i1, i2] iff j ∈ [j1, j2]} .

If âm
1 ∈ A(i1, i2; j1, j2) then (ei2

i1
, f j2

j1
) form a

phrase pair.
Viewed in this way, there are many possible align-

ments under which phrases might be paired, and
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the selection of phrase pairs need not be based on
a single alignment. Rather than simply accepting a
phrase pair(ei2

i1
, f j2

j1
) if the unique MAP alignment

satisfies Equation 1, we can assign a probability to
phrases occurring as translation pairs :

P (f , A(i1, i2; j1, j2 ) | e) =
∑

a : am
1
∈A(i1,i2;j1,j2 )

P (f ,a|e)

For a fixed set of indicesi1, i2, j1, j2, the quan-
tity P (f , A(i1, i2; j1, j2 ) | e) can be computed effi-
ciently using a modified Forward algorithm. Since
P (f |e) can also be computed by the Forward al-
gorithm, thephrase-to-phrase posterior distribution
P (A(i1, i2; j1, j2 ) | f , e) is easily found.

PPI Induction Strategies In the phrase-extract
algorithm (Och, 2002), the alignment̂a is gener-
ated as follows: Model-4 is trained in both directions
(e.g. F→E and E→F); two sets of word alignments
are generated by the Viterbi algorithm for each set
of models; and the two alignments are merged. This
forms a static aligned bitext. Next, all foreign word
sequences up to a given length (here, 5 words) are
extracted from the test set. For each of these, a
phrase pair is added to the PPI if the foreign phrase
can be found aligned to an English phrase under
Eq 1. We refer to the result as the Model-4 Viterbi
Phrase-Extract PPI.

Constructed in this way, the PPI is limited to
phrase pairs which can be found in the Viterbi align-
ments. Some foreign phrases which do appear in
the training bitext will not be included in the PPI
because suitable English phrases cannot be found.
To add these to the PPI we can use the phrase-to-
phrase posterior distribution to find English phrases
as candidate translations. This adds phrases to the
Viterbi Phrase-Extract PPI and increase the test set
coverage. A somewhatad hoc PPI Augmentation
algorithm is given to the right.

Condition (A) extracts phrase pairs based on the
geometric mean of the E→F and F→E posteriors
(Tg = 0.01 throughout). The thresholdTp selects
additional phrase pairs under a more forgiving crite-
rion: asTp decreases, more phrase pairs are added
and PPI coverage increases. Note that this algorithm
is constructed specifically to improve a Viterbi PPI;
it is certainly not the only way to extract phrase pairs
under the phrase-to-phrase posterior distribution.

Once the PPI phrase pairs are set, the phrase trans-
lation probabilities are set based on the number of
times each phrase pair is extracted from a sentence
pair, i.e. from relative frequencies.

For each foreign phrasev not in the Viterbi PPI :
For all pairs(fm

1 , el
1) andj1, j2 s.t. f j2

j1
= v :

For1 ≤ i1 ≤ i2 ≤ l, find

f(i1, i2) = PF→E(A(i1, i2; j1, j2) | e
l
1, f

m
1 )

b(i1, i2) = PE→F (A(i1, i2; j1, j2) | e
l
1, f

m
1 )

g(i1, i2) =
√

f(11, i2) b(i1, i2)

(̂i1, î2) = argmax
1≤i1,i2≤l

g(i1, i2) , and setu = eî2
î1

Add (u, v) to the PPI if any of A, B, or C hold :
b(̂i1, î2) ≥ Tg andf (̂i1, î2) ≥ Tg (A)
b(̂i1, î2) < Tg andf (̂i1, î2) > Tp (B)
f (̂i1, î2) < Tg andb(̂i1, î2) > Tp (C)

PPI Augmentation via Phrase-Posterior Induction

HMM-based models are often used if posterior
distributions are needed. Model-1 can also be used
in this way (Venugopal et al., 2003), although it is
a relatively weak alignment model. By comparison,
finding posterior distributions under Model-4 is dif-
ficult. The Word-to-Phrase alignment model appears
not to suffer this tradeoff: it is a good model of word
alignment under which statistics such as the phrase-
to-phrase posterior can be calculated.

6 Translation Experiments

We evaluate the quality of phrase pairs extracted
from the bitext through the translation performance
of the Translation Template Model (TTM) (Kumar
et al., 2005), which is a phrase-based translation sys-
tem implemented using weighted finite state trans-
ducers. Performance is measured by BLEU (Pap-
ineni and others, 2001).
Chinese→English Translation We report perfor-
mance on the NIST Chinese/English 2002, 2003 and
2004 (News only) MT evaluation sets. These consist
of 878, 919, and 901 sentences, respectively. Each
Chinese sentence has 4 reference translations.

We evaluate two C→E translation systems. The
smaller system is built on the FBIS C-E bitext col-
lection. The language model used for this system is
a trigram word language model estimated with21M
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V-PE WtoP eval02 eval03 eval04 eval02 eval03 eval04
Model Tp cvg BLEU cvg BLEU cvg BLEU cvg BLEU cvg BLEU cvg BLEU

FBIS C→E System News A→E System
1 M-4 - 20.1 23.8 17.7 22.8 20.2 23.0 19.5 36.9 21.5 39.1 18.5 40.0
2 0.7 24.6 24.6 21.4 23.7 24.6 23.7 23.8 37.6 26.6 40.2 22.4 40.3
3 WtoP - 19.7 23.9 17.4 23.3 19.8 23.3 18.4 36.2 20.6 38.6 17.4 39.2
4 1.0 23.1 24.0 20.0 23.7 23.2 23.5 21.8 36.7 24.3 39.3 20.4 39.7
5 0.9 24.0 24.8 20.9 23.9 24.0 23.8 23.2 37.2 25.8 39.7 21.8 40.1
6 0.7 24.6 24.9 21.3 24.0 24.7 23.9 23.7 37.2 26.5 39.7 22.4 39.9
7 0.5 24.9 24.9 21.6 24.1 24.8 23.9 24.0 37.2 26.9 39.7 22.7 39.8

Large C→E System Large A→E System
8 M-4 - 32.5 27.7 29.3 27.1 32.5 26.6 26.4 38.1 28.1 40.1 28.2 39.9
9 WtoP - 30.6 27.9 27.5 27.0 30.6 26.4 24.8 38.1 26.6 40.1 26.7 40.6

10 0.7 38.2 28.2 32.3 27.3 37.1 26.8 30.7 39.3 32.9 41.6 32.5 41.9

Table 4: Translation Analysis and Performance of PPI Extraction Procedures

words taken from the English side of the bitext; all
language models are built with the SRILM toolkit
using Kneser-Ney smoothing (Stolcke, 2002).

The larger system is based on alignments gener-
ated over all available C-E bitext (the “ALL C-E”
collection of Section 4). The language model is
an equal-weight interpolated trigram model trained
over 373M English words taken from the English
side of the bitext and the LDC Gigaword corpus.

Arabic→English Translation We also evaluate our
WtoP alignment models in Arabic-English transla-
tion. We report results on a small and a large system.
In each, Arabic text is tokenized by the Buckwalter
analyzer provided by LDC. We test our models on
NIST Arabic/English 2002, 2003 and 2004 (News
only) MT evaluation sets that consists of 1043, 663
and 707 Arabic sentences, respectively. Each Arabic
sentence has 4 reference translations.

In the small system, the training bitext is from
A-E News parallel text, with∼3.5M words on the
English side. We follow the same training proce-
dure and configurations as in Chinese/English sys-
tem in both translation directions. The language
model is an equal-weight interpolated trigram built
over∼400M words from the English side of the bi-
text, including UN text, and the LDC English Gi-
gaword collection. The large Arabic/English system
employs the same language model. Alignments are
generated over all A-E bitext available from LDC as
of this submission; this consists of approx. 130M
words on the English side.

WtoP Model and Model-4 Comparison We first
look at translation performance of the small A→E

and C→E systems, where alignment models are
trained over the smaller bitext collections. The base-
line systems (Table 4, line 1) are based on Model-4
Viterbi Phrase-Extract PPIs.

We compare WtoP alignments directly to Model-
4 alignments by extracting PPIs from the WtoP
alignments using the Viterbi Phrase-Extract proce-
dure (Table 4, line 3). In C→E translation, perfor-
mance is comparable to that of Model-4; in A→E
translation, performance lags slightly. As we add
phrase pairs to the WtoP Viterbi Phrase-Extract PPI
via the Phrase-Posterior Augmentation procedure
(Table 4, lines 4-7), we obtain a∼1% improvement
in BLEU; the value ofTp = 0.7 gives improvements
across all sets. In C→E translation, this yields good
gains relative to Model-4, while in A→E we match
or improve the Model-4 performance.

The performance gains through PPI augmentation
are consistent with increased PPI coverage of the test
set. We tabulate the percentage of test set phrases
that appear in each of the PPIs (the ‘cvg’ values
in Table 4). The augmentation scheme is designed
specifically to increase coverage, and we find that
BLEU score improvements track the phrase cover-
age of the test set. This is further confirmed by the
experiment of Table 4, line 2 in which we take the
PPI extracted from Model-4 Viterbi alignments, and
add phrase pairs to it using the Phrase-Posterior aug-
mentation scheme withTp = 0.7. We find that the
augmentation scheme under the WtoP models can
be used to improve the Model-4 PPI itself.

We also investigate C→E and A→E translation
performance with PPIs extracted from large bitexts.
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Performance of systems based on Model-4 Viterbi
Phrase-Extract PPIs is shown in Table 4, line 8.
To train Model-4 using GIZA++, we split the bi-
texts into two (A-E) or three (C-E) partitions, and
train models for each division separately; we find
that memory usage is otherwise too great. These
serve as a single set of alignments for the bitext,
as if they had been generated under a single align-
ment model. When we translate with Viterbi Phrase-
Extract PPIs taken from WtoP alignments created
over all available bitext, we find comparable perfor-
mance to the Model-4 baseline (Table 4, line 9). Us-
ing the Phrase-Posterior augmentation scheme with
Tp = 0.7 yields further improvement (Table 4, line
10). Pooling the sets to form two large C→E and
A→E test sets, the A→E system improvements are
significant at a 95% level (Och, 2003); the C→E sys-
tems are only equivalent.

7 Conclusion

We have described word-to-phrase alignment mod-
els capable of good quality bitext word alignment.
In Arabic-English and Chinese-English translation
and alignment they compare well to Model-4, even
with large bitexts. The model architecture was in-
spired by features of Model-4, such as fertility and
distortion, but care was taken to ensure that dy-
namic programming procedures, such as EM and
Viterbi alignment, could still be performed. There
is practical value in this: training and alignment
are easily parallelized. Working with HMMs also
makes it straightforward to explore new modeling
approaches. We show an augmentation scheme that
adds to phrases extracted from Viterbi alignments;
this improves translation with both the WtoP and the
Model-4 phrase pairs, even though it would be infea-
sible to implement the scheme under Model-4 itself.
We note that these models are still relatively simple,
and we anticipate further alignment and translation
improvement as the models are refined.
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Abstract

Most statistical translation systems are
based on phrase translation pairs, or
“blocks”, which are obtained mainly from
word alignment. We use blocks to infer
better word alignment and improved word
alignment which, in turn, leads to better
inference of blocks. We propose two new
probabilistic models based on the inner-
outer segmentations and use EM algorithms
for estimating the models’ parameters. The
first model recovers IBM Model-1 as a spe-
cial case. Both models outperform bi-
directional IBM Model-4 in terms of word
alignment accuracy by 10% absolute on the
F-measure. Using blocks obtained from
the models in actual translation systems
yields statistically significant improvements
in Chinese-English SMT evaluation.

1 Introduction

Today’s statistical machine translation systems rely
on high quality phrase translation pairs to acquire
state-of-the-art performance, see (Koehn et al., 2003;
Zens and Ney, 2004; Och and Ney, 2003). Here,
phrase pairs, or “blocks” are obtained automati-
cally from parallel sentence pairs via the underlying
word alignments. Word alignments traditionally are
based on IBM Models 1-5 (Brown et al., 1993) or on
HMMs (Vogel et al., 1996). Automatic word align-
ment is challenging in that its accuracy is not yet
close to inter-annotator agreement in some language
pairs: for Chinese-English, inter-annotator agree-
ment exceeds 90 on F-measure whereas IBM Model-
4 or HMM accuracy is typically below 80s. HMMs
assume that words “close-in-source” are aligned to
words “close-in-target”. While this locality assump-
tion is generally sound, HMMs do have limitations:
the self-transition probability of a state (word) is the
only control on the duration in the state, the length
of the phrase aligned to the word. Also there is no

natural way to control repeated non-contiguous vis-
its to a state. Despite these problems, HMMs remain
attractive for their speed and reasonable accuracy.

We propose a new method for localizing word
alignments. We use blocks to achieve locality in the
following manner: a block in a sentence pair is a
source phrase aligned to a target phrase. We assume
that words inside the source phrase cannot align to
words outside the target phrase and that words out-
side the source phrase cannot align to words inside
the target phrase. Furthermore, a block divides the
sentence pair into two smaller regions: the inner
part of the block, which corresponds to the source
and target phrase in the block, and the outer part of
the block, which corresponds to the remaining source
and target words in the parallel sentence pair. The
two regions are non-overlapping; and each of them is
shorter than the original parallel sentence pair. The
regions are thus easier to align than the original sen-
tence pairs (e.g., using IBM Model-1). While the
model uses a single block to split the sentence pair
into two independent regions, it is not clear which
block we should select for this purpose. Therefore,
we treat the splitting block as a hidden variable.

This proposed approach is far simpler than treat-
ing the entire sentence as a sequence of non-
overlapping phrases (or chunks) and considering such
sequential segmentation either explicitly or implic-
itly. For example, (Marcu and Wong, 2002) for a
joint phrase based model, (Huang et al., 2003) for
a translation memory system; and (Watanabe et
al., 2003) for a complex model of insertion, deletion
and head-word driven chunk reordering. Other ap-
proaches including (Watanabe et al., 2002) treat ex-
tracted phrase-pairs as new parallel data with limited
success. Typically, they share a similar architecture
of phrase level segmentation, reordering, translation
as in (Och and Ney, 2002; Koehn and Knight, 2002;
Yamada and Knight, 2001). The phrase level inter-
action has to be taken care of for the non-overlapping
sequential segmentation in a complicated way. Our
models model such interactions in a soft way. The
hidden blocks are allowed to overlap with each other,
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while each block induced two non-overlapping re-
gions, i.e. the model brackets the sentence pair
into two independent parts which are generated syn-
chronously. In this respect, it resembles bilingual
bracketing (Wu, 1997), but our model has more lex-
ical items in the blocks with many-to-many word
alignment freedom in both inner and outer parts.

We present our localization constraints using
blocks for word alignment in Section 2; we detail our
two new probabilistic models and their EM train-
ing algorithms in Section 3; our baseline system, a
maximum-posterior inference for word alignment, is
explained in Section 4; experimental results of align-
ments and translations are in Section 5; and Section
6 contains discussion and conclusions.

2 Segmentation by a Block

We use the following notation in the remainder of
this paper: e and f denote the English and foreign
sentences with sentence lengthes of I and J , respec-
tively. ei is an English word at position i in e; fj is
a foreign word at position j in f . a is the alignment
vector with aj mapping the position of the English
word eaj to which fj connects. Therefore, we have
the standard limitation that one foreign word can-
not be connected to more than one English word. A
block δ[] is defined as a pair of brackets as follows:

δ[] = (δe, δf ) = ([il, ir], [jl, jr]), (1)

where δe = [il, ir] is a bracket in English sentence de-
fined by a pair of indices: the left position il and the
right position ir, corresponding to a English phrase
eir
il

. Similar notations are for δf = [jl, jr], which is
one possible projection of δe in f . The subscript l and
r are abbreviations of left and right, respectively.

δe segments e into two parts: (δe, e) = (δe
∈, δe

/∈).
The inner part δe

∈ = {ei, i ∈ [il, ir]} and the outer
part δe

/∈ = {ei, i /∈ [il, ir]}; δf segments f similarly.

Thus, the block δ[] splits the parallel sentence pair
into two non-overlapping regions: the Inner δ

[]
∈ and

Outer δ
[]
/∈ parts (see Figure 1). With this segmen-

tation, we assume the words in the inner part are
aligned to inner part only: δ

[]
∈ = δe

∈ ↔ δf
∈ : {ei, i ∈

[il, ir]} ↔ {fj , j ∈ [jl, jr]}; and words in the outer
part are aligned to outer part only: δ

[]
/∈ = δe

/∈ ↔ δf
/∈ :

{ei, i /∈ [il, ir]} ↔ {fj , j /∈ [jl, jr]}. We do not allow
alignments to cross block boundaries. Words inside
a block δ[] can be aligned using a variety of models
(IBM models 1-5, HMM, etc). We choose Model1 for
simplicity. If the block boundaries are accurate, we
can expect high quality word alignment. This is our
proposed new localization method.

Outer

Inner

li ri

rj

lj

eδ

fδ

Figure 1: Segmentation by a Block

3 Inner-Outer Bracket Models

We treat the constraining block as a hidden variable
in a generative model shown in Eqn. 2.

P (f |e) =
∑

{δ[]}
P (f , δ[]|e)

=
∑

{δe}

∑

{δf}
P (f , δf |δe, e)P (δe|e), (2)

where δ[] = (δe, δf ) is the hidden block. In the gen-
erative process, the model first generates a bracket
δe for e with a monolingual bracketing model of
P (δe|e). It then uses the segmentation of the En-
glish (δe, e) to generate the projected bracket δf of f
using a generative translation model P (f , δf |δe, e) =
P (δf

/∈, δf
∈|δe

/∈, δe
∈) — the key model to implement our

proposed inner-outer constraints. With the hidden
block δ[] inferred, the model then generates word
alignments within the inner and outer parts sepa-
rately. We present two generating processes for the
inner and outer parts induced by δ[] and correspond-
ing two models of P (f , δf |δe, e). These models are
described in the following secions.

3.1 Inner-Outer Bracket Model-A

The first model assumes that the inner part and the
outer part are generated independently. By the for-
mal equivalence of (f, δf ) with (δf

∈, δf
/∈), Eqn. 2 can

be approximated as:

P (f |e)≈
∑

{δe}

∑

{δf}
P (δf

∈|δe
∈)P (δf

/∈|δe
/∈)P (δe|e)P (δf |δe),

(3)
where P (δf

∈|δe
∈) and P (δf

/∈|δe
/∈) are two independent

generative models for inner and outer parts, respec-
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tively and are futher decompsed into:

P (δf
∈|δe

∈) =
∑

{aj∈δe
∈}

∏

fj∈δf
∈

P (fj |eaj
)P (eaj

|δe
∈)

P (δf
/∈|δe

/∈) =
∑

{aj∈δe
/∈}

∏

fj∈δf
/∈

P (fj |eaj )P (eaj |δe
/∈), (4)

where {aJ
1 } is the word alignment vector. Given the

block segmentation and word alignment, the genera-
tive process first randomly selects a ei according to
either P (ei|δe

∈) or P (ei|δe
/∈); and then generates fj in-

dexed by word alignment aj with i = aj according to
a word level lexicon P (fj |eaj

). This generative pro-
cess using the two models of P (δf

∈|δe
∈) and P (δf

/∈|δe
/∈)

must satisfy the constraints of segmentations induced
by the hidden block δ[] = (δe, δf ). The English
words δe

∈ inside the block can only generate the words
in δf

∈ and nothing else; likewise δe
/∈ only generates

δf
/∈. Overall, the combination of P (δf

∈|δe
∈)P (δf

/∈|δe
/∈)

in Eqn. 3 collaborates each other quite well in prac-
tice. For a particular observation δf

∈, if δe
∈ is too

small (i.e., missing translations), P (δf
∈|δe

∈) will suf-
fer; and if δe

∈ is too big (i.e., robbing useful words
from δe

/∈), P (δf
/∈|δe

/∈) will suffer. Therefore, our pro-
posed model in Eqn. 3 combines the two costs and
requires both inner and outer parts to be explained
well at the same time.

Because the model in Eqn. 3 is essentially a two-
level (δ[] and a) mixture model similar to IBM Mod-
els, the EM algorithm is quite straight forward as
in IBM models. Shown in the following are several
key E-step computations of the posteriors. The M-
step (optimization) is simply the normalization of
the fractional counts collected using the posteriors
through the inference results from E-step:

P
δ
[]
∈
(aj |δf

∈, δe
∈) =

P (fj |eaj )∑
ek∈δe

∈
P (fj |ek)

P
δ
[]
/∈
(aj |δf

/∈, δe
/∈) =

P (fj |eaj )∑
ek∈δe

/∈
P (fj |ek)

(5)

The posterior probability of P (aJ
1 |f , δf , δe, e) =∏J

j=1 P (aj |f , δf , δe, e), where P (aj |f , δf , δe, e) is ei-

ther P
δ
[]
∈
(aj |δf

∈, δe
∈) when (fj , eaj ) ∈ δ

[]
∈, or oth-

erwise P
δ
[]
/∈
(aj |δf

/∈, δe
/∈) when (fj , eaj ) ∈ δ

[]
/∈. As-

suming P (δe|e) to be a uniform distribution, the
posterior of selecting a hidden block given ob-
servations: P (δ[] = (δe, δf )|e, f) is proportional
to block level relative frequency Prel(δf

∈|δe
∈) up-

dated in each iteration; and can be smoothed
with P (δf |δe, f , e) = P (δf

∈|δe
∈)P (δf

/∈|δe
/∈)/

∑
{δ′f}

P (δ
′f
∈ |δe

∈)P (δ
′f
/∈ |δe

/∈) assuming Model-1 alignment in
the inner and outer parts independently to reduce
the risks of data sparseness in estimations.

In principle, δe can be a bracket of any length
not exceeding the sentence length. If we restrict the
bracket length to that of the sentence length, we re-
cover IBM Model-1. Figure 2 summarizes the gener-
ation process for Inner-Outer Bracket Model-A.

f1 f2  f3  f4

e1 e2  e3

[e1] e2  e3 e1 [e2] e3 [e1 e2] e3 e1 [e2 e3]

….

f1 f4

e1 e3

f2  f3

e2

f1 f3 f4

e1 e3

f2

e2

… …

]3,2[=fδ ]2,2[=fδ [.,.]=fδ

]2,2[=eδ]1,1[=eδ ]2,1[=eδ ]3,2[=eδ

innerouter innerouter

Figure 2: Illustration of generative Bracket Model-A

3.2 Inner-Outer Bracket Model-B

A block δ[] invokes both the inner and outer gener-
ations simultaneously in Bracket Model A (BM-A).
However, the generative process is usually more ef-
fective in the inner part as δ[] is generally small and
accurate. We can build a model focusing on gener-
ating only the inner part with careful inferences to
avoid errors from noisy blocks. To ensure that all
fJ
1 are generated, we need to propose enough blocks

to cover each observation fj . This constraint can be
met by treating the whole sentence pair as one block.

The generative process is as follows: First the
model generates an English bracket δe as before. The
model then generates a projection δf in f to local-
ize all aj ’s for the given δe according to P (δf |δe, e).
δe and δf forms a hidden block δ[]. Given δ[], the
model then generates only the inner part fj ∈ δf

∈ via
P (f |δf , δe, e) ' P (δf

∈|δf , δe, e). Eqn. 6 summarizes
this by rewriting P (f , δf |δe, e):

P (f , δf |δe, e) = P (f |δf , δe, e)P (δf |δe, e) (6)
= P (f |δf , δe, e)P ([jl, jr]|δe, e)
' P (δf

∈|δf , δe, e)P ([jl, jr]|δe, e).

P (δf
∈|δf , δe, e) is a bracket level emission proba-

bilistic model which generates a bag of contiguous
words fj ∈ δf

∈ under the constraints from the given
hidden block δ[] = (δf , δe). The model is simplified
in Eqn. 7 with the assumption of bag-of-words’ inde-
pendence within the bracket δf :

P (δf
∈|δf , δe, e) =∑

aJ
1

∏
j∈δf

∈
P (fj |eaj )P (eaj |δf , δe, e). (7)
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The P ([jl, jr]|δe, e) in Eqn. 6 is a localization prob-
abilistic model, which has resemblances to an HMM’s
transition probability, P (aj |aj−1), implementing the
assumption “close-in-source” is aligned to “close-in-
target”. However, instead of using the simple po-
sition variable aj , P ([jl, jr]|δe, e) is more expressive
with word identities to localize words {fj} aligned to
δe
∈. To model P ([jl, jr]|δe, e) reliably, δf = [jl, jr] is

equivalently defined as the center and width of the
bracket δf : (¯δf , wδf ). To simplify it further, we
assume that wδf and ¯δf can be predicted indepen-
dently.

The width model, P (wδf |δe, e), depends on the
length of the English bracket and the fertilities of En-
glish words in it. To simplify M-step computations,
we can compute the expected width as in Eqn. 8.

E{wδf |δe, e} ' γ · |ir − il + 1|, (8)

where γ is the expected bracket length ratio and
is approximated by the average sentence length ra-
tio computed using the whole parallel corpus. For
Chinese-English, γ = 1/1.3 = 0.77. In practice, this
estimation is quite reliable.

The center model P (¯δf |δe, e) is harder. It is
conditioned on the translational equivalence between
the English bracket and its projection. We compute
the expected ¯δf by averaging the weighted expected
centers from all the English words in δe as in Eqn. 9.

E{¯δf |δe, e} =
∑J

j=0 j · P (j|δe, e)

' ∑J
j=0 j ·

P
i∈δe P (fj |ei)PJ

j′=0

P
i∈δe P (fj′ |ei)

.
(9)

The expectations of (¯δf , wδf ) from Eqn. 8 and
Eqn. 9 give a reliable starting point for a local search
for the optimal estimation of ( ˆ̄

δf , ŵδf ) as in Eqn 10:

( ˆ̄
δf , ŵδf ) = arg max

{(¯
δf ,w

δf )}
P (δf

∈|δe
∈)P (δf

/∈|δe
/∈), (10)

where the score functions of P (δf
∈|δe

∈)P (δf
/∈|δe

/∈) are
in Eqn. 4 with the word alignment explicitly given
from the previous iteration. For the very first itera-
tion, full alignment is assumed; this means that every
word pair is connected in the parallel sentences. Dur-
ing the local search in Eqn. 10, one can choose the
top-1 (Viterbi) ( ˆ̄

δf , ŵδf ) or top-N candidates and
normalize over these candidates to obtain the poste-
riors. Except for the local search of ( ˆ̄

δf , ŵδf ), the
remainder EM steps are similar to Bracket Model-A,
though with different interpretations.

By performing local search in Eqn. 10, Model-
B localizes hidden blocks more accurately than the
scheme of the smoothed relative frequency in Model-
A’s EM iterations. The model is also more focused
on the predictions in the inner part. Figure 3 sum-
marizes the generative process of Model-B (BM-B).

f1 f2  f3  f4

e1 e2  e3

[e1] e2  e3 e1 [e2] e3 [e1 e2] e3 e1 [e2 e3]

….

f2  f3 f4

e1 e2

f2  f3

e2

f2

e2

… …

)ˆ,ˆ( ff wδδΘ

]2,2[=eδ]1,1[=eδ ]2,1[=eδ ]3,2[=eδ

inner inner

)ˆ,ˆ( ff wδδΘ

… …

inner

Figure 3: Generative Bracket Model-B

3.3 A Null Word Model

The null word model allows words to be aligned
to nothing. In the traditional IBM models, there
is a universal null word which is attached to every
sentence pair to compete with word generators. In
our inner-outer bracket models, we use two context-
specific null word models which use both the left
and right context as competitors in the generative
process for each observation fj : P (fj |fj−1, e) and
P (fj |fj+1, e). This is similar to the approach in
(Toutanova et al., 2002), in which the null word
model is part of an extended HMM using left context
only. With two null word models, we can associate fj

with its left or right context (i.e., a null link) when
the null word models are very strong, or when the
word’s alignment is too far from the expected center
ˆ̄

δf in Eqn. 9.

4 A Max-Posterior for Word
Alignment

In the HMM framework, (Ge, 2004) proposed a
maximum-posterior method which worked much bet-
ter than Viterbi for Arabic to English transla-
tions. The difference between maximum-posterior
and Viterbi, in a nutshell, is that while Viterbi com-
putes the best state sequence given the observation,
the maximum-posterior computes the best state one
at a time.

In the terminology of HMM, let the states be the
words in the foreign sentence fJ

1 and observations
be the words in the English sentence eT

1 . We use
the subscript t to note the fact that et is observed
(or emitted) at time step t. The posterior probabil-
ities P (fj |et) (state given observation) are obtained
after the forward-backward training. The maximum-
posterior word alignments are obtained by first com-
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puting a pair (j, t)∗:

(j, t)∗ = arg max
(j,t)

P (fj |et), (11)

that is, the point at which the posterior is maximum.
The pair (j, t) defines a word pair (fj , et) which is
then aligned. The procedure continues to find the
next maximum in the posterior matrix. Contrast
this with Viterbi alignment where one computes

f̂T
1 = arg max

{fT
1 }

P (f1, f2, · · · , fT |eT
1 ), (12)

We observe, in parallel corpora, that when one
word translates into multiple words in another lan-
guage, it usually translates into a contiguous se-
quence of words. Therefore, we impose a conti-
guity constraint on word alignments. When one
word fj aligns to multiple English words, the En-
glish words must be contiguous in e and vice versa.
The algorithm to find word alignments using max-
posterior with contiguity constraint is illustrated in
Algorithm 1.

Algorithm 1 A maximum-posterior algorithm with
contiguity constraint
1: while (j, t) = (j, t)∗ (as computed in Eqn. 11)

do
2: if (fj , et) is not yet aligned then
3: align(fj , et);
4: else if (et is contiguous to what fj is aligned)

or (fj is contiguous to what et is aligned) then
5: align(fj , et);
6: end if
7: end while

The algorithm terminates when there isn’t any
’next’ posterior maximum to be found. By defi-
nition, there are at most JxT ’next’ maximums in
the posterior matrix. And because of the contiguity
constraint, not all (fj , et) pairs are valid alignments.
The algorithm is sure to terminate. The algorithm
is, in a sense, directionless, for one fj can align to
multiple et’s and vise versa as long as the multiple
connections are contiguous. Viterbi, however, is di-
rectional in which one state can emit multiple obser-
vations but one observation can only come from one
state.

5 Experiments

We evaluate the performances of our proposed mod-
els in terms of word alignment accuracy and trans-
lation quality. For word alignment, we have 260
hand-aligned sentence pairs with a total of 4676 word
pair links. The 260 sentence pairs are randomly

selected from the CTTP1 corpus. They were then
word aligned by eight bilingual speakers. In this set,
we have one-to-one, one-to-many and many-to-many
alignment links. If a link has one target functional
word, it is considered to be a functional link (Ex-
amples of funbctional words are prepositions, deter-
miners, etc. There are in total 87 such functional
words in our experiments). We report the overall F-
measures as well as F-measures for both content and
functional word links. Our significance test shows
an overall interval of ±1.56% F-measure at a 95%
confidence level.

For training data, the small training set has 5000
sentence pairs selected from XinHua news stories
with a total of 131K English words and 125K Chi-
nese words. The large training set has 181K sentence
pairs (5k+176K); and the additional 176K sentence
pairs are from FBIS and Sinorama, which has in to-
tal 6.7 million English words and 5.8 million Chinese
words.

5.1 Baseline Systems

The baseline is our implementation of HMM with
the maximum-posterior algorithm introduced in sec-
tion 4. The HMMs are trained unidirectionally. IBM
Model-4 is trained with GIZA++ using the best re-
ported settings in (Och and Ney, 2003). A few pa-
rameters, especially the maximum fertility, are tuned
for GIZA++’s optimal performance. We collect bi-
directional (bi) refined word alignment by growing
the intersection of Chinese-to-English (CE) align-
ments and English-to-Chinese (EC) alignments with
the neighboring unaligned word pairs which appear
in the union similar to the “final-and” approaches
(Koehn, 2003; Och and Ney, 2003; Tillmann, 2003).
Table 1 summarizes our baseline with different set-
tings. Table 1 shows that HMM EC-P gives the

F-measure(%) Func Cont Both

Small

HMM EC-P 54.69 69.99 64.78
HMM EC-V 31.38 53.56 55.59
HMM CE-P 51.44 69.35 62.69
HMM CE-V 31.43 63.84 55.45

Large

HMM EC-P 60.08 78.01 71.92
HMM EC-V 32.80 74.10 64.26
HMM CE-P 58.45 79.44 71.84
HMM CE-V 35.41 79.12 68.33

Small GIZA MH-bi 45.63 69.48 60.08
GIZA M4-bi 48.80 73.68 63.75

Large GIZA MH-bi 49.13 76.51 65.67
GIZA M4-bi 52.88 81.76 70.24

- Fully-Align 2 5.10 15.84 9.28

Table 1: Baseline: V: Viterbi; P: Max-Posterior

1LDC2002E17
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best baseline, better than bidirectional refined word
alignments from GIZA M4 and the HMM Viterbi
aligners.

5.2 Inner-Outer Bracket Models

We trained HMM lexicon P (f |e) to initialize the
inner-outer Bracket models. Afterwards, up to 15–
20 EM iterations are carried out. Iteration starts
from the fully aligned2 sentence pairs, which give an
F-measure of 9.28% at iteration one.

5.2.1 Small Data Track
Figure 4 shows the performance of Model-A (BM-

A) trained on the small data set. For each English
bracket, Top-1 means only the fractional counts from
the Top-1 projection are collected, Top-all means
counts from all possible projections are collected. In-
side means the fractional counts are collected from
the inner part of the block only; and outside means
they are collected from the outer parts only. Using
the Top-1 projection from the inner parts of the block
(top-1-inside) gives the best performance: an F-
measure of 72.29%, or a 7.5% absolute improvement
over the best baseline at iteration 5. Figure 5 shows

BM-A with different settings on small data set
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Figure 4: BM-A with different settings on small data

the performance of Inner-Outer Bracket Model-B
(BM-B) over EM iterations. smoothing means when
collecting the fractional counts, we reweigh the up-
dated fractional count by 0.95 and give the remain-
ing 0.05 weight to original fractional count from the
links, which were aligned in the previous iteration.
w/null means we applied the proposed Null word
model in section 3.3 to infer null links. We also pre-
defined a list of 15 English function words, for which
there might be no corresponding Chinese words as
translations. These 15 English words are “a, an, the,
of, to, for, by, up, be, been, being, does, do, did, -”.
In the drop-null experiments, the links containing
these predefined function words are simply dropped

2Every possible word pair is aligned

in the final word alignment (this means they are left
unaligned).

BM-B with different settings on small data set
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Figure 5: BM-B with different settings on small data

Empirically we found that doing more than 5 it-
erations lead to overfitting. The peak performance
in our model is usually achieved around iteration
4∼5. At iteration 5, setting “BM-B Top-1” gives an
F-measure of 73.93% which is better than BM-A’s
best performance (72.29%). This is because Model
B leverages a local search for less noisy blocks and
hence the inner part is more accurately generated
(which in turn means the outer part is also more
accurate). From this point on, all of our experi-
ments are using Model B. With smoothing, BM-B
improves to 74.46%. After applying the null word
model, we get 75.20%. By simply dropping links
containing the 15 English functional words, we get
76.24%, which is significantly better than our best
baseline obtained from even the large training set
(HMM EC-P: 71.92%).

BM-B with different settings on large data set

69

71

73

75

77

79

81

83

1 2 3 4 5 6 7 8
EM  Iterations

F
-m

ea
su

re

top-1 smooth dropnull

top-1 smooth w/null

top-1 smooth

Figure 6: BM-B with different settings on large data

5.2.2 Large Data Track
Figure 6 shows performance pictures of model

BM-B on the large training set. Without dropping
English functional words, the best performance is
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80.38% at iteration 4 using the Top-1 projection to-
gether with the null word models. By additionally
dropping the links containing the 15 functional En-
glish words, we get 81.47%. These results are all
significantly better than our strongest baseline sys-
tem: 71.92% F-measure using HMM EC-P (70.24%
using bidirectional Model-4 for comparisons).

On this data set, we experimented with different
maximum bracket length limits, from one word (un-
igram) to nine-gram. Results show that a maximum
bracket length of four is already optimal (79.3% with
top-1 projection), increased from 62.4% when maxi-
mum length is limited to one. No improvements are
observed using longer than five-gram.

5.3 Evaluate Blocks in the EM Iterations

Our intuition was that good blocks can improve word
alignment and, in turn, good word alignment can
lead to better block selection. The experimental re-
sults above support the first claim. Now we consider
the second claim that good word alignment leads to
better block selection.

Given reference human word alignment, we extract
reference blocks up to five-gram phrases on Chinese.
The block extraction procedure is based on the pro-
cedures in (Tillmann, 2003).

During EM, we output all the hidden blocks actu-
ally inferred at each iteration, then we evaluate the
precision, recall and F-measure of the hidden blocks
according to the extracted reference blocks. The re-
sults are shown in Figure 7. Because we extract all
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Figure 7: A Direct Eval. of Blocks in BM-B

possible n-grams at each position in e, the precision
is low and the recall is relatively high as shown by
Figure 7. It also shows that blocks do improve, pre-
sumably benefiting from better word alignments.

Table 2 summarizes word alignment performances
of Inner-Outer BM-B in different settings. Overall,
without the handcrafted function word list, BM-B
gives about 8% absolute improvement in F-measure
on the large training set and 9% for the small set

F-measure(%) Func Cont Both

Small

Baseline 54.69 69.99 64.78
BM-B-drop 62.76 82.99 76.24
BM-B w/null 61.24 82.54 75.19
BM-B smooth 59.61 82.99 74.46

Large

Baseline 60.08 78.01 71.92
BM-B-drop 63.95 90.09 81.47
BM-B w/null 62.24 89.99 80.38
BM-B smooth 60.49 90.09 79.31

Table 2: BM-B with different settings

with a confidence interval of ±1.56%.

5.4 Translation Quality Evaluations

We also carried out the translation experiments using
the best settings for Inner-Outer BM-B (i.e. BM-B-
drop) on the TIDES Chinese-English 2003 test set.
We trained our models on 354,252 test-specific sen-
tence pairs drawn from LDC-supplied parallel cor-
pora. On this training data, we ran 5 iterations of
EM using BM-B to infer word alignments. A mono-
tone decoder similar to (Tillmann and Ney, 2003)
with a trigram language model3 is set up for trans-
lations. We report case sensitive Bleu (Papineni et
al., 2002) score BleuC for all experiments. The base-
line system (HMM ) used phrase pairs built from the
HMM-EC-P maximum posterior word alignment and
the corresponding lexicons. The baseline BleuC score
is 0.2276 ± 0.015. If we use the phrase pairs built
from the bracket model instead (but keep the HMM
trained lexicons), we get case sensitive BleuC score
0.2526. The improvement is statistically significant.
If on the other hand, we use baseline phrase pairs
with bracket model lexicons, we get a BleuC score
0.2325, which is only a marginal improvement. If we
use both phrase pairs and lexicons from the bracket
model, we get a case sensitive BleuC score 0.2750,
which is a statistically significant improvement. The
results are summarized in Table 3.

Settings BleuC
Baseline (HMM phrases and lexicon) 0.2276
Bracket phrases and HMM lexicon 0.2526
Bracket lexicon and HMM phrases 0.2325
Bracket (phrases and lexicon) 0.2750

Table 3: Improved case sensitive BleuC using BM-B

Overall, using Model-B, we improve translation
quality from 0.2276 to 0.2750 in case sensitive BleuC
score.

3Trained on 1-billion-word ViaVoice English data; the
same data is used to build our True Caser.
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6 Conclusion

Our main contributions are two novel Inner-Outer
Bracket models based on segmentations induced by
hidden blocks. Modeling the Inner-Outer hidden seg-
mentations, we get significantly improved word align-
ments for both the small training set and the large
training set over the widely-practiced bidirectional
IBM Model-4 alignment. We also show significant
improvements in translation quality using our pro-
posed bracket models. Robustness to noisy blocks
merits further investigation.
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Abstract

We present a new word-alignment ap-
proach that learns errors made by ex-
isting word alignment systems and cor-
rects them. By adapting transformation-
based learning to the problem of word
alignment, we project new alignment links
from already existing links, using features
such as POS tags. We show that our align-
ment link projection approach yields a sig-
nificantly lower alignment error rate than
that of the best performing alignment sys-
tem (22.6% relative reduction on English-
Spanish data and 23.2% relative reduction
on English-Chinese data).

1 Introduction

Word-level alignment is a critical component of a
wide range of NLP applications, such as construc-
tion of bilingual lexicons (Melamed, 2000), word
sense disambiguation (Diab and Resnik, 2002), pro-
jection of language resources (Yarowsky et al.,
2001), and statistical machine translation. Although
word-level aligners tend to perform well when there
is enoughtraining data, the quality of word align-
ment decreases as the size of training data de-
creases. Moreover, word-alignment systems are of-
ten tripped up by many-to-many correspondences,
morphological language distinctions, paraphrased
and free translations, and a high percentage of func-
tion words (about 50% of the tokens in most texts).

At the heart of the matter is a set of assumptions
that word-alignment algorithms must make in order
to reduce the hypothesis space, since word align-
ment is an exponential problem. Because of these

assumptions, learning algorithms tend to make sim-
ilar errors throughout the entire data.

This paper presents a new approach—Alignment
Link Projection (ALP)—that learns common align-
ment errors made by an alignment system and at-
tempts to correct them. Our approach assumes the
initial alignment system adequately captures certain
kinds of word correspondences but fails to handle
others. ALP starts with an initial alignment and then
fills out (i.e.,projects) new word-level alignment re-
lations (i.e.,links) from existing alignment relations.
ALP then deletes certain alignment links associated
with common errors, thus improving precision and
recall.

In our approach, we adapt transformation-based
learning (TBL) (Brill, 1995; Brill, 1996) to the prob-
lem of word alignment. ALP attempts to find an
ordered list of transformation rules (within a pre-
specified search space) to improve a baseline anno-
tation. The rules decompose the search space into
a set of consecutive words (windows) within which
alignment links are added, to or deleted from, the
initial alignment. This window-based approach ex-
ploits the clustering tendency of alignment links,
i.e., when there is a link between two words, there
is frequently another link in close proximity.

TBL is an appropriate choice for this problem for
the following reasons:

1. It can be optimized directly with respect to an
evaluation metric.

2. It learns rules that improve the initial predic-
tion iteratively, so that it is capable of correct-
ing previous errors in subsequent iterations.

3. It provides a readable description (or classifi-
cation) of errors made by the initial system,
thereby enabling alignment refinements.
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The rest of the paper is organized as follows: In
the next section we describe previous work on im-
proving word alignments. Section 3 presents a brief
overview of TBL. Section 4 describes the adapta-
tion of TBL to the word alignment problem. Sec-
tion 5 compares ALP to various alignments and
presents results on English-Spanish and English-
Chinese. We show that ALP yields a significant re-
ductions in alignment error rate over that of the best
performing alignment system.

2 Related Work

One of the major problems with the IBM models
(Brown et al., 1993) and the HMM models (Vogel et
al., 1996) is that they are restricted to the alignment
of each source-language word to at most one target-
language word. The standard method to overcome
this problem to use the model in both directions
(interchanging the source and target languages) and
applying heuristic-based combination techniques to
produce arefined alignment(Och and Ney, 2000;
Koehn et al., 2003)—henceforth referred to as “RA.”

Several researchers have proposed algorithms for
improving word alignment systems by injecting ad-
ditional knowledge or combining different align-
ment models. These approaches include an en-
hanced HMM alignment model that uses part-of-
speech tags (Toutanova et al., 2002), a log-linear
combination of IBM translation models and HMM
models (Och and Ney, 2003), techniques that rely
on dependency relations (Cherry and Lin, 2003),
and a log-linear combination of IBM Model 3 align-
ment probabilities, POS tags, and bilingual dictio-
nary coverage (Liu et al., 2005). A common theme
for these methods is the use of additional features
for enriching the alignment process. These methods
perform better than the IBM models and their vari-
ants but still tend to make similar errors because of
the bias in their alignment modeling.

We adopt an approach that post-processes a given
alignment using linguistically-oriented rules. The
idea is similar to that of Ayan et al. (2004), where
manually-crafted rules are used to correct align-
ment links related to language divergences. Our
approach differs, however, in that the rules are ex-
tracted automatically—not manually—by examin-
ing an initial alignment and categorizing the errors
according to features of the words.

Initial Annotation

Corpus

Templates

Rule Instantiation

Best Rule Selection

Rule Application

Rules

Corpus
Annotated

Ground Truth

Figure 1: TBL Architecture

3 Transformation-based Learning

As shown in Figure 1, the input to TBL is an unanno-
tated corpus that is first passed to an initial annotator
and then iteratively updated through comparison to a
manually-annotated reference set (orground truth).
On each iteration, the output of the previous iteration
is compared against the ground truth, and an ordered
list of transformation rules is learned that make the
previous annotated data better resemble the ground
truth.

A set of rule templatesdetermines the space of
allowable transformation rules. A rule template has
two components: a triggering environment (condi-
tion of the rule) and a rewrite rule (action taken). On
each iteration, these templates are instantiated with
features of the constituents of the templates when
the condition of the rule is satisfied.

This process eventually identifies all possible in-
stantiated forms of the templates. Among all these
possible rules, the transformation whose application
results in the best score—according to some objec-
tive function—is identified. This transformation is
added to the ordered list of transformation rules.
The learning stops when there is no transformation
that improves the current state of the data or a pre-
specified threshold is reached.

When presented with new data, the transforma-
tion rules are applied in the order that they were
added to the list of transformations. The output of
the system is the annotated data after all transforma-
tions are applied to the initial annotation.

4 Alignment Link Projection (ALP)

ALP is a TBL implementation that projects align-
ment links from an initial input alignment. We in-
duce several variations of ALP by setting four pa-
rameters in different ways:
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ei

fj fj+1

NULL ei

fj fj+1

Figure 2: Graphical Representation of a Template

1. Initial alignment
2. Set of templates
3. Simple or generalized instantiation
4. Best rule selection

We describe each of these below using the following
definitions and notation:

• E = e1, . . . , ei, . . . , et is a sentence in lan-
guageL1 andF = f1, . . . , fj , . . . , fs is a sen-
tence in languageL2.

• An alignment link(i, j) corresponds to a trans-
lational equivalence betweenei andfj .

• A neighborhoodof an alignment link (i, j)—
denoted byN(i, j)—consists of 8 possible
alignment links in a3 × 3 window with (i, j)
in the center of the window. Each element of
N(i, j) is called aneighboring linkof (i, j).

• nullEA(i) is true if and only if ei is not
aligned to any word inF in a given alignment
A. Similarly, nullFA(j) is true if and only if
fj is not aligned to any word inE in a given
alignmentA.

4.1 Initial Alignment

Any existing word-alignment system may be used
for the initial annotation step of the TBL algo-
rithm. For our experiments, we chose GIZA++ (Och
and Ney, 2000) and the RA approach (Koehn et
al., 2003)— the best known alignment combination
technique— as our initial aligners.1

4.2 TBL Templates

Our templates consider consecutive words (of size
1, 2 or 3) in both languages. The condition por-
tion of a TBL rule template tests for the existence
of an alignment link between two words. The ac-
tion portion involves the addition or deletion of an
alignment link. For example, the rule template in
Figure 2 is applicable only when a word (ei) in one
language is aligned to the second word (fj+1) of a
phrase (fj , fj+1) in the other language, and the first

1We treat these initial aligners as black boxes.

word (fj) of the phrase is unaligned in the initial
alignment. The action taken by this rule template is
to add a link betweenei andfj .2

ALP employs 3 different sets of templates to
project new alignment links or delete existing links
in a given alignment:

1. Expansion of the initial alignment according
to another alignment

2. Deletion of spurious alignment links
3. Correction of multi-word (one-to-many or

many-to-one) correspondences

Each of these is described below.

4.2.1 Expansion Templates

Expansion templates are used to extend an initial
alignment given another alignment as the validation
set. This approach is similar to the one used in the
RA method in that it adds links based on knowl-
edge about neighboring links, but it differs in that it
alsouses features of the words themselves to decide
which neighboring links to add.

Our expansion templates are presented in Table 1.
The first 8 templates add a new link to the initial
alignmentA if there is a neighboring link in the vali-
dation alignmentV . The final two templates enforce
the presence of at least two neighboring links in the
validation setV before adding a new link.

Condition Action
(i, j) ∈ A, (i− 1, j − 1) ∈ V add(i− 1, j − 1)
(i, j) ∈ A, (i− 1, j) ∈ V add(i− 1, j)
(i, j) ∈ A, (i− 1, j + 1) ∈ V add(i− 1, j + 1)
(i, j) ∈ A, (i, j − 1) ∈ V add(i, j − 1)
(i, j) ∈ A, (i, j + 1) ∈ V add(i, j + 1)
(i, j) ∈ A, (i+ 1, j − 1) ∈ V add(i+ 1, j − 1)
(i, j) ∈ A, (i+ 1, j) ∈ V add(i+ 1, j)
(i, j) ∈ A, (i+ 1, j + 1) ∈ V add(i+ 1, j + 1)
(i− 1, j − 1) ∈ A, (i+ 1, j + 1) ∈ A, add(i, j)
(i, j) ∈ V
(i+ 1, j − 1) ∈ A, (i− 1, j + 1) ∈ A, add(i, j)
(i, j) ∈ V

Table 1: Templates for Expanding the AlignmentA
According to a Validation AlignmentV

4.2.2 Deletion Templates

Existing alignment algorithms (e.g., GIZA++) are
biased toward aligning some words, especially in-
frequent ones, in one language to many words in the
other language in order to minimize the number of
unaligned words, even if many incorrect alignment

2A thick line indicates an added link.
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links are induced.3 Deletion templates are useful for
eliminating the resulting spurious links.

The basic idea is to remove alignment links
that do not have a neighboring link if the word
in question has already been aligned to another
word. Table 2 lists two simple templates to
clean up spurious links. We define the predicate
neighbor existsA(i, j) to denote whether there is
an alignment link in the neighborhood of the link
(i, j) in a given alignmentA. For example, the first
template deletes spurious links for a particular word
ei in E.

Condition Action
(i, j) ∈ A, (i, k) ∈ A,
neighbor existsA(i, j), del (i, k)
not(neighbor existsA(i, k))
(i, j) ∈ A, (k, j) ∈ A,
neighbor existsA(i, j), del (e, j)
not(neighbor existsA(k, j))

Table 2: Templates for Deleting Spurious Links in a
Given AlignmentA

4.2.3 Multi-Word Correction Templates

Current alignment algorithms produce one-to-one
word correspondences quite successfully. However,
accurate alignment of phrasal constructions (many-
to-many correspondences) is still problematic. On
the one hand, the ability to providefully correct
phrasal alignments is impaired by the occurrence of
high-frequency function words and/or words that are
not exact translations of the words in the other lan-
guage. On the other hand, we have observed that
most alignment systems are capable of providing
partially correct phrasal alignments.4

Our templates for handling multi-word correspon-
dences are grounded in the outcome of this finding.
That is, we make the (frequently correct) assumption
that at least one alignment link in a many-to-many
correspondence is correctly identified in the initial

3This is a well-known characteristic of statistical alignment
systems—motivated by the need to ensure a target-word trans-
lationei for each source wordfj while modelingp(F |E) —for
downstream MT.

4Specifically, we conducted a preliminary study using 40
manually-aligned English-Spanish sentences from a mixed cor-
pus (UN + Bible + FBIS) as our gold standard. We found that,
in most cases where the human annotator aligned one word to
two words, an existing alignment system identified at least one
of the two alignment links correctly.

Condition Action
nullFA(j), (i, j + 1) ∈ A add(i, j)
nullFA(j + 1), (i, j) ∈ A add(i, j + 1)
(i, j) ∈ A, (i, j + 1) ∈ A del (i, j)
(i, j) ∈ A, (i, j + 1) ∈ A del (i, j + 1)
nullFA(j), nullFA(j + 1) add(i, j),

add(i, j + 1)

nullEA(i), (i+ 1, j) ∈ A add(i, j)
nullEA(i+ 1), (i, j) ∈ A add(i+ 1, j)
(i, j) ∈ A, (i+ 1, j) ∈ A del (i, j)
(i, j) ∈ A, (i+ 1, j) ∈ A del (i+ 1, j)
nullEA(i), nullEA(i+ 1) add(i, j)

add(i+ 1, j)

(i+ 1, j + 1) ∈ A add(i, j)
nullEA(i), nullFA(j),
(i, j) ∈ A, nullEA(i+ 1), add(i+ 1, j + 1)
nullFA(j + 1)
(i, j) ∈ A, (i+ 1, j) ∈ A, add(i, j + 1)
(i+ 1, j + 1) ∈ A
(i, j) ∈ A, (i, j + 1) ∈ A, add(i+ 1, j)
(i+ 1, j + 1) ∈ A
(i− 1, j) ∈ A, (i+ 1, j) ∈ A add(i, j)
nullEA(i)
(i, j − 1) ∈ A, (i, j + 1) ∈ A add(i, j)
nullFA(j)

Table 3: Templates for Handling Multi-Word Corre-
spondences in a Given AlignmentA

Condition Action
(i, j) ∈ A del (i, j)
nullEA(i), nullFA(j) add(i, j)

Table 4: Templates for Correcting One-to-One Cor-
respondences in a Given AlignmentA

alignment. Table 3 lists the templates for correct-
ing alignment links in multi-word correspondences.
The first five templates handle (ei → fjfj+1) cor-
respondences, the next five handle (eiei+1 → fj)
correspondences, the next four handle (eiei+1 →
fjfj+1) correspondences, and the final two handle
(ei−1eiei+1 → fj) and (ei → fj−1fjfj+1) corre-
spondences.

The alignment rules given above may introduce
errors that require additional cleanup. Thus, we in-
troduce two simple templates (shown in Table 4) to
accommodate the deletion or addition of links be-
tween a single pair of words.

4.3 Instantiation of Templates

ALP starts with a set of templates and an initial
alignment and attempts to instantiate the templates
during the learning process. The templates can be
instantiated using two methods: Simple (a word is
instantiated with a specific feature) or Generalized (a
word is instantiated using a special keywordany-
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thing ).
ALP requires only a small amount of manually

aligned data for this process—a major strength of
the system. However, if we were to instantiate the
templates with the actual words of the manual align-
ment, the frequency counts (from such a small data
set) would not be high enough to derive reasonable
generalizations. Thus, ALP adds new links based on
linguistic features of words, rather than the words
themselves. Using these features is what sets ALP
apart from systems like the RA approach. Specifi-
cally, three features are used to instantiate the tem-
plates:

• POS tags on both sides: We assign POS
tags using the MXPOST tagger (Ratnaparkhi,
1996) for English and Chinese, and Connexor
for Spanish.

• Dependency relations: ALP utilizes depen-
dencies for a better generalization—if a depen-
dency parser is available in either language.
In our experiments, we used a dependency
parser only in English (a version of the Collins
parser (Collins, 1997) that has been adapted
for building dependencies) but not in the other
language.

• A set of closed-class words: We use 16 dif-
ferent classes, 9 of which are different seman-
tic verb classes while the other 7 are function
words, prepositions, and complementizers.5

If both POS tags and dependency relations are
available, they can be used together to instantiate
the templates. That is, a word can be instantiated
in a TBL template with: (1) a POS tag (e.g., Noun,
Adj); (2) a relation (e.g., Subj, Obj); (3) a parameter
class (e.g., Change of State); or (4) different subsets
of (1)–(3). We also employ a more generalized form
of instantiation, where words in the templates may
match the keywordanything .

4.4 Best Rule Selection

The rules are selected using two different metrics:
The accuracy of the rule or the overall impact of the
application of the rule on the entire data.

Two different mechanisms may be used for select-
ing the best rule after generating all possible instan-
tiations of templates:

5These are based on the parameter classes of (Dorr et al.,
2002).

1. Rule Accuracy: The goal is to minimize the
errors introduced by the application of a trans-
formation rule. To measure accuracy of a rule
r, we usegood(r)−2×bad(r), wheregood(r)
is the number of alignment links that are cor-
rected by the rule, andbad(r) is the number of
incorrect alignment links produced.

2. Overall impact on the training data: The ac-
curacy mechanism (above) is useful for bias-
ing the system toward higher precision. How-
ever, if the overall system is evaluated using a
metric other than precision (e.g., recall), the
accuracy mechanism may not guarantee that
the best rule is chosen at each step. Thus, we
choose the best rule according to the evalua-
tion metric to be used for the overall system.

5 Experiments and Results

This section describes our evaluation of ALP vari-
ants using different combinations of settings of the
four parameters described above. The two language
pairs examined are English-Spanish and English-
Chinese.

5.1 Evaluation Metrics

Let A be the set of alignment links for a set of sen-
tences. We takeS to be the set of sure alignment
links andP be the set of probable alignment links
(in the gold standard) for the same set of sentences.
Precision (Pr), recall (Rc) and alignment error rate
(AER) are defined as follows:

Pr =
|A ∩ P |
|A|

Rc =
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

A manually aligned corpus is used as our gold stan-
dard. For English-Spanish data, the manual an-
notation was done by a bilingual English-Spanish
speaker. Every link in the English-Spanish gold
standard is considered a sure alignment link.

For English-Chinese, we used 2002 NIST MT
evaluation test set, and each sentence pair was
aligned by two native Chinese speakers who are flu-
ent in English. Each alignment link appearing in
both annotations was considered a sure link, and
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links appearing in only one set were judged as prob-
able. The annotators were not aware of the specifics
of our approach.

5.2 Evaluation Data

We evaluated ALP using 5-fold cross validation on
two different data sets:

1. A set of 199 English-Spanish sentence pairs
(nearly 5K words on each side) from a mixed
corpus (UN + Bible + FBIS).

2. A set of 491 English-Chinese sentence pairs
(nearly 13K words on each side) from 2002
NIST MT evaluation test set.

We divided the pairs of sentences randomly into 5
groups. Then, for each fold, we used 4 groups as the
ground truth (for training), and used the other group
as our gold standard (for evaluation). This process
was repeated 5 times so that each sentence pair was
tested exactly once. We computed precision, recall
and error rate on the entire set for each data set.6

For an initial alignment, we used GIZA++ in both
directions (E-to-F andF -to-E, whereF is either
Chinese (C) or Spanish (S)), and also two different
combined alignments: intersection ofE-to-F and
F -to-E; and RA using a heuristic combination ap-
proach calledgrow-diag-final(Koehn et al., 2003).

For the English-Spanish experiments, GIZA++
was trained on 48K sentence pairs from a mixed
corpus (UN + Bible + FBIS), with nearly 1.2M of
words on each side, using 10 iterations of Model 1,
5 iterations of HMM and 5 iterations of Model 4.
For the English-Chinese experiments, we used 107K
sentence pairs from FBIS corpus (nearly 4.1M En-
glish and 3.3M Chinese words) to train GIZA++, us-
ing 5 iterations of Model 1, 5 iterations of HMM, 3
iterations of Model 3, and 3 iterations of Model 4.

5.3 Results for English-Spanish

For our initial alignments we used: (1) Intersec-
tion of GIZA++ English-to-Spanish and Spanish-
to-English; (2) GIZA++ English-to-Spanish; (3)
GIZA++ Spanish-to-English; and (4) RA. Of these,
RA is the best, with an error rate of 21.2%. For ease
of comparison, the RA score appears in all result ta-
bles below.

6The number of alignment links varies over each fold.
Therefore, we chose to evaluate all data at once instead of eval-
uating on each fold and then averaging.

Tables 5–7 compare ALP to each of these four
alignments using different settings of 4 parameters:
ALP[IA, T, I, BRS], where IA is the initial align-
ment,T is the set of templates,I is the instantia-
tion method, andBRSis the metric for the best rule
selection at each iteration.TE is the set of expan-
sion templates from Table 1,TD is the set of dele-
tion templates from Table 2, andTMW is the set of
multi-word templates from Table 3 (supplemented
with templates from Table 4).

As mentioned in Section 4.3, we use two instanti-
ation methods: (1) simple instantiation (sim), where
the words are instantiated using a specific POS tag,
relation, parameter class or combination of those;
and (2) generalized instantiation (gen), where the
words can be instantiated using the keywordany-
thing . Two different metrics are used to select the
best rule: The accuracy of the rule (acc) and the
AER on the entire training data after applying the
rule (aer).7

We performed statistical significance tests using
two-tailed paired t-tests. Unless otherwise indicated,
the differences between ALP and initial alignments
(for all ALP variations and all initial alignments)
were found to be statistically significant within the
95% confidence interval. Moreover, the differences
among ALP variations themselves were statistically
significant within 95% confidence interval.

Using Intersection as Initial Alignment We ran
ALP using the intersection of GIZA++ (E-to-S)
and GIZA++(S-to-E) alignments as the initial align-
ment in two different ways: (1) WithTE using the
union of the unidirectional GIZA++ alignments as
the validation set, and (2) withTD andTMW applied
one after another. Table 5 presents the precision, re-
call and AER results.

Alignments Pr Rc AER
Intersection (Int) 98.2 59.6 25.9
ALP[Int, TE , gen, aer] 90.9 69.9 21.0
ALP[Int, (TD, TMW ), gen, aer] 88.8 72.3 20.3
RA 83.8 74.4 21.2

Table 5: ALP Results Using GIZA++ Intersection as
Initial Alignment for English-Spanish

Using the expansion templates (TE) against a val-
7We use only sure alignment links as the ground truth to

learn rules inside ALP. Therefore, AER here refers to the AER
of sure alignment links.
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Alignments Pr Rc AER
E-to-S 87.0 67.0 24.3
ALP[E-to-S,(TD, TMW ), gen, aer] 85.6 76.4 19.3
S-to-E 88.0 67.5 23.6
ALP[S-to-E,(TD, TMW ), gen, aer] 87.1 76.7 18.4
RA 83.8 74.4 21.2

Table 6: ALP Results Using GIZA++ (Each Direc-
tion) as Initial Alignment for English-Spanish

idation set produced results comparable to the RA
method. The major difference is that ALP resulted
in a much higher precision but in a lower recall be-
cause ALP is more selective in adding a new link
during the expansion stage. This difference is due to
the additional constraints provided by word features.
The version of ALP that applies deletion (TD) and
multi-word (TMW ) templates sequentially achieves
lower recall but higher precision than RA. In the best
case, ALP achieves a statistically significant rela-
tive reduction of 21.6% in AER over the Intersection
alignment. When compared to RA, ALP achieves a
lower AER but the difference is not significant.

Using Unidirectional GIZA++ Alignments as Ini-
tial Alignment In a second set of experiments, we
applied ALP to the unidirectional GIZA++ align-
ments, using deletion (TD) and multi-word (TMW )
templates, generalized instantiation, and AER for
the best rule selection. Table 6 presents the preci-
sion, recall and AER results.

For both directions, ALP achieves a lower preci-
sion but much higher recall than that of the initial
unidirectional alignment. Overall, there was a rela-
tive reduction of 20.6–22.0% in AER. When com-
pared to RA, the version of ALP that uses unidirec-
tional GIZA++ alignments brings about significant
reductions in AER: 9.0% relative reduction in one
direction and 13.2% relative reduction in the other
direction.

Using RA as Initial Alignment In a third experi-
ment, we compared RA with variations of ALP us-
ing RA as the initial alignment. We used the tem-
plates in two different ways: (1) with a combination
of TD andTMW (i.e.,TD ∪TMW ), and (2) with two
consecutive runs of ALP, first withTD and then with
TMW using the output of the first run as the initial
annotation in the second run (i.e.,TD, TMW ). Ta-
ble 7 presents precision, recall and AER results, us-
ing different methods for template instantiation and

Alignments Pr Rc AER
ALP[RA, (TD, TMW ), sim, acc] 87.8 77.7 17.6
ALP[RA, (TD, TMW ), sim, aer] 87.9 79.0 16.8
ALP[RA, (TD ∪ TMW ), gen, aer] 86.2 80.0 17.0
ALP[RA, (TD, TMW ), gen, aer] 86.9 80.5 16.4
RA 83.8 74.4 21.2

Table 7: ALP Results Using RA as Initial Alignment
for English-Spanish

best rule selection.
The results indicate that using AER is better than

using accuracy for choosing the best rule. Using
generalized instantiation instead of simple instantia-
tion results in a better AER. Running ALP with dele-
tion (TD) templates followed by multi-word (TMW )
templates results in a lower AER than running ALP
only once with combined templates.

The highest performing variant of ALP, shown
in the fourth line of the table, uses RA as the ini-
tial alignment, template setsTD, TMW , general-
ized instantiation, and AER for best rule selection.
This variant is significantly better than RA, with a
22.6% relative reduction in AER. When compared
to the unidirectional alignments (E-to-S andS-to-
E) given in Table 6, this variant of ALP yields nearly
the same precision (around 87.0%) but a 19.2% rel-
ative improvement in recall. The overall relative re-
duction in AER is 30.5% in theS-to-E direction and
32.5% in theE-to-S direction.

5.4 Results for English-Chinese

Our experiments for English-Chinese were designed
with a similar structure to that of English-Spanish,
i.e., the same four initial alignments. Once again,
RA performs the best out of these initial alignments,
with an error rate of 29.7%. The results of the ini-
tial alignments, and variations of ALP based on dif-
ferent initial alignments are shown in Table 8. For
brevity, we include only the ALP parameter settings
resulting in the best configurations from the English-
Spanish experiments. For learning rules from the
templates, we used only the sure alignment links as
the ground truth while learning rules inside ALP.

On the English-Chinese data, ALP yields signif-
icantly lower error rates with respect to the initial
alignments. When ALP is run with the intersection
of two GIZA++ alignments, the relative reduction
is 5.4% in AER. When ALP is run withE-to-C as
initial alignment, the relative reduction in AER is
13.4%. For the other direction, ALP produces a rel-
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Alignments Pr Rc AER
Intersection (Int) 94.8 53.6 31.2
ALP[Int, (TD, TMW ), gen, aer] 91.7 56.8 29.5
E-to-C 70.4 68.3 30.7
ALP[E-to-C,(TD, TMW ), gen, aer] 79.1 68.1 26.6
C-to-E 66.0 69.8 32.2
ALP[C-to-E,(TD, TMW ), gen, aer] 83.3 66.0 26.2
RA 61.9 82.6 29.7
ALP[RA,(TD, TMW ), gen, aer] 82.1 72.7 22.8

Table 8: ALP Results Using Different Initial Align-
ments for English-Chinese

ative reduction of 18.6% in AER. Finally, when RA
is given to ALP as an initial alignment, ALP results
in a relative reduction of 23.2% in AER. When com-
pared to RA, all variations of ALP, except the one
starting with the intersection, yield statistically sig-
nificantly lower AER. Another important finding is
that ALP yields significantly higher precision than
the initial alignments but usually lower recall.

6 Conclusion

We have presented ALP, a new approach that re-
fines alignments by identifying the types of errors
made by existing alignment systems and correcting
them. Our approach adapts TBL to the problem of
word-level alignment by examining word features
as well as neighboring links. We use POS tags,
closed-class words in both languages, and depen-
dency relations in one language to classify the er-
rors made by the initial alignment system. We show
that ALP yields at least a 22.6% relative reduction
on English-Spanish data and 23.2% relative reduc-
tion on English-Chinese data in alignment error rate
over that of the best performing system.

We should note that ALP is not a stand-alone
word alignment system but a supervised learning ap-
proach to improve already existing alignment sys-
tems. ALP takes advantage of clustering of align-
ment links to project new links given a reasonable
initial alignment. We have shown that ALP is quite
successful in projecting alignment links for two dif-
ferent languages—Spanish and Chinese.

Statistical alignment systems are more successful
with increasing amount of training data. Whether
ALP improves the statistical alignment systems
when they are trained on more data is an interesting
research problem, which we plan to tackle in future.

Finally, we will evaluate the improved alignments
in the context of an end-to-end application, such as

machine translation.
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Abstract

We explore the benefit that users in sev-
eral application areas can experience from
a “tab-complete” editing assistance func-
tion. We develop an evaluation metric
and adaptN -gram language models to
the problem of predicting the subsequent
words, given an initial text fragment. Us-
ing an instance-based method as base-
line, we empirically study the predictabil-
ity of call-center emails, personal emails,
weather reports, and cooking recipes.

1 Introduction

Prediction of user behavior is a basis for the con-
struction of assistance systems; it has therefore been
investigated in diverse application areas. Previous
studies have shed light on the predictability of the
next unix command that a user will enter (Motoda
and Yoshida, 1997; Davison and Hirsch, 1998), the
next keystrokes on a small input device such as a
PDA (Darragh and Witten, 1992), and of the trans-
lation that a human translator will choose for a given
foreign sentence (Nepveu et al., 2004).

We address the problem of predicting the subse-
quent words, given an initial fragment of text. This
problem is motivated by the perspective of assis-
tance systems for repetitive tasks such as answer-
ing emails in call centers or letters in an adminis-
trative environment. Both instance-based learning
andN -gram models can conjecture completions of
sentences. The use ofN -gram models requires the

application of the Viterbi principle to this particular
decoding problem.

Quantifying the benefit of editing assistance to a
user is challenging because it depends not only on
an observed distribution over documents, but also
on the reading and writing speed, personal prefer-
ence, and training status of the user. We develop
an evaluation metric and protocol that is practical,
intuitive, and independent of the user-specific trade-
off between keystroke savings and time lost due to
distractions. We experiment on corpora of service-
center emails, personal emails of an Enron execu-
tive, weather reports, and cooking recipes.

The rest of this paper is organized as follows.
We review related work in Section 2. In Section 3,
we discuss the problem setting and derive appropri-
ate performance metrics. We develop theN -gram-
based completion method in Section 4. In Section 5,
we discuss empirical results. Section 6 concludes.

2 Related Work

Shannon (1951) analyzed the predictability of se-
quences of letters. He found that written English
has a high degree of redundancy. Based on this find-
ing, it is natural to ask whether users can be sup-
ported in the process of writing text by systems that
predict the intended next keystrokes, words, or sen-
tences. Darragh and Witten (1992) have developed
an interactive keyboardthat uses the sequence of
past keystrokes to predict the most likely succeed-
ing keystrokes. Clearly, in an unconstrained applica-
tion context, keystrokes can only be predicted with
limited accuracy. In the specific context of entering
URLs, completion predictions are commonly pro-

193



vided by web browsers (Debevc et al., 1997).
Motoda and Yoshida (1997) and Davison and

Hirsch (1998) developed a Unix shell which pre-
dicts the command stubs that a user is most likely
to enter, given the current history of entered com-
mands. Korvemaker and Greiner (2000) have de-
veloped this idea into a system which predicts en-
tire command lines. The Unix command predic-
tion problem has also been addressed by Jacobs and
Blockeel (2001) who infer macros from frequent
command sequences and predict the next command
using variable memory Markov models (Jacobs and
Blockeel, 2003).

In the context ofnatural language, several typ-
ing assistance tools for apraxic (Garay-Vitoria and
Abascal, 2004; Zagler and Beck, 2002) and dyslexic
(Magnuson and Hunnicutt, 2002) persons have been
developed. These tools provide the user with a list of
possible word completions to select from. For these
users, scanning and selecting from lists of proposed
words is usually more efficient than typing. By con-
trast, scanning and selecting from many displayed
options can slow down skilled writers (Langlais et
al., 2002; Magnuson and Hunnicutt, 2002).

Assistance tools have furthermore been developed
for translators. Computer aided translation systems
combine a translation and a language model in order
to provide a (human) translator with a list of sug-
gestions (Langlais et al., 2000; Langlais et al., 2004;
Nepveu et al., 2004). Foster et al. (2002) introduce
a model that adapts to a user’s typing speed in or-
der to achieve a better trade-off between distractions
and keystroke savings. Grabski and Scheffer (2004)
have previously developed an indexing method that
efficiently retrieves the sentence from a collection
that is most similar to a given initial fragment.

3 Problem Setting and Evaluation

Given an initial text fragment, a predictor that solves
the sentence completion problem has to conjecture
as much of the sentence that the user currently in-
tends to write, as is possible with high confidence—
preferably, but not necessarily, the entire remainder.

The perceived benefit of an assistance system is
highly subjective, because it depends on the expen-
diture of time for scanning and deciding on sug-
gestions, and on the time saved due to helpful as-

sistance. The user-specific benefit is influenced by
quantitative factors that we can measure. We con-
struct a system of two conflicting performance indi-
cators: our definition ofprecisionquantifies the in-
verse risk of unnecessary distractions, our definition
of recall quantifies the rate of keystroke savings.

For a given sentence fragment, a completion
method may – but need not – cast a completion con-
jecture. Whether the method suggests a completion,
and how many words are suggested, will typically
be controlled by a confidence threshold. We con-
sider the entire conjecture to be falsely positive if at
least one word is wrong. This harsh view reflects
previous results which indicate that selecting, and
then editing, a suggested sentence often takes longer
than writing that sentence from scratch (Langlais et
al., 2000). In a conjecture that is entirely accepted
by the user, the entire string is a true positive. A
conjecture may contain only a part of the remaining
sentence and therefore therecall, which refers to the
length of the missing part of the current sentence,
may be smaller than 1.

For a given test collection, precision and recall
are defined in Equations 1 and 2.Recall equals
the fraction of saved keystrokes (disregarding the
interface-dependent single keystroke that is most
likely required to accept a suggestion);precisionis
the ratio of characters that the users have to scan
for each character they accept. Varying the confi-
dence threshold of a sentence completion method re-
sults in aprecision recall curvethat characterizes the
system-specific trade-off betweenkeystroke savings
andunnecessary distractions.

Precision =

∑
accepted completions

string length∑
suggested completions

string length
(1)

Recall =

∑
accepted completions

string length∑
all queries

length of missing part
(2)

4 Algorithms for Sentence Completion

In this section, we derive our solution to the sen-
tence completion problem based on linear interpola-
tion of N -gram models. We derive ak best Viterbi
decoding algorithm with a confidence-based stop-
ping criterion which conjectures the words that most
likely succeed an initial fragment. Additionally, we
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briefly discuss an instance-based method that pro-
vides an alternative approach and baseline for our
experiments.

In order to solve the sentence completion problem
with an N -gram model, we need to find the most
likely word sequencewt+1, . . . , wt+T given a word
N -gram model and an initial sequencew1, . . . , wt

(Equation 3). Equation 4 factorizes the joint proba-
bility of the missing words; theN -th order Markov
assumption that underlies theN -gram model simpli-
fies this expression in Equation 5.

argmax
wt+1,...,wt+T

P (wt+1, . . . , wt+T |w1, . . . , wt) (3)

= argmax
wt+1,...,wt+T

T∏
j=1

P (wt+j |w1, . . . , wt+j−1) (4)

= argmax

T∏
j=1

P (wt+j |wt+j−N+1, . . . , wt+j−1) (5)

The individual factors of Equation 5 are provided by
the model. The Markov orderN has to balance suffi-
cient context information and sparsity of the training
data. A standard solution is to use a weighted linear
mixture ofN -gram models,1 ≤ n ≤ N , (Brown et
al., 1992). We use an EM algorithm to select mixing
weights that maximize the generation probability of
a tuning set of sentences that have not been used for
training.

We are left with the following questions: (a)
how can we decode the most likely completioneffi-
ciently; and (b) how many words should we predict?

4.1 Efficient Prediction

We have to address the problem of finding the
most likely completion, argmaxwt+1,...,wt+T

P (wt+1, . . . , wt+T |w1, . . . , wt) efficiently, even
though the size of thesearch spacegrows exponen-
tially in the number of predicted words.

We will now identify the recursive structure in
Equation 3; this will lead us to a Viterbi al-
gorithm that retrieves the most likely word se-
quence. We first define an auxiliary variable
δt,s(w′1, . . . , w′N |wt−N+2, . . . , wt) in Equation 6; it
quantifies the greatest possible probability over all
arbitrary word sequenceswt+1, . . . , wt+s, followed
by the word sequencewt+s+1 = w′1, . . . , wt+s+N =
w′N , conditioned on the initial word sequence
wt−N+2, . . . , wt.

In Equation 7, we factorize the last transition and
utilize theN -th order Markov assumption. In Equa-
tion 8, we split the maximization and introduce a
new random variablew′0 for wt+s. We can now refer
to the definition ofδ and see the recursion in Equa-
tion 9: δt,s depends only onδt,s−1 and theN -gram
model probabilityP (w′N |w′1, . . . , w′N−1).

δt,s(w
′
1, . . . , w

′
N |wt−N+2, . . . , wt) (6)

= max
wt+1,...,wt+s

P (wt+1, . . . , wt+s, wt+s+1 = w′1,
. . . , wt+s+N = w′N |wt−N+2, . . . , wt)

= max
wt+1,...,wt+s

P (w′N |w′1, . . . , w′N−1) (7)

P (wt+1, . . . , wt+s, wt+s+1 = w′1,
. . . , wt+s+N−1 = w′N−1|wt−N+2, . . . , wt)

= max
w′0

max
wt+1,...,wt+s−1

P (w′N |w′1, . . . , w′N−1) (8)

P (wt+1, . . . , wt+s−1, wt+s = w′0,
. . . , wt+s+N−1 = w′N−1|wt−N+2, . . . , wt)

= max
w′0

P (w′N |w′1, . . . , w′N−1)
δt,s−1(w

′
0, . . . , w

′
N−1|wt+N−2, . . . , wt)

(9)

Exploiting the N -th order Markov assumption,
we can now express our target probability (Equation
3) in terms ofδ in Equation 10.

max
wt+1,...,wt+T

P (wt+1, . . . , wt+T |wt−N+2, . . . , wt) (10)

= max
w′1,...,w′

N

δt,T−N (w′1, . . . , w
′
N |wt−N+2, . . . , wt)

The lastN words in the most likely sequence
are simply theargmaxw′1,...,w′N

δt,T−N (w′1, . . . , w′N |
wt−N+2, . . . , wt). In order to collect the preceding
most likely words, we define an auxiliary variableΨ
in Equation 11 that can be determined in Equation
12. We have now found a Viterbi algorithm that is
linear inT , the completion length.

Ψt,s(w
′
1, . . . , w

′
N |wt−N+2, . . . , wt) (11)

= argmax
wt+s

max
wt+1,...,wt+s−1

P (wt+1, ..., wt+s, wt+s+1 = w′1, ...,
wt+s+N = w′N |wt−N+2, ..., wt)

= argmax
w′0

δt,s−1(w
′
0, . . . , w

′
N−1|wt−N+2, . . . , wt)

P (w′N |w′1, . . . , w′N−1)
(12)

The Viterbi algorithm starts with the most recently
entered wordwt and moves iteratively into the fu-
ture. When theN -th token in the highest scoredδ is
a period, then we can stop as our goal is only to pre-
dict (parts of) the current sentence. However, since
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there is no guarantee that a period will eventually
become the most likely token, we use an absolute
confidence threshold as additional criterion: when
the highestδ score is below a thresholdθ, we stop
the Viterbi search and fixT .

In each step, Viterbi stores and updates
|vocabulary size|N many δ values—unfeasibly
many except for very smallN . Therefore, in Table
1 we develop a Viterbi beam search algorithm
which is linear inT and in the beam width. Beam
search cannot be guaranteed to always find the
most likely word sequence: When the globally
most likely sequencew∗t+1, . . . , w

∗
t+T has an initial

subsequencew∗t+1, . . . , w
∗
t+s which is not among

the k most likely sequences of lengths, then that
optimal sequence is not found.

Table 1: Sentence completion with Viterbi beam
search algorithm.

Input: N -gram language model, initial sentence fragment
w1, . . . , wt, beam widthk, confidence thresholdθ.

1. Viterbi initialization:
Let δt,−N (wt−N+1, . . . , wt|wt−N+1, . . . , wt) = 1;
let s = −N + 1;
beam(s − 1) = {δt,−N (wt−N+1, . . . , wt|wt−N+1,

. . . , wt)}.
2. Do Viterbi recursionuntil break:

(a) For all δt,s−1(w
′
0, . . . , w

′
N−1| . . .) in

beam(s − 1), for all wN in vocabulary, store
δt,s(w

′
1, . . . , w

′
N | . . .) (Equation 9) in beam(s)

and calculateΨt,s(w
′
1, . . . , w

′
N | . . .) (Equation

12).
(b) If argmaxwN

maxw′1,...,w′
N−1

δt,s(w
′
1, . . . , w

′
N | . . .) = periodthen break.

(c) If max δt,s(w
′
1, . . . , w

′
N |wt−N+1, . . . , wt) < θ

then decrements; break.
(d) Prune all but the bestk elements inbeam(s).
(e) Increments.

3. Let T = s + N . Collect words by path backtracking:
(w∗t+T−N+1, . . . , w

∗
t+T )

= argmax δt,T−N (w′1, . . . , w
′
N |...).

For s = T −N . . . 1:
w∗t+s = Ψt,s(w

∗
t+s+1, . . . , w

∗
t+s+N |

wt−N+1, . . . , wt).

Return w∗t+1, . . . , w
∗
t+T .

4.2 Instance-based Sentence Completion

An alternative approach to sentence completion
based on N-gram models is to retrieve, from the

training collection, the sentence that starts most sim-
ilarly, and use its remainder as a completion hypoth-
esis. The cosine similarity of the TFIDF representa-
tion of the initial fragment to be completed, and an
equally long fragment of each sentence in the train-
ing collection gives both a selection criterion for the
nearest neighbor and a confidence measure that can
be compared against a threshold in order to achieve
a desired precision recall balance.

A straightforward implementation of this near-
est neighbor approach becomes infeasible when the
training collection is large because too many train-
ing sentences have to be processed. Grabski and
Scheffer (2004) have developed an indexing struc-
ture that retrieves the most similar (using cosine sim-
ilarity) sentence fragment in sub-linear time. We use
their implementation of the instance-based method
in our experimentation.

5 Empirical Studies

we investigate the following questions. (a) How
does sentence completion withN -gram models
compare to the instance-based method, both in terms
of precision/recall and computing time? (b) How
well canN -gram models complete sentences from
collections with diverse properties?

Table 2 gives an overview of the four document
collections that we use for experimentation. The
first collection has been provided by a large online
store and contains emails sent by the service center
in reply to customer requests (Grabski and Scheffer,
2004). The second collection is an excerpt of the
recently disclosed email correspondence of Enron’s
management staff (Klimt and Yang, 2004). We use
3189 personal emails sent by Enron executive Jeff
Dasovich; he is the individual who sent the largest
number of messages within the recording period.

The third collection contains textual daily weather
reports for five years from a weather report provider
on the Internet. Each report comprises about 20
sentences. The last collection contains about 4000
cooking recipes; this corpus serves as an example of
a set of thematically related documents that might be
found on a personal computer.

We reserve 1000 sentences of each data set for
testing. As described in Section 4, we split the
remaining sentences in training (75%) and tuning
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Table 2: Evaluation data collections.

Name Language #Sentences Entropy
service center German 7094 1.41
Enron emails English 16363 7.17
weather reports German 30053 4.67
cooking recipes German 76377 4.14

(25%) sets. We mixN -gram models up to an order
of five and estimate the interpolation weights (Sec-
tion 4). The resulting weights are displayed in Fig-
ure 1. In Table 2, we also display the entropy of the
collections based on the interpolated 5-gram model.
This corresponds to the average number of bits that
are needed to code each word given the preceding
four words. This is a measure of the intrinsic redun-
dancy of the collection and thus of the predictability.
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Figure 1:N -gram interpolation weights.

Our evaluation protocol is as follows. The beam
width parameterk is set to 20. We randomly draw
1000 sentences and, within each sentence, a posi-
tion at which we split it into initial fragment and
remainder to be predicted. A human evaluator is
presented both, the actual sentence from the collec-
tion and the initial fragment plus current comple-
tion conjecture. For each initial fragment, we first
cast the most likely single word prediction and ask
the human evaluator to judge whether they would
accept this prediction (without any changes), given
that they intend to write the actual sentence. We in-
crease the length of the prediction string by one ad-
ditional word and recur, until we reach a period or
exceed the prediction length of 20 words.

For each judged prediction length, we record the
confidence measure that would lead to that predic-
tion. With this information we can determine the
results for all possible threshold values ofθ. To save
evaluation time, we consider all predictions that are
identical to the actual sentence as correct and skip

those predictions in the manual evaluation.
We will now study how theN -gram method com-

pares to the instance-based method. Figure 2 com-
pares the precision recall curves of the two meth-
ods. Note that the maximum possible recall is typi-
cally much smaller than 1: recall is a measure of the
keystroke savings, a value of 1 indicates that the user
savesall keystrokes. Even for a confidence thresh-
old of 0, a recall of 1 is usually not achievable.

Some of the precision recall curves have a con-
cave shape. Decreasing the threshold value in-
creases the number of predicted words, but it also
increases the risk of at least one word being wrong.
In this case, the entire sentence counts as an incor-
rect prediction, causing a decrease in both, precision
and recall. Therefore – unlike in the standard in-
formation retrieval setting – recall does not increase
monotonically when the threshold is reduced.

For three out of four data collections, the instance-
based learning method achieves the highest max-
imum recall (whenever this method casts a con-
jecture, the entire remainder of the sentence is
predicted—at a low precision), but for nearly all
recall levels theN -gram model achieves a much
higher precision. For practical applications, a high
precision is needed in order to avoid distracting,
wrong predictions. Varying the threshold, theN -
gram model can be tuned to a wide range of different
precision recall trade-offs (in three cases, precision
can even reach 1), whereas the confidence threshold
of the instance-based method has little influence on
precision and recall.

We determine the standard error of the precision
for the point of maximum F1-measure. For all data
collections and both methods the standard error is
below 0.016. Correct and incorrect prediction ex-
amples are provided in Table 3 for the service center
data set, translated from German into English. The
confidence threshold is adjusted to the value of max-
imum F1-measure. In two of these cases, the predic-
tion nicely stops at fairly specific terms.

How do precision and recall depend on the string
length of the initial fragment and the string length
of the completion cast by the systems? Figure 3
shows the relationship between the length of the ini-
tial fragment and precision and recall. The perfor-
mance of the instance-based method depends cru-
cially on a long initial fragment. By contrast, when
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Figure 2: Precision recall curves forN -gram and instance-based methods of sentence completion.

Table 3: Prediction examples for service center data.

Initial fragment (bold face) and intended, missing part Prediction
Please completeyour address. your address.
Kindly excuse the incomplete shipment. excuse the
Our supplier notified us that the pants are undeliverable. notified us that the
The mentioned order isnot in our system. not in our system.
We recommendthat you write down your login name and password. that you write down your login name and password.
The value will be accounted for in your invoice. be accounted for in your invoice.
Please excuse thedelay. delay.
Please excuseour mistake. the delay.
If this is not the case giveus a short notice. us your address and customer id.

the fragment length exceeds four with the N-gram
model, then this length and the accuracy are nearly
independent; the model considers no more than the
last four words in the fragment.

Figure 4 details the relation between string length
of the prediction and precision/recall. We see that
we can reach a constantly high precision over the en-
tire range of prediction lengths for the service center
data with the N-gram model. For the other collec-
tions, the maximum prediction length is 3 or 5 words
in comparison to much longer predictions cast by the
nearest neighbor method. But in these cases, longer
predictions result in lower precision.

How do instance-based learning andN -gram
completion compare in terms of computation time?
The Viterbi beam search decoder is linear in the pre-
diction length. The index-based retrieval algorithm
is constant in the prediction length (except for the fi-
nal step ofdisplayingthe string which is linear but
can be neglected). This is reflected in Figure 5 (left)
which also shows that the absolute decoding time
of both methods is on the order of few milliseconds
on a PC. Figure 5 (right) shows how prediction time
grows with the training set size.

We experiment on four text collections with di-

verse properties. TheN -gram model performs re-
markably on the service center email collection.
Users can save 60% of their keystrokes with 85%
of all suggestions being accepted by the users, or
save 40% keystrokes at a precision of over 95%. For
cooking recipes, users can save 8% keystrokes at
60% precision or 5% at 80% precision. For weather
reports, keystroke savings are 2% at 70% correct
suggestions or 0.8% at 80%. Finally, Jeff Dasovich
of Enron can enjoy only a marginal benefit: below
1% of keystrokes are saved at 60% entirely accept-
able suggestions, or 0.2% at 80% precision.

How do these performance results correlate with
properties of the model and text collections? In Fig-
ure 1, we see that the mixture weights of the higher
order N -gram models are greatest for the service
center mails, smaller for the recipes, even smaller
for the weather reports and smallest for Enron. With
50% of the mixture weights allocated to the 1-gram
model, for the Enron collection theN -gram comple-
tion method can often only guess words with high
prior probability. From Table 2, we can further-
more see that the entropy of the text collection is
inversely proportional to the model’s ability to solve
the sentence completion problem. With an entropy
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Figure 3: Precision and recall dependent on string length of initial fragment (words).
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Figure 4: Precision and recall dependent on prediction string length (words).

of only 1.41, service center emails are excellently
predictable; by contrast, Jeff Dasovich’s personal
emails have an entropy of 7.17 and are almost as
unpredictable as Enron’s share price.

6 Conclusion

We discussed the problem of predicting how a user
will complete a sentence. We find precision (the
number of suggested characters that the user has to
read for every character that is accepted) and recall
(the rate of keystroke savings) to be appropriate per-
formance metrics. We developed a sentence com-
pletion method based onN -gram language models.
We derived ak best Viterbi beam search decoder.
Our experiments lead to the following conclusions:

(a) TheN -gram based completion method has a

better precision recall profile than index-based re-
trieval of the most similar sentence. It can be tuned
to a wide range of trade-offs, a high precision can
be obtained. The execution time of the Viterbi beam
search decoder is in the order of few milliseconds.

(b) Whether sentence completion is helpful
strongly depends on the diversity of the document
collection as, for instance, measured by the entropy.
For service center emails, a keystroke saving of 60%
can be achieved at 85% acceptable suggestions; by
contrast, only a marginal keystroke saving of 0.2%
can be achieved for Jeff Dasovich’s personal emails
at 80% acceptable suggestions. A modest but signif-
icant benefit can be observed for thematically related
documents: weather reports and cooking recipes.
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Figure 5: Prediction time dependent on prediction length in words (left) and prediction time dependent on
training set size (right) forservice centerandweather reportcollections.
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Abstract

During the last years there has been grow-
ing interest in using neural networks for
language modeling. In contrast to the well
known back-offn-gram language models,
the neural network approach attempts to
overcome the data sparseness problem by
performing the estimation in a continuous
space. This type of language model was
mostly used for tasks for which only a
very limited amount of in-domain training
data is available.

In this paper we present new algorithms to
train a neural network language model on
very large text corpora. This makes pos-
sible the use of the approach in domains
where several hundreds of millions words
of texts are available. The neural network
language model is evaluated in a state-of-
the-art real-time continuous speech recog-
nizer for French Broadcast News. Word
error reductions of 0.5% absolute are re-
ported using only a very limited amount
of additional processing time.

1 Introduction

Language models play an important role in many
applications like character and speech recognition,
machine translation and information retrieval. Sev-
eral approaches have been developed during the last

∗This work was partially financed by the European Commis-
sion under the FP6 Integrated Project TC-STAR.

decades liken-gram back-off word models (Katz,
1987), class models (Brown et al., 1992), structured
language models (Chelba and Jelinek, 2000) or max-
imum entropy language models (Rosenfeld, 1996).
To the best of our knowledge word and classn-gram
back-off language models are still the dominant ap-
proach, at least in applications like large vocabulary
continuous speech recognition or statistical machine
translation. In many publications it has been re-
ported that modified Kneser-Ney smoothing (Chen
and Goodman, 1999) achieves the best results. All
the reference back-off language models (LM) de-
scribed in this paper are build with this technique,
using the SRI LM toolkit (Stolcke, 2002).

The field of natural language processing has re-
cently seen some changes by the introduction of new
statistical techniques that are motivated by success-
ful approaches from the machine learning commu-
nity, in particular continuous space LMs using neu-
ral networks (Bengio and Ducharme, 2001; Bengio
et al., 2003; Schwenk and Gauvain, 2002; Schwenk
and Gauvain, 2004; Emami and Jelinek, 2004), Ran-
dom Forest LMs (Xu and Jelinek, 2004) and Ran-
dom cluster LMs (Emami and Jelinek, 2005). Usu-
ally new approaches are first verified on small tasks
using a limited amount of LM training data. For
instance, experiments have been performed using
the Brown corpus (1.1M words), parts of the Wall-
street journal corpus (19M words) or transcriptions
of acoustic training data (up to 22M words). It is
much more challenging to compare the new statis-
tical techniques to carefully optimized back-off LM
trained on large amounts of data (several hundred
millions words). Training may be difficult and very
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time consuming and the algorithms used with sev-
eral tens of millions examples may be impracticable
for larger amounts. Training back-off LMs on large
amounts of data is not a problem, as long as power-
ful machines with enough memory are available in
order to calculate the word statistics. Practice has
also shown that back-off LMs seem to perform very
well when large amounts of training data are avail-
able and it is not clear that the above mentioned new
approaches are still of benefit in this situation.

In this paper we compare the neural network
language model ton-gram model with modified
Kneser-Ney smoothing using LM training corpora
of up to 600M words. New algorithms are pre-
sented to effectively train the neural network on such
amounts of data and the necessary capacity is ana-
lyzed. The LMs are evaluated in a real-time state-
of-the-art speech recognizer for French Broadcast
News. Word error reductions of up to 0.5% abso-
lute are reported.

2 Architecture of the neural network LM

The basic idea of the neural network LM is to project
the word indices onto a continuous space and to use
a probability estimator operating on this space (Ben-
gio and Ducharme, 2001; Bengio et al., 2003). Since
the resulting probability functions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. A neural
network can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate then-gram probabilities. This is still a
n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts.

The architecture of the neural networkn-gram
LM is shown in Figure 1. A standard fully-
connected multi-layer perceptron is used. The
inputs to the neural network are the indices of
the n−1 previous words in the vocabularyhj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the pos-
terior probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., thei-th word
of the vocabulary is coded by setting thei-th ele-
ment of the vector to 1 and all the other elements to

projection
layer hidden

layer

output
layerinput

projections
shared

continuous
representation: representation:

indices in wordlist

LM probabilitiesdiscrete
for all words

probability estimation

Neural Network

N

wj−1 P

H

N

P (wj=1|hj)
wj−n+1

wj−n+2

P (wj=i|hj)

P (wj=N|hj)

P dimensional vectors

ck

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the neural network
language model. hj denotes the context
wj−n+1, ..., wj−1. P is the size of one projec-
tion andH andN is the size of the hidden and
output layer respectively. When shortlists are used
the size of the output layer is much smaller then the
size of the vocabulary.

0. Thei-th line of theN ×P dimensional projection
matrix corresponds to the continuous representation
of thei-th word. Let us denoteck these projections,
dj the hidden layer activities,oi the outputs,pi their
softmax normalization, andmjl, bj , vij andki the
hidden and output layer weights and the correspond-
ing biases. Using these notations the neural network
performs the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(2)

oi =
∑
j

vij dj + ki (3)

pi = eoi /
N∑
k=1

eok (4)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj). Training is
performed with the standard back-propagation algo-
rithm minimizing the following error function:

E =
N∑
i=1

ti log pi + β(
∑
jl

m2
jl +

∑
ij

v2
ij) (5)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next word in the training
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sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from overfitting the training
data (weight decay). The parameterβ has to be de-
termined experimentally.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior
probabilities. Therefore, the neural network directly
minimizes the perplexity on the training data. Note
also that the gradient is back-propagated through the
projection-layer, which means that the neural net-
work learns the projection of the words onto the con-
tinuous space that is best for the probability estima-
tion task. The complexity to calculate one probabil-
ity with this basic version of the neural network LM
is quite high:

O = (n− 1)× P ×H +H +H ×N +N (6)

whereP is the size of one projection andH andN is
the size of the hidden and output layer respectively.
Usual values aren=4,P=50 to 200,H=400 to 1000
andN=40k to 200k. The complexity is dominated
by the large size of the output layer. In this paper the
improvements described in (Schwenk, 2004) have
been used:

1. Lattice rescoring: speech recognition is done
with a standard back-off LM and a word lattice
is generated. The neural network LM is then
used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Regrouping: all LM probabilities needed for
one lattice are collected and sorted. By these
means all LM probability requests with the
same contextht lead to only one forward pass
through the neural network.

4. Block mode: several examples are propagated
at once through the neural network, allowing
the use of faster matrix/matrix operations.

5. CPU optimization: machine specific BLAS
libraries are used for fast matrix and vector op-
erations.

The idea behind shortlists is to use the neural
network only to predict thes most frequent words,
s � |V |, reducing by these means drastically the
complexity. All words of the word list are still con-
sidered at the input of the neural network. The LM
probabilities of words in the shortlist (̂PN ) are cal-
culated by the neural network and the LM probabil-
ities of the remaining words (̂PB) are obtained from
a standard4-gram back-off LM:

P̂ (wt|ht) =

{
P̂N (wt|ht)PS(ht) if wt ∈ shortlist
P̂B(wt|ht) else

(7)

PS(ht) =
∑

w∈shortlist(ht)
P̂B(w|ht) (8)

It can be considered that the neural network redis-
tributes the probability mass of all the words in the
shortlist. This probability mass is precalculated and
stored in the data structures of the back-off LM. A
back-off technique is used if the probability mass for
a requested input context is not directly available.

Normally, the output of a speech recognition sys-
tem is the most likely word sequence given the
acoustic signal, but it is often advantageous to pre-
serve more information for subsequent processing
steps. This is usually done by generating a lattice,
a graph of possible solutions where each arc cor-
responds to a hypothesized word with its acoustic
and language model scores. In the context of this
work LIMSI’s standard large vocabulary continuous
speech recognition decoder is used to generate lat-
tices using an-gram back-off LM. These lattices are
then processed by a separate tool and all the LM
probabilities on the arcs are replaced by those calcu-
lated by the neural network LM. During this lattice
rescoring LM probabilities with the same contextht
are often requested several times on potentially dif-
ferent nodes in the lattice. Collecting and regrouping
all these calls prevents multiple forward passes since
all LM predictions for the same context are immedi-
ately available at the output.

Further improvements can be obtained by prop-
agating several examples at once though the net-
work, also known as bunch mode (Bilmes et al.,
1997; Schwenk, 2004). In comparison to equation 2
and 3, this results in using matrix/matrix instead of
matrix/vector operations which can be aggressively
optimized on current CPU architectures. The Intel
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Math Kernel Library was used.1 Bunch mode is also
used for training the neural network. Training of a
typical network with a hidden layer with 500 nodes
and a shortlist of length 2000 (about 1M parameters)
take less than one hour for one epoch through four
million examples on a standard PC.

3 Application to Speech Recognition

In this paper the neural network LM is evaluated
in a real-time speech recognizer for French Broad-
cast News. This is a very challenging task since
the incorporation of the neural network LM into
the speech recognizer must be very effective due
to the time constraints. The speech recognizer it-
self runs in 0.95xRT2 and the neural network in less
than 0.05xRT. The compute platform is an Intel Pen-
tium 4 extreme (3.2GHz, 4GB RAM) running Fe-
dora Core 2 with hyper-threading.

The acoustic model uses tied-state position-
dependent triphones trained on about 190 hours of
Broadcast News data. The speech features consist
of 39 cepstral parameters derived from a Mel fre-
quency spectrum estimated on the 0-8kHz band (or
0-3.8kHz for telephone data) every 10ms. These
cepstral coefficients are normalized on a segment
cluster basis using cepstral mean removal and vari-
ance normalization. The feature vectors are linearly
transformed (MLLT) to better fit the diagonal co-
variance Gaussians used for acoustic modeling.

Decoding is performed in two passes. The first
fast pass generates an initial hypothesis, followed
by acoustic model adaptation (CMLLR and MLLR)
and a second decode pass using the adapted mod-
els. Each pass generates a word lattice which is ex-
panded with a 4-gram LM. The best solution is then
extracted using pronunciation probabilities and con-
sensus decoding. Both passes use very tight prun-
ing thresholds, especially for the first pass, and fast
Gaussian computation based on Gaussian short lists.
For the final decoding pass, the acoustic models
include 23k position-dependent triphones with 12k
tied states, obtained using a divisive decision tree
based clustering algorithm with a 35 base phone set.

1http://www.intel.com/software/products/mkl/
2In speech recognition, processing time is measured in mul-

tiples of the length of the speech signal, the real time factor
xRT. For a speech signal of 2h, a processing time of 0.5xRT
corresponds to 1h of calculation.

The system is described in more detail in (Gauvain
et al., 2005).

The neural network LM is used in the last pass
to rescore the lattices. A short-list of length 8192
was used in order to fulfill the constraints on the pro-
cessing time (the complexity of the neural network
to calculate a LM probability is almost linear with
the length of the short-list). This gives a coverage of
about 85% when rescoring the lattices, i.e. the per-
centage of LM requests that are actually performed
by the neural network.

3.1 Language model training data

The following resources have been used for lan-
guage modeling:

• Transcriptions of the acoustic training data
(4.0M words)

• Commercial transcriptions (88.5M words)

• Newspaper texts (508M words)

• WEB data (13.6M words)

First a language model was built for each cor-
pus using modified Kneser-Ney smoothing as imple-
mented in the SRI LM toolkit (Stolcke, 2002). The
individual LMs were then interpolated and merged
together. An EM procedure was used to determine
the coefficients that minimize the perplexity on the
development data. Table 1 summarizes the charac-
teristics of the individual text corpora.

corpus #words Perpl. Coeffs.

Acoustic transcr. 4M 107.4 0.43
Commercial transcr. 88.5M 137.8 0.14

Newspaper texts 508M 103.0 0.35
WEB texts 13.6M 136.7 0.08

All interpolated 614M 70.2 -

Table 1: Characteristics of the text corpora (number
of words, perplexity on the development corpus and
interpolation coefficients)

Although the detailed transcriptions of the audio
data represent only a small fraction of the available
data, they get an interpolation coefficient of 0.43.
This shows clearly that they are the most appropriate
text source for the task. The commercial transcripts,
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the newspaper and WEB texts reflect less well the
speaking style of broadcast news, but this is to some
extent counterbalanced by the large amount of data.
One could say that these texts are helpful to learn
the general grammar of the language. The word list
includes 65301 words and the OOV rate is 0.95% on
a development set of 158k words.

3.2 Training on in-domain data only

Following the above discussion, it seems natural to
first train a neural network LM on the transcrip-
tions of the acoustic data only. The architecture
of the neural network is as follows: a continuous
word representation of dimension 50, one hidden
layer with 500 neurons and an output layer limited
to the 8192 most frequent words. This results in
3.2M parameters for the continuous representation
of the words and about 4.2M parameters for the sec-
ond part of the neural network that estimates the
probabilities. The network is trained using standard
stochastic back-propagation.3 The learning rate was
set to0.005 with an exponential decay and the regu-
larization term is weighted with0.00003. Note that
fast training of neural networks with more than 4M
parameters on 4M examples is already a challenge.
The same fast algorithms as described in (Schwenk,
2004) were used. Apparent convergence is obtained
after about 40 epochs though the training data, each
one taking 2h40 on standard PC equipped with two
Intel Xeon 2.8GHz CPUs.

The neural network LM alone achieves a perplex-
ity of 103.0 which is only a 4% relative reduction
with respect to the back-off LM (107.4, see Table 1).
If this neural network LM is interpolated with the
back-off LM trained on the whole training set the
perplexity decreases from 70.2 to 67.6. Despite this
small improvements in perplexity a notable word er-
ror reduction was obtained from 14.24% to 14.02%,
with the lattice rescoring taking less than 0.05xRT.
In the following sections, it is shown that larger im-
provements can be obtained by training the neural
network on more data.

3.3 Adding selected data

Training the neural network LM with stochastic
back-propagation on all the available text corpora

3The weights are updated after each example.

would take quite a long time. The estimated time
for one training epoch with the 88M words of com-
mercial transcriptions is 58h, and more than 12 days
if all the 508M words of newspaper texts were used.
This is of course not very practicable. One solution
to this problem is to select a subset of the data that
seems to be most useful for the task. This was done
by selecting six month of the commercial transcrip-
tions that minimize the perplexity on the develop-
ment set. This gives a total of 22M words and the
training time is about 14h per epoch.

One can ask if the capacity of the neural network
should be augmented in order to deal with the in-
creased number of examples. Experiments with hid-
den layer sizes from 400 to 1000 neurons have been
performed (see Table 2).

size 400 500 600 1000∗

Tr. time 11h20 13h50 16h15 11+16h
Px alone 100.5 100.1 99.5 94.5
interpol. 68.3 68.3 68.2 68.0

Werr 13.99% 13.97% 13.96% 13.92%
∗ Interpolation of networks with 400 and 600

hidden units.

Table 2: Performance for a neural network LM and
training time per epoch as a function of the size of
the hidden layer (fixed 6 months subset of commer-
cial transcripts).

Although there is a small decrease in perplexity
and word error when increasing the dimension of the
hidden layer, this is at the expense of a higher pro-
cessing time. The training and recognition time are
in fact almost linear to the size of the hidden layer.
An alternative approach to augment the capacity of
the neural network is to modify the dimension of the
continuous representation of the words (in the range
50 to 150). The idea behind this is that the proba-
bility estimation may be easier in a higher dimen-
sional space (instead of augmenting the capacity of
the non-linear probability estimator itself). This is
similar in spirit to the theory behind support vector
machines (Vapnik, 1998).

Increasing the dimension of the projection layer
has several advantages as can be seen from the Fig-
ure 2. First, the perplexity and word error rates
are lower than those obtained when the size of the
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Figure 2: Perplexity in function of the size of the
continuous word representation (500 hidden units,
fixed 6 months subset of commercial transcripts).

hidden layer is increased. Second, convergence is
faster: the best result is obtained after about 15
epochs while up to 40 are needed with large hidden
layers. Finally, increasing the size of the continu-
ous word representation has only a small effect on
the training and recognition complexity of the neu-
ral network4 since most of the calculation is done
to propagate and learn the connections between the
hidden and the output layer (see equation 6). The
best result was obtained with a 120 dimensional
continuous word representation. The perplexity is
67.9 after interpolation with the back-off LM and
the word error rate is 13.88%.

3.4 Training on all available data

In this section an algorithm is proposed for training
the neural network on arbitrary large training cor-
pora. The basic idea is quite simple: instead of
performing several epochs over the whole training
data, a different small random subset is used at each
epoch. This procedure has several advantages:

• There is no limit on the amount of training data,

• After some epochs, it is likely that all the train-
ing examples have been seen at least once,

• Changing the examples after each epoch adds
noise to the training procedure. This potentially
increases the generalization performance.

This algorithm is summarized in figure 4. The
parameters of this algorithm are the size of the ran-
dom subsets that are used at each epoch. We chose

414h20 forP=120 andH=500.
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Figure 3: Perplexity when resampling different ran-
dom subsets of the commercial transcriptions. (word
representation of dimension 120, 500 hidden units)

to always use the full corpus of transcriptions of the
acoustic data since this is the most appropriate data
for the task. Experiments with different random sub-
sets of the commercial transcriptions and the news-
paper texts have been performed (see Figure 3 and
5). In all cases the same neural network architecture
was used, i.e a 120 dimensional continuous word
representation and 500 hidden units. Some experi-
ments with larger hidden units showed basically the
same convergence behavior. The learning rate was
again set to0.005, but with a slower exponential de-
cay.

First of all it can be seen from Figure 3 that the
results are better when using random subsets instead
of a fixed selection of 6 months, although each ran-
dom subset is actually smaller (for instance a total of
12.5M examples for a subset of 10%). Best results
were obtained when taking 10% of the commercial

+ Train network for one epoch

Repeat

Select training data:
− Use all acoustic transcriptions (4M words)
− Extract random subset of examples
  from the large corpora
− Shuffle data

   (performing weight updates after each example)
+ Test performance on development data

Until convergence

Figure 4: Training algorithm for large corpora
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Back-off LM Neural Network LM

Training data [#words] 600M 4M 22M 92.5M∗ 600M∗

Training time [h/epoch] - 2h40 14h 9h40 12h 3× 12h
Perplexity (NN LM alone) - 103.0 97.5 84.0 80.0 76.5

Perplexity (interpolated LMs) 70.2 67.6 67.9 66.7 66.5 65.9
Word error rate (interpolated LMs) 14.24% 14.02% 13.88% 13.81% 13.75% 13.61%

∗ By resampling different random parts at the beginning of each epoch.

Table 3: Comparison of the back-off and the neural network LM using different amounts of training data.
The perplexities are given for the neural network LM alone and interpolated with the back-off LM trained
on all the data. The last column corresponds to three interpolated neural network LMs.

transcriptions. The perplexity is 66.7 after interpo-
lation with the back-off LM and the word error rate
is 13.81% (see summary in Table 3). Larger sub-
sets of the commercial transcriptions lead to slower
training, but don’t give better results.

Encouraged by these results, we also included the
508M words of newspaper texts in the training data.
The size of the random subsets were chosen in order
to use between 4 and 9M words of each corpus. Fig-
ure 5 summarizes the results. There seems to be no
obvious benefit from resampling large subsets of the
individual corpora. We choose to resample 10% of
the commercial transcriptions and 1% of the news-
paper texts.
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Figure 5: Perplexity when resampling different ran-
dom subsets of the commercial transcriptions and
the newspaper texts.

Table 3 summarizes the results of the different
neural network LMs. It can be clearly seen that the
perplexity of the neural network LM alone decreases
significantly with the amount of training data used.
The perplexity after interpolation with the back-off
LM changes only by a small amount, but there is a
notable improvement in word error rate. This is an-

other experimental evidence that the perplexity of a
LM is not directly related to the word error rate.

The best neural network LM achieves a word er-
ror reduction of 0.5% absolute with respect to the
carefully tuned back-off LM (14.24%→ 13.75%).
The additional processing time needed to rescore the
lattices is less than 0.05xRT. This is a significant im-
provement, in particular for a fast real-time continu-
ous speech recognition system. When more process-
ing time is available a word error rate of 13.61% can
be achieved by interpolating three neural networks
together (in 0.14xRT).

3.5 Using a better speech recognizer

The experimental results have also been validated
using a second speech recognizer running in about
7xRT. This systems differs from the real-time recog-
nizer by a larger 200k word-list, additional acoustic
model adaptation passes and less pruning. Details
are described in (Gauvain et al., 2005). The word er-
ror rate of the reference system using a back-off LM
is 10.74%. This can be reduced to 10.51% using a
neural network LM trained on the fine transcriptions
only and to 10.20% when the neural network LM
is trained on all data using the described resampling
approach. Lattice rescoring takes about 0.2xRT.

4 Conclusions and future work

Neural network language models are becoming a
serious alternative to the widely used back-off lan-
guage models. Consistent improvements in perplex-
ity and word error rate have been reported (Bengio
et al., 2003; Schwenk and Gauvain, 2004; Schwenk
and Gauvain, 2005; Emami and Jelinek, 2004). In
these works, the amount of training data was how-
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ever limited to a maximum of 20M words due to the
high complexity of the training algorithm.

In this paper new techniques have been described
to train neural network language models on large
amounts of text corpora (up to 600M words). The
evaluation with a state-of-the-art speech recognition
system for French Broadcast News showed a signif-
icant word error reduction of 0.5% absolute. The
neural network LMs is incorporated into the speech
recognizer by rescoring lattices. This is done in less
than 0.05xRT.

Several extensions of the learning algorithm it-
self are promising. We are in particular interested
in smarter ways to select different subsets from the
large corpus at each epoch (instead of a random
choice). One possibility would be to use active
learning, i.e. focusing on examples that are most
useful to decrease the perplexity. One could also
imagine to associate a probability to each training
example and to use these probabilities to weight the
random sampling. These probabilities would be up-
dated after each epoch. This is similar to boosting
techniques (Freund, 1995) which build sequentially
classifiers that focus on examples wrongly classified
by the preceding one.
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Abstract 
This paper proposes a new discriminative 
training method, called minimum sample risk 
(MSR), of estimating parameters of language 
models for text input. While most existing 
discriminative training methods use a loss 
function that can be optimized easily but 
approaches only approximately to the objec-
tive of minimum error rate, MSR minimizes 
the training error directly using a heuristic 
training procedure. Evaluations on the task 
of Japanese text input show that MSR can 
handle a large number of features and train-
ing samples; it significantly outperforms a 
regular trigram model trained using maxi-
mum likelihood estimation, and it also out-
performs the two widely applied discrimi-
native methods, the boosting and the per-
ceptron algorithms, by a small but statisti-
cally significant margin. 

1 Introduction 
Language modeling (LM) is fundamental to a wide 
range of applications, such as speech recognition 
and Asian language text input (Jelinek 1997; Gao et 
al. 2002). The traditional approach uses a paramet-
ric model with maximum likelihood estimation (MLE), 
usually with smoothing methods to deal with data 
sparseness problems. This approach is optimal 
under the assumption that the true distribution of 
data on which the parametric model is based is 
known. Unfortunately, such an assumption rarely 
holds in realistic applications. 

An alternative approach to LM is based on the 
framework of discriminative training, which uses a 
much weaker assumption that training and test 
data are generated from the same distribution but 
the form of the distribution is unknown. Unlike the 
traditional approach that maximizes the function 
(i.e. likelihood of training data) that is loosely as-

sociated with error rate, discriminative training 
methods aim to directly minimize the error rate on 
training data even if they reduce the likelihood. So, 
they potentially lead to better solutions. However, 
the error rate of a finite set of training samples is 
usually a step function of model parameters, and 
cannot be easily minimized. To address this prob-
lem, previous research has concentrated on the 
development of a loss function that approximates 
the exact error rate and can be easily optimized. 
Though these methods (e.g. the boosting method) 
have theoretically appealing properties, such as 
convergence and bounded generalization error, we 
argue that the approximated loss function may 
prevent them from attaining the original objective 
of minimizing the error rate. 

In this paper we present a new estimation pro-
cedure for LM, called minimum sample risk (MSR). It 
differs from most existing discriminative training 
methods in that instead of searching on an ap-
proximated loss function, MSR employs a simple 
heuristic training algorithm that minimizes the 
error rate on training samples directly. MSR oper-
ates like a multidimensional function optimization 
algorithm: first, it selects a subset of features that 
are the most effective among all candidate features. 
The parameters of the model are then optimized 
iteratively: in each iteration, only the parameter of 
one feature is adjusted. Both feature selection and 
parameter optimization are based on the criterion 
of minimizing the error on training samples. Our 
evaluation on the task of Japanese text input shows 
that MSR achieves more than 20% error rate reduc-
tion over MLE on two newswire data sets, and it 
also outperforms the other two widely applied 
discriminative methods, the boosting method and 
the perceptron algorithm, by a small but statisti-
cally significant margin. 

Although it has not been proved in theory that 
MSR is always robust, our experiments of cross- 
domain LM adaptation show that it is. MSR can 
effectively adapt a model trained on one domain to 
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different domains. It outperforms the traditional 
LM adaptation method significantly, and achieves 
at least comparable or slightly better results to the 
boosting method and the perceptron algorithm. 

2 IME Task and LM 
This paper studies LM on the task of Asian lan-
guage (e.g. Chinese or Japanese) text input. This is 
the standard method of inputting Chinese or 
Japanese text by converting the input phonetic 
symbols into the appropriate word string. In this 
paper we call the task IME, which stands for input 
method editor, based on the name of the commonly 
used Windows-based application. 

Performance on IME is measured in terms of the 
character error rate (CER), which is the number of 
characters wrongly converted from the phonetic 
string divided by the number of characters in the 
correct transcript. Current IME systems make 
about 5-15% CER in conversion of real data in a 
wide variety of domains (e.g. Gao et al. 2002).  

Similar to speech recognition, IME is viewed as 
a Bayes decision problem. Let A be the input pho-
netic string. An IME system’s task is to choose the 
most likely word string W* among those candidates 
that could be converted from A: 

)|()(maxarg)|(maxarg
(A))(

* WAPWPAWPW
WAW GENGEN ∈∈

==  (1) 

where GEN(A) denotes the candidate set given A. 
Unlike speech recognition, however, there is no 

acoustic ambiguity since the phonetic string is 
inputted by users. Moreover, if we do not take into 
account typing errors, it is reasonable to assume a  
unique mapping from W and A in IME, i.e. P(A|W) 
= 1. So the decision of Equation (1) depends solely 
upon P(W), making IME a more direct evaluation 
test bed for LM than speech recognition. Another 
advantage is that it is easy to convert W to A (for 
Chinese and Japanese), which enables us to obtain 
a large number of training data for discriminative 
learning, as described later.  

The values of P(W) in Equation (1) are tradi-
tionally calculated by MLE: the optimal model 
parameters λ* are chosen in such a way that 
P(W|λ*) is maximized on training data. The argu-
ments in favor of MLE are based on the assumption 
that the form of the underlying distributions is 
known, and that only the values of the parameters 
characterizing those distributions are unknown. In 
using MLE for LM, one always assumes a multi-
nomial distribution of language. For example, a 

trigram model makes the assumption that the next 
word is predicted depending only on two preced-
ing words. However, there are many cases in 
natural language where words over an arbitrary 
distance can be related. MLE is therefore not opti-
mal because the assumed model form is incorrect. 

What are the best estimators when the model is 
known to be false then? In IME, we can tackle this 
question empirically. Best IME systems achieve the 
least CER. Therefore, the best estimators are those 
which minimize the expected error rate on unseen 
test data. Since the distribution of test data is un-
known, we can approximately minimize the error 
rate on some given training data (Vapnik 1999). 
Toward this end, we have developed a very simple 
heuristic training procedure called minimum sample 
risk, as presented in the next section. 

3 Minimum Sample Risk 

3.1 Problem Definition 
We follow the general framework of linear dis-
criminant models described in (Duda et al. 2001). In 
the rest of the paper we use the following notation, 
adapted from Collins (2002). 

• Training data is a set of example input/output 
pairs. In LM for IME, training samples are repre-
sented as {Ai, WiR}, for i = 1…M, where each Ai is an 
input phonetic string and WiR is the reference tran-
script of Ai. 

• We assume some way of generating a set of 
candidate word strings given A, denoted by 
GEN(A).  In our experiments, GEN(A) consists of 
top N word strings converted from A using a base-
line IME system that uses only a word trigram 
model. 

• We assume a set of D+1 features fd(W), for d = 
0…D. The features could be arbitrary functions that 
map W to real values. Using vector notation, we 
have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …, 
fD(W)]T. Without loss of generality, f0(W) is called 
the base feature, and is defined in our case as the 
log probability that the word trigram model as-
signs to W. Other features (fd(W), for d = 1…D) are 
defined as the counts of word n-grams (n = 1 and 2 
in our experiments) in W. 

• Finally, the parameters of the model form a 
vector of D+1 dimensions, each for one feature 
function, λ = [λ0, λ1, …, λD]. The score of a word 
string W can be written as  
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The decision rule of Equation (1) is rewritten as 

),(maxarg),(
(A)

* λλ
GEN

WScoreAW
W∈

= . (3)

Equation (3) views IME as a ranking problem, 
where the model gives the ranking score, not 
probabilities. We therefore do not evaluate the 
model via perplexity. 

Now, assume that we can measure the number 
of conversion errors in W by comparing it with a 
reference transcript WR using an error function 
Er(WR,W) (i.e.  the string edit distance function in 
our case). We call the sum of error counts over the 
training samples sample risk. Our goal is to mini-
mize the sample risk while searching for the pa-
rameters as defined in Equation (4), hence the name 
minimum sample risk (MSR). Wi* in Equation (4) is 
determined by Equation (3), 

∑
=

=
Mi

ii
R

i

def

MSR AWW
...1

* )),(,Er(minarg λλ
λ

. (4)

We first present the basic MSR training algorithm, 
and then the two improvements we made. 

3.2 Training Algorithm 
The MSR training algorithm is cast as a multidi-
mensional function optimization approach (Press 
et al. 1992): taking the feature vector as a set of 
directions; the first direction (i.e. feature) is selected 
and the objective function (i.e. sample risk) is 
minimized along that direction using a line search; 
then from there along the second direction to its 
minimum, and so on, cycling through the whole set 
of directions as many times as necessary, until the 
objective function stops decreasing.  

This simple method can work properly under 
two assumptions. First, there exists an implemen-
tation of line search that optimizes the function 
along one direction efficiently. Second, the number 
of candidate features is not too large, and these 
features are not highly correlated. However, nei-
ther of the assumptions holds in our case. First of 
all, Er(.) in Equation (4) is a step function of λ, thus 
cannot be optimized directly by regular gradient- 
based procedures – a grid search has to be used 
instead. However, there are problems with simple 
grid search: using a large grid could miss the op-
timal solution whereas using a fine-grained grid 
would lead to a very slow algorithm. Secondly, in 

the case of LM, there are millions of candidate 
features, some of which are highly correlated. We 
address these issues respectively in the next two 
subsections. 

3.3 Grid Line Search 
Our implementation of a grid search is a modified 
version of that proposed in (Och 2003). The modi-
fications are made to deal with the efficiency issue 
due to the fact that there is a very large number of 
features and training samples in our task, compared 
to only 8 features used in (Och 2003). Unlike a 
simple grid search where the intervals between any 
two adjacent grids are equal and fixed, we deter-
mine for each feature a sequence of grids with 
differently sized intervals, each corresponding to a 
different value of sample risk. 

As shown in Equation (4), the loss function (i.e. 
sample risk) over all training samples is the sum of 
the loss function (i.e. Er(.)) of each training sample. 
Therefore, in what follows, we begin with a discus-
sion on minimizing Er(.) of a training sample using 
the line search.  

Let λ be the current model parameter vector, 
and fd be the selected feature. The line search aims to 
find the optimal parameter λd* so as to minimize 
Er(.). For a training sample (A, WR), the score of each 
candidate word string W∈GEN(A), as in Equation 
(2), can be decomposed into two terms: 

)()()(),(
'0'

'' WfWfWWScore dd

D

ddd
dd λλ +== ∑

≠∨=

λfλ , 

where the first term on the right hand side does not 
change with λd. Note that if several candidate word 
strings have the same feature value fd(W), their 
relative rank will remain the same for any λd. Since 
fd(W) takes integer values in our case (fd(W) is the 
count of a particular n-gram in W), we can group the 
candidates using fd(W) so that candidates in each 
group have the same value of fd(W). In each group, 
we define the candidate with the highest value of  

∑ ≠∨=

D

ddd dd Wf
'0' '' )(λ  

as the active candidate of the group because no 
matter what value λd takes, only this candidate 
could be selected according to Equation (3). 

Now, we reduce GEN(A) to a much smaller list 
of active candidates. We can find a set of intervals 
for λd, within each of which a particular active 
candidate will be selected as W*. We can compute 
the Er(.) value of that candidate as the Er(.) value for 
the corresponding interval. As a result, for each 
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training sample, we obtain a sequence of intervals 
and their corresponding Er(.) values. The optimal 
value λd* can then be found by traversing the se-
quence and taking the midpoint of the interval with 
the lowest Er(.) value.  
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Figure 1. Examples of line search.  

This process can be extended to the whole 
training set as follows. By merging the sequence of 
intervals of each training sample in the training set, 
we obtain a global sequence of intervals as well as 
their corresponding sample risk. We can then find 
the optimal value λd* as well as the minimal sample 
risk by traversing the global interval sequence. An 
example is shown in Figure 1. 

The line search can be unstable, however. In 
some cases when some of the intervals are very 
narrow (e.g. the interval A in Figure 1), moving the 
optimal value λd* slightly can lead to much larger 
sample risk. Intuitively, we prefer a stable solution 
which is also known as a robust solution (with even 
slightly higher sample risk, e.g. the interval B in 
Figure 1). Following Quirk et al. (2004), we evaluate 
each interval in the sequence by its corresponding 
smoothed sample risk. Let λ be the midpoint of an 
interval and SR(λ) be the corresponding sample risk 
of the interval. The smoothed sample risk of the 
interval is defined as 

λλ
λ

λ
d

b

b
 )SR(∫

+

−
  

where b is a smoothing factor whose value is de-
termined empirically  (0.06 in our experiments). As 
shown in Figure 1, a more stable interval B is se-
lected according to the smoothed sample risk. 

In addition to reducing GEN(A) to an active 
candidate list described above, the efficiency of the 
line search can be further improved. We find that 
the line search only needs to traverse a small subset 
of training samples because the distribution of 
features among training samples are very sparse. 
Therefore, we built an inverted index that lists for 

each feature all training samples that contain it. As 
will be shown in Section 4.2, the line search is very 
efficient even for a large training set with millions of 
candidate features. 

3.4 Feature Subset Selection 
This section describes our method of selecting 
among millions of features a small subset of highly 
effective features for MSR learning. Reducing the 
number of features is essential for two reasons: to 
reduce computational complexity and to ensure the 
generalization property of the linear model. A large 
number of features lead to a large number of pa-
rameters of the resulting linear model, as described 
in Section 3.1. For a limited number of training 
samples, keeping the number of features suffi-
ciently small should lead to a simpler model that is 
less likely to overfit to the training data. 

The first step of our feature selection algorithm 
treats the features independently. The effectiveness 
of a feature is measured in terms of the reduction of 
the sample risk on top of the base feature f0. For-
mally, let SR(f0) be the sample risk of using the base 
feature only, and SR(f0 + λdfd) be the sample risk of 
using both f0 and fd and the parameter λd that has 
been optimized using the line search. Then the 
effectiveness of fd, denoted by E(fd), is given by 
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where the denominator is a normalization term to 
ensure that E(f) ∈ [0, 1]. 

The feature selection procedure can be stated as 
follows: The value of E(.) is computed according to 
Equation (5) for each of the candidate features. 
Features are then ranked in the order of descending 
values of E(.). The top l features are selected to form 
the feature vector in the linear model. 

Treating features independently has the ad-
vantage of computational simplicity, but may not 
be effective for features with high correlation. For 
instance, although two features may carry rich 
discriminative information when treated sepa-
rately, there may be very little gain if they are com-
bined in a feature vector, because of the high cor-
relation between them. Therefore, in what follows, 
we describe a technique of incorporating correla-
tion information in the feature selection criterion.  

Let xmd, m = 1…M and d = 1…D, be a Boolean 
value: xmd = 1 if the sample risk reduction of using 
the d-th feature on the m-th training sample, com-

B 
A
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puted by Equation (5), is larger than zero, and 0 
otherwise. The cross correlation coefficient be-
tween two features fi and fj is estimated as 
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It can be shown that C(i, j) ∈ [0, 1]. Now, similar to  
(Theodoridis and Koutroumbas 2003), the feature 
selection procedure consists of the following steps, 
where fi denotes any selected feature and fj denotes 
any candidate feature to be selected. 
Step 1. For each of the candidate features (fd, for d = 
1…D), compute the value of E(f) according to 
Equation (5). Rank them in a descending order and 
choose the one with the highest E(.) value. Let us 
denote this feature as f1. 
Step 2. To select the second feature, compute the 
cross correlation coefficient between the selected 
feature f1 and each of the remaining M-1 features, 
according to Equation (6). 
Step 3. Select the second feature f according to 
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where α is the weight that determines the relative 
importance we give to the two terms. The value of 
α is optimized on held-out data (0.8 in our experi-
ments). This means that for the selection of the 
second feature, we take into account not only its 
impact of reducing the sample risk but also the 
correlation with the previously selected feature. It 
is expected that choosing features with less corre-
lation gives better sample risk minimization. 
Step 4. Select k-th features, k = 3…K, according to 
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That is, we select the next feature by taking into 
account its average correlation with all previously 
selected features. The optimal number of features, l, 
is determined on held-out data. 

Similarly to the case of line search, we need to 
deal with the efficiency issue in the feature selec-
tion method. As shown in Equation (7), the esti-
mates of E(.) and C(.) need to be computed. Let D 
and K (K << D) be the number of all candidate 
features and the number of features in the resulting 
model, respectively. According to the feature se-
lection method described above, we need to esti-
mate E(.) for each of the D candidate features only 
once in Step 1. This is not very costly due to the 

efficiency of our line search algorithm. Unlike the 
case of E(.), O(K×D) estimates of C(.) are required in 
Step 4. This is computationally expensive even for a 
medium-sized K. Therefore, every time a new fea-
ture is selected (in Step 4), we only estimate the 
value of C(.) between each of the selected features 
and each of the top N remaining features with the 
highest value of E(.). This reduces the number of 
estimates of C(.) to O(K×N). In our experiments we 
set N = 1000, much smaller than D. This reduces the 
computational cost significantly without producing 
any noticeable quality loss in the resulting model. 

The MSR algorithm used in our experiments is 
summarized in Figure 2. It consists of feature se-
lection (line 2) and optimization (lines 3 - 5) steps. 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Rank all features and select the top K features, using 

the feature selection method described in Section 3.4
3 For t = 1…T (T= total number of iterations) 
4 For each k = 1…K  
5    Update the parameter of fk using line search.  
Figure 2: The MSR algorithm 

4 Evaluation 

4.1 Settings 
We evaluated MSR on the task of Japanese IME. 
Two newspaper corpora are used as training and 
test data: Nikkei and Yomiuri Newspapers. Both 
corpora have been pre-word-segmented using a 
lexicon containing 167,107 entries. A 5,000-sentence 
subset of the Yomiuri Newspaper corpus  was used 
as held-out data (e.g. to determine learning rate, 
number of iterations and features etc.). We tested 
our models on another  5,000-sentence subset of the 
Yomiuri Newspaper corpus.  

We used an 80,000-sentence subset of the Nikkei 
Newspaper corpus as the training set. For each A, 
we produced a word lattice using the baseline 
system described in (Gao et al. 2002), which uses a 
word trigram model trained via MLE on anther 
400,000-sentence subset of the Nikkei Newspaper 
corpus. The two subsets do not overlap so as to 
simulate the case where unseen phonetic symbol 
strings are converted by the baseline system. For 
efficiency, we kept for each training sample the 
best 20 hypotheses in its candidate conversion set 
GEN(A) for discriminative training. The oracle best 
hypothesis, which gives the minimum number of 
errors, was used as the reference transcript of A. 
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4.2 Results 
We used unigrams and bigrams that occurred more 
than once in the training set as features. We did not 
use trigram features because they did not result in a 
significant improvement in our pilot study. The 
total number of candidate features we used was 
around 860,000.  

Our main experimental results are shown in 
Table 1. Row 1 is our baseline result using the word 
trigram model. Notice that the result is much better 
than the state-of-the-art performance currently 
available in the marketplace (e.g. Gao et al. 2002), 
presumably due to the large amount of training 
data we used, and to the similarity between the 
training and the test data. Row 2 is the result of the 
model trained using the MSR algorithm described 
in Section 3. We also compared the MSR algorithm 
to two of the state-of-the-art discriminative training 
methods: Boosting in Row 3 is an implementation 
of the improved algorithm for the boosting loss 
function proposed in (Collins 2000), and Percep-
tron in Row 4 is an implementation of the averaged 
perceptron algorithm described in (Collins 2002).  

We see that all discriminative training methods 
outperform MLE significantly (p-value < 0.01). In 
particular, MSR outperforms MLE by more than 
20% CER reduction. Notice that we used only uni-
gram and bigram features that have been included 
in the baseline trigram model, so the improvement 
is solely attributed to the high performance of MSR. 
We also find that MSR outperforms the perceptron 
and boosting methods by a small but statistically 
significant margin. 

The MSR algorithm is also very efficient: using a 
subset of 20,000 features, it takes less than 20 min-
utes to converge on an XEON(TM) MP 1.90GHz 
machine. It is as efficient as the perceptron algo-
rithm and slightly faster than the boosting method. 

4.3 Robustness Issues 
Most theorems that justify the robustness of dis-
criminative training algorithms concern two ques-
tions. First, is there a guarantee that a given algo-
rithm converges even if the training samples are 

not linearly separable? This is called the convergence 
problem. Second, how well is the training error 
reduction preserved when the algorithm is applied 
to unseen test samples? This is called the generali-
zation problem. Though we currently cannot give a 
theoretical justification, we present empirical evi-
dence here for the robustness of the MSR approach. 

As Vapnik (1999) pointed out, the most robust 
linear models are the ones that achieve the least 
training errors with the least number of features. 
Therefore, the robustness of the MSR algorithm are 
mainly affected by the feature selection method. To 
verify this, we created four different subsets of 
features using different settings of the feature se-
lection method described in Section 3.4. We se-
lected different numbers of features (i.e. 500 and 
2000) with and without taking into account the 
correlation between features (i.e. α in Equation (7) 
is set to 0.8 and 1, respectively). For each of the four 
feature subsets, we used the MSR algorithm to 
generate a set of models. The CER curves of these 
models on training and test data sets are shown in 
Figures 3 and 4, respectively.  
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Figure 3. Training error curves of the MSR algorithm 
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Figure 4. Test error curves of the MSR algorithm 

The results reveal several facts. First, the con-
vergence properties of MSR are shown in Figure 3 
where in all cases, training errors drop consistently 
with more iterations. Secondly, as expected, using 
more features leads to overfitting, For example, 
MSR(α =1)-2000 makes fewer errors than MSR(α 
=1)-500 on training data but more errors on test 
data. Finally, taking into account the correlation 
between features (e.g. α = 0.8 in Equation (7)) re-

 Model CER (%) % over MLE 
1. MLE  3.70 -- 
2. MSR (K=2000) 2.95 20.9 
3. Boosting  3.06 18.0 
4. Perceptron 3.07 17.8 
Table 1. Comparison of CER results. 
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sults in a better subset of features that lead to not 
only fewer training errors, as shown in Figure 3, 
but also better generalization properties (fewer test 
errors), as shown in Figure 4. 

4.4 Domain Adaptation Results  
Though MSR achieves impressive performance in 
CER reduction over the comparison methods, as 
described in Section 4.2, the experiments are all 
performed using newspaper text for both training 
and testing, which is not a realistic scenario if we 
are to deploy the model in an application. This 
section reports the results of additional experi-
ments in which we adapt a model trained on one 
domain to a different domain, i.e., in a so-called 
cross-domain LM adaptation paradigm. See (Su-
zuki and Gao 2005) for a detailed report. 

The data sets we used stem from five distinct 
sources of text. The Nikkei newspaper corpus de-
scribed in Section 4.1 was used as the background 
domain, on which the word trigram model was 
trained. We used four adaptation domains: Yomi-
uri (newspaper corpus), TuneUp (balanced corpus 
containing newspapers and other sources of text), 
Encarta (encyclopedia) and Shincho (collection of 
novels). For each of the four domains, we used an 
72,000-sentence subset as adaptation training data, 
a 5,000-sentence subset as held-out data and an-
other 5,000-sentence subset as test data. Similarly, 
all corpora have been word-segmented, and we 
kept for each training sample, in the four adapta-
tion domains, the best 20 hypotheses in its candi-
date conversion set for discriminative training.  

We compared MSR with three other LM adap-
tation methods:  

Baseline is the background word trigram model, 
as described in Section 4.1. 

MAP (maximum a posteriori) is a traditional LM 
adaptation method where the parameters of the 
background model are adjusted in such a way that 
maximizes the likelihood of the adaptation data. 
Our implementation takes the form of linear in-
terpolation as P(wi|h) = λPb(wi|h) + (1-λ)Pa(wi|h), 
where Pb is the probability of the background 
model, Pa is the probability trained on adaptation 
data using MLE and the history h corresponds to 
two preceding words (i.e. Pb and Pa are trigram 
probabilities). λ is the interpolation weight opti-
mized on held-out data.  

Perceptron, Boosting and MSR are the three 
discriminative methods described in the previous 
sections.  For each of them, the base feature was 

Model Yomiuri TuneUp Encarta Shincho 
Baseline 3.70 5.81 10.24 12.18 
MAP  3.69 5.47 7.98 10.76 
MSR  2.73 5.15 7.40 10.16 
Boosting  2.78 5.33 7.53 10.25 
Perceptron 2.78 5.20 7.44 10.18 
Table 2. CER(%) results on four adaptation test sets . 

derived from the word trigram model trained on 
the background data, and other n-gram features (i.e. 
fd, d = 1…D in Equation (2)) were trained on adap-
tation data. That is, the parameters of the back-
ground model are adjusted in such a way that 
minimizes the errors on adaptation data made by 
background model. 

Results are summarized in Table 2. First of all, 
in all four adaptation domains, discriminative 
methods outperform MAP significantly. Secondly, 
the improvement margins of discriminative 
methods over MAP correspond to the similarities 
between background domain and adaptation do-
mains. When the two domains are very similar to 
the background domain (such as Yomiuri), dis-
criminative methods outperform MAP by a large 
margin. However, the margin is smaller when the 
two domains are substantially different (such as 
Encarta and Shincho). The phenomenon is attrib-
uted to the underlying difference between the two 
adaptation methods: MAP aims to improve the 
likelihood of a distribution, so if the adaptation 
domain is very similar to the background domain, 
the difference between the two underlying distri-
butions is so small that MAP cannot adjust the 
model effectively. However, discriminative meth-
ods do not have this limitation for they aim to 
reduce errors directly. Finally, we find that in most 
adaptation test sets, MSR achieves slightly better 
CER results than the two competing discriminative 
methods. Specifically, the improvements of MSR 
are statistically significant over the boosting 
method in three out of four domains, and over the 
perceptron algorithm in the Yomiuri domain. The 
results demonstrate again that MSR is robust. 

5 Related Work 
Discriminative models have recently been proved 
to be more effective than generative models in 
some NLP tasks, e.g., parsing (Collins 2000), POS 
tagging (Collins 2002) and LM for speech recogni-
tion (Roark et al. 2004). In particular, the linear 
models, though simple and non-probabilistic in 
nature, are preferred to their probabilistic coun-
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terpart such as logistic regression. One of the rea-
sons, as pointed out by Ng and Jordan (2002), is 
that the parameters of a discriminative model can 
be fit either to maximize the conditional likelihood 
on training data, or to minimize the training errors. 
Since the latter optimizes the objective function that 
the system is graded on, it is viewed as being more 
truly in the spirit of discriminative learning. 

The MSR method shares the same motivation: to 
minimize the errors directly as much as possible. 
Because the error function on a finite data set is a 
step function, and cannot be optimized easily, 
previous research approximates the error function 
by loss functions that are suitable for optimization 
(e.g. Collins 2000; Freund et al. 1998; Juang et al. 
1997; Duda et al. 2001). MSR uses an alternative 
approach. It is a simple heuristic training proce-
dure to minimize training errors directly without 
applying any approximated loss function. 

MSR shares many similarities with previous 
methods. The basic training algorithm described in 
Section 3.2 follows the general framework of multi- 
dimensional optimization (e.g., Press et al. 1992). 
The line search is an extension of that described in 
(Och 2003; Quirk et al. 2005. The extension lies in 
the way of handling large number of features and 
training samples. Previous algorithms were used to 
optimize linear models with less than 10 features. 
The feature selection method described in Section 
3.4 is a particular implementation of the feature 
selection methods described in (e.g., Theodoridis 
and Koutroumbas 2003). The major difference 
between the MSR and other methods is that it es-
timates the effectiveness of each feature in terms of 
its expected training error reduction while previ-
ous methods used metrics that are loosely coupled 
with reducing training errors. The way of dealing 
with feature correlations in feature selection in 
Equation (7), was suggested by Finette et al. (1983). 

6 Conclusion and Future Work 
We show that MSR is a very successful discrimina-
tive training algorithm for LM. Our experiments 
suggest that it leads to significantly better conver-
sion performance on the IME task than either the 
MLE method or the two widely applied discrimi-
native methods, the boosting and perceptron 
methods. However, due to the lack of theoretical 
underpinnings, we are unable to prove that MSR 
will always succeed. This forms one area of our 
future work. 

One of the most interesting properties of MSR is 
that it can optimize any objective function (whether 
its gradient is computable or not), such as error rate 
in IME or speech, BLEU score in MT, precision and 
recall in IR (Gao et al. 2005). In particular, MSR can 
be performed on large-scale training set with mil-
lions of candidate features. Thus, another area of 
our future work is to test MSR on wider varieties of 
NLP tasks such as parsing and tagging. 
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Abstract 

To improve the robustness in multimodal 
input interpretation, this paper presents a new 
salience driven approach. This approach is 
based on the observation that, during 
multimodal conversation, information from 
deictic gestures (e.g., point or circle) on a 
graphical display can signal a part of the 
physical world (i.e., representation of the 
domain and task) of the application which is 
salient during the communication.  This salient 
part of the physical world will prime what 
users tend to communicate in speech and in 
turn can be used to constrain hypotheses for 
spoken language understanding, thus 
improving overall input interpretation. Our 
experimental results have indicated the 
potential of this approach in reducing word 
error rate and improving concept identification 
in multimodal conversation.  

1 Introduction  

Multimodal conversational systems promote more 
natural and effective human machine communication 
by allowing users to interact with systems through 
multiple modalities such as speech and gesture 
(Cohen et al., 1996; Johnston et al., 2002; Pieraccini 
et al., 2004). Despite recent advances, interpreting 
what users communicate to the system is still a 
significant challenge due to insufficient recognition 
(e.g., speech recognition) and understanding (e.g., 
language understanding) performance. Significant 
improvement in the robustness of multimodal 
interpretation is crucial if multimodal systems are to 
be effective and practical for real world applications.  

Previous studies have shown that, in multimodal 
conversation, multiple modalities tend to complement 
each other (Cassell et al. 1994). Fusing two or more 
modalities can be an effective means of reducing 
recognition uncertainties, for example, through 
mutual disambiguation (Oviatt 1999). For 
semantically-rich modalities such as speech and pen-
based gesture, mutual disambiguation usually 
happens at the fusion stage where partial semantic 
representations from individual modalities are 
disambiguated and combined into an overall 
interpretation (Johnston 1998, Chai et al., 2004a). 
One problem is that some critical but low probability 
information from individual modalities (e.g., 
recognized alternatives with low probabilities) may 
never reach the fusion stage. Therefore, this paper 
addresses how to use information from one modality 
(e.g., deictic gesture) to directly influence the 
semantic processing of another modality (e.g., spoken 
language understanding) even before the fusion stage.  

In particular we present a new salience driven 
approach that uses gesture to influence spoken 
language understanding. This approach is based on 
the observation that, during multimodal conversation, 
information from deictic gestures (e.g., point or 
circle) on a graphical interface can signal a part of the 
physical world (i.e., representation of the domain and 
task) of the application which is salient during the 
communication.  This salient part of the physical 
world will prime what users tend to communicate in 
speech and thus in turn can be used to constrain 
hypotheses for spoken language understanding. In 
particular, this approach incorporates a notion of 
salience from deictic gestures into language models 
for spoken language processing. Our experimental 
results indicate the potential of this approach in 
reducing word error rate and improving concept 
identification from spoken utterances. 
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In the following sections, we first introduce the 
current architecture for multimodal interpretation. 
Then we describe our salience driven approach and 
present empirical results.  

2 

3 

Input Interpretation 

Input interpretation is the identification of semantic 
meanings in user inputs. In multimodal conversation, 
user inputs can come from multiple channels (e.g., 
speech and gesture). Thus, most work on input 
interpretation is based on semantic fusion that 
includes individual recognizers and a sequential 
integration processes as shown in Figure 1.  In this 
approach, a system first creates possible partial 
meaning representations from recognized hypotheses 
(e.g., N-best lists) independently of other modalities. 
For example, suppose a user says “what is the price 
of this painting” and at the same time points to a 
position on the screen. The partial meaning 
representations from the speech input and the gesture 
input are shown in (a-b) in Figure 1. The system uses 
the partial meaning representations to disambiguate 
each other and combines compatible partial 
representations together into an overall semantic 
representation as in Figure1(c).  

In this architecture, the partial semantic 
representations from individual modalities are crucial 
for mutual disambiguation during multimodal fusion. 
The quality of partial semantic representations 
depends on how individual modalities are processed. 
For example, if the speech input is recognized as 
“what is the prize of this pant”, then the partial 
representation from the speech input will not be 
created in the first place. Without a candidate partial 
representation, it is not likely for multimodal fusion 
to reach an overall meaning of the input given this 
late fusion architecture. 

Thus, a problem with the semantics-based fusion 
approach is that information from multiple modalities 
is only used during the fusion stage to disambiguate 
or combine partial semantic representations. This late 
use of information from other sources in the 
pipelined process can cause the loss of some low 
probability information (e.g., recognized alternatives 
with low probabilities which did not make it to the N-
best list) which could be very crucial in terms of the 
overall interpretation.  It is desirable to use 
information from multiple sources at an earlier stage 
before partial representations are created from 
individual modalities. For example, in ((Bangalore 
and Johnston 2000), a finite-state approach was 
applied to tightly couple multimodal language 
processing (e.g., gesture and speech) and speech 
recognition to improve recognition hypotheses. To 
further address this issue, in this paper, we present a 
salience driven approach that particularly applies 
gesture information (e.g., pen-based deictic gestures) 
to robust spoken language understanding before 
multimodal fusion.  

Related Work on Salience Modeling 

We first give a brief overview on the notion of 
salience and how salience modeling is applied in 
earlier work on natural language and multimodal 
language processing.  

Linguistic salience describes the accessibility of 
entities in a speaker/hearer’s memory and its 
implication in language production and 
interpretation. Many theories on linguistic salience 
have been developed, including how the salience of 
entities affects the form of referring expressions as in 
the Givenness Hierarchy (Gundel et al., 1993) and 
the local coherence of discourse as in the Centering 
Theory (Grosz et al., 1995). Salience modeling is 
used for both language generation and language 
interpretation; the latter is more relevant to our work. 
Most salience-based interpretation has focused on 
reference resolution for both linguistic referring 
expressions (e.g., pronouns) (Lappin and Leass 1995) 
and multimodal expressions (Hul et al. 1995; 
Eisenstein and Christoudias 2004).  

Speech Input Gesture Input

Speech 
Recognition

Language
Understanding

Gesture
Recognizer

Multimodal
Fusion

Semantic Representation

Gesture
Understanding

Semantic Representation Semantic Representation

What is the price of this painting Point to a position on the screen

Intent: Ask
Type: Painting
Aspect: Price

Type: Painting
Id: P23

Intent: Ask
Type: Painting
Aspect: Price
Id: P23

Type: Wall
Id: W1

(a) (b)

(c)

 
Figure 1: Semantics-based multimodal interpretation 

Visual salience considers an object salient when 
it attracts a user’s visual attention more than others. 
The cause of such attention depends on many factors 
including user intention, familiarity, and physical 
characteristics of objects. For example, an object may 
be salient when it has some properties the others do 
not have, such as it is the only one that is highlighted, 
or the only one of a certain size, category, or color 
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(Landragin et al., 2001). Visual salience can also be 
useful in input interpretation, for example, for 
multimodal reference resolution (Kehler 2000) and 
cross-modal coreference interpretation (Byron et al., 
2005).  

We believe that salience modeling should go 
beyond reference resolution. Our view is that the 
salience not only affects the use of referring 
expressions (and thus is useful for interpreting 
referring expressions), but also influences the 
linguistic context of the referring expressions. The 
spoken utterances that contain these expressions tend 
to describe information relating to the salient objects 
(e.g., properties or actions). Therefore, our goal in 
this paper is to take salience modeling a step further 
from reference resolution, towards overall language 
understanding.  

4 

4.1 

A Salience Driven Approach 

The new salience driven approach is based on the 
cognitive theory of Conversation Implicature (Grice 
1975) and earlier empirical findings of user speech 
and gesture behavior in multimodal conversation 
(Oviatt 1999). The theory of Conversation 
Implicature (Grice 1975) states that speakers tend to 
make their contribution as informative as is required 
(for the current purpose of communication) and not 
make their contribution more informative than is 
required. In the context of multimodal conversation 
that involves speech and pen-based gesture, this 
theory indicates that users most likely will not make 
any unnecessary deictic gestures unless those 
gestures help in communicating users’ intention. This 
is especially true since gestures usually take an extra 
effort from a user. When a pen-based gesture is 
intentionally delivered by a user, the information 
conveyed is often a crucial component in 
interpretation (Chai et al., 2005).  

Speech 
Recognition

Language
Understanding

Physical world representation

salient

e1 e2 e3 ……….

P(e)

discourse

Speech
Gesture

Gesture 
Recognition

Gesture
Understanding

Multimodal    Fusion

Semantic  Representation

Figure 2: The salience driven approach: the salience 
distribution calculated from gesture is used to tailor 
language models for spoken language understanding  

Speech and gesture also tend to complement each 
other. For example, when a speech utterance is 
accompanied by a deictic gesture (e.g., point or 
circle) on a graphical display, the speech input tends 
to issue commands or inquiries about properties of 
objects, and the deictic gestures tend to indicate the 
objects of interest. In addition, as shown in (Oviatt 
1999), the deictic gestures often occur before spoken 
utterances. Our previous work (Chai et al., 2004b) 
also showed that 85% of time gestures occurred 
before corresponding speech units. Therefore, 
gestures can be used as an earlier indicator to 
anticipate the content of communication in the 
subsequent spoken utterances.  

Overview 
The general idea of the salience based approach is 
shown in Figure 2. For each application domain, 
there is a physical world representation that captures 
domain knowledge (details are described later). A 
deictic gesture can activate several objects on the 
graphical display. This activation will signal a 
distribution of objects that are salient. The salient 
objects are mapped to the physical world 
representation to indicate a salient part of 
representation that includes relevant properties or 
tasks related to the salient objects. This salient part of 
the physical world is likely to be the potential content 
of the spoken communication, and thus can be used 
to tailor language models for spoken language 
understanding. This process is shown in the middle 
shaded box of Figure 2. It bridges gesture 
understanding and language understanding at a stage 
before multimodal fusion. Note that the use of 
gesture information can be applied at different stages: 
during speech recognition to generate hypotheses or 
post processing of recognized hypotheses before 
language understanding. In this paper, we focus on 
the latter.    

The physical world representation includes the 
following components:  
• Domain Model. This component captures the 
relevant knowledge about the domain including 
domain objects, properties of the objects, relations 
between objects, and task models related to objects. 
Previous studies have shown that domain knowledge 
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can be used to improve spoken language 
understanding (Wai et al, 2001).  Currently, we apply 
a frame-based representation where a frame 
represents an object (or a type of object) in the 
domain and frame elements represent attributes and 
tasks related to the objects. Each frame element is 
associated with a semantic tag which indicates the 
semantic content of that element. In the future, the 
domain model might also include knowledge about 
the interface, for example, visual properties and 
spatial relations between objects on the interface. 

w1 wn…… ……

Time

t2 t3 tn

)(eP
nt)|(

3tgeP

)( 3tntα

)( 2tntα

)( 1tntα

wi wi+1

t1

)|(
2tgeP)|(

1tgeP

Figure 3: Salience modeling: the salience distribution 
at time tn is calculated by a joint effect of gestures 
that happen before tn.  

• Domain Grammar. This component specifies 
grammar and vocabularies used to process language 
inputs. There are two types of representation. The 
first type is a semantics-based context free grammar 
where each non-terminal symbol represents a 
semantic tag (indicating semantic information such as 
the semantic type of an object, etc). Each word (i.e., 
the terminal symbol) in the lexicon relates to one or 
more semantic tags. Some of these semantic tags are 
directly linked to the frame elements in the domain 
model since they represent certain properties or tasks. 
This grammar was manually developed.  

4.2 

The second type of representation is based on 
annotated user spoken utterances. The data are 
annotated in terms of relevant semantic information 
(i.e., using semantic tags) in the utterance and the 
intended objects of interest (which are directly linked 
to the domain model). Based on the annotated data, 
N-grams can be learned to represent the dependency 
of language in our domain.  

Based on the physical world representation, our 
approach supports the following operations:  
Salience modeling. This operation calculates a 
salience distribution of entities in the physical world. 
In our current investigation, we limit the scope of 
entities to a closed set of objects from our physical 
world representation since the system has knowledge 
about those objects. These entities could have 
different salience values depending on whether they 
are visible on the graphical display, gestured by a 
user, or mentioned in the prior conversation. In this 
paper, we focus on the salience modeling using 
gesture information only.  
Salience driven language understanding. This 
operation maps the salience distribution to the 
physical world representation and uses the salient 
world to influence spoken language understanding. 
Note that, in this paper, we are not concerned with 
acoustic models for speech recognition, but rather we 
are interested in the use of the salience distribution to 
prime language models and facilitate language 
understanding. 

Salience Modeling 

We use a vector e
r to represent entities in the physical 

world representation. For each entity e ek
r

∈ , we use 
to represent its salience value at time tn.  For 

all the entities, we use P

)( kt eP
n

)(e
nt
v  to represent a salience 

distribution at time tn. Figure 3 shows a sequence of 
words with corresponding gestures that occur at t1, t2, 
and t3. As shown in Figure 3, the salience distribution 
at any given time tn is influenced by a joint effect 
from this sequence of gestures that happen before tn 
etc. Depending on its time of occurrence, each 
gesture may have a different impact on the salience 
distribution at time tn. Note that although each 
gesture may have a short duration, here we only 
consider the beginning time of a gesture. Therefore, 
for an entity ek, its salience value at time tn is 
computed as follows: 
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              (1) 

In Equation (1), m (m ≥ 1) is the number of 
gestures that have occurred before tn. The different 
impact of a gesture g  at time ti that contributes to 
the salience distribution at time tn is represented as 
the weight 

it

)(
in tt gα in Equation (1). Currently, we 

calculate the weight depending on the temporal 
distance as follows:  

)(]
2000

)(
exp[)( in

in
tt tt

tt
g

in
≥

−−
=α             (2) 

Equation (2) indicates that at a given time tn 
(measured in milliseconds), the closer a gesture (at ti) 
is to the time tn, the higher impact this gesture has on 
the salience distribution (Chai et al., 2004b).  

It is worth mentioning that a deictic gesture on the 
graphic display (e.g., pointing and circling) could 
have ambiguous interpretation by itself. For example, 
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given an interface, a point or a circle on the screen 
could result in selection of different entities with 
different probabilities. Therefore, in Equation (1), 

is the selection probability which indicates 
the likelihood of selecting an entity e given a gesture 
at time ti. This selection probability is calculated by a 
function of the distance between the location of the 
entity and the focus point of the recognized gesture 
on the display (Chai et al., 2004a). A normalization 
factor is incorporated to ensure that the summation of 
selection probabilities over all possible entities adds 
up to one.  

( | )
it

P e g

When no gesture is involved in a given input, the 
salience distribution at any given time is a uniform 
distribution. If one or more gestures are involved, 
then Equation (1) is used to calculate the salience 
distribution.  

4.3 

P W

Salience Driven Spoken Language 
Understanding 

The salience distribution of entities identified based 
on the gesture information (as described above) is 
used to constrain hypotheses for language 
understanding. More specifically, for each onset of a 
spoken word at time t (i.e., the beginning time stamp 
of a spoken word), the salience distribution at t can 
be calculated based on a sequence of gestures that 
happen before t by Equation (1). This salience 
distribution can then be used to prime language 
models for spoken language processing.   

Language Modeling 
We first give a brief background of language 
modeling. Given an observed speech utterance O, the 
goal of speech recognition is to find a sequence of 
words W* so that W P , 
where P(O|W) is the acoustic model and P(W) is the 
language model. In traditional speech recognition 
systems, the acoustic model provides the probability 
of observing the acoustic features given hypothesized 
word sequences and the language model provides the 
probability of a sequence of words. The language 
model is computed as follows: 

* arg max ( | ) ( )O W=

)|()...|()|()()( 1
12131211
−= n

n
n wwPwwwPwwPwPwP          

Using the Markov assumption, the language model 
can be approximated by a bigram model as in: 

∏
=

−=
n

i
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n wwPwP
1
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To improve the speech understanding results for 
spoken language interfaces, many systems have 

applied a loosely-integrated approach which 
decouples the language model from the acoustic 
model (Zue et al., 1991, Harper et al., 2000). This 
allows the development of powerful language models 
independent of the acoustic model, for example, 
utilizing topics of the utterances (Gildea and 
Hofmann 1999), syntactic or semantic labels 
(Heeman 1999), and linguistic structures (Chelba and 
Jelinek 2000, Wang and Harper 2002). Recently, we 
have seen work on language understanding based on 
environment (Schuler 2003) and language modeling 
using visual context (Roy and Mukherjee 2005). Our 
salience driven approach is inspired by this earlier 
work. Here, we do not address the acoustic model of 
speech recognition, but rather incorporate the 
salience distribution for language modeling. In 
particular, our focus is on investigating the effect of 
incorporating additional information from other 
modalities (e.g., gesture) with traditional language 
models.   

Primed Language Model 
The calculated salience distribution is used to prime 
the language model. More specifically, we use a 
class-based bigram model from (Brown et al, 1992):  

)|()|()|( 11 −− = iiiiii ccPcwPwwP                 (3) 
In Equation (3), ci is the class of the word wi, 

which could be a syntactic class or a semantic class. 
is the class transition probability, which 

reflects the grammatical formation of utterances. 
is the word class probability which 

measures the probability of seeing a word wi given a 
class ci. The class-based N-gram model can make 
better use of limited training data by clustering words 
into classes. A number of researchers have shown 
that the class-based N-gram model can successfully 
improve the performance of speech recognition 
(Jelinek 1990, Heeman 1999, Kneser and Ney 1993, 
Samuelsson and Reichl, 1999). 

)|( 1−ii ccP

)|( ii cwP

In our approach, the “class” used in the class-
based bigram model comes from combined semantic 
and functional classes designed for our domain. For 
example, “this” is tagged as Demonstrative, and 
“price” is tagged as AttrPrice. As shown in Equation 
(3), there are two types of parameter estimation. In 
terms of the class transition probability, as in earlier 
work, we directly use the annotated data. In terms of 
the word class distribution, we incorporate the notion 
of salience. We use the salience distribution to 
dynamically adjust the world class probability 

 as follows: )|( ii cwP

221



)(
)|(

)|,(
)|( kt

ee ki

kii
ii eP

ecP
ecwP

cwP
i

k

∑
∈

=
v

               (4) User  
index 

# of  
Inputs 

# inputs 
w/o gesture 

Baseline 
WER 

1 21 0 0.287 
2 31 0 0.335 
3 27 0 0.399 
4 10 0 0.680 
5 8 1 0.200 
6 36 0 0.387 
7 18 0 0.250 
8 25 1 0.278 
9 23 0 0.482 
10 11 0 0.117 
11 16 3 0.255 

Table 1: Related information about the evaluation 
data: user type, the number of turns per user, and the 
baseline word recognition rate.  

In Equation (4), P  is the salience value for an 
entity  at time ti (the onset of the spoken word wi), 
which can be calculated by Equation (1).  Equation 
(4) indicates that only information associated with the 
salient entities is used to estimate the word class 
distribution. In other words, the word class 
probability favors the salient physical world as 
indicated by the salience distribution

)( kt e
i

ke

)(eP
it
v . More 

specifically, at time  ti, given a semantic class ci, the 
choice of word “wi” is dependent on the salient 
physical world at the moment, which is represented 
as the salience distribution )(eP

it
v at time ti. For all wi, 

the summation of this word class probability is equal 
to one. Furthermore, given an entity ,  
and  are not dependent on time ti, but rather 
on the domain and the use of language expressions. 
Therefore they can be estimated based on the training 
data that are annotated in terms of semantic 
information and the intended objects of interest (as 
discussed in Section 4.1). Since the annotated data is 
very limited, the sparse data can become a problem 
for the maximum likelihood estimation. Therefore, a 
smoothing technique based on the Katz backoff 
model (Katz, 1987) is applied. For example, to 
calculate , if a word wi has one or more 
occurrences in the training data associated with the 
class ci and the entity , then its count is discounted 
by a fraction in the maximum likelihood estimation. 
If wi does not occur, then this approach backs off to 
the domain grammar and redistributes the remaining 
probability mass uniformly among words in the 
lexicon that are linked with class ci and entity e . 
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Evaluation 

We evaluated the salience model during post 
processing recognized hypotheses. Given possible 
hypotheses from a speech recognizer, we use the 
salience-based language model to identify the most 
likely sequence of words. The salience distribution 
based on gesture was used to favor words that are 
consistent with the attention indicated by gestures. 

The data collected from our previous user studies 
were used in our evaluation (Chai et al., 2004b). In 
these studies, users interacted with our multimodal 
interface using both speech and deictic gestures to 
find information about real estate properties. In 
particular, each user was asked to accomplish five 

tasks. Each of these tasks required the user to retrieve 
different types of information from our interface. For 
example, one task was to find the least expensive 
house in the most populated town. The data were 
recorded from eleven subjects including five non-
native speakers and six native speakers. Each user’s 
voice was individually trained before the study. Table 
1 shows the relevant information about the data such 
as the total number of inputs (or turns) from each 
subject, the number of speech alone inputs without 
any gesture, and the baseline recognition results 
without using salience-based post processing in terms 
of the word error rate (WER).  In total, we have 
collected 226 user inputs with an average of eight 
words per spoken utterance1. As shown in Table 1, 
the majority of inputs consisted of both speech and 
gesture. Since currently we only use gesture 
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Figure 5: Comparison of the baseline and the result 
from post-processing in terms of WER  

 
1 The difference between the number of user inputs reported 
here and that in (Chai et al., 2004b) was caused by the situa-
tion where one intended user input (which was the unit for 
counting in our previous work) was split into a couple turns 
(which constitute the new counts here).  
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information in salience modeling, our approach will 
not affect speech only inputs.  

To train the salience-based model, we applied the 
leave-one-out approach. The data from each user was 
held out as the testing data and the remaining users 
were used as the training data to acquire relevant 
probability estimations in Equation (3) and (4).  

Figure 5 shows the comparison results between 
the baseline and the salience-based model in terms of 
word error rate (WER). The word error rate as a 
result of salience-based post processing is 
significantly better than that from the baseline 
recognizer (t = 4.75, p < 0.001). The average WER 
reduction is about 12%.   

We further evaluated how the salience based 
model affects the final understanding results. This is 
because an improvement in WER may not directly 
lead to an improvement in understanding. We applied 
our semantic grammar on a sequence of words 
resulting from both the baseline and the salience-
based post-processing to identify key concepts. In 
total, there were 686 concepts from the transcribed 
speech utterances. Table 2 shows the evaluation 
results. Precision measures the percentage of correctly 
identified concepts out of the total number of 
concepts identified based on a sequence of words. 
Recall measures the percentage of correctly identified 
concepts out of the total number of intended concepts 
from user’s utterance. F-measurement combines 
precision and recall together as follows: 

1,
RecallPrecision

RecallPrecision)1(
2

2
=

+

××+
= β

β
β whereF .  

Table 2 shows that, on average, the concept 
identification based on the word sequence resulting 
from the salience-based approach performs better 
than the baseline in terms of both precision and 
recall. Figure 6 provides two examples to show the 
difference between the baseline recognition and the 
salience-based post processing.   

The evaluation reported here is only an initial step 
based on a limited domain. The small scale in the 
number of objects and the vocabulary size can only 
demonstrate the potential of the salience-based 
approach to a limited degree.  To further understand 
the advantages and issues of this approach, we are 
currently working on a more complex domain with 
richer concepts and relations, as well as larger 
vocabularies.  

It is worth mentioning that the goal of this work is 
to explore whether salience modeling based on other 
modalities (e.g., gesture) can be used to prime 
traditional language models to facilitate spoken 

language processing. The salience driven approach 
based on additional modalities can be combined with 
more sophisticated language modeling (e.g., better 
parameter estimation) in the future.  

Example 1:
Transcription: What is the population of this town
Baseline recognition: What is the publisher of this time
Salience-based processing: what is the population of this town

Example 2:
Transcription: How much is this gray house
Baseline recognition: How much is this great house
Salience-based processing: How much is this gray house

Figure 6: Examples of utterances with baseline recogni-
tion and improved recognition from the salience-based 
processing.  

User # Baseline Salience-based 

Precision 80.3% 84.6% 

Recall 75.7% 83.8% 

F-measure 77.9% 84.2% 

Table2. Overall concept identification comparison 
between the baseline and the salience driven model. 

6 Conclusion and Future Work 

This paper presents a new salience driven approach 
to robust input interpretation in multimodal 
conversational systems. This approach takes 
advantage of rich information from multiple 
modalities. Information from deictic gestures is used 
to identify a part of the physical world that is salient 
at a given point of communication. This salient part 
of the physical world is then used to prime language 
models for spoken language understanding. Our 
experimental results have shown the potential of this 
approach in reducing word error rate and improving 
concept identification from spoken utterances in our 
application. Although currently we have only 
investigated the use of gesture information in salience 
modeling, the salience driven approach can be 
extended to include other modalities (e.g., eye gaze) 
and information (e.g., conversation context). Our 
future work will specifically investigate how to 
combine information from multiple sources in 
salience modeling and how to apply the salience 
models in different early stages of processing.  
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Abstract 

We describe the error handling architect-
ture underlying the RavenClaw dialog 
management framework. The architecture 
provides a robust basis for current and fu-
ture research in error detection and recov-
ery. Several objectives were pursued in its 
development: task-independence, ease-of-
use, adaptability and scalability. We de-
scribe the key aspects of architectural de-
sign which confer these properties, and 
discuss the deployment of this architect-
ture in a number of spoken dialog systems 
spanning several domains and interaction 
types. Finally, we outline current research 
projects supported by this architecture. 

1 Introduction 

Over the last decade, improvements in speech rec-
ognition and other component technologies have 
paved the way for the emergence of complex task-
oriented spoken dialog systems. While traditionally 
the research community has focused on building 
information-access and command-and-control 
systems, recent efforts aim towards building more 
sophisticated language-enabled agents, such as 
personal assistants, interactive tutors, open-domain 
question answering systems, etc. At the other end 
of the complexity spectrum, simpler systems have 
already transitioned into day-to-day use and are 
becoming the norm in the phone-based customer-
service industry. 

Nevertheless, a number of problems remain in 
need of better solutions. One of the most important 
limitations in today’s spoken language interfaces is 

their lack of robustness when faced with under-
standing errors. This problem appears across all 
domains and interaction types, and stems primarily 
from the inherent unreliability of the speech recog-
nition process. The recognition difficulties are 
further exacerbated by the conditions under which 
these systems typically operate: spontaneous spe-
ech, large vocabularies and user populations, and 
large variability in input line quality. In these set-
tings, average word-error-rates of 20-30% (and up 
to 50% for non-native speakers) are quite common. 

Left unchecked, speech recognition errors can 
lead to two types of problems in a spoken dialog 
system: misunderstandings and non-understand-
ings. In a misunderstanding, the system obtains an 
incorrect semantic interpretation of the user’s turn. 
In the absence of robust mechanisms for assessing 
the reliability of the decoded inputs, the system 
will take the misunderstanding as fact and will act 
based on invalid information. In contrast, in a non-
understanding the system fails to obtain an inter-
pretation of the input altogether. Although no false 
information is incorporated in this case, the situa-
tion is not much better: without an appropriate set 
of recovery strategies and a mechanism for diag-
nosing the problem, the system’s follow-up options 
are limited and uninformed. In general, unless 
mitigated by accurate error awareness and robust 
recovery mechanisms, speech recognition errors 
exert a strong negative impact on the quality and 
ultimately on the success of the interactions (Sand-
ers et al, 2002). 

Two pathways towards increased robustness 
can be easily envisioned. One is to improve the 
accuracy of the speech recognition process. The 
second is to create mechanisms for detecting and 
gracefully handling potential errors at the conver-
sation level. Clearly, these two approaches do not 
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stand in opposition and a combined effort would 
lead to the best results. The error handling archi-
tecture we describe in this paper embodies the sec-
ond approach: it aims to provide the mechanisms 
for robust error handling at the dialog management 
level of a spoken dialog system. 

The idea of handling errors through conversa-
tion has already received a large amount of atten-
tion from the research community. On the theore-
tical side, several models of grounding in commu-
nication have been proposed (Clark and Schaefer, 
1989; Traum, 1998). While these models provide 
useful insights into the grounding process as it 
happens in human-human communication, they 
lack the decision-making aspects required to drive 
the interaction in a real-life spoken dialog system. 
In the Conversational Architectures project, Paek 
and Horvitz (2000) address this challenge by de-
veloping a computational implementation of the 
grounding process using Bayesian belief networks. 
However, questions still remain: the structure and 
parameters of the belief networks are handcrafted, 
as are the utilities for the various grounding ac-
tions; due to scalability and task-representation 
issues, it is not known yet how the proposed ap-
proach would transfer and scale to other domains.  

Three ingredients are required for robust error 
handling: (1) the ability to detect the errors, (2) a 
set of error recovery strategies, and (3) a 
mechanism for engaging these strategies at the 
appropriate time. For some of these issues, various 
solutions have emerged in the community. For 
instance, systems generally rely on recognition 
confidence scores to detect potential misunder-
standings (e.g. Krahmer et al., 1999; Walker et al., 
2000) and use explicit and implicit confirmation 
strategies for recovery. The decision to engage 
these strategies is typically based on comparing the 
confidence score against manually preset thresh-
olds (e.g. Kawahara and Komatani, 2000). For 
non-understandings, detection is less of a problem 
(systems know by definition when non-understand-
ings occur). Strategies such as asking the user to 
repeat or rephrase, providing help, are usually en-
gaged via simple heuristic rules. 

At the same time, a number of issues remain 
unsolved: can we endow systems with better error 
awareness by integrating existing confidence an-
notation schemes with correction detection mecha-
nisms? Can we diagnose the non-understanding 
errors on-line? What are the tradeoffs between the 

various non-understanding recovery strategies? 
Can we construct a richer set of such strategies? 
Can we build systems which automatically tune 
their error handling behaviors to the characteristics 
of the domains in which they operate? 

We have recently engaged in a research pro-
gram aimed at addressing such issues. More gener-
ally, our goal is to develop a task-independent, 
easy-to-use, adaptive and scalable approach for 
error handling in task-oriented spoken dialog sys-
tems. As a first step in this program, we have 
developed a modular error handling architecture, 
within the larger confines of the RavenClaw dialog 
management framework (Bohus and Rudnicky, 
2003). The proposed architecture provides the in-
frastructure for our current and future research on 
error handling. In this paper we describe the pro-
posed architecture and discuss the key aspects of 
architectural design which confer the desired prop-
erties. Subsequently, we discuss the deployment of 
this architecture in a number of spoken dialog sys-
tems which operate across different domains and 
interaction types, and we outline current research 
projects supported by the proposed architecture. 

2 RavenClaw Dialog Management 

We begin with a brief overview of the RavenClaw 
dialog management framework, as it provides the 
larger context for the error handling architecture.  

RavenClaw is a dialog management framework 
for task-oriented spoken dialog systems. To date, it 
has been used to construct a large number of sys-
tems spanning multiple domains and interaction 
types (Bohus and Rudnicky, 2003): information 
access (RoomLine, the Let’s Go Bus Information 
System), guidance through procedures (LARRI), 
command-and-control (TeamTalk), taskable agents 
(Vera). Together with these systems, RavenClaw 
provides the larger context as well as a test-bed for 
evaluating the proposed error handling architec-
ture. More generally, RavenClaw provides a robust 
basis for research in various other aspects of dialog 
management, such as learning at the task and dis-
course levels, multi-participant dialog, timing and 
turn-taking, etc. 

A key characteristic of the RavenClaw frame-
work is the separation it enforces between the do-
main-specific and domain-independent aspects of 
dialog control. The domain-specific dialog control 
logic is described by a Dialog Task Specification, 
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essentially a hierarchical dialog plan provided by 
the system author. A fixed, domain-independent 
Dialog Engine manages the conversation by exe-
cuting the given Dialog Task Specification. In the 
process, the Dialog Engine also contributes a set of 
domain-independent conversational skills, such as 
error handling (discussed extensively in Section 4), 
timing and turn-taking, etc. The system authoring 
effort is therefore minimized and focused entirely 
on the domain-specific aspects of dialog control. 

2.1 The Dialog Task Specification 

A Dialog Task Specification consists of a tree of 
dialog agents, where each agent manages a sub-
part of the interaction. Figure 1 illustrates a portion 
of the dialog task specification from RoomLine, a 
spoken dialog system which can assist users in 
making conference room reservations. The root 
node subsumes several children: Welcome, which 
produces an introductory prompt, GetQuery which 
obtains the time and room constraints from the 
user, DoQuery which performs the database query, 
and DiscussResults which handles the follow-up 
negotiation dialog. Going one level deeper in the 
tree, GetQuery contains GetDate which requests the 
date for the reservation, GetStartTime and GetEnd-
Time which request the times, and so on. This type 
of hierarchical task representation has a number of 
advantages: it scales up gracefully, it can be 
dynamically extended at runtime, and it implicitly 
captures a notion of context in dialog.  

The agents located at the leaves of the tree are 
called basic dialog agents, and each of them im-
plements an atomic dialog action (dialog move). 
There are four types of basic dialog agents: Inform 
– conveys information to the user (e.g. Welcome), 
Request – asks a question and expects an answer 
(e.g. GetDate), Expect – expects information with-
out explicitly asking for it, and EXecute – imple-
ments a domain specific operation (e.g. DoQuery). 
The agents located at non-terminal positions in the 
tree are called dialog agencies (e.g. RoomLine, 
GetQuery). Their role is to plan for and control the 
execution of their sub-agents. For each agent in the 
tree, the system author may specify preconditions, 
completion criteria, effects and triggers; various 
other functional aspects of the dialog agents (e.g. 
state-specific language models for request-agents, 
help-prompts) are controlled through parameters. 

The information the system acquires and ma-
nipulates in conversation is captured in concepts, 
associated with various agents in the tree (e.g. date, 
start_time). Each concept maintains a history of 
previous values, information about current candi-
date hypotheses and their associated confidence 
scores, information about when the concept was 
last updated, as well as an extended set of flags 
which describe whether or not the concept has 
been conveyed to the user, whether or not the con-
cept has been grounded, etc. This rich representa-
tion provides the necessary support for concept-
level error handling. 

Dialog Stack 

Dialog Engine 

Dialog Task 
Specification 

Expectation Agenda 

start_time: [start_time] [time] 
date: [date] 
start_time: [start_time] [time] 
end_time: [end_time] [time] 
date: [date] 
start_time: [start_time] [time] 
end_time: [end_time] [time] 
location: [location] 
network: [with_network]->true,  
                [without_network]->false 
… … … 

System: For when do you need the room? 
User:  let’s try two to four p.m. 
Parse:  [time](two) [end_time](to four pm) 

User Input 

RoomLine 

GetQuery 

GetStartTime 

date 

end_time start_time 

RoomLine 

I: Welcome GetQuery 

R: GetDate 

Start-Over 

R: GetStartTime R: GetEndTime 

DiscussResults X: DoQuery 

Figure 1: RavenClaw architecture 
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2.2 The Dialog Engine 

The Dialog Engine is the core domain-independent 
component which manages the interaction by exe-
cuting a given Dialog Task Specification. The con-
trol algorithms are centered on two data-structures: 
a dialog stack, which captures the dialog structure 
at runtime, and an expectation agenda, which cap-
tures the system’s expectations for the user input at 
each turn in the dialog. The dialog is controlled by 
interleaving Execution Phases with Input Phases. 

During an Execution Phase, dialog agents from 
the tree are placed on, and executed from the dia-
log stack. At the beginning of the dialog, the root 
agent is placed on the stack. Subsequently, the en-
gine repeatedly takes the agent on the top of the 
stack and executes it. When dialog agencies are 
executed, they typically schedule one of their sub-
agents for execution by placing it on the stack. The 
dialog stack will therefore track the nested struc-
ture of the dialog at runtime. Ultimately, the execu-
tion of the basic dialog agents on the leaves of the 
tree generates the system’s responses and actions. 

During an Input Phase, the system assembles 
the expectation agenda, which captures what the 
system expects to hear from the user in a given 
turn. The agenda subsequently mediates the trans-
fer of semantic information from the user’s input 
into the various concepts in the task tree. For the 
interested reader, these mechanisms are described 
in more detail in (Bohus and Rudnicky, 2003) 

Additionally, the Dialog Engine automatically 
provides a number of conversational strategies, 
such as the ability to handle various requests for 
help, repeating the last utterance, suspending and 
resuming the dialog, starting over, reestablishing 
the context, etc. These strategies are implemented 
as library dialog agencies. Their corresponding 
sub-trees are automatically added to the Dialog 
Task Specification provided by the system author 
(e.g. the Start-Over agency in Figure 1.) The auto-
matic availability of these strategies lessens devel-
opment efforts and ensures a certain uniformity of 
behavior both within and across tasks. 

3 The Error Handling Architecture 

The error handling architecture in the RavenClaw 
dialog management framework subsumes two 
main components: (1) a set of error handling 
strategies (e.g. explicit and implicit confirmation, 

asking the user to repeat, etc.) and (2) an error 
handling process which engages these strategies. 

The error handling strategies are implemented 
as library dialog agents. The decision process 
which engages these strategies is part of the Dialog 
Engine. This design, in which both the strategies 
and the decision process are decoupled from the 
dialog task, as well as from each other, provides a 
number of advantages. First, it ensures that the er-
ror handling mechanisms are reusable across dif-
ferent dialog systems. Second, the approach 
guarantees a certain uniformity and consistency in 
error handling behaviors both within and across 
systems. Third, as new error handling strategies are 
developed, they can be easily plugged into any ex-
isting system. Last, but not least, the approach sig-
nificantly lessens the system authoring effort by 
allowing developers to focus exclusively on de-
scribing the dialog control logic. 

The responsibility for handling potential under-
standing errors1 is delegated to the Error Handling 
Process which runs in the Dialog Engine (see Fig-
ure 2). At each system turn, this process collects 
evidence and makes a decision with respect to en-
gaging any of the error handling strategies. When 
necessary, it will insert an error handling strategy 
on the dialog stack (e.g. the ExplicitConfirm 
(start_time) strategy in Figure 2), thus modifying 
on-the-fly the task originally specified by the sys-
tem author. The strategy executes and, once com-
pleted, it is removed from the stack and the dialog 
resumes from where it was left off. 
                                                           
1 Note that the proposed framework aims to handle 
understanding errors. The corresponding strategies are generic 
and can be applied in any domain. Treatment of domain or 
task-specific errors (e.g. database access error, etc) still needs 
to be implemented as part of the dialog task specification.  

Error Handling 
Strategies 

Error Handling  
Process 

Explicit  
Confirm 

RoomLine 

GetQuery 

GetStartTime 

ExplicitConfirm 
(start_time) 

Dialog Stack 

Evidence 

Figure 2: Error Handling – Block Diagram 
 

Dialog Task Specification 
 
Dialog Engine 
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3.1 Error Handling Strategies 

The error handling strategies can be divided into 
two groups: strategies for handling potential mis-
understandings and strategies for handling non-
understandings. 

For handling potential misunderstandings, three 
strategies are currently available: Explicit Confir-
mation, Implicit Confirmation and Rejection. 

For non-understandings, a larger number of er-
ror recovery strategies are currently available: 
AskRepeat – the system asks the user to repeat; 
AskRephrase – the system asks the user to re-
phrase; Reprompt – the system repeats the previous 
prompt; DetailedReprompt – the system repeats a 
more verbose version of the previous prompt, 
Notify – the system simply notifies the user that a 
non-understanding has occurred; Yield – the sys-
tem remains silent, and thus implicitly notifies the 
user that a non-understanding has occurred; 
MoveOn – the system tries to advance the task by 
giving up on the current question and moving on 
with an alternative dialog plan (note that this strat-
egy is only available at certain points in the dia-
log); YouCanSay – the system gives an example of 
what the user could say at this point in the dialog; 
FullHelp – the system provides a longer help mes-
sage which includes an explanation of the current 
state of the system, as well as what the user could 
say at this point. An in-depth analysis of these 
strategies and their relative tradeoffs is available in 
(Bohus and Rudnicky, 2005a). Several sample 
dialogs illustrating these strategies are available 
on-line (RoomLine, 2003).  

3.2 Error Handling Process 

The error handling decision process is imple-
mented in a distributed fashion, as a collection of 
local decision processes. The Dialog Engine auto-
matically associates a local error handling process 
with each concept, and with each request agent in 
the dialog task tree, as illustrated in Figure 3. The 
error handling processes running on individual 
concepts are in charge of recovering from misun-
derstandings on those concepts. The error handling 
processes running on individual request agents are 
in charge or recovering from non-understandings 
on the corresponding requests.  

At every system turn, each concept- and 
request-agent error handling process computes and 
forwards its decision to a gating mechanism, which 
queues up the actions (if necessary) and executes 
them one at a time. For instance, in the example in 
Figure 3, the error handling decision process for 
the start_time concept decides to engage an explicit 
confirmation on that concept, while the other deci-
sion processes do not take any action. In this case 
the gating mechanism creates a new instance of an 
explicit confirmation agency, passes it the pointer 
to the concept to be confirmed (start_time), and 
places it on the dialog stack. On completion, the 
strategy updates the confidence score of the con-
firmed hypothesis in light of the user response, and 
the dialog resumes from where it was left off.  

The specific implementation of the local deci-
sion processes constitutes an active research issue. 
Currently, they are modeled as Markov Decision 
Processes (MDP). The error handling processes 
running on individual concepts (concept-MDPs in 

end_time 

date 

start_time 

Explicit Confirm 

No Action 

Figure 3: A Distributed Error Handling Process 
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Figure 3) are partially-observable MDPs, with 3 
underlying hidden states: correct, incorrect and 
empty. The belief state is constructed at each time 
step from the confidence score of the top-hypothe-
sis for the concept. For instance, if the top 
hypothesis for the start_time concept is 10 a.m. with 
confidence 0.76, then the belief state for the 
POMDP corresponding to this concept is: 
{P(correct)=0.76, P(incorrect)=0.24, P(empty)=0}. 
The action-space for these models contains the 
three error recovery strategies for handling poten-
tial misunderstandings, and no-action. The third 
ingredient in the model is the policy.  A policy de-
fines which action the system should take in each 
state, and is indirectly described by specifying the 
utility of each strategy in each state. Currently, a 
number of predefined policies (e.g. always-
explicit-confirm, pessimistic, and optimistic) are 
available in the framework. Alternatively, system 
authors can specify and use their own policies. 

The error handling processes running on re-
quest agents (request-MDPs in Figure 3) are in 
charge of handling non-understandings on those 
requests. Currently, two types of models are avail-
able for this purpose. The simplest model has three 
states: non-understanding, understanding and 
inactive. A second model also includes information 
about the number of consecutive non-understand-
ings that have already happened. In the future, we 
plan to identify more features which carry useful 
information about the likelihood of success of in-
dividual recovery strategies and use them to create 
more complex models. The action-space is defined 
by the set of non-understanding recovery strategies 
presented in the previous subsection, and no-
action. Similar to the concept-MDPs, a number of 
default policies are available; alternatively, system 
authors can specify their own policy for engaging 
the strategies. 

While the MDP implementation allows us to 
encode various expert-designed policies, our ulti-
mate goal is to learn such policies from collected 
data using reinforcement learning. Reinforcement 
learning has been previously used to derive dialog 
control policies in systems operating with small 
tasks (Scheffler and Young, 2002; Singh et al, 
2000). The approaches proposed to date suffer 
however from one important shortcoming, which 
has so far prevented their use in large, practical 
spoken dialog systems. The problem is lack of 
scalability: the size of the state space grows very 

fast with the size of the dialog task, and this ren-
ders the approach unfeasible in complex domains. 
A second important limitation of reinforcement 
learning techniques proposed to date is that the 
learned policies cannot be reused across tasks. For 
each new system, a new MDP has to be con-
structed, new data has to be collected, and a new 
training phase is necessary. This requires a signifi-
cant amount of expertise and effort from the sys-
tem author. 

We believe that the error handling architecture 
we have described addresses these issues in several 
ways. The central idea behind the distributed na-
ture of the approach is to keep the learning prob-
lem tractable by leveraging independence relation-
ships between different parts of the dialog. First, 
the state and action-spaces can be maintained rela-
tively small since we are only focusing on making 
error handling decisions (as opposed to other dia-
log control decisions). A more complex task 
translates into a larger number of MDP instantia-
tions rather than a more complex model structure. 
Second, both the model structure and parameters 
(i.e. the transition probabilities) can be tied across 
models: for instance the MDP for grounding the 
start_time concept can be identical to the one for 
grounding the end_time concept; all models for 
grounding Yes/No concepts could be tied together, 
etc. Model tying has the potential to greatly im-
prove scalability since data is polled together and 
the total number of model parameters to be learned 
grows sub-linearly with the size of the task. Third, 
since the individual MDPs are decoupled from the 
actual system task, the policies learned in a par-
ticular system can potentially be reused in other 
systems (e.g. we expect that grounding yes/no con-
cepts functions similarly at different locations in 
the dialog, and across domains). Last but not least, 
the approach can easily accommodate dynamic 
task generation. In traditional reinforcement 
learning approaches the state and action-spaces of 
the underlying MDP are task-specific. The task 
therefore has to be fixed, known in advance: for 
instance the slots that the system queries the user 
about (in a slot-filling system) are fixed. In con-
trast, in the RavenClaw architecture, the dialog 
task tree (e.g. the dialog plan) can be dynamically 
expanded at runtime with new questions and con-
cepts, and the corresponding request- and concept-
MDPs are automatically created by the Dialog En-
gine. 
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4 Deployment and Current Research 

While a quantitative evaluation of design charac-
teristics such as task-independence, scalability, and 
ease-of-use is hard to perform, a first-order empiri-
cal evaluation of the proposed error handling ar-
chitecture can be accomplished by using it in 
different systems and monitoring the system au-
thoring process and the system’s operation.  

To date, the architecture has been successfully 
deployed in three different spoken dialog systems. 
A first system, RoomLine (2003), is a phone-based 
mixed-initiative system that assists users in making 
conference room reservations on campus. A sec-
ond system, the Let’s Go! Bus Information System 
(Raux et al, 2005), provides information about bus 
routes and schedules in the greater Pittsburgh area 
(the system is available to the larger public). Fi-
nally, Vera is a phone-based taskable agent that 
can be instructed to deliver messages to a third 
party, make wake-up calls, etc. Vera actually con-
sists of two dialog systems, one which handles in-
coming requests (Vera In) and one which performs 
message delivery (Vera Out). In each of these sys-
tems, the authoring effort with respect to error 
handling consisted of: (1) specifying which models 
and policies should be used for the concepts and 
request-agents in the dialog task tree, and (2) 
writing the language generation prompts for ex-
plicit and implicit confirmations for each concept.  

Even though the first two systems operate in 
similar domains (information access), they have 
very different user populations: students and fac-
ulty on campus in the first case versus the entire 

Pittsburgh community in the second case. As a 
result, the two systems were configured with dif-
ferent error handling strategies and policies (see 
Table 1). RoomLine uses explicit and implicit con-
firmations with an optimistic policy to handle po-
tential misunderstandings. In contrast, the Let’s Go 
Public Bus Information System always uses ex-
plicit confirmations, in an effort to increase robust-
ness (at the expense of potentially longer dialogs). 
For non-understandings, RoomLine uses the full 
set of non-understanding recovery strategies pre-
sented in section 3.1. The Let’s Go Bus Informa-
tion system uses the YouCanSay and FullHelp 
strategies. Additionally a new GoToAQuieterPlace 
strategy was developed for this system (and is now 
available for use into any other RavenClaw-based 
system). This last strategy asks the user to move to 
a quieter place, and was prompted by the observa-
tion that a large number of users were calling the 
system from noisy environments. 

While the first two systems were developed by 
authors who had good knowledge of the Raven-
Claw dialog management framework, the third sys-
tem, Vera, was developed as part of a class project, 
by a team of six students who had no prior experi-
ence with RavenClaw. Modulo an initial lack of 
documentation, no major problems were encoun-
tered in configuring the system for automatic error 
handling. Overall, the proposed error handling ar-
chitecture adapted easily and provided the desired 
functionality in each of these domains: while new 
strategies and recovery policies were developed for 
some of the systems, no structural changes were 
required in the error handling architecture. 

Table 1: Spoken dialog systems using the RavenClaw error handling architecture 

 RoomLine Let’s Go Public Vera In / Out 
Domain room reservations bus route information task-able agent 
Initiative type mixed system mixed / mixed 
Task size: #agents ; #concepts 110 ; 25 57 ; 19 29 ; 4 / 31 ; 13 
Strategies for misunderstandings explicit and implicit explicit explicit and implicit / 

explicit only 
Policy for misunderstandings optimistic always-explicit optimistic /  

always-explicit 
Strategies for non-understandings all strategies 

(see Section 3.1) 
go-to-quieter-place, 
you-can-say, help 

all strategies /  
repeat prompt 

Policy for non-understandings choose-random author-specified  
heuristic policy 

choose-random /  
always-repeat-prompt 

Sessions collected so far 1393 2836 72 / 131 
Avg. task success rate 75% 52% (unknown) 
% Misunderstandings 17% 28% (unknown) 
% Non-understandings 13% 27% (unknown) 
% turns when strategies engage 41% 53% 36% / 44% 
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5 Conclusion and Future Work 

We have described the error handling architecture 
underlying the RavenClaw dialog management 
framework. Its design is modular: the error han-
dling strategies as well as the mechanisms for en-
gaging them are decoupled from the actual dialog 
task specification. This significantly lessens the 
development effort: system authors focus exclu-
sively on the domain-specific dialog control logic, 
and the error handling behaviors are generated 
transparently by the error handling process running 
in the core dialog engine. Furthermore, we have 
argued that the distributed nature of the error han-
dling process leads to good scalability properties 
and facilitates the reuse of policies within and 
across systems and domains.  

The proposed architecture represents only the 
first (but an essential step) in our larger research 
program in error handling. Together with the sys-
tems described above, it sets the stage for a number 
of current and future planned investigations in er-
ror detection and recovery. For instance, we have 
recently conducted an extensive investigation of 
non-understanding errors and the ten recovery 
strategies currently available in the RavenClaw 
framework. The results of that study fall beyond 
the scope of this paper and are presented separately 
in (Bohus and Rudnicky, 2005a). In another pro-
ject supported by this architecture, we have devel-
oped a model for updating system beliefs over 
concept values in light of initial recognition confi-
dence scores and subsequent user responses to 
system actions. Initially, our confirmation strate-
gies used simple heuristics to update the system’s 
confidence score for a concept in light of the user 
response to the verification question. We have 
showed that a machine learning based approach 
which integrates confidence information with cor-
rection detection information can be used to con-
struct significantly more accurate system beliefs 
(Bohus and Rudnicky, 2005b). Our next efforts 
will focus on using reinforcement learning to 
automatically derive the error recovery policies. 
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Abstract

We identify a set of prosodic cues for parsing con-

versational speech and show how such features can

be effectively incorporated into a statistical parsing

model. On the Switchboard corpus of conversa-

tional speech, the system achieves improved parse

accuracy over a state-of-the-art system which uses

only lexical and syntactic features. Since removal

of edit regions is known to improve downstream

parse accuracy, we explore alternatives for edit de-

tection and show that PCFGs are not competitive

with more specialized techniques.

1 Introduction

For more than a decade, the Penn Treebank’s Wall
Street Journal corpus has served as a benchmark for
developing and evaluating statistical parsing tech-
niques (Collins, 2000; Charniak and Johnson, 2005).
While this common benchmark has served as a valu-
able shared task for focusing community effort, it
has unfortunately led to the relative neglect of other
genres, particularly speech. Parsed speech stands to
benefit from practically every application envisioned
for parsed text, including machine translation, infor-
mation extraction, and language modeling. In con-
trast to text, however, speech (in particular, conver-
sational speech) presents a distinct set of opportu-
nities and challenges. While new obstacles arise
from the presence of speech repairs, the possibility
of word errors, and the absence of punctuation and
sentence boundaries, speech also presents a tremen-
dous opportunity to leverage multi-modal input, in
the form of acoustic or even visual cues.

As a step in this direction, this paper identifies a
set of useful prosodic features and describes how

they can be effectively incorporated into a statisti-
cal parsing model, ignoring for now the problem
of word errors. Evaluated on the Switchboard cor-
pus of conversational telephone speech (Graff and
Bird, 2000), our prosody-aware parser out-performs
a state-of-the-art system that uses lexical and syntac-
tic features only. While we are not the first to employ
prosodic cues in a statistical parsing model, previous
efforts (Gregory et al., 2004; Kahn et al., 2004) in-
corporated these features as word tokens and thereby
suffered from the side-effect of displacing words in
the n-gram models by the parser. To avoid this prob-
lem, we generate a set of candidate parses using an
off-the-shelf, k-best parser, and use prosodic (and
other) features to rescore the candidate parses.

Our system architecture combines earlier models
proposed for parse reranking (Collins, 2000) and
filtering out edit regions (Charniak and Johnson,
2001). Detecting and removing edits prior to parsing
is motivated by the claim that probabilistic context-
free grammars (PCFGs) perform poorly at detect-
ing edit regions. We validate this claim empirically:
two state-of-the-art PCFGs (Bikel, 2004; Charniak
and Johnson, 2005) are both shown to perform sig-
nificantly below a state-of-the-art edit detection sys-
tem (Johnson et al., 2004).

2 Previous Work

As mentioned earlier, conversational speech
presents a different set of challenges and opportu-
nities than encountered in parsing text. This paper
focuses on the challenges associated with disfluen-
cies (Sec. 2.1) and the opportunity of leveraging
acoustic-prosodic cues at the sub-sentence level
(Sec. 2.2). Here, sentence segmentation is assumed
to be known (though punctuation is not available);
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. . . while I think,

︸ ︷︷ ︸

Reparandum

+ uh, I mean,

︸ ︷︷ ︸

Editing phrase

I know

︸ ︷︷ ︸

Repair

that. . .

Figure 1: The structure of a typical repair, with “+” indicating the interruption point.

the impact of automatic segmentation is addressed
in other work (Kahn et al., 2004).

2.1 Speech Repairs and Parsing

Spontaneous speech abounds with disfluencies such
as partial words, filled pauses (e.g., “uh”, “um”),
conversational fillers (e.g., “you know”), and par-
enthetical asides. One type of disfluency that has
proven particularly problematic for parsing is speech
repairs: when a speaker amends what he is saying
mid-sentence (see Figure 1). Following the analy-
sis of (Shriberg, 1994), a speech repair can be un-
derstood as consisting of three parts: the reparan-
dum (the material repaired), the editing phrase (that
is typically either empty or consists of a filler), and
the repair. The point between the reparandum and
the editing phrase is referred to as the interruption
point (IP), and it is the point that may be acousti-
cally marked. We refer to the reparandum and edit-
ing phrase together as an edit or edit region. Speech
repairs are difficult to model with HMM or PCFG
models, because these models can induce only linear
or tree-structured dependencies between words. The
relationship between reparandum and repair is quite
different: the repair is often a “rough copy” of the
reparandum, using the same or very similar words
in roughly the same order. A language model char-
acterizing this dependency with hidden stack opera-
tions is proposed in (Heeman and Allen, 1999).

Several parsing models have been proposed which
accord special treatment to speech repairs. Most
prior work has focused on handling disfluencies
and continued to rely on hand-annotated transcripts
that include punctuation, case, and known sentence
boundaries (Hindle, 1983; Core and Schubert, 1999;
Charniak and Johnson, 2001; Engel et al., 2002).

Of particular mention is the analysis of the rela-
tionship between speech repairs and parsing accu-
racy presented by Charniak and Johnson (2001), as
this directly influenced our work. They presented

evidence that improved edit detection (i.e. detect-
ing the reparandum and edit phrase) leads to better
parsing accuracy, showing a relative reduction in F -
score error of 14% (2% absolute) between oracle and
automatic edit removal. Thus, this work adopts their
edit detection preprocessing approach. They have
subsequently presented an improved model for de-
tecting edits (Johnson et al., 2004), and our results
here complement their analysis of the edit detection
and parsing relationship, particularly with respect to
the limitations of PCFGs in edit detection.

2.2 Prosody and parsing

While spontaneous speech poses problems for pars-
ing due to the presence of disfluencies and lack of
punctuation, there is information in speech associ-
ated with prosodic cues that can be taken advantage
of in parsing. Certainly, prosodic cues are useful
for sentence segmentation (Liu et al., 2004), and
the quality of automatic segmentation can have a
significant impact on parser performance (Kahn et
al., 2004). There is also perceptual evidence that
prosody provides cues to human listeners that aid
in syntactic disambiguation (Price et al., 1991), and
the most important of these cues seems to be the
prosodic phrases (perceived groupings of words) or
the boundary events marking them. However, the
utility of sentence-internal prosody in parsing con-
versational speech is not well established.

Most early work on integrating prosody in parsing
was in the context of human-computer dialog sys-
tems, where parsers typically operated on isolated
utterances. The primary use of prosody was to rule
out candidate parses (Bear and Price, 1990; Batliner
et al., 1996). Since then, parsing has advanced con-
siderably, and the use of statistical parsers makes the
candidate pruning benefits of prosody less impor-
tant. This raises the question of whether prosody
is useful for improving parsing accuracy for con-
versational speech, apart from its use in sentence
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Figure 2: System architecture

boundary detection. Extensions of Charniak and
Johnson (2001) look at using quantized combina-
tions of prosodic features as additional “words”,
similar to the use of punctuation in parsing written
text (Gregory et al., 2004), but do not find that the
prosodic features are useful. It may be that with the
short “sentences” in spontaneous speech, sentence-
internal prosody is rarely of use in parsing. How-
ever, in edit detection using a parsing model (John-
son et al., 2004), posterior probabilities of automati-
cally detected IPs based on prosodic cues (Liu et al.,
2004) are found to be useful. The seeming discrep-
ancy between results could be explained if prosodic
cues to IPs are useful but not other sub-sentence
prosodic constituents. Alternatively, it could be that
including a representation of prosodic features as
terminals in (Gregory et al., 2004) displaces words
in the parser n-gram model history. Here, prosodic
event posteriors are used, with the goal of providing
a more effective way of incorporating prosody than
a word-like representation.

3 Approach

3.1 Overall architecture

Our architecture, shown in Figure 2, combines the
parse reranking framework of (Collins, 2000) with
the edit detection and parsing approach of (Charniak
and Johnson, 2001). The system operates as follows:

1. Edit words are identified and removed.

2. Each resulting string is parsed to produce a set
of k candidate parses.

3. Edit words reinserted into the candidates with

a new part-of-speech tag EW. Consecutive se-
quences of edit words are inserted as single, flat
EDITED constituents.

4. Features (syntactic and/or prosodic) are ex-
tracted for each candidate, i.e. candidates are
converted to feature vector representation.

5. The candidates are rescored by the reranker to
identify the best parse.

Use of Collins’ parse reranking model has several
advantages for our work. In addition to allowing us
to incorporate prosody without blocking lexical de-
pendencies, the discriminative model makes it rela-
tively easy to experiment with a variety of prosodic
features, something which is considerably more dif-
ficult to do directly with a typical PCFG parser.

Our use of the Charniak-Johnson approach of sep-
arately detecting disfluencies is motivated by their
result that edit detection error degrades parser accu-
racy, but we also include experiments that omit this
step (forcing the PCFG to model the edits) and con-
firm the practical benefit of separating responsibili-
ties between the edit detection and parsing tasks.

3.2 Baseline system

We adopt an existing parser-reranker as our base-
line (Charniak and Johnson, 2005). The parser
component supports k-best parse generation, and
the reranker component is used to rescore candi-
date parses proposed by the parser. In detail, the
reranker selects from the set of k candidates T =
{t1, . . . tk} the parse t? ∈ T with the highest bracket
F -score (in comparison with a hand-annotated ref-
erence). To accomplish this, a feature-extractor con-
verts each candidate parse t ∈ T into a vector of
real-valued features f(t) = (f1(t), . . . , fm(t)) (e.g.,
the value fj(t) of the feature fj might be the num-
ber of times a certain syntactic structure appears in
t). The reranker training procedure associates each
feature fj with a real-valued weight λj , and λ′f(t)
(the dot product of the feature vector and the weight
vector λ) is a single scalar weight for each parse can-
didate. The reranker employs a maximum-entropy
estimator that selects the λ that minimizes the log
loss of the highest bracket F -score parse t? condi-
tioned on T (together with a Gaussian regularizer
to prevent overtraining). Informally, λ is chosen to
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make high F -score parses as likely as possible un-
der the (conditional) distribution defined by f and λ.
As in (Collins, 2000), we generate training data for
the reranker by reparsing the training corpus, using
n− 1 folds as training data to parse the n-th fold.

The existing system also includes a feature extrac-
tor that identifies interesting syntactic relationships
not included in the PCFG parsing model (but used
in the reranker). These features are primarily related
to non-local dependencies, including parallelism of
conjunctions, the number of terminals dominated by
coordinated structures, right-branching root-to-leaf
length, lexical/functional head pairs, n-gram style
sibling relationships, etc.

3.3 Prosodic Features

Most theories of prosody have a symbolic represen-
tation for prosodic phrasing, where different combi-
nations of acoustic cues (fundamental frequency, en-
ergy, timing) combine to give categorical perceptual
differences. Our approach to integrating prosody in
parsing is to use such symbolic boundary events, in-
cluding prosodic break labels that build on linguistic
notions of intonational phrases and hesitation phe-
nomena. These events are predicted from a com-
bination of continuous acoustic correlates, rather
than using the acoustic features directly, because
the intermediate representation simplifies training
with high-level (sparse) structures. Just as phone-
based acoustic models are useful in speech recogni-
tion systems as an intermediate level between words
and acoustic features (especially for characterizing
unseen words), the small set of prosodic boundary
events are used here to simplify modeling the inter-
dependent set of continuous-valued acoustic cues re-
lated to prosody. However, also as in speech recog-
nition, we use posterior probabilities of these events
as features rather than making hard decisions about
presence vs. absence of a constituent boundary.

In the past, the idea of using perceptual categories
has been dismissed as impractical due to the high
cost of hand annotation. However, with advances
in weakly supervised learning, it is possible to train
prosodic event classifiers with only a small amount
of hand-labeled data by leveraging information in
syntactic parses of unlabeled data. Our strategy is
similar to that proposed in (Nöth et al., 2000), which
uses categorical labels defined in terms of syntactic

structure and pause duration. However, their sys-
tem’s category definitions are without reference to
human perception, while we leverage learned re-
lations between perceptual events and syntax with
other acoustic cues, without predetermining the re-
lation or requiring a direct coupling to syntax.

More specifically, we represent three classes of
prosodic boundaries (or, breaks): major intonational
phrase, hesitation, and all other word boundaries.1

A small set of hand-labeled data from the treebanked
portion of the Switchboard corpus (Ostendorf et al.,
2001) was used to train initial break prediction mod-
els based on both parse and acoustic cues. Next, the
full set of treebanked Switchboard data is used with
an EM algorithm that iterates between: i) finding
probabilities of prosodic breaks in unlabeled data
based on the current model, again using parse and
acoustic features, and ii) re-estimating the model us-
ing the probabilities as weighted counts. Finally, a
new acoustic-only break prediction model was de-
signed from this larger data set for use in the parsing
experiments.

In each stage, we use decision trees for models, in
part because of an interest in analyzing the prosody-
syntax relationships learned. The baseline system
trained on hand-labeled data has error rates of 9.6%
when all available cues are used (both syntax and
prosody) and 16.7% when just acoustic and part-of-
speech cues are provided (our target environment).
Using weakly supervised (EM) training to incorpo-
rate unannotated data led to a 15% reduction in error
rate to 14.2% for the target trees. The final decision
tree was used to generate posteriors for each of the
three classes, one for each word in a sentence.

¿From perceptual studies and decision tree analy-
ses, we know that major prosodic breaks tend to co-
occur with major clauses, and that hesitations often
occur in edit regions or at high perplexity points in
the word sequence. To represent the co-occurrence
as a feature for use in parse reranking, we treat
the prosodic break posteriors as weighted counts in
accumulating the number of constituents in parse
t of type i with break type j at their right edge,
which (with some normalization and binning) be-
comes feature fij . Note that the unweighted count

1The intonational phrase corresponds to a break of “4” in the
ToBI labeling system (Pitrelli et al., 1994), and a hesitation is
marked with the “p” diacritic.
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for constituent i corresponds directly to a feature
in the baseline set, but the baseline set of features
also includes semantic information via association
with specific words. Here, we simply use syntactic
constituents. It is also known that major prosodic
breaks tend to be associated with longer syntactic
constituents, so we used the weighted count strategy
with length-related features as well. In all, the vari-
ous attributes associated with prosodic break counts
were the constituent label of the subtree, its length
(in words), its height (maximal distance from the
constituent root to any leaf), and the depth of the
rightmost word (distance from the right word to the
subtree root). For each type in each of these cate-
gories, there are three prosodic features, correspond-
ing to the three break types.

3.4 Edit detection

To provide a competitive baseline for our parsing
experiments, we used an off-the-shelf, state-of-the-
art TAG-based model as our primary edit detec-
tor (Johnson et al., 2004).2 This also provided us a
competitive benchmark for contrasting the accuracy
of PCFGs on the edit detection task (Section 4.2).

Whereas the crossing-dependencies inherent in
speech repairs makes them difficult to model us-
ing HMM or PCFG approaches (Section 2.1), Tree
Adjoining Grammars (TAGs) are capable of cap-
turing these dependencies. To model both the
crossed-dependencies of speech repairs and the lin-
ear or tree-structured dependencies of non-repaired
speech, Johnson et al.’s system applies the noisy
channel paradigm: a PCFG language model defines
a probability distribution over non-repaired speech,
and a TAG is used to model the optional insertion of
edits. The output of this noisy channel model is a
set of candidate edits which are then reranked using
a max-ent model (similar to what is done here for
parse reranking). This reranking step enables incor-
poration of features based on an earlier word-based
classifier (Charniak and Johnson, 2001) in addition
to output features of the TAG model. Acoustic fea-
tures are not yet incorporated.

2We also evaluated another state-of-the-art edit detection
system (Liu et al., 2004) but found that it suffered from a mis-
match between the current LDC specification of edits (LDC,
2004) and that used in the treebank.

4 Experimental design

4.1 Corpus

Experiments were carried out on conversational
speech using the hand-annotated transcripts associ-
ated with the Switchboard treebank (Graff and Bird,
2000). As was done in (Kahn et al., 2004), we
resegmented the treebank’s sentences into V5-style
sentence-like units (SUs) (LDC, 2004), since our ul-
timate goal was to be able to parse speech given au-
tomatically detected boundaries. Unfortunately, the
original transcription effort did not provide punctu-
ation guidelines, and the Switchboard treebanking
was performed on the transcript unchanged, with-
out reference to the audio. As a result, the sentence
boundaries sometimes do not match human listener
decisions using SU annotation guidelines, with dif-
ferences mainly corresponding to treatment of dis-
course markers and backchannels. In the years since
the original Switchboard annotation was performed,
LDC has iteratively refined guidelines for annotating
SUs, and significant progress has been made in au-
tomatically recovering SU boundaries annotated ac-
cording to this standard (Liu et al., 2004). To even-
tually leverage this work, we have taken the Meteer-
annotated SUs (Meteer et al., 1995), for which there
exists treebanked training data, and automatically
adjusted them to be more like the V5 LDC stan-
dard, and resegmented the Switchboard treebank ac-
cordingly. In cases where the original syntactic con-
stituents span multiple SUs, we discard any con-
stituents violating the SU boundary, and in the event
that an SU spans a treebank sentence boundary, a
new top-level constituent SUGROUP is inserted to
produce a proper tree (and evaluated like any other
constituent in the gold tree).3 While this SU reseg-
mentation makes it difficult to compare our experi-
mental results to past work, we believe this is a nec-
essary step towards developing a more realistic base-
line for fully automated parsing of speech.

In addition to resegmention, we removed all punc-
tuation and case from the corpus to more closely
reflect the form of output available from a speech
recognizer. We retained partial words for consis-

3SU and treebank segments disagree at about 5% in each di-
rection, due mostly to the analysis of discourse markers as con-
junctions (sentences of >1 SU) and the separation of backchan-
nels into separate treebank sentences (SUs of >1 sentence).
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Table 1: Statistics on the Switchboard division used.

Section Sides SUs Words
Train 1,031 87,599 659,437
Tune 126 13,147 103,500
Test 128 8,726 61,313
Total 1,285 109,472 824,250

tency with other work (Liu et al., 2004; Johnson et
al., 2004), although word fragments would not typ-
ically be available from ASR. Finally, of the 1300
total conversation sides, we discarded 15 for which
we did not have prosodic data. Our corpus division
statistics are given in Table 1. During development,
experiments were carried out on the tune section; the
test section was reserved for a final test run.

4.2 Experimental Variables

Our primary goal is to evaluate the extent to which
prosodic cues could augment and/or stand-in for lex-
ical and syntactic features. Correspondingly, we
report on using three flavors of feature extraction:
syntactic and lexical features (Section 3.2), prosodic
features (Section 3.3), and both sets of features com-
bined. For all three conditions, the first-stage score
for each parse (generated by the off-the-shelf k-best
parser) was always included as a feature.

A second parameter varied in the experiments was
the method of upstream edit detection employed
prior to parsing: PCFG, TAG-based, and oracle
knowledge of treebank edit annotations. While it
had been claimed that PCFGs perform poorly as edit
detectors (Charniak and Johnson, 2001), we could
not find empirical evidence in the literature quan-
tifying the severity of the problem. Therefore, we
evaluated two PCFGs (Bikel, 2004; Charniak and
Johnson, 2005) on edit detection and compared their
performance to a state-of-the-art TAG-based edit de-
tection system (Johnson et al., 2004). For this ex-
periment, we evaluated edit detection accuracy on a
per-word basis, where any tree terminal is consid-
ered an edit word if and only if it is dominated by
an EDITED constituent in the gold tree. The PCFGs
were trained on the train section of the treebank data
with the flattened edit regions included4 and then

4Training on flattened EDITED nodes improved detection ac-
curacy for both PCFGs: as much as 15% for Bikel-Collins.

Table 2: Edit word detection performance for two
word-based PCFGs and the TAG-based edit detec-
tor. F -score and error are word-based measures.

Edit Detector Edit F -score Edit Error
Bikel-Collins PCFG 65.3 62.1

Charniak PCFG 65.8 59.9
TAG-based 78.2 42.2

Table 3: Parsing F -score of various feature and edit-
detector combinations.

PCFG TAG Oracle
Edit F (Table 2) 65.8 78.2 100.0

Parser 1-best 84.4 85.0 86.9
Prosodic feats 85.0 85.6 87.6
Syntactic feats 85.9 86.4 88.4

Combined feats 86.0 86.6 88.6
Oracle-rate 92.6 93.2 95.2

used to parse the test data.5 The TAG-based de-
tector was trained on the same conversation sides,
with its channel model trained on the Penn Treebank
disfluency-annotated files and its language model
trained on trees with the EDITED nodes excised. As
shown in Table 2, we did find that both PCFGs per-
formed significantly below the TAG-based detector.

5 Results

In evaluating parse accuracy, we adopt the relaxed
edited revision (Charniak and Johnson, 2001) to the
standard PARSEVAL metric, which penalizes sys-
tems that get EDITED spans wrong, but does not pe-
nalize disagreements in the attachment or internal
structure of edit regions. This metric is based on the
assumption that there is little reason to recover syn-
tactic structure in regions of speech that have been
repaired or restarted by the speaker.

Table 3 shows the F -scores for the top-ranked
parses after reranking, where the first-stage PCFG
parser was run with a beam-size of 50. The first
and last rows show lower and upper bounds, respec-
tively, for reranked parsing accuracy on each edit
condition. As the oracle rate6 shows, there is con-

5For the Charniak parser, edits were detected using only its
PCFG component in 1-best mode, not its 2nd stage reranker.

6Oracle F uses the best parse in the 50-best list.
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siderable room for improvement. Statistical signif-
icance was computed using a non-parametric shuf-
fle test similar to that in (Bikel, 2004). For TAG
and oracle edit detection conditions, the improve-
ment from using the combined features over either
prosodic or syntactic features in isolation was sig-
nificant (p < 0.005). (For PCFG edit detection,
p < 0.04.) Similarly, for all three feature extraction
conditions, the improvement from using the TAG-
based edit detector instead of the PCFG edit detector
was also significant (p < 0.001). Interestingly, the
TAG’s 34% reduction in edit detection error relative
to the PCFG yielded only about 23% of the parse
accuracy differential between the PCFG and oracle
conditions. Nevertheless, there remains a promising
2.0% difference in parse F -score between the TAG
and oracle detection conditions to be realized by fur-
ther improvements in edit detection. Training for
the syntactic feature condition resulted in a learned
weight λ with approximately 50K features, while
the prosodic features used only about 1300 features.
Despite this difference in the length of the λ vectors,
the prosodic feature condition achieved 40–50% of
the improvement of the syntactic features.

In some situations, e.g. for language modeling,
improving the ordering and weights of the entire
parse set (an not just the top ranked parse) is im-
portant. To illustrate the overall improvement of the
reranked order, in Table 4 we report the reranked-
oracle rate over the top s parses, varying the beam s.
The error for each feature condition, relative to using
the PCFG parser in isolation, is shown in Figure 3.
Both the table and figure show that the reranked
beam achieves a consistent trend in parse accuracy
improvement relative to the PCFG beam, similar to
what is demonstrated by the 1-best scores (Table 3).

Table 4: Reranked-oracle rate parse F -score for the
top s parses with reference edit detection.

s 1 2 3 5 10 25
PCFG 86.9 89.8 91.0 92.2 93.4 94.6
Pros. 87.6 90.3 91.5 92.7 93.9 94.8
Syn. 88.4 91.3 92.4 93.4 94.3 95.0

Comb. 88.6 91.5 92.5 93.5 94.4 95.0

Figure 3: Reduction in error (Error = 1−F ) for the
s-best reranked-oracle relative to the parser-only or-
acle, for different feature rerankings (reference edit
detection).

6 Conclusion

This study shows that incorporating prosodic infor-
mation into the parse selection process, along with
non-local syntactic information, leads to improved
parsing accuracy on accurate transcripts of conver-
sational speech. Gains are shown to be robust to dif-
ficulties introduced by automatic edit detection and,
in addition to improving the one-best performance,
the overall ordering of the parse candidates is im-
proved. While the gains from combining prosodic
and syntactic features are not additive, since the
prosodic features incorporates some constituent-
structure information, the combined gains are sig-
nificant. These results are consistent with related ex-
periments with a different type of prosodically cued
event, which showed that automatically detected IPs
based on prosodic cues (Liu et al., 2004) are useful
in the reranking stage of a TAG-based speech repair
detection system (Johnson et al., 2004).

The experiments described here used automat-
ically extracted prosodic features in combination
with human-produced transcripts. It is an open ques-
tion as to whether the conclusions will hold for er-
rorful ASR transcripts and automatically detected
SU boundaries. However, there is reason to believe
that relative gains from using prosody may be larger
than those observed here for reference transcripts
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(though overall performance will degrade), based on
prior work combining prosody and lexical cues to
detect other language structures (Shriberg and Stol-
cke, 2004). While the prosody feature extraction de-
pends on timing of the hypothesized word sequence,
the acoustic cues are relatively robust to word errors
and the break model can be retrained on recognizer
output to automatically learn to discount the lexical
evidence. Furthermore, if parse reranking operates
on the top N ASR hypotheses, the reranking pro-
cedure can improve recognition outputs, as demon-
strated in (Kahn, 2005) for syntactic features alone.
Allowing for alternative SU hypotheses in reranking
may also lead to improved SU segmentation.

In addition to assessing the impact of prosody
in a fully automatic system, other avenues for fu-
ture work include improving feature extraction. One
could combine IP and prosodic break features (so
far explored separately), find new combinations of
prosody and syntactic structure, and/or incorporate
other prosodic events. Finally, it may also be use-
ful to integrate the prosodic events directly into the
PCFG, in addition to their use in reranking.
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Abstract

Machine summaries can be improved by
using knowledge about the cognitive sta-
tus of news article referents. In this paper,
we present an approach to automatically
acquiring distinctions in cognitive status
using machine learning over the forms of
referring expressions appearing in the in-
put. We focus on modeling references to
people, both because news often revolve
around people and because existing natu-
ral language tools for named entity iden-
tification are reliable. We examine two
specific distinctions—whether a person in
the news can be assumed to be known to a
target audience (hearer-old vs hearer-new)
and whether a person is a major charac-
ter in the news story. We report on ma-
chine learning experiments that show that
these distinctions can be learned with high
accuracy, and validate our approach using
human subjects.

1 Introduction
Multi-document summarization has been an active
area of research over the past decade (Mani and
Maybury, 1999) and yet, barring a few exceptions
(Daumé III et al., 2002; Radev and McKeown,
1998), most systems still use shallow features to pro-
duce an extractive summary, an age-old technique
(Luhn, 1958) that has well-known problems. Ex-
tractive summaries contain phrases that the reader
cannot understand out of context (Paice, 1990) and
irrelevant phrases that happen to occur in a relevant
sentence (Knight and Marcu, 2000; Barzilay, 2003).

Referring expressions in extractive summaries illus-
trate this problem, as sentences compiled from dif-
ferent documents might contain too little, too much
or repeated information about the referent.

Whether a referring expression is appropriate de-
pends on the location of the referent in the hearer’s
mental model of the discourse—the referent’s cog-
nitive status (Gundel et al., 1993). If, for example,
the referent is unknown to the reader at the point of
mention in the discourse, the reference should in-
clude a description, while if the referent was known
to the reader, no descriptive details are necessary.

Determining a referent’s cognitive status, how-
ever, implies the need to model the intended audi-
ence of the summary. Can such a cognitive status
model be inferred automatically for a general read-
ership? In this paper, we address this question by
performing a study with human subjects to confirm
that reasonable agreement on the distinctions can be
achieved between different humans (cf. � 5). We
present an automatic approach for inferring what the
typical reader is likely to know about people in the
news. Our approach uses machine learning, exploit-
ing features based on the form of references to peo-
ple in the input news articles (cf. � 4). Learning
cognitive status of referents is necessary if we want
to ultimately generate new, more appropriate refer-
ences for news summaries.

1.1 Cognitive status
In human communication, the wording used by
speakers to refer to a discourse entity depends on
their communicative goal and their beliefs about
what listeners already know. The speaker’s goals
and beliefs about the listener’s knowledge are both a
part of a cognitive/mental model of the discourse.
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Cognitive status distinctions depend on two pa-
rameters related to the referent—a) whether it al-
ready exists in the hearer’s model of the discourse,
and b) its degree of salience. The influence of these
distinctions on the form of referring expressions has
been investigated in the past. For example, center-
ing theory (Grosz et al., 1995) deals predominantly
with local salience (local attentional status), and the
givenness hierarchy (information status) of Prince
(1992) focuses on how a referent got in the discourse
model (e.g. through a direct mention in the current
discourse, through previous knowledge, or through
inference), leading to distinctions such as discourse-
old, discourse-new, hearer-old, hearer-new, infer-
able and containing inferable. Gundel et al. (1993)
attempt to merge salience and givenness in a single
hierarchy consisting of six distinctions in cognitive
status (in focus, activated, familiar, uniquely identi-
fiable, referential, type-identifiable).

Among the distinctions that have an impact on the
form of references in a summary are the familiarity
of the referent:

D. Discourse-old vs discourse-new
H. Hearer-old vs hearer-new

and its global salience1:

M. Major vs minor

In general, initial (discourse-new) references to en-
tities are longer and more descriptive, while sub-
sequent (discourse-old) references are shorter and
have a purely referential function. Nenkova and
McKeown (2003) have studied this distinction for
references to people in summaries and how it can be
used to automatically rewrite summaries to achieve
better fluency and readability.

The other two cognitive status distinctions,
whether an entity is central to the summary or not
(major or minor) and whether the hearer can be as-
sumed to be already familiar with the entity (hearer-
old vs hearer-new status), have not been previously
studied in the context of summarization. There is
a tradeoff, particularly important for a short sum-
mary, between what the speaker wants to convey

1The notion of global salience is very important to summa-
rization, both during content selection and during generation on
initial references to entities. On the other hand, in focus or local
attentional state are relevant to anaphoric usage during subse-
quent mentions.

and how much the listener needs to know. The
hearer-old/new distinction can be used to determine
whether a description for a character is required
from the listener’s perspective. The major/minor
distinction plays a role in defining the communica-
tive goal, such as what the summary should be about
and which characters are important enough to refer
to by name.

1.2 Hearer-Old vs Hearer-New
Hearer-new entities in a summary should be de-
scribed in necessary detail, while hearer-old enti-
ties do not require an introductory description. This
distinction can have a significant impact on over-
all length and intelligibility of the produced sum-
maries. Usually, summaries are very short, 100 or
200 words, for input articles totaling 5,000 words
or more. Several people might be involved in a
story, which means that if all participants are fully
described, little space will be devoted to actual
news. In addition, introducing already familiar en-
tities might distract the reader from the main story
(Grice, 1975). It is thus a good strategy to refer
to an entity that can be assumed hearer-old by just
a title + last name, e.g. President Bush, or by full
name only, with no accompanying description, e.g.
Michael Jackson.

1.3 Major vs Minor
Another distinction that human summarizers make
is whether a character in a story is a major or a
minor one and this distinction can be conveyed by
using different forms of referring expressions. It is
common to see in human summaries references such
as the dissident’s father. Usually, discourse-initial
references solely by common noun, without the in-
clusion of the person’s name, are employed when
the person is not the main focus of a story (San-
ford et al., 1988). By detecting the cognitive sta-
tus of a character, we can decide whether to name
the character in the summary. Furthermore, many
summarization systems use the presence of named
entities as a feature for computing the importance
of a sentence (Saggion and Gaizaukas, 2004; Guo
et al., 2003). The ability to identify the major story
characters and use only them for sentence weighting
can benefit such systems since only 5% of all peo-
ple mentioned in the input are also mentioned in the
summaries.
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2 Why care about people in the news?

News reports (and consequently, news summaries)
tend to have frequent references to people (in DUC
data - see � 3 for description - from 2003 and 2004,
there were on average 3.85 references to people per
100-word human summary); hence it is important
for news summarization systems to have a way of
modeling the cognitive status of such referents and
a theory for referring to people.

It is also important to note that there are differ-
ences in references to people between news reports
and human summaries of news. Journalistic con-
ventions for many mainstream newspapers dictate
that initial mentions to people include a minimum
description such as their role or title and affilia-
tion. However, in human summaries, where there
are greater space constraints, the nature of initial ref-
erences changes. Siddharthan et al. (2004) observed
that in DUC’04 and DUC’03 data2, news reports
contain on average one appositive phrase or relative
clause every 3.9 sentences, while the human sum-
maries contain only one per 8.9 sentences on aver-
age. In addition to this, we observe from the same
data that the average length of a first reference to a
named entity is 4.5 words in the news reports and
only 3.6 words in human summaries. These statis-
tics imply that human summarizers do compress ref-
erences, and thus can save space in the summary for
presenting information about the events. Cognitive
status models can inform a system when such refer-
ence compression is appropriate.

3 Data preparation: the DUC corpus

The data we used to train classifiers for these two
distinctions is the Document Understanding Confer-
ence collection (2001–2004) of 170 pairs of doc-
ument input sets and the corresponding human-
written multi-document summaries (2 or 4 per set).
Our aim is to identify every person mentioned in
the 10 news reports and the associated human sum-
maries for each set, and assign labels for their cog-
nitive status (hearer old/new and major/minor). To
do this, we first preprocess the data ( � 3.1) and then
perform the labeling ( � 3.2).

2The data provided under DUC for these years includes sets
of about 10 news reports, 4 human summaries for each set, and
the summaries by participating machine summarizers.

3.1 Automatic preprocessing
All documents and summaries were tagged with
BBN’s IDENTIFINDER (Bikel et al., 1999) for
named entities, and with a part-of-speech tagger and
simplex noun-phrase chunker (Grover et al., 2000).
In addition, for each named entity, relative clauses,
appositional phrases and copula constructs, as well
as pronominal co-reference were also automatically
annotated (Siddharthan, 2003). We thus obtained
coreference information (cf. Figure 1) for each per-
son in each set, across documents and summaries.

Andrei Sakharov

Doc 1:

[IR] laureate Andrei D. Sakharov [CO] Sakharov
[CO] Sakharov [CO] Sakharov [CO] Sakharov [PR]
his [CO] Sakharov [PR] his [CO] Sakharov [RC] who
acted as an unofficial Kremlin envoy to the troubled
Transcaucasian region last month [PR] he [PR] He
[CO] Sakharov

Doc 1:
[IR] Andrei Sakharov [AP] , 68 , a Nobel Peace Prize
winner and a human rights activist , [CO] Sakharov
[IS] a physicist [PR] his [CO] Sakharov

Figure 1: Example information collected for Andrei
Sakharov from two news report. ‘IR’ stands for ‘ini-
tial reference’, ‘CO’ for noun co-reference, ‘PR’ for
pronoun reference, ‘AP’ for apposition, ‘RC’ for rel-
ative clause and ‘IS’ for copula constructs.

The tools that we used were originally devel-
oped for processing single documents and we had
to adapt them for use in a multi-document setting.
The goal was to find, for each person mentioned
in an input set, the list of all references to the per-
son in both input documents and human summaries.
For this purpose, all input documents were concate-
nated and processed with IDENTIFINDER. This was
then automatically post-processed to mark-up core-
ferring names and to assign a unique canonical name
(unique id) for each name coreference chain. For the
coreference, a simple rule of matching the last name
was used, and the canonical name was the “First-
Name LastName” string where the two parts of the
name could be identified 3. Concatenating all docu-
ments assures that the same canonical name will be
assigned to all named references to the same person.

3Occasionally, two or more different people with the same
last name are discussed in the same set and this algorithm would
lead to errors in such cases. We did keep a list of first names
associated with the entity, so a more refined matching model
could be developed, but this was not the focus of this work.
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The tools for pronoun coreference and clause and
apposition identification and attachment were run
separately on each document. Then the last name of
each of the canonical names derived from the IDEN-
TIFINDER output was matched with the initial ref-
erence in the generic coreference list for the doc-
ument with the last name. The tools that we used
have been evaluated separately when used in nor-
mal single document setting. In our cross-document
matching processes, we could incur more errors, for
example when the general coreference chain is not
accurate. On average, out of 27 unique people per
cluster identified by IDENTIFINDER, 4 people and
the information about them are lost in the matching
step for a variety of reasons such as errors in the
clause identifier, or the coreference.

3.2 Data labeling

Entities were automatically labeled as hearer-old or
new by analyzing the syntactic form that human
summarizers used for initial references to them. The
labeling rests on the assumption that the people who
produced the summaries used their own model of the
reader when choosing appropriate references for the
summary. The following instructions had been given
to the human summarizers, who were not profes-
sional journalists: “To write this summary, assume
you have been given a set of stories on a news topic
and that your job is to summarize them for the gen-
eral news sections of the Washington Post. Your au-
dience is the educated adult American reader with
varied interests and background in current and re-
cent events.” Thus, the human summarizers were
given the freedom to use their assumptions about
what entities would be generally hearer-old and they
could refer to these entities using short forms such as
(1) title or role+ last name or (2) full name only with
no pre- or post-modification. Entities that the major-
ity of human summarizers for the set referred to us-
ing form (1) or (2) were labeled as hearer-old. From
the people mentioned in human summaries, we ob-
tained 118 examples of hearer-old and 140 examples
of hearer-new persons - 258 examples in total - for
supervised machine learning.

In order to label an entity as major or minor, we
again used the human summaries—entities that were
mentioned by name in at least one summary were la-
beled major, while those not mentioned by name in

any summary were labeled minor. The underlying
assumption is that people who are not mentioned in
any human summary, or are mentioned without be-
ing named, are not important. There were 258 major
characters who made it to a human summary and
3926 minor ones that only appeared in the news re-
ports. Such distribution between the two classes is
intuitively plausible, since many people in news ar-
ticles express opinions, make statements or are in
some other way indirectly related to the story, while
there are only a few main characters.

4 Machine learning experiments
The distinction between hearer-old and hearer-new
entities depends on the readers. In other words, we
are attempting to automatically infer which charac-
ters would be hearer-old for the intended readership
of the original reports, which is also expected to be
the intended readership of the summaries. For our
experiments, we used the WEKA (Witten and Frank,
2005) machine learning toolkit and obtained the best
results for hearer-old/new using a support vector ma-
chine (SMO algorithm) and for major/minor, a tree-
based classifier (J48). We used WEKA’s default set-
tings for both algorithms.

We now discuss what features we used for our
two classification tasks (cf. list of features in table
1). Our hypothesis is that features capturing the fre-
quency and syntactic and lexical forms of references
are sufficient to infer the desired cognitive model.

Intuitively, pronominalization indicates that an
entity was particularly salient at a specific point of
the discourse, as has been widely discussed in at-
tentional status and centering literature (Grosz and
Sidner, 1986; Gordon et al., 1993). Modified noun
phrases (with apposition, relative clauses or premod-
ification) can also signal different status.

In addition to the syntactic form features, we used
two months worth of news articles collected over the
web (and independent of the DUC collection we use
in our experiments here) to collect unigram and bi-
gram lexical models of first mentions of people. The
names themselves were removed from the first men-
tion noun phrase and the counts were collected over
the premodifiers only. One of the lexical features
we used is whether a person’s description contains
any of the 20 most frequent description words from
our web corpus. We reasoned that these frequent de-
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0,1: Number of references to the person, including pro-
nouns (total and normalized by feature 16)

2,3: Number of times apposition was used to describe
the person(total and normalized by feature 16)

4,5: Number of times a relative clause was used to de-
scribe the person (total and normalized by 16)

6: Number of times the entity was referred to by
name after the first reference

7,8: Number of copula constructions involving the per-
son (total and normalized by feature 16)

9,10: Number of apposition, relative clause or copula
descriptions (total and normalized by feature 16)

11,12,13: Probability of an initial reference according to the
bigram model (av.,max and min of all initial refer-
ences)

14: Number of top 20 high frequency description
words (from references to people in large news
corpus) present in initial references

15: Proportion of first references containing full name 16: Total number of documents containing the person
17,18: Number of appositives or relative clause attaching

to initial references (total and normalized by fea-
ture 16)

Table 1: List of Features provided to WEKA.

scriptors may signal importance; the full list is:

president, former, spokesman, sen, dr, chief, coach,
attorney, minister, director, gov, rep, leader, secre-
tary, rev, judge, US, general, manager, chairman.

Another lexical feature was the overall likelihood
of a person’s description using the bigram model
from our web corpus. This indicates whether a per-
son has a role or affiliation that is frequently men-
tioned. We performed 20-fold cross validation for
both classification tasks. The results are shown in
Table 2 (accuracy) and Table 3 (precision/recall).

4.1 Major vs Minor results
For major/minor classification, the majority class
prediction has 94% accuracy, but is not a useful
baseline as it predicts that no person should be men-
tioned by name and all are minor characters. J48
correctly predicts 114 major characters out of 258
in the 170 document sets. As recall appeared low,
we further analyzed the 148 persons from DUC’03
and DUC’04 sets, for which DUC provides four hu-
man summaries. Table 4 presents the distribution of
recall taking into account how many humans men-
tioned the person by name in their summary (origi-
nally, entities were labeled as main if any summary
had a reference to them, cf. � 3.2). It can be seen that
recall is high (0.84) when all four humans consider
a character to be major, and falls to 0.2 when only
one out of four humans does. These observations re-
flect the well-known fact that humans differ in their
choices for content selection, and indicate that in the
automatic learning is more successful when there is
more human agreement.

In our data there were 258 people mentioned by
name in at least one human summary. In addition,
there were 103 people who were mentioned in at

least one human summary using only a common
noun reference (these were identified by hand, as
common noun coreference cannot be performed re-
liably enough by automatic means), indicating that
29% of people mentioned in human summaries are
not actually named. Examples of such references
include an off duty black policeman, a Nigerian
born Roman catholic priest, Kuwait’s US ambas-
sador. For the purpose of generating references in
a summary, it is important to evaluate how many of
these people are correctly classified as minor char-
acters. We removed these people from the training
data and kept them as a test set. WEKA achieved
a testing accuracy of 74% on these 103 test exam-
ples. But as discussed before, different human sum-
marizers sometimes made different decisions on the
form of reference to use. Out of the 103 referent
for which a non-named reference was used by a
summarizer, there were 40 where other summariz-
ers used named reference. Only 22 of these 40 were
labeled as minor characters in our automatic proce-
dure. Out of the 63 people who were not named in
any summary, but mentioned in at least one by com-
mon noun reference, WEKA correctly predicted 58
(92%) as minor characters. As before, we observe
that when human summarizers generate references
of the same form (reflecting consensus on convey-
ing the perceived importance of the character), the
machine predictions are accurate.

We performed feature selection to identify which
are the most important features for the classification
task. For the major/minor classification, the impor-
tant features used by the classifier were the number
of documents the person was mentioned in (feature
16), number of mentions within the document set
(features 1,6), number of relative clauses (feature
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4,5) and copula (feature 8) constructs, total number
of apposition, relative clauses and copula (feature
9), number of high frequency premodifiers (feature
14) and the maximum bigram probability (feature
12). It was interesting that presence of apposition
did not select for either major or minor class. It is
not surprising that the frequency of mention within
and across documents were significant features—a
frequently mentioned entity will naturally be consid-
ered important for the news report. Interestingly, the
syntactic form of the references was also a signifi-
cant indicator, suggesting that the centrality of the
character was signaled by the journalists by using
specific syntactic constructs in the references.

Major/Minor Hearer New/Old
WEKA 0.96 (J48) 0.76 (SMO)

Majority class prediction 0.94 0.54

Table 2: Cross validation testing accuracy results.

Class Precision Recall F-measure
SMO hearer-new 0.84 0.68 0.75

hearer-old 0.69 0.85 0.76
J48 major-character 0.85 0.44 0.58

minor-character 0.96 0.99 0.98

Table 3: Cross validation testing P/R/F results.

Number of summaries Number of Number and %
containing the person examples recalled by J48

1 out of 4 59 15 (20%)
2 out of 4 35 20 (57%)
3 out of 4 29 23 (79%)
4 out of 4 25 21 (84%)

Table 4: J48 Recall results and human agreement.

4.2 Hearer Old vs New Results
The majority class prediction for the hearer-old/new
classification task is that no one is known to the
reader and it leads to overall classification accu-
racy of 54%. Using this prediction in a summarizer
would result in excessive detail in referring expres-
sions and a consequent reduction in space available
to summarize the news events. The SMO prediction
outperformed the baseline accuracy by 22% and is
more meaningful for real tasks.

For the hearer-old/new classification, the feature
selection step chose the following features: the num-
ber of appositions (features 2,3) and relative clauses
(feature 5), number of mentions within the docu-
ment set (features 0,1), total number of apposition,
relative clauses and copula (feature 10), number of
high frequency premodifiers (feature 14) and the

minimum bigram probability (feature 13). As in the
minor-major classification, the syntactic choices for
reference realization were useful features.

We conducted an additional experiment to see
how the hearer old/new status impacts the use of ap-
position or relative clauses for elaboration in refer-
ences produced in human summaries. It has been
observed (Siddharthan et al., 2004) that on average
these constructs occur 2.3 times less frequently in
human summaries than in machine summaries. As
we show, the use of postmodification to elaborate re-
lates to the hearer-old/new distinction.

To determine when an appositive or relative
clause can be used to modify a reference, we con-
sidered the 151 examples out of 258 where there was
at least one relative clause or apposition describing
the person in the input. We labeled an example as
positive if at least one human summary contained
an apposition or relative clause for that person and
negative otherwise. There were 66 positive and 85
negative examples. This data was interesting be-
cause while for the majority of examples (56%) all
the human summarizers agreed not to use postmod-
ification, there were very few examples (under 5%)
where all the humans agreed to postmodify. Thus it
appears that for around half the cases, it should be
obvious that no postmodification is required, but for
the other half, human decisions go either way.

Notably, none of the hearer-old persons (using test
predictions of SMO) were postmodified. Our cogni-
tive status predictions cleanly partition the examples
into those where postmodification is not required,
and those where it might be. Since no intuitive rule
handled the remaining examples, we added the test-
ing predictions of hearer-old/new and major/minor
as features to the list in Table 1, and tried to learn
this task using the tree-based learner J48. We report
a testing accuracy of 71.5% (majority class baseline
is 56%). There were only three useful features—
the predicted hearer-new/old status, the number of
high frequency premodifiers for that person in the
input (feature 14 in table 1) and the average number
of postmodified initial references in the input docu-
ments (feature 17).

5 Validating the results on current news
We tested the classifiers on data different from that
provided by DUC, and also tested human consen-
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sus on the hearer-new/old distinction. For these pur-
poses, we downloaded 45 clusters from one day’s
output from Newsblaster4. We then automatically
compiled the list of people mentioned in the ma-
chine summaries for these clusters. There were 107
unique people that appeared in the machine sum-
maries, out of 1075 people in the input clusters.

5.1 Human agreement on hearer-old/new
A question arises when attempting to infer hearer-
new/old status: Is it meaningful to generalize this
across readers, seeing how dependent it is on the
world knowledge of individual readers?

To address this question, we gave 4 Ameri-
can graduate students a list of the names of peo-
ple in the DUC human summaries (cf. � 3), and
asked them to write down for each person, their
country/state/organization affiliation and their role
(writer/president/attorney-general etc.). We consid-
ered a person hearer-old to a subject if they correctly
identified both role and affiliation for that person.
For the 258 people in the DUC summaries, the four
subjects demonstrated 87% agreement ( �����	��

��� 5.

Similarly, they were asked to perform the same
task for the Newsblaster data, which dealt with con-
temporary news6, in contrast with the DUC data
that contained news from the the late 80s and early
90s. On this data, the human agreement was 91%
( �����	��
�� ). This is a high enough agreement to
suggest that the classification of national and inter-
national figures as hearer old/new across the edu-
cated adult American reader with varied interests
and background in current and recent events is a
well defined task. This is not necessarily true for
the full range of cognitive status distinctions; for
example Poesio and Vieira (1998) report lower hu-
man agreement on more fine-grained classifications
of definite descriptions.

5.2 Results on the Newsblaster data
We measured how well the models trained on DUC
data perform with current news labeled using human

4http://newsblaster.cs.columbia.edu
5 � (kappa) is a measure of inter-annotator agreement over

and above what might be expected by pure chance (See Carletta
(1996) for discussion of its use in NLP). ����� if there is perfect
agreement between annotators and ����� if the annotators agree
only as much as you would expect by chance.

6The human judgments were made within a week of the
news stories appearing.

judgment. For each person who was mentioned in
the automatic summaries for the Newsblaster data,
we compiled one judgment from the 4 human sub-
jects: an example was labeled as hearer-new if two
or more out of the four subjects had marked it as
hearer new. Then we used this data as test data,
to test the model trained solely on the DUC data.
The classifier for hearer-old/hearer-new distinction
achieved 75% accuracy on Newsblaster data labeled
by humans, while the cross-validation accuracy on
the automatically labeled DUC data was 76%. These
numbers are very encouraging, since they indicate
that the performance of the classifier is stable and
does not vary between the DUC and Newsblaster
data. The precision and recall for the Newsblaster
data are also very similar for those obtained from
cross-validation on the DUC data:

Class Precision Recall F-Measure
Hearer-old 0.88 0.73 0.80
Hearer-new 0.57 0.79 0.66

5.3 Major/Minor results on Newsblaster data
For the Newsblaster data, no human summaries were
available, so no direct indication on whether a hu-
man summarizer will mention a person in a sum-
mary was available. In order to evaluate the perfor-
mance of the classifier, we gave a human annotator
the list of people’s names appearing in the machine
summaries, together with the input cluster and the
machine summary, and asked which of the names
on the list would be a suitable keyword for the set
(keyword lists are a form of a very short summary).
Out of the 107 names on the list, the annotator chose
42 as suitable for descriptive keyword for the set.

The major/minor classifier was run on the 107 ex-
amples; only 40 were predicted to be major char-
acters. Of the 67 test cases that were predicted by
the classifier to be minor characters, 12 (18%) were
marked by the annotator as acceptable keywords. In
comparison, of the 40 characters that were predicted
to be major characters by the classifier, 30 (75%)
were marked as possible keywords. If the keyword
selections of the annotator are taken as ground truth,
the automatic predictions have precision and recall
of 0.75 and 0.71 respectively for the major class.

6 Conclusions
Cognitive status distinctions are important when
generating summaries, as they help determine both
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what to say and how to say it. However, to date,
no one has attempted the task of inferring cognitive
status from unrestricted news.

We have shown that the hearer-old/new and ma-
jor/minor distinctions can be inferred using features
derived from the lexical and syntactic forms and fre-
quencies of references in the news reports. We have
presented results that show agreement on the famil-
iarity distinction between educated adult American
readers with an interest in current affairs, and that
the learned classifier accurately predicts this distinc-
tion. We have demonstrated that the acquired cogni-
tive status is useful for determining which characters
to name in summaries, and which named characters
to describe or elaborate. This provides the founda-
tion for a principled framework in which to address
the question of how much references can be short-
ened without compromising readability.
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Abstract

The paper presents a Bayesian model for
text summarization, which explicitly en-
codes and exploits information on how hu-
man judgments are distributed over the
text. Comparison is made against non
Bayesian summarizers, using test data
from Japanese news texts. It is found that
the Bayesian approach generally lever-
ages performance of a summarizer, at
times giving it a significant lead over non-
Bayesian models.

1 Introduction

Consider figure 1. What is shown there is the pro-
portion of the times that sentences at particular lo-
cations are judged as relevant to summarization, or
worthy of inclusion in a summary. Each panel shows
judgment results on 25 Japanese texts of a particular
genre; columns (G1K3), editorials (G2K3) and news
stories (G3K3). All the documents are from a sin-
gle Japanese news paper, and judgments are elicited
from some 100 undergraduate students. While more
will be given on the details of the data later (Sec-
tion 3.2), we can safely ignore them here.

Each panel has the horizontal axis representing lo-
cation or order of sentence in a document, and the
vertical axis the proportion of the times sentences at
particular locations are picked as relevant to summa-
rization. Thus in G1K3, we see that the first sentence
(to appear in a document) gets voted for about 12%
of the time, while the 26th sentence is voted for less
than 2% of the time.

Curiously enough, each of the panels exhibits a
distinct pattern in the way votes are spread across

a document: G1K3 has the distribution of votes
(DOV) with sharp peaks around 1 and 14; in G2K3,
the distribution is peaked around 1, with a small
bump around 19; in G3K3, the distribution is sharply
skewed to the left, indicating that the majority of
votes went to the initial section of a document. What
is interesting about the DOV is that we could take
it as indicating a collective preference for what to
extract for a summary. A question is then, can we
somehow exploit the DOV in summarization? To
our knowledge, no prior work seems to exist that
addresses the question. The paper discusses how
we could do this under a Bayesian modeling frame-
work, where we explicitly represent and make use
of the DOV by way of Dirichlet posterior (Congdon,
2003).1

2 Bayesian Model of Summaries

Since the business of extractive summarization, such
as one we are concerned with here, is about ranking
sentences according to how useful/important they
are as part of summary, we will consider here a par-
ticular ranking scheme based on the probability of a
sentence being part of summary under a given DOV,
i.e.,

P (y|vvv), (1)

where y denotes a given sentence, andvvv =
(v1, . . . , vn) stands for a DOV, an array of observed
vote counts for sentences in the text;v1 refers to the
count of votes for a sentence at the text initial posi-
tion,v2 to that for a sentence occurring at the second
place, etc.

Thus given a four sentence long text, if we have
three people in favor of a lead sentence, two in favor

1See Yu et al. (2004) and Cowans (2004) for its use in IR.
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Figure 1: Genre-by-genre vote distribution

of the second, one for the third, and none for the
fourth, then we would havevvv = (3, 2, 1, 0).

Now suppose that each sentenceyi (i.e., a sen-
tence at thei-th place in the order of appearance) is
associated with what we might call a prior prefer-
ence factorθi, representing how much a sentence at
a particular position is favored as part of a summary
in general. Then the probability thatyi finds itself in
a summary is given as:

φ(yi|θi)P (θi), (2)

where φ denotes some likelihood function, and
P (θi) a prior probability ofθi.

Since the DOV is something we could actually
observe aboutθi, we might as well coupleθi with
vvv by making a probability ofθi conditioned onvvv.
Formally, this would be written as:

φ(yi|θi)P (θi|vvv). (3)

The problem, however, is that we know nothing
about what eachθi looks like, except that it should
somehow be informed byvvv. A typical Bayesian so-
lution to this is to ‘erase’θi by marginalizing (sum-
ming) over it, which brings us to this:

P (yi|vvv) =
∫
φ(yi|θi)P (θi |vvv) dθi. (4)

Note that equation 4 no longer talks about the proba-
bility of yi under a particularθi; rather it talks about
the expected probability foryi with respect to a pref-
erence factor dictated byvvv. All we need to know

vvv //
ÂÂ

θθθ // yi

Figure 2: A graphical view

aboutP (θi|vvv) to compute the expectation isvvv and a
probability distributionP , and notθi’s, anymore.

We know something aboutvvv, and this would
leave usP . So what is it? In principle it could
be any probability distribution. However largely
for the sake of technical convenience, we assume
it is one component of a multinomial distribution
known as the Dirichlet distribution. In particular,
we talk about Dirichlet(θθθ|vvv), namely a Dirichlet
posterior ofθ, given observationsvvv, whereθθθ =
(θ1, . . . , θi, . . . , θn), and

∑n
i θi = 1 (θi > 0). (Re-

markably, ifP (θ) is a Dirichlet, so isP (θ|vvv).) θθθ
here represents a vector of preference factors forn
sentences — which constitute the text.2

Accordingly, equation 4 could be rewritten as:

P (yi|vvv) =
∫
φ(yi|θθθ)P (θθθ |vvv) dθθθ. (5)

An interesting way to look at the model is by way
of a graphical model (GM), which gives some in-
tuitive idea of what the model looks like. In a GM
perspective, our model is represented as a simple tri-
partite structure (figure 2), in which each node corre-
sponds to a variable (parameter), and arcs represent

2Since texts generally vary in length, we may setn to a suf-
ficiently large number so that none of texts of interest may ex-
ceed it in length. For texts shorter thann, we simply add empty
sentences to make them as long asn.
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dependencies among them.x→ y reads ‘y depends
on x.’ An arc linkage betweenvvv andyi is meant to
represent marginalization overθθθ.

Moreover, we will make use of a scale parame-
ter λ ≥ 1 to have some control over the shape
of the distribution, so we will be working with
Dirichlet(θ|λvvv) rather than Dirichlet(θ|vvv). Intu-
itively, we might takeλ as representing a degree of
confidence we have in a set of empirical observa-
tions we callvvv, as increasing the value ofλ has the
effect of reducing variance over eachθi in θ.

The expectation and variance of Dirichlet(θθθ|vvv) are
given as follows.3

E[θi] =
vi
v0

(6)

V ar[θi] =
vi(v0 − vi)
v2

0(v0 + 1)
, (7)

wherev0 =
∑n

i vi. Therefore the variance of a
scaled Dirichlet is:

V ar[θi|λvvv] =
vi(v0 − vi)
v2

0(λv0 + 1)
. (8)

See howλ is stuck in the denominator. Another ob-
vious fact about the scaling is that it does not affect
the expectation, which remains the same.

To get a feel for the significance ofλ, con-
sider figure 3; the left panel shows a histogram
of 50,000 variates ofp1 randomly drawn from
Dirichlet(p1, p2|λc1, λc2), with λ = 1, and bothc1

andc2 set to 1. The graph shows only thep1 part
but things are no different forp2. (Thex-dimension
represents a particular valuep1 takes (which ranges
between 0 and 1) and they-dimension records the
number of the timesp1 takes that value.) We see that
points are spread rather evenly over the probability
space. Now the right panel shows what happens if
you increaseλ by a factor of 1,000 (which will give
youP (p1, p2|1000, 1000)); points take a bell shaped
form, concentrating in a small region around the ex-
pectation ofp1. In the experiments section, we will
return to the issue ofλ and discuss how it affects
performance of summarization.

Let us turn to the question of how to find a solu-
tion to the integral in equation 5. We will be con-
cerned here with two standard approaches to the is-
sue: one is based on MAP (maximum a posteriori)

3http://www.cis.hut.fi/ahonkela/dippa/dippa.html

and another on numerical integration. We start off
with a MAP based approach known as Bayesian In-
formation Criterion or BIC.

For a given modelm, BIC seeks an analytical ap-
proximation for equation 4, which looks like the fol-
lowing:

lnP (yi|m) = lnφ(yi|θ̂θθ,m)− k

2
lnN, (9)

wherek denotes the number of free parameters in
m, andN that of observations.̂θθθ is a MAP estimate
of θθθ underm, which isE[θθθ]. It is interesting to note
that BIC makes no reference to prior. Also worthy of
note is that a minus of BIC equals MDL (Minimum
Description Length).

Alternatively, one might take a more straightfor-
ward (and fully Bayesian) approach known as the
Monte Carlo integration method (MacKay, 1998)
(MC, hereafter) where the integral is approximated
by:

P (yi|vvv) ≈ 1
n

n∑

j=1

φ(yi|x(j)), (10)

where we draw each samplex(j) randomly from the
distributionP (θθθ|vvv), andn is the number ofx(i)’s
so collected. Note that MC gives an expectation of
P (yi|vvv) with respect toP (θθθ|vvv).

Furthermore,φ could be any probabilistic func-
tion. Indeed any discriminative classifier (such as
C4.5) will do as long as it generates some kind of
probability. Givenφ, what remains to do is essen-
tially training it on samples bootstrapped (i.e., re-
sampled) from the training data based onθθθ — which
we draw from Dirichlet(θθθ|vvv).4 To be more spe-
cific, suppose that we have a four sentence long text
and an array of probabilitiesθθθ = (0.4, 0.3, 0.2, 0.1)
drawn from a Dirichlet distribution: which is to say,
we have a preference factor of 0.4 for the lead sen-
tence, 0.3 for the second sentence, etc. Then we re-
sample with replacement lead sentences from train-
ing data with the probability of 0.4, the second with
the probability of 0.3, and so forth. Obviously, a

4It is fairly straightforward to sample from a Dirichlet pos-
terior by resorting to a gamma distribution, which is what is
happening here. In case one is working with a distribution it is
hard to sample from, one would usually rely on Markov chain
Monte Carlo (MCMC) or variational methods to do the job.
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Figure 3: Histograms of random draws from Dirichlet(p1, p2|λc1, λc2) with λ = 1 (left panel), andλ =
1000 (right panel).

high preference factor causes the associated sen-
tence to be chosen more often than those with a low
preference.

Thus given a textT = (a, b, c, d) with θθθ =
(0.4, 0.3, 0.2, 0.1), we could end up with a data set
dominated by a few sentence types, such asT ′ =
(a, a, a, b), which we proceed to train a classifier on
in place ofT . Intuitively, this amounts to induc-
ing the classifier to attend to or focus on a partic-
ular region or area of a text, and dismiss the rest.
Note an interesting parallel to boosting (Freund and
Schapire, 1996) and the alternating decision tree
(Freund and Mason, 1999).

In MC, for eachθθθ(k) drawn from Dirichlet(θθθ|vvv),
we resample sentences from the training data using
probabilities specified byθθθ(k), use them for train-
ing a classifier, and run it on a test documentd to
find, for each sentence ind, its probability of being
a ‘pick’ (summary-worthy) sentence,i.e.,P (yi|θθθ(k)),
which we average acrossθθθ’s. In experiments later
described, we apply the procedure for 20,000 runs
(meaning we run a classifier on each of 20,000θθθ’s
we draw), and average over them to find an estimate
for P (yi|vvv).

As for BIC, we generally operate along the lines
of MC, except that we bootstrap sentences using
only E[θθθ], and the model complexity term, namely,
−k

2 lnN is dropped as it has no effect on ranking
sentences. As with MC, we train a classifier on the
bootstrapped samples and run it on a test document.
Though we work with a set of fixed parameters, a
bootstrapping based on them still fluctuates, produc-

ing a slightly different set of samples each time we
run the operation. To get a reasonable convergence
in experiments, we took the procedure to 5,000 iter-
ations and averaged over the results.

Either with BIC or with MC, building a summa-
rizer on it is a fairly straightforward matter. Given
a documentd and a compression rater, what a
summarizer would do is simply rank sentences ind
based onP (yi|vvv) and pick anr portion of highest
ranking sentences.

3 Working with Bayesian Summarist

3.1 C4.5

In what follows, we will look at whether and how the
Bayesian approach, when applied for the C4.5 deci-
sion tree learner (Quinlan, 1993), leverages its per-
formance on real world data. This means our model
now operates either by

P (yi|vvv) ≈ 1
n

n∑

j=1

φc4.5(yi|x(j)), (11)

or by

lnP (yi|m) = lnφc4.5(yi|θ̂θθ,m)− k

2
lnN, (12)

with the likelihood functionφ filled out by C4.5.
Moreover, we compare two versions of the classifier;
one with BIC/MC and one without. We used Weka
implementations of the algorithm (with default set-
tings) in experiments described below (Witten and
Frank, 2000).
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While C4.5 here is configured to work in a bi-
nary (positive/negative) classification scheme, we
run it in a ‘distributional’ mode, and use a particular
class membership probability it produces, namely,
the probability of a sentence being positive, i.e., a
pick (summary-worthy) sentence, instead of a cate-
gory label.

Attributes for C4.5 are broadly intended to repre-
sent some aspects of a sentence in a document, an
object of interest here. Thus for each sentenceψ, its
encoding involves reference to the following set of
attributes or features. ‘LocSen’ gives a normalized
location ofψ in the text, i.e., a normalized distance
from the top of the text; likewise, ‘LocPar’ gives a
normalized location of the paragraph in whichψ oc-
curs, and ‘LocWithinPar’ records its normalized lo-
cation within a paragraph. Also included are a few
length-related features such as the length of text and
sentence. Furthermore we brought in some language
specific feature which we call ’EndCue.’ It records
the morphology of a linguistic element that endsψ,
such as inflection, part of speech, etc.

In addition, we make use of the weight feature
(‘Weight’) for a record on the importance ofψ based
on tf.idf. Let ψ = w1, . . . , wn, for some wordwi.
Then the weightW (ψ) is given as:

W (ψ) =
∑
w

(1 + log(tf(w))) · log(N/df(w)).

Here ‘tf(w)’ denotes the frequency of wordw in a
given document, ‘df(w)’ denotes the ’document fre-
quency’ ofw, or the number of documents which
contain an occurrence ofw. N represents the total
number of documents.5

Also among the features used here is ‘Pos,’ a fea-
ture intended to record the position or textual order
of ψ, given by how many sentences away it occurs
from the top of text, starting with 0.

While we do believe that the attributes discussed
above have a lot to do with the likelihood that a given
sentence becomes part of summary, we choose not
to consider them parameters of the Bayesian model,
just to keep it from getting unduly complex. Recall
the graphical model in figure 2.

5Although one could reasonably argue for normalizing
W (ψ) by sentence length, it is not entirely clear at the moment
whether it helps in the way of improving performance.

3.2 Test Data

Here is how we created test data. We collected three
pools of texts from different genres, columns, edito-
rials and news stories, from a Japanese financial pa-
per (Nihon Keizai Shinbun) published in 1995, each
with 25 articles. Then we asked 112 Japanese stu-
dents to go over each article and identify 10% worth
of sentences they find most important in creating
a summary for that article. For each sentence, we
recorded how many of the subjects are in favor of
its inclusion in summary. On average, we had about
seven people working on each text. In the follow-
ing, we say sentences are ‘positive’ if there are three
or more people who like to see them in a summary,
and ‘negative’ otherwise. For convenience, let us
call the corpus of columns G1K3, that of editorials
G2K3 and that of news stories G3K3. Additional
details are found in table 1.

4 Results and Discussion

Tables 2 through 4 show how the Bayesian sum-
marist performs on G1K3, G2K3, and G3K3. The
tables list results in precision at compression rates
(r) of interest (0 < r < 1). The figures thereof indi-
cate performance averaged over leave-one-out cross
validation folds. What this means is that you leave
out one text for testing and use the rest for training,
which you repeat for each one of the texts in the data.
Since we have 25 texts for each data set, this leads
to a 25-fold cross validation. Precision is defined by
the ratio of hits (positive sentences) to the number
of sentences retrieved, i.e.,r-percent of sentences in
the text.6

In each table, figures to the left of the verti-
cal line indicate performance of summarizers with
BIC/MC and those to the right that of summarizers
without them. Parenthetical figures like ‘(5K)’ and
‘(20K)’ indicate the number of iterations we took
them to: thus BIC(5K) refers to a summarizer based
on C4.5/BIC with scores averaged over 5,000 runs.
BSE denotes a reference summarizer based on a reg-
ular C4.5, which it involves no resampling of train-
ing data. LEAD refers to a summarizer which works

6We do not use recall for a evaluation measure, as the num-
ber of positive instances varies from text to text, and may indeed
exceed the length of a summary under a particular compression
rate.

253



Table 1:N represents the number of sentences in G1K3 to G3K3. Sentences with three or more votes in
their favor are marked positive, that is, for each sentence marked positive, at least three people are in favor
of including it in a summary.

Genre N Positive (≥ 3) Negative P/N Ratio
G1K3 426 67 359 0.187
G2K3 558 93 465 0.200
G3K3 440 76 364 0.210

Table 2: G1K3.λ = 5. Dashes indicate no meaningful results.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.4583 0.4583 − 0.3333
0.10 0.4167 0.4167 − 0.3472
0.15 0.3333 0.3472 − 0.2604
0.20 0.2757 0.2861 − 0.2306
0.25 0.2525 0.2772 − 0.2233
0.30 0.2368 0.2535 − 0.2066

Table 3: G2K3.λ = 5.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.6000 0.5800 0.4200 0.5400
0.10 0.4200 0.4200 0.3533 0.3933
0.15 0.3427 0.3560 0.2980 0.3147
0.20 0.3033 0.3213 0.2780 0.2767
0.25 0.2993 0.2776 0.2421 0.2397
0.30 0.2743 0.2750 0.2170 0.2054

Table 4: G3K3.λ = 5.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.9600 0.9600 0.8400 0.9600
0.10 0.7600 0.7600 0.6800 0.7000
0.15 0.6133 0.6000 0.5867 0.5133
0.20 0.5233 0.5233 0.4967 0.4533
0.25 0.4367 0.4367 0.3960 0.3840
0.30 0.4033 0.4033 0.3640 0.3673

0 (411.0/65.0)

Figure 4: A non Bayesian C4.5 trained on G1K3.

254



LenSenA

0 (199.0/23.0)

<= 64

EndCueA

> 64

Weight

= 0

LocWithinPar

= 1

0 (0.0)

= 2

Weight

= 3

0 (5.0/1.0)

= 4

LocWithinPar

= 5

0 (7.0)

= 6

LocWithinPar

<= 2.338

0 (17.0)

> 2.338

Weight

<= 0

LenSenA

> 0

LocPar

<= 2.255

1 (7.0)

> 2.255

1 (4.0)

<= 0

0 (22.0/7.0)

> 0

LocWithinPar

<= 114

LocWithinPar

> 114

0 (38.0/4.0)

<= 0.8

1 (2.0)

> 0.8

1 (10.0/2.0)

<= 0.7

0 (3.0)

> 0.7

0 (11.0/1.0)

<= 0.286

LocPar

> 0.286

LenSenA

<= 0.667

1 (8.0)

> 0.667

1 (13.0/1.0)

<= 72

0 (8.0)

> 72

0 (15.0)

<= 1.707

LocSen

> 1.707

LocWithinPar

<= 0.917

0 (7.0)

> 0.917

0 (5.0/1.0)

<= 0

LenSenA

> 0

1 (17.0)

<= 110

LocSen

> 110

0 (3.0)

<= 0.333

1 (2.0)

> 0.333

1 (3.0/1.0)

<= 0.429

0 (6.0)

> 0.429

Figure 5: A Bayesian (MC) C4.5 trained on G1K3.

by selecting sentences from the top of the text. It is
generally considered a hard-to-beat approach in the
summarization literature.

Table 4 shows results for G3K3 (a news story do-
main). There we find a significantly improvement to
performance of C4.5, whether it operates with BIC
or MC. The effect is clearly visible across a whole
range of compression rates, and more so at smaller
rates.

Table 3 demonstrates that the Bayesian approach
is also effective for G2K3 (an editorial domain), out-
performing both BSE and LEAD by a large margin.

Similarly, we find that our approach comfortably
beats LEAD in G1K3 (a column domain). Note the
dashes for BSE. What we mean by these, is that we
obtained no meaningful results for it, because we
were unable to rank sentences based on predictions
by BSE. To get an idea of how this happens, let us
look at a decision tree BSE builds for G1K3, which
is shown in figure 4. What we have there is a deci-
sion tree consisting of a single leaf.7 Thus for what-
ever sentence we feed to the tree, it throws back the
same membership probability, which is 65/411. But
then this would make a BSE based summarizer ut-
terly useless, as it reduces to generating a summary
by picking at random, a particular portion of text.8

7This is not at all surprising as over 80% of sentences in a
non resampled text are negative for the most of the time.

8Its expected performance (averaged over106 runs) comes

Now Figure 5 shows what happens with the
Bayesian model (MC), for the same data. There
we see a tree of a considerable complexity, with 24
leaves and 18 split nodes.

Let us now turn to the issues withλ. As we might
recall, λ influences the shape of a Dirichlet distri-
bution: a large value ofλ causes the distribution
to have less variance and therefore to have a more
acute peak around the expectation. What this means
is that increasing the value ofλmakes it more likely
to have us drawing samples closer to the expecta-
tion. As a consequence, we would have the MC
model acting more like the BIC model, which is
based on MAP estimates. That this is indeed the
case is demonstrated by table 5, which gives results
for the MC model on G1K3 to G3K3 atλ = 1. We
see that the MC behaves less like the BIC atλ = 1
than atλ = 5 (table 2 through 4).

Of a particular interest in table 5 is G1K3, where
the MC suffers a considerable degradation in per-
formance, compared to when it works withλ = 5.
G2K3 and G3K3, again, witness some degradation
in performance, though not as extensive as in G1K3.
It is interesting that at times the MC even works bet-
ter withλ = 1 thanλ = 5 in G2K3 and G3K3.9

to: 0.1466 (r = 0.05), 0.1453 (r = 0.1), 0.1508 (r = 0.15),
0.1530 (r = 0.2), 0.1534 (r = 0.25), and 0.1544 (r = 0.3).

9The results suggest that if one like to have some improve-
ment, it is probably a good idea to setλ to a large value. But
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Table 5: MC (20K).λ = 1.

r G1K3 G2K3 G3K3
0.05 0.3333 0.5400 0.9600
0.10 0.3333 0.3867 0.7800
0.15 0.2917 0.3960 0.5867
0.20 0.2549 0.3373 0.5200
0.25 0.2480 0.2910 0.4347
0.30 0.2594 0.2652 0.4100

All in all, the Bayesian model proves more effec-
tive in leveraging performance of the summarizer on
a DOV exhibiting a complex, multiply peaked form
as in G1K3 and G2K3, and less on a DOV which
has a simple, single-peak structure as in G3K3 (cf.
figure 1).10

5 Concluding Remarks

The paper showed how it is possible to incorporate
information on human judgments for text summa-
rization in a principled manner through Bayesian
modeling, and also demonstrated how the approach
leverages performance of a summarizer, using data
collected from human subjects.

The present study is motivated by the view that
that summarization is a particular form of collabo-
rative filtering (CF), wherein we view a summary
as a particular set of sentences favored by a par-
ticular user or a group of users just like any other
things people would normally have preference for,
such as CDs, books, paintings, emails, news articles,
etc. Importantly, under CF, we would not be asking,
what is the ‘correct’ or gold standard summary for
document X? – the question that consumed much of
the past research on summarization. Rather, what we
are asking is, what summary is popularly favored for
X?

Indeed the fact that there could be as many sum-
maries as angles to look at the text from may favor

in general how to best setλ requires some experimenting with
data and the optimal value may vary from domain to domain.
An interesting approach would be to empirically optimizeλ us-
ing methods suggested in MacKay and Peto (1994).

10Incidentally, summarizers, Bayesian or not, perform con-
siderably better on G3K3 than on G1K3 or G2K3. This hap-
pens presumably because a large portion of votes concentrate
in a rather small region of text there, a property any classifier
should pick up easily.

the CF view of summary: the idea of what consti-
tutes a good summary may vary from person to per-
son, and may well be influenced by particular inter-
ests and concerns of people we elicit data from.

Among some recent work with similar concerns,
one notable is the Pyramid scheme (Nenkova and
Passonneau, 2004) where one does not declare a
particular human summary a absolute reference to
compare summaries against, but rather makes every
one of multiple human summaries at hand bear on
evaluation; Rouge (Lin and Hovy, 2003) represents
another such effort. The Bayesian summarist rep-
resents yet another, whereby one seeks a summary
most typical of those created by humans.
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Abstract

In this paper we consider the problem of
analysing sentence-level discourse struc-
ture. We introduce discourse chunking
(i.e., the identification of intra-sentential
nucleus and satellite spans) as an al-
ternative to full-scale discourse parsing.
Our experiments show that the proposed
modelling approach yields results com-
parable to state-of-the-art while exploit-
ing knowledge-lean features and small
amounts of discourse annotations. We also
demonstrate how discourse chunking can
be successfully applied to a sentence com-
pression task.

1 Introduction

The computational treatment of discourse phenom-
ena has recently attracted much attention, partly due
to their increasing importance for potential appli-
cations. In summarisation, for example, the extrac-
tion of sentences to include in a summary crucially
depends on their rhetorical status (Marcu, 2000;
Teufel and Moens, 2002); one might want to extract
contrastive or explanatory statements while omit-
ting sentences that contain background information.
In information extraction, discourse-level knowl-
edge can be used to identify co-referring events
(Humphreys et al., 1997) and to determine their tem-
poral order. Discourse processing could further en-
hance question answering systems by interpreting
the user’s question either in isolation or in the con-
text of preceding questions (Chai and Jing, 2004).

Discourse analysis is often viewed as a parsing
task. Rhetorical Structure Theory (RST, Mann and
Thomson, 1988), one of the most influential frame-
works in discourse processing, represents texts by
trees whose leaves correspond to elementary dis-
course units (edus) and whose nodes specify how

these and larger units (e.g., multi-sentence seg-
ments) are linked to each other by rhetorical rela-
tions (e.g.,Contrast, Elaboration). Discourse units
are further characterised in terms of their text im-
portance:nuclei denote central segments, whereas
satellitesdenote peripheral ones.

Recent advances in discourse modelling have
greatly benefited from the availability of resources
annotated with discourse-level information such as
the RST Discourse Treebank (RST-DT, Carlson et
al., 2002). Even though discourse parsing at the
document-level still poses a significant challenge to
data-driven methods, sentence-level discourse mod-
els (e.g., Soricut and Marcu, 2003) trained on the
RST-DT have attained accuracies comparable to hu-
man performance. The availability of discourse an-
notations is partly responsible for the success of
these models. Another important reason is the devel-
opment of robust syntactic parsers (e.g., Charniak,
2000) that can be used to provide critical structural
and lexical information to the discourse parser. Un-
fortunately, discourse annotated corpora are largely
absent for languages other than English. Further-
more, reliance on syntactic parsing renders dis-
course parsing practically impossible for languages
for which state-of-the-art parsers are unavailable.

In this paper we propose discourse chunking as an
alternative to discourse parsing. Analogous to sen-
tence chunking, discourse chunking is an interme-
diate step towards full parsing. Following an RST-
style analysis, we focus solely on two subtasks:
(a) discourse segmentation, i.e., determining which
word sequences formedusand (b) inferring whether
theseedusfunction as nuclei or satellites. The moti-
vation for tackling these subtasks is two-fold. First,
they are of crucial importance for full-scale dis-
course parsing. For example, Soricut and Marcu
(2003) show that perfect discourse segmentation de-
livers an error reduction of 29% in the performance
of their discourse parser. Second, some applications
may not require full-scale discourse parsing. For ex-
ample, it has been shown that nuclearity is important
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for summarisation, i.e., nuclei are more likely to be
retained when summarising than satellites (Marcu,
2000). While nuclearity alone may not be sufficient
for document summarisation (Marcu, 1998), such
knowledge could prove useful at the sentence level,
for example for producing sentence compressions.

The algorithms introduced in this paper are pur-
posely knowledge-lean. We abstain from using syn-
tactic parsers or semantic databases such as Word-
Net (Fellbaum, 1998), thus exploring the portabil-
ity of our methods to languages for which such
resources are not available. We employ lexical
and low-level syntactic information (e.g., parts of
speech, syntactic chunks) and show that the perfor-
mance of our discourse chunker on the two subtasks
(mentioned above) is comparable to that of a state-
of-the-art sentence-level discourse parser (Soricut
and Marcu, 2003). We also assess its application po-
tential on a sentence compression task (Knight and
Marcu, 2003).

2 Related Work

Initial work towards the development of discourse
parsers has primarily relied on hand-crafted rules for
specifying world knowledge or constraints on tree
structures (e.g., Hobbs 1993). Recent work has seen
the emergence of treebanks annotated with discourse
structure, thus enabling the development of more
robust, data-driven models. Marcu (2000) presents
a shift-reduce parsing model that segments texts
into edusand determines how they should be as-
sembled into rhetorical structure trees. Soricut and
Marcu (2003) introduce a syntax-based sentence-
level discourse parser, which consists of two compo-
nents: a statistical segmentation model and a parser
working on the output of the segmenter. Both com-
ponents are trained on the RST-DT and exploit lexi-
cal features as well as syntactic dominance features
(which are taken from syntactic parse trees).

Given that discourse-level information plays an
important role in human summarisation (Endres-
Niggemeyer, 1998), it is not surprising that mod-
els of discourse structure have found use in auto-
matic summarisation. For instance, Marcu (2000)
proposes a summarisation algorithm that builds an
RST tree for the entire text, and identifies its most
important parts according to discourse salience.

Our work differs from previous approaches in
two key respects. First, we do not attempt to pro-
duce a hierarchical discourse structure. We intro-
duce discourse chunking, a less resource demanding
task than full discourse parsing. We show that good

said Mr. Smith as the market plunged.

Nucleus Satellite Satellite

Attribution

Nucleus
Circumstance

"I am optimistic"

Figure 1: Discourse Tree in RST-DT

chunking performance can be achieved with low-
level information. Second, we apply our discourse
chunker to sentence compression. Although previ-
ous approaches have utilised discourse information
for document summarisation, its application to sen-
tence condensation is novel to our knowledge.

3 Discourse Chunking

3.1 Data and Representation
We propose a supervised machine learning approach
to discourse chunking. Our data were obtained from
the RST-DT (Carlson et al., 2002), which consists of
385 Wall Street Journal articles manually annotated
with discourse structures in the framework of Mann
and Thompson (1987). An example of an RST-based
tree representation is shown in Figure 1; rectangu-
lar boxes denoteedusand arcs indicate which re-
lations (e.g.,Circumstanceor Attribution) hold be-
tween them. Relations are typically binary with one
unit being the nucleus (indicated by arrows in Fig-
ure 1) and the other the satellite, but multi-nuclear
and non-binary relations are also possible.

We are only interested in the lowest level of the
tree, i.e., we aim to identify theedusand determine
whether they are nuclei or satellites. For example,
in the sentence in Figure 1 we want to identify the
threeedus“I am optimistic”, said Mr. Smith, andas
the market plunged. and determine that the first of
these functions as a nucleus at the lowest level of
the tree whereas the latter two function as satellites.
We do not try to determine that the first twoedus
are merged at a higher level and then function as the
overall nucleus of the sentence.

The discourse chunking task assumes a non-
hierarchical representation. We converted each
sentence-level discourse tree into a flat chunk rep-
resentation by assigning each token (i.e., word or
punctuation mark) a tag encoding its nuclearity sta-
tus at theedu level. We adopted the chunk repre-
sentation proposed by Ramshaw and Marcus (1995)
and used four different tags:B-NUC andB-SAT for
nucleus and satellite-initial tokens, andI-NUC and
I-SAT for non-initial tokens, i.e., tokens inside a nu-
cleus and satellite span. As all tokens belong either
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to a nucleus or a satellite span, we do not need a spe-
cial tag (typically denoted byO in syntactic chunk-
ing) to indicate elements outside a chunk. The chunk
representation for the sentence in Figure 1 is thus:

“/ B-NUC I/ I-NUC am/I-NUC optimistic/I-NUC

”/ I-NUC said/B-SAT Mr./I-SAT Smith/I-SAT

as/B-SAT the/I-SAT market/I-SAT plunged/I-
SAT ./I-SAT

Discourse and sentence structure do not always
correspond, and for 5% of sentences in the RST-DT
no discourse tree exists. We excluded these from our
data. We also disregarded sentences without internal
structure, i.e., those which consist of only oneedu.
The RST-DT is partitioned into a training (342 arti-
cles) and test set (43 articles). We preserved this split
in all our experiments. 52 articles in the RST-DT are
doubly annotated. We used these to compute human
agreement on the discourse chunking task (see Sec-
tion 4.1).

3.2 Modelling
Using a chunk-based representation effectively ren-
ders discourse processing a sequence labelling task.
Two modelling approaches are possible. The sim-
plest model performs segmentation and labelling si-
multaneously. In our case this involves training a
classifier that labels each token with one of our four
tags (i.e.,B-NUC, I-NUC, B-SAT, I-SAT). Alterna-
tively, we could treat discourse chunking as two dis-
tinct subtasks involving two binary classifiers: a seg-
menter, which determines the chunk boundaries and
assigns each token a chunk-initial (B) or non-chunk-
initial tag (I), and a labeller, which classifies each
chunk identified by the segmenter as either nucleus
(NUC) or satellite (SAT).1

The second approach has a number of advantages.
First, abstracting away from a token-based represen-
tation in the second step makes it easier to model
sentence-level distributional properties of nuclei and
satellites, e.g., the fact that every sentence has at
least one nucleus. This can be achieved by incor-
porating additional features into the labeller, such
as the number of chunks in the sentence or the
length of the current chunk. A two-step approach
also avoids the creation of illegal chunk sequences,
such as “B-SAT I-NUC”. However, a potential draw-
back is that the number of training examples for the
labeller is reduced as the instances to be classified
are chunks rather than tokens. We explore the per-
formance of the one-step and the two-step methods
in Sections 4.2 and 4.3, respectively.

1A similar approach has been proposed for syntactic chunk-
ing, e.g., Tjong Kim Sang (2000).

A variety of learning schemes can be employed
for the discourse chunking task. We have experi-
mented with Boosting (Schapire and Singer, 2000),
Conditional Random Fields (Lafferty et al., 2001),
and Support Vector Machines (Vapnik, 1998). Dis-
cussion of our results focuses exclusively on boost-
ing, since it had a slight advantage over the other
methods. Boosting combines many simple, mod-
erately accurate categorisation rules into a sin-
gle, highly accurate rule. We used BoosTexter’s
(Schapire and Singer, 2000) implementation, which
combines boosting with simple decision rules. The
system permits three different types of features:
numeric, nominal and “text”. Text-valued features
can, for example, encode sequences of words or
parts of speech. BoosTexter appliesn-gram mod-
els when forming classification hypotheses for text-
valued features.

3.3 Features for the Token-Based Models
While we use similar features for all our classifiers,
their concrete implementation depends on whether
the classifier is token-based (i.e., the one-step model
and the segmenter in the two-step method) or span-
based (i.e., the labeller in the two-step method). We
first describe the features for the former.

Each token is represented as a feature vector en-
coding information about the token itself and its con-
text. We intentionally limited our features to a basic
set representing grammatical, syntactic, and lexical
information.

Tokens This feature simply encodes the identity
of the current token; we used raw tokens, without
lemmatisation or stemming.

Part-of-Speech Tags Tokens were also anno-
tated with parts of speech using a publicly available
state-of-the-art tagger (Mikheev, 1997).

Syntactic Chunks Chunk information is a valu-
able cue for determining discourse segments; it is
unlikely that a segment boundary occurs within a
syntactic chunk. We applied a chunker (Mikheev,
1997) to our data to discover noun and verb phrase
chunks. The chunker assigned one of five labels to
each token, encoding the first element of a noun or
verb chunk (B-NP and B-VP, respectively), a non-
initial element in a chunk (I-NP and I-VP), and an
element outside a chunk (O). We used these chunk
labels directly as features and also encoded gener-
alisations over chunk and boundary types (i.e.,VP

vs. NP andB vs. I, respectively).

Clause Information Knowing where clause
boundaries lie is important for segmentation, since
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discourse segments often correspond to clauses. We
used a rule-based algorithm (Leffa, 1998) to iden-
tify clauses from the syntactic chunker’s output and
recorded for every token whether it is clause-initial
(S) or not (X).

Discourse Connectives Discourse connectives
such asbut often indicate which rhetorical relation
holds between two spans. While we do not aim to in-
fer the relation proper, knowing the type of relation
holding between spans often helps in determining
whether they should be labelled as nucleus or satel-
lite. For example,Contrastrelations (e.g., signalled
by but) hold between two nuclei whereasCausere-
lations (e.g., signalled bybecause) hold between a
nucleus and a satellite. Hence, we recorded the pres-
ence of discourse connectives in a sentence to cap-
ture, albeit in a shallow manner, the interdependency
between rhetorical relations and nuclearity.

We used Knott’s (1996) inventory of discourse
connectives and encoded two types of information
for each token: (a) whether the token is a connective
(C) or not (X) and (b) the identity of the connective
if the token is a connective (zero otherwise).2

Token Position For each token we calculated its
relative position in the sentence (defined as the to-
ken position divided by the number of tokens). This
information is useful to capture potential positional
differences between nuclei and satellites, i.e., it may
be that nuclei are more likely at the beginning of a
sentence than at the end.

Context In addition to the nine features above,
which encode information about the token itself, we
also implemented 16 contextual features to encode
information about its neighbouring tokens. Syntac-
tic chunking approaches typically capture contextual
information by defining a small window of a few to-
kens to the left and right of the current token (see
Veenstra, 1998). However, we used the whole sen-
tence as context, since BoosTexter is fairly good at
determining automatically relevantn-grams within a
longer string of tokens. We included this contextual
information for all nominal features; that is, we en-
coded not only the string of preceding and following
tokens but also the string of preceding and following
part-of-speech tags, syntactic chunk labels, clause
labels, and connectives. For example, we had three
token features, one encoding the current token itself,
and two contextual features (one encoding the string

2Some words can have syntactic as well as discourse mark-
ing functions (e.g.,but sometimes functions as a synonym for
except rather than as aContrastmarker). We do not disam-
biguate between these two usages.

of preceding tokens, and one encoding the string of
following tokens); similarly we had three part-of-
speech features, nine syntactic chunk features three
using the complete chunk tags, three using only the
chunk type, and three using the boundary type), and
so on.

3.4 Features for the Span-Based Model
For the labeller we encoded information about
spans rather than tokens. This gave rise to six non-
contextual, text-valued features: the string of tokens
in the current span, their parts of speech, syntactic
chunk tags, clause tags, and the presence and iden-
tity of connectives. The positional feature was re-
defined in terms of relative span position, i.e., the
position of the current span divided by the number
of spans in the sentence. We restricted contextual
features to information about immediately preced-
ing and following spans (within a sentence). We did
not include information about non-adjacent spans
because only a minority of sentences in our data con-
tained more than three spans. Again, we included
contextual information for all nominal features. Fi-
nally, to capture intra-sentential span-structure, we
added the following features:

Span Length Span length was measured in
terms of the number of tokens in it and was repre-
sented by three features: the length of the current
span, and the lengths of its adjacent spans. Span
length information captures differences in the aver-
age length of nuclei and satellite spans.

Number of Spans We encoded the number of
spans in the sentence overall and the number of
spans preceding and following the current span.

4 Experiments

In this section we describe the experiments that as-
sess the merits of the discourse chunking framework
introduced above. We also give details regarding pa-
rameter estimation and training for our models and
introduce the baseline and state-of-the-art methods
used for comparison with our approach.

4.1 Upper Bound
Before presenting the results of our modelling ex-
periments, it is worth considering how well humans
agree on discourse chunk segmentation and labelling
in order to establish an upper bound for the task. We
measured both unlabelled and labelled agreement on
the 52 doubly annotated RST-DT texts. The former
measures whether humans agree in placing chunk
boundaries, whereas the latter additionally measures
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whether humans agree in assigning chunk labels.
To facilitate comparison with our models we report
inter-annotator agreement in terms of accuracy and
F-score.3 For the unlabelled case we also reportWin-
dow Difference(WDiff), a commonly used evalua-
tion measure for segmentation tasks (Pevzner and
Hearst, 2002). It returns values between 0 (identical
segmentations) and 1 (maximally different segmen-
tations) and differs from accuracy in that predicted
boundaries which are only slightly off are penalised
less than those which are completely wrong.

Human agreement is relatively high4 on both seg-
mentation and span labelling (see Table 1), which
can be explained by the fact that (i) the RST-DT
annotators were given very detailed and precise in-
structions and (ii) assigning boundaries and labels
is an easier task than creating full-scale discourse
trees.

4.2 One-Step Chunking
For the one-step chunking method, our training set
consists of approximately 130,000 instances (i.e., to-
kens). We set aside 10% as a development set for
optimising BoosTexter’s parameters (i.e., the num-
ber of training iterations and the maximal length of
then-grams considered for text-valued features). We
then re-trained BoosTexter with the optimal setting
(700 iterations,n = 2) and applied it to the test set,
which contained around 15,500 instances.

By default, the one-step method treats every token
in isolation, i.e., it assigns each token a tag without
taking its neighbouring tags into account. This is not
an entirely adequate model, since the likelihood of a
tag is influenced by its surrounding tags. For exam-
ple, the probability of a token being tagged asI-NUC

should increase if the preceding token was tagged
as B-NUC. One way to take information about sur-
rounding tags into account is by stacking classifiers,
i.e., adding the output of one classifier to the input
of another. Stacking is frequently used in chunking
tasks (e.g., Veenstra, 1998). We stack two BoosTex-
ter classifiers, by adding the string of all preceding
and following tags (within a given sentence) to each
token’s feature vector for the second classifier.

It would be possible to generate training mate-
rial for the second classifier directly from the orig-
inal training set by using the gold standard output
tags in the augmented feature vector. However, we

3For the unlabelled case, we report the F-score on bound-
aries; for the labelled case, we report the average F-score over
all class labels weighted by class frequency in the training set.

4Using the Kappa statistic agreement on segmentation
is K = .97 and on span labellingK = .81.

found that this leads BoosTexter to rely too much
on these tags, largely ignoring other features. This
causes problems when the model is applied to the
test set where the class tags are predicted and may
contain errors. Hence, we applied the original model
(BT-1-Step) to obtain predicted output tags for the
training data and then used these, rather than the
gold standard tags, to train the second classifier.
Similarly, during testing, we first applied BT-1-Step
and used its output tags to augmented the feature
vectors of the second classifier.

For comparison, we also applied two baseline
models to our data. The first (BaseMaj) is obtained
by always assigning the tag that is most common
in the training data (I-NUC). This strategy makes
no attempt at guessing span boundaries. The second
(BaseClMaj) indirectly assesses the importance of
clause boundary detection. It implements a strategy
which assumes that span boundaries always coin-
cide with clause boundaries. To obtain clause bound-
aries, we used the gold standard annotation of our
data in the Penn Treebank. We then labelled all
clause-initial tokens asB-NUC and all other tokens
as I-NUC. Note, that the use of gold standard clause
boundaries makes this a relatively high baseline. We
also applied Spade5, Soricut and Marcu’s (2003)
sentence-level discourse parser (see Section 2) to
our test set. For evaluation purposes, Spade’s out-
put was converted to our chunk representation. It is
important to note that Spade is a much more sophis-
ticated model than the ones presented in this paper.
We therefore do not expect to be able to obtain a bet-
ter performance. It is nevertheless interesting to see
how far one can go with a modest feature space and
considerably less structural information.

Table 1 shows the results. A set of diacritics is
used to indicate significance (on accuracy) through-
out this paper, see Table 2. On the segmentation task
(unlabelled) BT-1-Step and its stacked variant sig-
nificantly outperform the majority baseline (Base-
Maj) but are significantly less accurate than Base-
ClMaj, which uses gold standard clause boundaries.
The two BoosTexter models also perform signifi-
cantly worse than Spade on segmentation. However,
the higher WDiff for Spade on the segmentation task
suggests that the boundaries predicted by our mod-
els contain more “near misses” than those predicted
by Spade. When segmentation and span labelling are
taken into account (labelled), our one-step models
significantly outperform both baselines but are sig-
nificantly less accurate than Spade. Classifier stack-

5The software is publicly available fromhttp://www.isi.
edu/licensed-sw/spade/.
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unlabelled labelled
Models Acc % F-score WDiff Acc % F-score

BaseMaj 88.50 – .4021 53.87 38.77
BaseClMaj 93.51 70.06 .2008 56.64 43.62
BT-1-Step 90.07∗†‡$ 64.64 .2148 74.40∗†‡$ 74.13
BT-1-Step, stacked 91.86∗6 †‡$ 68.95 .1795 75.55∗†‡$ 75.37
BT-2-Step 97.37∗†‡$ 88.28 .0733 78.27∗†6 ‡$ 78.38
BT-2-Step, stacked 97.41∗†‡$ 88.40 .0727 76.31∗†‡$ 76.34
Spade 93.49∗6 †$ 87.06 .5071 79.21∗†$ 80.91
Humans 99.05 97.96 .0012 89.10 89.03

Table 1: Results on discourse segmentation and span labelling

Symbols Meaning
∗ 6 ∗ (not) sig different from BaseMaj
† 6 † (not) sig different from BaseClMaj
‡ 6 ‡ (not) sig different from Spade
$ 6 $ (not) sig different from Humans

Table 2: Meaning of diacritics indicating statistical
significance (χ2 tests,p < 0.05)

ing leads to slight improvements over the simple
BoosTexter model, but the difference is not statis-
tically significant.

4.3 Two-Step Chunking

In the two-step model, chunking consists of two
separate subtasks: segmentation and labelling. To
generate training material for the segmenter, we re-
placed the four chunk labels in the original data set
by their corresponding boundary labels (B, I). For
the labeller, training instances are spans rather than
tokens. We used the gold standard span boundaries
to convert the original training set to a span-based
representation. This new training set contained
around 15,000 instances (compared to 130,000 in-
stances in the token-based set). For both the seg-
menter and labeller, we set aside 10% of the ma-
terial as development data to optimise BoosTexter’s
parameters (900 iterations,n = 3 for segmentation,
and 600 iterations,n = 2 for labelling).

For testing, we first applied the segmenter to ob-
tain discourse chunk boundaries. We then used the
predicted boundaries to convert the test data into a
span-based representation, which we then used as
input for the labeller. For evaluation, the output of
the labeller was converted back to a token-based rep-
resentation. As with one-step chunking, we also im-
plemented a stacked variant, stacking both the seg-
mentation and the labelling models.

It can be seen in Table 1 that the two-step mod-
els outperform the one-step models. This difference

is significant except for the stacked model on the la-
belling task (labelled). Both two-step models signif-
icantly outperform both baselines on segmentation
(unlabelled) and labelling (labelled). They also sig-
nificantly outperform Spade on the boundary pre-
diction task, which is in itself an important sub-
task for discourse parsing. The unstacked two-step
BoosTexter model performs comparably to Spade
with respect to labelled accuracy; the difference be-
tween the two models is not statistically signifi-
cant. Hence, we achieve results similar to Spade but
with much simpler and knowledge-leaner features.
As with the one-step method, the stacked model
performs (insignificantly) better than its unstacked
counterpart on the segmentation task. However, on
the labelling task, the stacked variant performs sig-
nificantly worse. We conjecture that the reduced
training set size for the labeller causes the stacked
model (which is effectively trained twice) to overfit.
Expectedly, all models perform significantly worse
than humans on both tasks.

To assess whether our discourse chunker could
be ported to languages for which discourse tree-
banks are not yet available, we investigated how
much annotated data is required to achieve satis-
factory results. Assuming that annotators proceed
sentence-by-sentence, we varied the amount of sen-
tences in our training data and determined its ef-
fect on the learner’s (BT-2-Step) performance. Fig-
ure 2 shows that satisfactory labelled and unlabelled
performance (86.52% and 74.64% F-score, respec-
tively) can be achieved with approximately half the
training data (i.e., around 2,000 sentences). In fact,
using the entire data set yields a moderate increase
of 1.78% for the unlabelled task and 3.68% for the
labelled task. Hence, it seems that our knowledge-
lean method is suitable even for relatively small
training sets. We next examine whether the two-step
chunking model can be usefully employed in a prac-
tical application such as sentence compression.
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Figure 2: Learning curve for discourse segmentation
(unlabelled) and span labelling (labelled)

4.4 Sentence Compression

Sentence compression can be likened to summari-
sation at the sentence level. The task has an imme-
diate impact on several applications ranging from
summarisation to audio scanning devices for the
blind and caption generation (see Knight and Marcu,
2002 and the references therein). Previous data-
driven approaches (Knight and Marcu, 2003; Riezler
et al., 2003) relied on parallel corpora to determine
what is important in a sentence. The models learned
correspondences between long sentences and their
shorter counterparts, typically employing a rich fea-
ture space induced from parse trees. The task is chal-
lenging since the compressed sentences should re-
tain essential information and convey it grammati-
cally.

Here, we propose a complementary approach
which utilises discourse chunking. A compressed
sentence can be obtained from the output of the
chunker simply by removing satellites. We thus cap-
italise on RST’s (Mann and Thompson, 1987) no-
tion of nuclearity and the widely held assumption
that spans functioning as satellites can often be
deleted without disrupting coherence. To evaluate
the compressions produced by our chunking model,
we elicited judgements from human subjects. We de-
scribe our elicitation study and results as follows.

Data We randomly selected 40 sentences from
the test portion of the RST-DT. Average sentence
length was 38.75. The sentences were compressed
by chunking them with our (unstacked) two-step
model (BT-2-Step) and then dropping satellites. We
applied the same strategy to derive compressed sen-
tences from the output of Spade (Soricut and Marcu,
2003), and also produced human compressions. Fi-

Original
Administration officials traveling with President Bush in
Costa Rica interpreted Mr. Ortega’s wavering as a sign that
he isn’t responding to the military attacks so much as he is
searching for ways to strengthen his hand prior to the elec-
tions.

Baseline
Administration officials interpreted Mr. Ortega’s wavering.

BT-2-Step
Administration officials interpreted Mr. Ortega’s wavering as
a sign that he isn’t responding to the military attacks so much
as he is searching for ways.

Spade
Administration officials traveling with President Bush in
Costa Rica interpreted Mr. Ortega’s wavering as a sign.

Human
Administration officials interpreted Mr. Ortega’s wavering as
a sign that he is searching for ways to strengthen his hand prior
to the elections.

Table 3: Example compressions

Compression AvgLen Rating
Baseline 9.70 1.93
BT-2-Step 22.06 3.21
Spade 19.09 3.10
Humans 20.07 3.83

Table 4: Mean ratings for automatic compressions

nally, we added a simple baseline compression al-
gorithm proposed by Jing and McKeown (2000)
which removed all prepositional phrases, clauses, to-
infinitives, and gerunds. Both the baseline and Spade
operate on parse trees which were obtained from
Charniak’s (2000) parser. Our set of experimental
materials contained 4×40= 160 compressions.

Procedure and Subjects We obtained com-
pression ratings during an elicitation study com-
pleted by 45 unpaid volunteers, all native speaker
of English. The study was conducted remotely over
the Internet. Participants first saw a set of instruc-
tions that explained the task, and defined sentence
compression using multiple examples. The materi-
als consisted of the original sentences together with
their compressed versions. They were randomised in
lists following a Latin square design ensuring that
no two compressions in a list were generated from
the same sentence. As in Knight and Marcu’s (2003)
study, participants were asked to use a five point
scale to rate the systems’ compressions (taking into
account the felicity of the compression as well as its
grammaticality); they were told that all outputs were
generated automatically. Examples of the compres-
sions our participants saw are given in Table 3.

Results We carried out an Analysis of Variance
(ANOVA) to examine the effect of different types
of compressions (Baseline, BT-2-Step, Spade, and
Human). Statistical tests were done using the mean
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of the ratings shown in Table 4. The ANOVA re-
vealed a reliable effect of compression type by sub-
jects (F1(3,90) = 149.50, p < 0.001) and by items
(F2(3;117) = 40.23, p < 0.001). Post-hoc Tukey
tests indicated that human compressions are per-
ceived as significantly better than the compressions
produced by the baseline, BT-2-Step, and Spade
(α = 0.01). The discourse chunker and Spade are
significantly better than the baseline (α = 0.01). The
Tukey test revealed no statistically significant dif-
ference between these two algorithms (α = 0.01).
To summarise, both BoosTexter and Spade perform
closer to human performance than the baseline; yet,
humans perform significantly better than our com-
pression algorithms.

5 Conclusions

In this paper we proposed discourse chunking as an
alternative to full-scale parsing. Central in our ap-
proach is the use of low-level syntactic and gram-
matical information which we argue holds promise
for the development of discourse processing mod-
els across languages and domains. We showed that
a knowledge-lean feature space achieves good per-
formance both on segmentation and span labelling.
Furthermore, we assessed the application potential
of our chunker and showed that it can be success-
fully employed to generate sentence compressions,
thus confirming one of RST’s main claims regard-
ing the nuclearity of discourse spans (at least on the
sentence-level).

An important future direction lies in extending
our model to the document-level and the assign-
ment of rhetorical relations, thus going beyond the
basic nucleus-satellite distinction. Our results indi-
cate that a modular approach to discourse process-
ing (i.e., treating segmentation as separate from la-
belling) could increase performance. In the future,
we plan to investigate how to combine our chunker
with models like Spade for improved prediction on
both local and global levels.
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Abstract 

This paper presents comparative experimen-
tal results on four techniques of language 
model adaptation, including a maximum a 
posteriori (MAP) method and three dis-
criminative training methods, the boosting 
algorithm, the average perceptron and the 
minimum sample risk method, on the task of 
Japanese Kana-Kanji conversion. We evalu-
ate these techniques beyond simply using 
the character error rate (CER): the CER re-
sults are interpreted using a metric of do-
main similarity between background and 
adaptation domains, and are further evalu-
ated by correlating them with a novel metric 
for measuring the side effects of adapted 
models. Using these metrics, we show that 
the discriminative methods are superior to a 
MAP-based method not only in terms of 
achieving larger CER reduction, but also of 
being more robust against the similarity of 
background and adaptation domains, and 
achieve larger CER reduction with fewer 
side effects.  

1 Introduction 

Language model (LM) adaptation attempts to ad-
just the parameters of a LM so that it performs well 
on a particular (sub-)domain of data. Currently, 
most LMs are based on the Markov assumption 
that the prediction of a word depends only on the 
preceding n–1 words, but such n-gram statistics are 
known to be extremely susceptible to the charac-
teristics of training samples. This is true even when 
the data sources are supposedly similar: for exam-
ple, Rosenfeld (1996) showed that perplexity dou-
bled when a LM trained on the Wall Street Journal 
(1987-1989) was tested on the AP newswire stories 

of the same period. This observation, coupled with 
the fact that training data is available in large quan-
tities only in selected domains, facilitates the need 
for LM adaptation.  

There have been two formulations of the LM 
adaptation problem. One is the within-domain ad-
aptation, in which adapted LMs are created for 
different topics in a single domain (e.g., Seymore 
and Rosenfeld, 1997; Clarkson and Robinson, 
1997; Chen et al., 1998). In these studies, a domain 
is defined as a body of text originating from a sin-
gle source, and the main goal of LM adaptation is 
to fine-tune the model parameters so as to improve 
the LM performance on a specific sub-domain (or 
topic) using the training data at hand.  

The other formulation, which is the focus of the 
current study, is to adapt a LM to a novel domain, 
for which only a very small amount of training 
data is available. This is referred to as cross-
domain adaptation. Following Bellegarda (2001), 
we call the domain used to train the original model 
the background domain, and the novel domain 
with a small amount of training data as the adapta-
tion domain. Two major approaches to cross-
domain adaptation have been investigated: maxi-
mum a posteriori (MAP) estimation and discrimi-
native training methods. In MAP estimation 
methods, adaptation data is used to adjust the pa-
rameters of the background model so as to maxi-
mize the likelihood of the adaptation data. Count 
merging and linear interpolation of models are the 
two MAP estimation methods investigated in 
speech recognition experiments (Iyer et al., 1997; 
Bacchiani and Roark, 2003), with count merging 
reported to slightly outperform linear interpolation. 

Discriminative approaches to LM adaptation, on 
the other hand, aim at using the adaptation data to 
directly minimize the errors on the adaptation data 
made by the background model. These techniques 
have been applied successfully to the task of lan-
guage modeling in non-adaptation (Roark et al., 
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2004) as well as adaptation (Bacchiani et al., 2004) 
scenarios.  

In this paper, we present comparative experi-
mental results on four language model adaptation 
techniques and evaluate them from various angles, 
attempting to elucidate the characteristics of these 
models. The four models we compare are a maxi-
mum a posteriori (MAP) method and three dis-
criminative training methods, namely the boosting 
algorithm (Collins, 2000), the average perceptron 
(Collins, 2002) and the minimum sample risk 
method (Gao et al., 2005). Our evaluation of these 
techniques is unique in that we go beyond simply 
comparing them in terms of character error rate 
(CER): we use a metric of distributional similarity 
to measure the distance between background and 
adaptation domains, and attempt to correlate it with 
the CER of each adaptation method. We also pro-
pose a novel metric for measuring the side effects 
of adapted models using the notion of backward 
compatibility, which is very important from a soft-
ware deployment perspective.  

Our experiments are conducted in the setting of 
Japanese Kana-Kanji conversion, as we believe 
this task is excellently suited for evaluating LMs. 
We begin with the description of this task in the 
following section.  

2 Language Modeling in the Task of IME 

This paper studies language modeling in the con-
text of Asian language (e.g., Chinese or Japanese) 
text input. The standard method for doing this is 
that the users first input the phonetic strings, which 
are then converted into the appropriate word string 
by software. The task of automatic conversion has 
been the subject of language modeling research in 
the context of Pinyin-to-Character conversion in 
Chinese (Gao et al., 2002a) and Kana-Kanji con-
version in Japanese (Gao et al., 2002b). In this pa-
per, we call the task IME (Input Method Editor), 
based on the name of the commonly used Win-
dows-based application.  

The performance of IME is typically measured 
by the character error rate (CER), which is the 
number of characters wrongly converted from the 
phonetic string divided by the number of charac-
ters in the correct transcript. Current IME systems 
exhibit about 5-15% CER on real-world data in a 
wide variety of domains.  

In many ways, IME is a similar task to speech 
recognition. The most obvious similarity is that 
IME can also be viewed as a Bayesian decision 
problem: let A be the input phonetic string (which 
corresponds to the acoustic signal in speech); the 
task of IME is to choose the most likely word 
string W* among those candidates that could have 
been converted from A: 

)|()(maxarg)|(maxarg*
)()(

WAPWPAWPW
AWAW GENGEN ∈∈

==  (1) 

where GEN(A) denotes the candidate set given A.  
Unlike speech recognition, however, there is no 

acoustic ambiguity in IME, because the phonetic 
string is provided directly by users. Moreover, we 
can assume a unique mapping from W to A in IME, 
i.e., P(A|W) = 1. So the decision of Equation (1) 
depends solely on P(W), which makes IME ideal 
for testing language modeling techniques. Another 
advantage of using IME for language modeling 
research is that it is relatively easy to convert W to 
A, which facilitates the creation of training data for 
discriminative learning, as described later.  

From the perspective of LM adaptation, IME 
faces the same problem speech recognition faces: 
the quality of the model depends heavily on the 
similarity of the training and test data. This poses a 
serious challenge to IME, as it is currently the most 
widely used method of inputting Chinese or Japa-
nese characters, used by millions of users for in-
putting text of any domain. LM adaptation in IME 
is therefore an imminent requirement for improv-
ing user experience, not only as we build static 
domain-specific LMs, but also in making online 
user adaptation possible in the future.  

3 Discriminative Algorithms for LM Ad-
aptation 

This section describes three discriminative training 
methods we used in this study. For a detailed de-
scription of each algorithm, readers are referred to 
Collins (2000) for the boosting algorithm, Collins 
(2002) for perceptron learning, and Gao et al. 
(2005) for the minimum sample risk method. 

3.1 Definition 

The following set-up, adapted from Collins (2002), 
was used for all three discriminative training meth-
ods:  
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•  Training data is a set of input-output pairs. In the 
task of IME, we have training samples {Ai, Wi

R}, 
for i = 1…M, where each Ai is an input phonetic 
string and each Wi

R is the reference transcript of Ai. 
•  We assume a set of D + 1 features fd(W), for d = 
0…D. The features could be arbitrary functions 
that map W to real values. Using vector notation, 
we have f(W)∈ℜD+1, where f(W) = {f0(W), f1(W), 
…, fD(W)}. The feature f0(W) is called the base 
model feature, and is defined as the log probability 
that the word trigram model assigns to W. The fea-
tures fd(W) for d = 1…D are defined as the word n-
gram counts (n = 1 and 2 in our experiments) in W. 
•  The parameters of the model form a vector of D 
+ 1 dimensions, one for each feature function, λ= 
{λ0, λ1, …, λD}. The likelihood score of a word 
string W can then be written as 

)(),( WWScore λfλ = ∑
=

=
D

d
dd Wfλ

0

)( . (2) 

Given a model λ and an input A, the decision rule 
of Equation (1) can then be rewritten as 

).,(maxarg),(*
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We can obtain the number of conversion errors in 
W by comparing it with the reference transcript WR 
using an error function Er(WR,W), which is an edit 
distance in our case. We call the sum of error 
counts over the training set the sample risk (SR). 
Discriminative training methods strive to optimize 
the parameters of a model by minimizing SR, as in 
Equation (4). 

∑
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However, (4) cannot be optimized directly by regu-
lar gradient-based procedures as it is a piecewise 
constant function of λ and its gradient is undefined. 
The discriminative training methods described be-
low differ in how they achieve the optimization: 
the boosting and perceptron algorithms approxi-
mate SR by loss functions that are suitable for op-
timization; the minimum sample risk method, on 
the other hand, uses a simple heuristic training pro-
cedure to minimize SR directly without resorting 
to an approximated loss function. 

3.2 The boosting algorithm  

The boosting algorithm we used is based on 
Collins (2000). Instead of measuring the number of 
conversion errors directly, it uses a loss function 

that measures the number of ranking errors, i.e., 
cases where an incorrect candidate W receives a 
higher score than the correct conversion WR. The 
margin of the pair (WR, W) with respect to the 
model λ is given by 

),(),(),( λλ WScoreWScoreWWM RR −=  (5) 

The loss function is then defined as 
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where I[π] = 1 if π ≤ 0, and 0 otherwise. Note that 
RLoss takes into account all candidates in GEN(A).  

Since optimizing (6) is NP-complete, the boost-
ing algorithm optimizes its upper bound:  
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Figure 1 summarizes the boosting algorithm we 
used. After initialization, Step 2 and 3 are repeated 
N times; at each iteration, a feature is chosen and 
its weight is updated. We used the following up-
date for the dth feature fd:  

ZC
ZC

d

d
d ε

εδ
+
+

=
+

_log
2
1  (8) 

where Cd+ is a value increasing exponentially with 
the sum of margins of (WR, W) pairs over the set 
where fd is seen in WR but not in W; Cd-  is the value 
related to the sum of margins over the set where fd 

is seen in W but not in WR. ε is a smoothing factor 
(whose value is optimized on held-out data) and Z 
is a normalization constant. 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Select a feature fd which has largest estimated im-

pact on reducing ExpLoss of Equation (7) 
3 Update λd by Equation (8), and return to Step 2 

Figure 1: The boosting algorithm 

3.3 The perceptron algorithm 

The perceptron algorithm can be viewed as a form 
of incremental training procedure that optimizes a 
minimum square error (MSE) loss function, which 
is an approximation of SR (Mitchell, 1997). As 
shown in Figure 2, it starts with an initial parame-
ter setting and updates it for each training sample. 
We used the average perceptron algorithm of 
Collins (2002) in our experiments, a variation that 
has been proven to be more effective than the stan-
dard algorithm shown in Figure 2. Let λd

t,i be the 
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value for the dth parameter after the ith training 
sample has been processed in pass t over the train-
ing data. The average parameters are defined as  
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T
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M

i

it
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= =

λλ  
(9) 

3.4 The minimum sample risk method 

The minimum sample risk (MSR, Gao et al., 2005) 
training algorithm is motivated by analogy with the 
feature selection procedure for the boosting algo-
rithm (Freund et al., 1998). It is a greedy procedure 
for selecting a small subset of the features that 
have the largest contribution in reducing SR in a 
sequential manner. Conceptually, MSR operates 
like any multidimensional function optimization 
approach: a direction (i.e., feature) is selected and 
SR is minimized along that direction using a line 
search, i.e., adjusting the parameter of the selected 
feature while keeping all other parameters fixed. 
This is repeated until SR stops decreasing.  

Regular numerical line search algorithms cannot 
be applied directly because, as described above, 
the value of a feature parameter versus SR is not 
smooth and there are many local minima. MSR 
thus adopts the method proposed by Och (2003). 
Let GEN(A) be the set of n-best candidate word 
strings that could be converted from A. By adjust-
ing λd for a selected feature fd, we can find a set of 
intervals for λd within which a particular candidate 
word string is selected. We can compute Er(.) for 
the candidate and use it as the Er(.) value for the 
corresponding interval. As a result, we obtain an 
ordered sequence of Er(.) values and a correspond-
ing sequence of λ intervals for each training sample. 
By summing Er(.) values over all training samples, 
we obtain a global sequence of SR and the corre-
sponding global sequence of λd intervals. We can 
then find the optimal λd as well as its correspond-
ing SR by traversing the sequence. 

Figure 3 summarizes the MSR algorithm. See 
Gao et al. (2005) for a complete description of the 

MSR implementation and the empirical justifica-
tion for its performance.   

4 Experimental Results 

4.1 Data  

The data used in our experiments come from five 
distinct sources of text. A 36-million-word Nikkei 
newspaper corpus was used as the background 
domain. We used four adaptation domains: Yomi-
uri (newspaper corpus), TuneUp (balanced corpus 
containing newspaper and other sources of text), 
Encarta (encyclopedia) and Shincho (collection of 
novels). The characteristics of these domains are 
measured using the information theoretic notion of 
cross entropy, which is described in the next sub-
section.  

 For the experiment of LM adaptation, we used 
the training data consisting of 8,000 sentences and 
test data of 5,000 sentences from each adaptation 
domain. Another 5,000-sentence subset was used 
as held-out data for each domain, which was used 
to determine the values of tunable parameters. All 
the corpora used in our experiments are pre-
segmented into words using a baseline lexicon 
consisting of 167,107 entries.  

4.2 Computation of domain characteristics 

Yuan et al. (2005) introduces two notions of do-
main characteristics: a within-domain notion of 
diversity, and a cross-domain concept of similarity. 
Diversity is measured by the entropy of the corpus 
and indicates the inherent variability within the 
domain. Similarity, on the other hand, is intended 
to capture the difficulty of a given adaptation task, 
and is measured by the cross entropy.  

For the computation of these metrics, we ex-
tracted 1 million words from the training data of 
each domain respectively, and created a lexicon 
consisting of the words in our baseline lexicon plus 
all words in the corpora used for this experiment 
(resulting in 216,565 entries) to avoid the effect of 
out-of-vocabulary items. Given two domains A and 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 For t = 1…T (T = the total number of iterations) 
3    For each training sample (Ai, Wi

R), i = 1…M 
4       Choose the best candidate Wi from GEN(Ai)   

      according to Equation (3) 
5       For each λd (η = size of learning step) 
6           λd = λd + η(fd(Wi

R) – fd(Wi))          

Figure 2: The perceptron algorithm 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Rank all features by its expected impact on reduc-

ing SR and select the top N features 
3 For each n = 1…N  
4    Update the parameter of f using line search  

Figure 3: The MSR algorithm 
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B, we then trained a word trigram model for each 
domain B, and used the resulting model in comput-
ing the cross entropy of domain A. For simplicity, 
we denote this as H(A,B).  

Table 1 summarizes our corpora along this di-
mension. Note that the cross entropy is not sym-
metric, i.e., H(A,B) is not necessarily the same as 
H(B,A), so we only present the average cross en-
tropy in Table 1. We can observe that Yomiuri and 
TuneUp are much more similar to the background 
Nikkei corpus than Encarta and Shincho.  

H(A,A) along the diagonal of Table 1 (in bold-
face) is the entropy of the corpus, indicating the 
corpus diversity. This quantity indeed reflects the 
in-domain variability of text: newspaper and ency-
clopedia articles are highly edited text, following 
style guidelines and often with repetitious content. 
In contrast, Shincho is a collection of novels, on 
which no style or content restriction is imposed. 
We use these metrics in the interpretation of CER 
results in Section 5. 

4.3 Results of LM adaptation 

The discriminative training procedure was carried 
out as follows: for each input phonetic string A in 
the adaptation training set, we produced a word 
lattice using the baseline trigram models described 
in Gao et al. (2002b). We kept the top 20 hypothe-
ses from this lattice as the candidate conversion set 
GEN(A). The lowest CER hypothesis in the lattice 
rather than the reference transcript was used as WR. 
We used unigram and bigram features that oc-
curred more than once in the training set.  

We compared the performance of discriminative 
methods against a MAP estimation method as the 
baseline, in this case the linear interpolation 

method. Specifically, we created a word trigram 
model using the adaptation data for each domain, 
which was then linearly interpolated at the word 
level with the baseline model. The probability ac-
cording to the combined model is given by 

)|()1()|()|( hwPhwPhwp iAiBi λλ −+= ,  

where PB is the probability of the background 
model, PA the probability of the adaptation model, 
and the history h corresponds to two preceding 
words. λ was tuned using the held-out data.  

In evaluating both MAP estimation and dis-
criminative models, we used an N-best rescoring 
approach. That is, we created N best hypotheses 
using the baseline trigram model (N=100 in our 
experiments) for each sentence in the test data, and 
used adapted models to rescore the N-best list. The 
oracle CERs (i.e., the minimal possible CER given 
the available hypotheses) ranged from 1.45% to 
5.09% depending on the adaptation domain.  

The results of the experiments are shown in Ta-
ble 2. We can make some observations from the 
table. First, all discriminative methods signifi-
cantly outperform the linear interpolation (statisti-
cally significant according to the t-test at p < 0.01). 
In contrast, the differences among three discrimi-
native methods are very subtle and most of them 
are not statistically significant. Secondly, the CER 
results correlate well with the metric of domain 
similarity in Table 1 (r=0.94 using the Pearson 
product moment correlation coefficient). This is 
consistent with our intuition that the closer the ad-
aptation domain is to the background domain, the 
easier the adaptation task.  

Regarding the similarity of the adaptation do-
main to the background, we also observe that the 
CER reduction of the linear interpolation model is 
particularly limited when the adaptation domain is 
similar to the background domain: the CER reduc-
tion of the linear interpolation model for Yomiuri 
and TuneUp over the baseline is 0% and 1.89% 
respectively, in contrast to ~22% and ~5.8% im-
provements achieved by the discriminative models. 
The discriminative methods are therefore more 
robust against the similarity of the adaptation and 
background data than the linear interpolation.  

Our results differ from Bacchiani et al. (2004) in 
that in our system, the perceptron algorithm alone 
achieved better results than MAP estimation. 
However, the difference may only be apparent, 
given different experimental settings for the two 

 N Y T E S 
Nikkei 3.94 7.46 7.65 9.81 10.10 

Yomiuri  4.09 7.82 8.96 9.29 
TuneUp   4.41 8.82 8.56 
Encarta    4.40 9.20 
Shincho     4.61 

Table 1: Cross entropy 

Domain Base LI MSR Boost Percep 
Yomiuri 3.70 3.69 2.89 2.88 2.85 
TuneUp 5.81 5.70 5.48 5.47 5.47 
Encarta 10.24 8.64 8.39 8.54 8.34 
Shincho 12.18 11.47 11.05 11.09 11.20 

Table 2: CER results (%) (Base=baseline model; 
LI=linear interpolation) 
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studies. We used the N-best reranking approach 
with the same N-best list for both MAP estimation 
and discriminative training, while in Bacchiani et 
al. (2004), two different lattices were used: the per-
ceptron model was applied to rerank the lattice 
created by the background model, while the MAP 
adaptation model was used to produce the lattice 
itself. The fact that the combination of these mod-
els (i.e., first use the MAP estimation to create hy-
potheses and then use the perceptron algorithm to 
rerank them) produced the best results indicates 
that given a candidate lattice, the perceptron algo-
rithm is effective in candidate reranking, thus mak-
ing our results compatible with theirs. 

5 Discussion 

The results in Section 4 demonstrate that discrimi-
native training methods for adaptation are overall 
superior to MAP adaptation methods. In this sec-
tion, we show additional advantages of discrimina-
tive methods beyond simple CER improvements.   

5.1 Using metrics for side effects  

In the actual deployment of LM adaptation, one 
issue that bears particular importance is the num-
ber of side effects that are introduced by an 
adapted model. For example, consider an adapted 
model which achieves 10% CER improvements 
over the baseline. Such a model can be obtained by 
improving 10%, or by improving 20% and by in-
troducing 10% of new errors. Clearly, the former 
model is preferred, particularly if the models be-
fore and after adaptation are both to be exposed to 
users. This concept is more widely acknowledged 
within the software industry as backward compati-
bility – a requirement that an updated version of 
software supports all features of its earlier versions. 
In IME, it means that all phonetic strings that can 
be converted correctly by the earlier versions of the 
system should also be converted correctly by the 
new system as much as possible. Users are typi-
cally more intolerant to seeing errors on the strings 
that used to be converted correctly than seeing er-
rors that also existed in the previous version. 
Therefore, it is crucial that when we adapt to a new 
domain, we do so by introducing the smallest 
number of side effects, particularly in the case of 
an incremental adaptation to the domain of a par-
ticular user, i.e., to building a model with incre-
mental learning capabilities.   

5.2 Error ratio 

In order to measure side effects, we introduce the 
notion of error ratio (ER), which is defined as  

||

||

B

A

E

E
ER = , 

 

where |EA| is the number of errors found only in the 
new (adaptation) model, and |EB| the number of 
errors corrected by the new model. Intuitively, this 
quantity captures the cost of improvement in the 
adaptation model, corresponding to the number of 
newly introduced errors per each improvement. 
The smaller the ratio is, the better the model is at 
the same CER: ER=0 if the adapted model intro-
duces no new errors, ER<1 if the adapted model 
makes CER improvements, ER=1 if the CER im-
provement is zero (i.e., the adapted model makes 
as many new mistakes as it corrects old mistakes), 
and ER>1 when the adapted model has worse CER 
performance than the baseline model.  

Given the notion of CER and ER, a model can 
be plotted on a graph as in Figure 4: the relative 
error reduction (RER, i.e., the CER difference be-
tween the background and adapted models) is plot-
ted along the x-axis, and ER along the y-axis. 
Figure 4 plots the models obtained after various 
numbers of iterations for MSR training and at vari-
ous interpolation weights for linear interpolation 
for the TuneUp domain. The points in the upper-
left quadrant, ER>1 and RER<0, are the models 
that performed worse than the baseline model 
(some of the interpolated models fall into this cate-
gory); the shaded areas (upper-right and lower-left 
quadrants) are by definition empty. The lower-
right quadrant is the area of interest to us, as they 
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Figure 4: RER/ER plot for MSR and LI models for 

TuneUp domain 
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represent the models that led to CER improve-
ments; we will focus only on this area now in 
Figure 5. 

In this figure, a model is considered to have 
fewer side effects when the ER is smaller at the 
same RER (i.e., smaller value of y for a fixed value 
of x), or when the RER is larger at the same ER 
(i.e., larger value of x at the fixed y). That is, the 
closer a model is plotted to the corner B of the 
graph, the better the model is; the closer it is to the 
corner A, the worse the model is.  

5.3 Model comparison using RER/ER 

From Figure 5, we can clearly see that MSR mod-
els have better RER/ER-performance than linear 
interpolation models, as they are plotted closer to 
the corner B. Figure 6 displays the same plot for all 
four domains: the same trend is clear from all 

graphs. We can therefore conclude that a discrimi-
native method (in this case MSR) is superior to 
linear interpolation not only in terms of CER re-
duction, but also of having fewer side effects. This 
desirable result is attributed to the nature of dis-
criminative training, which works specifically to 
adjust feature weights so as to minimize error.  

 
Figure 7: RER/ER plot for MSR, boosting and percep-
tron models (X-axis is normalized to represent relative 

error rate reduction) 

Figure 7 compares the three discriminative 
models with respect to RER/ER by plotting the 
best models (i.e., models used to produce the re-
sults in Table 1) for each algorithm. We can see 
that even though the boosting and perceptron algo-
rithms have the same CER for Yomiuri and 
TuneUp from Table 2, the perceptron is better in 
terms of ER; this may be due to the use of expo-
nential loss function in the boosting algorithm 
which is less robust against noisy data (Hastie et al., 
2001). We also observe that Yomiuri and Encarta 
do better in terms of side effects than TuneUp and 
Shincho for all algorithms, which can be explained 
by corpus diversity, as the former set is less stylis-
tically diverse and thus more consistent within the 
domain.  

5.4 Overfitting and side effects 

The RER/ER graph also casts the problem of over-
fitting in an interesting perspective. Figure 8 is de-
rived from running MSR on the TuneUp test 
corpus, which depicts a typical case of overfitting: 
the CER drops in the beginning, but after a certain 
number of iterations, it goes up again. The models 
indicated by α and β in the graph are of the same 
CER, and as such, these models are equivalent. 
When plotted on the RER/ER graph in Figure 5, 
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Figure 5: RER/ER plot for the models with ER<1 and 
RER>0 for TuneUp domain. See Figure 8 for the de-

scription of α and β  
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Figure 6: RER/ER plot for all four domains  
x-axes: RER (%); y-axes: ER  

￮: linear interpolation models; ×:MSR models 
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however, it is clear that the overfit model β has the 
worse ER than the non-overfit counterpart α. In 
other words, models α and β have the same CER, 
but they are not equivalent: model β is not only 
worse in light of containing more features, but also 
in terms of causing more side effects.  

6 Conclusion and Future Work 

We have presented a comparison of three discrimi-
native learning approaches with a MAP estimation 
method in the task of LM adaptation for IME. We 
have shown that all discriminative models are sig-
nificantly better than the linear interpolation 
method, in that they achieve larger CER reduction 
with fewer side effects across different domains.  

One direction of future research is to apply this 
technique to an incremental learning scenario, i.e., 
to incrementally build models using incoming data 
for adaptation, taking all previously available data 
as background corpus. The new metric for back-
ward compatibility we proposed in the paper will 
play a particularly important role in such a scenario. 
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Abstract

Prepositional Phrase-attachment is a com-
mon source of ambiguity in natural lan-
guage. The previous approaches use lim-
ited information to solve the ambiguity
– four lexical heads – although humans
disambiguate much better when the full
sentence is available. We propose to
solve the PP-attachment ambiguity with a
Support Vector Machines learning model
that uses complex syntactic and seman-
tic features as well as unsupervised in-
formation obtained from the World Wide
Web. The system was tested on several
datasets obtaining an accuracy of 93.62%
on a Penn Treebank-II dataset; 91.79% on
a FrameNet dataset when no manually-
annotated semantic information is pro-
vided and 92.85% when semantic infor-
mation is provided.

1 Problem description

1.1 PP-attachment ambiguity problem

Prepositional Phrase-attachment is a source of ambi-
guity in natural language that generates a significant
number of errors in syntactic parsing. For example
the sentence “I saw yesterday the man in the park
with a telescope” has 5 different semantic interpre-
tations based on the way the prepositional phrases
“in the park” and “with the telescope” are attached:
I saw yesterday [the man [in the park [with a tele-
scope]]]; I saw yesterday [the man [in the park]

[with a telescope]]; I saw yesterday [the man [in the
park]] [with a telescope]; I saw yesterday [the man]
[in the park [with a telescope]] and I saw yesterday
[the man] [in the park] [with a telescope].

The problem can be viewed as a decision of at-
taching a prepositional phrase (PP) to one of the
preceding head nouns or verbs. The ambiguity ex-
pressed by the number of potential parse trees gener-
ated by Context-Free Grammars increases exponen-
tially with the number of PPs. For a PP that follows
the object of a verb there are 2 parse trees, for a chain
of 2, 3, 4 and 5 PPs there are respectively 5, 14, 42
and 132 parse trees. Usually the average number of
consecutive PPs in a sentence increases linearly with
the length of the sentence.

Lexical and syntactic information alone is not suf-
ficient to resolve the PP-attachment problem; of-
ten semantic and/or contextual information is nec-
essary. For example, in “I ate a pizza with an-
chovies”, “with anchovies” attaches to the noun
“pizza”, where as in “I ate a pizza with friends.”,
“with friends” attaches to the verb “eat” – example
found in (McLauchlan, 2001). There are instances
of PP-attachment, like the one in “I saw the car in
the picture” that can be disambiguated only by using
contextual discourse information.

Usually, people don’t have much trouble in find-
ing the right way to attach PPs. But if one limits
the information used for disambiguation of the PP-
attachment to include only the verb, the noun repre-
senting its object, the preposition and the main noun
in the PP, the accuracy for human decision degrades
from 93.2% to 88.2% (Ratnaparkhi et al., 1994) on
a dataset extracted from Penn Treebank (Marcus et
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al., 1993).
1.2 Motivation
Syntactic parsing is essential for many natural lan-
guage applications such as Machine Translation,
Question Answering, Information Extraction, Infor-
mation Retrieval, Automatic Speech Recognition.
Since parsing occurs early in the chain of NLP
processing steps it has a large impact on the over-
all system performance.

2 Approach
Our approach to solve the PP-attachment ambigu-
ity is based on a Support Vector Machines learner
(Cortes and Vapnik, 1995). The feature set contains
complex information extracted automatically from
candidate syntax trees generated by parsing (Char-
niak, 2000), trees that will be improved by more ac-
curate PP-attachment decisions. Some of these fea-
tures were proven efficient for semantic information
labeling (Gildea and Jurafsky, 2002). The feature
set also includes unsupervised information obtained
from a very large corpus (World Wide Web). Fea-
tures containing manually annotated semantic infor-
mation about the verb and about the objects of the
verb have also been used. We adopted the standard
approach to distinguish between verb and noun at-
tachment; thus the classifier has to choose between
two classes: V when the prepositional phrase is at-
tached to the verb and N when the prepositional
phrase is attached to the preceding head noun.

3 Data
To be able to extract the required features from a
dataset instance, one must identify the verb, the
phrase identifying the object of the verb that pre-
cedes the prepositional phrase in question (np1)
which usually is part of the predicate-argument
structure of the verb, its head noun, the prepositional
phrase (np2), its preposition and its head noun (the
second most important word in the PP).

We have adopted the notation from (Collins and
Brooks, 1995), where v is the verb, n1 is the head
noun of object phrase, p is the preposition and n2 is
the head noun of the prepositional phrase.

Compared to our datasets, Ratnaparkhi’s dataset
(Ratnaparkhi et al., 1994) contains only the lexical
heads v, n1, p and n2. Thus, our methodology can-
not be applied to Ratnaparkhi’s dataset (RRR).

In our experiments we used two datasets:

• FN – extracted from FrameNet II 1.1 (Baker et
al., 1998)

• TB2 – extracted from Penn Treebank-II

Table 1 presents the datasets1. The creation of the
datasets is described in details in (Olteanu, 2004).

4 Features
The experiments described in this paper use a set
of discrete (alphanumeric) and continuous (numeric)
features. All features are fully deterministic, except
the features count-ratio and pp-count that are based
on information provided by an external resource
- Google search engine (http://www.google.
com).

In describing the features, we will use the Penn
Treebank-II parse tree associated with the sentence
“The Lorillard spokeswoman said asbestos was
used in “very modest amounts” in making paper for
the filters in the early 1950s and replaced with a dif-
ferent type of filter in 1956”.

Table 2 describes the features and the origin of
each feature. The preposition is the feature with
the most discriminative power, because of prefer-
ences of particular prepositions to attach to verbs
or nouns. Table 3 shows the distribution of top
10 most frequently used prepositions in the FN and
TB2 datasets.

The features were carefully designed so that,
when they are extracted from gold parse trees, they
don’t provide more information useful for disam-
biguation than when they are automatically gener-
ated using a parser. This claim is validated by the
experimental results that show a strong correlation
between the results on the two datasets – one based
on automatically generated parse trees (FN) and one
based on gold parse trees (TB2).

Next, we describe in further detail the features
presented in Table 2.

v-frame represents the frame of the verb – the
frame to which the verb belongs, as it is present in
FrameNet (manually annotated). We used this fea-
ture because the frame of the verb describes very
well the semantic behavior of the verb including the
predicate-argument structure of the verb, which en-
tails the affinity of the verb for certain prepositions.

1The datasets are available at http://www.utdallas.
edu/∼mgo031000/ppa/
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FN TB2
Source FrameNet annotation samples (British National

Corpus)
Penn Treebank-II
(WSJ articles)

Instance identifica-
tion

Semantic-centered (related to Frame Elements) Syntactic-centered (related to the structure of the
parse tree)

Parse trees Automatically generated (Charniak) Gold standard
Total size 27,421 instances 60,699 instances
Distribution statistics 70.28% ambiguous verb attachments

2.36:1 v-attch:n-attch
35.71% ambiguous verb attachments
1:1.8 v-attch:n-attch

Training / test sets 90% - 10% – homogenously distributed (one in every 10 instances is selected for the test set)
Location of PP Both before and after verb Only after verb
Other properties – Partial identification of ambiguous PP-

attachment instances in the corpus, derived from
manual annotation of FEs (Olteanu, 2004)
– Semantic information readily available

Table 1: The datasets and their characteristics

Feature: description [origin]
v-surface: surface form of the verb [Hindle’93, ...]
n1-surface: surface form of n1. May be morphologically
processed [Hindle’93, ...]
p: the preposition, lower-cased [Hindle’93, ...]
n2-surface: surface form of n2. May be morphologically
processed [Ratnaparkhi’94, Collins’95, ...]
n1-mp/n1-mpf: morph. processing of n1 [Collins’95]
n2-mp/n2-mpf: morph. processing of n2 [Collins’95]
v-lemma: lemma of the verb [Collins’95]
path: path in the candidate parse tree between the verb and
np1 [Gildea’02]
subcategorization: subcategorization of the verb [modified
from Pradhan’03]
v-pos: part-of-speech of the verb
v-voice: voice of the verb
n1-pos: part-of-speech of n1

n1-lemma: lemma of n1. May be morphologically
processed
n2-pos: part-of-speech of n2

n2-lemma: lemma of n2. May be morphologically
processed
position: position of np1 relative to the verb [new]
v-frame: frame of the verb [new in PPA]
n1-sr: semantic role of np1 [new in PPA]
n1-tr: thematic role of np1 [new in PPA]
n1-preposition: preposition that heads np1, if np1 is a PP
[new]
n1-parent: label of the parent of np1 in the candidate parse
tree [new in PPA]
n1-np-label: label of np1 in the candidate parse tree [new in
PPA]
n2-det: determination of np2 [new]
parser-vote: choice of the automatic parser in attaching PP
[new in PPA]
count-ratio: WWW statistics about verb-attachment vs.
noun-attachment for that particular instance [new]
pp-count: WWW statistics about co-occurrence of v and n2

[new]
n1-p-distance: the distance between n1 and p [new]

Table 2: Features

% of % v-att % of % v-att
Prep. FN FN TB2 TB2
of 13.47% 6.17% 30.14% 2.74%
to 13.27% 80.14% 9.55% 60.49%
in 12.42% 73.64% 16.94% 42.58%
for 6.87% 82.44% 8.95% 39.72%
on 6.21% 75.51% 5.16% 47.73%
with 6.17% 86.30% 3.79% 46.92%
from 5.37% 75.90% 5.76% 52.76%
at 4.09% 76.63% 3.21% 66.02%
as 3.95% 86.51% 2.49% 51.69%
by 3.53% 88.02% 3.27% 68.11%

Table 3: Distribution of the first 10 most-frequent
prepositions in the FN and TB2 datasets

n1-sr represents the semantic role of the object
phrase np1 – the label attached to the Frame Ele-
ment (manual semantic annotation that can be found
in FrameNet). This feature was introduced because
of the relation between the underlying meaning of
np1 and its semantic role.

n1-tr represents the thematic role of the object
phrase np1 – a coarse-grained role based on the la-
bel attached to the Frame Element (manual semantic
annotation that can be found in FrameNet). It was
introduced to reduce data sparseness for the n1-sr
feature. The conversion from fine-grained semantic
role to coarse-grained semantic role is done auto-
matically using a table that maps a pair of a frame-
level semantic role (FE label) and a frame to a the-
matic role.

subcategorization contains a semi-lexicalized
description of the structure of the verb phrase. A
subcategorization frame is closely related to the
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predicate argument structure and to the underlying
meaning of the verb. It contains an ordered set of all
the phrase labels that are siblings of the verb, plus a
marker for the verb. If the child phrase of the verb
is a PP, then the label will also contain the prepo-
sition (the headword of the PP). This feature is a
modified form of the sub-categorization feature de-
scribed in (Pradhan et al., 2003): the differences in
various part-of-speeches for the verb were ignored
and the preposition that heads a prepositional phrase
is also attached to the label. Therefore, for the sen-
tence “The stock declined in June by 4%”, the value
for this feature is *-PPin-PPby.

In the TB2 dataset the parse trees are gold stan-
dard (contain the expected output value for PP-
ambiguity resolution). In the case of a verb attach-
ment, if the selected PP is a child of the selected VP,
then by applying the algorithm, the value of the fea-
ture will contain the PP label plus the preposition.
This clearly is a clue for the learner that the instance
is a verb attachment. To overcome this problem for
datasets based on gold-standard parse trees, when
computing the value of the subcategorization fea-
ture the selected PP will not be used. Figure 1 shows
the subcategorization for the phrase “replaced with
a different type of filter in 1956”.

VP


replaced
 PP


with
 NP


NP


different
a
 type


PP


of
 NP


filter


PP


in
 NP


1956


Figure 1: Subcategorization feature: *-PPin-PPby

path expresses the syntactic relation between the
verb v and the object phrase np1. Its purpose is
to describe the syntactic relation of np1 to the rest
of the clause by the syntactic relation of np1 with
the head of the clause – v. We adopted this feature
from (Gildea and Jurafsky, 2002). path describes
the chain of labels in the tree from v to np1, includ-

ing the label of v and np1. Ascending movements
and descending movements are depicted separately.
We used two variants of this feature to determine
the optimum version for our problem – one with full
POS of the verb and one with POS reduced to “VB”.
The experiments proved that the second variant pro-
vides a better performance. Figure 2 depicts the path
between “replaced” and “a different type of filter”:
VBN↑VP↓PP↓NP or VB↑VP↓PP↓NP.

VP


replaced
 PP


with
 NP


NP


different
a
 type


PP


of
 NP


filter


PP


in
 NP


1956


Figure 2: Example of a path feature

position indicates the position of the n1-p-n2 con-
struction relative to the verb, i.e. whether the prepo-
sitional phrase in question lies before the verb or af-
ter the verb in the sentence. Position is very impor-
tant in deciding the type of attachment, considering
the totally different distribution of PPs constructions
preceding the verb and PPs constructions following
the verb.

Morphological processing applied to n1 and n2

was inspired by the algorithm described in (Collins
and Brooks, 1995). We analyzed the impact of dif-
ferent levels of morphological processing by using
two types: partial morphological processing (only
numbers and years are converted) – identified by
adding -mp as a suffix to the name of this feature –
and full morphological processing (numbers, years
and capitalized names) – identified by adding -mpf
as a suffix to the name of this feature. The purpose
of morphological processing is data sparseness re-
duction by clustering similar values for this feature.

n1-parent represents the phrase label of the par-
ent of np1 and it cannot be used on gold parse trees
(TB2 dataset) because it will provide a clue about
the correct attachment type.
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n2-det is called the determination of the preposi-
tional phrase np2. This novel feature tells if n2 is
preceded in np2 by a possessive pronoun or by a de-
terminer. This is used to differentiate between “buy
books for children” (which is probably a noun at-
tachment) and “buy books for her children” (which
very probably is a verb attachment).

parser-vote feature represents the choice of the
parser (Charniak’s parser) in the PP-attachment res-
olution. It cannot be used with gold-standard parse
trees because it will provide the right answer.

count-ratio represents the estimated ratio be-
tween the frequency of an unambiguous verb attach-
ment construction based on v, p and n2 and the fre-
quency of a probably unambiguous noun attachment
construction based on n1, p and n2 in a very large
corpus. A very large corpus is required to overcome
the data sparseness inherent for complex construc-
tions like those described above.

We chose the World Wide Web as a corpus and
Google as a query interface (see (Olteanu, 2004) for
details).

Let’s consider the estimated frequency of un-
ambiguous verb-attachments and respectively noun-
attachments defined as:

fv =
cv−p−n2

cv · cp−n2

fn =
cn1−p−n2

cn1 · cp−n2

where:

• cv−p−n2 is the number of occurrences of the
phrase “v p n2”, “v p∗n2” (where * symbolizes
any word), “v-lemma p n2” or “v-lemma p * n2”
in World Wide Web, as reported by Google

• cv is the number of occurrences of the word “v”
or “v-lemma” in WWW

• cp−n2 is the number of occurrences of the
phrase “p n2” or “p ∗ n2” in WWW

• cn1−p−n2 is the number of occurrences of the
phrase “n1 p n2” or “v p ∗ n2” in WWW

• cn1 is the number of occurrences of the word
“n1” in WWW

The value for this feature is:

count− ratio = log10

fv

fn
= log10

cv−p−n2 · cn1

cn1−p−n2 · cv

We chose logarithmic values for this feature be-
cause experiments showed that logarithmic values
provide a higher accuracy than linear values. Also,
by experimentation we concluded that value bound-
ing is helpful, and the feature was bounded to values
between -3 and 3 on the logarithmic scale, unless
specified otherwise in the experiment description.

This feature resembles the approach adopted in
(Volk, 2001).

pp-count depicts the estimated count of occur-
rences in World Wide Web of the prepositional
phrases based on p and n2. The count is estimated
by cp−n2. Therefore pp-count = log10(cp−n2 +
cp−∗−n2).

n1-p-distance depicts the distance (in tokens) be-
tween n1 and p. Let dn1−p be the distance be-
tween n1 and p (d = 1 if there is no other to-
ken between n1 and p). Thus n1-p-distance =
log10(1 + log10 dn1−p).

5 Learning model and procedure
We used in our experiments a Support Vector
Machines learner with Radial Basis Function
kernel as implemented in the LIBSVM toolkit
(http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/).

We converted the feature tuples (containing dis-
crete alphanumeric and continuous values) to multi-
dimensional vectors using the following procedure:

• Discrete features: assign to each possible value
of each feature a dimension in the vector space,
and to each feature value in each training or test
example put 1 in the dimension corresponding
to the feature value and 0 in all other dimen-
sions associated with that feature.

• Continuous features: assign a dimension and
put the scaled value in the multi-dimensional
vector (all examples in training data will span
between 0 and 1 for that particular dimension).

SVM training was preceded by finding the opti-
mal γ and C parameters required for training using
2-fold cross validation, which was found to be supe-
rior in model accuracy and training time over higher
folds cross-validations (Olteanu, 2004).

The criterion for selecting the best set of features
was the accuracy on the cross-validation. Thus, the
development of the models was performed entirely
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on the training set, which acted also as a develop-
ment set. We later computed the accuracy on the
test set on some representative models.

6 Experiments, results and analysis
For each dataset, we conducted experiments to de-
termine an efficient combination of features and the
accuracy on test data for the best combination of fea-
tures. We also run the experimental procedure on
the original Ratnaparkhi’s dataset in order to com-
pare SVM with other machine learning techniques
applied to PP-attachment problem. Table 4 summa-
rizes the experiments performed on all datasets.

% on dev % on test
Experiment / x-val
FN-basic-flw 86.25 86.44
FN-lex-syn-flw 88.55 89.61
FN-best-no-sem 90.93 91.79
FN-best-sem 91.87 92.85
TB2-basic 85.75 87.47
TB2-best-no-www 92.06 92.81
TB2-best 92.92 93.62
RRR-basic 84.32 84.60
RRR-basic-mpf 84.34 85.14

Table 4: Results

FN-basic-flw uses v-surface, n1-surface, p and
n2-surface on examples that follow the verb. FN-
lex-syn-flw uses v-surface, v-pos, v-lemma, sub-
categorization, path (full POS), position, n1-
preposition, n1-surface, n1-pos, n1-lemma, n1-
parent, p, n2-surface, n2-pos, n2-lemma, n2-
det and parser-vote on examples that follow the
verb. FN-best-no-sem uses v-surface, v-pos, v-
lemma, subcategorization, path (reduced POS),
position, n1-preposition, n1-surface, n1-pos, n1-
lemma-mpf, n1-parent, p, n2-surface, n2-pos,
n2-lemma-mpf, n2-det, parser-vote, count-ratio
and pp-count on all examples. FN-best-sem uses
the same set of features as FN-best-no-sem plus v-
frame and n1-sr.

TB2-basic uses v-surface, n1-surface-mpf, p
and n2-surface-mpf. TB2-best-no-www uses v-
surface, v-pos, v-lemma, subcategorization, path
(reduced POS), n1-preposition, n1-surface, n1-
mpf, n1-pos, n1-lemma, n1-np-label, p, n2-
surface, n2-mpf and n1-p-distance. TB2-best also
uses count-ratio and pp-count.

RRR-basic uses v-surface, n1-surface, p and
n2-surface. RRR-basic-mpf uses v-surface, n1-
surface-mpf, p and n2-surface-mpf.

On the FN dataset, all features except v-voice
have a positive contribution to the system (n2-det,
choice between semantic vs. thematic role and how
should morphological processing be applied is ques-
tionable). The negative impact for the v-voice fea-
ture may be explained by the fact that the only sit-
uation in which it may potentially help is extremely
rare: passive voice and the agent headed by “by” ap-
pears after another argument of the verb (i.e.: “The
painting was presented to the audience by its au-
thor.”). Moreover the PP-attachment based on the
preposition “by” is not highly ambiguous; as seen
in Table 3 in the FrameNet dataset, 88% of the “by”
ambiguity instances are verb-attachments.

The experiment with the highest cross-validation
accuracy has an accuracy of 92.85% on the test data.
The equivalent experiment that doesn’t include man-
ually annotated semantic information has an accu-
racy of 91.79% on the test data.

On TB2 dataset, the results are close to the results
obtained on the FrameNet corpus, although the dis-
tribution of noun and verb attachment differs consid-
erably between the two data sets (70.28% are verb-
attachments in FN2 and 35.71% in TB2). The best
accuracy in cross-validation is 92.92%, which leads
to an accuracy on test set of 93.62%.

7 Comparison with previous work
Because we couldn’t use the standard dataset used
in PP-attachment resolution (Ratnaparkhi’s), we im-
plemented back-off algorithm developed by Collins
and Brooks (1995) and applied it to our TB2 dataset.
Both RRR and TB2 datasets are extracted from Penn
Treebank. This algorithm, trained on TB2 training
set, obtains an accuracy on TB2 test set of 86.1%
(85.8% when no morphological processing is ap-
plied). The same algorithm provides an accuracy on
RRR dataset of 84.5% (84.1% without morphologi-
cal processing). The difference in accuracy between
the two datasets is 1.6% (1.7% without morpholog-
ical processing when using Collins and Brooks’s al-
gorithm.

The difference in accuracy between a SVM model
applied to RRR dataset (RRR-basic experiment) and
the same experiment applied to TB2 dataset (TB2-

278



Description Accuracy Data Extra Supervision
Always noun 55.0 RRR
Most likely for each P 72.19 RRR
Most likely for each P 72.30 TB2
Most likely for each P 81.73 FN
Average human, headwords (Ratnaparkhi et al., 1994) 88.2 RRR
Average human, whole sentence (Ratnaparkhi et al., 1994) 93.2 RRR
Maximum Likelihood-based (Hindle and Rooth, 1993) 79.7 AP
Maximum entropy, words (Ratnaparkhi et al., 1994) 77.7 RRR
Maximum entropy, words & classes (Ratnaparkhi et al., 1994) 81.6 RRR
Decision trees (Ratnaparkhi et al., 1994) 77.7 RRR
Transformation-Based Learning (Brill and Resnik, 1994) 81.8 WordNet
Maximum-Likelihood based (Collins and Brooks, 1995) 84.5 RRR
Maximum-Likelihood based (Collins and Brooks, 1995) 86.1 TB2
Decision trees & WSD (Stetina and Nagao, 1997) 88.1 RRR WordNet
Memory-based Learning (Zavrel et al., 1997) 84.4 RRR LexSpace
Maximum entropy, unsupervised (Ratnaparkhi, 1998) 81.9
Maximum entropy, supervised (Ratnaparkhi, 1998) 83.7 RRR
Neural Nets (Alegre et al., 1999) 86.0 RRR WordNet
Boosting (Abney et al., 1999) 84.4 RRR
Semi-probabilistic (Pantel and Lin, 2000) 84.31 RRR
Maximum entropy, ensemble (McLauchlan, 2001) 85.5 RRR LSA
SVM (Vanschoenwinkel and Manderick, 2003) 84.8 RRR
Nearest-neighbor (Zhao and Lin, 2004) 86.5 RRR DWS
FN dataset, w/o semantic features (FN-best-no-sem) 91.79 FN PR-WWW
FN dataset, w/ semantic features (FN-best-sem) 92.85 FN PR-WWW
TB2 dataset, best feature set (TB2-best) 93.62 TB2 PR-WWW

Table 5: Accuracy of PP-attachment ambiguity resolution (our results in bold)

basic experiment) is 2.9%. Also, the baseline – the
most probable PP type for each preposition – is ap-
proximately the same for the two datasets (72.19%
on RRR and 72.30% on TB2).

One may hypothesize that the majority of the al-
gorithms for PP-attachment disambiguation obtain
no more than 4% increase in accuracy on the TB2
compared to the results on the RRR dataset. One
important difference between the two datasets is the
size – 20,801 training examples in RRR vs. 54,629
training examples in TB2. We plan to implement
more algorithms described in literature in order to
verify this statement.

Table 5 summarizes the results in PP-attachment
ambiguity resolution found in literature along with
our best results.

Other acronyms used in this table:

• AP – dataset of 13 million word sample of As-
sociated Press news stories from 1999 (Hindle
and Rooth, 1993).

• LexSpace - Lexical Space – a method to mea-
sure the similarity of the words (Zavrel et al.,
1997).

• LSA – Latent Semantic Analysis – measure the
lexical preferences between a preposition and a
noun or a verb (McLauchlan, 2001)

• DWS – Distributional Word Similarity. Words
that tend to appear in the same contexts tend to
have similar meanings (Zhao and Lin, 2004)

• PR-WWW – the probability ratio between
verb-preposition-noun and noun-preposition-
noun constructs measured using World Wide
Web searching.

8 Conclusions
The Penn Treebank-II results indicate that the
new features used for the disambiguation of PP-
attachment provide a very substantial improvement
in accuracy over the base line (from 87.48% to
93.62%). This represents an absolute improvement
of approximately 6.14%, equivalent to a 49% er-
ror drop. The performance of the system on Penn
Treebank-II exceeds the reported human expert per-
formance on Penn Treebank-I (Ratnaparkhi et al.,
1994) by about 0.4%. A significant improvement
comes from the unsupervised information collected

279



from a very large corpus; this method proved to be
efficient to overcome the data sparseness problem.

By analyzing the results from the FrameNet
dataset, we conclude that the contribution of the gold
semantic features (frame and semantic role) is sig-
nificant (1.05% difference in accuracy; 12.8% re-
duction in the error). We will further investigate this
issue by replacing gold semantic information with
automatically detected semantic information. Our
additional lexico-syntactic features increase the ac-
curacy of the system from 86.44% to 89.61% for
PPs following the verb. This suggests that on the
FrameNet dataset the proposed syntactic features
have a considerable impact on the accuracy.

The best TB2 feature set is approximately the
same as the best FN feature set in spite of the dif-
ferences between the datasets (Parse trees: TB2 –
gold standard; FN – automatically generated. PP-
attachment ambiguity identification: TB2 – parse
trees; FN – a combination of trees and FE annota-
tion. Data source: TB2 – WSJ articles; FN – BNC).
This fact suggests that the selected feature sets do
not exploit particularities of the datasets and that the
features are relevant to the PP-attachment ambiguity
problem.
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Abstract
Weighted deduction with aggregation is a powerful theoretical
formalism that encompasses many NLP algorithms. This pa-
per proposes a declarative specification language, Dyna; gives
generalagenda-basedalgorithms for computing weights and
gradients; briefly discusses Dyna-to-Dyna program transforma-
tions; and shows that a first implementation of a Dyna-to-C++
compiler produces code that is efficient enough for real NLP re-
search, though still several times slower than hand-crafted code.

1 Introduction

In this paper, we generalize some modern prob-
abilistic parsing techniques to a broader class of
weighted deductive algorithms. Our implemented
system encapsulates these implementation tech-
niques behind a clean interface—a small high-level
specification language, Dyna, which compiles into
C++ classes. This system should help the HLT com-
munity to experiment more easily with new models
and algorithms.

1.1 Dynamic programming as deduction

The “parsing as deduction” framework (Pereira and
Warren, 1983) is now over 20 years old. It provides
an elegant notation for specifying a variety of pars-
ing algorithms (Shieber et al., 1995), including algo-
rithms for probabilistic or other semiring-weighted
parsing (Goodman, 1999). In the parsing commu-
nity, new algorithms are often stated simply as a set
of deductive inference rules (Sikkel, 1997; Eisner
and Satta, 1999).

It is also straightforward to specify other NLP al-
gorithms this way. Syntactic MT models, language
models, and stack decoders can be easily described
using deductive rules. So can operations on finite-
state and infinite-state machines.

∗We thank Joshua Goodman, David McAllester, and Paul
Ruhlen for useful early discussions; pioneer users Markus
Dreyer, David Smith, and Roy Tromble for their feedback and
input; John Blatz for discussion of program transformations;
and several reviewers for useful criticism. This work was
supported by NSF ITR grant IIS-0313193, ONR MURI grant
N00014-01-1-0685, and a Hertz Foundation fellowship to the
third author. The views expressed are not necessarily endorsed
by the sponsors.

1.2 The role of toolkits

One might regard deductive inference as merely a
helpful perspective for teaching old algorithms and
thinking about new ones, linking NLP to logic and
classical AI. Real implementations would then be
carefully hand-coded in a traditional language.

That was the view ten years ago of finite-state
machines—that FSMs were part of the theoretical
backbone of CL, linking the field to the theory
of computation. Starting in the mid-1990’s, how-
ever, finite-state methods came to the center ofap-
plied NLP as researchers at Xerox, AT&T, Gronin-
gen and elsewhere improved the expressive power
of FSMs by moving from automata to transduc-
ers, adding semiring weights, and developing pow-
erful new regular-expression operators and algo-
rithms for these cases. They also developed soft-
ware. Karttunen et al. (1996) built an FSM toolkit
that allowed construction of morphological ana-
lyzers for many languages. Mohri et al. (1998)
built a weighted toolkit that implemented novel
algorithms (e.g., weighted minimization, on-the-
fly composition) and scaled up to handle large-
vocabulary continuous ASR. At the same time, re-
newed community-wide interest in shallow methods
for information extraction, chunking, MT, and di-
alogue processing meant that such off-the-shelf FS
toolkits became the core of diverse systems used in
cutting-edge research.

The weakness of FSMs, of course, is that they
are only finite-state. One would like something like
AT&T’s FSM toolkit that also handles the various
formalisms now under consideration for lexicalized
grammars, non-context-free grammars, and syntax-
based MT—and hold the promise of extending to
other formalisms and applications not yet imagined.

We believe that deductive inference should play
the role of regular expressions and FSMs, providing
the theoretical foundation for such an effort. Many
engineering ideas in the field can be regarded, we

281



1. :- double item=0. % declares that all item values are doubles, default is 0
2. constit(X,I,K) += rewrite(X,W) * word(W,I,K). % a constituent is either a word . . .
3. constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K). % . . . or a combination of two adjacent subconstituents
4. goal += constit(“s”,0,N) whenever ?ends at(N). % a parse is anys constituent that covers the input string

Figure 1: A probabilistic CKY parser written in Dyna. Axioms are in boldface.

believe, as ideas for how to specify, transform, or
compile systems of inference rules.

2 A Language for Deductive Systems

Any toolkit needs an interface. For example, FS
toolkits offer a regular expression language. We
propose a simple but Turing-complete language,
Dyna, for specifying weighted deductive-inference
algorithms. We illustrate it here by example; see
http://dyna.org for more details and a tutorial.

The short Dyna program in Fig. 1 expresses the
inside algorithm for PCFGs (i.e., the probabilistic
generalization of CKY recognition). Its 3inference
rules schematically specify manyequations, over
an arbitrary number of unknowns. This is possible
bcause the unknowns (items) havestructured names
(terms) such asconstit(“s”,0,3). They resemble typed
variables in a C program, but we usevariable in-
stead to refer to the capitalized identifiersX, I, K,
. . . in lines 2–4. Each rule gives aconsequenton
the left-hand side of the+=, which can be built by
combining theantecedentson the right-hand side.1

Lines 2–4 are equational schemas that spec-
ify how to compute the value of items such as
constit(“s”,0,3) from the values of other items.
Using the summation operator+=, lines 2–
3 say that for anyX, I, and K, constit(X,I,K)

is defined by summing over the remaining
variables, as

∑
W rewrite(X,W)*word(W,I,K) +∑

Y,Z,J rewrite(X,Y,Z)*constit(Y,I,J)*constit(Z,J,K). For
example,constit(“s”,0,3) is a sum of quantities such as
rewrite(“s”, “np”, “vp”)*constit(“np”,0,1)*constit(“vp”,1,3).
The whenever operator in line 4 specifies aside
condition that restricts the set of expressions in the
sum (i.e., only whenN is the sentence length).

To fully define the system of equations, non-
default values (in this case, non-zero values) should
beassertedfor someaxiomsat runtime. (Axioms,
shown in bold in Fig. 1, are items that never appear

1Much of our notation and terminology comes from
logic programming: term, variable, inference rule, an-
tecedent/consequent, assert/retract, axiom/theorem.

as a consequent.) If the PCFG contains a rewrite rule
np → Mary with probability p(Mary | np)=0.005,
the user should assert thatrewrite(“np”, “Mary”) has
value 0.005. If the input isJohn loves Mary, val-
ues of 1 should be asserted forword(“John”,0,1),
word(“loves”,1,2), word(“Mary”,2,3), andends at(3).

Given the axioms as base cases, the equations in
Fig. 1 enable deduction of values for other items.
The value of thetheorem constit(“s”,0,3) will be the
inside probabilityβs(0, 3),2 and the value ofgoal

will be the total probability of all parses.
If one replaces+= by max= throughout, thencon-

stit(“s”,0,3) will accumulate the maximum rather than
the sum of these quantities, andgoal will accumulate
the probability of thebestparse.

With different input, the same program car-
ries out lattice parsing. Simply assert axioms
that correspond to (weighted) lattice arcs, such as
word(“John”,17,50), where 17 and 50 are arbitrary
terms denoting states in the lattice. It is also quite
straightforward to lexicalize the nonterminals or ex-
tend to synchronous grammars.

A related context-free parsing strategy, shown in
Fig. 2, is Earley’s algorithm. These equations illus-
trate nested terms such as lists. The side condition
in line 2 prevents building any constituent until one
has built a left context that calls for it.

3 Relation to Previous Work

There is a large relevant literature. Some of the well-
known CL papers, notably Goodman (1999), were
already mentioned in section 1.1. Our project has
three main points of difference from these.

First, we provide an efficient, scalable, open-
source implementation, in the form of a compiler
from Dyna to C++ classes. (Related work is in§7.2.)
The C++ classes are efficient and easy to use, with
statements such asc[rewrite(“np”,2,3)]=0.005 to assert
axiom values into a chart namedc (i.e., a deduc-

2That is, the probability thats would stochastically rewrite
to the first three words of the input. If this can happen in more
than one way, the probability sums over multiple derivations.
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1. need(‘‘s’’,0) = 1. % begin by looking for ans that starts at position 0
2. constit(Nonterm/Needed,I,I) += rewrite(Nonterm,Needed) whenever ?need(Nonterm, I). % traditionalpredict step
3. constit(Nonterm/Needed,I,K) += constit(Nonterm/cons(W,Needed),I,J) * word(W,J,K). % traditionalscanstep
4. constit(Nonterm/Needed,I,K) += constit(Nonterm,cons(X,Needed),I,J) * constit(X/nil,J,K). % traditionalcompletestep
5. goal += constit(“s”/nil,0,N) whenever ?ends at(N). % we want a completes constituent covering the sentence
6. need(Nonterm,J) += constit( /cons(Nonterm, ), ,J). % Note: underscore matches anything (anonymous wildcard)

Figure 2: An Earley parser that recovers inside probabilities (Earley, 1970; Stolcke, 1995). The rulenp→ det n should be encoded
as the axiomrewrite(“np”,cons(“det”,cons(“n”,nil))), a nested term.“np”/Needed is the label of a partialnp constituent that is
still missing thelist of subconstituents inNeeded. need(“np”,3) is derived if some partial constituent seeks annp subconstituent
starting at position 3. As in Fig. 1, lattice parsing comes for free, as does training.

tive database) and expressions likec[goal] to extract
the values of the resulting theorems, which are com-
puted as needed. The C++ classes also give access to
the proof forest (e.g., the forest of parse trees), and
integrate with parameter optimization code.

Second, we fully generalize the agenda-based
strategy of Shieber et al. (1995) to the weighted
case—in particular supporting aprioritized agenda.
That allows probabilities to guide the search for
the best parse(s), a crucial technique in state-of-the-
art context-free parsers.3 We also give a “reverse”
agenda algorithm to compute gradients or outside
probabilities for parameter estimation.

Third, regarding weights, the Dyna language is
designed to express systems of arbitrary, hetero-
geneous equations over item values. In previous
work such as (Goodman, 1999; Nederhof, 2003),
one only specifies the inference rules as unweighted
Horn clauses, and then weights are added automat-
ically in a standard way: all values have the same
typeW, and all rules transform to equations of the
form c ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak, where⊕ and⊗
give W the structure of a semiring.4 In Dyna one
writes these equations explicitly in place of Horn
clauses (Fig. 1). Accordingly,heterogeneousDyna
programs, to be supported soon by our compiler,
will allow items of different types to have values
of different types, computed by different aggrega-
tion operations over arbitrary right-hand-side ex-

3Previous treatments of weighted deduction have used an
agenda only for an unweighted parsing phase (Goodman, 1999)
or for finding the single best parse (Nederhof, 2003). Our algo-
rithm works in arbitrary semirings, including non-idempotent
ones, taking care to avoid double-counting of weights and to
handle side conditions.

4E.g., the inside algorithm in Fig. 1 falls into Goodman’s
framework, with〈W,⊕,⊗〉 = 〈R≥0,+, ∗〉—the PLUSTIMES
semiring. Because⊗ distributes over⊕ in a semiring, com-
puting goal is equivalent to an aggregation over many separate
parse trees. That is not the case for heterogeneous programs.

pressions. This allows specification of a wider class
of algorithms from NLP and elsewhere (e.g., mini-
mum expected loss decoding, smoothing formulas,
neural networks, game tree analysis, and constraint
programming). Although§4 and§5 have space to
present only techniques for the semiring case, these
can be generalized.

Our approach may be most closely related to de-
ductive databases, which even in their heyday were
apparently ignored by the CL community (except for
Minnen, 1996). Deductive database systems per-
mit inference rules that can derive new database
facts from old ones.5 They are essentially declara-
tive logic programming languages (with restrictions
or extensions) that are—or could be—implemented
using efficient database techniques. Some imple-
mented deductive databases such asCORAL (Ra-
makrishnan et al., 1994) andLOLA (Zukowski and
Freitag, 1997) support aggregation (as in Dyna’s
+=, log+=, max=, . . . ), although only “stratified”
forms of it that exclude unary CFG rule cycles.6

Ross and Sagiv (1992) (and in a more restricted
way, Kifer and Subrahmanian, 1992) come closest to
our notion of attaching aggregable values to terms.

Among deductive or other database systems,
Dyna is perhaps unusual in that its goal is not to sup-
port transactional databases orad hocqueries, but
rather to serve as an abstract layer for specifying an
algorithm, such as a dynamic programming (DP) al-
gorithm. Thus, the Dyna program already implicitly
or explicitly specifies all queries that will be needed.
This allows compilation into a hard-coded C++ im-
plementation. The compiler’s job is to support these
queries by laying out and indexing the database re-

5Often they use some variant of theunweightedagenda-
based algorithm, which is known in that community as “semi-
naive bottom-up evaluation.”

6An unweighted parser was implemented in an earlier ver-
sion ofLOLA (Specht and Freitag, 1995).
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lations in memory7 in a way that resembles hand-
designed data structures for the algorithm in ques-
tion. The compiler has many choices to make here;
we ultimately hope to implement feedback-directed
optimization, using profiled sample runs on typical
data. For example, a sparse grammar should lead to
different strategies than a dense one.

4 Computing Theorem Values

Fig. 1 specifies a set of equations but not how to
solve them. Any declarative specification language
must be backed up by a solver for the class of speci-
fiable problems. In our continuing work to develop a
range of compiler strategies for arbitrary Dyna pro-
grams, we have been inspired by the CL commu-
nity’s experience in building efficient parsers.

In this paper and in our current implementa-
tion, we give only the algorithms for what we call
weighted dynamic programs, in which all axioms
and theorems are variable-free. This means that
a consequent may only contain variables that al-
ready appear elsewhere in the rule. We further re-
strict to semiring-weighted programs as in (Good-
man, 1999). But with a few more tricks not given
here, the algorithms can be generalized to a wider
class of heterogeneous weighted logic programs.8

4.1 Desired properties

Computation is triggered when the user requests the
value of one or more particular items, such asgoal.
Our algorithm must have several properties in order
to substitute for manually written code.

Soundness.The algorithm cannot be guaranteed
to terminate (since it is possible to write arbitrary
Turing machines in Dyna). However, if it does ter-
minate, it should return values from a valid model of
the program, i.e., values that simultaneously satisfy
all the equations expressed by the program.

Reasonable completeness. The computation
should indeed terminate for programs of interest
to the NLP community, such as parsing under a
probabilistic grammar—even if the grammar has

7Some relations might be left unmaterialized and computed
on demand, with optional memoization and flushing of memos.

8Heterogeneous programs may propagate non-additive up-
dates, which arbitrarily modify one of the inputs to an aggrega-
tion. Non-dynamic programs require non-ground items in the
chart, complicating both storage and queries against the chart.

1. for each axioma, setagenda[a] := value of axioma
2. while there is an itema with agenda[a] 6= 0
3. (* remove an item from the agenda and move its value to the chart *)
4. choose such ana
5. ∆ := agenda[a]; agenda[a] := 0
6. old := chart[a]; chart[a] := chart[a]⊕∆
7. if chart[a] 6= old (* only propagate actual changes *)
8. (* compute new resulting updates and place them on the agenda *)
9. for each inference rule “c ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak”
10. for i from 1 tok
11. for each way of instantiating the rule’s variables

such thatai = a

12. agenda[c] ⊕=
kO
j=1

8><>:
old if j < i and

aj = a
∆ if j = i
chart[aj ] otherwise

(* can skip this line if any multiplicand is 0 *)

Figure 3: Weighted agenda-based deduction in a semiring, with-
out side conditions (see text).

left recursion, unary rule cycles, orε-productions.
This appears to rule out pure top-down (“backward-
chaining”) approaches.

Efficiency. Returning the value ofgoal should
do only as much computation as necessary. To re-
turn goal, one may not need to compute the values
of all items.9 In particular, finding the best parse
should not require finding all parses (in contrast to
Goodman (1999) and Zhou and Sato (2003)). Ap-
proximation techniques such as pruning and best-
first search must also be supported for practicality.

4.2 The agenda algorithm

Our basic algorithm (Fig. 3) is a weighted agenda-
based algorithm that works only with rules of the
form c ⊕= a1⊗a2⊗· · ·⊗ak. ⊗must distribute over⊕.
Further, the default value for items (line 1 of Fig. 1)
must be the semiring’s zero element, denoted0.10

Agenda-based deduction maintains two indexed
data structures: theagendaand thechart. chart[a]
stores the current value of itema. The agenda holds
future work that arises from assertions or from pre-
vious changes to the chart:agenda[a] stores an in-
cremental update to be added (using⊕) to chart[a]
in future. If chart[a] or agenda[a] is not stored, it is

9This also affects completeness, as it sometimes enables the
computation ofgoal to terminate even if the program as a whole
contains some irrelevant non-terminating computation. Even
in practical cases, the runtime of computing all items is often
prohibitive, e.g., proportional ton6 or worse for a dense tree-
adjoining grammar or synchronous grammar.

10It satisfiesx ⊕ 0 = x, x ⊗ 0 = 0 for all x. Also, this
algorithm requires⊗ to distribute over⊕. Dyna’s semantics
requires⊕ to be associative and commutative.
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taken to be the default0.
When itema is removed from the agenda, its

chart weight is updated by the increment value. This
change is then propagated to other itemsc, via rules
of the formc ⊕= · · · with a on the right-hand-side.
The resulting changes toc are placed back on the
agenda and carried out only later.

The unweighted agenda-based algorithm (Shieber
et al., 1995) may be regarded as the case where
〈W,⊕,⊗〉 = 〈{T, F},∨,∧〉. It has previously
been generalized (Nederhof, 2003) to the case
〈W,⊕,⊗〉 = 〈R≥0,max,+〉. In Fig. 3, we make
the natural further generalization to any semiring.

How is this a further generalization? Since⊕ (un-
like ∨ andmax) might not be idempotent, we must
take care to avoid erroneous double-counting if the
antecedenta combines with, or produces, another
copy of itself.11 For instance, if the input containsε
words, line 2 of Fig. 1 may get instantiated ascon-

stit(“np”,5,5) += rewrite(“np”,“np”,“np”) * constit(“np”,5,5) *

constit(“np”,5,5). This is why we save the old values
of agenda[a] and chart[a] as ∆ and old, and why
line 12 is complex.

4.3 Side conditions

We now extend Fig. 3 to handle Dyna’s
side conditions, i.e., rules of the form
c ⊕= expression whenever boolean-expression.
We discuss only the simple side conditions
treated in previous literature, which we write as
c ⊕= a1⊗a2⊗· · ·⊗ak′ whenever ?bk′+1 & · · · & ?bk.
Here,?bj is true or false according to whether there
exists anunweightedproof of bj .

Again, what is new here? Nederhof (2003) con-
siders onlymax= with a uniform-cost agenda disci-
pline (see§4.5), which guarantees that no item will
be removed more than once from the agenda. We
wish to support other cases, so we must take care
that a second update toai will not retrigger rules of
whichai is a side condition.

For simplicity, let us reformulate the above rule
asc ⊕= a1 ⊗ a2 ⊗ · · · ⊗ ak′ ⊗ ?bk′+1 ⊗ · · · ⊗ ?bk,
where?bi is now treated as having value0 or 1 (the
identity for⊗) rather than false or true respectively.

11An agenda update that increasesx by 0.3 will increaser ∗
x ∗ x by r ∗ (0.6x+ 0.09). Hence, the rulex += r ∗ x ∗ xmust
propagate a new increase of that size tox, via the agenda.

We may now use Fig. 3, but now anyaj might
have the form?bj . Then in line 12,chart[aj ] will be
chart[?bj ], which is defined as1 or 0 according to
whetherchart[bj ] is stored (i.e., whetherbj has been
derived). Also, ifai = ?a at line 11 (rather than
ai = a), then∆ in line 12 is replaced by∆?, where
we have set∆? := chart[?a] at line 5.

4.4 Convergence

Whether the agenda algorithm halts depends on the
Dyna program and the input. Like any other Turing-
complete language, Dyna gives you enough freedom
to write undesirable programs.

Most NLP algorithms do terminate, of course,
and this remains true under the agenda algorithm.
For typical algorithms, only finitely many differ-
ent items (theorems) can be derived from a given
finite input (set of axioms).12 This ensures termi-
nation if one is doing unweighted deduction with
〈W,⊕,⊗〉 = 〈{T, F},∨,∧〉, since the test at line 7
ensures that no item is processed more than once.13

The same test ensures termination if one is
searching for the best proof or parse with (say)
〈W,⊕,⊗〉 = 〈R≥0,min,+〉, where values are
negated log probabilities. Positive-weight cycles
will not affect themin. (Negative-weight cycles,
however, would correctly cause the computation to
diverge; these do not arise with probabilities.)

If one is using〈W,⊕,⊗〉 = 〈R≥0,+, ∗〉 to com-
pute the total weight of all proofs or parses, as in
the inside algorithm, then Dyna must solve a sys-
tem of nonlinear equations. The agenda algorithm
does this by iterative approximation (propagating
updates around any cycles in the proof graph until
numerical convergence), essentially as suggested by
Stolcke (1995) for the case of Earley’s algorithm.14

Again, the computation may diverge.
12This holds for all Datalog programs, for instance.
13This argument does not hold if Dyna is used to express

programs outside the semiring. In particular, one can write in-
stances of SAT and other NP-hard constraint satisfaction prob-
lems by using cyclic ruleswith negationover finitely many
boolean-valued items (Niemelä, 1998). Here the agenda algo-
rithm can end up flipping values forever between false and true;
a more general solver would have to be called in order to find a
stable model of a SAT problem’s equations.

14Still assuming the number of items is finite, one could in
principle materialize the system of equations and call a ded-
icated numerical solver. In some special cases only a linear
solver is needed: e.g., for unary rule cycles (Stolcke, 1995), or
ε-cycles in FSMs (Eisner, 2002).
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One can declare the conditions under which items
of a particular type (constit or goal) should be treated
as having converged. Then asking for the value
of goal will run the agenda algorithm not until the
agenda is empty, but only untilchart[goal] has con-
verged by this criterion.

4.5 Prioritization

The order in which items are chosen at line 4 does
not affect the soundness of the agenda algorithm,
but can greatly affect its speed. We implement the
agenda as a priority queue whose priority function
may be specified by the user.15

Charniak et al. (1998) and Caraballo and Char-
niak (1998) showed that, when seeking the best
parse (usingmin= or max=), best-firstparsing can
be extremely effective. Klein and Manning (2003a)
went on to describe admissible heuristics and an A*
framework for parsing. For A* in our general frame-
work, the priority of itema should be an estimate of
the value of the best proof ofgoal that usesa. (This
non-standard formulation is carefully chosen.16) If
so,goal is guaranteed to converge the very first time
it is selected from the priority-queue agenda.

Prioritizing “good” items first can also be useful
in other circumstances. The inside-outside training
algorithm requires one to find all parses, but finding
the high-probability parses first allows one to ignore
the rest by “early stopping.”

In all these schemes (even A*), processing
promising items as soon as possible risks having to
reprocess them if their values change later. Thus,
this strategy should be balanced against the “topo-
logical sort” strategy of waiting to process an item
until its value has (probably) converged.17 Ulti-

15At present by writing a C++ function; ultimately within
Dyna, by defining items such aspriority(constit(“s”,0,3)).

16It is correct for proofs that incorporate two copies ofa’s
value, or—more important—no copies ofa’s value becausea is
a side condition. Thus, it recognizes that a low-probability item
must havehigh priority if it could be used as a side condition
in a higher-probability parse (though this cannot happen for the
side conditions derived by the magic templates transformation
(§6)). Note also thata’s own value (Nederhof, 2003) might not
be an optimistic estimate, if negative weights are present.

17In parsing, for example, one often processes narrower con-
stituents before wider ones. But such strategies do not always
exist, or break down in the presence of unary rule cycles, or
cannot be automatically found. Goodman’s (1999) strategy
of building all items and sorting them before computing any
weights is wise only if one genuinely wants to build all items.

mately we hope tolearn priority functions that ef-
fectively balance these two strategies (especially in
the context of early stopping).

4.6 Matching, indexing, and interning

The crucial work in Fig. 3 occurs in the iteration over
instantiated rules at lines 9–11. In practice, we re-
structure this triply nested loop as follows, where
each line retains the variable bindings that result
from the unification in the previous line:

9. for each antecedent patternai that appears in some
program ruler and unifies witha

10. for each way of simultaneously unifyingr’s remain-
ing antecedent patternsa1, . . . ai−1, ai+1, . . . ak
with items that may have non-0 value in the chart

11. constructr’s consequentc (* all vars are bound *)

Our implementation of line 9 testsa against all of the
antecedent patterns at once, using a tree of simple
“if” tests (generated by the Dyna-to-C++ compiler)
to share work across patterns. As an example,a =
constit(“np”,3,8) will match two antecedents at line 3
of Fig. 1, but will fail to match in line 4. Becausea is
variable-free (for DPs), a full unification algorithm
is not necessary, even though an antecedent pattern
can contain repeated variables and nested subterms.

Line 10 rapidly looks up the rule’s other an-
tecedents usingindicesthat are automatically main-
tained on the chart. For example, oncecon-

stit(“np”,4,8) has matched antecedent 2 of line 3 of
Fig. 1, the compiled code consults a maintained
list of the chart constituents that start at position 8
(i.e., items of the formconstit(Z,8,K) that have al-
ready been derived). Suppose one of these iscon-

stit(“vp”,8,15): then the code finds the rule’s remain-
ing antecedent by consulting a list of items of the
form rewrite(X,“np”,“vp”). That leads it to construct
consequents such asconstit(“s”,4,15) at line 11.

By default, equal terms are represented by equal
pointers. While this means terms must be “interned”
when constructed (requiring hash lookup), it en-
forces structure-sharing and allows any term to be
rapidly copied, hashed, or equality-tested without
dereferencing the pointer.18

Each of the above paragraphs conceals many deci-
sions that affect runtime. This presents future oppor-
tunities for feedback-directed optimization, where
profiled runs on typical data influence the compiler.

18The compiled code provides garbage collection on the
terms; this is important when running over large datasets.
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5 Computing Gradients

The value ofgoal is afunctionof the axioms’ values.
If the function is differentiable, we may want to get
its gradient with respect to its parameters (the axiom
values), to aid in numerically optimizing it.

5.1 Gradients by symbolic differentiation

The gradient computation can be derived from the
original by a program transformation. For each item
a in the original program—in particular, for each
axiom—the new program will also compute a new
item g(a), whose value is∂goal/∂a.

Thus, given weighted axioms, the new program
computes bothgoal and∇goal. An optimization al-
gorithm such as conjugate gradient can use this in-
formation to tune the axiom weights to maximize
goal. An alternative is the EM algorithm (Dempster
et al., 1977) for probabilistic generative models such
as PCFGs. Luckily the same program serves, since
for such models, the E count (expected count) of an
itema can be found asa · g(a)/goal. In other words,
the inside-outside algorithm has the same structure
as computing the function and its gradient.

The GRADIENT transformation is simple. For
example,19 given a rule c += a1 ∗ a2 ∗ · · · ∗
ak′ whenever ?bk′+1 & · · · & ?bk, we add a new rule
g(ai) += g(c) ∗ a1 ∗ · · · ∗ ai−1 ∗ ai+1 ∗ · · · ∗
ak′ whenever ?ai, for eachi = 1, 2, ..., k′. (The orig-
inal rule remains, since we need inside values to
compute outside values.) This strategy for comput-
ing the gradient∂goal/∂a via the chain rule is an
example of automatic differentiation in the reverse
mode (Griewank and Corliss, 1991), known in the
neural network community as back-propagation.

5.2 Gradients by back-propagation

However, what ifgoal might be computed only ap-
proximately, by early stopping before convergence
(§4.5)? To avoid confusing the optimizer, we want
theexactgradient of theapproximatefunction.

To do this, we “unwind” the computation of
goal, undoing the value updates while building up
the gradient values. The idea is to differentiate
an “unrolled” version of the original computation
(Williams and Zipser, 1989), in which an item at

19More generally,g(ai) = ∂goal/∂ai =
P
c ∂goal/∂c ·

∂c/∂ai =
P
c g(c) · ∂c/∂ai by the chain rule.

1. for eacha, gchart[a] := 0 andgagenda[a] := 0
(* respectively hold ∂goal/∂chart[a] and ∂goal/∂agenda[a] *)

2. gchart[goal] := 1
3. for each〈a,∆, old〉 triple that was considered at line 8

of Fig. 3, but in thereverse order (* ∆ is agenda[a] *)
4. Γ := gchart[a] (* will accumulate gagenda[a] here *)
5. for each inference rule “c += a1 ∗ a2 ∗ · · · ∗ ak”
6. for i from 1 tok
7. for each way of instantiating the rule’s variables

such thatai = a
8. for h from 1 tok such thatah is not a side cond.

(* find ∂goal/∂agenda[c] · ∂agenda[c]/∂(ah factor) *)

9. γ :=

kY
j=1

8>>><>>>:
gagenda[c] if j = h
old if j 6= h andj < i

andaj = a
∆ if j 6= h andj = i
chart[aj ] otherwise

10. if h 6= i then gchart[ah] += γ
11. if h ≤ i andah = a then Γ += γ
12. gagenda[a] := Γ
13. chart[a] := old
14.return gagenda[a] for each axioma

Figure 4: An efficient algorithm for computing∇goal (even
whengoal is an early-stopping approximation), specialized to
the case〈W,⊕,⊗〉 = 〈R,+, ∗〉. The proof is suppressed for
lack of space.

time t is considered to be a different variable (possi-
bly with different value) than the same item at time
t + 1. The reverse pass must recover earlier values.
Our somewhat tricky algorithm is shown in Fig. 4.

At line 3, a stack is needed to remember the se-
quence of〈a,old,∆〉 triples from the original com-
putation.20 It is a more efficient version of the “tape”
usually used in automatic differentiation. For exam-
ple, it usesO(n2) rather thanO(n3) space for the
CKY algorithm. The trick is that Fig. 3 does not
record all its computations, but only its sequence of
items. Fig. 4 then re-runs the inference rules to re-
construct the computations in an acceptable order.

This method is a generalization of Eisner’s (2001)
prioritized forward-backward algorithm for infinite-
state machines. As Eisner (2001) pointed out, the
tape created on the first forward pass can also be
used to speed up later passes (i.e., after the numeri-
cal optimizer has adjusted the axiom weights).21

20If one is willing to risk floating-point error, then one can
store only〈a, old〉 on the stack and recover∆ aschart[a]−old.
Also, agenda[a] andgagenda[a] can be stored in the same loca-
tion, as they are only used during the forward and the backward
pass, respectively.

21In brief, a later forward pass that choosesa at Fig. 3, line 4
according to the recorded tape order (1) is faster than using a
priority queue, (2) avoids ordering-related discontinuities in the
objective function as the axiom weights change, (3) can prune
by skipping useless updatesa that scarcely affectedgoal (e.g.,
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5.3 Parameter estimation

To support parameter training using these gradi-
ents, our implementation of Dyna includes a train-
ing module, DynaMITE. DynaMITE supports the
EM algorithm (and many variants), supervised and
unsupervised training of log-linear (“maximum en-
tropy”) models using quasi-Newton methods, and
smoothing-parameter tuning on development data.
As an object-oriented C++ library, it also facilitates
rapid implementation of new estimation techniques
(Smith and Eisner, 2004; Smith and Eisner, 2005).

6 Program Transformations

Another interest of Dyna is that its high-level speci-
fications can be manipulated by mechanical source-
to-source program transformations. This makes it
possible to derive new algorithms from old ones.
§5.1 already sketched thegradient transformation
for finding∇goal. We note a few other examples.

Bounding transformations generate a new pro-
gram that computes upper or lower bounds ongoal,
via generic bounding techniques (Prieditis, 1993;
Culberson and Schaeffer, 1998). The A* heuristics
explored by Klein and Manning (2003a) can be seen
as resulting from bounding transformations.

With John Blatz, we are also exploring trans-
formations that can result in asymptotically more
efficient computations ofgoal. Their unweighted
versions are well-known in the logic programming
community (Tamaki and Sato, 1984; Ramakrish-
nan, 1991). Folding introduces new intermediate
items, perhaps exploiting the distributive law; ap-
plications include parsing speedups such as (Eisner
and Satta, 1999), as well as well-known techniques
for speeding up multi-way database joins, constraint
programming, or marginalization of graphical mod-
els. Unfolding eliminates items; it can be used to
specialize a parser to a particular grammar and then
to eliminate unary rules.Magic templatesintroduce
top-down filtering into the search strategy and can be
used to derive Earley’s algorithm (Minnen, 1996), to
introduce left-corner filters, and to restrict FSM con-
structions to build only accessible states.

Finally, there are low-level optimizations.Term

constituents not in any good parse) by consultinggagenda[a]
values that the previous backward pass can have written onto
the tape (overwriting∆ or old).

transformations restructure terms to change their
layout in memory. We are also exploring the intro-
duction of declarations that control which items use
the agenda or are memoized in the chart. This can
be used to support lazy or “on-the-fly” computation
(Mohri et al., 1998) and asymptotic space-saving
tricks (Binder et al., 1997).

7 Usefulness of the Implementation

7.1 Applications

The current Dyna compiler has proved indispens-
able in our own recent projects, in the sense that we
would not have attempted many of them without it.

In some cases, we were experimenting with gen-
uinely new algorithms not supported by any ex-
isting tool, as in our work on dependency-length-
limited parsing (Eisner and Smith, 2005b) and
loosely syntax-based machine translation (Eisner
and D. Smith, 2005). (Dyna would have been
equally helpful in the first author’s earlier work on
new algorithms for lexicalized and CCG parsing,
syntactic MT, transformational syntax, trainable pa-
rameterized FSMs, and finite-state phonology.)

In other cases (Smith and Eisner, 2004; Smith and
Smith, 2004; Smith et al., 2005), Dyna let us quickly
replicate, tweak, and combine useful techniques
from the literature. These techniques included un-
weighted FS morphology, conditional random fields
(Lafferty et al., 2001), synchronous parsers (Wu,
1997; Melamed, 2003), lexicalized parsers (Eisner
and Satta, 1999),22 partially supervised training̀a la
(Pereira and Schabes, 1992),23 and grammar induc-
tion (Klein and Manning, 2002). These replications
were easy to write and extend, and to train via§5.2.

7.2 Experiments

We compared the current Dyna compiler to hand-
built systems on a variety of parsing tasks. These
problems were chosen not for their novelty or inter-
esting structure, but for the availability of existing
well-tuned implementations.

Best parse. We compared a Dyna CFG parser
to the Java parser of Klein and Manning (2003b),24

22Markus Dreyer’s reimplementation of the complex
Collins (1999) parser uses under 30 lines of Dyna.

23For example, lines 2–3 of Fig. 1 can be extended with
whenever permitted(X,I,K).

24Neither uses heuristics from Klein and Manning (2003a).
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Figure 5: Dyna CKY parser vs. Klein & Manning hand-built
parser, comparing runtime.
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Figure 6: Dyna CKY parser vs. C++PARSE, a similar hand-
built parser. The implementation differences amount to storage
and indexing and give a consistent 5-fold speedup.

on the same grammar. Fig. 5 shows the re-
sults. Dyna’s disadvantage is greater on longer
sentences—probably because its greater memory
consumption results in worse cache behavior.25

We also compared a Dyna CKY parser to
our own hand-built implementation, C++PARSE.
C++PARSE is designed like the Dyna parser but
includes a few storage and indexing optimizations
that Dyna does not yet have. Fig. 6 shows the 5-
fold speedup from these optimizations on binarized-
Treebank parsing with a large 119K-rule grammar.
The sharp diagonal indicates that C++PARSE is sim-
ply a better-tuned version of the Dyna parser.

These optimizations and others are now being in-
corporated into the Dyna compiler, and are expected

25Unlike Java, Dyna does not yet decide automatically when
to perform garbage collection. In our experiment, garbage col-
lection was called explicitly after each sentence and counted
as part of the runtime (typically 0.25 seconds for 10-word sen-
tences, 5 seconds for 40-word sentences).

99% 99.99%
uniform 89.3 (4.5) 90.3 (4.6)

after 1 EM iteration 82.9 (6.8) 85.2 (6.9)

after 2 EM iterations 77.1 (8.4) 79.1 (8.3)

after 3 EM iterations 71.6 (9.4) 73.7 (9.5)

after 4 EM iterations 66.8 (10.0) 68.8 (10.2)

after 5 iterations 62.9 (10.3) 65.0 (10.5)

Table 1: Early stopping. Each row describes a PCFG at a differ-
ent stage of training; later PCFGs are sharper. The table shows
the percentage of agenda runtime (mean across 1409 sentences,
and standard deviation) required to get within 99% or 99.99%
of the true value ofgoal.

to provide similar speedups, putting Dyna’s parser
in the ballpark of the Klein & Manning parser. Im-
portantly, these improvements will speed up existing
Dyna programs through recompilation.

Inside parsing. Johnson (2000) provides a C im-
plementation of the inside-outside algorithm for EM
training of PCFGs. We ran five iterations of EM
on the WSJ10 corpus26 using the Treebank grammar
from that corpus. Dyna took 4.1 times longer.

Early stopping. An advantage of the weighted
agenda discipline (§4.2) is that, with a reasonable
priority function such as an item’s inside probabil-
ity, the inside algorithm can be stopped early with
an estimate ofgoal’s value. To measure the goodness
of this early estimate, we tracked the progression of
goal’s value as each sentence was being parsed. In
most instances, and especially after more EM itera-
tions, the estimate was very tight long before all the
weight had been accumulated (Table 1). This sug-
gests that early stopping is a useful training speedup.

PRISM. The implemented tool most similar to
Dyna that we have found is PRISM (Zhou and Sato,
2003), a probabilistic Prolog with efficient tabling
and compilation. PRISM inherits expressive power
from Prolog but handles only probabilities, not gen-
eral semirings (or even side conditions).27 In CKY
parsing tests, PRISM was able to handle only a small
fraction of the Penn Treebank ruleset (2,400 high-
probability rules) and tended to crash on long sen-
tences. Dyna is designed for real-world use: it con-
sistently parses over 10× faster than PRISM and
scales to full-sized problems.

IBAL (Pfeffer, 2001) is an elegant and power-
ful language for probabilistic modeling; it general-
izes Bayesian networks in interesting ways.28 Since

26Sentences with≤10 words, stripping punctuation.
27Thus it can handle a subset of the cases described by

Goodman (1999), again by building the whole parse forest.
28It might be possible to implement IBAL in Dyna (Pfeffer,
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PCFGs and marginalization can be succinctly ex-
pressed in IBAL, we attempted a performance com-
parison on the task of the inside algorithm (Fig. 1).
Unfortunately, IBAL’s algorithm appears not to ter-
minate if the PCFG contains any kind of recursion
reachable from the start symbol.

8 Conclusions

Weighted deduction is a powerful theoretical for-
malism that encompasses many NLP algorithms
(Goodman, 1999). We have given a bottom-up “in-
side” algorithm for general semiring-weighted de-
duction, based on a prioritized agenda, and a general
“outside” algorithm that correctly computes weight
gradients even when the inside algorithm is pruned.

We have also proposed a declarative language,
Dyna, that replaces Prolog’s Horn clauses with
“Horn equations” over terms with values. Dyna can
express more than the semiring-weighted dynamic
programs treated in this paper. Our ongoing work
concerns the full Dyna language, program transfor-
mations, and feedback-directed optimization.

Finally, we evaluated our first implementation of
a Dyna-to-C++ compiler (download and documen-
tation athttp://dyna.org ). We hope it will facili-
tate EMNLP research, just as FS toolkits have done
for the FS case. It produces code that is slower than
hand-crafted code but acceptably fast for our NLP
research, where it has been extremely helpful.
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Abstract

Text generation requires a planning mod-
ule to select an object of discourse and its
properties. This is specially hard in de-
scriptive games, where a computer agent
tries to describe some aspects of a game
world. We propose to formalize this prob-
lem as a Markov Decision Process, in
which an optimal message policy can be
defined and learned through simulation.
Furthermore, we propose back-off poli-
cies as a novel and effective technique to
fight state dimensionality explosion in this
framework.

1 Introduction

Traditionally, text generation systems are decom-
posed into three modules: the application module
which manages the high-level task representation
(state information, actions, goals, etc.), the text plan-
ning module which chooses messages based on the
state of the application module, and the sentence
generation module which transforms messages into
sentences. The planning module greatly depends
on the characteristics of both the application and
the generation modules, solving issues in domain
modelling, discourse and sentence planning, and to
some degree lexical and feature selection (Cole et
al., 1997). In this paper we concentrate on one
of the most basic tasks that text planning needs to
solve: selecting the message content, or more sim-
ply, choosing what to talk about.

Work on text-generation often assumes that an
object or topic has been already chosen for discus-
sion. This is reasonable for many applications, but
in some cases choosing what to talk about can be
harder than choosing how to. This is the case in the
type of text generation applications that we are in-
terested in: generating descriptive messages in com-
puter games. In a modern computer game at any
given moment there may be an enormous number
of object properties that can be described, each with
varying importance and consequences. The outcome
of the game depends not only on the skill of the
player, but also on the quality of the descriptive mes-
sages produced. We refer to such situations as de-
scriptive games.

Our goal is to develop a strategy to choose the
most interesting descriptive messages that a particu-
lar talker may communicate to a particular listener,
given their context (i.e. their knowledge of the world
and of each-other). We refer to this as message plan-
ning.

Developing a general framework for planning is
very difficult because of the strong coupling be-
tween the planning and application modules. We
propose to frame message planning as a Markov De-
cision Process (MDP) which encodes the environ-
ment, the information available to the talker and lis-
tener, the consequences of their communicative and
non-communicative acts, and the constraints of the
text generation module. Furthermore we propose to
use Reinforcement Learning (RL) to learn the op-
timal message policy. We demonstrate the overall
principle (Section 2) and then develop in more de-
tail a computer game setting (Section 3).
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One of the main weaknesses of RL is the problem
of state dimensionality explosion. This problem is
specially acute in message planning, since in typical
situations there can be hundreds of thousands of po-
tential messages. At the same time, the domain is
highly structured. We propose to exploit this struc-
ture using a form of the back-off smoothing princi-
ple on the state space (Section 4).

1.1 Related Work

Our problem setting can be seen as a generalisation
of the content selection problem in the generation of
referring expressions in NLG. In the standard set-
ting of this problem (see for example (van Deemter
and Krahmer, to appear)) an algorithm needs to se-
lect the distinguishing description of an object in a
scene. This description can be seen as a subset of
scene properties which i) uniquely identifies a given
target object, and ii) is optimal in some sense (min-
imal, psychologically plausible, etc.) van Deemter
and Krahmer show that most content selection algo-
rithms can be described as different cost functions
over a particular graph representation of the scene.
Minimising the cost of a subgraph leads to a distin-
guishing description.

Some aspects of our work generalise that of con-
tent selection: i) we consider the target object is un-
known, ii) we consider scenes (i.e. world states) that
are dynamic (i.e. they change over time) and reac-
tive (i.e. utterances change the world), and iii) we
consider listeners that have partial knowledge of the
scene. This has important consequences. For exam-
ple, the cost of a description cannot be directly eval-
uated; instead, we must play the game, that is, gener-
ate utterances and observe the rewards obtained over
time. Also identical word-states may lead to differ-
ent optimal messages, depending on the listener’s
partial knowledge. Other aspects of our work are
very simplistic compared to current work in con-
tent selection, for example with respect to the use
of negation and of properties that are boolean, rel-
ative or graded (van Deemter and Krahmer, to ap-
pear). We hope to incorporate these ideas into our
work soon.

Probabilistic dialogue policies have been previ-
ously proposed for spoken dialogue systems (SDS)
(see for example (Singh et al., 2002; Williams et
al., 2005) and references therein). However, work in

SDS focus mainly on coping with the noise and un-
certainty resulting from speech recognition and sen-
tence parsing. In this context MDPs are used to infer
features and plan communicative strategies (modal-
ity, confusion, initiative, etc.) In our work we do not
need to deal with uncertainty or parsing; our main
concern is in the selection of the message content.
In this sense our work is closer to (Henderson et al.,
2005), where RL is used to train a SDS with very
many states encoding message content.

Finally, with respect to the state-explosion prob-
lem in RL, related work can be found in the areas of
multi-task learning and robot motion planning (Diet-
terich, 2000, and references therein). In these works
the main concern is identifying the features that are
relevant to specific sub-tasks, so that robots may
learn multiple loosely-coupled tasks without incur-
ring state-explosion. (Henderson et al., 2005) also
addresses this problem in the context of SDS and
proposes a semi-supervised solution. Our approach
is related to these works, but it is different in that
we assume that the feature structure is known in ad-
vance and has a very particular form amenable to a
form of back-off regularisation.

2 Message planning

Let us consider an environment comprising a world
with some objects and some agents, and some dy-
namics that govern their interaction. Agents can ob-
serve and memorize certain things about the world,
can carry out actions and communicate with other
agents. As they do so, they are rewarded or pun-
ished by the environment (e.g. if they find food, if
the complete some goal, if they run out of energy,
etc.)

The agents’ actions are governed by a policy. We
will consider separately the physical action policy
(π), which decides which physical action to take
given the state of the agent, and the message action
policy (µ), which decides when to communicate, to
whom, and what about. Our main concern in this
paper will be to learn an optimal µ. Before we de-
fine this goal more precisely, we will introduce some
notation.

A property is a set of attribute-value pairs. An
object is a set of properties, with (at least) attributes
Type and Location. A domain is a set of objects. Fur-
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thermore, we say that s′ is a sub-domain of s if s′ can
be obtained by deleting property–value pairs from
s (while enforcing the condition that remaining ob-
jects must have Type and Location). Sub(s) is the set
containing s, all sub-domains of s, and the empty
domain ∅.

A world state can be represented as a domain,
noted sW . Any partial view of the world state can
also be represented as a domain s ∈ Sub(sW ). Sim-
ilarly the content of any descriptive message about
the world, noted m, can be represented as a partial
view of it. An agent is the tuple:

A :=
(
sA, πA, {µAA′ , sAA′}A′ �=A

)

• sA ∈ Sub(sW ): knowledge that A has about
the state of the world.

• sAA′ ∈ Sub(sA ∩ s′A): knowledge that A
has about the knowledge that A′ has about the
world.

• πa := P (c|sA) is the action policy of A, and c
is a physical action.

• µAA′ := P (m ∈ M(sA)|sA, sAA′) is the mes-
sage policy of A for sending messages to A′,
and M(sA) are all valid messages at state sA
(discussed in Section 2.3).

When an agent A decides to send a message to A′,
it can use its knowledge of A′ to choose messages
effectively. For example, A will prefer to describe
things that it knows A′ does not know (i.e. not in
sAA′). This is the reason why the message policy
µA depends on both sA and sAA′ . After a message is
sent (i.e. realised and uttered) the agent’s will update
their knowledge states sA′ , sA′A and sAA′ .

The question that we address in this paper is that
of learning an optimal message policy µAA′ .

2.1 Talker’s Markov Decision Process

We are going to formalize this problem as a stan-
dard Markov Decision Process (MDP). In general a
MDP (Sutton and Barto, 1998) is defined over some
set of states S := {si}i=1..K and actions associated
to every state, A(si) := {aij}j=1..Ni

. The envi-
ronment is governed by the state transition function
Pa

ss′ := P (s′|s, a). A policy determines the likeli-
hood of actions at a given state: π(s) := P (a|s). At

each state transition a reward is generated from the
reward function Ra

ss′ := E{r|s, s′, a}.
MDPs allow us to define and find optimal poli-

cies which maximise the expected reward. Classical
MDPs assume that the different functions introduced
above are known and have some tractable analyti-
cal form. Reinforcement Learning (RL) in as ex-
tension of MDPs in which the environment function
Pa

ss′ is unknown or complex, and so the optimal pol-
icy needs to be learned online by directly interacting
with the environment. There exist a number of algo-
rithms to solve a RL problem, such as Q-Learning
or SARSA (Sutton and Barto, 1998).

We can use a MDP to describe a full descrip-
tive game, in which several agents interact with the
world and communicate with each-other. To do so
we would need to consider composite states con-

taining sW , {sA}A, and
{
{sAA′}A′ �=A

}
A

. Simi-

larly, we need to consider composite policies con-

taining {πA}A and
{
(µAA′)A′ �=A

}
A

. Finally, we

would consider the many constrains in this model;
for example: only physical actions affect the state
of the world, only message actions affect believes,
and only believe states can affect the choice of the
agent’s actions.

MDPs provide us with a principled way to deal
with these elements and their relationships. How-
ever, dealing with the most general case results in
models that are very cumbersome and which hide
the conceptual simplicity of our approach. For this
reason, we will limit ourselves in this paper to one
of the simplest communication cases of interest: a
single all-knowing talker, and a single listener com-
pletely observed by the talker. We will discuss later
how this can be generalized.

2.2 The Talking God Setting

In the simplest case, an all-knowing agent A0 sits in
the background, without taking any physical actions,
and uses its message policy (µ01) to send messages
to a listener agent A1. The listener agent cannot talk
back, but can interact with the environment using
its physical action policy π1. Rewards obtained by
A1 are shared by both agents. We refer to this set-
ting as the talking God setting. Examples of such
situations are common in games, for example when
a computer character talks to its (computer) team-
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Figure 1: Talking God MDP.

mates, or when a mother-ship with full information
of the ground sends a small simple robot to do a task.
Another example would be that of a teacher talking
to a learner, except that the teacher may not have full
information of the learners head!

Since the talker is all-knowing, it follows that
s0 = sW and s01 = s1. Furthermore, since the
talker does not take physical actions, π0 does not
need to be defined. Similarly, since the listener does
not talk we do not need to define µ10 or s10. This
case is depicted in Figure 1 as a graphical model.
By grouping states and actions (dotted lines) we can
see that this is can be modelled as a standard MDP.
If all the probability distributions are known analyt-
ically, or if they can be sampled, optimal physical
and message policies can be learnt (thick arrows).

Several generalizations of this model are possible.
A straight forward generalization is to consider more
than one listener agent. We can then choose to learn
a single policy for all, or individual policies for each
agent.

A second way to generalize the setting is to make
the listeners mind only partially observable to the
talker. In this case the talker continues to know the
entire world (s0 = sW ), but does not know ex-
actly what the listener knows (s01 �= s0). This is
more realistic in situations in which the listener can-
not talk back to the talker, or in which the talkers
mind is not observable. However, to model this we
need a partially observable MDP (POMDP). Solv-
ing POMDPS is much harder than solving MDPs,
but there have been models proposed for dialogue

management (Williams et al., 2005).
In the more general case, the talker would have

partial knowledge of the world and of the listener,
and would itself act. In that case all agents are equal
and can communicate as they evolve in the envi-
ronment. The other agents minds are not directly
observable, but we obtain information about them
from their actions and their messages. This can all
be in principle modelled by POMDPs in a straight-
forward manner, although solving these models is
more involved. We are currently working towards
doing so.

Finally, we note that all the above cases have
dealt with worlds in which objects are static (i.e.
information does not become obsolete), agents do
not gain or communicate erroneous information, and
communication itself is non-ambiguous and loss-
less. This is a realistic scenario for text generation,
and for communication between computer agents in
games, but it is far removed from the spoken dia-
logue setting.

2.3 Generation Module and Valid Messages

Generating descriptive sentences of domains can be
done in a number of ways, from template to feature-
based systems (Cole et al., 1997). Our framework
does not depend on a particular choice of generation
module, and so we do not need to discuss this mod-
ule. However, our message policy is not decoupled
of the generation module; indeed, it would not make
sense to develop a planning module which plans
messages that cannot be realised! In our framework,
the generation module is seen simply as a fixed and
known filter over all possible the messages.

We formalize this by representing an agent’s gen-
eration module as a function ΓA(m) mapping a mes-
sage m to a NL sentence, or to ∅ if the module can-
not fully realise m. The set of available messages
to an agent A in state sA is therefore: M(sA) :=
{m |m ∈ Sub(sA) , ΓA(m) �= ∅}.

3 A Simple Game Example

In this section we will use a simple computer game
to demonstrate how the proposed framework can be
used to learn message policies.

The game evolves in a grid-world. A mother-
ship sends a scout, which will try to move from its
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Figure 2: Example of a Simple Game Board.

starting position (top left corner) to a target (bot-
tom right). There are two types of objects on the
board, Type := {bomb, tree}, with a property Size :=
{big, small} in addition of Location. If a scout at-
tempts to move into a big tree, the move is blocked;
small trees have no effect. If a scout moves into
a bomb the scout is destroyed and a new one is
created at the starting position. Before every step
the mother-ship may send a message to the scout.
Then the scout moves one step (horizontal or ver-
tical) towards the target choosing the shortest path
which avoids hazards known by the scout (the A*
algorithm is used for this). Initially scouts have no
knowledge of the objects in the world; they gain this
knowledge by stepping into objects or by receiving
information from the mother-ship.

This is an instance of the talking god model dis-
cussed previously. The scout is the listener agent
(A1), and the mother-ship the talker (A0). The
scouts action policy π1 is fixed (as described above),
but we need to learn the message policy µ01.

Rewards are associated with the results of phys-
ical actions: a high positive reward (1000) is as-
signed to reaching the destination, a large negative
reward (-100) to stepping in a bomb, a medium neg-
ative reward (-10) to being blocked by a big tree, a
small negative reward to every step (-1). Further-
more, sending a message has a small negative re-
ward proportional to the number of attributes men-
tioned in the message (-2 per attribute, to discourage
the talker from sending useless information). The
message ∅ is given zero cost; this is done in order to
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Figure 3: Simple Game Learning Results

State Best Action Learnt
(and possible sentence realisation)

{ TREE-BIG-LEFT } ∅
-SILENCE-

{ BOMB-BIG-FRONT } BOMB-FRONT
There is a bomb in front of you

{ TREE-SMALL-LEFT, TREE-BIG-RIGHT
TREE-BIG-RIGHT } There is a big tree to your right
{ BOMB-BIG-FRONT,
BOMB-SMALL-LEFT, TREE-BIG-RIGHT
TREE-BIG-RIGHT, There is a big tree to your right
TREE-SMALL-BACK }

Table 1: Examples of learnt actions.

learn when not to talk.

Learning is done as follows. We designed five
maps of 11 × 11 cells, each with approximately 15
bombs and 20 trees of varying sizes placed in strate-
gic locations to make the scouts task difficult (one
of these maps is depicted in Figure 2; an A* path
without any knowledge and one with full knowl-
edge of the board are shown as dotted and dashed ar-
rows respectively). A training epoch consists of ran-
domly drawing one of these maps and running a sin-
gle game until completion. The SARSA algorithm
is used to learn the message policy, with ε = 0.1
and γ = 0.9. The states sW and s1 are encoded
to represent the location of objects surrounding the
scout, relative to its direction (i.e. objects directly in
front of the agent always receive the same location
value). To speed up training, we only consider the 8
cells adjacent to the agent.

Figure 3 shows the results of these experiments.
For comparison, we note that completing the game
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with a uniformly random talking policy results in an
average reward of less than −3000 meaning that on
average more than 30 scouts die before the target is
reached. The dashed line indicates the reward ob-
tained during training for a policy which does not
use the size attribute, but only type and location.
This policy effectively learns that both bombs and
trees in front of the agent are to be communicated,
resulting in an average reward of approximately 400,
and reducing the average number of deaths to less
than 2. The solid line represents the results obtained
by a policy that is forced to use all attributes. De-
spite the increase in communication cost, this pol-
icy can distinguish between small and large trees,
and so it increases the overall reward two-fold. Fi-
nally, the dotted line represents the results obtained
by a policy that can choose whether to use or not the
size attribute. This policy proves to be even more
effective than the previous one; this means that it
has learnt to use the size attribute only when it is
necessary. Some optimal (state,action) pairs learnt
for this policy are shown in Table 1. The first three
show correctly learnt optimal actions. The last is an
example of a wrongly learnt action, due to the state
being rare.

These are encouraging results, since they demon-
strate in practice how optimal policies may be learnt
for message planning. However, it should be clear
form this example that, as we increase the number
of types, attributes and values, this approach will be-
come unfeasible. This is discussed in the next sec-
tion.

4 Back-Off Policies

One of the main problems when using RL in prac-
tical settings (and, more generally, using MDPs) is
the exponential growth of the state space, and con-
sequently of the learning time required. In our case,
if there are M attributes, and each attribute pi has
N(pi) values, then there are S =

∏M
i=1 N(pi) pos-

sible sub-domains, and up to 2S states in the state
space. This exponential growth, unless addressed,
will render MDP learning unfeasible.

NL domains are usually rich with structure, some
of it which is known a priori. This is the case in
text generation of descriptions for computer games,
where we have many sources of information about

the objects of discourse (i.e. world ontology, dy-
namics, etc.) We propose to tackle the problem of
state dimensionality explosion by using this struc-
ture explicitly in the design of hierarchical policies.

We do so by borrowing the back-off smoothing
idea from language models. This idea can be stated
as: train a set of probability models, ordered by their
specificity, and make predictions using the most spe-
cific model possible, but only if there is enough
training data to support its prediction; otherwise,
back-off to the next less-specific model available.

Formally, let us assume that for every state
s we can construct a sequence of K embedded
partial representations of increasing complexity,
(s[1], . . . , s[k], . . . , s[K]). Let us denote π̂[k] a se-
quence of policies operating at each of the partial
representation levels respectively, and let each of
these policies have a confidence measurement ck(s)
indicating the quality of the prediction at each state.
Since k indicates increasingly complex, we require
that ck(s) ≥ ck′(s) if k < k′. Then, the most spe-
cific policy we can use at state s can be written as:

k∗s := arg max
k

{k · sign (ck(s)− θ)} (1)

A back-off policy can be implemented by choosing,
at every state s the most specific policy available:

π(s) = π̂[k∗
s ](s[k∗

s ]) (2)

We can use a standard off-policy learning algo-
rithm (such as Q-learning or SARSA) to learn all the
policies simultaneously. At every step, we draw an
action using (2) and update all policies with the ob-
tained reward1. Initially, the learning will be driven
by high-level (simple) policies. More complex poli-
cies will kick-in progressively for those states that
are encountered more often.

In order to implement back-off policies for our
setting, we need to define a confidence function ck.
A simple confidence measure is the number of times
the state s[k] has been previously encountered. This
measure grows on average very quickly for small k
states and slowly for high k states. Nevertheless, re-
occurring similar states will have high visit counts

1An alternative view of back-off policies is to consider that a
single complete policy is being learnt, but that actions are being
drawn from regularised versions of this policy, where the regu-
larisation is a back-off model on the features. We show this in
Appendix I
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Figure 4: Back-Off Policy Simulation Results.

for all k values. This is exactly the kind of behav-
iour we require.

Furthermore, we need to choose a set of repre-
sentations of increasing complexity. For example,
in the case of n-gram models it is natural to choose
as representations sequences of preceding words of
increasing size. There are many choices open to us
in our application domain. A natural choice is to or-
der attribute types by their importance to the task.
For example, at the simplest level of representation
objects can be represented only by their type, at a
second level by the type and colour, and at a third
level by all the attributes. This same technique could
be used to exploit ontologies and other sources of
knowledge. Another way to create levels of repre-
sentation of increasing detail is to consider different
perceptual windows. For example, at the simplest
level the agent can consider only objects directly in
front of it, since these are generally the most im-
portant when navigating. At a second level we may
consider also what is to the left and right of us, and
finally consider all surrounding cells. This could be
pursued even further by considering regions of in-
creasing size.

4.1 Simulation Results

We present here a series of experiments based on
the previous game setting, but further simplified to
pinpoint the effect of dimensionality explosion, and
how back-off policies can be used to mitigate it.

We modify the simple game of Section 3 as fol-
lows. First, we add a new object type, stone, and a

new property Colour := {red, green}. We let all trees
be green and big and all bombs red and small, and
furthermore we fix their location (i.e. we use one
map instead of five). Finally we change the world
behaviour so that an agent that steps into a bomb re-
ceives the negative reward but does not die, it contin-
ues until it reaches the target. All these changes are
done to reduce the variability of our learning base-
line.

At every game we generate 40 stones of random
location, size and colour. Stepping on stones has no
physical effect to the scout and it generates the same
reward as moving into an empty cell, but this is un-
known to the talker and will need to be learnt. These
stones are used as noise objects, which increase the
size of the state space. When there are no noise ob-
jects, the number of possible states is 38 ≈ 6.5K
(the actual number of states will be much smaller
since there is a single maze). Noise objects can take
2 × 2 = 4 possible forms, so the total number of
states with noise objects is (3 + 4)8 ≈ 6M . Even
with such a simplistic example we can see how dras-
tic the state dimensionality problem is. Despite the
fact that the noise objects do not affect the reward
structure of our simple game, reinforcement learn-
ing will be drastically slowed down by them.

Simulation results2 are shown in Figure 4. First
let us look at the results obtained using the full state
representation used in Section 3 (noted Full State).
Solid and dotted lines represent runs obtained with
and without noise objects. First note that learning
without noise objects (dotted circles) occurs mostly
within the first few epochs and settles after 250
epochs. When noise objects are added (solid cir-
cles) learning greatly slows down, taking over 5K
epochs. This is a typical illustration of the effect that
the number of states has on the speed of learning.

An obvious way to limit the number of states is
to eliminate features. For comparison, we learned
a simple representation policy with states encod-
ing only the type of the object directly in front of
the agent, ignoring its colour and all other locations
(noted Simple State). Without noise, the performance
(dotted triangles) is only slightly worse than that of
the original policy. However, when noise objects

2Every 200 training epochs we run 100 validation epochs
with ε = 0. Only the average validation rewards are plotted.
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are added (solid triangles) the training is no longer
slowed down. In fact, with noise objects this policy
outperforms the original policy up to epoch 1000:
the performance lost in the representation is made
up by the speed of learning.

We set up a back-off policy with K = 3 as fol-
lows. We use the Simple representation at k = 1,
plus a second level of representation where we rep-
resent the colour as well as the type of the object in
front of the agent, and finally the Full representation
as the third level. As the ck function we use state
visit counts as discussed above and we set θ = 10.
Before reaching the full policy (level 3), this policy
should progressively learn to avoid bombs and trees
directly in front (level 1), then (level 2) not avoid
small trees directly in front. We plot the perfor-
mance of this back-off policy (stars) in Figure 4. We
see that it attains very quickly the performance of
the simple policy (in less than 200 epochs), but the
continues to increase in performance settling within
500 epochs with a performance superior to that of
the full state representation, and very close to that of
the policies operating in the noiseless world.

Despite the small scale of this study, our results
clearly suggest that back-off policies can be used
effectively to control state dimensionality explosion
when we have strong prior knowledge of the struc-
ture of the state space. Furthermore (and this may be
very important in real applications such as game de-
velopment) we find that back-off policies produce a
natural to feel to the errors incurred while learning,
since policies develop progressively in their com-
plexity.

5 Conclusion

We have developed a formalism to learn interac-
tively the most informative message content given
the state of the listener and the world. We formalised
this problem as a MDP and shown how RL may be
used to learn message policies even when the envi-
ronment dynamics are unknown. Finally, we have
shown the importance of tackling the problem of
state dimensionality explosion, and we have pro-
posed one method to do so which exploits explicit
a priori ontological knowledge of the task.
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6 Appendix I

We show here that the expected reward for a partial
policy πk after an action a, noted Qπk(s, a), can be
obtained from the expected reward of the full pol-
icy Qπ(s, a) and the conditional state probabilities
P (s|s[k]). We may use this to compute the expected
risk of any partial policy Rπk(s) from the full policy.

Let Tk(s) :=
{
s′ ∈ S | s′[k] = s[k]

}
be the sub-

set of full states which map to the same value of s.
Given a state distribution P (s) we can define distri-
butions over partial states:

P (s[k], s[j]) =
∑

s′∈Tk(s)∩Tj(s)

P (s′) . (3)

Since
∑

s′∈Tk(s) P (s′|s[k]) = 1, we have
P (A|s[k]) =

∑
s′∈Tk(s) P (A|s′)P (s′|s[k]), and so:

Qπk(s, a) =
∑

s′∈Tk(s)

P (s′|s[k])Q
π(s′, a) . (4)
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Abstract

The original motivation for using ques-
tion series in the TREC 2004 question an-
swering track was the desire to model as-
pects of dialogue processing in an evalu-
ation task that included different question
types. The structure introduced by the se-
ries also proved to have an important ad-
ditional benefit: the series is at an appro-
priate level of granularity for aggregating
scores for an effective evaluation. The
series is small enough to be meaningful
at the task level since it represents a sin-
gle user interaction, yet it is large enough
to avoid the highly skewed score distribu-
tions exhibited by single questions. An
analysis of the reliability of the per-series
evaluation shows the evaluation is stable
for differences in scores seen in the track.

The development of question answering technol-
ogy in recent years has been driven by tasks de-
fined in community-wide evaluations such as TREC,
NTCIR, and CLEF. The TREC question answering
(QA) track started in 1999, with the first several edi-
tions of the track focused on factoid questions. A
factoid question is a fact-based, short answer ques-
tion such as How many calories are there in a Big
Mac?. The track has evolved by increasing the type
and difficulty of questions that are included in the
test set. The task in the TREC 2003 QA track was
a combined task that contained list and definition
questions in addition to factoid questions (Voorhees,

2004). A list question asks for different instances of
a particular kind of information to be returned, such
as List the names of chewing gums. Answering such
questions requires a system to assemble an answer
from information located in multiple documents. A
definition question asks for interesting information
about a particular person or thing such as Who is
Vlad the Impaler? or What is a golden parachute?.
Definition questions also require systems to locate
information in multiple documents, but in this case
the information of interest is much less crisply de-
lineated.

Like the NTCIR4 QACIAD challenge (Kato et
al., 2004), the TREC 2004 QA track grouped ques-
tions into series, using the series as abstractions of
information-seeking dialogues. In addition to mod-
eling a real user task, the series are a step toward in-
corporating context-processing into QA evaluation
since earlier questions in a series provide some con-
text for the current question. In the case of the TREC
series, each series contained factoid and list ques-
tions and had the target of a definition associated
with it. Each question in a series asked for some
information about the target. In addition, the final
question in each series was an explicit “other” ques-
tion, which was to be interpreted as “Tell me other
interesting things about this target I don’t know
enough to ask directly”. This last question was
roughly equivalent to the definition questions in the
TREC 2003 task.

This paper examines the efficacy of series-based
QA evaluation, and demonstrates that aggregating
scores over individual series provides a more mean-
ingful evaluation than averages of individual ques-
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tion scores. The next section describes the question
series that formed the basis of the TREC 2004 eval-
uation. Since TREC uses different evaluation proto-
cols for different question types, the following sec-
tion describes the way in which individual question
types were evaluated. Section 3 contrasts the scores
obtained by aggregating individual question scores
by question type or by series, and shows the use of
series leads to a reliable evaluation at differences in
scores that are observed in practice.

1 Question Series

A question series as used in the TREC 2004 QA
track consisted of several factoid questions, zero to
two list questions, and exactly one Other question.
Associated with each series was a definition target.
The series a question belonged to, the order of the
question in the series, and the type of each question
(factoid, list, or Other) were all explicitly encoded in
the XML format used to describe the test set. Exam-
ple series (minus the XML tags) are shown in fig-
ure 1. A target was a person, an organization, or
thing that was a plausible match for the scenario as-
sumed for the task: that the questioner was an “aver-
age” adult reader of US newspapers who was look-
ing for more information about a term encountered
while reading the paper.

The TREC 2004 test set contains 65 series. Of
the 65 targets, 23 are PERSONs, 25 are ORGANI-
ZATIONs, and 17 are THINGs. The series contain
a total of 230 factoid questions, 56 list questions,
and 65 (one per target) Other questions. Each se-
ries contains at least four questions, counting the
Other question, with most series containing five or
six questions. The maximum number of questions
in a series is ten.

Question series were also the fundamental struc-
ture used in the QACIAD challenge (Question An-
swering Challenge for Information Access Dia-
logue) of NTCIR4. However, there are some impor-
tant differences between the QACIAD and TREC
series. The QACIAD series model a more natu-
ral flow of questions in an information-seeking di-
alogue. Given other evaluation requirements (most
questions need to have an answer in the source doc-
uments, answers to earlier questions should not be
given in later questions, etc.), the series in the TREC

test set are heavily edited versions of the series col-
lected from the original information seekers. The
resulting edited series appear as a stilted conversa-
tional style when viewed from the perspective of true
dialogue, and the series do not reflect the full range
of information requested in the original series. (For
example, TREC requires list question answers to be
concrete entities such as cities or book titles while
the information seekers often asked for fuzzier in-
formation such as lists of descriptive qualities.) The
QACIAD challenge contained two types of series,
gathering series and browsing series. In a gather-
ing series, all of the questions are related to a single
target (that was not explicitly given in QACIAD),
while questions in a browsing series can refer to un-
related targets. The TREC series are all gathering
type series with the target explicitly given. Finally,
the QACIAD series consist of list questions only,
since factoid questions are treated as list questions
with a single answer.

Systems participating in the TREC evaluation
were required to process series independently from
one another, and were required to process an individ-
ual series in question order. That is, systems were
allowed to use questions and answers from earlier
questions in a series to answer later questions in that
same series, but could not “look ahead” and use later
questions to help answer earlier questions. The se-
ries was the unit used to structure the test set, but
there was no requirement for systems to process a
series as a unit. Some systems appended the target
to each of the questions in its series and then pro-
cessed all resulting question strings independently
as in earlier TREC evaluations. Per-series evaluation
is still valid since the task to be evaluated is defined
in terms of the series and is independent of how sys-
tems choose to process the questions.

Sixty-three runs from 28 participants were sub-
mitted to the TREC 2004 QA track.

2 Scoring Question Series

The evaluation protocol for individual questions de-
pends on the type of the question. This section
summarizes the protocols for the individual question
types and for a series as a whole.
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3 Hale Bopp comet
3.1 FACTOID When was the comet discovered?
3.2 FACTOID How often does it approach the earth?
3.3 LIST In what countries was the comet visible on its last return?
3.4 OTHER

21 Club Med
21.1 FACTOID How many Club Med vacation spots are there worldwide?
21.2 LIST List the spots in the United States.
21.3 FACTOID Where is an adults-only Club Med?
21.4 OTHER

22 Franz Kafka
22.1 FACTOID Where was Franz Kafka born?
22.2 FACTOID When was he born?
22.3 FACTOID What is his ethnic background?
22.4 LIST What books did he author?
22.5 OTHER

Figure 1: Sample question series from the test set. Series 3 has a THING as a target, series 21 has an
ORGANIZATION as a target, and series 22 has a PERSON as a target.

2.1 Factoid questions

The system response for a factoid question is either
exactly one [doc-id, answer-string] pair or the literal
string ‘NIL’. NIL is returned by a system when it be-
lieves there is no answer to the question in the docu-
ment collection. Otherwise, answer-string is a string
containing precisely an answer to the question, and
doc-id is the id of a document in the collection that
supports answer-string as an answer.

Each response was assigned exactly one of the
following four judgments:

incorrect: the answer string does not contain a right
answer or the answer is not responsive;

not supported: the answer string contains a right
answer but the document returned does not sup-
port that answer;

not exact: the answer string contains a right answer
and the document supports that answer, but the
string contains more than just the answer or is
missing bits of the answer;

correct: the answer string consists of exactly the
right answer and that answer is supported by
the document returned.

To be responsive, an answer string is required to
contain appropriate units and to refer to the correct

“famous” entity (e.g., the Taj Mahal casino is not re-
sponsive when the question asks about “the Taj Ma-
hal”). NIL responses are correct only if there is no
known answer to the question in the collection and
are incorrect otherwise. NIL is correct for 22 of the
230 factoid questions in the test set

An individual factoid question has a binary score,
1 if the response is judged correct and 0 otherwise.
The score for a set of factoid questions is accuracy,
the fraction of questions in the set judged correct.

2.2 List questions

A list question can be thought of as a shorthand for
asking the same factoid question multiple times. The
set of all correct, distinct answers in the document
collection that satisfy the factoid question is the cor-
rect answer for a list question.

A system’s response for a list question is an un-
ordered set of [doc-id, answer-string] pairs such
that each answer-string is considered an instance of
the requested type. Judgments of incorrect, unsup-
ported, not exact, and correct are made for individual
response pairs as in the factoid judging. The asses-
sor is given one run’s entire list at a time, and while
judging for correctness also marks a set of responses
as distinct. The assessor chooses an arbitrary mem-
ber of the equivalent responses to be marked distinct,
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and the remainder are not marked as distinct. Only
correct responses may be marked as distinct.

The final correct answer set for a list question is
compiled from the union of the correct responses
across all runs plus the instances the assessor found
during question development. For the 55 list ques-
tions used in the evaluation (one list question was
dropped because the assessor decided there were no
correct answers during judging), the average number
of answers per question is 8.8, with 2 as the smallest
number of answers, and 41 as the maximum num-
ber of answers. A system’s response to a list ques-
tion was scored using instance precision (IP) and
instance recall (IR) based on the list of known in-
stances. Let S be the number of known instances,
D be the number of correct, distinct responses re-
turned by the system, and N be the total number of
responses returned by the system. Then IP = D/N
and IR = D/S. Precision and recall were then
combined using the F measure with equal weight
given to recall and precision:

F =
2× IP × IR

IP + IR

The score for a set of list questions is the mean of
the individual questions’ F scores.

2.3 Other questions

The Other questions were evaluated using the same
methodology as the TREC 2003 definition ques-
tions (Voorhees, 2003). A system’s response for
an Other question is an unordered set of [doc-id,
answer-string] pairs as for list questions. Each string
is presumed to be a facet in the definition of the
series’ target that had not yet been covered by ear-
lier questions in the series. The requirement to not
repeat information already covered by earlier ques-
tions in the series made answering Other questions
somewhat more difficult than answering TREC 2003
definition questions.

Judging the quality of the systems’ responses is
done in two steps. In the first step, all of the answer
strings from all of the systems’ responses are pre-
sented to the assessor in a single list. Using these
responses and the searches done during question de-
velopment, the assessor creates a list of information
nuggets about the target. An information nugget is
an atomic piece of information about the target that

is interesting (in the assessor’s opinion) and is not
part of an earlier question in the series or an answer
to an earlier question in the series. An information
nugget is atomic if the assessor can make a binary
decision as to whether the nugget appears in a re-
sponse. Once the nugget list is created for a target,
the assessor marks some nuggets as vital, meaning
that this information must be returned for a response
to be good. Non-vital nuggets act as don’t care con-
ditions in that the assessor believes the information
in the nugget to be interesting enough that returning
the information is acceptable in, but not necessary
for, a good response.

In the second step of judging the responses, an
assessor goes through each system’s response in turn
and marks which nuggets appear in the response. A
response contains a nugget if there is a conceptual
match between the response and the nugget; that is,
the match is independent of the particular wording
used in either the nugget or the response. A nugget
match is marked at most once per response—if the
response contains more than one match for a nugget,
an arbitrary match is marked and the remainder are
left unmarked. A single [doc-id, answer-string] pair
in a system response may match 0, 1, or multiple
nuggets.

Given the nugget list and the set of nuggets
matched in a system’s response, the nugget recall
of a response is the ratio of the number of matched
nuggets to the total number of vital nuggets in the
list. Nugget precision is much more difficult to com-
pute since there is no effective way of enumerat-
ing all the concepts in a response. Instead, a mea-
sure based on length (in non-white space charac-
ters) is used as an approximation to nugget preci-
sion. The length-based measure starts with an initial
allowance of 100 characters for each (vital or non-
vital) nugget matched. If the total system response
is less than this number of characters, the value of
the measure is 1.0. Otherwise, the measure’s value
decreases as the length increases using the function
1 − length−allowance

length
. The final score for an Other

question is computed as the F measure with nugget
recall three times as important as nugget precision:

F (β = 3) =
10× precision × recall
9× precision + recall

.

Note that the Other question for series S7 was
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mistakenly left unjudged, so the series was was re-
moved from the TREC 2004 evaluation. This means
final scores for runs were computed over 64 rather
than 65 question series.

2.4 Per-series scores

In the TREC 2003 evaluation, the final score for a
run was computed as a weighted average of the mean
scores for different question types:

FinalScore = .5FactoidAccuracy + .25ListAveF

+.25DefinitionAveF.

Since each of the component scores ranges between
0 and 1, the final score is also in that range. The
weights for the different components reflect the de-
sire to emphasize factoid scores, since factoid tech-
nology is the most mature, while still allowing other
components to affect the final score. The specific
weights used match this general objective, but are
otherwise arbitrary. No experiments have been run
examining the effect of different weights on the sta-
bility of the final scores, but small perturbations in
the weights should have little effect on the results.

An individual question series also contains a mix-
ture of different question types, so the weighted av-
erage can be computed for an individual series rather
than the test set as a whole. The mean of the per-
series scores is then used as the final score for a run.

We use the same weighted average as above to
compute the score for an individual series that con-
tains all three question types, using only the scores
for questions belonging to that series in the compu-
tation and using the Other question’s score in place
of the average of definition questions scores. For
those series that did not contain any list questions,
the score was computed as .67FactoidAccuracy +
.33OtherF. Figure 2 shows the average per-series
score for the best run for each of the top 10 groups
that participated in TREC 2004.

3 Analysis of Per-series Evaluation

The main purpose of evaluations such as TREC is to
provide system builders with the information needed
to improve their systems. An informative evaluation
must be reliable (i.e., the results must be trustwor-
thy) as well as capture salient aspects of the real
user task. This section first examines the user task
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Figure 2: Average per-series scores for top ten QA
track runs.

abstracted by the per-series evaluation, and then de-
rives an empirical estimate of the reliability of the
evaluation.

3.1 Modeling a User Task

The set of questions used to aggregate individual
questions’ scores determines the emphasis of a QA
evaluation. In the TREC 2003 combined task there
were no series but there were different question
types, so question scores were first averaged by
question type and then those averages were com-
bined. This strategy emphasizes question-type anal-
ysis in that it is easy to compare different systems’
abilities for the different question types. The QA-
CIAD challenge contained only a single question
type but introduced a series structure into the test
set (Kato et al., 2004). In QACIAD, the scores
were aggregated over the series and the series scores
averaged. The QACIAD series were specifically
constructed to be an abstraction of an information
seeker’s dialogue, and the aggregation of scores over
series supports comparing different series types. For
example, QACIAD results show browsing series to
be more difficult than gathering series.

The TREC 2004 QA track contained both series
structure and different question types, so individual
question scores could be aggregated either by series
or by question type. In general, the two methods
of aggregation lead to different final scores. Ag-
gregating by question type gives equal weight to
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Figure 3: Box and whiskers plot of per-series scores across all TREC 2004 runs. The x-axis shows the series
number and the y-axis the score.

each of the questions of the same type, while aggre-
gating by series gives equal weight to each series.
This is the same difference as between micro- and
macro-averaging of document retrieval scores. For
the set of runs submitted to TREC 2004, the abso-
lute value of the final scores when aggregated by se-
ries were generally somewhat greater than the final
scores when aggregated by question type, though it
is possible for the question-type-aggregated score to
be the greater of the two. The relative scores for dif-
ferent runs (i.e., whether one run was better than an-
other) were usually, but not always, the same regard-
less of which aggregation method was used. The
Kendall τ (Stuart, 1983) measure of correlation be-
tween the system rankings produced by sorting the
runs by final score for each of the two aggregation
methods was 0.971, where identical rankings would
have a correlation of 1.0.

Despite the relatively minor differences in runs’
final scores when aggregating by series or by ques-
tion type, there is a strong reason to prefer the series
aggregation. An individual series is small enough to
be meaningful at the task level (it represents a sin-
gle user’s interaction) yet large enough for a series

score to be meaningful. Figure 3 shows a box-and-
whiskers plot of the per-series scores across all runs
for each series. A box in the plot shows the extent
of the middle half of the scores for that series, with
the median score indicated by the line through the
box. The dotted lines (the “whiskers”) extend to
a point that is 1.5 times the interquartile distance,
or the most extreme score, whichever is less. Ex-
treme scores that are greater than the 1.5 times the
interquartile distance are plotted as circles. The plot
shows that only a few series (S21, S25, S37, S39)
have median scores of 0.0. This is in sharp con-
trast to the median scores of individual questions.
For the TREC 2004 test set, 212 of the 230 factoid
questions (92.2%) have a zero median, 39 of 55 list
questions (70.9%) have a zero median, and 41 of 64
Other questions (64.1%) have a zero median.

Having a unit of evaluation that is at the appro-
priate level of granularity is necessary for meaning-
ful results from the methodology used to assess the
reliability of an evaluation. This methodology, de-
scribed below, was originally created for document
retrieval evaluations (Voorhees and Buckley, 2002)
where the topic is the unit of evaluation. The distri-
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bution of scores across runs for an individual topic
is much the same as the distribution of scores for
the individual series as in figure 3. Score distribu-
tions that are heavily skewed toward zero make the
evaluation look far more reliable than is likely to be
the case since the reliability methodology computes
a measure of the variability in scores.

3.2 Reliability

TREC uses comparative evaluations: one system is
considered to be more effective than another if the
evaluation score computed for the output of the first
system is greater than the evaluation score computed
for the output of the second system. Since all mea-
surements have some (unknown) amount of error as-
sociated with them, there is always a chance that
such a comparison can lead to the wrong result. An
analysis of the reliability of an evaluation establishes
bounds for how likely it is for a single comparison
to be in error.

The reliability analysis uses the runs submitted to
the track to empirically determine the relationship
among the number of series in a test set, the ob-
served difference in scores (δ) between two runs,
and the likelihood that a single comparison of two
runs leads to the correct conclusion. Once estab-
lished, the relationship is used to derive the mini-
mum difference in scores required for a certain level
of confidence in the results given that there are 64
series in the test set.

The core of the procedure for establishing the re-
lationship is comparing the effectiveness of a pair
runs on two disjoint, equal-sized sets of series to see
if the two sets disagree as to which of the runs is
better. We define the error rate as the percentage of
comparisons that have such a disagreement. Since
the TREC 2004 track had 64 series, we can directly
compute the error rate for test sizes up to 32 series.
The smallest test set used is five series since fewer
than five series in a test set is too noisy to be infor-
mative. By fitting curves to the values observed for
test set sizes between 5 and 32, we can extrapolate
the error rates to test sets up to 64 series.

When calculating the error rate, the difference be-
tween two runs’ scores is categorized into a set of
bins based on the size of the difference. The first bin
contains runs with a difference of less than 0.01 (in-
cluding no difference at all). The next bin contains

runs whose difference is at least 0.01 but less than
0.02. The limits for the remaining bins increase by
increments of 0.01.

Each test set size from 5 to 32 is treated as a sep-
arate experiment. Within an experiment, we ran-
domly select two disjoint sets of series of the re-
quired size. We compute the average series score
over both sets for all runs, then count the number of
times we see a disagreement as to which run is bet-
ter for all pairs of runs using the bins to segregate the
counts by size of the difference in scores. The entire
procedure is repeated 50 times (i.e., we perform 50
trials), with the counts of the number of disagree-
ments kept as running totals over all trials. The ratio
of the number of disagreements observed in a bin to
the total number of cases that land in that bin is the
error rate for the bin.

Figure 4 shows the error rate curves for five sep-
arate bins. In the figure the test set size is plot-
ted on the x-axis and the error rate is plotted on
the y-axis. The individual points in the graphs are
the data points actually computed by the procedure
above, while the lines are the best-fit exponential
curve for the data points in the current bin and ex-
trapolated to size 64. The top curve is for the bin
with 0.01 ≤ δ < 0.02 and the bottom curve for the
bin with 0.05 ≤ δ < 0.06; the intervening curves
are for the intervening bins, in order with smaller
δ’s having larger error rates. An error rate no greater
than 5%, requires a difference in scores of at least
0.05, which can be obtained with a test set of 47 se-
ries. Score differences of between 0.04 and 0.05 (the
fourth curve) have an error rate slightly greater than
5% when there are 64 series in the test set.

Having established the minimum size of the dif-
ference in scores needed to be confident that two
runs are actually different, it is also important to
know whether differences of the required size actu-
ally occur in practice. If it is rare to observe a dif-
ference in scores as large as the minimum, then the
evaluation will be reliable but insensitive. With 64
runs submitted to the TREC 2004 QA track, there
are 1953 run pairs; 70% of the pairs have a dif-
ference in average per-series score that is at least
0.05. Many of the pairs in the remaining 30% are
truly equivalent—for example, runs submitted by
the same group that had very small differences in
their processing. In figure 2, the difference in scores
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Figure 4: Extrapolated error rates for per-series scores for different test set sizes.

between each of the first three runs and its next clos-
est run is greater than 0.05, while the next five runs
are all within 0.05 of one another.

4 Conclusion

Question series have been introduced into recent
question answering evaluations as a means of mod-
eling dialogues between questioners and systems.
The abstraction allows researchers to investigate
methods for answering contextualized questions and
for tracking (some forms of) the way objects are re-
ferred to in natural dialogues. The series have an
important evaluation benefit as well. The individual
series is at the correct level of granularity for aggre-
gating scores for a meaningful evaluation. Unlike
individual questions that have heavily skewed score
distributions across runs, per-series score distribu-
tions resemble the distributions of per-topic scores
in document retrieval evaluations. This allows the
methodology developed for assessing the quality of
a document retrieval evaluation to be meaningfully
applied to the per-series evaluation. Such an analy-
sis of the TREC 2004 QA track per-series evaluation
shows the evaluation results to be reliable for differ-
ences in scores that are often observed in practice.
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Abstract

We explore a hybrid approach for Chinese
definitional question answering by com-
bining deep linguistic analysis with sur-
face pattern learning. We answer four
questions in this study: 1) How helpful are
linguistic analysis and pattern learning? 2)
What kind of questions can be answered
by pattern matching? 3) How much an-
notation is required for a pattern-based
system to achieve good performance? 4)
What linguistic features are most useful?
Extensive experiments are conducted on
biographical questions and other defini-
tional questions. Major findings include:
1) linguistic analysis and pattern learning
are complementary; both are required to
make a good definitional QA system; 2)
pattern matching is very effective in an-
swering biographical questions while less
effective for other definitional questions;
3) only a small amount of annotation is
required for a pattern learning system to
achieve good performance on biographi-
cal questions; 4) the most useful linguistic
features are copulas and appositives; re-
lations also play an important role; only
some propositions convey vital facts.

1 Introduction

Due to the ever increasing large amounts of online
textual data, learning from textual data is becom-
ing more and more important. Traditional document
retrieval systems return a set of relevant documents

and leave the users to locate the specific information
they are interested in. Question answering, which
combines traditional document retrieval and infor-
mation extraction, solves this problem directly by
returning users the specific answers. Research in
textual question answering has made substantial ad-
vances in the past few years (Voorhees, 2004).

Most question answering research has been focus-
ing on factoid questions where the goal is to return
a list of facts about a concept. Definitional ques-
tions, however, remain largely unexplored. Defini-
tional questions differ from factoid questions in that
the goal is to return the relevant “answer nuggets”
of information about a query. Identifying such an-
swer nuggets requires more advanced language pro-
cessing techniques. Definitional QA systems are
not only interesting as a research challenge. They
also have the potential to be a valuable comple-
ment to static knowledge sources like encyclopedias.
This is because they create definitions dynamically,
and thus answer definitional questions about terms
which are new or emerging (Blair-Goldensoha et
al., 2004).

One success in factoid question answering
is pattern based systems, either manually con-
structed (Soubbotin and Soubbotin, 2002) or ma-
chine learned (Cui et al., 2004). However, it is
unknown whether such pure pattern based systems
work well on definitional questions where answers
are more diverse.

Deep linguistic analysis has been found useful in
factoid question answering (Moldovan et al., 2002)
and has been used for definitional questions (Xu et
al., 2004; Harabagiu et al., 2003). Linguistic analy-
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sis is useful because full parsing captures long dis-
tance dependencies between the answers and the
query terms, and provides more information for in-
ference. However, merely linguistic analysis may
not be enough. First, current state of the art lin-
guistic analysis such as parsing, co-reference, and
relation extraction is still far below human perfor-
mance. Errors made in this stage will propagate and
lower system accuracy. Second, answers to some
types of definitional questions may have strong local
dependencies that can be better captured by surface
patterns. Thus we believe that combining linguistic
analysis and pattern learning would be complemen-
tary and be beneficial to the whole system.

Work in combining linguistic analysis with pat-
terns include Weischedel et al. (2004) and Jijkoun et
al. (2004) where manually constructed patterns are
used to augment linguistic features. However, man-
ual pattern construction critically depends on the do-
main knowledge of the pattern designer and often
has low coverage (Jijkoun et al., 2004). Automatic
pattern derivation is more appealing (Ravichandran
and Hovy, 2002).

In this work, we explore a hybrid approach to
combining deep linguistic analysis with automatic
pattern learning. We are interested in answering
the following four questions for Chinese definitional
question answering:

� How helpful are linguistic analysis and pattern
learning in definitional question answering?

� If pattern learning is useful, what kind of ques-
tion can pattern matching answer?

� How much human annotation is required for a
pattern based system to achieve reasonable per-
formance?

� If linguistic analysis is helpful, what linguistic
features are most useful?

To our knowledge, this is the first formal study of
these questions in Chinese definitional QA. To an-
swer these questions, we perform extensive experi-
ments on Chinese TDT4 data (Linguistic Data Con-
sortium, 2002-2003). We separate definitional ques-
tions into biographical (Who-is) questions and other
definitional (What-is) questions. We annotate some
question-answer snippets for pattern learning and
we perform deep linguistic analysis including pars-
ing, tagging, name entity recognition, co-reference,

and relation detection.

2 A Hybrid Approach to Definitional Ques-
tion Answering

The architecture of our QA system is shown in Fig-
ure 1. Given a question, we first use simple rules to
classify it as a “Who-is” or “What-is” question and
detect key words. Then we use a HMM-based IR
system (Miller et al., 1999) for document retrieval
by treating the question keywords as a query. To
speed up processing, we only use the top 1000 rel-
evant documents. We then select relevant sentences
among the returned relevant documents. A sentence
is considered relevant if it contains the query key-
word or contains a word that is co-referent to the
query term. Coreference is determined using an in-
formation extraction engine, SERIF (Ramshaw et
al., 2001). We then conduct deep linguistic anal-
ysis and pattern matching to extract candidate an-
swers. We rank all candidate answers by predeter-
mined feature ordering. At the same time, we per-
form redundancy detection based on � -gram over-
lap.

2.1 Deep Linguistic Analysis

We use SERIF (Ramshaw et al., 2001), a linguistic
analysis engine, to perform full parsing, name entity
detection, relation detection, and co-reference reso-
lution. We extract the following linguistic features:

1. Copula: a copula is a linking verb such as “is”
or “become”. An example of a copula feature
is “Bill Gates is the CEO of Microsoft”. In this
case, “CEO of Microsoft” will be extracted as
an answer to “Who is Bill Gates?”. To extract
copulas, SERIF traverses the parse trees of the
sentences and extracts copulas based on rules.
In Chinese, the rule for identifying a copula is
the POS tag “VC”, standing for “Verb Copula”.
The only copula verb in Chinese is “

�
”.

2. Apposition: appositions are a pair of noun
phrases in which one modifies the other. For
example, In “Tony Blair, the British Prime Min-
ister, ...”, the phrase “the British Prime Min-
ister” is in apposition to “Blair”. Extraction
of appositive features is similar to that of cop-
ula. SERIF traverses the parse tree and iden-
tifies appositives based on rules. A detailed
description of the algorithm is documented
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Figure 1: Question answering system structure

in (Ramshaw et al., 2001).

3. Proposition: propositions represent predicate-
argument structures and take the form:
predicate( ��� ����� : �	��
 � , ..., ��� ���
� : ����
 � ). The
most common roles include logical subject,
logical object, and object of a prepositional
phrase that modifies the predicate. For ex-
ample, “Smith went to Spain” is represented
as a proposition, went(logical subject: Smith,
PP-to: Spain).

4. Relations: The SERIF linguistic analysis en-
gine also extracts relations between two ob-
jects. SERIF can extract 24 binary relations
defined in the ACE guidelines (Linguistic Data
Consortium, 2002), such as spouse-of, staff-of,
parent-of, management-of and so forth. Based
on question types, we use different relations, as
listed in Table 1.

Relations used for Who-Is questions
ROLE/MANAGEMENT, ROLE/GENERAL-STAFF,

ROLE/CITIZEN-OF, ROLE/FOUNDER,
ROLE/OWNER, AT/RESIDENCE,

SOC/SPOUSE, SOC/PARENT,
ROLE/MEMBER, SOC/OTHER-PROFESSIONAL

Relation used for What-Is questions
AT/BASED-IN, AT/LOCATED, PART/PART-OF

Table 1: Relations used in our system

Many relevant sentences do not contain the query
key words. Instead, they contain words that are co-
referent to the query. For example, in “Yesterday UN

Secretary General Anan Requested Every Side...,
He said ... ”. The pronoun “He” in the second sen-
tence refers to “Anan” in the first sentence. To select
such sentences, we conduct co-reference resolution
using SERIF.

In addition, SERIF also provides name tagging,
identifying 29 types of entity names or descriptions,
such as locations, persons, organizations, and dis-
eases.

We also select complete sentences mentioning the
term being defined as backup answers if no other
features are identified.

The component performance of our linguistic
analysis is shown in Table 2.

Pre. Recall F
Parsing 0.813 0.828 0.820

Co-reference 0.920 0.897 0.908
Name-entity detection 0.765 0.753 0.759

Table 2: Linguistic analysis component performance
for Chinese

2.2 Surface Pattern Learning

We use two kinds of patterns: manually constructed
patterns and automatically derived patterns. A man-
ual pattern is a commonly used linguistic expression
that specifies aliases, super/subclass and member-
ship relations of a term (Xu et al., 2004). For exam-
ple, the expression “tsunamis, also known as tidal
waves” gives an alternative term for tsunamis. We
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use 23 manual patterns for Who-is questions and 14
manual patterns for What-is questions.

We also classify some special propositions as
manual patterns since they are specified by compu-
tational linguists. After a proposition is extracted,
it is matched against a list of predefined predicates.
If it is on the list, it is considered special and will
be ranked higher. In total, we designed 22 spe-
cial propositions for Who-is questions, such as ��

(become), ��� � (elected as), and ��� (resign),
14 for What-is questions, such as �
	 (located at),�
� 	 (created at), and ��� � (also known as).

However, it is hard to manually construct such
patterns since it largely depends on the knowledge
of the pattern designer. Thus, we prefer patterns
that can be automatically derived from training data.
Some annotators labeled question-answer snippets.
Given a query question, the annotators were asked
to highlight the strings that can answer the question.
Though such a process still requires annotators to
have knowledge of what can be answers, it does not
require a computational linguist. Our pattern learn-
ing procedure is illustrated in Figure 2.

Generate Answer Snippet

Pattern Generalization

Pattern Selection

POS Tagging

Merging POS Tagging
and Answer Tagging

Answer Annotation

Figure 2: Surface Pattern Learning

Here we give an example to illustrate how pat-
tern learning works. The first step is annotation. An
example of Chinese answer annotation with English
translation is shown in Figure 3. Question words are
assigned the tag QTERM, answer words are tagged
ANSWER, and all other words are assigned BKGD,
standing for background words (not shown in the ex-
ample to make the annotation more readable).

To obtain patterns, we conduct full parsing to ob-
tain the full parse tree for a sentence. In our current

Chinese annotation: ������� “ ��������� ” � ( � ���"!#
ANSWER)( $&%('�)(* QTERM), +-,/.0����1&23�465 �(��7�8-9-:�;

English translation: (U.S. Secretary of the State ANWER)
(Albright QTERM), who visited North Korea for the “ice-
breaking trip”, had a historical meeting with the leader of
North Korea, Kim Jong Il.

Figure 3: Answer annotation example

patterns, we only use POS tagging information, but
other higher level information could also be used.
The segmented and POS tagged sentence is shown
in Figure 4. Each word is assigned a POS tag as
defined by the Penn Chinese Treebank guidelines.

( � P)( � � NR)( � � VV)(“ PU)( � VV)( �
NN)( �<� NN)(” PU)( � DEC)( �=� NR)( ��! #
NR)( $<% NR)( '<)<* NR)(, PU) ( +>, NT)( .
DT)( ��� NR)( 1�2 NR)(

3?4�5
NN)( @�� VV)( 7�8

9 JJ)( :�; NN).

Figure 4: POS tagging

Next we combine the POS tags and the answer
tags by appending these two tags to create a new tag,
as shown in Figure 5.

( � P/BKGD)( �A� NR/BKGD)( �A� VV/BKGD)(“

PU/BKGD)( � VV/BKGD)( � NN/BKGD)( � �
NN/BKGD)(” PU/BKGD)( � DEC/BKGD)( �
� NR/ANSWER)( � ! #

NR/ANSWER)( $ %
NR/QTERM)( '
)B* NR/QTERM)(, PU/BKGD) ( +
, NT/BKGD)( . DT/BKGD)( �C� NR/BKGD)( 1D2
NR/BKGD)( E 4�5 NN/BKGD)( ��� VV/BKGD)( 7F8
9 JJ/BKGD)( :�; NN/BKGD)

Figure 5: Combined POS and Answer tagging

We can then obtain an answer snippet from this
training sample. Here we obtain the snippet ( GIH
HKJML NR/ANSWER)(TERM).

We generalize a pattern using three heuristics (this
particular example does not generalize). First, we
replace all Chinese sequences longer than 3 charac-
ters with their POS tags, under the theory that long
sequences are too specific. Second, we also replace
NT (time noun, such as N�O ), DT (determiner, such
as P , Q ), cardinals (CD, such as R , S , T ) and M
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(measurement word such as ����� ) with their POS
tags. Third, we ignore adjectives.

After obtaining all patterns, we run them on the
training data to calculate their precision and recall.
We select patterns whose precision is above 0.6 and
which fire at least 5 times in training data (parame-
ters are determined with a held out dataset).

3 Experiments

3.1 Data Sets

We produced a list of questions and asked annota-
tors to identify answer snippets from TDT4 data. To
produce as many training answer snippets as pos-
sible, annotators were asked to label answers ex-
haustively; that is, the same answer can be labeled
multiple times in different places. However, we re-
move duplicate answers for test questions since we
are only interested in unique answers in evaluation.

We separate questions into two types, biographi-
cal (Who-is) questions, and other definitional ques-
tions (What-is). For “Who-is” questions, we used
204 questions for pattern learning, 10 for parame-
ter tuning and another 42 questions for testing. For
“What-is” questions, we used 44 for training and an-
other 44 for testing.

3.2 Evaluation

The TREC question answering evaluation is based
on human judgments (Voorhees, 2004). However,
such a manual procedure is costly and time consum-
ing. Recently, researchers have started automatic
question answering evaluation (Xu et al., 2004;
Lin and Demner-Fushman, 2005; Soricut and Brill,
2004). We use Rouge, an automatic evaluation met-
ric that was originally used for summarization eval-
uation (Lin and Hovy, 2003) and was recently found
useful for evaluating definitional question answer-
ing (Xu et al., 2004). Rouge is based on � -gram
co-occurrence. An � -gram is a sequence of � con-
secutive Chinese characters.

Given a reference answer � and a system answer�
, the Rouge score is defined as follows:

�	��

���������������������
 !!" #$%'&)()*

�+

,.-�/103254�6
�����7�)��,8�
*
�+

,.-9�����:,8�

where ; is the maximum length of � -grams,< �
= �?>9@�ACB�D7EGF��IH � H �KJ is the number of common � -
grams of � and

�
, and < �
= �?>�F��IH �KJ is the number

of � -grams in � . If ; is too small, stop words and
bi-grams of such words will dominate the score; If; is too large, there will be many questions without
answers. We select ; to be 3, 4, 5 and 6.

To make scores of different systems comparable,
we truncate system output for the same question
by the same cutoff length. We score answers trun-
cated at length L times that of the reference answers,
where L is set to be 1, 2, and 3. The rationale is that
people would like to read at least the same length
of the reference answer. On the other hand, since
the state of the art system answer is still far from
human performance, it is reasonable to produce an-
swers somewhat longer than the references (Xu et
al., 2004).

In summary, we run experiments with parameters;NMPOQH3R�H�SQH�T and LUM�VWH�XQH�O , and take the average
over all of the 12 runs.

3.3 Overall Results

We set the pure linguistic analysis based system as
the baseline and compare it to other configurations.
Table 3 and Table 4 show the results on “Who-is”
and “What-is” questions respectively. The baseline
(Run 1) is the result of using pure linguistic features;
Run 2 is the result of adding manual patterns to the
baseline system; Run 3 is the result of using learned
patterns only. Run 4 is the result of adding learned
patterns to the baseline system. Run 5 is the result
of adding both manual patterns and learned patterns
to the system.

The first question we want to answer is how help-
ful the linguistic analysis and pattern learning are
for definitional QA. Comparing Run 1 and 3, we
can see that both pure linguistic analysis and pure
pattern based systems achieve comparable perfor-
mance; Combining them together improves perfor-
mance (Run 4) for “who is” questions, but only
slightly for “what is” questions. This indicates that
linguistic analysis and pattern learning are comple-
mentary to each other, and both are helpful for bio-
graphical QA.

The second question we want to answer is what
kind of questions can be answered with pattern
matching. From these two tables, we can see
that patterns are very effective in “Who-is” ques-
tions while less effective in “What-is” questions.
Learned patterns improve the baseline from 0.3399
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to 0.3860; manual patterns improve the baseline to
0.3657; combining both manual and learned patterns
improve it to 0.4026, an improvement of 18.4%
compared to the baseline. However, the effect of
patterns on “What-is” is smaller, with an improve-
ment of only 3.5%. However, the baseline perfor-
mance on “What-is” is also much worse than that
of “Who-is” questions. We will analyze the reasons
in Section 4.3. This indicates that answering gen-
eral definitional questions is much more challenging
than answering biographical questions and deserves
more research.

Run Run description Rouge
(1) Baseline 0.3399
(2) (1)+ manual patterns 0.3657
(3) Learned patterns 0.3549
(4) (1)+ learned patterns 0.3860
(5) (2)+ learned patterns 0.4026

Table 3: Results on Who-is (Biographical) Ques-
tions

Run Run description Rouge
(1) Baseline 0.2126
(2) (1)+ manual patterns 0.2153
(3) Learned patterns 0.2117
(4) (1)+ learned patterns 0.2167
(5) (2)+ learned patterns 0.2201

Table 4: Results on “What-is” (Other Definitional)
Questions

4 Analysis

4.1 How much annotation is needed

The third question is how much annotation is needed
for a pattern based system to achieve good perfor-
mance. We run experiments with portions of train-
ing data on biographical questions, which produce
different number of patterns. Table 5 shows the de-
tails of the number of training snippets used and the
number of patterns produced and selected. The per-
formance of different system is illustrated in Fig-
ure 6. With only 10% of the training data (549 snip-
pets, about two person days of annotation), learned
patterns achieve good performance of 0.3285, con-
sidering the performance of 0.3399 of a well tuned

system with deep linguistic features. Performance
saturates with 2742 training snippets (50% train-
ing, 10 person days annotation) at a Rouge score
of 0.3590, comparable to the performance of a well
tuned system with full linguistic features and man-
ual patterns (Run 2 in Table 3). There could even
be a slight, insignificant performance decrease with
more training data because our sampling is sequen-
tial instead of random. Some portions of training
data might be more useful than others.

Training Patterns Patterns
snippets learned selected

10% train 549 56 33
30% train 1645 144 88
50% train 2742 211 135
70% train 3839 281 183
90% train 4935 343 222

100% train 5483 381 266

Table 5: Number of patterns with different size of
training data

Figure 6: How much annotation is required (mea-
sured on biographical questions)

4.2 Contributions of different features

The fourth question we want to answer is: what fea-
tures are most useful in definitional question answer-
ing? To evaluate the contribution of each individ-
ual feature, we turn off all other features and test
the system on a held out data (10 questions). We
calculate the coverage of each feature, measured by
Rouge. We also calculate the precision of each fea-
ture with the following formula, which is very sim-
ilar to Rouge except that the denominator here is
based on system output < �
= �?>�F � H �KJ instead of ref-
erence < �
= �?>�F��IH �KJ . The notations are the same as
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those in Rouge.

���+�
*
����� �+, �����7�)�:��� � �

 !!" #$%'&)( *
�+
W, - /103254�6 ��� �:�)��,8�
*
��
W, - � �)�:,8�

Figure 7 is the precision-recall scatter plot of the
features measured on “who is” questions. Interest-
ingly, the learned patterns have the highest coverage
and precision. The copula feature has the second
highest precision; however, it has the lowest cover-
age. This is because there are not many copulas in
the dataset. Appositive and manual pattern features
have the same level of contribution. Surprisingly,
the relation feature has a high coverage. This sug-
gests that relations could be more useful if relation
detection were more accurate; general propositions
are not more useful than whole sentences since al-
most every sentence has a proposition, and since the
high value propositions are identified by the lexical
head of the proposition and grouped with the manual
patterns.

Figure 7: Feature precision recall scatter plot (mea-
sured on the biographical questions)

4.3 Who-is versus What-is questions

We have seen that “What-is” questions are more
challenging than “Who-is” questions. We compare
the precision and coverage of each feature for “Who-
is” and “What-is” in Table 6 and Table 7. We see that
although the precisions of the features are higher
for “What-is”, their coverage is too low. The most
useful features for “What-is” questions are propo-
sitions and raw sentences, which are the worst two

features for “Who-is”. Basically, this means that
most of the answers for “What-is” are from whole
sentences. Neither linguistic analysis nor pattern
matching works as efficiently as in biographical
questions.

feature who-is what-is

copula 0.567 0.797
appositive 0.3460 0.3657
proposition 0.1162 0.1837

relation 0.3509 0.4422
sentence 0.1074 0.1556

learned patterns 0.6542 0.6858

Table 6: Feature Precision Comparison

feature who-is what-is

copula 0.055 0.049
appositive 0.2028 0.0026
proposition 0.2101 0.1683

relation 0.2722 0.043
sentence 0.1619 0.1717

learned patterns 0.3517 0.0860

Table 7: Feature Coverage Comparison

To identify the challenges of “What-is” questions,
we conducted an error analysis. The answers for
“What-is” are much more diverse and are hard to
capture. For example, the reference answers for the
question of “

�	� ��

���������
/ What is the in-

ternational space station?” include the weight of the
space station, the distance from the space station to
the earth, the inner structure of the space station, and
the cost of its construction. Such attributes are hard
to capture with patterns, and they do not contain any
of the useful linguistic features we currently have
(copula, appositive, proposition, relation). Identify-
ing more useful features for such answers remains
for future work.

5 Related Work

Ravichandran and Hovy (2002) presents a method
that learns patterns from online data using some seed
questions and answer anchors. The advantage is
that it does not require human annotation. How-
ever, it only works for certain types of questions that
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have fixed anchors, such as “where was X born”.
For general definitional questions, we do not know
what the anchors should be. Thus we prefer using
small amounts of human annotation to derive pat-
terns. Cui et al. (2004) uses a similar approach for
unsupervised pattern learning and generalization to
soft pattern matching. However, the method is actu-
ally used for sentence selection rather than answer
snippet selection. Combining information extrac-
tion with surface patterns has also seen some suc-
cess. Jikoun et al. (2004) shows that information
extraction can help improve the recall of a pattern
based system. Xu et al. (2004) also shows that man-
ually constructed patterns are very important in an-
swering English definitional questions. Hildebrandt
et al. (2004) uses manual surface patterns for tar-
get extraction to augment database and dictionary
lookup. Blair-Goldensohn et al. (2004) apply su-
pervised learning for definitional predicates and then
apply summarization methods for question answer-
ing.

6 Conclusions and Future Work

We have explored a hybrid approach for definitional
question answering by combining deep linguistic
analysis and surface pattern learning. For the first
time, we have answered four questions regarding
Chinese definitional QA: deep linguistic analysis
and automatic pattern learning are complementary
and may be combined; patterns are powerful in an-
swering biographical questions; only a small amount
of annotation (2 days) is required to obtain good per-
formance in a biographical QA system; copulas and
appositions are the most useful linguistic features;
relation extraction also helps.

Answering “What-is” questions is more challeng-
ing than answering “Who-is” questions. To improve
the performance on “What-is” questions, we could
divide “What-is” questions into finer classes such
as organization, location, disease, and general sub-
stance, and process them specifically.

Our current pattern matching is based on simple
POS tagging which captures only limited syntactic
information. We generalize words to their corre-
sponding POS tags. Another possible improvement
is to generalize using automatically derived word
clusters, which provide semantic information.
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Abstract

Question classification is an important
step in factual question answering (QA)
and other dialog systems. Several at-
tempts have been made to apply statistical
machine learning approaches, including
Support Vector Machines (SVMs) with
sophisticated features and kernels. Curi-
ously, the payoff beyond a simple bag-of-
words representation has been small. We
show that most questions reveal their class
through a short contiguous token subse-
quence, which we call itsinformer span.
Perfect knowledge of informer spans can
enhance accuracy from 79.4% to 88%
using linear SVMs on standard bench-
marks. In contrast, standard heuristics
based on shallow pattern-matching give
only a 3% improvement, showing that the
notion of an informer is non-trivial. Us-
ing a novel multi-resolution encoding of
the question’s parse tree, we induce a Con-
ditional Random Field (CRF) to identify
informer spans with about 85% accuracy.
Then we build a meta-classifier using a
linear SVM on the CRF output, enhancing
accuracy to 86.2%, which is better than all
published numbers.

1 Introduction

An important step in factual question answering
(QA) and other dialog systems is to classify the
question (e.g., Who painted Olympia?) to the antic-
ipated type of the answer (e.g., person). This step
is called “question classification” or “answer type
identification”.

The answer type is picked from a hand-built tax-
onomy having dozens to hundreds of answer types
(Harabagiu et al., 2000; Hovy et al., 2001; Kwok et
al., 2001; Zheng, 2002; Dumais et al., 2002). QA

∗ soumen@cse.iitb.ac.in

systems can use the answer type to short-list answer
tokens from passages retrieved by an information re-
trieval (IR) subsystem, or use the type together with
other question words to inject IR queries.

Early successful QA systems used manually-
constructed sets of rules to map a question to a
type, exploiting clues such as the wh-word (who,
where, when, how many) and the head of noun
phrases associated with the main verb (what isthe
tallestmountainin . . .).

With the increasing popularity of statistical NLP,
Li and Roth (2002), Hacioglu and Ward (2003) and
Zhang and Lee (2003) used supervised learning for
question classification on a data set from UIUC that
is now standard1. It has 6 coarse and 50 fine answer
types in a two-level taxonomy, together with 5500
training and 500 test questions. Webclopedia (Hovy
et al., 2001) has also published its taxonomy with
over 140 types.

The promise of a machine learning approach is
that the QA system builder can now focus on de-
signing features and providing labeled data, rather
than coding and maintaining complex heuristic rule-
bases. The data sets and learning systems quoted
above have made question classification a well-
defined and non-trivial subtask of QA for which al-
gorithms can be evaluated precisely, isolating more
complex factors at work in a complete QA system.

Prior work: Compared to human performance,
the accuracy of question classifiers is not high. In all
studies, surprisingly slim gains have resulted from
sophisticated design of features and kernels.

Li and Roth (2002) used a Sparse Network of
Winnows (SNoW) (Khardon et al., 1999). Their fea-
tures included tokens, parts of speech (POS), chunks
(non-overlapping phrases) and named entity (NE)
tags. They achieved 78.8% accuracy for 50 classes,
which improved to 84.2% on using an (unpublished,
to our knowledge) hand-built dictionary of “seman-
tically related words”.

1http://l2r.cs.uiuc.edu/˜cogcomp/Data/
QA/QC/
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Hacioglu and Ward (2003) used linear support
vector machines (SVMs) with question word 2-
grams and error-correcting output codes (ECOC)—
but no NE tagger or related word dictionary—to get
80.2–82% accuracy.

Zhang and Lee (2003) used linear SVMs with
all possible question wordq-grams, and obtained
79.2% accuracy. They went on to design an inge-
nious kernel on question parse trees, which yielded
visible gains for the 6 coarse labels, but only “slight”
gains for the 50 fine classes, because “the syntactic
tree does not normally contain the information re-
quired to distinguish between the various fine cate-
gories within a coarse category”.

Algorithm 6-class 50-class
Li and Roth, SNoW (1) 78.8(2)

Hacioglu et al., SVM+ECOC – 80.2–82
Zhang & Lee, LinearSVMq 87.4 79.2
Zhang & Lee, TreeSVM 90 –
SVM, “perfect” informer 94.2 88
SVM, CRF-informer 93.4 86.2

Table 1: Summary of % accuracy for UIUC data.
(1) SNoW accuracy without the related word dictio-
nary was not reported. With the related-word dic-
tionary, it achieved 91%.(2) SNoW with a related-
word dictionary achieved 84.2% but the other algo-
rithms did not use it. Our results are summarized in
the last two rows, see text for details.

Our contributions: We introduce the notion of
theanswer type informer spanof the question (in
§2): a short (typically 1–3 word) subsequence of
question tokens that are adequate clues for question
classification; e.g.: How much does an adult ele-
phantweigh?

We show (in§3.2) that a simple linear SVM us-
ing features derived from human-annotated informer
spans beats all known learning approaches. This
confirms our suspicion that the earlier approaches
suffered from a feature localization problem.

Of course, informers are useful only if we can find
ways to automatically identify informer spans. Sur-
prisingly, syntactic pattern-matching and heuristics
widely used in QA systems are not very good at cap-
turing informer spans (§3.3). Therefore, the notion
of an informer is non-trivial.

Using a parse of the question sentence, we derive
a novel set of multi-resolution features suitable for
training a conditional random field (CRF) (Lafferty
et al., 2001; Sha and Pereira, 2003). Our feature de-
sign paradigm may be of independent interest (§4).
Our informer tagger is about 85–87% accurate.

We use a meta-learning framework (Chan and
Stolfo, 1993) in which a linear SVM predicts the an-
swer type based on features derived from the origi-
nal question as well as the output of the CRF. This
meta-classifier beats all published numbers on stan-
dard question classification benchmarks (§4.4). Ta-
ble 1 (last two rows) summarizes our main results.

2 Informer overview

Our key insight is that a human can classify a ques-
tion based on very few tokens gleaned from skeletal
syntactic information. This is certainly true of the
most trivial classes (Who wrote Hamlet? orHow
manydogs pull a sled at Iditarod?) but is also true of
more subtle clues (How much does a rhinoweigh?).

In fact, informal experiments revealed the surpris-
ing property thatonly onecontiguous span of tokens
is adequate for a human to classify a question. E.g.,
in the above question, a human does not even need
the how muchclue once the wordweigh is avail-
able. In fact, “How much does a rhinocost?” has an
identical syntax but a completely different answer
type, not revealed byhow muchalone. The only
exceptions to the single-span hypothesis are multi-
function questions like “What is thenameandage
of . . .”, which should be assigned to multiple answer
types. In this paper we consider questions where one
type suffices.

Consider another question with multiple clues:
Whois theCEOof IBM? In isolation, the cluewho
merely tells us that the answer might be a person or
country or organization, whileCEOis perfectly pre-
cise, renderingwho unnecessary. All of the above
appliesa forteriori to what andwhichclues, which
are essentially uninformative on their own, as in
“What is thedistancebetween Pisa and Rome?”

Conventional QA systems use mild analysis on
the wh-clues, and need much more sophistication on
the rest of the question (e.g. inferringauthor from
wrote, and even verb subcategorization). We submit
that a single, minimal, suitably-chosen contiguous
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span of question token/s, defined as theinformer
spanof the question, is adequate for question clas-
sification.

The informer span is very sensitive to the struc-
ture of clauses, phrases and possessives in the ques-
tion, as is clear from these examples (informers ital-
icized): “What is Bill Clinton’s wife’sprofession”,
and “Whatcountry’s president was shot at Ford’s
Theater”. The choice of informer spans also de-
pends on the target classification system. Initially
we wished to handle definition questions separately,
and marked no informer tokens in “What is digi-
talis”. However,what is is an excellent informer
for the UIUC classDESC:def (description, defi-
nition).

3 The meta-learning approach

We propose a meta-learning approach (§3.1) in
which the SVM can use features from the original
question as well as its informer span. We show
(§3.2) that human-annotated informer spans lead to
large improvements in accuracy. However, we show
(§3.3) that simple heuristic extraction rules com-
monly used in QA systems (e.g. head of noun phrase
following wh-word) cannot provide informers that
are nearly as useful. This naturally leads us to de-
signing an informer tagger in§4.

Figure 1 shows our meta-learning (Chan and
Stolfo, 1993) framework. The combiner is a linear
multi-class one-vs-one SVM2, as in the Zhang and
Lee (2003) baseline. We did not use ECOC (Ha-
cioglu and Ward, 2003) because the reported gain is
less than 1%.

The word feature extractor selects unigrams and
q-grams from the question. In our experience,q =
1 or q = 2 were best; if unspecified, all possible
qgrams were used. Through tuning, we also found
that the SVM “C” parameter (used to trade between
training data fit and model complexity) must be set
to 300 to achieve their published baseline numbers.

3.1 Adding informer features

We propose two very simple ways to derive features
from informers for use with SVMs. Initially, assume
that perfect informers are known for all questions;

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvm/
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Figure 1: The meta-learning approach.

later (§4) we study how to predict informers.

Informer q-grams: This comprises of all wordq-
grams within the informer span, for all possibleq.
E.g., such features enable effective exploitation of
informers like length or height to classify to the
NUMBER:distance class in the UIUC data.

Informer q-gram hypernyms: For each word or
compound within the informer span that is a Word-
Net noun, we add all hypernyms of all senses. The
intuition is that the informer (e.g.author, crick-
eter, CEO) is often narrower than a broad ques-
tion class (HUMAN:individual ). Following hy-
pernym links up topersonvia WordNet produces a
more reliably correlated feature.

Given informers, other question words might
seem useless to the classifier. However, retaining
regular features from other question words is an ex-
cellent idea for the following reasons.

First, we kept word sense disambiguation (WSD)
outside the scope of this work because WSD en-
tails computation costs, and is unlikely to be reliable
on short single-sentence questions. Questions like
How long . . . or Which bank. . . can thus become
ambiguous and corrupt the informer hypernym fea-
tures. Additional question words can often help nail
the correct class despite the feature corruption.

Second, while our CRF-based approach to in-
former span tagging is better than obvious alterna-
tives, it still has a 15% error rate. For the questions
where the CRF prediction is wrong, features from
non-informer words give the SVM an opportunity to
still pick the correct question class.

Word features: Based on the above discussion,
one boolean SVM feature is created for every word
q-gram over all question tokens. In experiments, we
found bigrams (q = 2) to be most effective, closely
followed by unigrams (q = 1). As with informers,
we can also use hypernyms of regular words as SVM
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features (marked “Question bigrams + hypernyms”
in Table 2).

3.2 Benefits from “perfect” informers

We first wished to test the hypothesis that identi-
fying informer spans to an SVM learner can im-
prove classification accuracy. Over and above the
class labels, we had two volunteers tag the 6000
UIUC questions with informer spans (which we call
“perfect”—agreement was near-perfect).

Features Coarse Fine
Question trigrams 91.2 77.6
All questionqgrams 87.2 71.8
All question unigrams 88.4 78.2
Question bigrams 91.6 79.4
+informer q-grams 94.0 82.4
+informer hypernyms 94.2 88.0
Question unigrams + all informer93.4 88.0
Only informer 92.2 85.0
Question bigrams + hypernyms 91.6 79.4

Table 2: Percent accuracy with linear SVMs, “per-
fect” informer spans, and various feature encodings.

Observe in Table 2 that the unigram baseline is
already quite competitive with the best prior num-
bers, and exploiting perfect informer spans beats all
known numbers. It is clear that bothinformer q-
grams and informer hypernymsare very valuable
features for question classification. The fact that no
improvement was obtained with overQuestion bi-
gramsusingQuestion hypernymshighlights the im-
portance of choosing a few relevant tokens as in-
formers and designing suitable features on them.

Table 3 (columns b and e) shows the benefits from
perfect informers broken down into broad question
types. Questions withwhat as the trigger are the
biggest beneficiaries, and they also form by far the
most frequent category.

The remaining question, one that we address in
the rest of the paper, is whether we can effectively
and accurately automate the process of providing in-
former spans to the question classifier.

3.3 Informers provided by heuristics

In §4 we will propose a non-trivial solution to the
informer-tagging problem. Before that, we must jus-

tify that such machinery is indeed required.
Some leading QA systems extract words very

similar in function to informers from the parse tree
of the question. Some (Singhal et al., 2000) pick
the head of the first noun phrase detected by a shal-
low parser, while others use the head of the noun
phrase adjoining the main verb (Ramakrishnan et al.,
2004). Yet others (Harabagiu et al., 2000; Hovy
et al., 2001) use hundreds of (unpublished to our
knowledge) hand-built pattern-matching rules on the
output of a full-scale parser.

A natural baseline is to use these extracted words,
which we call “heuristic informers”, with an SVM
just like we used “perfect” informers. All that re-
mains is to make the heuristics precise.

How: For questions starting withhow, we use the
bigram starting withhowunless the next word
is a verb.

Wh: If the wh-word is nothow, whator which, use
the wh-word in the question as a separate fea-
ture.

WhNP: For questions havingwhat andwhich, use
the WHNP if it encloses a noun. WHNP is the
Noun Phrase corresponding to the Wh-word,
given by a sentence parser (see§4.2).

NP1: Otherwise, forwhatandwhichquestions, the
first (leftmost) noun phrase is added to yet an-
other feature subspace.

Table 3 (columns c and f) shows that these
already-messy heuristic informers do not capture the
same signal quality as “perfect” informers. Our find-
ings corroborate Li and Roth (2002), who report lit-
tle benefit from adding head chunk features for the
fine classification task.

Moreover, observe that using heuristic informer
featureswithout any word features leads to rather
poor performance (column c), unlike using perfect
informers (column b) or even CRF-predicted in-
former (column d, see§4). These clearly establish
that the notion of an informer is nontrivial.

4 Using CRFs to label informers

Given informers are useful but nontrivial to recog-
nize, the next natural question is, how can we learn
to identify them automatically? From earlier sec-
tions, it is clear (and we give evidence later, see Ta-
ble 5) that sequence and syntax information will be
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6 coarse classes
B Only Informers B+ B+ B+

Type #Quest. (Bigrams) Perf.Inf H.Inf CRF.Inf Perf.Inf H.Inf CRF.Inf
what 349 88.8 89.4 69.6 79.3 91.7 87.4 91.4
which 11 72.7 100.0 45.4 81.8 100.0 63.6 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 100.0 96.3 100.0 96.3 100.0 100.0 100.0
who 47 100.0 100.0 100.0 100.0 100.0 100.0 100.0
how * 32 100.0 96.9 100.0 100.0 100.0 100.0 100.0
rest 6 100.0 100.0 100.0 66.7 100.0 66.7 66.7
Total 500 91.6 92.2 77.2 84.6 94.2 90.0 93.4

50 fine classes
what 349 73.6 82.2 61.9 78.0 85.1 79.1 83.1
which 11 81.8 90.9 45.4 73.1 90.9 54.5 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 92.6 85.2 92.6 88.9 88.9 92.5 88.9
who 47 97.9 93.6 93.6 93.6 100.0 100.0 97.9
how * 32 87.5 84.3 81.2 78.1 87.5 90.6 90.6
rest 6 66.7 66.7 66.7 66.7 100.0 66.7 66.7
Total 500 79.4 85.0 69.6 78.0 88.0 82.6 86.2

a b c d e f g

Table 3: Summary of % accuracy broken down by question type (referred from§3.2, §3.3 and§4.4). a:
question bigrams, b: perfect informers only, c: heuristic informers only, d: CRF informers only, e–g:
bigrams plus perfect, heuristic and CRF informers.

important.
We will model informer span identification as a

sequence tagging problem. An automaton makes
probabilistic transitions between hidden statesy,
one of which is an “informer generating state”, and
emits tokensx. We observe the tokens and have to
guess which were produced from the “informer gen-
erating state”.

Hidden Markov models are extremely popular for
such applications, but recent work has shown that
conditional random fields (CRFs) (Lafferty et al.,
2001; Sha and Pereira, 2003) have a consistent ad-
vantage over traditional HMMs in the face of many
redundant features. We refer the reader to the above
references for a detailed treatment of CRFs. Here
we will regard a CRF as largely a black box3.

To train a CRF, we need a set of state nodes, a
transition graph on these nodes, and tokenized text
where each token is assigned a state. Once the CRF
is trained, it can be applied to a token sequence, pro-

3We usedhttp://crf.sourceforge.net/

ducing a predicted state sequence.

4.1 State transition models

We started with the common 2-state “in/out” model
used in information extraction, shown in the left half
of Figure 2. State “1” is the informer-generating
state. Either state can be initial and final (double
circle) states.

0 1 0 1 2

What kind of an animal is Winnie the Pooh

What, kind,
of, an, is,

Winnie, the,
Pooh 

animal

What, kind,
of, an 

is, Winnie,
the, Pooh 

animal

start start

Figure 2: 2- and 3-state transition models.

The 2-state model can be myopic. Consider the
question pair
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A: What country is the largest producer of wheat?
B: Name the largest producer of wheat

Thei±1 context ofproduceris identical in A and
B. In B, for want of a better informer, we would want
producerto be flagged as the informer, although it
might refer to a country, person, animal, company,
etc. But in A,countryis far more precise.

Any 2-state model that depends on positionsi±1
to define features will fail to distinguish between A
and B, and might select bothcountryandproducer
in A. As we have seen with heuristic informers, pol-
luting the informer pool can significantly hurt SVM
accuracy.

Therefore we also use the 3-state “begin/in/out”
(BIO) model. The initial state cannot be “2” in the
3-state model; all states can be final. The 3-state
model allows at most one informer span. Once the
3-state model choosescountryas the informer, it is
unlikely to stretch state 1 up toproducer.

There is no natural significance to using four or
more states. Besides, longer range syntax dependen-
cies are already largely captured by the parser.

What is the capital city of Japan

WP VBZ DT NN NN IN NNP

NP NP

PP

NP

VP

SQ

SBARQ

WHNP

0

1

2

3

4

5

6

�Level

Figure 3: Stanford Parser output example.

4.2 Features from a parse of the question

Sentences with similar parse trees are likely to have
the informer in similar positions. This was the in-
tuition behind Zhang et al.’s tree kernel, and is also
our starting point. We used the Stanford Lexicalized
Parser (Klein and Manning, 2003) to parse the ques-
tion. (We assume familiarity with parse tree notation
for lack of space.) Figure 3 shows a sample parse
tree organized in levels. Our first step was to trans-

i 1 2 3 4 5 6 7
yi 0 0 0 1 1 2 2
xi What is the capital city of Japan
` ↓ Features forxis
1 WP,1 VBZ,1 DT,1 NN,1 NN,1 IN,1 NNP,1
2 WHNP,1 VP,1 NP,1 NP,1 NP,1 Null,1 NP,2
3 Null,1 Null,1 Null,1 Null,1 Null,1 PP,1 PP,1
4 Null,1 Null,1 NP,1 NP,1 NP,1 NP,1 NP,1
5 Null,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1
6 SBARQSBARQSBARQSBARQSBARQSBARQSBARQ

Table 4: A multi-resolution tabular view of the ques-
tion parse showingtag andnumattributes.capital
city is the informer span withy = 1.

late the parse tree into an equivalent multi-resolution
tabular format shown in Table 4.

Cells and attributes: A labeled question com-
prises the token sequencexi; i = 1, . . . and the label
sequenceyi, i = 1, . . . Eachxi leads to a column
vector of observations. Therefore we use matrix no-
tation to write downx: A table cell is addressed as
x[i, `] wherei is the token position (column index)
and` is the level or row index, 1–6 in this example.
(Although the parse tree can be arbitrarily deep, we
found that using features from up to level` = 2 was
adequate.)

Intuitively, much of the information required for
spotting an informer can be obtained from the part
of speech of the tokens and phrase/clause attachment
information. Conversely, specific word information
is generally sparse and misleading; the same word
may or may not be an informer depending on its po-
sition. E.g., “What birds eat snakes?” and “What
snakes eat birds?” have the same words but different
informers. Accordingly, we observe two properties
at each cell:

tag : The syntactic class assigned to the cell by
the parser, e.g.x[4, 2].tag = NP. It is well-known
that POS and chunk information are major clues to
informer-tagging, specifically, informers are often
nouns or noun phrases.

num: Many heuristics exploit the fact that the first
NP is known to have a higher chance of containing
informers than subsequent NPs. To capture this po-
sitional information, we definenumof a cell at[i, `]
as one plus the number of distinct contiguous chunks
to the left of[i, `] with tag s equal tox[4, 2].tag .
E.g., at level 2 in the table above,the capital city
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forms the first NP, whileJapanforms the second NP.
Thereforex[7, 2].num = 2.

In conditional models, it is notationally conve-
nient to express features as functions on(xi, yi). To
one unfamiliar with CRFs, it may seem strange that
yi is passed as an argument to features. At training
time, yi is indeed known, and at testing time, the
CRF algorithm efficiently finds the most probable
sequence ofyis using a Viterbi search. True labels
are not revealed to the CRF at testing time.

Cell features IsTag and IsNum : E.g., the ob-
servation “y4 = 1 andx[4, 2].tag = NP” is cap-
tured by the statement that “position 4 fires the fea-
ture IsTag 1,NP,2” (which has a boolean value).
There is anIsTag y,t,` feature for each(y, t, `)
triplet. Similarly, for every possible statey, ev-
ery possiblenum value n (up to some maximum
horizon), and every level̀, we define boolean fea-
turesIsNumy,n,`. E.g., position 7 fires the feature
IsNum2,2,2 in the 3-state model, capturing the state-
ment “x[7, 2].num = 2 andy7 = 2”.

Adjacent cell features IsPrevTag and
IsNextTag : Context can be exploited by a
CRF by coupling the state at positioni with
observations at positions adjacent to positioni
(extending to larger windows did not help). To
capture this, we use more boolean features: posi-
tion 4 fires the featureIsPrevTag 1,DT,1 because
x[3, 1].tag = DTandy4 = 1. Position 4 also fires
IsPrevTag 1,NP,2 becausex[3, 2].tag = NPand
y4 = 1. Similarly we define aIsNextTag y,t,`

feature for each possible(y, t, `) triple.

State transition features IsEdge : Position i
fires featureIsEdge u,v if yi−1 = u andyi = v.
There is one such feature for each state-pair(u, v)
allowed by the transition graph. In addition we have
sentinel featuresIsBegin u and IsEnd u marking
the beginning and end of the token sequence.

4.3 Informer-tagging accuracy

We study the accuracy of our CRF-based informer
tagger wrt human informer annotations. In the next
section we will see the effect of CRF tagging on
question classification.

There are at least two useful measures of
informer-tagging accuracy. Each question has a

known setIk of informer tokens, and gets a set
of tokensIc flagged as informers by the CRF. For
each question, we can grant ourself a reward of 1 if
Ic = Ik, and 0 otherwise. In§3.1, informers were
regarded as a separate (high-value) bag of words.
Therefore, overlap betweenIc and Ik would be a
reasonable predictor of question classification accu-
racy. We use the Jaccard similarity|Ik∩Ic|/|Ik∪Ic|.
Table 5 shows the effect of using diverse feature sets.

Fraction Jaccard
Features used Ic = Ik overlap
IsTag 0.368 0.396
+IsNum 0.474 0.542
+IsPrevTag+IsNextTag 0.692 0.751
+IsEdge+IsBegin+IsEnd 0.848 0.867

Table 5: Effect of feature choices.

• IsTag features are not adequate.
• IsNum features improve accuracy 10–20%.
• IsPrevTag and IsNextTag (“+Prev

+Next”) add over 20% of accuracy.
• IsEdge transition features help exploit

Markovian dependencies and adds another
10–15% accuracy, showing that sequential
models are indeed required.

Type #Quest. Heuristic 2-state 3-state
Informers CRF CRF

what 349 57.3 68.2 83.4
which 11 77.3 83.3 77.2
when 28 75.0 98.8 100.0
where 27 84.3 100.0 96.3
who 47 55.0 47.2 96.8
how * 32 90.6 88.5 93.8
rest 6 66.7 66.7 77.8
Total 500 62.4 71.2 86.7

Table 6: Effect of number of CRF states, and com-
parison with the heuristic baseline (Jaccard accuracy
expressed as %).

Table 6 shows that the 3-state CRF performs
much better than the 2-state CRF, especially on diffi-
cult questions withwhatandwhich. It also compares
the Jaccard accuracy of informers found by the CRF
vs. informers found by the heuristics described in
§3.3. Again we see a clear superiority of the CRF
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approach.
Unlike the heuristic approach, the CRF approach

is relatively robust to the parser emitting a somewhat
incorrect parse tree, which is not uncommon. The
heuristic approach picks the “easy” informer,who,
over the better one,CEO, in “Who is the CEO of
IBM”. Its bias toward the NP-head can also be a
problem, as in “What country’spresident. . .”.

4.4 Question classification accuracy

We have already seen in§3.2 that perfect knowledge
of informers can be a big help. Because the CRF
can make mistakes, the margin may decrease. In this
section we study this issue.

We used questions with human-tagged informers
(§3.2) to train a CRF. The CRF was applied back
on the training questions to get informer predictions,
which were used to train the 1-vs-1 SVM meta-
learner (§3). Using CRF-tagged and not human-
tagged informers may seem odd, but this lets the
SVM learn and work around systematic errors in
CRF outputs.

Results are shown in columns d and g of Table 3.
Despite the CRF tagger having about 15% error, we
obtained 86.2% SVM accuracy which is rather close
to the the SVM accuracy of 88% with perfect in-
formers.

The CRF-generated tags, being on the training
data, might be more accurate that would be for un-
seen test cases, potentially misleading the SVM.
This turns out not to be a problem: clearly we are
very close to the upper bound of 88%. In fact, anec-
dotal evidence suggests that using CRF-assigned
tags actually helped the SVM.

5 Conclusion

We presented a new approach to inferring the type
of the answer sought by a well-formed natural lan-
guage question. We introduced the notion of a span
of informer tokensand extract it using a sequential
graphical model with a novel feature representation
derived from the parse tree of the question. Our ap-
proach beats the accuracy of recent algorithms, even
ones that used max-margin methods with sophisti-
cated kernels defined on parse trees.

An intriguing feature of our approach is that
when an informer (actor) is narrower than the ques-

tion class (person), we can exploit direct hyper-
nymy connections likeactor to Tom Hanks, if avail-
able. Existing knowledge bases like WordNet and
Wikipedia, combined with intense recent work (Et-
zioni et al., 2004) on bootstrapping is-a hierarchies,
can thus lead to potentially large benefits.

Acknowledgments: Thanks to Sunita Sarawagi
for help with CRFs, and the reviewers for improv-
ing the presentation.
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Abstract

We present a practically unsupervised
learning method to produce single-snippet
answers to definition questions in ques-
tion answering systems that supplement
Web search engines. The method exploits
on-line encyclopedias and dictionaries to
generate automatically an arbitrarily large
number of positive and negative definition
examples, which are then used to train an
SVM to separate the two classes. We show
experimentally that the proposed method
is viable, that it outperforms the alterna-
tive of training the system on questions
and news articles fromTREC, and that it
helps the search engine handle definition
questions significantly better.

1 Introduction

Question answering (QA) systems for document col-
lections typically aim to identify in the collections
text snippets (e.g., 50 or 250 characters long) or ex-
act answers (e.g., names, dates) that answer natu-
ral language questions submitted by their users. Al-
though they are commonly evaluated on newspaper
archives, as in theTREC QA track, QA systems can
also supplement Web search engines, to help them
return snippets, as opposed to Web pages, that pro-
vide more directly the information users require.

Most currentQA systems first classify the input
question into one of several categories (e.g., ques-
tions asking for locations, persons, etc.), producing

expectations for types of named entities that must
be present in the answer (locations, person names,
etc.). Using the question’s terms as a query, an infor-
mation retrieval (IR) system identifies relevant doc-
uments. Snippets of these documents are then se-
lected and ranked, using criteria such as whether or
not they contain the expected types of named enti-
ties, the percentage of the question’s terms they con-
tain, etc. The system then outputs the most highly-
ranked snippets, or named entities therein.

The approach highlighted above performs poorly
with definition questions (e.g., “What is gasohol?”,
“Who was Duke Ellington?”), because definition
questions do not generate expectations for particular
types of named entities, and they typically contain
only a single term. Definition questions are particu-
larly common; in theQA track ofTREC-2001, where
the distribution of question types reflected that of
real user logs, 27% of the questions were requests
for definitions. Of course, answers to many defini-
tion questions can be found in on-line encyclopedias
and dictionaries.1 There are always, however, new
or less widely used terms that are not included in
such resources, and this is also true for many names
of persons and products. Hence, techniques to dis-
cover definitions in ordinary Web pages and other
document collections are valuable. Definitions of
this kind are often ‘hidden’ in oblique contexts (e.g.,
“He said thatgasohol, a mixture of gasoline and
ethanol, has been great for his business.”).

In recent work, Miliaraki and Androutsopoulos
(2004), hereafterM& A, proposed a method we call

1See, for example, Wikipedia (http://www.wikipedia.org/).
WordNet’s glosses are another on-line source of definitions.
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DEFQA, which handles definition questions. The
method assumes that a question preprocessor sep-
arates definition from other types of questions, and
that in definition questions this module also identi-
fies the term to be defined, called thetarget term.2

The input toDEFQA is a (possibly multi-word) tar-
get term, along with ther most highly ranked docu-
ments that anIR system returned for that term. The
output is a list ofk 250-character snippets from the
r documents, at least one of which must contain an
acceptable short definition of the target term, much
as in theQA track ofTREC-2000 andTREC-2001.3

We note that since 2003,TREC requires defini-
tion questions to be answered by lists ofcomple-
mentarysnippets, jointly providing a range of in-
formation nuggets about the target term (Voorhees,
2003). In contrast, here we focus on locating single-
snippet definitions. We believe this task is still in-
teresting and of practical use. For example, a list
of single-snippet definitions accompanied by their
sourceURLs is a good starting point for users of
search engines wishing to obtain definitions. Single-
snippet definitions can also be useful in information
extraction, where the templates to be filled in often
require short entity descriptions. We also note that
the post-2003TREC task has encountered evaluation
problems, because it is difficult to agree on which
nuggets should be included in the multi-snippet def-
initions (Hildebrandt et al., 2004). In contrast, our
experimental results of Section 4 indicate strong
inter-assessor agreement for single-snippet answers,
suggesting that it is easier to agree upon what con-
stitutes an acceptable single-snippet definition.

DEFQA relies on anSVM, which is trained to clas-
sify 250-character snippets that have the target term
at their centre, hereafter calledwindows, as accept-
able definitions or non-definitions.4 To train the
SVM, a collection ofq training target terms is used;
M& A used the target terms of definition questions
from TREC-2000 andTREC-2001. The terms are
submitted to anIR system, which returns ther most

2Alternatively, the user can be asked to specify explicitly the
question type and target term via a form-based interface.

3Definition questions were not considered inTREC-2002.
4See, for example, Scholkopf and Smola (2002) for in-

formation onSVMs. Following M& A, we use a linearSVM,
as implemented by Weka’sSMO class (http://www.cs.waikato.
ac.nz/ml/weka/). The windows may be shorter than 250 charac-
ters, when the surrounding text is limited.

highly ranked documents per target term. The win-
dows of theq · r resulting documents are tagged
as acceptable definitions or non-definitions, and be-
come the training instances of theSVM. At run time,
when a definition question is submitted, ther top-
ranked documents are obtained, their windows are
collected, and for each window theSVM returns a
score indicating how confident it is that the window
is a definition. Thek windows with the highest con-
fidence scores are then reported to the user.

The SVM actually operates on vector representa-
tions of the windows, that comprise the verdicts or
attributes of previous methods by Joho and Sander-
son (2000) and Prager et al. (2002), as well as
attributes corresponding to automatically acquired
lexical patterns. OnTREC-2000 andTREC-2001
data,M& A found thatDEFQA clearly outperformed
the original methods of Joho and Sanderson and
Prager et al. Their best configuration answered cor-
rectly 73% of 160 definition questions in a cross-
validation experiment withk = 5, r = 50, q = 160.

A limitation of DEFQA is that it cannot be trained
easily on new document collections, because it re-
quires the training windows to be tagged as defini-
tions or non-definitions. In the experiments ofM& A,
there were 18,473 training windows. Tagging them
was easy, because the windows were obtained from
TREC questions and documents, and theTREC or-
ganizers provide Perl patterns that can be used to
judge whether a snippet fromTREC’s documents is
among the acceptable answers of aTREC question.5

For non-TREC questions and document collections,
however, where such patterns are unavailable, sep-
arating thousands of training windows into the two
categories by hand is a laborious task.

In this paper, we consider the case whereDE-
FQA is used as an add-on to a Web search engine.
There are three training alternatives in this setting:
(i) train DEFQA on TREC questions and documents;
(ii) train DEFQA on a large collection of manually
tagged training windows obtained from Web pages
that the search engine returned for training target
terms; or (iii) devise techniques to tag automatically
the training windows of (ii). We have developed a
technique along alternative (iii), which exploits on-

5The patterns’ judgements are not always perfect, which in-
troduces some noise in the training examples.
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line encyclopedias and dictionaries. This allows us
to generate and tag automatically an arbitrarily large
number of training windows, in effect converting
DEFQA to an unsupervised method. We show ex-
perimentally that the new unsupervised method is
viable, that it outperforms alternative (i), and that it
helps the search engine handle definition questions
significantly better than on its own.

2 Attributes of DEFQA

DEFQA represents each window as a vector compris-
ing the values of the following attributes:6

SN: The ordinal number of the window in the
document, in our case Web page, it originates from.
The intuition is that windows that mention the target
term first in a document are more likely to define it.

WC: What percentage of the 20 words that are
most frequent across all the windows of the tar-
get term are present in the particular window rep-
resented by the vector. A stop-list and a stemmer are
applied first when computingWC .7 In effect, the 20
most frequent words form a simplistic centroid of all
the candidate answers, andWC measures how close
the vector’s window is to this centroid.

RK: The ranking of the Web page the window
originates from, as returned by the search engine.

Manual patterns: 13 binary attributes, each sig-
nalling whether or not the window matches a differ-
ent manually constructed lexical pattern (e.g., “tar-
get, a/an/the”, as in “Tony Blair, the British prime
minister”). The patterns are those used by Joho and
Sanderson, and four more added byM& A. They are
intended to perform well across text genres.

Automatic patterns: A collection ofm binary at-
tributes, each showing if the window matches a dif-
ferent automatically acquired lexical pattern. The
patterns are sequences ofn tokens (n ∈ {1, 2, 3})
that must occur either directly before or directly af-
ter the target term (e.g., “target, which is”). These
patterns are acquired as follows. First, all then-
grams that occur directly before or after the target
terms in the training windows are collected. Then-
grams that have been encountered at least 10 times
are considered candidate patterns. From those, the

6SN andWC originate from Joho and Sanderson (2000).
7We use the 100 most frequent words of the British National

Corpus as the stop-list, and Porter’s stemmer.

m patterns with the highest precision scores are re-
tained, whereprecision is the number of training
definition windows the pattern matches divided by
the total number of training windows it matches. We
setm to 200, the value that led to the best results
in the experiments ofM& A. The automatically ac-
quired patterns allow the system to detect definition
contexts that are not captured by the manual pat-
terns, including genre-specific contexts.

M& A also explored an additional attribute, which
carried the verdict of Prager et al.’s WordNet-based
method (2002). However, they found the additional
attribute to lead to no significant improvements, and,
hence, we do not use it. We have made no attempt to
extend the attribute set ofM& A; for example, with
attributes showing if the window contains the target
term in italics, if the window is part of a list that
looks like a glossary, or if the window derives from
an authority Web page. We leave such extensions
for future work. Our contribution is the automatic
generation of training examples.

3 Generating training examples

When trainingDEFQA on windows from Web pages,
a mechanism to tag the training windows as defi-
nitions or non-definitions is required. Rather than
tagging them manually, we use a measure of how
similar the wording of each training window is to
the wording of definitions of the same target term
obtained from on-line encyclopedias and dictionar-
ies. This is possible because we pick training target
terms for which there are several definitions in dif-
ferent on-line encyclopedias and dictionaries; here-
after we call theseencyclopedia definitions.8 Train-
ing windows whose wording is very similar to that
of the corresponding encyclopedia definitions are
tagged as definition windows (positive examples),
while windows whose wording differs significantly
from the encyclopedia definitions are tagged as non-
definitions (negative examples). Training windows
for which the similarity score does not indicate great
similarity or dissimilarity to the wording of the en-
cyclopedia definitions are excluded fromDEFQA’s

8We use randomly selected entries from the index of
http://www.encyclopedia.com/ as training terms, and Google’s
‘define:’ feature, that returns definitions from on-line encyclo-
pedias and dictionaries, to obtain the encyclopedia definitions.
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training, as they cannot be tagged as positive or neg-
ative examples with sufficiently high confidence.

Note that encyclopedia definitions are used only
to tag training windows. Once the system has been
trained, it can be used to discover on ordinary Web
pages definitions of terms for which there are no en-
cyclopedia definitions, and indeed this is the main
purpose of the system. Note also that we trainDE-
FQA on windows obtained from Web pages returned
by the search engine for training terms. This allows
it to learn characteristics of the particular search en-
gine being used; for example, what weight to as-
sign to RK , depending on how much the search
engine succeeds in ranking pages containing defi-
nitions higher. More importantly, it allowsDEFQA

to select lexical patterns that are indicative of def-
initions in Web pages, as opposed to patterns that
are indicative of definitions in electronic encyclope-
dias and dictionaries. The latter explains why we
do not trainDEFQA directly on encyclopedia defi-
nitions; another reason is thatDEFQA requires both
positive and negative examples, while encyclopedia
definitions provide only positive ones.

We now explain how we compute the similar-
ity between a training window and the collection
C of encyclopedia definitions for the window’s tar-
get term. We first remove stop-words, punctua-
tion, other non-alphanumeric characters and the tar-
get term from the training window, and apply a stem-
mer, leading to a new formW of the training win-
dow. We then compute the similarity ofW to C as:

sim(W,C) = 1/|W | · Σ|W |
i=1sim(wi, C)

where|W | is the number of distinct words inW , and
sim(wi, C) is the similarity of thei-th distinct word
of W to C, defined as follows:

sim(wi, C) = fdef (wi, C) · idf (wi)

fdef (wi, C) is the percentage of definitions inC that
containwi, andidf (wi) is the inverse document fre-
quency ofwi in the British National Corpus (BNC):

idf (wi) = 1 + log
N

df(wi)

N is the number of documents inBNC, anddf (wi)
the number ofBNC documents wherewi occurs; if

wi does not occur inBNC, we use the lowestdf score
of BNC. sim(wi, C) is highest for words that oc-
cur in all the encyclopedia definitions and are used
rarely in English. A training window with a large
proportion of such words most probably defines the
target term. More formally, given two thresholdst+
and t− with t− ≤ t+, we tagW as a positive ex-
ample ifsim(W,C) ≥ t+, as a negative example if
sim(W,C) ≤ t−, and we exclude it from the train-
ing of DEFQA if t− < sim(W,C) < t+. Hereafter,
we refer to this method of generating training exam-
ples as thesimilarity method.

To select reasonable values fort+ andt−, we con-
ducted a preliminary experiment fort− = t+ = t;
i.e., both thresholds were set to the same valuet
and no training windows were excluded. We used
q = 130 training target terms fromTREC definition
questions, for which we had multiple encyclopedia
definitions. For each term, we collected ther = 10
most highly ranked Web pages.9 To alleviate the
class imbalance problem, whereby the positive ex-
amples (definitions) are much fewer than the nega-
tive ones (non-definitions), we kept only the first 5
windows from each Web page (SN ≤ 5), based on
the observation that windows with greatSN scores
are almost certainly non-definitions; we do the same
in the training stage of all the experiments of this pa-
per, and at run-time, when looking for windows to
report, we ignore windows withSN > 5. From the
resulting collection of training windows, we selected
randomly 400 windows, and tagged them both man-
ually and via the similarity method, witht ranging
from 0 to 1. Figures 1 and 2 show the precision and
recall of the similarity method on positive and neg-
ative training windows, respectively, for varyingt.
Here,positive precisionis the percentage of training
windows the similarity method tagged as positive
examples (definitions) that were indeed positive; the
true classes of the training windows were taken to be
those assigned by the human annotators.Positive re-
call is the percentage of truly positive examples that
the similarity method tagged as positive.Negative
precisionandnegative recallare defined similarly.

Figures 1 and 2 indicate that there is no single
thresholdt that achieves both high positive preci-
sion and high negative precision. To be confident

9In all our experiments, we used the Altavista search engine.
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Figure 1: Positive precision and recall

that the training windows the similarity method will
tag as positive examples are indeed positive (high
positive precision), one has to sett close to 1; and to
be confident that the training windows the similar-
ity method will tag as negative examples are indeed
negative (high negative precision),t has to be set
close to 0. This is why we use two separate thresh-
olds and discard the training windows whose simi-
larity score is betweent− andt+. Figures 1 and 2
also indicate that in both positive and negative ex-
amples the similarity method achieves perfect pre-
cision only at the cost of very low recall; i.e., if we
insist that all the resulting training examples must
have been tagged correctly (perfect positive and neg-
ative precision), the resulting examples will be very
few (low positive and negative recall). There is also
another consideration when selectingt− andt+: the
ratio of positive to negative examples that the sim-
ilarity method generates must be approximately the
same as the true ratio before discarding any training
windows, in order to avoid introducing an artificial
bias in the training ofDEFQA’s SVM; the true ratio
among the 400 training windows before discarding
any windows was approximately0.37 : 1.

Based on the considerations above, in the remain-
ing experiments of this paper we sett+ to 0.5. In
Figure 1, this leads to a positive precision of 0.72
(and positive recall 0.49), which does not improve
much by adopting a largert+, unless one is willing
to sett+ at almost 1 at the price of very low posi-
tive recall. In the case oft−, setting it to any value
less than 0.34 leads to a negative precision above
0.9, though negative recall drops sharply ast− ap-
proaches 0 (Figure 2). For example, settingt− to
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Figure 2: Negative precision and recall

0.32, leads to 0.92 negative precision, 0.75 negative
recall, and approximately the same positive to nega-
tive ratio (0.31 : 1) as the true observed ratio. In the
experiments of Section 4, we keept+ fixed to 0.5,
and sett− to the value in the range(0, 0.34) that
leads to the positive to negative ratio that is closest
to the true ratio we observed in the 400 windows.

The high negative precision we achieve (> 0.9)
suggests that the resulting negative examples are al-
most always truly negative. In contrast, the lower
positive precision (0.72) indicates that almost one in
every four resulting positive examples is in reality a
non-definition. This is a point where our similarity
method needs to be improved; we return to this point
in Section 6. Our experiments, however, show that
despite this noise, the similarity method already out-
performs the alternative of trainingDEFQA on TREC

data. Note also that once the thresholds have been
selected, we can generate automatically an arbitrar-
ily large set of training examples, by starting with a
sufficiently large numberq of training terms to com-
pensate for discarded training examples.

4 Evaluation

We tested two different forms ofDEFQA. The first
one, dubbedDEFQAt , was trained on theq = 160
definition questions ofTREC-2000 andTREC-2001
and the correspondingTRECdocuments, resulting in
3,800 training windows.10 The second form ofDE-

10For each question, theTRECorganizers provide the 50 most
highly ranked documents that an IR engine returned from the
TREC document collection. We keep the topr = 10 of these
documents, whileM& A kept all 50. Furthermore, as discussed
in Section 3, we retain up to the first 5 windows from each doc-
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FQA, dubbedDEFQAs , was trained via the similarity
method, withq = 480 training target terms, leading
to 7,200 training windows; as discussed in Section 3,
one of the advantages of the similarity method is that
one can generate an arbitrarily large set of training
windows. As in the preliminary experiment of Sec-
tion 3, r (Web pages per target term) was set to 10
in both systems. To simplify the evaluation and test
DEFQA in a more demanding scenario, we setk to
1, i.e., the systems were allowed to return only one
snippet per question, as opposed to the more lenient
k = 5 in the experiments ofM& A.

We also wanted a measure of how wellDEFQAt

and DEFQAs perform compared to a search engine
on its own. For this purpose, we compared the per-
formance of the two systems to that of a baseline,
dubbedBASE1 , which always returns the first win-
dow of the Web page the search engine ranked first.
In a search engine that highlights question terms
in the returned documents, the snippet returned by
BASE1 is presumably the first snippet a user would
read hoping to find an acceptable definition. To
study how muchDEFQAt andDEFQAs improve upon
random behaviour, we also compared them to a sec-
ond baseline,BASEr , which returns a randomly se-
lected window among the first five windows of allr
Web pages returned by the search engine.

All four systems were evaluated on 81 unseen tar-
get terms. Their responses were judged indepen-
dently by two human assessors, who had to mark
each response as containing an acceptable short def-
inition or not. As already pointed out,DEFQAt and
DEFQAs consult encyclopedia definitions only dur-
ing training, and at run time the systems are in-
tended to be used with terms for which no ency-
clopedia definitions are available. During this eval-
uation, however, we deliberately chose the 81 test
terms from the index of an on-line encyclopedia.
This allowed us to give the encyclopedia’s defini-
tions to the assessors, to help them judge the accept-
ability of the single-snippet definitions the systems
located on Web pages; many terms where related to,
for example, medicine or biology, and without the
encyclopedia’s definitions the assessors would not
be aware of their meanings. The following is a snip-
pet returned correctly byDEFQAs for ‘genome’:

ument. This is why we have fewer training windows thanM& A.

discipline comparative genomics functional genomics bioinfor-

matics the emergence of genomics as a discipline in 1920 , the

term genomewas proposed to denote the totality of all genes on

all chromosomes in the nucleus of a cell . biology has. . .

while what follows is a non-definition snippet re-
turned wrongly byBASE1 :

what is a genomenational center for biotechnology information

about ncbi ncbi at a glance a science primer databases. . .

The examples illustrate the nature of the snippets
that the systems and assessors had to consider. The
snippets often contain phrases that acted as links in
the original pages, or even pieces of programming
scripts that our rudimental preprocessing failed to
remove. (We remove onlyHTML tags, and apply
a simplistic tokenizer.) Nevertheless, in most cases
the assessors had no trouble agreeing whether or
not the resulting snippets contained acceptable short
definitions. KCo was 0.80, 0.81, 0.90, 0.89, and
0.86 in the assessment of the responses ofDEFQAs ,
DEFQAt , BASEr , BASE1 , and all responses, respec-
tively, indicating strong inter-assessor agreement.11

The agreement was slightly lower inDEFQAs and
DEFQAt , because there were a few marginally ac-
ceptable or truncated definitions the assessors were
uncertain about. There were also 4DEFQAs answers
and 3BASE1 answers that defined secondary mean-
ings of the target terms; e.g., apart from a kind of
lizard, ‘gecko’ is also the name of a graphics engine,
and ‘Exodus’ is also a programme for ex-offenders.
Such answers were counted as wrong, though this
may be too strict. With a largerk, there would be
space to return both the main and secondary mean-
ings, and the evaluation could require this.

Table 1 shows thatDEFQAs answered correctly
approximately 6 out of 10 definition questions. This
is lower than the score reported byM& A (73%),
but remarkably high given that in our evaluation
the systems were allowed to return only one snip-
pet per question; i.e., the task was much harder than
in M& A ’s experiments.DEFQAs answered correctly
more than twice as many questions asDEFQAt , de-
spite the fact that its training data contained a lot of
noise. (Single-tailed difference-of-proportions tests
show that all the differences of Table 1 are statisti-

11We follow the notation of Di Eugenio and Glass (2004).
The KS&C figures were identical. The2 · P (A) − 1 figures
were 0.80, 0.85, 0.95, 0.95, and 0.89 respectively.
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assessor 1 assessor 2 average
BASEr 14.81 (12) 14.81 (12) 14.81 (12)
BASE1 14.81 (12) 12.35 (10) 13.58 (11)
DEFQAt 25.93 (21) 25.93 (21) 25.93 (21)
DEFQAs 55.56 (45) 60.49 (49) 58.02 (47)

Table 1: Percentage of questions answered correctly

cally significant atα = 0.001.) The superiority of
DEFQAs appears to be mostly due to its automati-
cally acquired patterns.DEFQAt too was able to ac-
quire several good patterns (e.g., ‘bytarget’, ‘known
astarget’, ‘ target, which is’, ‘target is used in’), but
its pattern set also comprises a large number of irrel-
evantn-grams; this had also been observed byM& A.
In contrast, the acquired pattern set ofDEFQAs is
much cleaner, with much fewer irrelevantn-grams,
which is probably due to the largest, almost double,
number of training windows. Furthermore, the pat-
tern set ofDEFQAs contains manyn-grams that are
indicative of definitions on the Web. For example,
many Web pages that define terms contain text of the
form “What is atarget? A targetis. . . ”, andDEFQAs

has discovered patterns of the form ‘what is a/an/the
target’, ‘? A/an/the target’, etc. It has also discov-
ered patterns like ‘FAQ target’, ‘home pagetarget’,
‘ target page’ etc., that seem to be good indications
of Web windows containing definitions.

Overall,DEFQA’s process of acquiring lexical pat-
terns worked better inDEFQAs than inDEFQAt , and
we believe that the performance ofDEFQAs could be
improved further by acquiring more than 200 pat-
terns; we hope to investigate this in future work,
along with an investigation of how the performance
of DEFQAs relates toq, the number of training target
terms. Finally, note that the scores of both baselines
are very poor, indicating thatDEFQAs performs sig-
nificantly better than picking the first, or a random
snippet among those returned by the search engine.

5 Related work

Definition questions have recently attracted several
QA researchers. Many of the proposed approaches,
however, rely on manually crafted patterns or heuris-
tics to identify definitions, and do not employ learn-
ing algorithms (Liu et al., 2003; Fujii and Ishikawa,
2004; Hildebrandt et al., 2004; Xu et al., 2004).

Ng et al. (2001) use machine learning (C5 with
boosting) to classify and rank candidate answers in
a generalQA system, but they do not treat defi-
nition questions in any special way; consequently,
their worst results are for “What. . . ?” questions,
that presumably include definition questions. Itty-
cheriah and Roukos (2002) employ a maximum en-
tropy model to rank candidate answers in a general-
purposeQA system. Their maximum entropy model
uses a very rich set of attributes, that includes 8,500
n-gram patterns. Unlike our work, theirn-grams are
five or more words long, they are coupled to two-
word question prefixes, and, in the case of definition
questions, they do not need to be anchored at the tar-
get term. The authors, however, do not provide sep-
arate performance figures for definition questions.

Blair-Goldensohn et al. (2003) focus on defini-
tion questions, but aim at producing coherent multi-
snippet definitions, rather than single-snippet defi-
nitions. The heart of their approach is a compo-
nent that uses machine learning (Ripper) to identify
sentences that can be included in the multi-sentence
definition. This component plays a role similar to
that of ourSVM, but it is intended to admit a larger
range of sentences, and appears to employ only at-
tributes conveying the ordinal number of the sen-
tence in its document and the frequency of the target
term in the sentence’s context.

Since TREC-2003, several researchers have pro-
posed ways to generate multi-snippet definitions
(Cui et al., 2004; Fujii and Ishikawa, 2004; Hilde-
brandt et al., 2004; Xu et al., 2004). The typical
approach is to locate definition snippets, much as
in our work, and then report definition snippets that
are sufficiently different; most of the proposals use
some form of clustering to avoid reporting redun-
dant snippets. Such methods could also be applied
to DEFQA, to extend it to the post-2003TREC task.

On-line encyclopedias and dictionaries have been
used to handle definition questions in the past, but
not as in our work. Hildebrandt et al. (2004) look up
target terms in encyclopedias and dictionaries, and
then, knowing the answers, try to find supporting
evidence for them in theTREC document collection.
Xu et al. (2004) collect from on-line encyclopedias
and dictionaries words that co-occur with the tar-
get term; these words and their frequencies are then
used as a centroid of the target term, and candidate
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answers are ranked by computing their similarity to
the centroid. This is similar to ourWC attribute.

Cui et al. (2004) also employ a form of centroid,
comprising words that co-occur with the target term.
The similarity to the centroid is taken into consider-
ation when ranking candidate answers, but it is also
used to generate training examples for a learning
component that produces soft patterns, in the same
way that we use the similarity method to produce
training examples for theSVM. As in our work, the
training examples that the centroid generates may
be noisy, but the component that produces soft pat-
terns manages to generalize over the noise. To the
best of our knowledge, this is the only other unsu-
pervised learning approach for definition questions
that has been proposed. We hope to compare the
two approaches experimentally in future work. For
the moment, we can only point out that Cui et al.’s
centroid approach generates only positive examples,
while our similarity method generates both positive
and negative ones; this allows us to use a principled
SVM learner, as opposed to Cui et al.’s more ad hoc
soft patterns that incorporate only positive examples.

6 Conclusions and future work

We presented an unsupervised method to learn to lo-
cate single-snippet answers to definition questions
in QA systems that supplement Web search en-
gines. The method exploits on-line encyclopedias
and dictionaries to generate automatically an arbi-
trarily large number of positive and negative defini-
tion examples, which are then used to train anSVM

to separate the two classes. We have shown experi-
mentally that the proposed method is viable, that it
outperforms training theQA system onTREC data,
and that it helps the search engine handle definition
questions significantly better than on its own.

We have already pointed out the need to improve
the positive precision of the training examples. One
way may be to combine our similarity method with
Cui et al.’s centroids. We also plan to study the ef-
fect of including more automatically acquired pat-
terns and using more training target terms. Finally,
our method can be improved by including attributes
for the layout and authority of Web pages.
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Abstract

A content selection component deter-
mines which information should be con-
veyed in the output of a natural language
generation system. We present an effi-
cient method for automatically learning
content selection rules from a corpus and
its related database. Our modeling frame-
work treats content selection as a col-
lective classification problem, thus allow-
ing us to capture contextual dependen-
cies between input items. Experiments
in a sports domain demonstrate that this
approach achieves a substantial improve-
ment over context-agnostic methods.

1 Introduction

Content selection is a fundamental task in concept-
to-text generation (Reiter and Dale, 2000). A practi-
cal generation system typically operates over a large
database with multiple entries that could potentially
be included in a text. A content selection compo-
nent determines what subset of this information to
include in the generated document.

For example, consider the task of automatically
generating game summaries, given a database con-
taining statistics on Americal football. Table 1
shows an excerpt from such a database, and its cor-
responding game summary written by a journalist.
A single football game is typically documented in
hundreds of database entries — all actions, player
positions, and scores are recorded, along with a wide
range of comparative and aggregate statistics. Only
a small fraction of this information is featured in a

game summary. The content selection component
aims to identify this subset.1

In existing generation systems the content se-
lection component is manually crafted. Specify-
ing content selection rules is, however, notoriously
difficult, prohibitively so in large domains. It in-
volves the analysis of a large number of texts from a
domain-relevant corpus, familiarity with the associ-
ated database, and consultation with domain experts.
Moreover, the task must be repeated for each domain
anew.

This paper proposes a data-driven method for
learning the content-selection component for a
concept-to-text generation system. We assume that
the learning algorithm is provided with a parallel
corpus of documents and a corresponding database,
in which database entries that should appear in doc-
uments are marked.

One possible approach is to formulate content se-
lection as a standard binary classification task: pre-
dict whether an item is to be included on the basis
of its attributes alone. In fact, this method is com-
monly used for content selection in text summariza-
tion (e.g., Kupiec et al., 1995). However, by treating
each instance in isolation, we cannot guarantee that
the selected database entries are related in a mean-
ingful way, which is essential for the generation of a
coherent text.

Rather than selecting each item separately, we
propose a method for collective content selection,
where all candidates are considered simultaneously
for selection. Collective selection thereby allows
us to explicitly optimize coherence in the generated

1The organization of the selected information and its sur-
face realization is typically handled by other components of the
generation system, which are outside the scope of this paper.

331



Passing
PLAYER CP/AT YDS AVG TD INT
Brunell 17/38 192 6.0 0 0
Garcia 14/21 195 9.3 1 0
. . . . . . . . . . . . . . . . . .

Rushing
PLAYER REC YDS AVG LG TD
Suggs 22 82 3.7 25 1
. . . . . . . . . . . . . . . . . .

Fumbles
PLAYER FUM LOST REC YDS
Coles 1 1 0 0
Portis 1 1 0 0
Davis 0 0 1 0
Little 0 0 1 0
. . . . . . . . . . . . . . .

Suggs rushed for 82 yards and scored a
touchdown in the fourth quarter, leading
the Browns to a 17-13 win over the Wash-
ington Redskins on Sunday. Jeff Garcia
went 14-of-21 for 195 yards and a TD for
the Browns, who didn’t secure the win until
Coles fumbled with 2:08 left. The Redskins
(1-3) can pin their third straight loss on go-
ing just 1-for-11 on third downs, mental mis-
takes and a costly fumble by Clinton Por-
tis. Brunell finished 17-of-38 for 192 yards,
but was unable to get into any rhythm because
Cleveland’s defense shut down Portis. The
Browns faked a field goal, but holder Der-
rick Frost was stopped short of a first down.
Brunell then completed a 13-yard pass to
Coles, who fumbled as he was being taken
down and Browns safety Earl Little recov-
ered.

Table 1: Sample target game description and example of database entries; boldface indicates correspon-
dences between the text and the database (CP/AT: completed out of attempted, YDS: yards, AVG: average,
TD: touchdown, INT: interception, REC: received, LG: longest gain, FUM: fumble).

text: semantically related entries are often selected
together. In essence, the algorithm seeks a subset
of candidates that is consistent with the individual
preferences of each candidate, and at the same time
maximally satisfies contextual constraints. A graph-
based formulation of this optimization problem al-
lows us to find an exact, globally optimal solution,
using a min-cut algorithm.

Collective content selection is particularly ben-
eficial to generation systems that operate over re-
lational databases. Rich structural information
available in a database can be readily utilized to
determine semantic relatedness between different
database entries. For instance, we can easily find
all actions (e.g., touchdowns and fumbles) associ-
ated with a specific player in a game, which could be
relevant for generating a summary centered around
an individual. We show how to utilize database re-
lations for discovering meaningful contextual links
between database entries.

We evaluate our collective content selection
model in a sports domain. The proposed content
selection component operates over a large database
containing descriptive statistics about American
football games. Our model yields a 10% increase in

F-score, when compared to a standard classification
approach, thus demonstrating the benefits of collec-
tive content selection on this complex domain. Fur-
thermore, our results empirically confirm the contri-
bution of discourse constraints for content selection.

In the following section, we provide an overview
of existing work on content selection. Then, we de-
fine the learning task and introduce our approach for
collective content selection. Next, we present our
experimental framework and data. We conclude the
paper by presenting and discussing our results.

2 Related Work

The generation literature provides multiple exam-
ples of content selection components developed for
various domains (Kukich, 1983; McKeown, 1985;
Sripada et al., 2001; Reiter and Dale, 2000). A com-
mon theme across different approaches is the em-
phasis on coherence: related information is selected
“to produce a text that hangs together” (McKeown,
1985). Similarly, our method is also guided by co-
herence constraints. In our case these constraints are
derived automatically, while in symbolic generation
systems coherence is enforced by analyzing a large
number of texts from a domain-relevant corpus and
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careful hand-crafting of content selection rules.
Duboue and McKeown (2003) were the first to

propose a method for learning content selection
rules automatically, thus going beyond mere corpus
analysis. They treat content selection as a classifi-
cation task. Given a collection of texts associated
with a domain-specific database, their model learns
whether a database entry should be selected for pre-
sentation or not. Their modeling approach uses an
expressive feature space while considering database
entries in isolation.

Similarly to Duboue and McKeown (2003), we
view content selection as a classification task and
learn selection rules from a database and its corre-
sponding corpus. In contrast to them, we consider
all database entries simultaneously, seeking a glob-
ally optimal selection. Thus, we avoid the need for
extensive feature engineering by incorporating dis-
course constraints into the learning framework. In
addition, we assess whether data-driven methods for
content selection scale up to large databases with
thousands of interrelated entries, by evaluating our
model in a sports domain. Previous work (Duboue
and McKeown, 2003) has tackled the content selec-
tion problem for biographical summaries, a simpler
domain with fewer entities and interactions among
them.

3 The Task

We assume that the content selection component
takes as input a set of database entries.2 Each en-
try has a type and a set of attributes associated with
its type. For instance, the database shown in Table 1
contains entries of three types — Passing, Rushing
and Fumbles. Two entries are of type Passing, and
each of them has six attributes — PLAYER, CP/AT,
YDS, AVG, TD, INT. In addition, each entry has a la-
bel that specifies whether it should be included in a
generated text or not.

During the training process, the learning algo-
rithm is provided with n sets of database entries,
each associated with a label whose value is known.
In practice, we only require a parallel corpus of
game summaries and database entries — label val-
ues are derived automatically via alignment (see
Section 4 for more details).

2A terminological note: a database entry is analogous to a
row in a relational table; throughout this paper we use the terms
entity and database entry interchangeably.

The goal of the content selection component is
to select entries from a database, i.e., to determine
whether their label values are 0 or 1. Under this for-
mulation, content selection is restricted to informa-
tion available in the database; there is no attempt to
induce new facts through inference.

In the next section, we describe our learning
framework, and explain how it is applied to the con-
tent selection task.

3.1 The Collective Classification Approach

Generation of a coherent text crucially depends on
our ability to select entities that are related in a
meaningful way (McKeown, 1985). A content se-
lection component that considers every entity in iso-
lation does not have any means to enforce this im-
portant discourse constraint. We therefore formulate
content selection as a collective classification task,
where all entities that belong to the same database
(i.e., the same football game) are considered simul-
taneously. This framework thus enables us to en-
force contextual constraints by selecting related en-
tities.

When considered in isolation, some database en-
tries are more likely to be selected than others. In
the American football domain, for example, entries
of type Rushing are often extracted if they yield a
touchdown.3 Other Rushing entries (e.g., which do
not deliver scoring points) are typically omitted. In
general, the attributes of an entry can provide use-
ful cues for predicting whether it should be selected.
Therefore, we can perform content selection by ap-
plying a standard classifier on each entry. In Sec-
tion 3.2, we explain in more detail how such a clas-
sifier can be trained.

We can also decide about entity selection by an-
alyzing how entities relate to each other in the
database. For instance, in a game where both quar-
terbacks4 score, it is fairly unorthodox to mention
the passing statistics for only one of them. Label as-
signments in which either both quarterbacks are se-
lected, or both of them are omitted should be there-

3A touchdown is the primary method of scoring in American
football; a touchdown is worth six points and is accomplished
by gaining legal possession of the ball in the opponent’s end
zone.

4A quarterback in American football is the leader of a team’s
offense. In most offenses his primary duty is passing the ball.
Quarterbacks are typically evaluated on their passing statistics,
including total yardage, completion ratio, touchdowns, and the
ability to avoid interceptions.
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fore preferred. This relation between quarterback
passing statistics exemplifies one type of link that
can hold between entities. Other link types may
encode contextual constraints, for instance captur-
ing temporal and locational information. (In Sec-
tion 3.3, we describe a method for discovering link
types which encapsulate meaningful contextual de-
pendencies.) By taking into account links between
related entities, a content selection component can
enforce dependencies in the labeling of related enti-
ties.

Our goal is to select a subset of database entities
that maximally satisfies linking constraints and is
as consistent as possible with the individual prefer-
ences of each entity. Thus, content selection can be
naturally stated as an optimization problem — we
wish to find a label assignment that minimizes the
cost of violating the above constraints.

Let C+ and C− be a set of selected and omitted en-
tities, respectively; ind+(x) and ind−(x) are scores
that capture the individual preference of x to be ei-
ther selected or omitted, and linkL(x,y) reflects the
degree of dependence between the labels of x and y
based on a link of type L. Thus, the optimal label
assignment for database entries x1, . . . ,xn will mini-
mize:

∑
x∈C+

ind−(x)+ ∑
x∈C−

ind+(x)+∑
L

∑
xi∈C+
x j∈C−

linkL(xi,x j)

The first two elements in this expression cap-
ture the penalty for assigning entities to classes
against their individual preferences. For instance,
the penalty for selecting an entry x ∈C+ will equal
ind−(x), i.e., x’s individual preference of being om-
mitted. The third term captures a linking penalty for
all pairs of entities (xi,x j) that are connected by a
link of type L, and are assigned to different classes.

This formulation is similar to the energy mini-
mization framework, which is commonly used in
image analysis (Besag, 1986; Boykov et al., 1999)
and has been recently applied in natural language
processing (Pang and Lee, 2004). The principal ad-
vantages of this formulation lie in its computational
properties. Despite seeming intractable — the num-
ber of possible subsets to consider for selection is
exponential in the number of database entities — the
inference problem has an exact solution. Provided
that the scores ind+(x), ind−(x), and linkL(x,y) are

positive, we can find a globally optimal label as-
signment in polynomial time by computing a min-
imal cut partition in an appropriately constructed
graph (Greig et al., 1989).

In the following we first discuss how individual
preference scores are estimated. Next, we describe
how to induce links and estimate their scores.

3.2 Computing Individual Preference Scores

The individual preference scores are estimated by
considering the values of entity attributes, recorded
in the database. The type and number of the at-
tributes are determined by the entity type. There-
fore, we separately estimate individual preference
scores for each entity type. For example, individ-
ual scores for entities of type Passing are computed
based on six attributes : PLAYER, CP/AT, YDS, AVG,
TD, INT (see Table 1).

Considerable latitude is available when selecting
a classifier for delivering the individual preference
scores. In our experiments we used the publicly
available BoosTexter system (Schapire and Singer,
2000). BoosTexter implements a boosting algo-
rithm that combines many simple, moderately accu-
rate categorization rules into a single, highly accu-
rate rule. For each example, it outputs a prediction
along with a weight whose magnitude indicates the
classifier’s confidence in the prediction. We thus set
the individual preference scores to the weights ob-
tained from BoosTexter. The weights range from −1
to 1; we obtained non-negative numbers, simply by
adding 1.

It is important to note that BoosTexter is a fairly
effective classifier. When applied to text categoriza-
tion (Schapire and Singer, 2000), it outperformed a
number of alternative classification methods, includ-
ing Naive Bayes, decision trees, and k-nearest neigh-
bor.

3.3 Link Selection and Scoring

The success of collective classification depends on
finding links between entities with similar label pref-
erences. In our application — concept-to-text gen-
eration, it is natural to define entity links in terms
of their database relatedness. Since the underlying
database contains rich structural information, we can
explore a wide range of relations between database
entities.

The problem here is finding a set of links that
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capture important contextual dependencies among
many possible combinations. Instead of manu-
ally specifying this set, we propose a corpus-driven
method for discovering links automatically. Auto-
matic link induction can greatly reduce human ef-
fort. Another advantage of the method is that it can
potentially identify relations that might escape a hu-
man expert and yet, when explicitly modeled, aid in
content selection.

We induce important links by adopting a
generate-and-prune approach. We first automati-
cally create a large pool of candidate links. Next, we
select only links with aconsistent label distributions.

Construction of Candidate Links An important
design decision is the type of links that we allow
our algorithm to consider. Since our ultimate goal is
the generation of a coherent text, we wish to focus
on links that capture semantic connectivity between
database entities. An obvious manifestation of se-
mantic relatedness is attribute sharing. Therefore,
we consider links across entities with one or more
shared attributes. An additional constraint is implied
by computational considerations: our optimization
framework, based on minimal cuts in graphs, sup-
ports only pairwise links, so we restrict our attention
to binary relations.

We generate a range of candidate link types us-
ing the following template: For every pair of entity
types Ei and E j, and for every attribute k that is asso-
ciated with both of them, create a link of type Li, j,k.
A pair of entities 〈a,b〉 is linked by Li, j,k , if a is of
type Ei, b is of type E j and they have the same value
for the attribute k. For example, a link that asso-
ciates statistics on Passing and Rushing performed
by the same player is an instantiation of the above
with Ei = Rushing, E j = Passing, and k = Player.

In a similar fashion, we construct link types that
connect together entities with two or three attributes
in common. Multiple pairs of entries can be con-
nected by the same link type.

If the database consists of n entity types, and the
number of attribute types is bounded by m, then
the number of link types constructed by this process
does not exceed O(n2(m +

(m
2

)

+
(m

3

)

)) ≈ O(n2m3).
In practice, this bound is much lower, since only a
few attributes are shared among entity types. Links
can be efficiently computed using SQL’s SELECT op-
erator.

Link Filtering Only a small fraction of the auto-
matically generated link types will capture meaning-
ful contextual dependencies. To filter out spurious
links, we turn to the labels of the entities partici-
pating in each link. Only link types in which en-
tities have a similar distribution of label values are
selected from the pool of candidates.

We measure similarity in label distribution using
the χ2 test. This test has been successfully applied to
similar tasks, such as feature selection in text clas-
sification (Rogati and Yang, 2002), and can be eas-
ily extended to our application. Given a binary link,
our null hypothesis H0 is that the labels of entities
related by L are independent. For each link, we
compute the χ2 score over a 2-by-2 table that stores
joint label values of entity pairs, computed across all
database entries present in the training set. For links
with χ2 > τ, the null hypothesis is rejected, and the
link is considered a valid discourse constraint. The
value of τ is set to 3.84, which corresponds to a 5%
level of statistical significance.

Link Weights The score of a link type L is defined
as follows:

linkL(x,y) =

{

λL i f (x,y) are linked by L
0 otherwise

We estimate link weights λL using simulated anneal-
ing. The goal is to find weight values that minimize
an objective function, defined as the error rate on
the development set5 (see Section 4 for details). The
individual scores and the link structure of the enti-
ties in the development set are predicted automat-
ically using the models trained on the training set.
Starting from a random assignment of weight val-
ues, we compute the objective function and generate
new weight values using Parks’ (1990) method. The
procedure stops when no sufficient progress is ob-
served in subsequent iterations.

4 Evaluation Framework

We apply the collective classification method just
presented to the task of automatically learning con-
tent selection rules from a database containing
football-related information. In this section, we first
present the sport domain we are working with, and

5Our objective function cannot be optimized analytically.
We therefore resort to heuristic search methods such as simu-
lated annealing.
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Entity Type Attr Inst %Aligned Entity Type Attr Inst %Aligned
Defense 8 14,077 0.00 Passing 5 1,185 59.90
Drive 10 11,111 0.00 Team comparison 4 14,539 0.00
Play-by-Play 8 83,704 3.03 Punt-returns 8 940 5.74
Fumbles 8 2,937 17.78 Punting 9 950 0.87
Game 6 469 0.00 Receiving 8 6,337 11.19
Interceptions 6 894 45.05 Rushing 8 3,631 9.17
Kicking 8 943 26.93 Scoring-sum 9 3,639 53.34
Kickoff-returns 8 1,560 5.24 Team 3 4 0.00
Officials 8 464 0.00

Table 2: Entity types and their attributes in the NFL database; percentage of database entries that are aligned
to summary sentences.

describe how we collected a corpus for evaluating
collective content selection. Next, we explain how
we automatically obtained annotated data for train-
ing and testing our model.

Data As mentioned previously our goal is to
generate descriptions of football games. The
sports domain has enjoyed popularity among natu-
ral language generation practitioners (Robin, 1994;
Tanaka-Ishii et al., 1998). The appeal is partly due
to the nature of the domain — it exhibits several
fixed patterns in content organization and is there-
fore amenable to current generation approaches. At
the same time, it is complex enough to present chal-
lenges at almost all stages of the generation process.

We compiled a corpus of descriptions of football
games from the web. More specifically, we obtained
game summaries from the official site of the Ameri-
can National Football League6 (NFL). We collected
summaries for the 2003 and 2004 seasons. These
are typically written by Associated Press journalists.
The corpus consists of 468 texts in total (436,580
words). The average summary length is 46.8 sen-
tences.

The site not only contains a summary for each
game, but also a wealth of statistics describing the
performance of individual players and their teams.
It includes a scoring summary and a play-by-play
summary giving details of the most important events
in the game together with temporal (i.e., time re-
maining) and positional (i.e., location in the field)
information. In sum, for each game the site offers
a rich repository of tabulated information which we
translated into a relational database. An excerpt of

6See http://www.nfl.com/scores.

the database is shown in Table 1. Table 2 displays
the entity types contained in our NFL database and
lists the number of attributes (Attr) and instantia-
tions (Inst) per type. The database contains 73,400
entries in total.

Alignment Recall that our collective classification
method is supervised. The training instances are
database entries and the class labels indicate whether
an instance should be selected for presentation or
not. We could obtain this information via manual an-
notation performed by domain experts. Instead, we
opted for a less costly, automatic solution that yields
large quantities of training and testing data. To in-
fer which database entries correspond to sentences
in the verbalized game summaries, we used a sim-
ple anchor-based alignment technique. In our do-
main, numbers and proper names appear with high
frequency, and they constitute reliable anchors for
alignment. Similar to previous work (Duboue and
McKeown, 2003; Sripada et al., 2001), we employ
a simple matching procedure that considers anchor
overlap between entity attributes and sentence to-
kens.

Overall, the alignment procedure produced 7,513
pairs. 7.1% of the database entries were verbalized
in our corpus and 31.7% of the corpus sentences had
a database entry. Table 2 presents the proportion of
database entries which are verbalized in our corpus,
broken down by entity type (see %Aligned).

To evaluate the accuracy of this procedure, we
compared our output with a gold-standard align-
ment produced by a domain expert. After analyz-
ing the data from five games, the expert produced
52 alignment pairs; 47 of these pairs were identified
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Majority Baseline Standard Classifier Collective Classifier
Prec Rec F-score Prec Rec F-score Prec Rec F-score

Mean 29.40 68.19 40.09 44.88 62.23 49.75 52.71 76.50 60.15
Min 3.57 28.57 6.45 12.50 8.33 13.33 12.50 27.27 19.05
Max 57.14 100.00 65.12 76.92 100.00 75.00 100.00 100.00 100.00
Std Dev 10.93 15.75 12.25 15.36 18.33 13.98 21.29 18.93 19.66

Table 3: Results on content selection (precision, recall and F-score are averages over individual game sum-
maries); comparison between the majority baseline, standard and collective classification.

by the automatic alignment. In addition, three pairs
produced by the program did not match the gold-
standard alignment. Thus, the automatic method
achieved 94.0% precision and 90.4% recall.

Data Annotation For training and testing pur-
poses, we only considered entity types for
which alignments were observed in our corpus
(e.g., Fumbles, Interceptions; see Table 2).
Types without alignments can be trivially regarded
as inappropriate for selection in the generated text.
We considered database entries for which we found
verbalizations in the corpus as positive instances
(i.e., they should be selected); accordingly, non-
verbalized entries were considered negative in-
stances (i.e., they should not be selected). The
overall dataset contained 105,792 instances (corre-
sponding to 468 game summaries). Of these, 15%
(68 summaries) were reserved for testing. We held
out 1,930 instances (10 summaries) from the train-
ing data for development purposes.

5 Results

Our results are summarized in Table 3. We compare
the performance of the collective classifier against a
standard classifier. This can be done in our frame-
work, simply by setting the link scores to zero. We
also report the performance of a majority baseline.
The latter was obtained by defaulting to the major-
ity class for each entity type in the training data. As
can be seen from Table 2, only for two relations —
Passing and Scoring-sum — the majority class
predicts that the corresponding database instances
should be selected for presentation.

Our results confirm that a content selection com-
ponent can be automatically engineered for the foot-
ball domain. The collective classifier achieves an
F-score of 60.15%. This result compares favor-
ably with Duboue and McKeown (2003) whose best

model has an F-score of 51.00% on a simpler do-
main. Our method has high recall (we want to
avoid missing out information that should be pre-
sented in the output) but tends to overgenerate as
demonstrated by the relatively moderate precision
in Table 3. Erroneous content selection decisions
could be remedied by other components later in the
generation process. Alternatively, the obtained con-
tent selection rules could be further refined or post-
processed by a domain expert. Finally, better clas-
sification performance should be possible with more
expressive feature sets. As we can see from the weak
performance of the standard classifier, attribute val-
ues of database entries may not be sufficiently strong
predictors. Considering additional features tailored
to the NFL domain could further enhance perfor-
mance. However, feature selection is not one of the
main objectives of this work.

Our results empirically validate the importance of
discourse constraints for content selection (Table 4
illustrates examples of constraints that the model
discovered). We observe that adding contextual in-
formation leads to a 10.4% F-score increase over the
standard classifier. We used a paired t test to exam-
ine whether the differences are statistically signifi-
cant. The collective model significantly outperforms
the standard model on both precision (t = 4.824,
p < 0.01) and recall (t = 8.445, p < 0.01). It is also
significantly better than the majority baseline, both
in terms of recall (t = 3.181, p < 0.01) and preci-
sion (t = 8.604, p < 0.01). The standard classifier
performs significantly better than the majority base-
line on precision (t = 7.043, p < 0.01) but worse on
recall (t =-2.274, p < 0.05).

6 Conclusions and Future Work

In this paper we have presented a novel, data-driven
method for automating content selection. Central
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{〈a,b〉 | a ∈ Sum∧b ∈ Sum∧a.Quarter = b.Quarter}
{〈a,b〉 | a ∈ Sum∧b ∈ Play∧Sum.Player1 = Play.Player1 ∧Sum.Action = Play.Action}
{〈a,b〉 | a ∈ Fumbles∧b ∈ Interceptions∧Fumbles.Player = Interceptions.Player}

Table 4: Examples of automatically derived links.

to our approach is the use of a collective classifi-
cation model that captures contextual dependencies
between input items. We show that incorporation
of discourse constraints yields substantial improve-
ment over context-agnostic methods. Our approach
is linguistically grounded, computationally efficient,
and viable in practical applications.

In the future, we plan to explore how to integrate
more refined discourse models in the content selec-
tion process. Currently, we consider a limited set of
contextual dependencies based on attribute similar-
ity. Ideally, we would like to express more complex
relations between items. For instance, we may want
to represent disjunctive constraints, such as “at least
one of the defense players should be mentioned in
the summary.” Such dependencies can be efficiently
handled in a collective classification framework by
using approximate probabilistic inference (Taskar et
al., 2002). Another promising approach is the com-
bination of our automatically acquired cross-entity
links with domain knowledge.

Needless to say, content selection is one of sev-
eral components within a working generation sys-
tem. An interesting question is how to integrate our
component into a generation pipeline, using feed-
back from other components to guide collective con-
tent selection.
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Abstract

Consumers are often forced to wade
through many on-line reviews in
order to make an informed prod-
uct choice. This paper introduces
OPINE, an unsupervised information-
extraction system which mines re-
views in order to build a model of im-
portant product features, their evalu-
ation by reviewers, and their relative
quality across products.
Compared to previous work,OPINE

achieves 22% higher precision (with
only 3% lower recall) on the feature
extraction task.OPINE’s novel use of
relaxation labelingfor finding the se-
mantic orientation of words in con-
text leads to strong performance on
the tasks of finding opinion phrases
and their polarity.

1 Introduction

The Web contains a wealth of opinions about products,
politicians, and more, which are expressed in newsgroup
posts, review sites, and elsewhere. As a result, the prob-
lem of “opinion mining” has seen increasing attention
over the last three years from (Turney, 2002; Hu and Liu,
2004) and many others. This paper focuses on product
reviews, though our methods apply to a broader range of
opinions.

Product reviews on Web sites such asamazon.com
and elsewhere often associate meta-data with each review
indicating how positive (or negative) it is using a 5-star
scale, and also rank products by how they fare in the re-
views at the site. However, the reader’s taste may differ
from the reviewers’. For example, the reader may feel
strongly about the quality of the gym in a hotel, whereas
many reviewers may focus on other aspects of the ho-
tel, such as the decor or the location. Thus, the reader is
forced to wade through a large number of reviews looking
for information about particular features of interest.

We decompose the problem of review mining into the
following main subtasks:

I. Identify product features .
II. Identify opinions regarding product features .
III. Determine the polarity of opinions .
IV. Rank opinions based on their strength.
This paper introducesOPINE, an unsupervised infor-

mation extraction system that embodies a solution to each
of the above subtasks.OPINE is built on top of the Know-
ItAll Web information-extraction system (Etzioni et al.,
2005) as detailed in Section 3.

Given a particular product and a corresponding set of
reviews,OPINE solves the opinion mining tasks outlined
above and outputs a set ofproduct features, each accom-
panied by a list ofassociated opinionswhich are ranked
based on strength (e.g., “abominable” is stronger than
“bad). This output information can then be used to gen-
erate various types of opinion summaries.

This paper focuses on the first 3 review mining sub-
tasks and our contributions are as follows:

1. We introduceOPINE, a review-mining system whose
novel components include the use ofrelaxation labeling
to find the semantic orientation of words in the context of
given product features and sentences.

2. We compareOPINE with the most relevant previous
review-mining system (Hu and Liu, 2004) and find that
OPINE’s precision on thefeature extractiontask is 22%
better though its recall is 3% lower on Hu’s data sets. We
show that 1/3 of this increase in precision comes from
usingOPINE’s feature assessmentmechanism on review
data while the rest is due to Web PMI statistics.

3. While many other systems have used extracted opin-
ion phrases in order to determine the polarity of sentences
or documents,OPINE is the first to report its precision and
recall on the tasks ofopinion phrase extractionandopin-
ion phrase polarity determinationin the context of known
product features and sentences. On the first task,OPINE

has a precision of 79% and a recall of 76%. On the sec-
ond task,OPINE has a precision of 86% and a recall of
89%.
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Input: product class C, reviews R.
Output: set of [feature, ranked opinion list] tuples
R’ ← parseReviews(R);
E← findExplicitFeatures(R’, C);
O← findOpinions(R’, E);
CO← clusterOpinions(O);
I ← findImplicitFeatures(CO, E);
RO← rankOpinions(CO);
{(f , oi, ...oj)...}←outputTuples(RO, I∪ E);

Figure 1:OPINE Overview.

The remainder of this paper is organized as follows:
Section 2 introduces the basic terminology, Section 3
gives an overview ofOPINE, describes and evaluates its
main components, Section 4 describes related work and
Section 5 presents our conclusion.

2 Terminology
A product class(e.g., Scanner) is a set ofproducts(e.g.,
Epson1200).OPINE extracts the following types ofprod-
uct features: properties, parts, features of product parts,
related concepts, partsandproperties of related concepts
(see Table 1 for examples of such features in the Scan-
ner domains).Related conceptsare concepts relevant to
the customers’ experience with the main product (e.g.,
the company that manufactures a scanner). The relation-
ships between the main product and related concepts are
typically expressed as verbs (e.g., “Epsonmanufactures
scanners”) or prepositions (“scannersfromEpson”). Fea-
tures can beexplicit (“good scan quality ”) or im-
plicit (“good scans” implies goodScanQuality ).

OPINE also extractsopinion phrases, which are adjec-
tive, noun, verb or adverb phrases representing customer
opinions. Opinions can bepositiveor negativeand vary
in strength(e.g., “fantastic” is stronger than “good”).

3 OPINE Overview
This section gives an overview ofOPINE (see Figure 1)
and describes its components and their experimental eval-
uation.

Goal Given product classC with instancesI and re-
viewsR, OPINE’s goal is to find a set of (feature, opin-
ions) tuples{(f, oi, ...oj)} s.t. f ∈ F andoi, ...oj ∈ O,
where:

a)F is the set of product class features inR.
b)O is the set of opinion phrases inR.
c) f is a feature of a particular product instance.
d) o is an opinion aboutf in a particular sentence.
d) the opinions associated with each featuref are

ranked based on their strength.
Solution The steps of our solution are outlined in Fig-

ure 1 above. OPINE parses the reviews using MINI-
PAR (Lin, 1998) and applies a simple pronoun-resolution
module to parsed review data.OPINE then uses the data

to findexplicitproduct features (E). OPINE’s Feature As-
sessorand its use of Web PMI statistics are vital for the
extraction of high-quality features (see 3.2).OPINE then
identifiesopinion phrasesassociated with features inE
and finds their polarity.OPINE’s novel use of relaxation-
labeling techniques for determining the semantic orien-
tation of potential opinion words in the context of given
features and sentences leads to high precision and recall
on the tasks ofopinion phrase extractionand opinion
phrase polarity extraction(see 3.3).

In this paper, we only focus on the extraction of ex-
plicit features, identifying corresponding customer opin-
ions about these features and determining their polarity.
We omit the descriptions of the opinion clustering, im-
plicit feature generation and opinion ranking algorithms.

3.0.1 The KnowItAll System.

OPINE is built on top of KnowItAll, a Web-based,
domain-independent information extraction system (Et-
zioni et al., 2005). Given a set of relations of interest,
KnowItAll instantiates relation-specific generic extrac-
tion patterns into extraction rules which find candidate
facts. KnowItAll’s Assessor then assigns a probability to
each candidate. The Assessor uses a form ofPoint-wise
Mutual Information(PMI) between phrases that is esti-
mated from Web search engine hit counts (Turney, 2001).
It computes the PMI between each fact andautomatically
generated discriminator phrases(e.g., “is a scanner” for
the isA() relationship in the context of theScanner
class). Given factf and discriminatord, the computed
PMI score is:

PMI(f, d) = Hits(d+ f )
Hits(d)∗Hits(f )

The PMI scores are converted to binary features for a
Naive Bayes Classifier, which outputs a probability asso-
ciated with each fact (Etzioni et al., 2005).

3.1 Finding Explicit Features

OPINE extractsexplicit features for the given product
class from parsed review data. First, the system recur-
sively identifies both theparts and thepropertiesof the
given product class and their parts and properties, in turn,
continuing until no candidates are found. Then, the sys-
tem findsrelated conceptsas described in (Popescu et
al., 2004) and extracts their parts and properties. Table 1
shows that each feature type contributes to the set of final
features (averaged over 7 product classes).

Explicit Features Examples % Total
Properties ScannerSize 7%
Parts ScannerCover 52%
Features of Parts BatteryLife 24%
Related Concepts ScannerImage 9%
Related Concepts’ FeaturesScannerImageSize 8%

Table 1:Explicit Feature Information
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In order to find parts and properties,OPINE first ex-
tracts the noun phrases from reviews and retains those
with frequency greater than an experimentally set thresh-
old. OPINE’s Feature Assessor, which is an instantia-
tion of KnowItAll’s Assessor, evaluates each noun phrase
by computing the PMI scores between the phrase and
meronymy discriminatorsassociated with the product
class (e.g., “of scanner”, “scanner has”, “scanner comes
with”, etc. for the Scanner class). OPINE distin-
guishes parts from properties using WordNet’s IS-A hi-
erarchy (which enumerates different kinds of properties)
and morphological cues (e.g., “-iness”, “-ity” suffixes).

3.2 Experiments: Explicit Feature Extraction
In our experiments we use sets of reviews for 7 prod-
uct classes (1621 total reviews) which include the pub-
licly available data sets for 5 product classes from (Hu
and Liu, 2004). Hu’s system is the review mining sys-
tem most relevant to our work. It uses association rule
mining to extractfrequentreview noun phrases as fea-
tures. Frequent features are used to findpotential opin-
ion words (only adjectives) and the system uses Word-
Net synonyms/antonyms in conjunction with a set of seed
words in order to find actualopinionwords. Finally, opin-
ion words are used to extract associatedinfrequentfea-
tures. The system only extractsexplicit features.

On the 5 datasets in (Hu and Liu, 2004),OPINE’s pre-
cision is 22% higher than Hu’s at the cost of a 3% re-
call drop. There are two important differences between
OPINE and Hu’s system: a)OPINE’s Feature Assessor
uses PMI assessment to evaluate each candidate feature
and b)OPINE incorporates Web PMI statistics in addition
to review data in its assessment. In the following, we
quantify the performance gains from a) and b).

a) In order to quantify the benefits ofOPINE’s Feature
Assessor, we use it to evaluate the features extracted by
Hu’s algorithm on review data (Hu+A/R). The Feature
Assessor improves Hu’s precision by 6%.

b) In order to evaluate the impact of using Web PMI
statistics, we assessOPINE’s features first on reviews
(OP/R) and then on reviews in conjunction with the
Web (the corresponding methods areHu+A/R+W and
OPINE). Web PMI statistics increase precision by an av-
erage of 14.5%.

Overall, 1/3 ofOPINE’s precision increase over Hu’s
system comes from using PMI assessment on reviews and
the other 2/3 from the use of the Web PMI statistics.

In order to show thatOPINE’s performance is robust
across multiple product classes, we used two sets of re-
views downloaded fromtripadvisor.com for Ho-
tels andamazon.com for Scanners. Two annotators la-
beled a set of unique 450OPINE extractions ascorrect
or incorrect. The inter-annotator agreement was 86%.
The extractions on which the annotators agreed were used
to computeOPINE’s precision, which was 89%. Fur-

Data Explicit Feature Extraction: Precision
Hu Hu+A/R Hu+A/R+W OP/R OPINE

D1 0.75 +0.05 +0.17 +0.07 +0.19
D2 0.71 +0.03 +0.19 +0.08 +0.22
D3 0.72 +0.03 +0.25 +0.09 +0.23
D4 0.69 +0.06 +0.22 +0.08 +0.25
D5 0.74 +0.08 +0.19 +0.04 +0.21
Avg 0.72 +0.06 + 0.20 +0.07 +0.22

Table 2: Precision Comparison on the Explicit Feature-
Extraction Task. OPINE’s precision is 22% better than Hu’s
precision; Web PMI statistics are responsible for 2/3 of the pre-
cision increase. All results are reported with respect to Hu’s.

Data Explicit Feature Extraction: Recall
Hu Hu+A/R Hu+A/R+W OP/R OPINE

D1 0.82 -0.16 -0.08 -0.14 -0.02
D2 0.79 -0.17 -0.09 -0.13 -0.06
D3 0.76 -0.12 -0.08 -0.15 -0.03
D4 0.82 -0.19 -0.04 -0.17 -0.03
D5 0.80 -0.16 -0.06 -0.12 -0.02
Avg 0.80 -0.16 -0.07 -0.14 -0.03

Table 3: Recall Comparison on the Explicit Feature-
Extraction Task. OPINE’s recall is 3% lower than the recall
of Hu’s original system (precision level = 0.8). All results are
reported with respect to Hu’s.

thermore, the annotators extracted explicit features from
800 review sentences (400 for each domain). The inter-
annotator agreement was 82%.OPINE’s recall on the
set of 179 features on which both annotators agreed was
73%.

3.3 Finding Opinion Phrases and Their Polarity

This subsection describes howOPINE extracts potential
opinion phrases, distinguishes between opinions and non-
opinions, and finds thepolarity of each opinion in the
context of its associated feature in a particular review sen-
tence.

3.3.1 Extracting Potential Opinion Phrases

OPINE uses explicit features to identify potential opin-
ion phrases. Our intuition is that an opinion phrase as-
sociated with a product feature will occur in its vicinity.
This idea is similar to that of (Kim and Hovy, 2004) and
(Hu and Liu, 2004), but instead of using a window of size
k or the output of a noun phrase chunker,OPINE takes
advantage of the syntactic dependencies computed by the
MINIPAR parser. Our intuition is embodied by 10ex-
traction rules, some of which are shown in Table 4. If
an explicit feature is found in a sentence,OPINE applies
the extraction rules in order to find the heads of potential
opinion phrases. Each head word together with its modi-
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fiers is returned as a potential opinion phrase1.

Extraction Rules Examples
if ∃(M,NP = f)→ po = M (expensive)scanner

if ∃(S = f, P,O)→ po = O lamp has (problems)
if ∃(S, P,O = f)→ po = P I (hate) thisscanner

if ∃(S = f, P,O)→ po = P program (crashed)

Table 4: Examples of Domain-independent Rules for
the Extraction of Potential Opinion Phrases. Nota-
tion: po=potential opinion, M=modifier, NP=noun phrase,
S=subject, P=predicate, O=object. Extracted phrases are en-
closed in parentheses. Features are indicated by the typewriter
font. The equality conditions on the left-hand side usepo’s
head.

Rule Templates Rules
dep(w,w′) m(w,w′)
∃v s.t.dep(w, v), dep(v, w′) ∃v s.t.m(w, v), o(v, w′)
∃v s.t.dep(w, v), dep(w′, v) ∃v s.t.m(w, v), o(w′, v)

Table 5: Dependency Rule Templates For Finding Words
w, w’ with Related SO Labels . OPINE instantiates these
templates in order to obtain extraction rules. Notation:
dep=dependent, m=modifier, o=object, v,w,w’=words.

OPINE examines the potential opinion phrases in order
to identify the actual opinions. First, the system finds the
semantic orientation for the lexical head of each poten-
tial opinion phrase. Every phrase whose head word has a
positiveor negativesemantic orientation is then retained
as anopinion phrase. In the following, we describe how
OPINE finds the semantic orientation of words.

3.3.2 Word Semantic Orientation
OPINE finds the semantic orientation of a wordw in

the context of an associated featuref and sentences. We
restate this task as follows:

Task Given a set ofsemantic orientation (SO) labels
({positive, negative, neutral}), a set of reviews and a
set of tuples (w, f , s), wherew is a potential opinion
word associated with featuref in sentences, assign a SO
label to each tuple (w, f , s).

For example, the tuple (sluggish, driver, “I am not
happy with this sluggish driver”) would be assigned a
negativeSO label.

Note: We use “word” to refer to a potential opinion
wordw and “feature” to refer to the word or phrase which
represents the explicit featuref .

Solution OPINE uses the 3-step approach below:
1. Given the set of reviews,OPINE finds a SO label for

each wordw.
2. Given the set of reviews and the set of SO labels for

wordsw, OPINE finds a SO label for each (w, f ) pair.

1The (S,P,O) tuples in Table 4 are automatically generated
from MINIPAR’s output.

3. Given the set of SO labels for (w, f ) pairs,OPINE

finds a SO label for each (w, f , s) input tuple.
Each of these subtasks is cast as anunsupervised col-

lective classificationproblem and solved using the same
mechanism. In each case,OPINE is given a set ofob-
jects(words, pairs or tuples) and a set oflabels(SO la-
bels);OPINE then searches for aglobal assignment of la-
bels to objects. In each case,OPINE makes use oflocal
constraintson label assignments (e.g., conjunctions and
disjunctions constraining the assignment of SO labels to
words (Hatzivassiloglou and McKeown, 1997)).

A key insight inOPINE is that the problem of searching
for aglobalSO label assignment to words, pairs or tuples
while trying to satisfy as manylocal constraints on as-
signments as possible is analogous to labeling problems
in computer vision (e.g., model-based matching).OPINE

uses a well-known computer vision technique,relaxation
labeling (Hummel and Zucker, 1983), in order to solve
the three subtasks described above.

3.3.3 Relaxation Labeling Overview

Relaxation labeling is an unsupervised classification
technique which takes as input:
a) a set ofobjects(e.g., words)
b) a set oflabels(e.g., SO labels)
c) initial probabilities for each object’s possible labels
d) the definition of an objecto’s neighborhood(a set of
other objects which influence the choice ofo’s label)
e) the definition ofneighborhood features
f) the definition of asupport functionfor an object label

The influence of an objecto’s neighborhood on its la-
belL is quantified using thesupport function. The sup-
port function computes the probability of the labelL be-
ing assigned too as a function ofo’s neighborhood fea-
tures. Examples of features include the fact that a certain
local constraintis satisfied (e.g., the wordnice partic-
ipates in the conjunctionand together with some other
word whose SO label is estimated to bepositive).

Relaxation labeling is an iterative procedure whose
output is an assignment of labels to objects. At each itera-
tion, the algorithm uses anupdate equationto reestimate
the probability of an object label based on its previous
probability estimate and the features of its neighborhood.
The algorithm stops when the global label assignment
stays constant over multiple consecutive iterations.

We employ relaxation labeling for the following rea-
sons: a) it has been extensively used in computer-vision
with good results b) its formalism allows for many types
of constraints on label assignments to be used simulta-
neously. As mentioned before, constraints are integrated
into the algorithm as neighborhood features which influ-
ence the assignment of a particular label to a particular
object.

OPINE uses the following sources of constraints:
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a)conjunctionsanddisjunctionsin the review text
b) manually-suppliedsyntactic dependency rule tem-

plates(see Table 5). The templates are automatically in-
stantiated by our system with different dependency re-
lationships (premodifier, postmodifier, subject, etc.) in
order to obtain syntactic dependency rules which find
words with related SO labels.

c) automatically derivedmorphological relationships
(e.g., “wonderful” and “wonderfully” are likely to have
similar SO labels).

d) WordNet-suppliedsynonymy, antonymy, IS-Aand
morphologicalrelationships between words. For exam-
ple, cleanandneatare synonyms and so they are likely
to have similar SO labels.

Each of the SO label assignment subtasks previously
identified is solved using a relaxation labeling step. In the
following, we describe in detail how relaxation labeling
is used to find SO labels for words in the given review
sets.
3.3.4 Finding SO Labels for Words

For many words, a word sense or set of senses is used
throughout the review corpus with a consistently positive,
negative or neutral connotation (e.g., “great”, “awful”,
etc.). Thus, in many cases, a wordw’s SO label in the
context of a featuref and sentences will be the same as
its SO label in the context of other features and sentences.
In the following, we describe howOPINE’s relaxation la-
beling mechanism is used to find a word’s dominant SO
label in a set of reviews.

For this task, a word’sneighborhoodis defined as
the set of words connected to it through conjunctions,
disjunctions and all other relationships previously intro-
duced as sources of constraints.

RL uses anupdate equationto re-estimate the prob-
ability of a word label based on its previous probabil-
ity estimate and the features of its neighborhood (see
Neighborhood Features). At iterationm, let q(w,L)(m)

denote the support function for labelL of w and let
P (l(w) = L)(m) denote the probability thatL is the label
of w. P (l(w) = L)(m+1) is computed as follows:

RL Update Equation(Rangarajan, 2000)

P (l(w) = L)(m+1) =
P (l(w) = L)(m)(1 + αq(w,L)(m))P
L′ P (l(w) = L′)(m)(1 + αq(w,L′)(m))

whereL′ ∈ {pos, neg, neutral} and α > 0 is an
experimentally set constant keeping the numerator and
probabilities positive. RL’s output is an assignment of
dominant SO labels to words.

In the following, we describe in detail the initialization
step, the derivation of the support function formula and
the use of neighborhood features.

RL Initialization Step OPINE uses a version of Tur-
ney’s PMI-based approach (Turney, 2003) in order to de-
rive the initial probability estimates (P (l(w) = L)(0))

for a subsetS of the words. OPINE computes aSO
score so(w)for eachw in S as the difference between
the PMI ofw with positive keywords (e.g., “excellent”)
and the PMI ofw with negative keywords (e.g., “awful”).
Whenso(w) is small, orw rarely co-occurs with the key-
words,w is classified asneutral. If so(w) > 0, then
w is positive, otherwisew is negative.OPINE then uses
the labeledS set in order to compute prior probabilities
P (l(w) = L), L ∈ {pos, neg, neutral} by computing
the ratio between the number of words inS labeledL
and |S|. Such probabilities are used as initial probabil-
ity estimates associated with the labels of the remaining
words.

Support Function The support function computes the
probability of each label for wordw based on the labels
of objects inw’s neighborhoodN .

Let Ak = {(wj , Lj)|wj ∈ N} , 0 < k ≤ 3|N | rep-
resent one of the potential assignments of labels to the
words inN . LetP (Ak)(m) denote the probability of this
particular assignment at iterationm. Thesupportfor la-
belL of wordw at iterationm is :

q(w,L)(m) =

3|N|X
k=1

P (l(w) = L|Ak)(m) ∗ P (Ak)(m)

We assume that the labels ofw’s neighbors are inde-
pendent of each other and so the formula becomes:

q(w,L)(m) =

3|N|X
k=1

P (l(w) = L|Ak)(m)∗
|N|Y
j=1

P (l(wj) = Lj)(m)

EveryP (l(wj) = Lj)(m) term is the estimate for the
probability thatl(wj) = Lj (which was computed at it-
erationm using the RL update equation).

TheP (l(w) = L|Ak)(m) term quantifies the influence
of a particular label assignment tow’s neighborhood over
w’s label. In the following, we describe how we estimate
this term.

Neighborhood Features
Each type of word relationship which constrains the

assignment of SO labels to words (synonymy, antonymy,
etc.) is mapped byOPINE to a neighborhood feature. This
mapping allowsOPINE to use simultaneously use multi-
ple independent sources of constraints on the label of a
particular word. In the following, we formalize this map-
ping.

LetT denote the type of a word relationship inR (syn-
onym, antonym, etc.) and letAk,T represent the labels
assigned byAk to neighbors of a wordw which are con-
nected tow through a relationship of typeT . We have
Ak =

⋃
T Ak,T and

P (l(w) = L|Ak)(m) = P (l(w) = L|
[
T

Ak,T )(m)

For each relationship typeT , OPINE defines a
neighborhood featurefT (w,L,Ak,T ) which computes
P (l(w) = L|Ak,T ), the probability thatw’s label isL
givenAk,T (see below).P (l(w) = L|

⋃
T Ak,T )(m) is

estimated combining the information from various fea-
tures aboutw’s label using the sigmoid functionσ():

343



P (l(w) = L|Ak)(m) = σ(

jX
i=1

f i(w,L,Ak,i)(m) ∗ ci)

wherec0, ...cj are weights whose sum is 1 and which
reflectOPINE ’s confidence in each type of feature.

Given wordw, labelL, relationship typeT and neigh-
borhood label assignmentAk, letNT represent the subset
of w’s neighbors connected tow through a typeT rela-
tionship. The featurefT computes the probability that
w’s label isL given the labels assigned byAk to words
in NT . Using Bayes’s Law and assuming that these la-
bels are independent givenl(w), we have the following
formula forfT at iterationm:

fT (w,L,Ak,T )(m) = P (l(w) = L)(m)∗
|NT |Y
j=1

P (Lj |l(w) = L)

P (Lj |l(w) = L) is the probability that wordwj has label
Lj if wj andw are linked by a relationship of typeT and
w has labelL. We make the simplifying assumption that
this probability is constant and depends only ofT , L and
L′, not of the particular wordswj andw. For each tuple
(T , L, Lj), L,Lj ∈ {pos, neg, neutral}, OPINE builds
a probability table using a small set of bootstrapped pos-
itive, negative and neutral words.
3.3.5 Finding (Word, Feature) SO Labels

This subtask is motivated by the existence of frequent
words which change their SO label based on associated
features, but whose SO labels in the context of the respec-
tive features are consistent throughout the reviews (e.g.,
in the Hotel domain, “hot water” has a consistently posi-
tive connotation, whereas “hot room” has a negative one).

In order to solve this task,OPINE first assigns each
(w, f) pair an initial SO label which isw’s SO label. The
system then executes a relaxation labeling step during
which syntactic relationships between words and, respec-
tively, between features, are used to update the default
SO labels whenever necessary. For example,(hot, room)
appears in the proximity of(broken, fan). If “room”and
“fan” are conjoined byand, this suggests that “hot” and
“broken” have similar SO labels in the context of their
respective features. If “broken” has a strongly negative
semantic orientation, this fact contributes toOPINE’s be-
lief that “hot” may also be negative in this context. Since
(hot, room)occurs in the vicinity of other such phrases
(e.g., stifling kitchen), “hot” acquires a negative SO label
in the context of “room”.
3.3.6 Finding (Word, Feature, Sentence) SO Labels

This subtask is motivated by the existence of (w,f )
pairs (e.g., (big, room)) for whichw’s orientation changes
based on the sentence in which the pair appears (e.g., “ I
hated the big, drafty room because I ended up freezing.”
vs. “We had a big, luxurious room”.)

In order to solve this subtask,OPINE first assigns each
(w, f, s) tuple an initial label which is simply the SO la-
bel for the(w, f) pair. The system then uses syntactic

relationships between words and, respectively, features
in order to update the SO labels when necessary. For
example, in the sentence “I hated the big, drafty room
because I ended up freezing.”, “big” and “hate” satisfy
condition 2 in Table 5 and thereforeOPINE expects them
to have similar SO labels. Since “hate” has a strong neg-
ative connotation, “big” acquires a negative SO label in
this context.

In order to correctly update SO labels in this last step,
OPINE takes into consideration the presence ofnegation
modifiers. For example, in the sentence “I don’t like a
large scanner either”,OPINE first replaces thepositive
(w, f) pair (like, scanner)with thenegativelabeled pair
(not like, scanner)and then infers that “large” is likely to
have a negative SO label in this context.

3.3.7 Identifying Opinion Phrases

After OPINE has computed the most likely SO labels
for the head words of each potential opinion phrase in the
context of given features and sentences,OPINE can ex-
tract opinion phrases and establish their polarity. Phrases
whose head words have been assignedpositiveor nega-
tive labels are retained asopinion phrases. Furthermore,
the polarity of an opinion phraseo in the context of a fea-
turef and sentences is given by the SO label assigned to
the tuple(head(o), f, s) (3.3.6 shows howOPINE takes
into account negation modifiers).

3.4 Experiments
In this section we evaluateOPINE’s performance on the
following tasks: finding SO labels of words in the con-
text of known features and sentences (SO label extrac-
tion); distinguishing between opinion and non-opinion
phrases in the context of known features and sentences
(opinion phrase extraction); finding the correct polarity
of extracted opinion phrases in the context of known fea-
tures and sentences (opinion phrase polarity extraction).

While other systems, such as (Hu and Liu, 2004; Tur-
ney, 2002), have addressed these tasks to some degree,
OPINE is the first to report results. We first ranOPINE on
13841 sentences and 538 previously extracted features.
OPINE searched for a SO label assignment for 1756 dif-
ferent words in the context of the given features and sen-
tences. We comparedOPINE against two baseline meth-
ods,PMI++ andHu++.

PMI++ is an extended version of (Turney, 2002)’s
method for finding the SO label of a phrase (as an at-
tempt to deal with context-sensitive words). For a given
(word, feature, sentence) tuple,PMI++ ignores the sen-
tence, generates a phrase based on the word and the fea-
ture (e.g., (clean, room): “clean room”) and finds its SO
label using PMI statistics. If unsure of the label,PMI++
tries to find the orientation of the potential opinion word
instead. The search engine queries use domain-specific
keywords (e.g., “scanner”), which are dropped if they
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lead to low counts.
Hu++ is a WordNet-based method for finding a word’s

context-independent semantic orientation. It extends
Hu’s adjective labeling method in a number of ways in
order to handle nouns, verbs and adverbs in addition to
adjectives and in order to improve coverage. Hu’s method
starts with two sets of positive and negative words and
iteratively grows each one by including synonyms and
antonyms from WordNet. The final sets are used to pre-
dict the orientation of an incoming word.

Type PMI++ Hu++ OPINE
P R P R P R

adj 0.73 0.91 +0.02 -0.17 +0.07 -0.03
nn 0.63 0.92 +0.04 -0.24 +0.11 -0.08
vb 0.71 0.88 +0.03 -0.12 +0.01 -0.01

adv 0.82 0.92 +0.02 -0.01 +0.06 +0.01
Avg 0.72 0.91 +0.03 -0.14 +0.06 -0.03

Table 6: Finding SO Labels of Potential Opinion Words
in the Context of Given Product Features and Sentences.
OPINE’s precision is higher than that ofPMI++ and Hu++.
All results are reported with respect toPMI++ . Notation:
adj=adjectives, nn=nouns, vb=verbs, adv=adverbs

3.4.1 Experiments: SO Labels

On the task offinding SO labels for words in the con-
text of given features and review sentences, OPINEobtains
higher precision than both baseline methods at a small
loss in recall with respect toPMI++ . As described be-
low, this result is due in large part toOPINE’s ability to
handle context-sensitive opinion words.

We randomly selected 200 (word, feature, sentence)
tuples for each word type (adjective, adverb, etc.) and
obtained a test set containing 800 tuples. Two annota-
tors assigned positive, negative and neutral labels to each
tuple (the inter-annotator agreement was 78%). We re-
tained the tuples on which the annotators agreed as the
gold standard. We ranPMI++ andHu++ on the test data
and compared the results againstOPINE’s results on the
same data.

In order to quantify the benefits of each of the three
steps of our method for finding SO labels, we also com-
pared OPINE with a version which only finds SO la-
bels for words and a version which finds SO labels for
words in the context of given features, but doesn’t take
into account given sentences. We have learned from this
comparison thatOPINE’s precision gain overPMI++ and
Hu++ is mostly due to to its ability to handle context-
sensitive words in a large number of cases.

AlthoughHu++ does not handle context-sensitive SO
label assignment, its average precision was reasonable
(75%) and better than that ofPMI++ . Finding a word’s
SO label is good enough in the case of strongly positive

or negative opinion words, which account for the major-
ity of opinion instances. The method’s loss in recall is
due to not recognizing words absent from WordNet (e.g.,
“depth-adjustable”) or not having enough information to
classify some words in WordNet.

PMI++ typically does well in the presence of strongly
positive or strongly negative words. Its high recall is
correlated with decreased precision, but overall this sim-
ple approach does well.PMI++ ’s main shortcoming is
misclassifying terms such as “basic” or “visible” which
change orientation based on context.

3.4.2 Experiments: Opinion Phrases
In order to evaluateOPINE on the tasks ofopinion

phrase extractionandopinion phrase polarity extraction
in the context of known features and sentences, we used a
set of 550 sentences containing previously extracted fea-
tures. The sentences were annotated with the opinion
phrases corresponding to the known features and with the
opinion polarity. We comparedOPINE with PMI++ and
Hu++ on the tasks of interest. We found thatOPINE had
the highest precision on both tasks at a small loss in re-
call with respect toPMI++ . OPINE’s ability to identify
a word’s SO label in the context of a given feature and
sentence allows the system to correctly extract opinions
expressed by words such as “big” or “small”, whose se-
mantic orientation varies based on context.

Measure PMI++ Hu++ OPINE

OP Extraction: Precision 0.71 +0.06 +0.08
OP Extraction: Recall 0.78 -0.08 -0.02
OP Polarity: Precision 0.80 -0.04 +0.06
OP Polarity: Recall 0.93 +0.07 -0.04

Table 7: Extracting Opinion Phrases and Opinion Phrase
Polarity Corresponding to Known Features and Sentences.
OPINE’s precision is higher than that ofPMI++ and ofHu++.
All results are reported with respect toPMI++ .

4 Related Work
The key components ofOPINEdescribed in this paper are
the PMI feature assessment which leads to high-precision
feature extraction and the use of relaxation-labeling in or-
der to find the semantic orientation of potential opinion
words. The review-mining work most relevant to our re-
search is that of (Hu and Liu, 2004) and (Kobayashi et
al., 2004). Both identify product features from reviews,
but OPINE significantly improves on both. (Hu and Liu,
2004) doesn’t assess candidate features, so its precision
is lower thanOPINE’s. (Kobayashi et al., 2004) employs
an iterative semi-automatic approach which requires hu-
man input at every iteration. Neither model explicitly ad-
dressescomposite(feature of feature) orimplicit features.
Other systems (Morinaga et al., 2002; Kushal et al., 2003)
also look at Web product reviews but they do not extract
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opinions about particular product features.OPINE’s use
of meronymy lexico-syntactic patterns is similar to that
of many others, from (Berland and Charniak, 1999) to
(Almuhareb and Poesio, 2004).

Recognizing the subjective character and polarity of
words, phrases or sentences has been addressed by many
authors, including (Turney, 2003; Riloff et al., 2003;
Wiebe, 2000; Hatzivassiloglou and McKeown, 1997).
Most recently, (Takamura et al., 2005) reports on the
use of spin models to infer the semantic orientation of
words. The paper’s global optimization approach and use
of multiple sources of constraints on a word’s semantic
orientation is similar to ours, but the mechanism differs
and they currently omit the use of syntactic information.
Subjective phrases are used by (Turney, 2002; Pang and
Vaithyanathan, 2002; Kushal et al., 2003; Kim and Hovy,
2004) and others in order to classify reviews or sentences
as positive or negative. So far,OPINE’s focus has been on
extracting and analyzing opinion phrases corresponding
to specific features in specific sentences, rather than on
determining sentence or review polarity.

5 Conclusion
OPINE is an unsupervised information extraction system
which extracts fine-grained features, and associated opin-
ions, from reviews. OPINE’s use of the Web as a cor-
pus helps identify product features with improved preci-
sion compared with previous work.OPINE uses a novel
relaxation-labeling technique to determine the semantic
orientation of potential opinion words in the context of
the extracted product features and specific review sen-
tences; this technique allows the system to identify cus-
tomer opinions and their polarity with high precision and
recall.
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Abstract

This paper presents a new approach to
phrase-level sentiment analysis that first
determines whether an expression is neu-
tral or polar and then disambiguates the
polarity of the polar expressions. With this
approach, the system is able to automat-
ically identify thecontextual polarityfor
a large subset of sentiment expressions,
achieving results that are significantly bet-
ter than baseline.

1 Introduction

Sentiment analysisis the task of identifying positive
and negative opinions, emotions, and evaluations.
Most work on sentiment analysis has been done at
the document level, for example distinguishing pos-
itive from negative reviews. However, tasks such
as multi-perspective question answering and sum-
marization, opinion-oriented information extraction,
and mining product reviews require sentence-level
or even phrase-level sentiment analysis. For exam-
ple, if a question answering system is to successfully
answer questions about people’s opinions, it must be
able to pinpoint expressions of positive and negative
sentiments, such as we find in the sentences below:

(1) African observersgenerally approved+ of his
victory while Western governmentsdenounced−

it.

(2) A succession of officers filled the TV
screen to say theysupported+ the people and that
the killings were “not tolerable−.”

(3) “We don′t hate+ the sinner,” he says,
“but wehate− the sin.”

A typical approach to sentiment analysis is to start
with a lexicon of positive and negative words and
phrases. In these lexicons, entries are tagged with
their a priori prior polarity: out of context, does
the word seem to evoke something positive or some-
thing negative. For example,beautifulhas a positive
prior polarity, andhorrid has a negative prior polar-
ity. However, thecontextual polarityof the phrase
in which a word appears may be different from the
word’s prior polarity. Consider the underlined polar-
ity words in the sentence below:

(4) Philip Clapp, president of the National Environ-
ment Trust, sums up wellthe general thrust of the
reaction of environmental movements: “There is no
reasonat all to believe that the pollutersare sud-
denly going to become reasonable.”

Of these words, “Trust,” “well,” “reason,” and “rea-
sonable” have positive prior polarity, but they are
not all being used to express positive sentiments.
The word “reason” is negated, making the contex-
tual polarity negative. The phrase “no reason at all
to believe” changes the polarity of the proposition
that follows; because “reasonable” falls within this
proposition, its contextual polarity becomes nega-
tive. The word “Trust” is simply part of a referring
expression and is not being used to express a senti-
ment; thus, its contextual polarity is neutral. Simi-
larly for “polluters”: in the context of the article, it
simply refers to companies that pollute. Only “well”
has the same prior and contextual polarity.

Many things must be considered in phrase-level
sentiment analysis. Negation may be local (e.g.,not
good), or involve longer-distance dependencies such
as the negation of the proposition (e.g.,does not
look very good) or the negation of the subject (e.g.,
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no one thinks that it’s good). In addition, certain
phrases that contain negation words intensify rather
than change polarity (e.g.,not only good but amaz-
ing). Contextual polarity may also be influenced by
modality (e.g., whether the proposition is asserted to
be real (realis) or not real (irrealis) – no reason at all
to believeis irrealis, for example); word sense (e.g.,
EnvironmentalTrust versusHe has won the peo-
ple’s trust ); the syntactic role of a word in the sen-
tence (e.g.,polluters areversusthey arepolluters);
and diminishers such aslittle (e.g., little truth, lit-
tle threat). (See (Polanya and Zaenen, 2004) for a
more detailed discussion of contextual polarity in-
fluencers.)

This paper presents new experiments in automat-
ically distinguishing prior and contextual polarity.
Beginning with a large stable of clues marked with
prior polarity, we identify the contextual polarity of
the phrases that contain instances of those clues in
the corpus. We use a two-step process that employs
machine learning and a variety of features. The
first step classifies each phrase containing a clue as
neutral or polar. The second step takes all phrases
marked in step one as polar and disambiguates their
contextual polarity (positive, negative, both, or neu-
tral). With this approach, the system is able to auto-
matically identify the contextual polarity for a large
subset of sentiment expressions, achieving results
that are significantly better than baseline. In addi-
tion, we describe new manual annotations of contex-
tual polarity and a successful inter-annotator agree-
ment study.

2 Manual Annotation Scheme

To create a corpus for the experiments below, we
added contextual polarity judgments to existing an-
notations in the Multi-perspective Question Answer-
ing (MPQA) Opinion Corpus1, namely to the an-
notations ofsubjective expressions2. A subjective
expression is any word or phrase used to express
an opinion, emotion, evaluation, stance, speculation,

1The MPQA Corpus is described in (Wiebe et al., 2005) and
available at nrrc.mitre.org/NRRC/publications.htm.

2In the MPQA Corpus, subjective expressions aredirect
subjectiveexpressions withnon-neutral expression intensity,
plus all theexpressive subjective elements. Please see (Wiebe
et al., 2005) for more details on the existing annotations in the
MPQA Corpus.

etc. A general covering term for such states ispri-
vate state(Quirk et al., 1985). In the MPQA Cor-
pus, subjective expressions of varying lengths are
marked, from single words to long phrases.

For this work, our focus is onsentiment expres-
sions– positive and negative expressions of emo-
tions, evaluations, and stances. As these are types of
subjective expressions, to create the corpus, we just
needed to manually annotate the existing subjective
expressions with their contextual polarity.

In particular, we developed an annotation
scheme3 for marking the contextual polarity of sub-
jective expressions. Annotators were instructed to
tag the polarity of subjective expressions aspositive,
negative, both, or neutral. The positive tag is for
positive emotions (I’m happy), evaluations (Great
idea!), and stances (She supports the bill). Theneg-
ative tag is for negative emotions (I’m sad), eval-
uations (Bad idea!), and stances (She’s against the
bill ). The both tag is applied to sentiment expres-
sions that have both positive and negative polarity.
The neutral tag is used for all other subjective ex-
pressions: those that express a different type of sub-
jectivity such as speculation, and those that do not
have positive or negative polarity.

Below are examples of contextual polarity anno-
tations. The tags are in boldface, and the subjective
expressions with the given tags are underlined.

(5) Thousands of coup supporters celebrated(posi-
tive) overnight, waving flags, blowing whistles . . .

(6) The criteria set by Rice are the following: the
three countries in question are repressive(nega-
tive) and grave human rights violators(negative)
. . .

(7) Besides, politicians refer to good and evil
(both) only for purposes of intimidation and
exaggeration.

(8) Jerome says the hospital feels(neutral) no dif-
ferent than a hospital in the states.

The annotators were asked to judge the contex-
tual polarity of the sentiment that is ultimately be-
ing conveyed by the subjective expression, i.e., once
the sentence has been fully interpreted. Thus, the
subjective expression,they have not succeeded, and

3The annotation instructions are available at
http://www.cs.pitt.edu/˜twilson.
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will never succeed, was marked as positive in the
sentence,They have not succeeded, and will never
succeed, in breaking the will of this valiant people.
The reasoning is that breaking the will of a valiant
people is negative; hence, not succeeding in break-
ing their will is positive.

3 Agreement Study

To measure the reliability of the polarity annotation
scheme, we conducted an agreement study with two
annotators, using 10 documents from the MPQA
Corpus. The 10 documents contain 447 subjective
expressions. Table 1 shows the contingency table for
the two annotators’ judgments. Overall agreement is
82%, with a Kappa (κ) value of 0.72.

Neutral Positive Negative Both Total
Neutral 123 14 24 0 161
Positive 16 73 5 2 96
Negative 14 2 167 1 184
Both 0 3 0 3 6
Total 153 92 196 6 447

Table 1: Agreement for Subjective Expressions
(Agreement: 82%,κ: 0.72)

For 18% of the subjective expressions, at least one
annotator used anuncertaintag when marking po-
larity. If we consider these cases to be borderline
and exclude them from the study, percent agreement
increases to 90% and Kappa rises to 0.84. Thus, the
annotator agreement is especially high when both
are certain. (Note that all annotations are included
in the experiments described below.)

4 Corpus

In total, 15,991 subjective expressions from 425
documents (8,984 sentences) were annotated with
contextual polarity as described above. Of these sen-
tences, 28% contain no subjective expressions, 25%
contain only one, and 47% contain two or more. Of
the 4,247 sentences containing two or more subjec-
tive expressions, 17% contain mixtures of positive
and negative expressions, and 62% contain mixtures
of polar (positive/negative/both) and neutral subjec-
tive expressions.

The annotated documents are divided into two
sets. The first (66 documents/1,373 sentences/2,808
subjective expressions) is a development set, used

for data exploration and feature development. We
use the second set (359 documents/7,611 sen-
tences/13,183 subjective expressions) in 10-fold
cross-validation experiments, described below.

5 Prior-Polarity Subjectivity Lexicon

For the experiments in this paper, we use a lexicon of
over 8,000subjectivity clues. Subjectivity clues are
words and phrases that may be used to express pri-
vate states, i.e., they have subjective usages (though
they may have objective usages as well). For this
work, only single-word clues are used.

To compile the lexicon, we began with a list of
subjectivity clues from (Riloff and Wiebe, 2003).
The words in this list were grouped in previous work
according to their reliability as subjectivity clues.
Words that are subjective in most contexts were
marked strongly subjective (strongsubj), and those
that may only have certain subjective usages were
marked weakly subjective (weaksubj).

We expanded the list using a dictionary and a
thesaurus, and also added words from the General
Inquirer positive and negative word lists (General-
Inquirer, 2000) which we judged to be potentially
subjective. We also gave the new words reliability
tags, eitherstrongsubjor weaksubj.

The next step was to tag the clues in the lexicon
with their prior polarity. For words that came from
positive and negative word lists (General-Inquirer,
2000; Hatzivassiloglou and McKeown, 1997), we
largely retained their original polarity, eitherposi-
tive or negative. We assigned the remaining words
one of the tagspositive, negative, bothor neutral.

By far, the majority of clues, 92.8%, are
marked as having either positive (33.1%) or nega-
tive (59.7%) prior polarity. Only a small number of
clues (0.3%) are marked as having both positive and
negative polarity. 6.9% of the clues in the lexicon
are marked as neutral. Examples of these are verbs
such asfeel, look, andthink, and intensifiers such as
deeply, entirely, andpractically. These words are in-
cluded because, although their prior polarity is neu-
tral, they are good clues that a sentiment is being
expressed (e.g.,feelsslighted, look forward to). In-
cluding them increases the coverage of the system.
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6 Experiments

The goal of the experiments described below is to
classify the contextual polarity of the expressions
that contain instances of the subjectivity clues in
our lexicon. What the system specifically does is
give each clue instance its own label. Note that the
system does not try to identify expression bound-
aries. Doing so might improve performance and is a
promising avenue for future research.

6.1 Definition of the Gold Standard

We define the gold standard used to train and test the
system in terms of the manual annotations described
in Section 2.

The gold standard class of a clue instance that is
not in a subjective expression isneutral: since the
clue is not even in a subjective expression, it is not
contained in a sentiment expression.

Otherwise, if a clue instance appears in just one
subjective expression (or in multiple subjective ex-
pressions with the same contextual polarity), then
the class assigned to the clue instance is the class
of the subjective expression(s). If a clue appears
in at least one positive and one negative subjective
expression (or in a subjective expression marked as
both), then its class isboth. If it is in a mixture of
negative and neutral subjective expressions, its class
is negative; if it is in a mixture of positive and neu-
tral subjective expressions, its class ispositive.

6.2 Performance of a Prior-Polarity Classifier

An important question is how useful prior polarity
alone is for identifying contextual polarity. To an-
swer this question, we create a classifier that sim-
ply assumes that the contextual polarity of a clue in-
stance is the same as the clue’s prior polarity, and we
explore the classifier’s performance on the develop-
ment set.

This simple classifier has an accuracy of 48%.
From the confusion matrix given in Table 2, we see
that 76% of the errors result from words with non-
neutral prior polarity appearing in phrases with neu-
tral contextual polarity.

6.3 Contextual Polarity Disambiguation

The fact that words with non-neutral prior polarity
so frequently appear in neutral contexts led us to

Prior-Polarity Classifier
Neut Pos Neg Both Total

Neut 798 784 698 4 2284
Pos 81 371 40 0 492

Gold Neg 149 181 622 0 952
Both 4 11 13 5 33
Total 1032 1347 1373 9 3761

Table 2: Confusion matrix for the prior-polarity
classifier on the development set.

adopt a two-step approach to contextual polarity dis-
ambiguation. For the first step, we concentrate on
whether clue instances are neutral or polar in context
(wherepolar in contextrefers to having a contextual
polarity that is positive, negative or both). For the
second step, we take all clue instances marked as
polar in step one, and focus on identifying their con-
textual polarity. For both steps, we develop classi-
fiers using the BoosTexter AdaBoost.HM (Schapire
and Singer, 2000) machine learning algorithm with
5000 rounds of boosting. The classifiers are evalu-
ated in 10-fold cross-validation experiments.

6.3.1 Neutral-Polar Classification

The neutral-polar classifier uses 28 features, listed
in Table 3.

Word Features: Word contextis a bag of three
word tokens: the previous word, the word itself, and
the next word. Theprior polarity and reliability
classare indicated in the lexicon.

Modification Features: These are binary rela-
tionship features. The first four involve relationships
with the word immediately before or after: if the
word is a noun preceded by an adjective, if the pre-
ceding word is an adverb other thannot, if the pre-
ceding word is an intensifier, and if the word itself
is an intensifier. A word is considered an intensifier
if it appears in a list of intensifiers and if it precedes
a word of the appropriate part-of-speech (e.g., an in-
tensifier adjective must come before a noun).

Themodifyfeatures involve the dependency parse
tree for the sentence, obtained by first parsing the
sentence (Collins, 1997) and then converting the tree
into its dependency representation (Xia and Palmer,
2001). In a dependency representation, every node
in the tree structure is a surface word (i.e., there are
no abstract nodes such as NP or VP). The edge be-
tween a parent and a child specifies the grammatical
relationship between the two words. Figure 1 shows
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Word Features Sentence Features Structure Features
word token strongsubj clues in current sentence: countin subject: binary
word part-of-speech strongsubj clues in previous sentence: countin copular: binary
word context strongsubj clues in next sentence: count in passive: binary
prior polarity: positive, negative, both, neutralweaksubj clues in current sentence: count
reliability class: strongsubj or weaksubj weaksubj clues in previous sentence: count
Modification Features weaksubj clues in next sentence: count Document Feature
preceeded by adjective: binary adjectives in sentence: count document topic
preceeded by adverb (other than not): binaryadverbs in sentence (other than not): count
preceeded by intensifier: binary cardinal number in sentence: binary
is intensifier: binary pronoun in sentence: binary
modifies strongsubj: binary modal in sentence (other than will): binary
modifies weaksubj: binary
modified by strongsubj: binary
modified by weaksubj: binary

Table 3: Features for neutral-polar classification
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Figure 1: The dependency tree for the sentenceThe human
rights report poses a substantial challenge to the US interpre-
tation of good and evil.Prior polarity is marked in parentheses
for words that match clues from the lexicon.

an example. Themodifies strongsubj/weaksubjfea-
tures are true if the word and its parent share an
adj, mod or vmodrelationship, and if its parent is
an instance of a clue from the lexicon with strong-
subj/weaksubj reliability. Themodified by strong-
subj/weaksubjfeatures are similar, but look for rela-
tionships and clues in the word’s children.

Structure Features: These are binary features
that are determined by starting with the word in-
stance and climbing up the dependency parse tree
toward the root, looking for particular relationships,
words, or patterns. Thein subjectfeature is true if
we find asubjrelationship. Thein copularfeature is
true if in subjectis false and if a node along the path
is both a main verb and a copular verb. Thein pas-
sivefeatures is true if a passive verb pattern is found
on the climb.

Sentence Features:These are features that were
found useful for sentence-level subjectivity classifi-
cation by Wiebe and Riloff (2005). They include
counts of strongsubj and weaksubj clues in the cur-
rent, previous and next sentences, counts of adjec-
tives and adverbs other thannot in the current sen-
tence, and binary features to indicate whether the
sentence contains a pronoun, a cardinal number, and
a modal other thanwill .

Document Feature: There is one document fea-
ture representing the topic of the document. A doc-
ument may belong to one of 15 topics ranging from
specific (e.g., the 2002 presidential election in Zim-
babwe) to more general (e.g., economics) topics.

Table 4 gives neutral-polar classification results
for the 28-feature classifier and two simpler classi-
fiers that provide our baselines. The first row in the
table lists the results for a classifier that uses just
one feature, the word token. The second row shows
the results for a classifier that uses both the word to-
ken and the word’s prior polarity as features. The
results for the 28-feature classifier are listed in the
last row. The 28-feature classifier performs signifi-
cantly better (1-tailedt-test,p ≤ .05) than the two
simpler classifiers, as measured by accuracy, polar
F-measure, and neutral F-measure (β = 1). It has an
accuracy of 75.9%, with a polar F-measure of 63.4
and a neutral F-measure of 82.1.

Focusing on the metrics for polar expressions, it’s
interesting to note that using just the word token as a
feature produces a classifier with a precision slightly
better than the 28-feature classifier, but with a recall
that is 20% lower. Adding a feature for the prior
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Word Features
word token
word prior polarity: positive, negative, both, neutral
Polarity Features
negated: binary
negated subject: binary
modifies polarity: positive, negative, neutral, both, notmod
modified by polarity: positive, negative, neutral, both, notmod
conj polarity: positive, negative, neutral, both, notmod
general polarity shifter: binary
negative polarity shifter: binary
positive polarity shifter: binary

Table 6: Features for polarity classification

polarity improves recall so that it is only 4.4% lower,
but this hurts precision, which drops to 4.2% lower
than the 28-feature classifier’s precision. It is only
with all the features that we get the best result, good
precision with the highest recall.

The clues in the prior-polarity lexicon have
19,506 instances in the test set. According to the
28-feature neutral-polar classifier, 5,671 of these in-
stances are polar in context. It is these clue instances
that are passed on to the second step in the contex-
tual disambiguation process, polarity classification.

6.3.2 Polarity Classification

Ideally, this second step in the disambiguation
process would be a three-way classification task, de-
termining whether the contextual polarity is posi-
tive, negative or both. However, although the major-
ity of neutral expressions have been filtered out by
the neutral-polar classification in step one, a number
still remain. So, for this step, the polarity classifica-
tion task remains four-way: positive, negative, both,
and neutral.

Table 6 lists the features used by the polarity clas-
sifier. Word tokenandword prior polarity are un-
changed from the neutral-polar classifier.Negated
is a binary feature that captures whether the word is
being locally negated: its value is true if a negation
word or phrase is found within the four preceeding
words or in any of the word’s children in the de-
pendency tree, and if the negation word is not in a
phrase that intensifies rather than negates (e.g.,not
only). Thenegated subjectfeature is true if the sub-
ject of the clause containing the word is negated.

The modifies polarity, modified by polarity, and
conj polarity features capture specific relationships
between the word instance and other polarity words

it may be related to. If the word and its parent in
the dependency tree share anobj, adj, mod, or vmod
relationship, themodifies polarityfeature is set to
the prior polarity of the word’s parent (if the parent
is not in our prior-polarity lexicon, its prior polarity
is set to neutral). Themodified by polarityfeature
is similar, looking foradj, mod, andvmodrelation-
ships and polarity clues within the word’s children.
The conj polarity feature determines if the word is
in a conjunction. If so, the value of this feature is its
sibling’s prior polarity (as above, if the sibling is not
in the lexicon, its prior polarity is neutral). Figure 1
helps to illustrate these features:modifies polarityis
negative for the word “substantial,”modified by po-
larity is positive for the word “challenge,” andconj
polarity is negative for the word “good.”

The last three polarity features look in a window
of four words before, searching for the presence of
particular types of polarity influencers.General po-
larity shifters reverse polarity (e.g.,little truth, lit-
tle threat).Negative polarity shifterstypically make
the polarity of an expression negative (e.g.,lack of
understanding).Positive polarity shifterstypically
make the polarity of an expression positive (e.g.,
abatethe damage).

The polarity classification results for this second
step in the contextual disambiguation process are
given in Table 5. Also listed in the table are results
for the two simple classifiers that provide our base-
lines. The first line in Table 5 lists the results for
the classifier that uses just one feature, the word to-
ken. The second line shows the results for the clas-
sifier that uses both the word token and the word’s
prior polarity as features. The last line shows the
results for the polarity classifier that uses all 10 fea-
tures from Table 6.

Mirroring the results from step one, the more
complex classifier performs significantly better than
the simpler classifiers, as measured by accuracy
and all of the F-measures. The 10-feature classi-
fier achieves an accuracy of 65.7%, which is 4.3%
higher than the more challenging baseline provided
by the word + prior polarity classifier. Positive F-
measure is 65.1 (5.7% higher); negative F-measure
is 77.2 (2.3% higher); and neutral F-measure is 46.2
(13.5% higher).

Focusing on the metrics for positive and negative
expressions, we again see that the simpler classifiers
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Acc Polar Rec Polar Prec Polar FNeut Rec Neut Prec Neut F
word token 73.6 45.3 72.2 55.7 89.9 74.0 81.2
word+priorpol 74.2 54.3 68.6 60.6 85.7 76.4 80.7
28 features 75.9 56.8 71.6 63.4 87.0 77.7 82.1

Table 4: Results for Step 1 Neutral-Polar Classification

Positive Negative Both Neutral
Acc Rec Prec F Rec Prec F Rec Prec F Rec Prec F

word token 61.7 59.3 63.4 61.2 83.9 64.7 73.1 9.2 35.2 14.6 30.2 50.1 37.7
word+priorpol 63.0 69.4 55.3 61.6 80.4 71.2 75.5 9.2 35.2 14.6 33.5 51.8 40.7
10 features 65.7 67.1 63.3 65.1 82.1 72.9 77.2 11.2 28.4 16.1 41.4 52.4 46.2

Table 5: Results for Step 2 Polarity Classification.

Experiment Features Removed
AB1 negated, negated subject
AB2 modifies polarity, modified by polarity
AB3 conj polarity
AB4 general, negative, and positive polarity shifters

Table 7: Features for polarity classification

take turns doing better or worse for precision and
recall. Using just the word token, positive preci-
sion is slightly higher than for the 10-feature clas-
sifier, but positive recall is 11.6% lower. Add the
prior polarity, and positive recall improves, but at
the expense of precision, which is 12.6% lower than
for the 10-feature classifier. The results for negative
expressions are similar. The word-token classifier
does well on negative recall but poorly on negative
precision. When prior polarity is added, negative
recall improves but negative precision drops. It is
only with the addition of the polarity features that we
achieve both higher precisions and higher recalls.

To explore how much the various polarity features
contribute to the performance of the polarity classi-
fier, we perform four experiments. In each experi-
ment, a different set of polarity features is excluded,
and the polarity classifier is retrained and evaluated.
Table 7 lists the features that are removed for each
experiment.

The only significant difference in performance in
these experiments is neutral F-measure when the
modification features (AB2) are removed. These
ablation experiments show that the combination of
features is needed to achieve significant results over
baseline for polarity classification.

7 Related Work

Much work on sentiment analysis classifies docu-
ments by their overall sentiment, for example deter-
mining whether a review is positive or negative (e.g.,
(Turney, 2002; Dave et al., 2003; Pang and Lee,
2004; Beineke et al., 2004)). In contrast, our ex-
periments classify individual words and phrases. A
number of researchers have explored learning words
and phrases withprior positive or negative polarity
(another term issemantic orientation) (e.g., (Hatzi-
vassiloglou and McKeown, 1997; Kamps and Marx,
2002; Turney, 2002)). In contrast, we begin with
a lexicon of words with established prior polarities,
and identify thecontextual polarityof phrases in
which instances of those words appear in the cor-
pus. To make the relationship between that task
and ours clearer, note that some word lists used to
evaluate methods for recognizing prior polarity are
included in our prior-polarity lexicon (General In-
quirer lists (General-Inquirer, 2000) used for evalu-
ation by Turney, and lists of manually identified pos-
itive and negative adjectives, used for evaluation by
Hatzivassiloglou and McKeown).

Some research classifies the sentiments of sen-
tences. Yu and Hatzivassiloglou (2003), Kim and
Hovy (2004), Hu and Liu (2004), and Grefenstette et
al. (2001)4 all begin by first creating prior-polarity
lexicons. Yu and Hatzivassiloglou then assign a sen-
timent to a sentence by averaging the prior semantic
orientations of instances of lexicon words in the sen-
tence. Thus, they do not identify the contextual po-
larity of individual phrases containing clues, as we

4In (Grefenstette et al., 2001), the units that are classified are
fixed windows around named entities rather than sentences.

353



do in this paper. Kim and Hovy, Hu and Liu, and
Grefenstette et al. multiply or count the prior po-
larities of clue instances in the sentence. They also
consider local negation to reverse polarity. However,
they do not use the other types of features in our
experiments, and they restrict their tags topositive
andnegative(excluding ourboth andneutral cate-
gories). In addition, their systems assign one sen-
timent per sentence; our system assigns contextual
polarity to individual expressions. As seen above,
sentences often contain more than one sentiment ex-
pression.

Nasukawa, Yi, and colleagues (Nasukawa and Yi,
2003; Yi et al., 2003) classify the contextual polarity
of sentiment expressions, as we do. Thus, their work
is probably most closely related to ours. They clas-
sify expressions that are about specific items, and
use manually developed patterns to classify polarity.
These patterns are high-quality, yielding quite high
precision, but very low recall. Their system classi-
fies a much smaller proportion of the sentiment ex-
pressions in a corpus than ours does.

8 Conclusions

In this paper, we present a new approach to
phrase-level sentiment analysis that first determines
whether an expression is neutral or polar and then
disambiguates the polarity of the polar expressions.
With this approach, we are able to automatically
identify thecontextual polarityfor a large subset of
sentiment expressions, achieving results that are sig-
nificantly better than baseline.
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Abstract

Recent systems have been developed for
sentiment classification, opinion recogni-
tion, and opinion analysis (e.g., detect-
ing polarity and strength). We pursue an-
other aspect of opinion analysis: identi-
fying the sources of opinions, emotions,
and sentiments. We view this problem as
an information extraction task and adopt
a hybrid approach that combines Con-
ditional Random Fields (Lafferty et al.,
2001) and a variation of AutoSlog (Riloff,
1996a). While CRFs model source iden-
tification as a sequence tagging task, Au-
toSlog learns extraction patterns. Our re-
sults show that the combination of these
two methods performs better than either
one alone. The resulting system identifies
opinion sources with 79.3% precision and
59.5% recall using a head noun matching
measure, and 81.2% precision and 60.6%
recall using an overlap measure.

1 Introduction

In recent years, there has been a great deal of in-
terest in methods for automatically identifying opin-
ions, emotions, and sentiments in text. Much of
this research explores sentiment classification, a text
categorization task in which the goal is to classify
a document as having positive or negative polar-
ity (e.g., Das and Chen (2001), Pang et al. (2002),
Turney (2002), Dave et al. (2003), Pang and Lee

(2004)). Other research efforts analyze opinion ex-
pressions at the sentence level or below to recog-
nize opinions, their polarity, and their strength (e.g.,
Dave et al. (2003), Pang and Lee (2004), Wilson et
al. (2004), Yu and Hatzivassiloglou (2003), Wiebe
and Riloff (2005)). Many applications could ben-
efit from these opinion analyzers, including prod-
uct reputation tracking (e.g., Morinaga et al. (2002),
Yi et al. (2003)), opinion-oriented summarization
(e.g., Cardie et al. (2004)), and question answering
(e.g., Bethard et al. (2004), Yu and Hatzivassiloglou
(2003)).

We focus here on another aspect of opinion
analysis: automatically identifying the sources of
the opinions. Identifying opinion sources will
be especially critical for opinion-oriented question-
answering systems (e.g., systems that answer ques-
tions of the form “How does [X] feel about [Y]?”)
and opinion-oriented summarization systems, both
of which need to distinguish the opinions of one
source from those of another.1

The goal of our research is to identify direct and
indirect sources of opinions, emotions, sentiments,
and other private states that are expressed in text.
To illustrate the nature of this problem, consider the
examples below:

S1: Taiwan-born voters favoring independence...

1In related work, we investigate methods to identify the
opinion expressions (e.g., Riloff and Wiebe (2003), Wiebe and
Riloff (2005), Wilson et al. (2005)) and the nesting structure
of sources (e.g., Breck and Cardie (2004)). The target of each
opinion, i.e., what the opinion is directed towards, is currently
being annotated manually for our corpus.
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S2: According to the report, the human rights
record in China is horrendous.

S3: International officers believe that the EU will
prevail.

S4: International officers said US officials want the
EU to prevail.

In S1, the phrase “Taiwan-born voters” is the di-
rect (i.e., first-hand) source of the “favoring” sen-
timent. In S2, “the report” is the direct source of
the opinion about China’s human rights record. In
S3, “International officers” are the direct source of
an opinion regarding the EU. The same phrase in
S4, however, denotes an indirect (i.e., second-hand,
third-hand, etc.) source of an opinion whose direct
source is “US officials”.

In this paper, we view source identification as an
information extraction task and tackle the problem
using sequence tagging and pattern matching tech-
niques simultaneously. Using syntactic, semantic,
and orthographic lexical features, dependency parse
features, and opinion recognition features, we train a
linear-chain Conditional Random Field (CRF) (Laf-
ferty et al., 2001) to identify opinion sources. In ad-
dition, we employ features based on automatically
learned extraction patterns and perform feature in-
duction on the CRF model.

We evaluate our hybrid approach using the NRRC
corpus (Wiebe et al., 2005), which is manually
annotated with direct and indirect opinion source
information. Experimental results show that the
CRF model performs well, and that both the extrac-
tion patterns and feature induction produce perfor-
mance gains. The resulting system identifies opinion
sources with 79.3% precision and 59.5% recall us-
ing a head noun matching measure, and 81.2% pre-
cision and 60.6% recall using an overlap measure.

2 The Big Picture

The goal of information extraction (IE) systems is
to extract information about events, including the
participants of the events. This task goes beyond
Named Entity recognition (e.g., Bikel et al. (1997))
because it requires the recognition of role relation-
ships. For example, an IE system that extracts in-
formation about corporate acquisitions must distin-
guish between the company that is doing the acquir-
ing and the company that is being acquired. Sim-

ilarly, an IE system that extracts information about
terrorism must distinguish between the person who
is the perpetrator and the person who is the victim.
We hypothesized that IE techniques would be well-
suited for source identification because an opinion
statement can be viewed as a kind of speech event
with the source as the agent.

We investigate two very different learning-based
methods from information extraction for the prob-
lem of opinion source identification: graphical mod-
els and extraction pattern learning. In particular, we
consider Conditional Random Fields (Lafferty et al.,
2001) and a variation of AutoSlog (Riloff, 1996a).
CRFs have been used successfully for Named En-
tity recognition (e.g., McCallum and Li (2003),
Sarawagi and Cohen (2004)), and AutoSlog has per-
formed well on information extraction tasks in sev-
eral domains (Riloff, 1996a). While CRFs treat
source identification as a sequence tagging task, Au-
toSlog views the problem as a pattern-matching task,
acquiring symbolic patterns that rely on both the
syntax and lexical semantics of a sentence. We hy-
pothesized that a combination of the two techniques
would perform better than either one alone.

Section 3 describes the CRF approach to identify-
ing opinion sources and the features that the system
uses. Section 4 then presents a new variation of Au-
toSlog, AutoSlog-SE, which generates IE patterns to
extract sources. Section 5 describes the hybrid sys-
tem: we encode the IE patterns as additional features
in the CRF model. Finally, Section 6 presents our
experimental results and error analysis.

3 Semantic Tagging via Conditional
Random Fields

We defined the problem of opinion source identifi-
cation as a sequence tagging task via CRFs as fol-
lows. Given a sequence of tokens, x = x1x2...xn,
we need to generate a sequence of tags, or labels,
y = y1y2...yn. We define the set of possible label
values as ’S’, ’T’, ’-’, where ’S’ is the first to-
ken (or Start) of a source, ’T’ is a non-initial token
(i.e., a conTinuation) of a source, and ’-’ is a token
that is not part of any source.2

A detailed description of CRFs can be found in

2This is equivalent to the IOB tagging scheme used in syn-
tactic chunkers (Ramshaw and Marcus, 1995).
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Lafferty et al. (2001). For our sequence tagging
problem, we create a linear-chain CRF based on
an undirected graph G = (V,E), where V is the
set of random variables Y = {Yi|1 ≤ i ≤ n},
one for each of n tokens in an input sentence;
and E = {(Yi−1, Yi)|1 < i ≤ n} is the set
of n − 1 edges forming a linear chain. For each
sentence x, we define a non-negative clique poten-
tial exp(

∑K
k=1 λkfk(yi−1, yi, x)) for each edge, and

exp(
∑K′

k=1 λ′kf
′

k(yi, x)) for each node, where fk(...)
is a binary feature indicator function, λk is a weight
assigned for each feature function, and K and K ′

are the number of features defined for edges and
nodes respectively. Following Lafferty et al. (2001),
the conditional probability of a sequence of labels y

given a sequence of tokens x is:

P (y|x) =
1
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„

X

i,k
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where Zx is a normalization constant for each
x. Given the training data D, a set of sen-
tences paired with their correct ’ST-’ source la-
bel sequences, the parameters of the model are
trained to maximize the conditional log-likelihood∏

(x,y)∈D P (y|x). For inference, given a sentence x

in the test data, the tagging sequence y is given by
argmaxy′P (y′|x).

3.1 Features

To develop features, we considered three properties
of opinion sources. First, the sources of opinions are
mostly noun phrases. Second, the source phrases
should be semantic entities that can bear or express
opinions. Third, the source phrases should be di-
rectly related to an opinion expression. When con-
sidering only the first and second criteria, this task
reduces to named entity recognition. Because of the
third condition, however, the task requires the recog-
nition of opinion expressions and a more sophisti-
cated encoding of sentence structure to capture re-
lationships between source phrases and opinion ex-
pressions.

With these properties in mind, we define the fol-
lowing features for each token/word xi in an input
sentence. For pedagogical reasons, we will describe
some of the features as being multi-valued or cate-
gorical features. In practice, however, all features
are binarized for the CRF model.

Capitalization features We use two boolean fea-
tures to represent the capitalization of a word:
all-capital, initial-capital.

Part-of-speech features Based on the lexical cat-
egories produced by GATE (Cunningham et al.,
2002), each token xi is classified into one of a set
of coarse part-of-speech tags: noun, verb, adverb,
wh-word, determiner, punctuation, etc. We do the
same for neighboring words in a [−2,+2] window
in order to assist noun phrase segmentation.

Opinion lexicon features For each token xi, we in-
clude a binary feature that indicates whether or not
the word is in our opinion lexicon — a set of words
that indicate the presence of an opinion. We do the
same for neighboring words in a [−1,+1] window.
Additionally, we include for xi a feature that in-
dicates the opinion subclass associated with xi, if
available from the lexicon. (e.g., “bless” is clas-
sified as “moderately subjective” according to the
lexicon, while “accuse” and “berate” are classified
more specifically as “judgments”.) The lexicon is
initially populated with approximately 500 opinion
words 3 from (Wiebe et al., 2002), and then aug-
mented with opinion words identified in the training
data. The training data contains manually produced
phrase-level annotations for all expressions of opin-
ions, emotions, etc. (Wiebe et al., 2005). We col-
lected all content words that occurred in the training
set such that at least 50% of their occurrences were
in opinion annotations.

Dependency tree features For each token xi, we
create features based on the parse tree produced by
the Collins (1999) dependency parser. The purpose
of the features is to (1) encode structural informa-
tion, and (2) indicate whether xi is involved in any
grammatical relations with an opinion word. Two
pre-processing steps are required before features can
be constructed:

3Some words are drawn from Levin (1993); others are from
Framenet lemmas (Baker et al. 1998) associated with commu-
nication verbs.
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1. Syntactic chunking. We traverse the depen-
dency tree using breadth-first search to identify
and group syntactically related nodes, produc-
ing a flatter, more concise tree. Each syntac-
tic “chunk” is also assigned a grammatical role
(e.g., subject, object, verb modifier, time,

location, of-pp, by-pp) based on its con-
stituents. Possessives (e.g., “Clinton’s idea”)
and the phrase “according to X” are handled as
special cases in the chunking process.

2. Opinion word propagation. Although the
opinion lexicon contains only content words
and no multi-word phrases, actual opinions of-
ten comprise an entire phrase, e.g., “is really
willing” or “in my opinion”. As a result, we
mark as an opinion the entire chunk that con-
tains an opinion word. This allows each token
in the chunk to act as an opinion word for fea-
ture encoding.

After syntactic chunking and opinion word propa-
gation, we create the following dependency tree fea-
tures for each token xi:

• the grammatical role of its chunk
• the grammatical role of xi−1’s chunk
• whether the parent chunk includes an opinion

word
• whether xi’s chunk is in an argument position

with respect to the parent chunk
• whether xi represents a constituent boundary

Semantic class features We use 7 binary fea-
tures to encode the semantic class of each word
xi: authority, government, human, media,
organization or company, proper name,
and other. The other class captures 13 seman-
tic classes that cannot be sources, such as vehicle
and time.

Semantic class information is derived from named
entity and semantic class labels assigned to xi by the
Sundance shallow parser (Riloff, 2004). Sundance
uses named entity recognition rules to label noun
phrases as belonging to named entity classes, and
assigns semantic tags to individual words based on
a semantic dictionary. Table 1 shows the hierarchy
that Sundance uses for semantic classes associated
with opinion sources. Sundance is also used to rec-
ognize and instantiate the source extraction patterns

PROPER NAMEAUTHORITY LOCATION

CITY

COUNTRY

PLANET

PROVINCE

PERSON NAME
PERSON DESC
NATIONALITY

TITLE

COMPANY

GOVERNMENT

MEDIA

ORGANIZATION

HUMAN

SOURCE

Figure 1: The semantic hierarchy for opinion
sources

that are learned by AutoSlog-SE, which is described
in the next section.

4 Semantic Tagging via Extraction
Patterns

We also learn patterns to extract opinion sources us-
ing a statistical adaptation of the AutoSlog IE learn-
ing algorithm. AutoSlog (Riloff, 1996a) is a super-
vised extraction pattern learner that takes a train-
ing corpus of texts and their associated answer keys
as input. A set of heuristics looks at the context
surrounding each answer and proposes a lexico-
syntactic pattern to extract that answer from the text.
The heuristics are not perfect, however, so the result-
ing set of patterns needs to be manually reviewed by
a person.

In order to build a fully automatic system that
does not depend on manual review, we combined
AutoSlog’s heuristics with statistics from the an-
notated training data to create a fully automatic
supervised learner. We will refer to this learner
as AutoSlog-SE (Statistically Enhanced variation
of AutoSlog). AutoSlog-SE’s learning process has
three steps:

Step 1: AutoSlog’s heuristics are applied to every
noun phrase (NP) in the training corpus. This
generates a set of extraction patterns that, col-
lectively, can extract every NP in the training
corpus.

Step 2: The learned patterns are augmented with
selectional restrictions that semantically con-
strain the types of noun phrases that are legiti-
mate extractions for opinion sources. We used
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the semantic classes shown in Figure 1 as se-
lectional restrictions.

Step 3: The patterns are applied to the training cor-
pus and statistics are gathered about their ex-
tractions. We count the number of extrac-
tions that match annotations in the corpus (cor-
rect extractions) and the number of extractions
that do not match annotations (incorrect extrac-
tions). These counts are then used to estimate
the probability that the pattern will extract an
opinion source in new texts:

P (source | patterni) =
correct sources

correct sources + incorrect sources

This learning process generates a set of extraction
patterns coupled with probabilities. In the next sec-
tion, we explain how these extraction patterns are
represented as features in the CRF model.

5 Extraction Pattern Features for the CRF

The extraction patterns provide two kinds of infor-
mation. SourcePatt indicates whether a word
activates any source extraction pattern. For exam-
ple, the word “complained” activates the pattern
“<subj> complained” because it anchors the ex-
pression. SourceExtr indicates whether a word is
extracted by any source pattern. For example, in the
sentence “President Jacques Chirac frequently com-
plained about France’s economy”, the words “Pres-
ident”, “Jacques”, and “Chirac” would all be ex-
tracted by the “<subj> complained” pattern.

Each extraction pattern has frequency and prob-
ability values produced by AutoSlog-SE, hence we
create four IE pattern-based features for each token
xi: SourcePatt-Freq, SourceExtr-Freq,
SourcePatt-Prob, and SourceExtr-Prob,
where the frequency values are divided into three
ranges: {0, 1, 2+} and the probability values are di-
vided into five ranges of equal size.

6 Experiments

We used the Multi-Perspective Question Answering
(MPQA) corpus4 for our experiments. This corpus

4The MPQA corpus can be freely obtained at
http://nrrc.mitre.org/NRRC/publications.htm.

consists of 535 documents that have been manu-
ally annotated with opinion-related information in-
cluding direct and indirect sources. We used 135
documents as a tuning set for model development
and feature engineering, and used the remaining 400
documents for evaluation, performing 10-fold cross
validation. These texts are English language ver-
sions of articles that come from many countries and
cover many topics.5

We evaluate performance using 3 measures: over-
lap match (OL), head match (HM), and exact match
(EM). OL is a lenient measure that considers an ex-
traction to be correct if it overlaps with any of the an-
notated words. HM is a more conservative measure
that considers an extraction to be correct if its head
matches the head of the annotated source. We report
these somewhat loose measures because the annota-
tors vary in where they place the exact boundaries
of a source. EM is the strictest measure that requires
an exact match between the extracted words and the
annotated words. We use three evaluation metrics:
recall, precision, and F-measure with recall and pre-
cision equally weighted.

6.1 Baselines

We developed three baseline systems to assess the
difficulty of our task. Baseline-1 labels as sources
all phrases that belong to the semantic categories
authority, government, human, media,
organization or company, proper name.
Table 1 shows that the precision is poor, suggest-
ing that the third condition described in Section 3.1
(opinion recognition) does play an important role in
source identification. The recall is much higher but
still limited due to sources that fall outside of the se-
mantic categories or are not recognized as belong-
ing to these categories. Baseline-2 labels a noun
phrase as a source if any of the following are true:
(1) the NP is the subject of a verb phrase containing
an opinion word, (2) the NP follows “according to”,
(3) the NP contains a possessive and is preceded by
an opinion word, or (4) the NP follows “by” and at-
taches to an opinion word. Baseline-2’s heuristics
are designed to address the first and the third condi-
tions in Section 3.1. Table 1 shows that Baseline-2
is substantially better than Baseline-1. Baseline-3

5This data was obtained from the Foreign Broadcast Infor-
mation Service (FBIS), a U.S. government agency.
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Recall Prec F1

OL 77.3 28.8 42.0
Baseline-1 HM 71.4 28.6 40.8

EM 65.4 20.9 31.7
OL 62.4 60.5 61.4

Baseline-2 HM 59.7 58.2 58.9
EM 50.8 48.9 49.8
OL 49.9 72.6 59.2

Baseline-3 HM 47.4 72.5 57.3
EM 44.3 58.2 50.3

OL 48.5 81.3 60.8
Extraction Patterns HM 46.9 78.5 58.7

EM 41.9 70.2 52.5

CRF: OL 56.1 81.0 66.3
basic features HM 55.1 79.2 65.0

EM 50.0 72.4 59.2
CRF: OL 59.1 82.4 68.9

basic + IE pattern HM 58.1 80.5 67.5
features EM 52.5 73.3 61.2
CRF-FI: OL 57.7 80.7 67.3

basic features HM 56.8 78.8 66.0
EM 51.7 72.4 60.3

CRF-FI: OL 60.6 81.2 69.4
basic + IE pattern HM 59.5 79.3 68.0

features EM 54.1 72.7 62.0

Table 1: Source identification performance table

labels a noun phrase as a source if it satisfies both
Baseline-1 and Baseline-2’s conditions (this should
satisfy all three conditions described in Section 3.1).
As shown in Table 1, the precision of this approach
is the best of the three baselines, but the recall is the
lowest.

6.2 Extraction Pattern Experiment

We evaluated the performance of the learned extrac-
tion patterns on the source identification task. The
learned patterns were applied to the test data and
the extracted sources were scored against the manual
annotations.6 Table 1 shows that the extraction pat-
terns produced lower recall than the baselines, but
with considerably higher precision. These results
show that the extraction patterns alone can identify

6These results were obtained using the patterns that had a
probability > .50 and frequency > 1.

nearly half of the opinion sources with good accu-
racy.

6.3 CRF Experiments

We developed our CRF model using the MALLET
code from McCallum (2002). For training, we used
a Gaussian prior of 0.25, selected based on the tun-
ing data. We evaluate the CRF using the basic fea-
tures from Section 3, both with and without the IE
pattern features from Section 5. Table 1 shows that
the CRF with basic features outperforms all of the
baselines as well as the extraction patterns, achiev-
ing an F-measure of 66.3 using the OL measure,
65.0 using the HM measure, and 59.2 using the
EM measure. Adding the IE pattern features fur-
ther increases performance, boosting recall by about
3 points for all of the measures and slightly increas-
ing precision as well.

CRF with feature induction. One limitation of
log-linear function models like CRFs is that they
cannot form a decision boundary from conjunctions
of existing features, unless conjunctions are explic-
itly given as part of the feature vector. For the
task of identifying opinion sources, we observed
that the model could benefit from conjunctive fea-
tures. For instance, instead of using two separate
features, HUMAN and PARENT-CHUNK-INCLUDES-
OPINION-EXPRESSION, the conjunction of the two
is more informative.

For this reason, we applied the CRF feature in-
duction approach introduced by McCallum (2003).
As shown in Table 1, where CRF-FI stands for the
CRF model with feature induction, we see consis-
tent improvements by automatically generating con-
junctive features. The final system, which com-
bines the basic features, the IE pattern features,
and feature induction achieves an F-measure of 69.4
(recall=60.6%, precision=81.2%) for the OL mea-
sure, an F-measure of 68.0 (recall=59.5%, preci-
sion=79.3%) for the HM measure, and an F-measure
of 62.0 (recall=54.1%, precision=72.7%) for the EM
measure.

6.4 Error Analysis

An analysis of the errors indicated some common
mistakes:

• Some errors resulted from error propagation in
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our subsystems. Errors from the sentence bound-
ary detector in GATE (Cunningham et al., 2002)
were especially problematic because they caused
the Collins parser to fail, resulting in no depen-
dency tree information.
• Some errors were due to complex and unusual
sentence structure, which our rather simple fea-
ture encoding for CRF could not capture well.
• Some errors were due to the limited coverage of
the opinion lexicon. We failed to recognize some
cases when idiomatic or vague expressions were
used to express opinions.

Below are some examples of errors that we found
interesting. Doubly underlined phrases indicate in-
correctly extracted sources (either false positives
or false negatives). Opinion words are singly
underlined.
False positives:

(1) Actually, these three countries do have one common
denominator, i.e., that their values and policies do not
agree with those of the United States and none of them
are on good terms with the United States.

(2) Perhaps this is why Fidel Castro has not spoken out
against what might go on in Guantanamo.

In (1), “their values and policies” seems like a rea-
sonable phrase to extract, but the annotation does not
mark this as a source, perhaps because it is some-
what abstract. In (2), “spoken out” is negated, which
means that the verb phrase does not bear an opinion,
but our system failed to recognize the negation.
False negatives:

(3) And for this reason, too, they have a moral duty to
speak out, as Swedish Foreign Minister Anna Lindh,
among others, did yesterday.

(4) In particular, Iran and Iraq are at loggerheads with
each other to this day.

Example (3) involves a complex sentence structure
that our system could not deal with. (4) involves an
uncommon opinion expression that our system did
not recognize.

7 Related Work

To our knowledge, our research is the first to auto-
matically identify opinion sources using the MPQA
opinion annotation scheme. The most closely re-
lated work on opinion analysis is Bethard et al.
(2004), who use machine learning techniques to
identify propositional opinions and their holders
(sources). However, their work is more limited

in scope than ours in several ways. Their work
only addresses propositional opinions, which are
“localized in the propositional argument” of cer-
tain verbs such as “believe” or “realize”. In con-
trast, our work aims to find sources for all opinions,
emotions, and sentiments, including those that are
not related to a verb at all. Furthermore, Berthard
et al.’s task definition only requires the identifica-
tion of direct sources, while our task requires the
identification of both direct and indirect sources.
Bethard et al. evaluate their system on manually
annotated FrameNet (Baker et al., 1998) and Prop-
Bank (Palmer et al., 2005) sentences and achieve
48% recall with 57% precision.

Our IE pattern learner can be viewed as a cross
between AutoSlog (Riloff, 1996a) and AutoSlog-
TS (Riloff, 1996b). AutoSlog is a supervised learner
that requires annotated training data but does not
compute statistics. AutoSlog-TS is a weakly super-
vised learner that does not require annotated data
but generates coarse statistics that measure each pat-
tern’s correlation with relevant and irrelevant docu-
ments. Consequently, the patterns learned by both
AutoSlog and AutoSlog-TS need to be manually re-
viewed by a person to achieve good accuracy. In
contrast, our IE learner, AutoSlog-SE, computes
statistics directly from the annotated training data,
creating a fully automatic variation of AutoSlog.

8 Conclusion

We have described a hybrid approach to the problem
of extracting sources of opinions in text. We cast
this problem as an information extraction task, using
both CRFs and extraction patterns. Our research is
the first to identify both direct and indirect sources
for all types of opinions, emotions, and sentiments.

Directions for future work include trying to in-
crease recall by identifying relationships between
opinions and sources that cross sentence boundaries,
and relationships between multiple opinion expres-
sions by the same source. For example, the fact that
a coreferring noun phrase was marked as a source
in one sentence could be a useful clue for extracting
the source from another sentence. The probability or
the strength of an opinion expression may also play
a useful role in encouraging or suppressing source
extraction.
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Abstract 

This research is aimed at the problem of 
disambiguating toponyms (place names) 
in terms of a classification derived by 
merging information from two publicly 
available gazetteers. To establish the dif-
ficulty of the problem, we measured the 
degree of ambiguity, with respect to a 
gazetteer, for toponyms in news. We 
found that 67.82% of the toponyms found 
in a corpus that were ambiguous in a gaz-
etteer lacked a local discriminator in the 
text. Given the scarcity of human-
annotated data, our method used unsuper-
vised machine learning to develop disam-
biguation rules. Toponyms were 
automatically tagged with information 
about them found in a gazetteer. A 
toponym that was ambiguous in the gazet-
teer was automatically disambiguated 
based on preference heuristics. This 
automatically tagged data was used to 
train a machine learner, which disambigu-
ated toponyms in a human-annotated 
news corpus at 78.5% accuracy.  

1 Introduction 

Place names, or toponyms, are ubiquitous in natu-
ral language texts. In many applications, including 
Geographic Information Systems (GIS), it is nec-
essary to interpret a given toponym mention as a 
particular entity in a geographical database or gaz-
etteer. Thus the mention “Washington” in “He vis-
ited Washington last year” will need to be 
interpreted as a reference to either the city Wash-
ington, DC or the U.S. state of Washington, and 
“Berlin” in “Berlin is cold in the winter” could 

mean Berlin, New Hampshire or Berlin, Germany, 
among other possibilities. While there has been a 
considerable body of work distinguishing between 
a toponym and other kinds of names (e.g., person 
names), there has been relatively little work on 
resolving which place and what kind of place given 
a classification of kinds of places in a gazetteer. 
Disambiguated toponyms can be used in a GIS to 
highlight a position on a map corresponding to the 
coordinates of the place, or to draw a polygon rep-
resenting the boundary. 

In this paper, we describe a corpus-based method 
for disambiguating toponyms. To establish the dif-
ficulty of the problem, we began by quantifying 
the degree of ambiguity of toponyms in a corpus 
with respect to a U.S. gazetteer. We then carried 
out a corpus-based investigation of features that 
could help disambiguate toponyms. Given the 
scarcity of human-annotated data, our method used 
unsupervised machine learning to develop disam-
biguation rules. Toponyms were automatically 
tagged with information about them found in a 
gazetteer. A toponym that was ambiguous in the 
gazetteer was automatically disambiguated based 
on preference heuristics. This automatically tagged 
data was used to train the machine learner. We 
compared this method with a supervised machine 
learning approach trained on a corpus annotated 
and disambiguated by hand. 

Our investigation targeted toponyms that name 
cities, towns, counties, states, countries or national 
capitals.   We sought to classify each toponym as a 
national capital, a civil political/administrative 
region, or a populated place (administration un-
specified). In the vector model of GIS, the type of 
place crucially determines the geometry chosen to 
represent it (e.g., point, line or polygon) as well as 
any reasoning about geographical inclusion. The 
class of the toponym can be useful in “grounding” 
the toponym to latitude and longitude coordinates,  
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Entry 
Number 

Topony
m 

U.S. 
County 

U.S. State Lat-Long 
(dddmmss) 

Elevation (ft. 
above sea 
level) 

Class 

110 Acton     
 

Middlesex Massachu-
setts 

422906N-
0712600W 

260 
 

Ppl (popu-
lated place) 

111 Acton Yellow-
stone 

Montana 455550N-
1084048W 

3816 Ppl 

112 Acton Los Ange-
les 

California 342812N-
1181145W 

2720 Ppl 

Table 1. Example GNIS entries for an ambiguous toponym 
 

but it can also go beyond grounding to support spa-
tial reasoning. For example, if the province is 
merely grounded as a point in the data model (e.g., 
if the gazetteer states that the centroid of a prov-
ince is located at a particular latitude-longitude) 
then without the class information, the inclusion of 
a city within a province can’t be established. Also, 
resolving multiple cities or a unique capital to a 
political region mentioned in the text can be a use-
ful adjunct to a map that lacks political boundaries 
or whose boundaries are dated. 

It is worth noting that our classification is more 
fine-grained than efforts like the EDT task in 
Automatic Content Extraction1 program (Mitchell 
and Strassel 2002), which distinguishes between 
toponyms that are a Facility “Alfredo Kraus Audi-
torium”, a Location “the Hudson River”, and Geo-
Political Entities that include territories “U.S. 
heartland”, and metonymic or other derivative 
place references “Russians”, “China (offered)”, 
“the U.S. company”, etc. Our classification, being 
gazetteer based, is more suited to GIS-based appli-
cations. 

2 Quantifying Toponym Ambiguity  

2.1 Data 

We used a month’s worth of articles from the New 
York Times (September 2001), part of the English 
Gigaword (LDC 2003).  This corpus consisted of 
7,739 documents and, after SGML stripping, 6.51 
million word tokens with a total size of 36.4MB).  
We tagged the corpus using a list of place names 
from the USGS Concise Gazetteer (GNIS). The 
resulting corpus is called MAC1, for “Machine 
Annotated Corpus 1”. GNIS covers cities, states, 

                                                           
1 www.ldc.upenn.edu/Projects/ACE/ 

and counties in the U.S., which are classified as 
“civil” and “populated place” geographical enti-
ties.  A geographical entity is an entity on the 
Earth’s surface that can be represented by some 
geometric specification in a GIS; for example, as a 
point, line or polygon. GNIS also covers 53 other 
types of geo-entities, e.g., “valley,” “summit”, 
“water” and “park.” GNIS has 37,479 entries, with 
27,649 distinct toponyms, of which 13,860 
toponyms had multiple entries in the GNIS (i.e., 
were ambiguous according to GNIS). Table 1 
shows the entries in GNIS for an ambiguous 
toponym. 
2.2 Analysis 

Let E be a set of elements, and let F be a set of fea-
tures. We define a feature g in F to be a disam-
biguator for E iff for all pairs <ex, ey> in E X E, 
g(ex) ≠ g(ey) and neither g(ex) nor g(ey) are null-
valued.  As an example, consider the GNIS gazet-
teer in Table 1, let F = {U.S. County, U.S. State, 
Lat-Long, and Elevation}. We can see that each 
feature in F is a disambiguator for the set of entries 
E = {110, 111, 112}.  

Let us now characterize the mapping between 
texts and gazetteers. A string s1 in a text is said to 
be a discriminator within a window w for another 
string s2 no more than w words away if s1 matches 
a disambiguator d for s2 in a gazetteer. For exam-
ple, “MT” is a  discriminator within a window 5 
for the toponym “Acton” in “Acton, MT,” since 
“MT” occurs within a ±5-word window of “Acton” 
and matches, via an abbreviation, “Montana”, the 
value of a GNIS disambiguator U.S. State (here the 
tokenized words are “Acton”, “,”, and “MT”).  

A trie-based lexical lookup tool (called LexScan) 
was used to match each toponym in GNIS against 
the corpus MAC1. Of the 27,649 distinct toponyms 
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in GNIS, only 4553 were found in the corpus (note 
that GNIS has only U.S. toponyms). Of the 4553 
toponyms, 2911 (63.94%) were “bare” toponyms, 
lacking a local discriminator within a ±5-word 
window that could resolve the name.  

Of the 13,860 toponyms that were ambiguous 
according to GNIS, 1827 of them were found in 
MAC1, of which only 588 had discriminators 
within a ±5-word window (i.e., discriminators 
which matched gazetteer features that disambigu-
ated the toponym). Thus, 67.82% of the 1827 
toponyms found in MAC1 that were ambiguous in 
GNIS lacked a discriminator.    

This 67.82% proportion is only an estimate of 
true toponym ambiguity, even for the sample 
MAC1. There are several sources of error in this 
estimate: (i) World cities, capitals and countries 
were not yet considered, since GNIS only covered 
U.S. toponyms. (ii) In general, a single feature 
(e.g., County, or State) may not be sufficient to 
disambiguate a set of entries. It is of course possi-
ble for two different places named by a common 
toponym to be located in the same county in the 
same state. However, there were no toponyms with 
this property in GNIS. (iii) A string in MAC1 
tagged by GNIS lexical lookup as a toponym may 
not have been a place name at all (e.g., “Lord Ac-
ton lived …”). Of the toponyms that were spurious, 
most were judged by us to be common words and 
person names.  This should not be surprising, as 
5341 toponyms in GNIS are also person names 
according to the U.S. Census Bureau2 (iv) LexScan 
wasn’t perfect, for the following reasons. First, it 
sought only exact matches. Second, the matching 
relied on expansion of standard abbreviations. Due 
to non-standard abbreviations, the number of true 
U.S. toponyms in the corpus likely exceeded 4553.  
Third, the matches were all case-sensitive: while 
case-insensitivity caused numerous spurious 
matches, case-sensitivity missed a more predict-
able set, i.e. all-caps dateline toponyms or lower-
case toponyms in Internet addresses. 

Note that the 67.82% proportion is just an esti-
mate of local ambiguity. Of course, there are often 
non-local discriminators (outside the ±5-word 
windows); for example, an initial place name ref-
erence could have a local discriminator, with sub-

                                                           
                                                          2 www.census.gov/genealogy/www/freqnames.html 

 

sequent references in the article lacking local dis-
criminators while being coreferential with the ini-
tial reference. To estimate this, we selected cases 
where a toponym was discriminated on its first 
mention.  In those cases, we counted the number of 
times the toponym was repeated in the same 
document without the discriminator. We found that 
73% of the repetitions lacked a local discriminator, 
suggesting an important role for coreference (see 
Sections 4 and 5). 

3 Knowledge Sources for Automatic Dis-
ambiguation  

To prepare a toponym disambiguator, we required 
a gazetteer as well as corpora for training and test-
ing it.  

3.1 Gazetteer 

To obtain a gazetteer that covered worldwide 
information, we harvested countries, country capi-
tals, and populous world cities from two websites 
ATLAS3 and GAZ4, to form a consolidated gazet-
teer (WAG) with four features G1,..,G4 based on 
geographical inclusion, and three classes, as shown 
in Table 2. As an example, an entry for Aberdeen 
could be the following feature vector: G1=United 
States, G2=Maryland, G3=Harford County, 
G4=Aberdeen, CLASS=ppl.  

We now briefly discuss the merging of ATLAS 
and GAZ to produce WAG. ATLAS provided a 
simple list of countries and their capitals.  GAZ 
recorded the country as well as the population of 
700 cities of at least 500,000 people.  If a city was 
in both sources, we allowed two entries but or-
dered them in WAG to make the more specific 
type (e.g. “capital”) the default sense, the one that 
LexScan would use. Accents and diacritics were 
stripped from WAG toponyms by hand, and aliases 
were associated with standard forms. Finally, we 
merged GNIS state names with these, as well as 
abbreviations discovered by our abbreviation ex-
pander.  

3.2 Corpora 

We selected a corpus consisting of 15,587 articles 
from the complete Gigaword Agence France 

 
3 . www.worldatlas.com 
4 www.worldgazetteer.com 
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Presse, May 2002.  LexScan was used to tag, in-
sensitive to case, all WAG toponyms found in this 
corpus, with the attributes in Table 2.  If there were 

multiple entries in WAG for a toponym, LexScan 
only tagged the preferred sense, discussed below. 
The resulting tagged corpus, called MAC-DEV, 

 
Tag At-
tribute 

Description 

CLASS Civil (Political Region or Administrative Area, e.g. Country, Province, County), Ppl 
(Populated Place, e.g. City, Town), Cap (Country Capital, Provincial Capital, or County 
Seat) 

G1 Country 
G2 Province (State) or Country-Capital 
G3 County or Independent City 
G4 City, Town (Within County) 

Table 2: WAG Gazetteer Attributes 
 

Corpus Size Use How Annotated 
MAC1 6.51 million words with 

61,720 place names (4553 
distinct) from GNIS 

Ambiguity Study (Gigaword NYT Sept. 
2001) (Section 2) 

LexScan of all 
senses, no attributes 
marked  

MAC-
DEV 

5.47 million words with 
124,175 place names 
(1229 distinct) from 
WAG 

Development Corpus (Gigaword AFP 
May 2002) (Section 4) 

LexScan using at-
tributes from WAG, 
with heuristic pref-
erence 

MAC-
ML 

6.21 million words with 
181,866 place names 
(1322 distinct) from 
WAG 

Machine Learning Corpus (Gigaword AP 
Worldwide January 2002) (Section 5) 

LexScan using at-
tributes from WAG, 
with heuristic pref-
erence 

HAC 83,872 words with 1275 
place names (435 distinct) 
from WAG.   

Human Annotated Corpus (from Time-
Bank 1.2,  and Gigaword NYT Sept. 2001 
and June 2002) (Section 5) 

LexScan using 
WAG, with attrib-
utes and sense being 
manually corrected 

Table 3.  Summary of Corpora 
 

Term found 
with Cap 

T-test 
Civil 

T-
test 
Ppl 

Term found 
with Ppl 

T-test 
Civil 

T-test 
Cap 

Term found 
with Civil 

T-
test 
Ppl 

T-test 
Cap 

‘stock’ 4 4 ‘winter’ 3.61 3.61 ‘air’ 3.16 3.16 
‘exchange’ 4.24 4.24 ‘telephone’ 3.16 3.16 ‘base’ 3.16 3.16 
‘embassy’ 3.61 3.61 ‘port’ 3.46 3.46 ‘accuses’ 3.61 3.61 
‘capital’ 1.4 2.2 ‘midfielder’ 3.46 3.46 ‘northern’ 5.57 5.57 
‘airport’ 3.32 3.32 ‘city’ 1.19 1.19 ‘airlines’ 4.8 4.8 
‘summit’ 4 4 ‘near’ 2.77 3.83 ‘invaded’ 3.32 3.32 
‘lower’ 3.16 3.16 ‘times’ 3.16 3.16 ‘southern’ 3.87 6.71 
‘visit’ 4.61 4.69 ‘southern’ 3.87 3.87 ‘friendly’ 4 4 
‘conference’ 4.24 4.24 ‘yen’ 4 0.56 ‘state-run’ 3.32 3.32 
‘agreement’ 3.16 3.16 ‘attack’ 0.18 3.87 ‘border’ 7.48 7.48 

Table 4. Top 10 terms disambiguating toponym classes

was used as a development corpus for feature 
exploration. To disambiguate the sense for a 

toponym that was ambiguous in WAG, we used 
two preference heuristics. First, we searched 
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MAC1 for two dozen highly frequent ambiguous 
toponym strings (e.g., “Washington”, etc.), and 
observed by inspection which sense predomi-
nated in MAC1, preferring the predominant 
sense for each of these frequently mentioned 
toponyms. For example, in MAC1, “Washing-
ton” was predominantly a Capital. Second, for 
toponyms outside this most frequent set, we 
used the following specificity-based preference: 
Cap. > Ppl > Civil. In other words, we prefer 
the more specific sense; since there are a smaller 
number of Capitals than Populated places, we 
prefer Capitals to Populated Places.  

For machine learning, we used the Gigaword 
Associated Press Worldwide January 2002 
(15,999 articles), tagged in the same way by 
LexScan as MAC-DEV was. This set was called 
MAC-ML. Thus, MAC1, MAC-DEV, and 
MAC-ML were all generated automatically, 
without human supervision. 

For a blind test corpus with human annotation, 
we opportunistically sampled three corpora: 
MAC1, TimeBank 1.25 and the June 2002 New 
York Times from the English Gigaword, with 
the first author tagging a random 28, 88, and 49 
documents respectively from each. Each tag in 
the resulting human annotated corpus (HAC) 
had the WAG attributes from Table 2 with man-
ual correction of all the WAG attributes. A 
summary of the corpora, their source, and anno-
tation status is shown in Table 3.  

4 Feature Exploration 

We used the tagged toponyms in MAC-DEV to 
explore useful features for disambiguating the 
classes of toponyms.  We identified single-word 
terms that co-occurred significantly with classes 
within a k-word window (we tried k= ±3, and 
k=±20). These terms were scored for pointwise 
mutual information (MI) with the classes. Terms 
with average tf.idf of less than 4 in the collection 
were filtered out as these tended to be personal 
pronouns, articles and prepositions.  

To identify which terms helped select for par-
ticular classes of toponyms, the set of 48 terms 
whose MI scores were above a threshold (-11, 
chosen by inspection) were filtered using the 
student’s t-statistic, based on an idea in (Church 

                                                           
5 www.timeml.org 

and Hanks 1991). The t-statistic was used to 
compare the distribution of the term with one 
class of toponym to its distribution with other 
classes to assess whether the underlying distri-
butions were significantly different with at least 
95% confidence. The results are shown in Table 
4, where scores for a term that occurred jointly 
in a window with at least one other class label 
are shown in bold. A t-score > 1.645 is a signifi-
cant difference with 95% confidence. However, 
because joint evidence was scarce, we eventu-
ally chose not to eliminate Table 4 terms such as 
‘city’ (t =1.19) as features for machine learning.  
Some of the terms were significant disambigua-
tors between only one pair of classes, e.g. ‘yen,’ 
‘attack,’ and ‘capital,’ but we kept them on that 
basis.  

 
Feature 

Name 
Description 

Abbrev Value is true iff the 
toponym  is abbreviated. 

AllCaps Value is true iff the 
toponym is all capital let-
ters.  

Left/Right 
Pos{1,.., k} 

Values are the ordered 
tokens up to k positions to 
the left/right 

WkContext Value is the set of MI 
collocated terms found in 
windows of ± k tokens (to 
the left and right) 

TagDis-
course 

 Value is the set of 
CLASS values represented 
by all toponyms from the 
document:  e.g., the set 
{civil, capital, ppl} 

CorefClass Value is the CLASS if 
any for a prior mention of 
a toponym in the docu-
ment, or none 

 Table 5. Features for Machine Learning 
 
Based on the discovered terms in experiments 

with different window sizes, and an examination 
of MAC1 and MAC-DEV, we identified a final 
set of features that, it seemed, might be useful 
for machine learning experiments. These are 
shown in Table 5.  The features Abbrev and All-
caps describe evidence internal to the toponym: 
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an abbreviation may indicate a state (Mass.), 
territory (N.S.W.), country (U.K.), or some other 
civil place; an all-caps toponym might be a capi-
tal or ppl in a dateline.  The feature sets LeftPos 
and RightPos target the ±k positions in each 
window as ordered tokens, but note that only 
windows with a MI term are considered.  The 
domain of WkContext is the window of ±k to-
kens around a toponym that contains a MI collo-
cated term.     
   We now turn to the global discourse-level fea-
tures. The domain for TagDiscourse is the whole 
document, which is evaluated for the set of 
toponym classes present: this information may 
reflect the discourse topic, e.g. a discussion of 
U.S. sports teams will favor mentions of cities 
over states or capitals.  The feature CorefClass 

implements a one sense per discourse strategy, 
motivated by our earlier observation (from Sec-
tion 2) that 73% of subsequent mentions of a 
toponym that was discriminated on first mention 
were expressed without a local discriminator. 

5 Machine Learning 

The features in Table 5 were used to code fea-
ture vectors for a statistical classifier. The results 
are shown in Table 6.  As an example, when the 
Ripper classifier (Cohen 1996) was trained on 
MAC-ML with a window of k= ±3 word tokens, 
the predictive accuracy when tested using cross-
validation MAC-ML was 88.39% ±0.24 (where 
0.24 is the standard deviation across 10 folds).

 
Accuracy on Test Set   

Window = ±3 Window = ±20 

Training 

Set 

Test Set Predictive 

Accuracy 

Recall,  Preci-

sion, F-measure 

Predictive 

Accuracy 

Recall, Precision, 

F-measure 

MAC-ML  MAC-ML 
(cross-
validation) 

88.39 ± 
0.24 (Civ. 
65.0)  

Cap r70 p88 f78 
Civ. r94 p90 f92 
Ppl r87 p82 f84 
Avg. r84 p87 f85 

80.97 ± 
0.33 (Civ. 
57.1) 

Cap r61 p77 f68 
Civ. r83 p86 f84 
Ppl r81 p72 f76 
Avg. r75 p78 f76 

MAC-DEV  MAC-DEV 
(cross-
validation) 

87.08 ± 
0.28 (Civ. 
57.8) 

Cap r74 p87 f80 
Civ. r93 p88 f91 
Ppl r82 p80 f81 
Avg. r83 p85 f84 

81.36 ± 
0.59 (Civ. 
59.3) 

Cap r49 p78 f60 
Civ. r92 p81 f86 
Ppl r56 p70 f59 
Avg. r66 p77 f68 

MAC-DEV HAC 68.66 (Civ. 
59.7) 

Cap r50 p71 f59 
Civ. r93 p70 f80 
Ppl r24 p57 f33 
Avg. r56 p66 f57  

65.33 
(Civ. 50.7) 

Cap r100 p100 
f100 
Civ. r84 p62 f71 
Ppl r43 p71 f54 
Avg. r76 p78 f75 

HAC 
  

HAC 
 (cross-
validation) 

77.5 ± 2.94  
(Ppl 72.9) 

Cap r70 p97 f68 
Civ. r34 p94 f49 
Ppl r98 p64 f77 
Avg. r67 p85 f65 

73.12 ± 
3.09 (Ppl 
51.3) 

Cap r17 p90 f20 
Civ. r63 p76 f68 
Ppl r84 p73 f77 
Avg. r54 p79 f55 

MAC-
DEV+MAC-
ML 

MAC-
DEV+MAC-
ML (cross-
validation) 

86.76 ± 
0.18 (Civ. 
60.7) 

Cap r70 p89 f78 
Civ. r94 r88 f91 
Ppl r81 p80 f80 
Avg. r82 p86 f83 

79.70 ± 
0.30 (Civ. 
59.7) 

Cap r56 p73 f63 
Civ. r83 p86 f84 
Ppl r80 p68 f73 
Avg. r73 p76 f73 

MAC-
DEV+MAC-
ML 

HAC 73.07 (Civ. 
51.7) 

Cap r71 p83 f77 
Civ. r91 p69 f79 
Ppl r45 f81 f58 
Avg. r69 p78 f71 

78.30 
(Civ. 50) 

Cap r100 p63 f77 
Civ. r91 p75 f82 
Ppl r63 p88 f73 
Avg. r85 p75 f77 

Table 6. Machine Learning Accuracy 
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The majority class (Civil) had the predictive accu-
racy shown in parentheses.  (When tested on a dif-
ferent set from the training set, cross-validation 
wasn’t used). Ripper reports a confusion matrix for 
each class; Recall, Precision, and F-measure for 
these classes are shown, along with their average 
across classes.  

In all cases, Ripper is significantly better in pre-
dictive accuracy than the majority class. When 
testing using cross-validation on the same ma-
chine-annotated corpus as the classifier was trained 
on, performance is comparable across corpora, and 
is in the high 80%, e.g., 88.39 on MAC-ML 
(k=±3). Performance drops substantially when we 
train on machine-annotated corpora but test on the 
human-annotated corpus (HAC) (the unsupervised 
approach), or when we both train and test on HAC 
(the supervised approach). The noise in the auto-
generated classes in the machine-annotated corpus 
is a likely cause for the lower accuracy of the un-
supervised approach. The poor performance of the 
supervised approach can be attributed to the lack of 
human-annotated training data: HAC is a small, 
83,872-word corpus.  

 
Rule Description  
(Window = ±3) 

Coverage 
of Examples 
in Testing 
(Accuracy) 

If not AllCaps(P) and  Right-
Pos1(P,‘SINGLE_QUOTE’) 
and Civil ∈ TagDiscourse Then 
Civil(P). 

5/67 
(100%) 

If not AllCaps(P) and  Left-
Pos1(P, southern) and Civil ∈ 
TagDiscourse Then Civil(P). 

13/67 
(100%) 

Table 7. Sample Rules Learnt by Ripper 

TagDiscourse was a critical feature; ignoring it 
during learning dropped the accuracy nearly 9 per-
centage points. This indicates that prior mention of 
a class increases the likelihood of that class. (Note 
that when inducing a rule involving a set-valued 
feature, Ripper tests whether an element is a mem-
ber of that set-valued feature, selecting the test that 
maximizes information gain for a set of examples.) 
Increasing the window size only lowered accuracy 
when tested on the same corpus (using cross-
validation); for example, an increase from ±3 
words to ±20 words (intervening sizes are not 
shown for reasons of space) lowered the PA by 5.7 

percentage points on MAC-DEV. However, in-
creasing the training set size was effective, and this 
increase was more substantial for larger window 
sizes: combining MAC-ML with MAC-DEV im-
proved accuracy on HAC by about 4.5% for k= ±3, 
but an increase of 13% was seen for k =±20.  In 
addition, F-measure for the classes was steady or 
increased. As Table 6 shows, this was largely due 
to the increase in recall on the non-majority 
classes. The best performance when training Rip-
per on the machine-annotated MAC-DEV+MAC-
ML and testing on the human-annotated corpus 
HAC was 78.30.  

Another learner we tried, the SMO support-
vector machine from WEKA (Witten and Frank 
2005), was marginally better, showing 81.0 predic-
tive accuracy training and testing on MAC-
DEV+MAC-ML (ten-fold cross-validation, k=±20) 
and 78.5 predictive accuracy training on MAC-
DEV+MAC-ML and testing on HAC (k=±20). 
Ripper rules are of course more transparent: exam-
ple rules learned from MAC-DEV are shown in 
Table 7, along with their coverage of feature vec-
tors and accuracy on the test set HAC.  

6 Related Work 

Work related to toponym tagging has included 
harvesting of gazetteers from the Web (Uryupina 
2003), hand-coded rules to place name disam-
biguation, e.g., (Li et al. 2003) (Zong et al. 2005), 
and machine learning approaches to the problem, 
e.g., (Smith and Mann 2003). There has of course 
been a large amount of work on the more general 
problem of word-sense disambiguation, e.g., 
(Yarowsky 1995) (Kilgarriff and Edmonds 2002). 
We discuss the most relevant work here.  

While (Uryupina 2003) uses machine learning to 
induce gazetteers from the Internet, we merely 
download and merge information from two popular 
Web gazetteers. (Li et al. 2003) use a statistical 
approach to tag place names as a LOCation class. 
They then use a heuristic approach to location 
normalization, based on a combination of hand-
coded pattern-matching rules as well as discourse 
features based on co-occurring toponyms (e.g., a 
document with “Buffalo”, “Albany” and “Roches-
ter” will likely have those toponyms disambiguated 
to New York state). Our TagDiscourse feature is 
more coarse-grained. Finally, they assume one 
sense per discourse in their rules, whereas we use it 
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as a feature CorefClass for use in learning. Overall, 
our approach is based on unsupervised machine 
learning, rather than hand-coded rules for location 
normalization. 

(Smith and Mann 2003) use a “minimally super-
vised” method that exploits as training data 
toponyms that are found locally disambiguated, 
e.g., “Nashville, Tenn.”; their disambiguation task 
is to identify the state or country associated with 
the toponym in test data that has those disambigua-
tors stripped off. Although they report 87.38% ac-
curacy on news, they address an easier problem 
than ours, since: (i) our earlier local ambiguity es-
timate suggests that as many as two-thirds of the 
gazetteer-ambiguous toponyms may be excluded 
from their test on news, as they would lack local 
discriminators (ii) the classes our tagger uses (Ta-
ble 3) are more fine-grained.  Finally, they use one 
sense per discourse as a bootstrapping strategy to 
expand the machine-annotated data, whereas in our 
case CorefClass is used as a feature. 

Our approach is distinct from other work in that 
it firstly, attempts to quantify toponym ambiguity, 
and secondly, it uses an unsupervised approach 
based on learning from noisy machine-annotated 
corpora using publicly available gazetteers.  

7 Conclusion 

This research provides a measure of the degree of 
of ambiguity with respect to a gazetteer for 
toponyms in news. It has developed a toponym 
disambiguator that, when trained on entirely ma-
chine annotated corpora that avail of easily avail-
able Internet gazetteers, disambiguates toponyms 
in a human-annotated corpus at 78.5% accuracy.  

Our current project includes integrating our dis-
ambiguator with other gazetteers and with a geo-
visualization system. We will also study the effect 
of other window sizes and the combination of this 
unsupervised approach with minimally-supervised 
approaches such as (Brill 1995) (Smith and Mann 
2003). To help mitigate against data sparseness, we 
will cluster terms based on stemming and semantic 
similarity.  

The resources and tools developed here may be 
obtained freely by contacting the authors.  
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Abstract

Exhaustive extraction of semantic infor-
mation from text is one of the formidable
goals of state-of-the-art NLP systems. In
this paper, we take a step closer to this
objective. We combine the semantic in-
formation provided by different resources
and extract new semantic knowledge to
improve the performance of a recognizing
textual entailment system.

1 Recognizing Textual Entailment

While communicating, humans use different expres-
sions to convey the same meaning. Therefore, nu-
merous NLP applications, such as, Question An-
swering, Information Extraction, or Summarization
require computational models of language that rec-
ognize if two texts semantically overlap. Trying to
capture the major inferences needed to understand
equivalent semantic expressions, the PASCAL Net-
work proposed the Recognizing Textual Entailment
(RTE) challenge (Dagan et al., 2005). Given two text
fragments, the task is to determine if the meaning of
one text (the entailed hypothesis, H) can be inferred
from the meaning of the other text (the entailing text,
T ).

Given the wide applicability of this task, there
is an increased interest in creating systems which
detect the semantic entailment between two texts.
The systems that participated in the Pascal RTE
challenge competition exploit various inference el-
ements which, later, they combine within statisti-
cal models, scoring methods, or machine learning

frameworks. Several systems (Bos and Markert,
2005; Herrera et al., 2005; Jijkoun and de Rijke,
2005; Kouylekov and Magnini, 2005; Newman et
al., 2005) measured the word overlap between the
two text strings. Using either statistical or Word-
Net’s relations, almost all systems considered lexical
relationships that indicate entailment. The degree of
similarity between the syntactic parse trees of the
two texts was also used as a clue for entailment by
several systems (Herrera et al., 2005; Kouylekov and
Magnini, 2005; de Salvo Braz et al., 2005; Raina
et al., 2005). Several groups used logic provers to
show the entailment between T and H (Bayer et
al., 2005; Bos and Markert, 2005; Fowler et al.,
2005; Raina et al., 2005) and some of them made
use of world knowledge axioms to increase the logic
prover’s power of inference (Bayer et al., 2005; Bos
and Markert, 2005; Fowler et al., 2005).

In this paper, we describe a novel technique which
employs a set of semantic axioms in its attempt to
exhaustively extract semantic knowledge from texts.
In order to show the contribution that our semantic
information extraction method brings, we append it
as an additional module to an already existing sys-
tem that participated in the RTE challenge. Our sys-
tem (Fowler et al., 2005), first, transforms the text
T and the hypothesis H into semantically enhanced
logic forms, and, then, the integrated logic prover
tries to prove or disprove the entailment using a
set of world-knowledge axioms (die of blood loss
→ bleed to death), linguistic rewriting rules which
break down complex syntactic structures, like co-
ordinating conjunctions, and WordNet-based lexical
chains axioms (buy/VB/1 → pay/VB/1).
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2 Approach

We believe that a logic-based semantic approach is
highly appropriate for the RTE task1. Text T seman-
tically entails H if its meaning logically implies the
meaning of H . Because the set of semantic relations
encoded in a text represents its meaning, we need to
identify all the semantic relations that hold between
the constituents of T and, subsequently, between the
constituents of H to understand the meaning of each
text. It should be noted that state-of-the-art seman-
tic parsers extract only some of the semantic rela-
tions encoded in a given text. To complete this in-
formation, we need semantic axioms that augment
the extracted knowledge and, thus, provide a better
coverage of the text’s semantics. Once we gather
this information, we state that text T entails hypoth-
esis H if and only if we find similar relations be-
tween a concept from T and a semantically analo-
gous concept from H . By analogous concepts, we
mean identical concepts, or words connected by a
chain of SYNONYMY, HYPERNYMY or morphologi-
cal derivation relations in WordNet.

Because the set of semantic elements identified by
a semantic parser does not necessarily convey the
complete meaning of a sentence, we shall use a set
of semantic axioms to infer the missing pieces of in-
formation. By combining two semantic relations or
by using the FrameNet’s frame elements identified
in a given text, we derive new semantic information.

In order to show if T entails H , we analyze their
meanings. Our approach to semantic entailment in-
volves the following stages:
1. We convert each text into logic form (Moldovan
and Rus, 2001). This conversion includes part-of-
speech tagging, parse tree generation, and name en-
tity recognition.
2. Using our semantic parser, we identify some of
the semantic relations encoded in the analyzed texts.
We note that state-of-the-art semantic parsers can-
not discover all the semantic relations conveyed im-
plicitly or explicitly by the text. This problem com-
promises our system’s performance. To obtain the
complete set of semantic relations that represents the
meaning of the given texts, we introduce a new step
in our algorithm.

1After all, the entailment, inference, and equivalence terms
originated from logic.

3. We add semantic axioms to the already created
set of world knowledge, NLP, and WordNet-based
lexical chain (Moldovan and Novischi, 2002) ax-
ioms that assist the logic prover in its search for
proofs. We developed semantic axioms that show
how two semantic relations can be combined. This
will allow the logic prover to combine, whenever
possible, semantic instances in order to infer new se-
mantic relationships. The instances of relations that
participate in semantic combinations can be either
provided by the text or annotated between WordNet
synsets. We also exploit other sources of semantic
information from the text. For example, the frames
encoded in the text sentence provide information
which complements the meaning given by the se-
mantic relations. Our second type of axioms derive
semantic relations between the frame elements of a
given FrameNet frame.

We claim that the process of applying the seman-
tic axioms, given the semantic relations detected by
a semantic parser, will capture the complete seman-
tic information expressed by a text fragment. In this
paper, we show the usefulness of this procedure for
the RTE task, but we are convinced that it can be used
by any system which plans to extract the entire se-
mantic information from a given text.
4. We load the COGEX logic prover (Moldovan
et al., 2003) which operates by “reductio ad absur-
dum” with H’s negated form and T ’s predicates.
These clauses are weighted in the order in which
they should be chosen to participate in the search.
To ensure that H will be the last clause to partici-
pate, we assign it the largest value. The logic prover
searches for new inferences that can be made using
the smallest weight clauses. It also assigns a value
to each inference based on the axiom it used to de-
rive it. This process continues until the set of clauses
is empty. If a refutation is found, the proof is com-
plete. If a contradiction cannot be found, then the
predicate arguments are relaxed and, if the argument
relaxation fails, then predicates are dropped until a
proof by refutation is found. Its score will be com-
puted by deducting points for each argument relax-
ation and predicate removal. If this value falls below
a threshold, then T does not entail H . Otherwise, the
(T, H) pair is a true entailment.

We present a textual entailment example to show
the steps of our approach. This proof will not
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T John and his son, George, emigrated with Mike, John’s uncle, to US in 1969.
LFT John(x1) ∧ son(x2) ∧ George(x3) ∧ ISA(x3, x2) ∧ KIN(x1, x3) ∧ emigrate(e1) ∧ AGT(x1, e1) ∧ AGT(x2, e1) ∧Mike(x4) ∧

uncle(x5) ∧ ISA(x4, x5) ∧ KIN(x1, x4) ∧ US(x6) ∧ LOC(e1, x6) ∧ 1969(x7) ∧ TMP(e1, x7).
TDeparting [John and his son, George,]T heme.fe emigrated [with Mike, John’s uncle,]Cotheme.fe to [US]Goal.fe in [1969]T ime.fe.
TKinship [John]Ego.fe and his son, [George,]Alter.fe emigrated with [Mike]Alter.fe, [John]Ego.fe’s uncle, to US in 1969.
TAxiom1

KIN(w1, w2)↔ KIN(w2, w1)
KIN(x1, x3)→ KIN(x3, x1) (KIN(John, George)→ KIN(George, John))

TAxiom2
KIN ◦ KIN = KIN (KIN(w1, w2) ∧ KIN(w2, w3)→ KIN(w1, w3))
KIN(x3, x1) ∧ KIN(x1, x4)→ KIN(x3, x4) (KIN(George, Mike))

TAxiom3
DEPARTING F → LOC(Theme.fe, Goal.fe) (LOC(John, US) ∧ LOC(George, US))

TAxiom4
DEPARTING F → LOC(Cotheme.fe, Goal.fe) (LOC(Mike, US))

TSemantics KIN(John, George), KIN(John, Mike), KIN(George, Mike), LOC(John, US), LOC(George, US), LOC(Mike, US),
TMP(emigrate, 1969), AGT(John, emigrate), AGT(George, emigrate)

H George and his relative, Mike, came to America.
LFH George(x1) ∧ relative(x2) ∧Mike(x3) ∧ ISA(x3, x2) ∧ KIN(x1, x3) ∧ come(e1) ∧ AGT(x1, e1) ∧ AGT(x2, e1) ∧ America(x4)

∧ LOC(e1, x2)
HArriving [George and his relative, Mike,]T heme.fe came to [America]Goal.fe.
HKinship [George]Ego.fe and his relative, [Mike]Alter.fe, came to America.
HAxiom1

ARRIVING F → LOC(Theme.fe, Goal.fe) (LOC(George, America) ∧ LOC(Mike, America))
HSemantics KIN(George, Mike), LOC(George, America), LOC(Mike, America)

Table 1: Entailment proof example. Table 2 lists the semantic relations and their abbreviations. Sections 3.2
and 4.1 will detail the semantics behind the axioms TAxiom1

, TAxiom2
, TAxiom3

, TAxiom4
, and HAxiom1

.

make use of any world knowledge axioms. Let
the text T be John and his son, George, emigrated
with Mike, John’s uncle, to US in 1969 and the en-
tailed hypothesis H George and his relative, Mike,
came to America. Our system transforms each
text into its corresponding semantically enhanced
logic form (LFT and LFH in Table 1). Then,
the logic prover uses the newly added semantic ax-
ioms to derive extra semantic information from T

and H (for example, George and Mike are rela-
tives, but T does not explicitly specify this), af-
ter another preprocessing step which identifies the
frame elements of each frame encoded in the two
texts (TDeparting , TKinship, HArriving, HKinship).
In our example, the axioms TAxiom1

and TAxiom2

denote the symmetry and the transitivity of the KIN-
SHIP relation. TAxiom3

, TAxiom4
and HAxiom1

are
the frame-related axioms used by the logic prover.
The TSemantics and HSemantics rows (Table 1) sum-
marize the meaning of T and H . We note that half of
these semantic instances were extracted using the se-
mantic axioms. Once the lexical chains between the
concepts in T and the ones from H are computed,
the entailment becomes straightforward. We repre-
sented, graphically, the meaning of the two texts in
Figure 1. We also show the links between the analo-
gous concepts that help prove the entailment.

In the coming sections of the paper, we detail the
process of semantic axiom generation. We start with
a summary of the axioms that combine two semantic
relations.

Figure 1: TSemantics and HSemantics. The solid ar-
rows represent the relations identified by the seman-
tic parser. The dotted arrows symbolize the lexical
chains between concepts in T and their analogous
concepts in H (UST and AmericaH belong to the
same WordNet synset). The dash arrows denote the
relations inferred by combining two semantic rela-
tions. The long dash arrows indicate the relations
between frame elements.

3 Semantic Calculus

3.1 Semantic relations

For this study, we adopt a revised version of the se-
mantic relation set proposed by (Moldovan et al.,
2004). Table 2 enumerates the semantic relations
that we consider2.

2See (Moldovan et al., 2004) for definitions and examples.
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POSSESSION (POS) MAKE-PRODUCE (MAK) RECIPIENT (REC) THEME-PATIENT (THM)
KINSHIP (KIN) INSTRUMENT (INS) FREQUENCY (FRQ) RESULT (RSL)
PROPERTY-ATTRIBUTE (PAH) LOCATION-SPACE (LOC) INFLUENCE (IFL) STIMULUS (STI)
AGENT (AGT) PURPOSE (PRP) ASSOCIATED WITH (OTH) EXTENT (EXT)
TEMPORAL (TMP) SOURCE-FROM (SRC) MEASURE (MEA) PREDICATE (PRD)
DEPICTION (DPC) TOPIC (TPC) SYNONYMY-NAME (SYN) CAUSALITY (CSL)
PART-WHOLE (PW) MANNER (MNR) ANTONYMY (ANT) JUSTIFICATION (JST)
HYPERNYMY (ISA) MEANS (MNS) PROBABILITY OF EXISTENCE (PRB) GOAL (GOL)
ENTAIL (ENT) ACCOMPANIMENT (ACC) POSSIBILITY (PSB) BELIEF (BLF)
CAUSE (CAU) EXPERIENCER (EXP) CERTAINTY (CRT) MEANING (MNG)

Table 2: The set of semantic relations

3.2 Combinations of two semantic relations

Our goal is to devise semantic axioms for combina-
tions of two relations, R1 and R2, by observing the
semantic connection between the w1 and w3 words
for which there exists at least one other word, w2,
such that R1(w1, w2) and R2(w2, w3) hold true3.

Harabagiu and Moldovan (1998) tackled the prob-
lem of semantic combinations, for the first time.
Their set of relations included the WordNet1.5 anno-
tations and 12 relationships derived from the Word-
Net glosses4. In our research, unlike (Harabagiu and
Moldovan, 1998), the semantic combinations use the
relations identified in text with a rather minimal con-
tribution from the WordNet relations.

Harabagiu and Moldovan (1998) also investi-
gate the number of possible semantic combinations.
Based on their properties, we can have up to eight
combinations between any two semantic relations
and their inverses, not counting the combinations
between a semantic relation and itself5. For in-
stance, given an asymmetric relation and a sym-
metric one which share the same part-of-speech for
their arguments, we can produce four combinations.
ISA ◦ ANT, ISA−1 ◦ ANT, ANT ◦ ISA, and ANT ◦
ISA−1 are the four possible distinct combinations
between HYPERNYMY and ANTONYMY. “◦” sym-
bolizes the semantic composition between two rela-
tions compatible with respect to the part-of-speech
of their arguments: for any two concepts, w1 and w3,
(Ri◦Rj)(w1, w3) if and only if ∃w2, a third concept,
such that Ri(w1, w2) and Rj(w2, w3) hold. By R−1,

3R(x, y) indicates that relation R holds between x and y.
4This set includes the AGENT, OBJECT, INSTRUMENT, BEN-

EFICIARY, PURPOSE, ATTRIBUTE, REASON, STATE, LOCA-
TION, THEME, TIME, and MANNER relations.

5Harabagiu and Moldovan (1998) lists the exact number of
possible combinations for several WordNet relations and part-
of-speech classes.

we denote the inverse of relation R: if R(x, y), then
R−1(y, x).

While analyzing the combinations, we observed
some regularities within the semantic composition
process. For example, R−1

1
◦ R−1

2
= (R2 ◦ R1)

−1

for any, not necessarily distinct, semantic relations
R1 and R2

6. If one of the relations is symmet-
ric (R−1 = R), the statement is still valid. Using
(R−1)−1 = R and the previous equality, we can re-
duce by half the number of semantic combinations
that we have to compute for R1 6= R2.

We plan to create a 40 × 40 matrix with all the
possible combinations between any two semantic
relations from the set we consider. Theoretically,
we can have up to 27,556 semantic combinations,
but only 25.79% of them are possible7 (for exam-
ple, MNR(r, v) and SYN(n, n) cannot be combined).
Many combinations are not semantically significant
either because they are very rare, like, KIN(n, n)
◦ TMP(n, v), or because they do not result into
one of the 40 relations, for instance, PAH(a, n) ◦
AGT(n, v)8. We identified two approaches to the
problem mentioned above. The first tries to fill one
matrix cell at a time in a consecutive manner. The
second approach tries to solve the semantic combi-
nations we come upon in text corpora. As a result,
we analyzed the RTE development corpus and we de-
vised rules for some of the Ri◦Rj combinations that
we encountered. We validated these axioms by man-

6The equality holds only if the two composition terms exist.
7On average, each semantic relation has 2.075 pairs of argu-

ments. For example, SRC can connect two nouns (US investor),
or an adjective and a noun (American investor) and, depending
on its arguments, SRC will participate in different combinations.
Out of the 27,556 combinations, only 7,109 are syntactically
possible.

8n, v, a, and r stand for noun, verb, adjective, and adverb,
respectively. As an example, R(n, n) means that relation R can
connect two nouns.
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LOCATION ◦ PART-WHOLE = LOCATION (LOCATION(x, l1) ∧ PART-WHOLE(l1, l2)→ LOCATION(x, l2))
Example: John lives in Dallas, Texas.
LOCATION(John, Dallas) and PART-WHOLE(Dallas, Texas) imply that LOCATION(John, Texas).
ISA ◦ ATTRIBUTE = ATTRIBUTE (ISA(x, y) ∧ ATTRIBUTE(y, a)→ ATTRIBUTE(x, a))
Example: Mike is a rich man.
If ISA(Mike, man) and ATTRIBUTE(man, rich), then ATTRIBUTE(Mike, rich).
Similar statements can be made for other “attributes”: LOCATION, TIME, SOURCE, etc.
ISA ◦ LOCATION = LOCATION (ISA(x, y) ∧ LOCATION(y, l)→ LOCATION(x, l))
Example: The man in the car, George, is an old friend of mine.
ISA(George, man) and LOCATION(man, car)→ LOCATION(George, car)
KINSHIP ◦ KINSHIP = KINSHIP (KINSHIP(x, y) ∧ KINSHIP(y, z)→ KINSHIP(x, z))
See example in Section 2.
THEME ◦ ISA−1 = THEME (THEME(e, y) ∧ ISA(x, y)→ THEME(e, x))
Example: Yesterday, John ate some fruits: an apple and two oranges.
THEME(eat, fruit) ∧ ISA(apple, fruit)→ THEME(eat, apple)
THEME ◦ PART-WHOLE−1 = THEME (THEME(e, y) ∧ PART-WHOLE(x, y)→ THEME(e, x))
Example: Five Israelis, including two children, were killed yesterday.
THEME(kill, Israeli) ∧ PART-WHOLE(child, Israeli)→ THEME(kill, child)
Similar statements can be made for all the thematic roles: AGENT, EXPERIENCER, INSTRUMENT, CAUSE, LOCATION, etc.
AGENT ◦ ISA−1 = AGENT (AGENT(e, y) ∧ ISA(x, y)→ AGENT(e, x))
AGENT ◦ PART-WHOLE−1 = AGENT (AGENT(e, y) ∧ PART-WHOLE(x, y)→ AGENT(e, x))

Table 3: Examples of semantic combination axioms

ually checking all the LA Times corpus (w1, w3)
pairs which satisfy (Ri◦Rj)(w1, w3). We have iden-
tified 64 semantic axioms that show how semantic
relations can be combined. These axioms use re-
lations such as PART-WHOLE, ISA, LOCATION, AT-
TRIBUTE, or AGENT. We listed several example
rules in Table 3. The 64 axioms can be applied in-
dependent of the concepts involved in the semantic
composition. We have also identified rules that can
be applied only if the concepts that participate sat-
isfy a certain condition or if the relations are of a
certain type. For example, LOC ◦ LOC = LOC only if
the LOC relation shows inclusion (John is in the car
in the garage → LOC(John, garage). John is near
the car behind the garage 6→ LOC(John, garage)).

4 FrameNet Can Help

The Berkeley FrameNet project9 (Baker et al., 1998)
is a lexicon-building effort based on the theory of
frame semantics which defines the meanings of lexi-
cal units with respect to larger conceptual structures,
called frames. Individual lexical units point to spe-
cific frames and establish a binding pattern to spe-
cific elements within the frame. FrameNet describes
the underlying frames for different lexical units and
examines sentences related to the frames using the
BNC corpus. The result is an XML database that

9http://framenet.icsi.berkeley.edu

contains a set of frames, a set of frame elements for
each frame, and a set of frame annotated sentences.

4.1 Frame-based semantic axioms

With respect to a given target, the frame ele-
ments contribute to the understanding of the sen-
tence. But they only link each argument to the
target word (for example, THM(theme, target)
or AGT(theme, target), LOC(place, target), etc.).
Often enough, we can find relations between the
frame elements of a given frame. These new in-
stances of semantic relations take as arguments the
frame elements of a certain frame, when they are ex-
pressed in the text. For example, given the DEPART-
ING frame, we can say that the origin of the theme
is the source (SRC(theme, source)) and that the
new location of the theme is the goal frame element
(LOC(theme, goal)). Moreover, if the text speci-
fies the cotheme frame element, then we can make
similar statements about it (SRC(cotheme, source)
and LOC(cotheme, goal)). These new relation in-
stances increase the semantic information that can
be derived from text.

So far, we manually inspected 54 frames and ana-
lyzed the relationships between their frame elements
by examining their definitions and the annotated cor-
pus provided with the FrameNet data. For each
frame, we retained only the rules independent of the
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CLOTHING PARTS F → PW(subpart, clothing)
CLOTHING PARTS F → PW(material, subpart)
Example: “Hello, Hank” they said from the depths of the [fur]Material [collars]Subpart,Target of [their]Wearer [coats]Clothing .
PW(fur, collar) and PW(collar, coat)
CLOTHING F → PAH(descriptor, garment) ∨ PAH(descriptor, material)
Example: She didn’t bring heels with her so she decided on [gold]Descriptor [leather]Material [flip-flops]Garment,Target.
PAH(gold, leather) ∨ PAH(gold, flip− flop)
KINSHIP F → KIN(ego, alter)
Example: The new subsidiary is headed by [Rupert Soames]Alter , [son]Target [of the former British Ambassador to France and
EC vice-president]Ego.
KIN(Rupert Soames, the former British Ambassador to France and EC vice-president)
GETTING F → POS(recipient, theme)
GETTING F →¬ POS(source, theme) (only if the source is a person)
Example: In some cases, [the BGS libraries]Recipient had [obtained]Target [copies of theses]Theme [from the authors]Source

[by purchase or gift]Means, and no loan records were available for such copies.
POS(the BGS libraries, copies of theses) and ¬ POS(authors, copies of theses)
GETTING F → SRC(theme, source) (if the source is not a person)
Example: He also said that [Iran]Recipient [acquired]Target [fighter-bomber aircraft]Theme [from countries other than the USA
and the Soviet Union]Source.
SRC(fighter-bomber aircraft, countries other than the USA and the Soviet Union)

Table 4: Frames-related semantic rules

frame’s lexical units. We identified 132 semantic ax-
ioms that hold in most cases10. We show some ex-
amples in Table 4.

4.2 Context importance

There are cases when the rules that we identified
should not be applied. Let’s examine the sen-
tence John intends to leave the kitchen. If we
consider only the DEPARTING frame and its cor-
responding rules, without looking at the context,
then our conclusions (¬ LOC(John, kitchen) and
SRC(John, kitchen)) will be false. This sentence
states an intention of motion, not the actual action.
Therefore, our semantic axioms apply only when the
context they are in, allows it. To overcome this prob-
lem, we do not apply the axioms for target words
found in planning contexts, contexts related to be-
liefs, intentions, desires, etc. As an alternative, we
keep track of plans, intentions, desires, etc. and,
if, later on, we confirm them, then we apply the
semantic axioms. Also, when we analyze a sen-
tence, the frame whose rules we apply needs to be
chosen carefully. For example, in the sentence [A
boat]Agent [carrying]Target [would-be Moroccan il-
legal emigrants]Theme [from UK]Path start [to Spain
]Path end sank in the Strait of Gibraltar on June 8,
the CARRYING frame’s axioms do not apply. The
boat nor the emigrants reach Spain (the path end of

10Section 4.2 lists some exception cases.

the motion) because the boat sank. Here, the rules
given by sink.v’s frame should be given priority over
the carry.v’s rules. We can generalize and conclude
that, given a sentence that contains more than one
target (therefore, maybe multiple frames), the dom-
inant frame, the one whose rules should be applied,
is the frame given by the predicative verb. In the
previous sentence, the dominant frame is the one
given by sink.v and its rules should be applied before
the axioms of the CARRYING frame. It should be
noted that some of the axioms semantically related
to the CARRYING frame still apply (for example,
SRC(emigrants, UK) or SRC(boat, UK)). Unlike
LOC(emigrants, Spain), the previous relations do
not conflict with the semantics given by sink.v and
its location (the Strait of Gibraltar).

5 Experimental Results

5.1 The RTE data

The benchmark corpus for the RTE task consists of
seven subsets with a 50%-50% split between the
positive entailment examples and the negative ones.
Each subgroup corresponds to a different NLP appli-
cation: Information Retrival (IR), Comparable Doc-
uments (CD), Reading Comprehension (RC), Ques-
tion Answering (QA), Information Extraction (IE),
Machine Translation (MT), and Paraphrase Acquisi-
tion (PP). The RTE data set includes 1367 English
(T, H) pairs from the news domain (political, eco-
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Semantic Axioms CD IE IR MT PP QA RC
T F T F T F T F T F T F T F

Test data (%)
applied to all T s 13.33 21.33 26.66 10 6.66 4.44 11.66 10 8 0 15.38 7.69 21.43 17.14
applied to all Hs 1.33 9.33 5 10 0 0 1.66 1.66 8 0 1.53 0 0 1.43
solution for (T, H) 9.33 0 20 0 4.44 0 10 1.66 0 0 10.77 1.53 10 5.71

Development data (%)
applied to all T s 22 27.08 34.28 5.71 8.57 8.57 18.51 18.51 5.12 9.3 28.88 0 9.61 9.8
applied to all Hs 4 8.33 5.71 2.85 0 2.85 7.4 3.7 0 0 2.22 0 0 1.96
solution for (T, H) 10 2.08 22.85 5.71 5.71 2.85 18.51 3.7 2.56 0 20 0 7.69 0

Table 5: The impact of the semantic axioms on each NLP application data set. T and F stand for True and
False entailments, respectively.

nomical, etc.). The development set consists of 567
examples and the test set contains the remaining 800
pairs.

5.2 Semantic axiom applicability

We measured the applicability of our set of semantic
rules, by counting the number of times they extract
new semantic information from text. Table 6 shows,
in percentages, the coverage of the semantic axioms
when applied to the texts T and the hypotheses H .
We also show the number of times the semantic rules
solve a (T, H) entailment without employing any
other type of axioms.

Semantic Axioms True False Overall
(True and False)

Test data (%)
applied to all T s 15.75 11.75 13.75
applied to all Hs 2.00 3.74 2.87
both T s and Hs 8.87 7.75 8.31
solution for (T, H) 10.25 1.50 5.87

Development data (%)
applied to all T s 18.02 11.26 14.64
applied to all Hs 2.47 2.81 2.65
both T s and Hs 10.25 7.04 8.64
solution for (T, H) 12.36 1.76 7.05

Table 6: Applicability on the RTE data

Clearly, because the texts T convey much more
information than H , they are the ones that benefit
the most from our semantic axioms. The hypotheses
H are more straightforward and a semantic parser
can extract all their semantic information. Also,
the rules tend to solve more positive (T, H) entail-
ments. Because there are seven subsets correspond-
ing to different NLP applications that make up the
RTE data, we analyzed the contribution of our se-
mantic axioms to each of the seven tasks. Table 5
shows the axioms’ impact on each type of data. The

logic-based approach proves to be useful to tasks
like Information Extraction, Reading Comprehen-
sion, or Comparable Documents, and it doesn’t seem
to be the right choice for the more lexical-orientated
applications like Paraphrase Acquisition, Machine
Translation, and Information Retrieval.

5.3 RTE performance

To show the impact of our semantic axioms, we
measured the contribution they bring to a system that
participated in the RTE challenge. The ACC and F
columns (Table 7) show the performance of the sys-
tem before and after we added our semantic rules to
the list of axioms needed by the logic prover.

Task Original Enhanced
ACC F ACC F

Test-IR .478 .472 .5 .505
Test-CD .78 .736 .847 .819
Test-RC .514 .558 .6 .636
Test-QA .485 .481 .523 .537
Test-IE .483 .603 .575 .687
Test-MT .542 .444 .567 .49
Test-PP .45 .585 .44 .576
Test .551 .561 .604 .621
Development .63 .619 .718 .714

Table 7: The accuracy(ACC) and f-measure(F) per-
formance values of our system

The results show that richer semantic connectiv-
ity between text concepts improve the performance
of a semantic entailment system. The overall accu-
racy increases with around 5% on the test data and
almost 8% on the development set. We obtained per-
formance improvements for all application settings,
except for the Paraphrase Acquisition task. For this
application, we obtained the smallest axiom cover-
age (Table 5). The impact of the semantic axioms
on each NLP application data set correlates with the
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improvement that the addition of the rules brought
to the system’s accuracy.

Our error analysis showed that the system did not
take full advantage of our semantic axioms, because
the semantic parser did not identify all the seman-
tic relations needed as building blocks by the ax-
ioms. We noticed a significant decrease in the logic
prover’s usage of world-knowledge axioms.

6 Conclusion

In this paper, we present a logic-based semantic ap-
proach for the recognizing textual entailment task.
The system participating in the RTE competition
used a set of world-knowledge, NLP, and lexical
chain-based axioms and an in-house logic prover
which received as input the logic forms of the two
texts enhanced with semantic relation instances. Be-
cause the state-of-the-art semantic parsers cannot
extract the complete semantic information encoded
in text, the need for semantic calculus in NLP be-
came evident. We introduce semantic axioms that
either combine two semantic instances or label rela-
tions between the frame elements of a given frame.
Preliminary statistical results show that incorporat-
ing semantic rules into the logic prover can double
the semantic connectivity between the concepts of
the analyzed text. Our process of identifying more
semantic instances leads to a smaller dependency of
the logic-based RTE system on world knowledge ax-
ioms, while improving its overall accuracy.
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Abstract

In this paper, we describe an integrated
approach to entity mention detection that
yields a monolithic, almost language in-
dependent system. It is optimal in the
sense that all categorical constraints are si-
multaneously considered. The system is
compact and easy to develop and main-
tain, since only a single set of features and
classifiers are needed to be designed and
optimized. It is implemented using one-
versus-all support vector machine (SVM)
classifiers and a number of feature extrac-
tors at several linguistic levels. SVMs
are well known for their ability to han-
dle a large set of overlapping features with
theoretically sound generalization proper-
ties. Data sparsity might be an impor-
tant issue as a result of a large number
of classes and relatively moderate train-
ing data size. However, we report re-
sults that the integrated system performs
as good as a pipelined system that decom-
poses the problem into a few smaller sub-
tasks. We conduct all our experiments us-
ing ACE 2004 data, evaluate the systems
using ACE metrics and report competitive
performance.

1 Introduction
The entity-relation (ER) model (Chen, 1976) views
the physical world as a collection of entities with

complex relationships. Automatic extraction of
this model from raw text is important for creat-
ing a knowledge base (such as relational databases,
marked-up text etc.) that can be used to achieve bet-
ter end-to-end performances in several natural lan-
guage processing (NLP) applications including in-
formation retrieval, question answering and machine
translation. For example, in a typical QA system this
knowledge base can be used to facilitate extraction
of answers and retrieval of relevant documents.

Entities and relations in a document can be men-
tioned in several different ways. For example, a per-
son entity, e.g. Bill Clinton, can be expressed in
many different ways such as The President, Presi-
dent Clinton, Mr. Clinton, he, him etc. Similarly,
one can express a geo-political entity, e.g. United
States, as his country or another person entity, e.g.
Hillary Clinton, as his wife, and their relation to the
entity Bill Clinton as “president-of” and “family”,
respectively. It is clear that the detection of these
mentions is the first crucial step for the extraction of
the ER model to populate a database or an ontology.

Extraction of entities and their relationships is
usually done in a pipelined system that first iden-
tifies entity mentions, next resolves mentions into
unique entities (co-reference) and finally finds rela-
tions among them (Florian et al., 2004; Kambhatla,
2004). In that architecture, the errors in the first
stage propagate and reduce the performance of sub-
sequent stages; namely, co-reference resolver, that
clusters all different mentions of an entity into a
unique entity, and relation finder, that links entities
according to their relationships. In fact, the subtask
of entity mention detection itself is a very challeng-
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Table 1: Categorical structure of entities in ACE program

Entity Mention
Entity Mention

Type Sub-Type Class Type Role

ing subtask since respective expressions can have
relatively complex syntactic and categorical (“se-
mantic”) structures. That is, entity mentions in a
body of text can occur in relatively complex embed-
ded constructs with many attributes. Table 1 illus-
trates the categorical structure of an entity mention
as specified in the Automatic Content Extraction
(ACE) program run by NIST (ACE, 2004). Com-
pared to the previous years the number of entity
types and subtypes is greater.

The following segment of a sentence provides a
typical example of the annotation:

[The [[Jordanian] military] spokesman] added ...

For simplicity, the entity mention attributes are
excluded. The annotation clearly shows the em-
bedded structure of entity mentions. We identify
three entity mentions as The Jordanian military
spokesman, Jordanian military and Jordanian.

Due to its complex nature, it is not uncommon that
the mention detection task itself is also divided into
a number of smaller sub-tasks. However, in this pa-
per, we adopt an integrated classification approach
to this problem that yields a monolithic structure.
This allows all attributes, which define the categori-
cal (“semantic”) structure of a mention, to be jointly
considered. The system has the ability to achieve
better performance in principle provided that there
is “enough” data to train, is easier to maintain and
develop, and has a single set of features and classi-
fiers to be engineered. All possible class labels are
obtained by filling in the values of each attribute in
the label etype subtype class mtype role, where,
to avoid confusion, etype and mtype are used to de-
note entity and mention types, respectively.

Our data representation requires segmenting doc-
uments into sentences and then tokenizing sentences
into words and punctuation. Each word is then as-
signed a label depending on its role in the mention.
This data representation reduces the problem to a
tagging task. For each token in focus, we create a

number of features at lexical, syntactic and semantic
levels. Additionally, we augment those features us-
ing features from external resources (e.g. named en-
tity taggers, gazetteers, wordnet). We train a number
of one-versus-all classifiers (Allwein et. al, 2000)
using SVMs (Vapnik, 1995; Burges, 1998). During
testing, classification of each token is performed in
a greedy left-to-right manner using a finite-size slid-
ing context window centered at the token in focus
(Kudo and Matsumato, 2000).

This approach yields a large number of classes
and a large number of overlapping features. We used
a machine learning framework based on SVM clas-
sification since a large number of classes (in a one-
versus-all set-up) and a large number of overlapping
features can be easily handled with good general-
ization properties. We argue that data sparsity and
computational complexity is not as severe as it might
be expected in the other machine learning methods
that are based on maximum likelihood parameter es-
timation. In other words, we claim that the large set
of classification labels and training data sparseness
are not major drawbacks. To provide evidence for
this we also consider an approach that divides the
task into relatively simpler tasks with considerably
smaller numbers of labels. The approach yields a
pipelined structure in which the decisions in earlier
stages are used in later stages. We report results that
the integrated approach performs similar to, and in
some cases, even slightly better than the pipelined
structure.

We also implement a novel post-processing
scheme based on an entity base (EB) created from
the tagged test data. This is motivated by the fact
that an entity is identically referenced several times
in a document. However, depending on the capital-
ization information of the entity mention and context
in which it occurs, the entity can be missed at several
positions in the document. A simple postprocess-
ing algorithm that checks untagged tokens with low
confidence against the EB is implemented. In doing
so, it is highly likely that some of those missed en-
tities could be identified. This is expected to reduce
misses at the expense of false alarms. We report re-
sults that support our expectation.

The paper is organized as follows. Section 2 de-
scribes the ACE 2004 data used for training and
evaluation. In Section 3, the problem is explained

380



Table 2: ACE 2004 corpus statistics for English and Chinese
text.

Language Train Test
English ˜ 150K words ˜ 50K words
Chinese ˜ 150K words ˜ 50K words

and its data representation is introduced. Section 4
describes the general system architecture, that con-
sists of a number of feature extractors, a (machine-
learned) classifier and a simple post processor. In
section 5, the features used for both English and
Chinese systems are described. In section 6, we de-
scribe an alternative pipelined system. A novel post
processing algorithm is introduced in section 7. Sec-
tion 8 reports experimental results. Concluding re-
marks are made in the final section.

2 ACE Data

The ACE 2004 corpus consists of various text an-
notated for entities and relations. This corpus was
created by the Linguistic Data Consortiom (LDC)
in three languages: English, Chinese and Arabic
(with support from the ACE program that began in
1999). Resources for data are newswire reports and
broadcast news programs. Table 2 gives train and
test statistics of this corpus for English and Chinese
languages. Both languages have almost the same
amount of data for both training and evaluation.

3 Problem Description and Data
Representation

As shown in Table 1, an entity mention is charac-
terized along 5 dimensions; namely etype, sub-type
class, mtype and role. The ACE program speci-
fies seven entity types; person, organization, geo-
political, location, facility, vehicle, weapon. All en-
tity types except person are further divided into sev-
eral sub-types. For example, organization has gov-
ernment, commercial, educational, non-profit and
other as its sub-types. The class attribute describes
the kind of reference the entity mention makes to
the entity in the world by taking one of the values
{generic, specific, negative, under-specified} . En-
tity mentions are further characterized according to
linguistic types of references as name (proper noun),

nominal (common noun), pronominal (pronoun) and
premodifier. The role of entity mention applies only
to geo-political entities indicating the role of the en-
tity in the context of the mention as one of person,
location, organization and geo-political. For further
details the reader is referred to (ACE, 2004)

All entity mentions in the original data are
XML tagged with their respective attributes. In
addition to the full extent of mentions, mention
heads are also tagged. Referring to the previous
example, the entity mention ”The Jordanian military
spokesman” which refers to a PERSON has the
word ”spokesman” as its head. Similarly, the entity
mention ”Jordanian military” which refers to an
ORGANIZATION has the word ”military” as its
head. If one reduces the problem of entity mention
detection to the detection of its head, the nature
of the problem changes and the annotation of data
becomes flat;

The [GPE Jordanian] [ORG military] [PER

spokesman] .....

This allows us to consider the problem as a
tagging/chunking problem and describe each word
as beginning (B) an entity mention, inside (I) an
entity mention or outside (O) an entity mention
(Ramhsaw and Marcus, 1995; Sang and Veenstra,
1999). However, we believe that the information
regarding the embedded structure in which the
heads of entities occur is also useful for subse-
quent stages of an IE system including inference
of relations among heads occurring in the same
embedded construct. So, in addition to the IOB tags
we introduce bracketing tags that might partially
recover the embedded structure surrounding the
heads. We refer to the following simple example

[Javier Trevino] was [the campaign manager for
[the [ruling party] candidate [Fox] beat ]].

to illustrate our tokenwise vertical representa-
tion:

#SNT BEG#
Javier B-PER NAM
Trevino I-PER NAM
was O
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the (*
campaign *
manager B-PER NOM
for *
the (*
ruling *
party B-ORG NOM
candidate B-PER NOM
Fox B-PER NAM
beat *))
. O
#SNT END#

If one does not use the bracketing representation, all
non-head tokens will be labeled as ”Outside”. We
believe that it is useful to discriminate the tokens that
take part in mentions from those that do not occur in
mentions.

4 General System Architecture
The general system block diagram is illustrated in
Figure 1. It consists of a pre-processor, several fea-
ture extractors, a classifier and a post-processing
module. Although the architecture is language in-
dependent, there are some minor language specific
differences in some modules depending on the na-
ture of the language and availability of resources for
that language. In the following, we briefly describe
both English and Chinese systems and indicate dif-
ferences between them.

In the English system, the pre-processor segments
the documents into sentences. It also includes a
caser that restores the capitalization information of
text without case (e.g. broadcast news) and a to-

kenizer that separates contractions and punctuation
from words. Tokenized sentences are then processed
at different linguistic levels to create features. At
this stage, we employ a lexical pattern analyzer,
part-of-speech tagger, a base phrase chunker, a syn-
tactic parser, a dependency analyzer, look-up inter-
faces to external knowledge sources, and external
small scale named entity taggers trained on different
genres of text with different machine learning algo-
rithms. All features are combined and then input to
a classifier based on one-versus-all SVM classifiers.
Finally, we perform simple post-processing to make
sure that the final bracketing information is consis-
tent.

The POS tagger and BP chunker are trained
in-house using the Penn TreeBank. The syntac-
tic parser is the Charniak parser which has mod-
els trained on the Penn TreeBank. The depen-
dency analyzer performs dependency analysis using
a set of head rules. The software was generously
made available to us by the University of Maryland.
The look-up interface to external knowledge sources
such as WordNet or gazetteers is implemented using
simple pattern matching.

In the Chinese system, the pre-processor is
slightly different from that of the English system.
It (obviously) does not need a caser and consid-
ers single Chinese characters as the minimal units
of processing. It jointly segments a document
into sentences and words. Then, it passes both
word and sentence segmentation information to the
subsequent stages along with Chinese characters.
The SVM-based joint sentence/word segmenter is
trained using the Chinese TreeBank (CTB). Linguis-
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tic analysis at different levels is performed in a man-
ner similar to the analysis in the English system.
In the Chinese system, the CTB is used to train
a SVM-based POS tagger and BP chunker. The
syntactic parser is trained on the CTB using Dan
Bikel’s parser. Dependency analysis is performed
as in the English system using a set of Chinese head
rules. Several in-house external taggers are trained
using SVMs and different corpora. We have used
only gazetteers for chinese as external knowledge
sources.

5 Features
The following features are used in the English sys-
tem:

• tokens: words in their original and all lower-
cased forms

• n-grams: token prefixes and suffixes of length
less than and equal to four

• lexical patterns: indicate case information
(all lower-case, mixed case, first letter capital,
all upper-case), is hyphen, type (numeral, al-
phanumeral, alpha, other)

• Part of Speech tags

• BP Positions: The position of a token in a BP
using the IOB representation (e.g. B-NP, I-NP,
O etc.)

• Clause tags: The tags that mark token posi-
tions in a sentence with respect to clauses. (e.g
*S)*S) marks a position that two clauses end)

• Named entities-1: The IOB tags of named en-
tities. There are four categories; LOC, ORG,
PERSON and MISC. A SVM-based tagger
which is trained on CoNLL 2003 shared task
data is used.

• Named entities-2: IOB tags of named enti-
ties found by the Identifinder (Bikel et. al,
1999); a HMM-based named entity tagger with
29 classes

• Named entities-3: IOB tags from a named en-
tity tagger trained on MUC-6 and MUC-7 data
using only the entity classes PERSON, LOCA-
TION and ORGANIZATION.

• Gazetteer labels: indicate the name of the list
to which the token belongs. Simple pattern
matching is employed here.

• WordNet categories: concepts or class names
in the WordNet 2.0 hypernym hierarchy rooted
at ”entity” concept. We trace hypernym hier-
archies of the two most frequent senses of to-
kens that are tagged as nouns (NN, NNS, NNP
etc.) to the top concepts. We count the num-
ber of concepts (that match to ACE entity types
and subtypes) that occur in the hypernym hier-
archy indicating that token is a (kind of) con-
cept. The concepts (i.e entity/types/subtypes)
with the maximum counts in the top two senses
are selected as features (can also be considered
as “maybe” labels)

• Syntactic tags: patterns of non-terminals and
brackets that indicate the position of tokens in
syntactic trees.

• Head words: words that the tokens depend

• POS of Head words:

• main verb: the verb at which the dependency
parse tree is rooted.

• Relations: the grammatical and semantic rela-
tions between tokens and their heads.

• Head word flag: indicates whether the token
plays a role of head in the sentence.

The features used in the Chinese system are

• tokens: Chinese characters

• token positions: IOB tags that indicate posi-
tion of characters in words

• Part of Speech tags: POS tags of words to
which tokens (characters) belong

• BP Positions: The position of a token in a BP
using the IOB representation (e.g. B-NP, I-NP,
O etc.)

• Named entities-1: IOB tags of two type of en-
tities; location and person. A SVM based tag-
ger trained on part of the Sinica corpus from
Taiwan is used to generate these features.
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• Named entities-2: IOB tags of named enti-
ties: person, location, organization etc. An-
other SVM based tagger trained on the People
Daily data from mainland of China.

• Gazetteer labels: indicate the name of the list
to which the token belongs. Simple pattern
matching is employed here. Examples are la-
bels that indicate Chinese last name, foreign
person last name, first name etc.

• Syntactic labels: base phrase chunk labels and
paths in syntactic trees

• Head words: as determined by Chinese depen-
dency analysis

• POS of Head words:

• Relations: the grammatical and semantic rela-
tions between tokens and their heads.

6 A Pipelined System
As mentioned earlier the structure of entity men-
tion categories is very complex. Considering all at-
tributes together yields a large number of classes.
One can argue that the large number of classes and
data sparsity is an important issue here that it might
have significant effect on performance. However,
several attempts to divide the task into simpler sub-
tasks have failed to yield a system with a better per-
formance than that of the integrated system. In this
section, we describe one such system.

The system consists of three stages in cascade: (i)
entity mention extent detector, , (ii) mention type de-
tector and (iii) entity type, subtype and mention role
detector. Referring to the earlier example, the data
representation in terms of class labels at each level
is as follows:
#SNT BEG#
Javier (* B-NAM PER
Trevino *) I-NAM PER
was O O O
the (* O O
campaign * O O
manager * B-NOM PER
for * O O
the (* O O
ruling (* O O

party *) B-NOM ORG
candidate *) B-NOM PER
Fox * B-NAM PER
beat *)) O O
. O O O
#SNT END#

where the second column is for the extent labels of
mentions in bracketed representation, the third col-
umn is for the mention type labels in IOB represen-
tation and the last column is for the type labels (sub-
type and role labels are omitted for the sake of sim-
plicity) of entity mentions in plain representation.

The pipelined system operates as follows. First it
detects embedding structure of mention extents. Us-
ing that information the second stage identifies the
type of mentions. In the final stage, the system iden-
tifies entity types, subtypes and mention roles using
information (as features within context) from previ-
ous stages. Finally we combine all information into
entity mention attributes and resolve inconsistencies
by simple postprocessing.

Here, we have not done any feature selection spe-
cific to each stage. Instead we used the same fea-
tures in all stages. One can argue that this is not the
optimal set up for a cascaded system; separate fea-
ture design and selection should be made for each
stage. Also we acknowledge that there are several
other ways of dividing the task into smaller, simpler
subtasks. Although we have not explored all pos-
sible pipelined architectures with all possible fea-
ture selections , we conjecture that the data sparsity
is not as big an issue in SVMs as expected to be
in the other machine learning algorithms based on
maximum likelihood parameter estimation such as
those based on maximum entropy (ME) or condi-
tional random fields (CRF) frameworks.

7 A Novel Post-Processing Method

In our experiments, we have consistently observed
that the identical mentions of a unique entity are
missed depending on the missing capitalization in-
formation, unseen context and errors in feature ex-
traction. For example, although the name mention
of person “Eminem” is captured at several positions
in the document, the entity mention “eminem” is
missed, probably, due to its missing capitalization.
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Table 3: Statistics on ACE 2004 data.

Language Train Samples Test Samples # Joint Classes # Pipelined Classes
Extent MType EType-SubTypey-Role

English ˜ 167K ˜ 61K 384 24 9 93
Chinese ˜ 307K ˜ 105K 374 15 7 95

As a solution we propose a post-processing
method that is based on an entity base (EB) cre-
ated from the tagged text. We populate the EB with
all entity mentions (particularly with those that have
name values) identified in the text. After we create
the EB, we tag the text again by case insensitive pat-
tern matching. We determine all tagged tokens that
were initially left untagged or tagged with a differ-
ent label by the SVM classifier. Using the SVM out-
put (distance from separating hyperplane) as a confi-
dence measure, we accept or reject the new tag based
on a preselected threshold.

8 Experiments and Results
In this section, we describe the experiments con-
ducted and results obtained using the ACE 2004
data. The number of training and test examples,
which are words/punctuations in English and char-
acters in Chinese, are summarized in Table 3. The
number of classes in the joint task and in each
pipelined subtask are also included.

In the first set of experiments we evaluated our
integrated system and investigated the performance
with respect to broad classes of features introduced
in section 5, by adding one group of features at a
time. Grouping of features into broad classes were
done as follows:

• baseline features: tokens

• lexical features: POS, lexical patterns

• syntactic features: base phrase chunks, syntac-
tic tree features

• “semantic” features: heads and grammatical re-
lations

• external features: features from external re-
sources; e.g. wordnet, gazetteers, other entity
taggers etc.

Table 4: English system performance with respect to broad
classes of features; lex: lexical features, syn: syntactic fea-
tures, sem: ”semantic” features, ext: external features, Fuw:
unweighted F-score, Fw: weighted F-score, ACE: ACE value.

Feature class Fuw Fw ACE
baseline (tokens) 56.5 54.8 36.1
baseline+lex 76.8 86.7 75.6
baseline+lex+syn 76.9 87.4 76.8
baseline+lex+syn+sem 77.1 87.8 77.6
baseline+lex+syn+sem+ext 82.0 90.7 82.9

The results are summarized in Table 4 and Table
5 for both English and Chinese systems. Both un-
weighted and weighted F-scores, and also ACE val-
ues are reported. It is interesting to note that sig-
nificant gains were achieved by simple lexical and
external features when they are added. The degree
of improvement by using computationally intensive
syntactic and dependency analysis is marginal. This
might partly be due to the type of features derived
from parse trees and partly due to the mismatch of
the genre of text to the text on which the syntactic
chunker and parser is trained. Since the dependency
analysis is based on the syntactic analysis using a
set of head rules, the extracted dependency based
features might also be inaccurate. Although we
observed moderate improvement for English, those
features slightly hurt the performance of the Chinese
system. This is because of the fact that the Chinese
syntactic parser performs relatively worse than the
English syntactic parser.

Table 6 presents the integrated and pipelined sys-
tem performances using all features extracted for
English and Chinese. Post-processing results are
also included. It shows notable performance im-
provement with the recovery of many misses by
post-processing. It should be noted that, in the
pipelined architecture the post-processing is per-
formed twice; at both mention and entity levels.
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Table 5: Chinese system performance with respect to broad
classes of features; lex: lexical features, syn: syntactic fea-
tures, sem: ”semantic” features, ext: external features, Fuw:
unweighted F-score, Fw: weighted F-score, ACE: ACE value.

Feature class Fuw Fw ACE
baseline (tokens) 77.6 83.5 70.8
baseline+lex 78.3 85.2 73.4
baseline+lex+syn 76.1 83.7 70.8
baseline+lex+syn+sem 74.8 83.6 70.8
baseline+lex+syn+sem+ext 78.4 86.8 76.1

9 Conclusions

We have discussed the significance of the entity
mention detection in ER model extraction from
raw text and presented the complex syntactic and
categorical structure of the entity mentions speci-
fied in the ACE program. We have explored dif-
ferent ways of representing the problem and im-
plemented two architecturally different (supervised)
machine-learning based systems to accomplish the
task; namely, a monolithic system and a cascaded
system. We have described those systems in detail
and empirically compared them. Both systems have
achieved comparable performances on English text.
However, the integrated system has achived moder-
ately better performance on Chinese text. We have
argued that it is easier to develop and maintain the
monolithic system since it has a single set of features
and classifiers to be tuned. We believe that the per-
formance levels achieved at mid 80s (in ACE values)
for English and at upper 70s for Chinese, using only
the ACE data, are competitive. We have introduced
a post-processing algorithm based on an entity base
created during the testing. It has worked very well
for both languages to recover several missed en-
tity mentions and considerably improved the perfor-
mance.
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Table 6: English and Chinese system performances with all
features and post-processing: Fuw: unweighted F-score, Fw:
weighted F-score, ACE: ACE value.

English System Fuw Fw ACE
Integrated 82.0 90.7 82.9
Pipelined 82.1 90.8 83.1
Integrated+Post 82.2 91.5 84.3
Pipelined+Post 82.3 91.3 84.0

Chinese System
Integrated 78.4 86.8 76.1
Pipelined 76.9 85.7 74.1
Integrated+Post 79.6 87.7 77.5
Pipelined+Post 79.1 86.6 75.6
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Abstract

We present a system for deciding whether
a given sentence can be inferred from
text. Each sentence is represented as a
directed graph (extracted from a depen-
dency parser) in which the nodes repre-
sent words or phrases, and the links repre-
sent syntactic and semantic relationships.
We develop a learned graph matching ap-
proach to approximate entailment using
the amount of the sentence’s semantic
content which is contained in the text. We
present results on the Recognizing Textual
Entailment dataset (Dagan et al., 2005),
and show that our approach outperforms
Bag-Of-Words and TF-IDF models. In ad-
dition, we explore common sources of er-
rors in our approach and how to remedy
them.

1 Introduction

A fundamental stumbling block for several NLP ap-
plications is the lack of robust and accurate seman-
tic inference. For instance, question answering sys-
tems must be able to recognize, or infer, an answer
which may be expressed differently from the query.
Information extraction systems must also be able
recognize the variability of equivalent linguistic ex-
pressions. Document summarization systems must
generate succinct sentences which express the same
content as the original document. In Machine Trans-
lation evaluation, we must be able to recognize legit-

imate translations which structurally differ from our
reference translation.

One sub-task underlying these applications is the
ability to recognize semantic entailment; whether
one piece of text follows from another. In contrast
to recent work which has successfully utilized logic-
based abductive approaches to inference (Moldovan
et al., 2003; Raina et al., 2005b), we adopt a graph-
based representation of sentences, and use graph
matching approach to measure the semantic over-
lap of text. Graph matching techniques have proven
to be a useful approach for tractable approximate
matching in other domains including computer vi-
sion. In the domain of language, graphs provide
a natural way to express the dependencies between
words and phrases in a sentence. Furthermore,
graph matching also has the advantage of providing
a framework for structural matching of phrases that
would be difficult to resolve at the level of individual
words.

2 Task Definition and Data

We describe our approach in the context of the 2005
Recognizing Textual Entailment (RTE) Challenge
(Dagan et al., 2005), but note that our approach eas-
ily extends to other related inference tasks. The sys-
tem presented here was one component of our re-
search group’s 2005 RTE submission (Raina et al.,
2005a) which was the top-ranking system according
to one of the two evaluation metrics.

In the 2005 RTE domain, we are given a set of
pairs, each consisting of two parts: 1) thetext, a
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NP-Bezos

NNP

Bezos
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VBD

established

NP-company

DT

a

NN

company

Bezos
(person)

company
(organization)

establish
(VBD)

Subj (Agent) Obj (Patient)

Figure 1: An example parse tree and the correspond-
ing dependency graph. Each phrase of the parse tree
is annotated with its head word, and the parentheti-
cal edge labels in the dependency graph correspond
to semantic roles.

small passage,1 and thehypothesis, a single sen-
tence. Our task is to decide if the hypothesis is “en-
tailed” by the text. Here, “entails” does not mean
strict logical implication, but roughly means that
a competent speaker with basic world-knowledge
would be happy to conclude the hypothesis given the
text. This criterion has an aspect of relevance logic
as opposed to material implication: while various
additional background information may be needed
for the hypothesis to follow, the text must substan-
tially support the hypothesis.

Despite the informality of the criterion and the
fact that the available world knowledge is left
unspecified, human judges show extremely good
agreement on this task – 3 human judges indepen-
dent of the organizers calculated agreement rates
with the released data set ranging from 91–96% (Da-
gan et al., 2005). We believe that this in part reflects
that the task is fairly natural to human beings. For
a flavor of the nature (and difficulty) of the task, see
Table 1.

We give results on the data provided for the RTE
task which consists of 567 development pairs and
800 test pairs. In both sets the pairs are divided into
7 tasks – each containing roughly the same number
of entailed and not-entailed instances – which were
used as both motivation and means for obtaining and
constructing the data items. We will use the follow-
ing toy example to illustrate our representation and
matching technique:

Text: In 1994, Amazon.com was founded by Jeff Bezos.

Hypothesis: Bezos established a company.

1Usually a single sentence, but occasionally longer.

3 Semantic Representation

3.1 The Need for Dependencies

Perhaps the most common representation of text for
assessing content is “Bag-Of-Words” or “Bag-of-N-
Grams” (Papineni et al., 2002). However, such rep-
resentations lose syntactic information which can
be essential to determining entailment. Consider a
Question Answer system searching for an answer
to When was Israel established? A representation
which did not utilize syntax would probably enthusi-
astically return an answer from (the 2005 RTE text):
The National Institute for Psychobiology in Israel
was established in 1979.

In this example, it’s important to try to match rela-
tionships as well as words. In particular, any answer
to the question should preserve the dependency be-
tweenIsrael andestablished. However, in the pro-
posed answer, the expected dependency is missing
although all the words are present.

Our approach is to view sentences as graphs be-
tween words and phrases, where dependency rela-
tionships, as in (Lin and Pantel, 2001), are charac-
terized by the path between vertices.

Given this representation, we judge entailment by
measuring not only how many of thehypothesis ver-
tices are matched to thetext but also how well the
relationships between vertices in the hypothesis are
preserved in their textual counterparts. For the re-
mainder of the section we outline how we produce
graphs from text, and in the next section we intro-
duce our graph matching model.

3.2 From Text To Graphs

Starting with raw English text, we use a version of
the parser described in (Klein and Manning, 2003),
to obtain a parse tree. Then, we derive a dependency
tree representation of the sentence using a slightly
modified version of Collins’ head propagation rules
(Collins, 1999), which make main verbs not auxil-
iaries the head of sentences. Edges in the depen-
dency graph are labeled by a set of hand-created
tgrep expressions. These labels represent “sur-
face” syntax relationships such assubj for subject
andamod for adjective modifier, similar to the rela-
tions inMinipar (Lin and Pantel, 2001). The depen-
dency graph is the basis for our graphical represen-
tation, but it is enhanced in the following ways:
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Task Text Hypothesis Entailed
Question An-
swer (QA)

Prince Charles was previously married to Princess
Diana, who died in a car crash in Paris in August
1997.

Prince Charles and Princess Diana got
married in August 1997.

False

Machine
Translation
(MT)

Sultan Al-Shawi, a.k.a the Attorney, said during a
funeral held for the victims, ”They were all chil-
dren of Iraq killed during the savage bombing.”.

The Attorney, said at the funeral, ”They
were all Iraqis killed during the brutal
shelling.”.

True

Comparable
Documents
(CD)

Napster, which started as an unauthorized song-
swapping Web site, has transformed into a legal
service offering music downloads for a monthly
fee.

Napster illegally offers music down-
loads.

False

Paraphrase
Recognition
(PP)

Kerry hit Bush hard on his conduct on the war in
Iraq.

Kerry shot Bush. False

Information
Retrieval (IR)

The country’s largest private employer, Wal-Mart
Stores Inc., is being sued by a number of its female
employees who claim they were kept out of jobs in
management because they are women.

Wal-Mart sued for sexual discrimina-
tion.

True

Table 1: Some Textual Entailment examples. The last three demonstrate some of the harder instances.

1. Collapse Collocations and Named-Entities: We
“collapse” dependency nodes which represent
named entities (e.g.,Jeff Bezos in Figure fig-
example) and also collocations listed in Word-
Net, including verbs and their adjacent particles
(e.g.,blow off in He blew off his work) .

2. Dependency Folding: As in (Lin and Pan-
tel, 2001), we found it useful to fold cer-
tain dependencies (such as modifying preposi-
tions) so that modifiers became labels connect-
ing the modifier’s governor and dependent di-
rectly. For instance, in the text graph in Figure
2, we have changedin from a word into a rela-
tion between its head verb and the head of its
NP complement.

3. Semantic Role Labeling: We also augment
the graph representation with Probank-style
semantic roles via the system described in
(Toutanova et al., 2005). Each predicate adds
an arc labeled with the appropriate seman-
tic role to the head of the argument phrase.
This helps to create links between words which
share a deep semantic relation not evident in
the surface syntax. Additionally, modifying
phrases are labeled with their semantic types
(e.g., in 1991 is linked by aTemporal edge in
the text graph of Figure 2), which should be
useful in Question Answering tasks.

4. Coreference Links: Using a co-rereference res-
olution tagger,coref links are added through-

out the graph. These links allowed connecting
the referent entity to the vertices of the referring
vertex. In the case of multiple sentence texts, it
is our only “link” in the graph between entities
in the two sentences.

For the remainder of the paper, we will refer to
the text asT and hypothesis asH, and will speak
of them in graph terminology. In addition we will
useHV and HE to denote the vertices and edges,
respectively, ofH.

4 Entailment by Graph Matching
We take the view that a hypothesis is entailed from
the text when the cost of matching the hypothesis
graph to the text graph is low. For the remainder of
this section, we outline a general model for assign-
ing a match cost to graphs.

For hypothesis graphH, and text graphT , a
matching M is a mapping from the vertices ofH to
those ofT . For vertexv in H, we will useM(v) to
denote its “match” inT . As is common in statistical
machine translation, we allow nodes inH to map to
fictitious NULL vertices inT if necessary. Suppose
the cost of matchingM is Cost(M). If M is the set
of such matchings, we define the cost of matching
H to T to be

MatchCost(H,T ) = min
M∈M

Cost(M) (1)

Suppose we have a model, VertexSub(v,M(v)),
which gives us a cost in[0, 1], for substituting ver-
tex v in H for M(v) in T . One natural cost model
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is to use the normalized cost for each of the vertex
substitutions inM :

VertexCost(M) =
1

Z

∑

v∈HV

w(v)VertexSub(v,M(v))

(2)
Here, w(v) represents the weight or relative im-
portance for vertexv, and Z =

∑
v∈HV

w(v) is
a normalization constant. In our implementation,
the weight of each vertex was based on the part-of-
speech tag of the word or the type of named entity,
if applicable. However, there are several other pos-
sibilities including using TF-IDF weights for words
and phrases.

Notice that when Cost(M) takes the form of
(2), computing MatchCost(H,T ) is equivalent to
finding the minimal cost bipartite graph-matching,
which can be efficiently computed using linear pro-
gramming.

We would like our cost-model to incorporate
some measure of how relationships inH are pre-
served inT underM . Ideally, a matching should
preserve all local relationships; i.e, ifv → v′ ∈ HE,
thenM(v) → M(v′) ∈ TE . When this condition
holds for all edges inH, H is isomorphic to a sub-
graph ofT .

What we would like is anapproximate notion of
isomorphism, where we penalize the distortion of
each edge relation inH. Consider an edgee =
(v, v′) ∈ HE, and letφM (e) be the path fromM(v)
to M(v′) in T .

Again, suppose we have a model,
PathSub(e, φM (e)) for assessing the “cost” of
substituting a direct relatione ∈ HE for its coun-
terpart,φM (e), under the matching. This leads to
a formulation similar to (2), where we consider the
normalized cost of substituting each edge relation
in H with a path inT :

RelationCost(M) =
1

Z

∑

e∈HE

w(e)PathSub(e, φM (e))

(3)
whereZ =

∑
e∈HE

w(e) is a normalization con-
stant. As in the vertex case, we have weights
for each hypothesis edge,w(e), based upon the
edge’s label; typically subject and object relations
are more important to match than others. Our fi-
nal matching cost is given by a convex mixture of

Subj (Agent)

establish

(VBD)

Bezos

(person)

Company

(organization)

Obj (Patient) 

Subj (Agent)

found

(VBD)

Jeff Bezos

(person)

Amazon.com

(organization)

Obj (Patient)

In (Temporal)

1991

(date)

Synonym 
Match
Cost: 0.4

Hyponym
Match
Cost: 0.0

Exact
Match
Cost: 0.0

Vertex Cost: (0.0 + 0.2 + 0.4)/3 = 0.2
Relation Cost: 0  (Graphs Isomorphic)  
Match Cost: 0.55 (0.2) + (.45) 0.0 = 0.11

Figure 2: Example graph matching (α = 0.55) for
example pair. Dashed lines represent optimal match-
ing.

the vertex and relational match costs: Cost(M) =
αVertexCost(M) + (1− α)RelationCost(M).

Notice that minimizing Cost(M) is computa-
tionally hard since if our PathSub model as-
signs zero cost only for preserving edges, then
RelationCost(M) = 0 if and only ifH is isomorphic
to a subgraph ofT . Since subgraph isomophism is
an NP-complete problem, we cannot hope to have an
efficient exact procedure for minimizing the graph
matching cost. As an approximation, we can ef-
ficiently find the matchingM∗ which minimizes
VertexCost(·); we then perform local greedy hill-
climbing search, beginning fromM∗, to approxi-
mate the minimal matching. The allowed operations
are changing the assignment of any hypothesis ver-
tex to a text one, and, to avoid ridges, swapping two
hypothesis assignments

5 Node and Edge Substitution Models

In the previous section we described our graph
matching model in terms of our VertexSub model,
which gives a cost for substituting one graph vertex
for another, and PathSub, which gives a cost for sub-
stituting the path relationship between two paths in
one graph for that in another. We now outline these
models.

5.1 Vertex substitution cost model

Our VertexSub(v,M(v)) model is based upon a
sliding scale, where progressively higher costs are
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given based upon the following conditions:

• Exact Match: v andM(v) are identical words/
phrases.

• Stem Match: v andM(v)’s stems match or one
is a derivational form of the other; e.g., matching
coaches to coach.

• Synonym Match: v andM(v) are synonyms ac-
cording toWordNet (Fellbaum, 1998). In particu-
lar we use the top 3 senses of both words to deter-
mine synsets.

• Hypernym Match: v is a “kind of” M(v), as
determined byWordNet. Note that this feature is
asymmetric.

• WordNet Similarity: v andM(v) are similar ac-
cording toWordNet::Similarity (Peder-
sen et al., 2004). In particular, we use the measure
described in (Resnik, 1995). We found it useful
to only use similarities above a fixed threshold to
ensure precision.

• LSA Match: v and M(v) are distributionally
similar according to a freely available Latent Se-
mantic Indexing package,2 or for verbs similar
according toVerbOcean (Chklovski and Pantel,
2004).

• POS Match: v andM(v) have the same part of
speech.

• No Match: M(v) is NULL.

Although the above conditions often produce rea-
sonable matchings between text and hypothesis, we
found the recall of these lexical resources to be far
from adequate. More robust lexical resources would
almost certainly boost performance.

5.2 Path substitution cost model

Our PathSub(v → v′,M(v) → M(v′)) model is
also based upon a sliding scale cost based upon the
following conditions:

• Exact Match: M(v) → M(v′) is an en edge in
T with the same label.

• Partial Match: M(v) → M(v′) is an en edge in
T , not necessarily with the same label.

• Ancestor Match: M(v) is an ancestor ofM(v′).
We use an exponentially increasing cost for longer
distance relationships.
2Available athttp://infomap.stanford.edu

• Kinked Match: M(v) andM(v′) share a com-
mon parent or ancestor inT . We use an exponen-
tially increasing cost based on the maximum of
the node’s distances to their least common ances-
tor in T .

These conditions capture many of the common
ways in which relationships between entities are dis-
torted in semantically related sentences. For in-
stance, in our system, a partial match will occur
whenever an edge type differs in detail, for instance
use of the prepositiontowards in one case andto in
the other. An ancestor match will occur whenever an
indirect relation leads to the insertion of an interven-
ing node in the dependency graph, such as matching
John is studying French farming vs.John is studying
French farming practices.

5.3 Learning Weights

Is it possible to learn weights for the relative impor-
tance of the conditions in the VertexSub and PathSub
models? Consider the case where match costs are
given only by equation (2) and vertices are weighted
uniformly (w(v) = 1). Suppose thatΦ(v,M(v))
is a vector of features3 indicating the cost accord-
ing to each of the conditions listed for matchingv

to M(v). Also let w be weights for each element
of Φ(v,M(v)). First we can model the substitution
cost for a given matching as:

VertexSub(v,M(v)) =
exp (wT Φ(v,M(v)))

1 + exp (wT Φ(v,M(v)))

Letting s(·) be the 1-sigmoid function used in the
right hand side of the equation above, our final
matching cost as a function ofw is given by

c(H,T ;w) = min
M∈M

1

|HV |

∑

v∈H

s(wT Φ(v,M(v)))

(4)
Suppose we have a set of text/hypothesis pairs,

{(T (1),H(1)), . . . , (T (n),H(n))}, with labels y(i)

which are 1 if H(i) is entailed byT (i) and 0
otherwise. Then we would like to choosew to
minimize costs for entailed examples and maximize
it for non-entailed pairs:

3In the case of our “match” conditions, these features will
be binary.
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ℓ(w) =
∑

i:y(i)=1

log c(H(i), T (i);w) +

∑

i:y(i)=0

log(1− c(H(i), T (i);w))

Unfortunately,ℓ(w) is not a convex function. No-
tice that the cost of each matching,M , implicitly
depends on the current setting of the weightsw. It
can be shown that since eachc(H,T ;w) involves
minimizing M ∈ M, which depends onw, it is not
convex. Therefore, we can’t hope to globally opti-
mize our cost functions overw and must settle for
an approximation.

One approach is to use coordinate ascent overM

andw. Suppose that we begin with arbitrary weights
and given these weights chooseM (i) to minimize
eachc(H(i), T (i);w). Then we use a relaxed form of
the cost function where we use the matchings found
in the last step:

ĉ(H(i), T (i);w) =
1

|HV |

∑

v∈H

s(wT Φ(v,M (i)(v)))

Then we maximizew with respect toℓ(w) with
eachc(·) replaced with the cost-function̂c(·). This
step involves only logistic regression. We repeat this
procedure until our weights converge.

To test the effectiveness of the above procedure
we compared performance against baseline settings
using a random split on the development set. Picking
each weight uniformly at random resulted in 53%
accuracy. Setting all weights identically to an arbi-
trary value gave 54%. The procedure above, where
the weights are initialized to the same value, resulted
in an accuracy of 57%. However, we believe there
is still room for improvement since carefully-hand
chosen weights results in comparable performance
to the learned weights on the final test set. We be-
lieve this setting of learning under matchings is a
rather general one and could be beneficial to other
domains such as Machine Translation. In the future,
we hope to find better approximation techniques for
this problem.

6 Checks

One systematic source of error coming from our ba-
sic approach is the implicit assumption of upwards

monotonicity of entailment; i.e., ifT entailsH then
addingmore words toT should also give us a sen-
tence which entailsH. This assumption, also made
by other recent abductive approaches (Moldovan et
al., 2003), does not hold for several classes of exam-
ples. Our formalism does not at present provide a
general solution to this issue, but we include special
case handling of the most common types of cases,
which we outline below.4 These checks are done af-
ter graph matching and assume we have stored the
minimal cost matching.

Negation Check

Text: Clinton’s book is not a bestseller

Hypothesis: Clinton’s book is a bestseller

To catch such examples, we check that each hy-
pothesis verb is not matched to a text word which
is negated (unless the verb pairs are antonyms) and
vice versa. In this instance, theis in H, denoted by
isH , is matched toisT which has a negation modifier,
notT , absent forisH . So the negation check fails.

Factive Check

Text: Clonaid claims to have cloned 13 babies worldwide.

Hypothesis: Clonaid has cloned 13 babies.

Non-factive verbs (claim, think, charged, etc.) in
contrast to factive verbs (know, regret, etc.) have
sentential complements which do not represent true
propositions. We detect such cases, by checking that
each verb inH that is matched inT does not have a
non-factive verb for a parent.

Superlative Check

Text: The Osaka World Trade Center is the tallest building in

Western Japan.

Hypothesis: The Osaka World Trade Center is the tallest build-

ing in Japan.

In general, superlative modifiers (most, biggest,
etc.) invert the typical monotonicity of entailment
and must be handled as special cases. For any
nounn with a superlative modifier (part-of-speech
JJS) inH, we must ensure that all modifier relations
of M(n) are preserved inH. In this example,build-
ingH has a superlative modifiertallestH , so we must
ensure that each modifier relation ofJapanT , a noun

4All the examples are actual, or slightly altered, RTE exam-
ples.
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Method Accuracy CWS
Random 50.0% 0.500

Bag-Of-Words 49.5% 0.548
TF-IDF 51.8% 0.560

GM-General 56.8% 0.614
GM-ByTask 56.7% 0.620

Table 2: Accuracy and confidence weighted score
(CWS) for test set using various techniques.

dependent ofbuildingT , has aWesternT modifier not
in H. So its fails the superlative check.

Additionally, during error analysis on the devel-
opment set, we spotted the following cases where
our VertexSub function erroneously labeled vertices
as similar, and required special case consideration:

• Antonym Check: We consistently found that the
WordNet::Similarity modules gave high-
similarity to antonyms.5 We explicitly check
whether a matching involved antonyms and reject
unless one of the vertices had a negation modifier.

• Numeric Mismatch: Since numeric expressions
typically have the same part-of-speech tag (CD),
they were typically matched when exact matches
could not be found. However, mismatching nu-
merical tokens usually indicated thatH was not
entailed, and so pairs with a numerical mismatch
were rejected.

7 Experiments and Results

For our experiments we used the devolpement and
test sets from the Recognizing Textual Entailment
challenge (Dagan et al., 2005). We give results for
our system as well as for the following systems:

• Bag-Of-Words: We tokenize the text and hypoth-
esis and strip the function words, and stem the re-
sulting words. The cost is given by the fraction of
the hypothesis not matched in the text.

• TF-IDF: Similar to Bag-Of-Words except that
there is a tf.idf weight associated with each hy-
pothesis word so that more “important” words are
higher weight for matching.

5This isn’t necessarily incorrect, but is simply not suitable
for textual inference.

Task GM-General GM-ByTask
Accuracy CWS Accuracy CWS

CD 72.0% 0.742 76.0% 0.771
IE 55.9% 0.583 55.8% 0.595
IR 52.2% 0.564 51.1% 0.572
MT 50.0% 0.497 43.3% 0.489
PP 58.0% 0.741 58.0% 0.746
QA 53.8% 0.537 55.4% 0.556
RC 52.1% 0.539 52.9% 0.523

Table 3: Accuracy and confidence weighted score
(CWS) split by task on the RTE test set.

We also present results for two graph matching
(GM) systems. The GM-General system fits a sin-
gle global threshold from the development set. The
GM-ByTask system fits a different threshold for
each of the tasks.

Our results are summarized in Table 2. As the re-
sult indicates, the task is particularly hard; all RTE
participants scored between 50% and 60% in terms
of overall accuracy (Dagan et al., 2005). Nevever-
theless, both GM systems perform better than either
Bag-Of-Words or TF-IDF. CWS refers to Confi-
dence Weighted Score (also known as average pre-
cision). This measure is perhaps a more insightful
measure, since it allows the inclusion of a ranking
of answers by confidence and assesses whether you
are correct on the pairs that you are most confident
that you know the answer to. To assess CWS, our
n answers are sorted in decreasing order by the con-
fidence we return, and then for eachi, we calculate
ai, our accuracy on ouri most confident predictions.
Then CWS= 1

n

∑n
i=1 ai.

We also present results on a per-task basis in Ta-
ble 3. Interestingly, there is a large variation in per-
formance depending on the task.

8 Conclusion

We have presented a learned graph matching ap-
proach to approximating textual entailment which
outperforms models which only match at the word
level, and is competitive with recent weighed ab-
duction models (Moldovan et al., 2003). In addition,
we explore problematic cases of nonmonotonicity in
entailment, which are not naturally handled by ei-
ther subgraph matching or the so-called “logic form”
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Text Hypothesis True Ans. Our Ans. Conf Comments
A Filipino hostage in Iraq was re-
leased.

A Filipino hostage
was freed in Iraq.

True True 0.84 Verb rewrite is handled.
Phrasal ordering does not
affect cost.

The government announced last
week that it plans to raise oil
prices.

Oil prices drop. False False 0.95 High cost given for substituting
word for its antonym.

Shrek 2 rang up $92 million. Shrek 2 earned $92
million.

True False 0.59 Collocation “rang up” is
not known to be similar to
“earned”.

Sonia Gandhi can be defeated in
the next elections in India by BJP.

Sonia Gandhi is de-
feated by BJP.

False True 0.77 “can be” does not indicate the
complement event occurs.

Fighters loyal to Moqtada al-Sadr
shot down a U.S. helicopter Thurs-
day in the holy city of Najaf.

Fighters loyal to
Moqtada al-Sadr
shot down Najaf.

False True 0.67 Should recognize non-Location
cannot be substituted for Loca-
tion.

C and D Technologies announced
that it has closed the acquisition of
Datel, Inc.

Datel Acquired C
and D technologies.

False True 0.64 Failed to penalize switch in se-
mantic role structure enough

Table 4: Analysis of results on some RTE examples along with out guesses and confidence probabilities

inference of (Moldovan et al., 2003) and have pro-
posed a way to capture common cases of this phe-
nomenon. We believe that the methods employed
in this work show much potential for improving the
state-of-the-art in computational semantic inference.
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Abstract

“Bootstrapping” methods for learning require a small amount
of supervision to seed the learning process. We show that it
is sometimes possible to eliminate this last bit of supervision,
by trying many candidate seeds and selecting the one with the
most plausible outcome. We discuss such “strapping” methods
in general, and exhibit a particular method for strapping word-
sense classifiers for ambiguous words. Our experiments on the
Canadian Hansards show that our unsupervised technique is sig-
nificantly more effective than picking seeds by hand (Yarowsky,
1995), which in turn is known to rival supervised methods.

1 Introduction

Some of NLP’s most interesting problems have to do with
unsupervised learning. Human language learners are able
to discover word senses, grammatical genders, morpho-
logical systems, grammars, discourse registers, and so
forth. One would like to build systems that discover the
same linguistic patterns in raw text. For that matter, one
would also like to discover patterns in bilingual text (for
translation), in document collections (for categorization
and retrieval), and in other data that fall outside the scope
of humans’ language learning.

There are relatively few successful methods for fully
unsupervised learning from raw text. For example,
the EM algorithm (Dempster et al., 1977) extracts the
“wrong” patterns or gets stuck in local maxima.

One of the most promising avenues in recent years has
been the use of “minimally supervised” methods. Such
methods are initialized with some sort of “seed” that
grows into a full classifier (or generative model). We
say that a seed is “fertile” if it grows into a classifier (or
model) that performs well on some desired criterion.

Ordinarily, it is up to a human to choose a seed that
he or she intuitively expects to be fertile. While this may
be easy when building a single classifier, it is prohibitive
when building many classifiers. For example, we may
wish to build

• word-sense classifiers for all words of a language (e.g.,
to get sharper lexical translation probabilities in a ma-
chine translation system)

• named-entity extractors for many languages

• new clusters or classifiers every day (for an evolving
document collection)

∗We thank David Yarowsky for advice on the choice of data
and for theplant/tankdataset.

• new clusters or classifiers every minute (for the docu-
ment sets retrieved byad hocqueries)

• many distinct classifiers that correspond to different
views of the data1

Even when building a single classifier, a human may not
know how to pick a good seed when working with an
unfamiliar language or sublanguage, or when trying to
induce less intuitive hidden variables, such as grammar
rules or fine-grained senses. And there is no reason to
expect humans to have good intuitions about seeds for
mining non-linguistic data such as consumer purchasing
records.

This paper considers how to remove this last element
of supervision. Our idea is to guess a number of plausi-
ble seeds, build a classifier for each one, and then try to
determine which of the seeds have grown successfully.

For example, to discover the two senses of the En-
glish worddrug, we grow 200 classifiers (from different
seeds) that attempt to partition instances ofdrug into two
classes. We have nodirect supervision about which of
the resulting partitions corresponds to the true sense dis-
tinction. Instead, we rely on clues that tend to signal that
a seed was fertile and led to a good partition. The clues
are not specific to the worddrug, but they may have been
demonstrated to be good clues in general for successfully
grown word sense disambiguators.

Demonstrated how? If we consider more than one clue,
we may need some data to learn which clues to trust, and
their relative weights. Our method is unsupervised in the
conventional sense, as it obtains a classifier fordrugwith
no supervision aboutdrug. However, to learn what good
classifiers generally look like2 for this task, we first use

1A word token or document can be characterized by a 20-bit
vector, corresponding to its classifications by 20 different binary
classifiers. These vectors are detailed abstract representations of
the words or documents. They can be clustered, or all their bits
can be included as potentially relevant features in anothertask.

2Ando and Zhang (2005) independently used this phrase, for
asemi-supervised, cross-tasklearner that differs from ourunsu-
pervised, cross-instancelearner. Both their work and ours try
to transfer knowledge to a target problem from many artificial
supervised “auxiliary problems,” which are generated fromun-
labeled data (e.g., our pseudoword disambiguation problems).
However, in their “structural learning,” the target problem is
supervised(if inadequately), and the auxiliary problems (super-
vised instances of adifferenttask) are a source of usefulhidden
features for the classifier. In our “strapping,” the target task is
unsupervised, and the auxiliary problems (supervised instances
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supervised data for a fewother ambiguous words—or
ambiguous pseudowords, a kind of artificial data where
supervision comes for free. This supervision’s effect on
drugmight be calledcross-instance learning.

To take another metaphor, minimally supervised learn-
ing is often called “bootstrapping.” Our goal is to allow a
method to pull itself up by its own bootstraps3 even when
it has none. It places its stocking feet in anything handy,
pulls on what it hopes to be sturdy straps, and checks to
see how high it got.

We dub this family of methods “bootstrapping without
the boot,” or “strapping” for short. The name is meant
to evoke “bagging” and “boosting”—other methods that
train and combine multiple classifiers of the same form.
However, we are careful to point out that strapping, un-
like those theoretically motivated methods, is anunsuper-
visedlearning technique (in the sense explained above).
The clusters or other hidden variables extracted by the
winning classifier may or may not be the ones that one
had hoped to find. Designing a strapping algorithm for a
particular task requires more art than designing a super-
vised learner: one must invent not only appropriate fea-
tures for classifying the data, but also appropriate clues
for identifying “successful” classifiers.

2 Bootstrapping

To show where strapping might be useful, we briefly re-
view a range of successful bootstrapping work. We con-
sider differenttasks. Given aninstanceof the task and a
seeds for that instance, one bootstraps a classifierCs that
can classifyexamplesof the task instance.

2.1 The Yarowsky algorithm

Yarowsky (1995) sparked considerable interest in boot-
strapping with his successful method for word sense dis-
ambiguation. An instance of this task involves a homony-
mous word such asdrug. A seed for the instance is a pair
of words that are strongly associated, respectively, with
the two senses ofdrug, such as (trafficking, therapy). An
example is a token ofdrug.

For our purposes, a bootstrapping method can be re-
garded almost as a black box. However, we review
the details of the Yarowsky algorithm to illustrate how
bootstrapping is possible, and why some seeds are bet-
ter than others. We will use these intuitions later in de-
signing a method to strap the Yarowsky algorithm on a

of thesametask) are a source ofclues for a meta-classifierthat
chooses among classifiers grown from different seeds. In short,
their auxiliary problems help train the target classifier directly,
while ours help train only a simple meta-classifier that chooses
among many unsupervised target classifiers. We use far fewer
auxiliary problems but ours must be instances of the target task.

3The reference is to Baron Munchausen, a fictional 18th-
century adventurer who rescued himself from a pit in this way.
It is distinct from the ”bootstrap” in non-parametric statistics.

new instance—i.e., a method forautomaticallychoosing
seeds that discover a true sense distinction.

A learned classifier for the instancedrug is an ordered
decision list of contextual features (such as the presence
of dealernearby) that strongly indicate one or the other
sense ofdrug. Given a sample token ofdrug, the classi-
fier picks a sense according to the single highest-ranked
feature that is present in the token’s context.

To bootstrap a decision-list classifier from a seed,
Yarowsky starts with all examples ofdrug that can be
classified by using the seed words as the only features.
These few examples are used as supervised data to train
a longer decision list, which includes the seed words and
any other features that suffice to distinguish these exam-
ples with high confidence. This longer decision list can
now classify further examples, which are used to train a
new and even longer decision list, and so on.

Yarowsky’s method works if it can maintain high ac-
curacy as it gradually increases its coverage. A precise
classifier at iterationt tends to accurately classify new
examples. This tends to produce a still-accurate classifier
with greater coverage at iterationt + 1.

The method fails if the initial classifier is inaccurate
(i.e., if the two seed words do not accurately pick out ex-
amples of the two senses). It may also fail if at some
point, by bad luck on sparse data, the process learns some
inappropriate features. If the classifier at iterationt is
sufficiently polluted by bad features, the classifier at iter-
ation t + 1 will start trying to distinguish examples that
do not correspond to different senses, which may lead to
even worse classifiers on subsequent iterations. However,
some alternative seed may have escaped this bad luck by
sprouting a different set of examples.

2.2 A Few Other Applications of Bootstrapping

Inspired by Yarowsky, Blum and Mitchell (1998) built a
classifier for the task of web page classification.4 They
considered only one instance of this task, namely distin-
guishing course home pages from other web pages at a
computer science department. Their seed consisted of 3
positive and 9 negative examples. Strapping a web page
classifier would mean identifying seeds that lead to other
“natural classes” of web pages. Strapping may be useful
for unsupervised text categorization in general.

Riloff et al. (2003) learned lists of subjective nouns
in English, seeding their method with 20 high-frequency,
strongly subjective words. This seed set was chosen man-
ually from an automatically generated list of 850 can-

4More precisely, they bootstrappedtwo Naive Bayes
classifiers—one that looked at page content and the other that
looked at links to the page. This “co-training” approach hasbe-
come popular. It was also used by the Cucerzan and Yarowsky
papers below, which looked at “internal” and “external” features
of a phrase.
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didate words. Strapping their method would identify
subjective nouns in other languages, or other “natural
classes” of English words.

Query expansion in IR searches for more documents
“similar to” a designated relevant document. This prob-
lem too might be regarded as searching for a natural
class—a small subset of documents that share some prop-
erty of the original document—and approached using it-
erative bootstrapping. The seed would specify the origi-
nal documentplusone or two additional words or docu-
ments initially associated with the “relevant” and/or “ir-
relevant” classes. Strapping would guess various differ-
ent seeds that extended the original document, then try to
determine which seeds found acohesive“relevant set.”

Collins and Singer (1999) bootstrapped a system for
classifying phrases in context. Again, they considered
only one instance of this task: classifying English proper
names as persons, organizations, or locations. Their seed
consisted of 7 simple rules (“thatNew York, California,
andU.S.are locations; that any name containingIncor-
poratedis an organization; and thatI.B.M. andMicrosoft
are organizations”). Strapping such a classifier would au-
tomatically discover named-entity classes in a different
language, or other phrase classes in English.

Cucerzan and Yarowsky (1999) built a similar system
that identified proper names as well as classifying them.
Their seed consisted of a list of 40 to 300 names. Large
seeds were not necessary for precision but did help recall.

Cucerzan and Yarowsky (2003) classified masculine
vs. feminine nouns. They experimented with several task
instances, namely different Indo-European languages. In
each instance, their seed consisted of up to 30 feminine
and 30 masculine words (e.g.,girl, princess, father).

Many more papers along these lines could be listed. A
rather different task is grammar induction, where a task
instance is a corpus of text in some language, and the
learned classifier is a parser. Following Chomsky (1981),
we suggest that it may be possible to seed a grammar
induction method with a small number of facts about the
word order of the language: the basic clause order (SVO,
SOV, etc.), whether pronominal subjects may be omitted
(Chomsky’s “pro-drop” parameter), etc. These facts can
for example be used to construct a starting point for the
inside-outside algorithm (Baker, 1979), which like other
EM algorithms is highly sensitive to starting point. In a
strapping method, one would guess a number of different
seeds and evaluate the learned grammars on likelihood,
entropy (Wang et al., 2002), correlation with semantics,
or plausibility on other linguistic grounds that were not
considered by the likelihood or the prior.

3 Strapping

Given a seeds for some task instance, letCs denote the
classifier grown froms. Let f(s) denote the true fertility

of a seeds, i.e., the performance ofCs measured against
some set of correct answers for this instance. In gen-
eral, we do not know the correct answers and hence do
not knowf(s). That is why we are doingunsupervised
learning.

Strapping relies on twoestimatesof f(s). Let g(s) be
a quick estimate that considers only superficial features
of the seeds. h(s) is a more careful estimate that can be
computed onceCs has been grown.

The basic method for strapping a classifier for a new
task instance is very simple:

1. Quickly select a setS of candidate seeds such that
g(s) is high.

2. For each seeds ∈ S, learn a classifierCs and mea-
sureh(s).

3. Choose the seed̂s ∈ S that maximizesh(ŝ).

4. ReturnCŝ.

Variants on this method are obviously possible. For
example, instead of returning a single classifierCŝ, one
might use classifier combination to combine several clas-
sifiersCs that have highh(s).

It is clearly important thatg andh be good estimates
of f . Can data help us designg andh? Unfortunately,
f is not known in an unsupervised setting. However, if
one can get a fewsupervisedinstances of the same task,
then one can selectg andh sog(s) andh(s) approximate
f(s) for various seedss for thoseinstances, wheref(s)
can be measured directly. The sameg andh can then be
used forunsupervisedlearning on allnewtask instances.

3.1 Selecting Candidate Seeds

The first step in strapping a classifier is to select a setS
of seeds to try. For strapping to work, it is crucial that
this set contain a fertile seed. How can this be arranged?
Different strategies are appropriate for different problems
and bootstrapping methods.

• Sometimes a simple heuristicg(s) can help identify
plausibly fertile seeds, as in the pseudocode above. In
strapping the Yarowsky algorithm, we hope to find seeds
s = (x, y) such thatx and y are strongly associated
with different senses of the ambiguous target word. We
chooses = (x, y) such thatx and y were never ob-
served in the same sentence, but each ofx andy has
high pointwise mutual information with the ambiguous
target word and appeared with it at least 5 times.

• If the space of possible seeds is small, it may be pos-
sible to try many or all of them. In grammar induction,
for example, perhaps seeding with a few basic word or-
der facts is enough. There are not so many basic word
orders to try.
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• Some methods have many fertile seeds—so many that
a small random sample (perhaps filtered byg(s)) is
likely to include at least one. We rely on this for
the Yarowsky algorithm. If the target word is a true
homonym, there exist many wordsx associated strongly
with the first sense, and many wordsy associated
strongly with the second sense. It is not difficult to stum-
ble into a fertile seeds = (x, y), just as it is not difficult
for a human to think of one.5

• If fertile seeds are few and far between, one could
abandon the use of a candidate setS selected byg(s),
and directly use general-purpose search methods to look
for a seed whose predicted fertilityh(s) is high.

For example, one could use genetic algorithms to
breed a population of seeds with highh(s). Or
after evaluating several candidate seeds to obtain
h(s1), h(s2), . . . h(sk), one could perform a regression
analysis that predictsh(s) from superficial features of
s, and use this regression function (a kind ofg(s) that is
specific to the task instance) to picksk+1.

Strapping may be harder in cases like gender induc-
tion: it is hard to stumble into the kind of detailed seed
used by Cucerzan and Yarowsky (2003). However, we
suspect that fertile seeds exist that are much smaller than
their lists of 50–60 words. While their large hand-crafted
seed is sure to work, a handful of small seeds (each
consisting of afew supposedly masculine and feminine
words) might be likely to contain at least one that is fer-
tile.6 That would be sufficient, assuming we have a way
to guess which seed in the handful is most fertile. That
issue is at the core of strapping, and we now turn to it.

3.2 Clues for Evaluating Bootstrapped Classifiers

Once we have identified a candidate seeds and built the
classifierCs, we must evaluate whetherCs “looks like”
the kind of classifier that tends to do well on our task.

This evaluation functionh(s) is task-specific. It may
consider features ofCs, the growth trajectory ofCs, or
the relation betweenCs and other classifiers.

For concretness, we consider the Yarowsky method for
word-sense disambiguation (WSD). How can we tell if a
seeds = (x, y) was fertile, without using even a small
validation set to judgeCs? There are several types of

5Alignment methods in machine translation rely even more
heavily on this property. While they begin with a small trans-
lation lexicon, they are sufficiently robust to the choice ofthis
initial seed (lexicon) that it suffices to construct a singleseed by
crude automatic means (Brown et al., 1990; Melamed, 1997).
Human supervision (or strapping) is unnecessary.

6This is particularly likely if one favors function words (in
particular determiners and pronouns), which are strong indica-
tors of gender. Cucerzan and Yarowsky used only content words
because they could be extracted from bilingual dictionaries.

clues to fertility, which may be combined into a meta-
classifier that identifies fertile seeds.

Judge the result of classification withCs: Even with-
out a validation set, the result of runningCs on the train-
ing corpus can be validated in various ways, using inde-
pendent plausibility criteria that werenot considered by
the bootstrapping learner.

• Is the classification reasonably balanced? (If virtu-
ally all examples of the target word are labeled with
the same sense, thenCs has not found a sense dis-
tinction.)

• When a document contains multiple tokens of the
target word, are all examples labeled with the same
sense? This property tends to hold for correct clas-
sifiers (Gale et al., 1992a), at least for homonyms.

• True word senses usually correlate with document
or passage topic. Thus, choose a measure of simi-
larity between documents (e.g., the cosine measure
in TF/IDF space). Does the target word tend to
have the same sense in a document and in its nearby
neighbors?

• True word senses may also improve performance on
some task. Is the perplexity of a language model
much reduced by knowing whether sensex or sense
y (according toCs) appeared in the current con-
text? (This relates to the previous point.) Likewise,
given a small bilingual text that has been automati-
cally (and perhaps poorly) word-aligned, is it easier
to predict how the target word will translate when
we know its sense (according toCs)?

Judge the internal structure of Cs: DoesCs look
like a typical supervised decision list for word-sense dis-
ambiguation? For instance, does it contain many features
with high log-likelihood ratios? (If a true sense distinc-
tion was discovered, we would expectmanycontextual
features to correlate strongly with the predicted sense.)

Look at the process wherebyCs was learned:Does
the bootstrapping run that starts froms look like a typical
bootstrapping run from a fertile seed? For example, did
it rapidly add many new examples with high confidence?
Once new examples were classified, did their classifica-
tions remain stable rather than switching back and forth?

Judge the robustness of learning with seeds: Train
several versions ofCs, as in ensemble methods (but un-
supervised), by restricting each to a random subset of the
data, or a subset of the available features. Do these ver-
sions tend toagreeon how to classify the data? If not,
seeds does not reliably find true (or even false) classes.

Judge the agreement ofCs with other classifiers:
Are there several other classifiersCs′ that agree strongly
with Cs on examples that they both classify? If the sense
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distinction is real, then many different seeds should be
able to find it.

3.3 Training the Evaluation Function h(s)

Many of the above clues are necessary but not sufficient.
For example, a learned classification may be robust with-
out being a sense distinction. We therefore defineh(s)
from a combination of several clues.

In general,h(s) is a classifier or regression function
that attempts to distinguish fertile from infertile seeds,
given the clues. As mentioned earlier, we train its free
parameters (e.g., coefficients for linear regression) on a
few supervisedinstances of the task. These supervised
instances allow us to measure the fertilityf(s) of various
seeds, and thus to model the behavior of fertile versus
infertile seeds. The presumption is that these behavior
patterns will generalize to new seeds.

3.4 Training h(s) on Artificial Data

Optionally, to avoid the need for any human annotation at
all, the supervised task instances used to trainh(s) may
be artificial instances, whose correct classifications are
known without annotation.

In the case of word-sense disambiguation, one can au-
tomatically construct ambiguouspseudowords(Gale et
al., 1992c; Schütze, 1998) by replacing all occurences of
two words or phrases with their conflation. For example,
bananaand wine are replaced everywhere bybanana-
wine. The original, unconflated text serves as a super-
vised answer key for the artificial task of disambiguating
banana-wine.

Traditionally, pseudowords are used as cheap test data
to evaluate a disambiguation system. Our idea is to use
them as cheap development data to tune a system. In
our case, they tune a few free parameters ofh(s), which
says what a good classifier for this task looks like. Pseu-
dowords should be plausible instances of the task (Gaus-
tad, 2001; Nakov and Hearst, 2003): so it is deliberate
that bananaandwine share syntactic and semantic fea-
tures, as senses of real ambiguous words often do.

Cheap “pseudo-supervised” data are also available in
some other strapping settings. For grammar induction,
one could construct an artificial probabilistic grammar at
random, and generate text from it. The task of recovering
the grammar from the text then has a known answer.

4 Experiments

4.1 Unsupervised Training/Test Data

Our experiments focused on the original Yarowsky algo-
rithm. We attempted to strap word-sense classifiers, us-
ing English data only, for English words whose French
translations are ambiguous. This has obvious benefits for

training an English-to-French MT system: separate pa-
rameters can be learned for the two senses ofdrug.7

Gale et al. (1992b) identified six such words in the
Canadian Hansards, a parallel sentence-aligned corpus of
parliamentary debate in English and French:drug, duty,
land, language, position, sentence. We extracted all ex-
amples of each word from the 14-million-word English
portion of the Hansards.8 Note that this is considerably
smaller than Yarowsky’s (1995) corpus of 460 million
words, so bootstrapping will not perform as well, and
may be more sensitive to the choice of seed.

Because we are doing unsupervised learning, we both
trained and tested these 6 words on the English Hansards.
We used the French portion of the Hansards only to create
a gold standard for evaluating our results.9 If an English
sentence containingdrug is paired with a French sentence
that contains exactly one ofmédicamentor drogue, we
take that as an infallible indicator of its sense.

4.2 Comparing Classifiers

Suppose binary classifier 1 assigns class “+” toa of n
examples; binary classifier 2 assigns class “+” tob of the
samen examples. Lete be the number of examples where
the classifiers agree (both “+” or both “–”).

An unsupervised classifier’s polarity is arbitrary: clas-
sifier 1’s “+” may correspond to classifier 2’s “–”. So we
define theoverlapasE = max(e, n − e), to reflect the
best polarity.

To evaluate a learned classifier, we measure its over-
lap with the true classification. The statistical signifi-
cance is the probability that this level of overlap would
be reached by chance under independent classifications
given the valuesa, b, n:

p =
∑

max(a+b−n,0) ≤ c ≤ ⌊(a+b−E)/2⌋
or

⌈(a+b−(n−E))/2⌉ ≤ c ≤ min(a,b)

„

a
c

« „

n − a
b − c

«

/
„

n
b

«

Also, we can measure theagreementbetween any two
learned classifiers as−(log p)/n. Note that a classifier
that strongly favors one sense will have low agreement
with other classifiers.

7To hedge against the possibility of misclassification, one
could interpolate with non-sense-specific parameters.

8We are not certain that our version of the Hansards is iden-
tical to that in (Gale et al., 1992b).

9By contrast, Gale et al. (1992b) used the French portion as
a source of training supervision. By contrast, we will assume
that we donot have a large bilingual text such as the Hansards.
We train only on the English portion of the Hansards, ignoring
the French. This mimics the situation where we must construct
an MT system with very little bilingual text. By first discov-
ering word senses in unsupervised monolingual data (for either
language), we can avoid incorrectly mixing up two senses of
drug in our translation model.
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4.3 Generating Candidate Seeds (viag(s))

For each target wordt, we chose candidate seedss =
(x, y) with a high scoreg(s), whereg(s) = MI(t, x) +
MI(t, y), provided thatc(x, y) = 0 andc(t, x) ≥ 5 and
c(t, y) ≥ 5 and1/9 < c(t, x)/c(t, y) < 9.10

The setS of 200 seeds fort was constructed by repeat-
edly adding the top-scoring unused seed toS, except that
to increase the variety of words, we disallowed a seed
s = (x, y) if x or y already appeared60 times inS.

4.4 Hand-Picked Seeds

To compare, we chose two seeds by hand for eacht.
Thecasuallyhand-picked seed was chosen by intuition

from the list of 200 automatically generated seeds. This
took about 2 minutes (per seed).

Thecarefullyhand-picked seed was not limited to this
list, and took up to 10 minutes to choose, in a data-guided
fashion. We first looked at some supervised example sen-
tences to understand the desired translational sense dis-
tinction, and then for each sense chose the highest-MI
word that both met some stringent subjective criteria and
appeared to retrieve an appropriate initial set of examples.

4.5 The Bootstrapping Classifier

Our approximate replication of Yarowsky’s algorithm
used only a small set of features:

• Original and lemmatized form of the word immedi-
ately preceding the target wordt.

• Original and lemmatized form of the word immedi-
ately followingt.

• Original and lemmatized form of thecontentwords
that appear in the same sentence ast.

We used the seed to provisionally classify any token of
the target word that appeared in a sentence with exactly
one of the two seed words. This formed our initial “train-
ing set” of disambiguated tokens. At each iteration of the
algorithm, we trained a decision list on the current train-
ing set. We then used the decision list to reclassify allk
tokens in the current training set, and also to augment the
training set by classifying theadditionalmax(50, k/10)
tokens on which the decision list was most confident.11

10c(x, y) counts the sentences containing bothx andy. MI(t,
x) = log c(t, x)c()/c(t)c(x) is pointwise mutual information.

11Such a token has some feature with high log-likelihood ra-
tio, i.e., it strongly indicates one of the senses in the current
training set. We smoothed using the method of (Yarowsky,
1996): when a feature has been observed with only one sense,
its log-likelihood ratio is estimated as a linear function of the
number of occurrences of the seen sense. Function words are
smoothed with a different linear coefficient than content words,
in order to discount their importance. We borrowed the ac-
tual coefficients from (Yarowsky, 1996), though we could have
learned them.

4.6 Development Data (for tuningh(s))

Before turning to the unsupervised Hansards, we tuned
our fertility estimatorh(s) to identify good seeds on de-
velopment data—i.e., on other, supervised task instances.

In the supervised condition, we used just 2 additional
task instances,plant and tank, each with 4000 hand-
annotated instances drawn from a large balanced corpus
(Yarowsky, 1995).

In the pseudo-supervised condition, we usedno hand-
annotated data, instead constructing 10 artificial super-
vised task instances (section 3.4) from the English por-
tion of the Hansards. To facilitate cross-instance learn-
ing, we tried to construct these pseudowords to behave
something like our ambiguous test words.12 Given a test
wordt, we randomly selected a seed(x, y) from its candi-
date list (section 4.3), excluding any that contained func-
tion words.13 Our basic idea was to conflatex and y
into a pseudowordx-y. However, to get a pseudoword
with only two senses, we tried to focus on the particular
senses ofx andy that were selected byt. We constructed
about 500 pseudoword tokens by using onlyx andy to-
kens that appeared in sentences that containedt, or in
sentences resembling those under a TF-IDF measure. We
repeated this process twice per test word to obtain 12
pseudowords. We then discarded the 2 pseudowords for
which no seed beat baseline performance, reasoning that
they were ill-chosen and unlike real ambiguous words.14

4.7 Clues to Fertility

For each seeds for each development or test target word,
we measured a few cluesh1(s), h2(s) . . . h6(s) that we
hoped might correlate with fertility. (In future work, we
plan to investigate more clues inspired by section 3.2.)

• The agreeabilityof Cs with (some of) the other 199
classifiers:





1

199

∑

s′ 6=s

agr(Cs, Cs′)
γ





1/γ

The agreement agr(Cs, Cs′ ) was defined in section 4.2.
We tried 4 values forγ (namely 1, 2, 5, 10), each result-
ing in a different feature.

12We used collocates oft. Perhaps better yet would be words
that are distributionally similar tot (appear in same contexts).
Such words tend to be syntactically and semantically liket.

13For an unknown language or domain, a lexicon of function
words could be constructed automatically (Katz, 1996).

14Thus we discardedalcohol-traffickingandaddicts-alcohol;
note that these were indeed ill-chosen (difficult) since both
words unluckily corresponded to thesame sense ofdrug.
This left us with bound-constituents, customs-pray, claims-
value, claims-veterans, culture-unparliamentary, english-learn,
competitive-party, financial-party, death-quote, death-page.
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• The robustnessof the seed, defined by the agreement
of Cs with 10 variant classifiersC(k)

s that were trained
with the same seed but under different conditions:

1

10

10
∑

k=1

agr(Cs, C
(k)
s )

We simply trained each classifierC
(k)
s on a random sub-

set of then test examples, chosen by samplingn times
with replacement.15

• Theconfidenceof Cs on its own training data: its av-
erage confidence over then training tokens, minus the
classifier skew.

The decision list’s confidence on a token is the log-
likelihood ratio of the single feature used to classify that
token. It has the form| log(c/d)| (perhaps smoothed)
and was previously used to select data while bootstrap-
pingCs. Subtracting the skew,| log(a/(n−a))|,16 gives
a measurement≥ 0. It corrects for confidence that arises
from the classifier’s overall bias, leaving only the added
value of the relevant contextual feature.

4.8 Tuning h(s) and Strapping New Classifiers

For each of the 2 words or 10 pseudowordst in our de-
velopment set (see section 4.6), we ranked its 200 seeds
s by their true fertilityf(s). We then ran support vec-
tor regression17 to learn a single linear function,h(s) =
~w · (clue vector forCs), that predicts the fertilities of all
2 · 200 or 10 · 200 seeds.18

Then, for each of our 6 Hansards test instances (sec-
tion 4.1), we usedh(s) to pick the top-ranked of 200
seeds.19 It took about 3 hours total to strap classifiers for
all 6 instances, using about 40 machines and unoptimized
Perl code on the 14-million-word Hansards. For each
of the 6 instances, this involved selecting 200 candidate

15We eliminated duplicates, perhaps unfortunately.
16As before,a andn − a are the numbers of tokens thatCs

classifies as “+” and “–” respectively. Thus the skew is the log-
likelihood ratio of the decision list’s “baseline” feature.

17We used cross-validation among the 10 development pseu-
dowords to choose the options to SVMlight (Joachims, 1999): a
linear kernel, a regularization parameter of 0.3, and a dependent
variable of10f(s) ∈ [1, 10] rather thanf(s) ∈ [0, 1], which
placed somewhat more emphasis on modeling the better seeds.
Our development objective function was the average over the10
pseudowords of the Spearman rank-order correlation between
h(s) andf(s).

18We augmented the clue vector with binary clues of the form
t = plant, t = tank, etc. The regression weight of such a clue
is a learned bias term that models the inherent difficulty of the
task instancet (which varies greatly byt). This allows the other
regression features to focus on the quality of the seedgivent.

19We do not have a cluet = . . . for this test instance. The re-
sulting lack of a bias term may subtract a constant from the pre-
dicted fertilities—but that does not affect the ranking of seeds.

seeds, bootstrapping 11 classifiersCs, C
(1)
s , . . . C

(10)
s

from each seed, and choosing a particularCs to return.

4.9 Results

Our results are in Table 1. On both development and test
instances of the task,g(s) proposed seeds with a good
range of fertilities. The correlation of predicted with ac-
tual fertility on test data averaged an outstanding 85%.

Despite having no knowledge of the desired senses,
strapping significantly beat human selection inall 24 of
the possible comparisons between a hand-picked seed
(casual or careful) and a strapped seed (chosen by anh(s)
tuned on supervised or pseudo-supervised instances).

Theh(s) tuned on annotatedplant/tankactually chose
thevery bestof the 200 seeds in 4 of the 6 instances. The
h(s) tuned on artificial pseudowords did nearly as well,
in 2 of 6 instances identifying the very best seed, and in
5 of 6 instances ranking it among its top 3 choices.

We conclude that our unsupervised clues to fertility ac-
tually work. Furthermore, combining clues via regres-
sion was wise, as it tended to work better than any single
clue. Somewhat better regression weights for the WSD
task were learned from 2 out-of-domain hand-annotated
words than from 10 in-domain artificial pseudowords.

5 Open Questions

The work reported here raises many interesting questions
for future research.

In the WSD task, we have only considered word types
with two unrelated senses (homonyms). A more general
problem is to determine when a word type is ambiguous
at all, and if so, how many coarse-grained or fine-grained
senses it has. Strapping seems naturally suited to this
problem, since it aims to discover when a sense distinc-
tion grown from some seed is atruesense distinction.

Then we would like to know how well strapping gen-
eralizes to additional bootstrapping scenarios. Our WSD
strapping experiments were successful using only a sub-
set of the techniques proposed in section 3. Generalizing
to other tasks may require other techniques for selecting
and evaluating candidate seeds, and perhaps combining
the resulting classifiers.

An interesting question is whether strapping can be
used in an active learning context. Active learning is a
kind of bootstrapping method that periodically requires
new seeds: it turns to the user whenever it gets confused.
Perhaps some of these seeds can be guessed nondetermin-
istically and the guesses evaluated automatically, with or
without user confirmation.

Finally, there may be theoretical guarantees about
strapping when something is known about the data.
Whenh(s) is trained to estimatef(s) well on some su-
pervised instances, there may be guarantees about how
strapping will perform on unsupervised instances drawn
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drug duty land language position sentence

baseline / # examples 51.2 / 371 70.1 / 633 76.6 / 1379 87.5 / 1012 81.7 / 2949 50.8 / 501
worst seed (of 200) 50.1 (200) traffickers trafficking 50.0 (200) 50.1 (200) claims farming 50.3 (200) 56.1 (200) 50.1 (200) length life

casually selected (from 200) 56.5 (87) food trafficking 73.4∗ (40) 76.2 (24) farm veterans 86.4 (76) 81.7 (41) 80.6∗ (40) page prison
carefully constructed 62.1∗ (75) alcohol costs 82.1∗ (8.5) 76.6 (20) farm strong 87.9 (25.5) 81.4 (56.5) 86.8∗ (27) death quote

best/oracle seed (of 200) 76.1∗† (1) alcohol medical 86.2∗† (1) 81.3∗† (1) acres courts 90.9∗† (1) 88.3∗† (1) 89.9∗† (1) reads served

most agreeable seed (γ =1) 72.6∗† (5) abuse information 64.7 (47) 67.5 (36) claims production 86.4 (79) 82.4 (36) 88.7∗† (10) life quote

most robust seed 76.1∗† (1) alcohol medical 86.2∗† (1) 71.7 (29) claims price 85.6 (93) 82.7 (21) 88.8∗† (9) commuted next

most confident seed 66.9∗ (32) trafficking used 72.1∗ (42) 77.9∗† (3) claims courts 89.8∗† (10) 84.4∗† (8) 89.9∗† (1) reads served

h(s)-picked (plant/tank) 76.1∗† (1) alcohol medical 86.2∗† (1) 81.3∗† (1) acres courts 90.3∗† (7) 84.5∗† (7) 89.9∗† (1) reads served

h(s)-picked (10 pseudowd) 70.4∗† (10) alcohol found 86.2∗† (1) 78.9∗† (2) children farm 89.7∗† (17) 83.7∗† (16) 89.9∗† (1) reads served

h(s)-picked, 2nd place 69.1∗ (13) alcohol related 85.7∗† (2) 77.8∗† (4) aboriginal acres 90.9∗† (1) 82.8 (19) 89.0∗† (7) prison quote

h(s)-picked, 3rd place 76.1∗† (1) alcohol medical 84.2∗ (4) 77.1∗† (5) acres cities 87.5 (28) 88.3∗† (1) 88.6∗† (15) life reads
h(s) rank of oracle seed 3 1 14 2 3 1

Spearman rank-order corr. 0.863 0.905 0.718 0.825 0.842 0.937

Table 1: [See section 4.9 for highlights.] Accuracy (as percentage) and rank (in parentheses) of bootstrapped classifiers for variously
chosen seeds, some of which are shown. * denotes statistically significant agreement with the truth (section 4.2,p < 0.01).
† denotes a seed having significantly better agreement with the truth than does the better of the hand-picked seeds (McNemar’s test,
p < 0.03). In each column, the best performance for an automatic or manual seed appears inboldface. The “most . . . ” lines use no
tuning, the “plant/tank” line tunesh(s) on 2 supervised instances, and the subsequent lines tuneh(s) on 10 pseudoword instances.
The last line gives the Spearman rank-order correlation between seeds’ predicted fertilitiesh(s) and their actual fertilitiesf(s).

from the same source (cross-instance learning). Even in
the fully unsupervised case, it may be possible to prove
that if the data were generated from a particular kind of
process (e.g., a Gaussian mixture), then a certain strap-
ping algorithm can recover the hidden variables.

6 Conclusions

In this paper, we showed that it is sometimes possible—
indeed, preferable—to eliminate the initial bit of supervi-
sion in “bootstrapping” algorithms such as the Yarowsky
(1995) algorithm for word sense disambiguation. Our
“strapping” approach tries many candidate seeds as start-
ing points and evaluates them automatically. The eval-
uation function can be tuned if desired on other task in-
stances, perhaps artificially constructed ones. It can then
be used wherever human guidance is impractical.

We applied the method to unsupervised disambigua-
tion of English words in the Canadian Hansards, as if for
English-French translation. Our results (see section 4.9
for several highlights) show that our automatic “strapped”
classifiers consistently outperform the classifiers boot-
strapped from manually, knowledgeably chosen seeds.
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Abstract 

Recent studies into Web retrieval have 
shown that word sense disambiguation 
can increase retrieval effectiveness. How-
ever, it remains unclear as to the mini-
mum disambiguation accuracy required 
and the granularity with which one must 
define word sense in order to maximize 
these benefits. This study answers these 
questions using a simulation of the effects 
of ambiguity on information retrieval. It 
goes beyond previous studies by differen-
tiating between homonymy and 
polysemy. Results show that retrieval is 
more sensitive to polysemy than ho-
monymy and that, when resolving 
polysemy, accuracy as low as 55% can 
potentially lead to increased performance. 

1 Introduction 

Lexical ambiguity refers to words that share the 
same orthography but have different meanings 
(word senses). It can be sub-divided into two dis-
tinct types, homonymy and polysemy. Homonymy 
describes when two senses of a given word (or 
derivation) are distinct. Typically, they are sepa-
rated by etymology and are therefore entirely unre-
lated in meaning. One classic example (Kilgarriff, 
1992) is ‘bat’ as in an airborne mammal (from the 
Middle English word ‘bakke’ meaning flying ro-
dent) vs. ‘bat’ as in an instrument used in the game 
of cricket (from the Celtic for stick or cudgel). 
There is no underlying relationship between these 
two meanings which have come about independ-

ently from differing root languages. Alternatively, 
polysemy describes where two senses of a word 
are related in that they share membership of a sub-
suming semantic classification. Consider the word 
‘mouth’ as in a part of the body vs. ‘mouth’ as in 
the outlet of a river. Both meanings are subsumed 
by a higher concept (in this case they both describe 
an opening). Homonymy and polysemy are differ-
entiated in most dictionaries by the major (homo-
nyms) and minor (polysemes) entries for a given 
word. Where a lexical resource is described in 
terms of granularity a coarse-grained approach 
only differentiates between homonymy whereas a 
fine-grained approach also considers polysemy. 

The use of word sense disambiguation in In-
formation Retrieval (IR) has been an active field of 
study for the past 30 years. Despite several failures 
(described in Sanderson, 2000) recent studies have 
begun to show increased retrieval effectiveness, 
particularly in Web retrieval. However, two key 
questions remain: (1) to what accuracy must dis-
ambiguation be performed in order to show in-
creased retrieval effectiveness and (2) to what level 
of granularity should disambiguation be performed 
in order to maximize these gains? This study an-
swers these questions by simulating the impact of 
ambiguity and its subsequent resolution on re-
trieval effectiveness. 

2 Related Work 

The motivation for this research is taken from re-
cent studies (section 2.1) which have demonstrated 
increased retrieval effectiveness by accounting for 
word sense. The methodology is derived from pre-
vious studies (section 2.2) which model the impact 
that ambiguity and its subsequent resolution have 
on IR. 
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2.1 Accounting for Sense in IR 

One of the first studies to show increased retrieval 
effectiveness through resolving ambiguity was 
Schütze and Pederson (1995). They used clustering 
to discriminate between alternate uses of a word. 
The clusters they produced were apparently fine-
grained, although it is not clear if this observation 
was made with reference to a particular lexical re-
source. In terms of the accuracy to which they 
could discriminate meaning, a limited evaluation 
using a 10 word sample demonstrated accuracy 
approaching 90%. Results showed that retrieval 
effectiveness increased when documents were in-
dexed by cluster as opposed to raw terms. Per-
formance further increased when a word in the 
collection was assigned membership of its three 
most likely clusters. However, it is not clear if as-
signing multiple senses leads to coarser granularity 
or simply reduces the impact of erroneous disam-
biguation.  

Stokoe et al. (2003) showed increased retrieval 
effectiveness through fine-grained disambiguation 
where a word occurrence in the collection was as-
signed one of the sense definitions contained in 
WordNet. The accuracy of their disambiguation 
was reported at 62% based on its performance over 
a large subset of SemCor (a collection of manually 
disambiguated documents). It remains unclear how 
accuracy figures produced on different collections 
can be compared. Stokoe et al. (2003) did not 
measure the actual performance of their disam-
biguation when it was applied to the WT10G (the 
IR collection used in their experiments). This high-
lights the difficulty involved in quantifying the 
effects of disambiguation within an IR collection 
given that the size of modern collections precludes 
manual disambiguation.  

Finally, Kim et al. (2004) showed gains through 
coarse-grained disambiguation by assigning all 
nouns in the WT10G collection (section 3) mem-
bership to 25 top level semantic categories in 
WordNet (for more detail about the composition of 
WordNet see section 4). The motivation behind 
coarse-grained disambiguation in IR is that higher 
accuracy is achieved when only differentiating be-
tween homonyms. Several authors (Sanderson, 
2000; Kim et al., 2004) postulate that fine-grained 
disambiguation may not offer any benefits over 
coarse-grained disambiguation which can be per-
formed to a higher level of accuracy. 

2.2 The Effects of Ambiguity on IR 

The studies described in section 2.1 provide em-
pirical evidence of the benefits of disambiguation. 
Unfortunately, they do not indicate the minimum 
accuracy or the optimal level of granularity re-
quired in order to bring about these benefits. Per-
haps more telling are studies which have attempted 
to quantify the effects of ambiguity on IR.  

Sanderson (1994) used pseudowords to add ad-
ditional ambiguity to an IR collection. Pseu-
dowords (Gale et al., 1992) are created by joining 
together randomly selected constituent words to 
create a unique term that has multiple controlled 
meanings. Sanderson (1994) offers the example of 
“banana/kalashnikov”. This new term features two 
pseudosenses ‘banana’ and ‘kalashnikov’ and is 
used to replace any occurrences of the constituent 
words in the collection, thus introducing additional 
ambiguity. In his study, Sanderson experimented 
with adding ambiguity to the Reuters collection. 
Results showed that even introducing large 
amounts of additional ambiguity (size 10 pseu-
dowords - indicating they had 10 constituents) had 
very little impact on retrieval effectiveness. Fur-
thermore, attempts to resolve this ambiguity with 
less than 90% accuracy proved extremely detri-
mental.  

Sanderson (1999) acknowledged that pseu-
dowords are unlike real words as the random selec-
tion of their constituents ensures that the 
pseudosenses produced are unlikely to be related, 
in effect only modeling homonymy. Several stud-
ies (Schütze, 1998; Gaustad, 2001) suggest that 
this failure to model polysemy has a significant 
impact. Disambiguation algorithms evaluated us-
ing pseudowords show much better performance 
than when subsequently applied to real words. 
Gonzalo et al. (1998) cite this failure to model re-
lated senses in order to explain why their study 
into the effects of ambiguity showed radically dif-
ferent results to Sanderson (1994). They performed 
known item retrieval on 256 manually disambigu-
ated documents and showed increased retrieval 
effectiveness where disambiguation was over 60% 
accurate. Whilst Sanderson’s results no longer fit 
the empirical data, his pseudoword methodology 
does allow us to explore the effects of ambiguity 
without the overhead of manual disambiguation. 
Gaustad (2001) highlighted that the challenge lies 
in adapting pseudowords to account for polysemy. 
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Krovetz (1997) performed the only study to 
date which has explicitly attempted to differentiate 
between homonymy and polysemy in IR. Using the 
Longmans dictionary he grouped related senses 
based on any overlap that existed between two 
sense definitions for a given word. His results sup-
port the idea that grouping together related senses 
can increase retrieval effectiveness. However, the 
study does not contrast the relative merits of this 
technique against fine-grained approaches, thus 
highlighting that the question of granularity re-
mains open. Which is the optimal approach? 
Grouping related senses or attempting to make 
fine-grained sense distinctions?  

3 Experimental Setup 

The experiments in this study use the WT10G cor-
pus (Hawking and Craswell, 2002), an IR web test 
collection consisting of 1.69 million documents. 
There are two available Query / Relevance Judg-
ments sets each consisting of 50 queries. This 
study uses the TREC 10 Web Track Ad-Hoc query 
set (NIST topics 501 – 550). The relevance judg-
ments for these queries were produced using pool-
ing based on the top 100 ranked documents 
retrieved by each of the systems that participated in 
the TREC 10 Web Track. 

Initially the author produced an index of the 
WT10G and performed retrieval on this unmodi-
fied collection in order to measure baseline re-
trieval effectiveness. The ranking algorithm was 
length normalized TF.IDF (Salton and McGill, 
1983) which is comparable to the studies in section 
2. Next, two modified versions of the collection 
were produced where additional ambiguity in the 
form of pseudowords had been added. The first 
used pseudowords created by selecting constituent 
pseudosenses which are unrelated, thus introducing 
additional homonymy.  The second used a new 
method of generating pseudowords that exhibit 
polysemy (the methodology is described in section 
4.1). Contrasting retrieval performance over these 
three indexes quantifies the relative impact of both 
homonymy and polysemy on retrieval effective-
ness. The final step was to measure the effects of 
attempting to resolve the additional ambiguity 
which had been added to the collection. In order to 
do this, the author simulated disambiguation to 
varying degrees of accuracy and measured the im-
pact that this had on retrieval effectiveness.  

4 Methodology 

To date only Nakov and Hearst (2003) have looked 
into creating more plausible pseudowords. Work-
ing with medical abstracts (MEDLINE) and the 
controlled vocabulary contained in the MESH hi-
erarchy they created pseudosense pairings that are 
related. By identifying pairs of MESH subject 
categories which frequently co-occurred and se-
lecting constituents for their pseudowords from 
these pairings they produced a disambiguation test 
collection.  Their results showed that category 
based pseudowords provided a more realistic test 
data set for disambiguation, in that evaluation us-
ing them more closely resembled real words. The 
challenge in this study lay in adapting these ideas 
for open domain text.  

4.1 Pseudoword Generation 

This study used WordNet (Miller et al., 1990) to 
inform the production of pseudowords. WordNet 
(2.0) is a hierarchical semantic network developed 
at Princeton University. Concepts in WordNet are 
represented by synsets and links between synsets 
represent hypernmy (subsumes) and hyponymy 
(subsumed) relationships in order to form a hierar-
chical structure. A unique word sense consists of a 
lemma and the particular synset in which that 
lemma occurs.  WordNet is a fine-grained lexical 
resource and polysemy can be derived to varying 
degrees of granularity by traversing the link struc-
ture between synsets (figure 1).  
 

 

Figure 1. A Subsection of the Noun Hierarchy 
in WordNet 
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An important feature of pseudowords is the 
number of constituents as this controls the amount 
of additional ambiguity created. A feature of all 
previous studies is that they generate pseudowords 
with a uniform number of constituents, e.g. size 2, 
size 5 or size 10, thus introducing uniform levels of 
additional ambiguity. It is clear that such an ap-
proach does not reflect real words given that they 
do not exhibit uniform levels of ambiguity. The 
approach taken in this study was to generate pseu-
dowords where the number of constituents was 
variable. As each of the pseudowords in this study 
contain one query word from the IR collection then 
the number of constituents was linked directly to 
the number of senses of that word contained in 
WordNet. This effectively doubles the level of am-
biguity expressed by the original query word. If a 
query word was not contained in WordNet then 
this was taken to be a proper name and exempted 
from the process of adding ambiguity. It was felt 
that to destroy any unambiguous proper names, 
which might act to anchor a query, would dramati-
cally overstate the effects of ambiguity in terms of 
the IR simulation. The average size of the pseu-
dowords produced in these experiments was 6.4 
pseudosenses. 

When producing the traditional pseudoword 
based collection the only modification to Sander-
son’s (1994) approach (described in section 2), 
other than the variable size, involved formalizing 
his observation that the constituent words were 
unlikely to be related. Given access to WordNet it 
was possible to guarantee that this is the case by 
rejecting constituents which could be linked 
through its inheritance hierarchy. This ensures that 
the pseudowords produced only display ho-
monymy. 

In order to produce pseudowords that model 
polysemy it was essential to devise a method for 
selecting constituents that have the property of re-
latedness. The approach taken was to deliberately 
select constituent words that could be linked to a 
sense of the original query word through WordNet. 
Thus the additional ambiguity added to the collec-
tion models any underlying relatedness expressed 
by the original senses of the query word. Pseu-
dowords produced in this way will now be referred 
to as root pseudowords as this reflects that the am-
biguity introduced is modeled around one root 
constituent. Consider the following worked exam-
ple for the query “How are tornadoes formed?” 

After the removal of stopwords we are left with 
‘tornadoes’ and ‘formed’ each of which is then 
transformed into a root pseudoword. The first step 
involves identifying any potential senses of the 
target word from WordNet. If we consider the 
word ‘tornado’ it appears in two synsets:  

 
1. tornado, twister -- (a localized and violently 
destructive windstorm occurring over land 
characterized by a funnel-shaped cloud ex-
tending toward the ground) 
 
2. crack, tornado -- (a purified and potent form 
of cocaine that is smoked rather than snorted) 

 
For each sense of the target word the system ex-
pands WordNet’s inheritance hierarchy to produce 
a directed graph of its hypernyms. Figure 2 shows 
an example of this graph for the first sense of the 
word ‘tornado’. In order to ensure a related sense 
pair the system builds a pool of words which are 
subsumed by concepts contained in this graph. 
This is generated by recursively moving up the 
hierarchy until the pool contains at least one viable 
candidate. For a candidate to be viable it must meet 
the following criteria: 
 

1) It must exist in the IR collection. 
2) It must not be part of another pseudoword. 
3) It can not be linked (through WordNet) to 

another constituent of the pseudoword.  
 
The pool for sense 1 of ‘tornado’ consists of [hur-
ricane|typhoon], one of which is selected at ran-
dom. 
 

 
 

Figure 2.  A Graph of the Hypernyms for the 
First Sense of the Word ‘tornado’ 
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This process is repeated for each noun and verb 
sense of the query word. In this example there is 
one remaining sense of the word ‘tornado’ - a 
slang term used to refer to the drug crack cocaine. 
For this sense the system produced a pool consist-
ing of [diacetylemorphine|heroin]. Once all senses 
of the query word have been expanded the result-
ing pseudoword, ‘tornadoes/hurricane/heroin’, is 
then used to replace all occurrences of its constitu-
ents within the collection. Through this process the 
system produces pseudowords with pseudosense 
pairings which have subsuming relationships, e.g. 
‘tornadoes/hurricane’ are subsumed by the higher 
category of ‘cyclone’ whilst ‘tornadoes/heroin’ are 
subsumed by the higher semantic category of 
‘hard_drug’.  

4.2 Pseudo-disambiguation 

In order to perform pseudo-disambiguation the 
unmodified collection acts as a gold standard 
model answer. Through reducing each instance of 
a pseudoword back to one of its constituent com-
ponents this models the selection process made by 
a disambiguation system. Obviously, the correct 
pseudosense for a given instance is the original 
word which appeared at that point in the collection. 
Variable levels of accuracy are introduced using a 
weighted probability model where the correct 
pseudosense for a given test instance is seeded 
with a fixed probability equivalent to the desired 
accuracy being simulated. When a disambiguation 
error is simulated one of the incorrect pseu-
dosenses is selected randomly. 

5 Results 

The first set of results (section 5.1) addresses the 
question of granularity by quantifying the impact 
that adding either additional homonymy or 
polysemy has on retrieval effectiveness. The sec-
ond set of results (section 5.2) looks at the question 
of disambiguation accuracy by simulating the im-
pact that varied levels of accuracy have on retrieval 
effectiveness.  

5.1 Homonymy vs. Polysemy 

Let us first consider the impact of adding addi-
tional homonymy. Figure 3 graphs precision across 
the 11 standard points of recall for retrieval from 
both the baseline collection and one where addi-

tional homonymy has been added. Note that the 
introduction of additional homonymy brings about 
a small drop in retrieval effectiveness. With regard 
to the single value measures contained in table 1, 
this is a decrease of 2.5% in terms of absolute R-
Precision (average precision after the total number 
of known relevant documents in the collection has 
been retrieved). This is a relative decrease of 
14.3%. Similar drops in both precision@10 (preci-
sion after the first 10 documents retrieved) and 
average precision are also seen.  

Next let us consider retrieval effectiveness over 
the root pseudoword collection where additional 
polysemy has been added (figure 4). Note that the 
introduction of additional polysemy has a more 
substantive impact upon retrieval effectiveness. In 
terms of R-Precision this decrease is 5.3% in abso-
lute terms, a relative decrease of 30% compared to 
baseline retrieval from the unmodified collection. 
In addition, an even larger decrease in preci-
sion@10 occurs where the introduction of addi-
tional polysemy brings about a 7% drop in retrieval 
effectiveness.  

In terms of the relative effects of homonymy 
and polysemy on retrieval effectiveness then note 
that adding additional polysemy has over double 
the impact of adding homonymy. This provides a 
clear indication that the retrieval process is more 
substantially affected by polysemy than ho-
monymy. 
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Figure 3.  Precision across the 11 Standard Points 
of Recall for the Baseline and the Collection Con-

taining Additional Homonymy 
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5.2 The Impact of Disambiguation 

We now address the second part of the research 
question: to what accuracy should disambiguation 
be performed in order to enhance retrieval effec-
tiveness? Figure 5 plots the impact, in terms of R-
Precision, of performing disambiguation to varying 
degrees of accuracy after additional homonymy 
has been added to the collection. The dotted line 
represents the breakeven point, with R-Precision 
below this line indicating reduced performance as 
a result of disambiguation. Results show that 
where additional homonymy has been added to the 
collection disambiguation accuracy at or above 
76% is required in order for disambiguation to be 
of benefit. Performing disambiguation which is 
less than 76% accurate leads to lower performance 
than if the additional homonymy had been left un-
resolved. 

Moving on to consider the root pseudoword 
collection (figure 6) note that the breakeven point 
is only 55% where additional polysemy has been 

added. Consider that the results in section 5.1 
showed that the introduction of additional 
polysemy had over double the impact of introduc-
ing additional homonymy. This is reflected in the 
relative effects of disambiguation in that the break-
even point is considerably lower for polysemy than 
homonymy.  

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

100% 90% 80% 70% 60% 50% 40%

Disambiguation Accuracy
R-

Pr
ec

is
io

n
 

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

100% 90% 80% 70% 60% 50% 40%

Disambiguation Accuracy

R
-P

re
ci

si
on

 

6 Discussion 

The results in section 5.1 show that retrieval effec-
tiveness is more sensitive to polysemy than ho-
monymy. One explanation for this can be 

 R-Precision Precision 
@10 

Avg. 
Precision 

Baseline 0.1732 0.2583 0.1334 
Homonymy 0.1485 0.2208 0.1145 
Polysemy 0.1206 0.1875 0.0951 

Figure 4.  Precision across the 11 Standard Points 
of Recall for the Baseline and the Collection Con-

taining Additional Polysemy 

Table 1.  R-Precision, Precision@10 and Aver-
age Precision for all Three Versions of the 

Collection 

Figure 5. The Impact of Disambiguation on Effec-
tiveness after the Addition of Homonymy 

(Note the dashed line is the breakeven point) 

Figure 6.  The Impact of Disambiguation on Effec-
tiveness after the Addition of Polysemy 

(Note the dashed line is the breakeven point) 
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hypothesized from previous studies (Krovetz and 
Croft, 1992; Sanderson and Van Rijsbergen, 1999) 
which highlight the importance of co-occurrence 
between query words. Where two (or more) words 
appear together in a query, statistical retrieval in-
herently performs some element of disambigua-
tion. However, in the case of a word with many 
closely related senses, co-occurrence between 
query words may not be sufficient for a given 
sense to become apparent. This is particularly ex-
asperated in Web retrieval given that the average 
query length in these experiments was 2.9 words. 
Clearly, the inherent disambiguation performed by 
statistical IR techniques is sensitive to polysemy in 
the same way as systems which explicitly perform 
disambiguation. 

With regard to disambiguation accuracy and IR 
(section 5.2) these experiments establish that per-
formance gains begin to occur where disambigua-
tion is between 55% and 76%.  Where within this 
range the actual breakeven point lies is dependent 
on the granularity of the disambiguation and the 
balance between polysemy and homonymy in a 
given collection. Consider that coarse-grained dis-
ambiguation is frequently advocated on the basis 
that it can be performed more accurately. Whilst 
this is undoubtedly true these results suggest that 
homonymy has to be resolved to a much higher 
level of accuracy than polysemy in order to be of 
benefit in IR.  

It would seem prudent to consider the results of 
this study in relation to the state-of-the-art in dis-
ambiguation. At Senseval-3 (Mihalcea et al., 2004) 
the top systems were considered to have reached a 
ceiling, in terms of performance, at 72% for fine-
grained disambiguation and 80% for coarse-
grained. When producing the English language test 
collections the rate of agreement between humans 
performing manual disambiguation was approxi-
mately 74%. This suggests that machine disam-
biguation has reached levels comparable to the 
performance of humans. In parallel with this the IR 
community has begun to report increased retrieval 
effectiveness through explicitly performing disam-
biguation to varying levels of granularity.  

A final point of discussion is the way in which 
we simulate disambiguation both in this study and 
those previously (Sanderson, 1994; Gonzalo et al., 
1998). There is growing evidence (Leacock et al., 
1998; Agirre and Martinez, 2004) to suggest that 
simulating uniform rates of accuracy and error 

across both words and senses may not reflect the 
performance of modern disambiguation systems. 
Supervised approaches are known to exhibit inher-
ent bias that exists in their training data. Examples 
include Zipf’s law (Zipf, 1949) which denotes that 
a small number of words make up a large percent-
age of word use and Krovetz and Croft’s (1992) 
observation that one sense of a word accounts for 
the majority of all use. It would seem logical to 
presume that supervised systems show their best 
performance over the most frequent senses of the 
most frequent words in their training data.   Not 
enough is known about the potential impact of 
these biases to allow for them to be incorporated 
into this simulation. Still, it should be noted that 
Stokoe et al. (2003) utilized frequency statistics in 
their disambiguator and that a by-product of 
Schütze and Pederson’s (1992) approach was that 
they eliminated infrequently observed senses. 
There is supporting evidence from Sanderson and 
Van Rijsbergen (1999) to suggest that accounting 
for this frequency bias is in some way advanta-
geous. Therefore, it is worth considering that simu-
lating a uniform accuracy and error rate across all 
words and senses might actually offer a pessimistic 
picture of the potential for disambiguation and IR. 
Whilst this merits further study, the focus of this 
research was contrasting the relative effects of two 
types of ambiguity and both models were subject 
to the same uniform disambiguation.  

7 Conclusions 

This study has highlighted that retrieval systems 
are more sensitive to polysemy than homonymy. 
This leads the author to conclude that making fine-
grained sense distinctions can offer increased re-
trieval effectiveness in addition to any benefits 
brought about by coarse-grained disambiguation. It 
also emphasises that although coarse-grained dis-
ambiguation can be performed to a higher degree 
of accuracy, this might not directly translate to in-
creased IR performance compared to fine-grained 
approaches. This is in contrast to current thinking 
which suggests that coarse-grained approaches are 
more likely to bring about retrieval performance 
because of their increased accuracy. 

In terms of disambiguation accuracy and in-
creased retrieval effectiveness, results show poten-
tial benefits where accuracy is as low as 55% when 
dealing with just polysemy and rises to 76% when 
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dealing with just homonymy. Obviously this study 
has simulated two extremes (polysemy or ho-
monymy) and the exact point where performance 
increases will occur is likely to be dependent on 
the interaction between homonymy and polysemy 
in a given query.   

With regard to simulation a more empirical ex-
ploration of the ideas expressed in this work would 
be desirable. However, the size of modern IR test 
collections dictates that future studies will need to 
rely more heavily on simulation. Therefore, until 
such time that a significant manually disambigu-
ated IR collection exists pseudowords remain an 
interesting way to explore the effects of ambiguity 
within a large collection. The challenge lies in pro-
ducing pseudowords that better model real words. 
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Abstract

This paper introduces a graph-based algo-
rithm for sequence data labeling, using ran-
dom walks on graphs encoding label de-
pendencies. The algorithm is illustrated
and tested in the context of an unsuper-
vised word sense disambiguation problem,
and shown to significantly outperform the
accuracy achieved through individual label
assignment, as measured on standard sense-
annotated data sets.

1 Introduction

Many natural language processing tasks consist of la-
beling sequences of words with linguistic annotations,
e.g. word sense disambiguation, part-of-speech tag-
ging, named entity recognition, and others. Typical
labeling algorithms attempt to formulate the annota-
tion task as a traditional learning problem, where the
correct label is individually determined for each word
in the sequence using a learning process, usually con-
ducted independent of the labels assigned to the other
words in the sequence. Such algorithms do not have
the ability to encode and thereby exploit dependen-
cies across labels corresponding to the words in the
sequence, which potentially limits their performance
in applications where such dependencies can influence
the selection of the correct set of labels.

In this paper, we introduce a graph-based sequence
data labeling algorithm well suited for such natural
language annotation tasks. The algorithm simultane-
ously annotates all the words in a sequence by ex-
ploiting relations identified among word labels, us-
ing random walks on graphs encoding label dependen-
cies. The random walks are mathematically modeled

through iterative graph-based algorithms, which are
applied on the label graph associated with the given
sequence of words, resulting in a stationary distribu-
tion over label probabilities. These probabilities are
then used to simultaneously select the most probable
set of labels for the words in the input sequence.

The annotation method is illustrated and tested on
an unsupervised word sense disambiguation prob-
lem, targeting the annotation of all open-class words
in unrestricted text using information derived exclu-
sively from dictionary definitions. The graph-based
sequence data labeling algorithm significantly outper-
forms the accuracy achieved through individual data
labeling, resulting in an error reduction of 10.7%, as
measured on standard sense-annotated data sets. The
method is also shown to exceed the performance of
other previously proposed unsupervised word sense
disambiguation algorithms.

2 Iterative Graphical Algorithms for
Sequence Data Labeling

In this section, we introduce the iterative graphical al-
gorithm for sequence data labeling. The algorithm is
succinctly illustrated using a sample sequence for a
generic annotation problem, with a more extensive il-
lustration and evaluation provided in Section 3.

Given a sequence of words W = {w1, w2, ..., wn},
each word wi with corresponding admissible labels

Lwi
= {l1wi

, l2wi
, ..., l

Nwi
wi }, we define a label graph G

= (V,E) such that there is a vertex v ∈ V for every pos-
sible label ljwi

, i = 1..n, j = 1..Nwi
. Dependencies

between pairs of labels are represented as directed or
indirected edges e ∈ E, defined over the set of vertex
pairs V × V . Such label dependencies can be learned
from annotated data, or derived by other means, as il-
lustrated later. Figure 1 shows an example of a graph-
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Figure 1: Sample graph built on the set of possible
labels (shaded nodes) for a sequence of four words
(unshaded nodes). Label dependencies are indicated
as edge weights. Scores computed by the graph-based
algorithm are shown in brackets, next to each label.

ical structure derived over the set of labels for a se-
quence of four words. Note that the graph does not
have to be fully connected, as not all label pairs can
be related by a dependency.

Given such a label graph associated with a sequence
of words, the likelihood of each label can be recur-
sively determined using an iterative graph-based rank-
ing algorithm, which runs over the graph of labels and
identifies the importance of each label (vertex) in the
graph. The iterative graphical algorithm is modeling a
random walk, leading to a stationary distribution over
label probabilities, represented as scores attached to
vertices in the graph. These scores are then used to
identify the most probable label for each word, result-
ing in the annotation of all the words in the input se-
quence. For instance, for the graph drawn in Figure 1,
the word w1 will be assigned with label l1w1

, since the
score associated with this label (1.39) is the maximum
among the scores assigned to all admissible labels as-
sociated with this word.

A remarkable property that makes these iterative
graphical algorithms appealing for sequence data la-
beling is the fact that they take into account global
information recursively drawn from the entire graph,
rather than relying on local vertex-specific informa-
tion. Through the random walk performed on the la-
bel graph, these iterative algorithms attempt to collec-
tively exploit the dependencies drawn between all la-
bels in the graph, which makes them superior to other
approaches that rely only on local information, indi-
vidually derived for each word in the sequence.

2.1 Graph-based Ranking

The basic idea implemented by an iterative graph-
based ranking algorithm is that of “voting” or “recom-
mendation”. When one vertex links to another one, it
is basically casting a vote for that other vertex. The
higher the number of votes that are cast for a vertex,
the higher the importance of the vertex. Moreover,
the importance of the vertex casting a vote determines
how important the vote itself is, and this information
is also taken into account by the ranking algorithm.

While there are several graph-based ranking algo-
rithms previously proposed in the literature, we focus
on only one such algorithm, namely PageRank (Brin
and Page, 1998), as it was previously found success-
ful in a number of applications, including Web link
analysis, social networks, citation analysis, and more
recently in several text processing applications.

Given a graph G = (V,E), let In(Va) be the set
of vertices that point to vertex Va (predecessors), and
let Out(Va) be the set of vertices that vertex Va points
to (successors). The PageRank score associated with
the vertex Va is then defined using a recursive function
that integrates the scores of its predecessors:

P (Va) = (1− d) + d ∗
∑

Vb∈In(Va)

P (Vb)

|Out(Vb)|
(1)

where d is a parameter that is set between 0 and 11.
This vertex scoring scheme is based on a random

walk model, where a walker takes random steps on the
graph G, with the walk being modeled as a Markov
process – that is, the decision on what edge to follow
is solely based on the vertex where the walker is cur-
rently located. Under certain conditions, this model
converges to a stationary distribution of probabilities,
associated with vertices in the graph. Based on the
Ergodic theorem for Markov chains (Grimmett and
Stirzaker, 1989), the algorithm is guaranteed to con-
verge if the graph is both aperiodic and irreducible.
The first condition is achieved for any graph that is a
non-bipartite graph, while the second condition holds
for any strongly connected graph – property achieved
by PageRank through the random jumps introduced
by the (1 − d) factor. In matrix notation, the PageR-
ank vector of stationary probabilities is the principal
eigenvector for the matrix Arow, which is obtained
from the adjacency matrix A representing the graph,
with all rows normalized to sum to 1: (P = AT

rowP ).
Intuitively, the stationary probability associated

with a vertex in the graph represents the probability

1The typical value for d is 0.85 (Brin and Page, 1998), and this
is the value we are also using in our implementation.
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of finding the walker at that vertex during the ran-
dom walk, and thus it represents the importance of the
vertex within the graph. In the context of sequence
data labeling, the random walk is performed on the
label graph associated with a sequence of words, and
thus the resulting stationary distribution of probabili-
ties can be used to decide on the most probable set of
labels for the given sequence.

2.2 Ranking on Weighted Graphs

In a weighted graph, the decision on what edge to fol-
low during a random walk is also taking into account
the weights of outgoing edges, with a higher likeli-
hood of following an edge that has a larger weight.
The weighted version of the ranking algorithm is
particularly useful for sequence data labeling, since
the dependencies between pairs of labels are more
naturally modeled through weights indicating their
strength, rather than binary 0/1 values. Given a set of
weights wab associated with edges connecting vertices
Va and Vb, the weighted PageRank score is determined
as:

WP (Va) = (1−d)+d
∑

Vb∈In(Va)

wba∑
Vc∈Out(Vb)

wbc

WP (Vb) (2)

2.3 Algorithm for Sequence Data Labeling

Given a sequence of words with their corresponding
admissible labels, the algorithm for sequence data la-
beling seeks to identify a graph of label dependencies
on which a random walk can be performed, resulting
in a set of scores that can be used for label assignment.
Algorithm 1 shows the pseudocode for the labeling
process. The algorithm consists of three main steps:
(1) construction of label dependencies graph; (2) la-
bel scoring using graph-based ranking algorithms; (3)
label assignment.

First, a weighted graph of label dependencies is
built by adding a vertex for each admissible label, and
an edge for each pair of labels for which a dependency
is identified. A maximum allowable distance can be
set (MaxDist), indicating a constraint over the dis-
tance between words for which a label dependency
is sought. For instance, if MaxDist is set to 3, no
edges will be drawn between labels corresponding to
words that are more than three words apart, counting
all running words. Label dependencies are determined
through the Dependency function, whose definition
depends on the application and type of resources avail-
able (see Section 2.4).

Next, scores are assigned to vertices using a graph-
based ranking algorithm. Current experiments are

Algorithm 1 Graph-based Sequence Data Labeling
Input: Sequence W = {wi|i = 1..N}
Input: Admissible labels Lwi

= {ltwi
|t = 1..Nwi

},i = 1..N
Output: Sequence of labels L = {lwi

|i = 1..N}, with label lwi

corresponding to word wi from the input sequence.

Build graph G of label dependencies
1: for i = 1 to N do
2: for j = i + 1 to N do
3: if j − i > MaxDist then
4: break
5: end if
6: for t = 1 to Nwi

do
7: for s = 1 to Nwj

do
8: weight← Dependency(ltwi

, lswj
, wi, wj)

9: if weight > 0 then
10: AddEdge(G, ltwi

, lswj
, weight)

11: end if
12: end for
13: end for
14: end for
15: end for

Score vertices in G
1: repeat
2: for all Va ∈ V ertices(G) do
3: WP (Va) = (1− d) + d∗∑

Vb∈In(Va)

wbaWP (Vb)/
∑

Vc∈Out(Vb)

wbc

4: end for
5: until convergence of scores WP (Va)

Label assignment
1: for i = 1 to N do
2: lwi

← argmax{WP (ltwi
)|t = 1..Nwi

}
3: end for

based on PageRank, but other ranking algorithms can
be used as well.

Finally, the most likely set of labels is determined
by identifying for each word the label that has the
highest score. Note that all admissible labels corre-
sponding to the words in the input sequence are as-
signed with a score, and thus the selection of two or
more most likely labels for a word is also possible.

2.4 Label Dependencies

Label dependencies can be defined in various ways,
depending on the application at hand and on the
knowledge sources that are available. If an annotated
corpus is available, dependencies can be defined as
label co-occurrence probabilities approximated with
frequency counts P (ltwi

, lswj
), or as conditional prob-

abilities P (ltwi
|lswj

). Optionally, these dependencies
can be lexicalized by taking into account the corre-
sponding words in the sequence, e.g. P (ltwi

|lswj
) ×

P (wi|l
t
wi

). In the absence of an annotated corpus, de-
pendencies can be derived by other means, e.g. part-
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of-speech probabilities can be approximated from a
raw corpus as in (Cutting et al., 1992), word-sense de-
pendencies can be derived as definition-based similar-
ities, etc. Label dependencies are set as weights on
the arcs drawn between corresponding labels. Arcs
can be directed or undirected for joint probabilities or
similarity measures, and are usually directed for con-
ditional probabilities.

2.5 Labeling Example

Consider again the example from Figure 1, consisting
of a sequence of four words, and their possible cor-
responding labels. In the first step of the algorithm,
label dependencies are determined, and let us assume
that the values for these dependencies are as indicated
through the edge weights in Figure 1. Next, vertices
in the graph are scored using an iterative ranking al-
gorithm, resulting in a score attached to each label,
shown in brackets next to each vertex. Finally, the
most probable label for each word is selected. Word
w1 is thus assigned with label l1w1

, since the score of
this label (1.39) is the maximum among the scores as-
sociated with all its possible labels (1.39, 1.12, 0.86).
Similarly, word w2 is assigned with label l2w2

, w3 with
label l1w3

, and w4 receives label l2w4
.

2.6 Efficiency Considerations

For a sequence of words W = {w1, w2, ..., wn}, each
word wi with Nwi

admissible labels, the running time
of the graph-based sequence data labeling algorithm

is proportional with O(C
n∑

i=1

i+MaxDist∑
j=i+1

(Nwi
×Nwj

))

(the time spent in building the label graph and iterating
the algorithm for a constant number of times C). This
is order of magnitudes better than the running time

of O(
n∏

i=1
Nwi

) for algorithms that attempt to select the

best sequence of labels by searching through the en-
tire space of possible label combinations, although it
can be significantly higher than the running time of

O(
n∑

i=1
Nwi

) for individual data labeling.

2.7 Other Algorithms for Sequence Data
Labeling

It is interesting to contrast our algorithm with previ-
ously proposed models for sequence data labeling, e.g.
Hidden Markov Models, Maximum Entropy Markov
Models, or Conditional Random Fields. Although
they differ in the model used (generative, discrimina-
tive, or dual), and the type of probabilities involved
(joint or conditional), these previous algorithms are

all parameterized algorithms that typically require pa-
rameter training through maximization of likelihood
on training examples. In these models, parameters that
maximize sequence probabilities are learned from a
corpus during a training phase, and then applied to
the annotation of new unseen data. Instead, in the
algorithm proposed in this paper, the likelihood of a
sequence of labels is determined during test phase,
through random walks performed on the label graph
built for the data to be annotated. While current eval-
uations of our algorithm are performed on an unsuper-
vised labeling task, future work will consider the eval-
uation of the algorithm in the presence of an annotated
corpus, which will allow for direct comparison with
these previously proposed models for sequence data
labeling.

3 Experiments in Word Sense
Disambiguation

The algorithm for sequence data labeling is illustrated
and tested on an all-words word sense disambiguation
problem. Word sense disambiguation is a labeling task
consisting of assigning the correct meaning to each
open-class word in a sequence (usually a sentence).
Most of the efforts for solving this problem were con-
centrated so far toward targeted supervised learning,
where each sense tagged occurrence of a particular
word is transformed into a feature vector used in an
automatic learning process. The applicability of such
supervised algorithms is however limited to those few
words for which sense tagged data is available, and
their accuracy is strongly connected to the amount of
labeled data available at hand. Instead, algorithms that
attempt to disambiguate all-words in unrestricted text
have received significantly less attention, as the devel-
opment and success of such algorithms has been hin-
dered by both (a) lack of resources (training data), and
(b) efficiency aspects resulting from the large size of
the problem.

3.1 Graph-based Sequence Data Labeling for
Unsupervised Word Sense Disambiguation

To apply the graph-based sequence data labeling algo-
rithm to the disambiguation of an input text, we need
information on labels (word senses) and dependencies
(word sense dependencies). Word senses can be eas-
ily obtained from any sense inventory, e.g. WordNet
or LDOCE. Sense dependencies can be derived in var-
ious ways, depending on the type of resources avail-
able for the language and/or domain at hand. In this
paper, we explore the unsupervised derivation of sense
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dependencies using information drawn from machine
readable dictionaries, which is general and can be ap-
plied to any language or domain for which a sense in-
ventory is available.

Relying exclusively on a machine readable dictio-
nary, a sense dependency can be defined as a measure
of similarity between word senses. There are several
metrics that can be used for this purpose, see for in-
stance (Budanitsky and Hirst, 2001) for an overview.
However, most of them rely on measures of seman-
tic distance computed on semantic networks, and thus
they are limited by the availability of explicitly en-
coded semantic relations (e.g. is-a, part-of). To
maintain the unsupervised aspect of the algorithm, we
chose instead to use a measure of similarity based on
sense definitions, which can be computed on any dic-
tionary, and can be evaluated across different parts-of-
speech.

Given two word senses and their corresponding def-
initions, the sense similarity is determined as a func-
tion of definition overlap, measured as the number of
common tokens between the two definitions, after run-
ning them through a simple filter that eliminates all
stop-words. To avoid promoting long definitions, we
also use a normalization factor, and divide the content
overlap of the two definitions with the length of each
definition. This sense similarity measure is inspired
by the definition of the Lesk algorithm (Lesk, 1986).

Starting with a sense inventory and a function for
computing sense dependencies, the application of the
sequence data labeling algorithm to the unsupervised
disambiguation of a new text proceeds as follows.
First, for the given text, a label graph is built by
adding a vertex for each possible sense for all open-
class words in the text. Next, weighted edges are
drawn using the definition-based semantic similarity
measure, computed for all pairs of senses for words
found within a certain distance (MaxDist, as defined
in Algorithm 1). Once the graph is constructed, the
graph-based ranking algorithm is applied, and a score
is determined for all word senses in the graph. Finally,
for each open-class word in the text, we select the ver-
tex in the label graph which has the highest score, and
label the word with the corresponding word sense.

3.2 An Example

Consider the task of assigning senses to the words
in the text The church bells no longer rung on Sun-
days2. For the purpose of illustration, we assume at

2Example drawn from the data set provided during the
SENSEVAL-2 English all-words task. Manual sense annotations

The church bells no longer rung on Sundays.

church
1: one of the groups of Christians who have their own beliefs

and forms of worship
2: a place for public (especially Christian) worship
3: a service conducted in a church

bell
1: a hollow device made of metal that makes a ringing sound

when struck
2: a push button at an outer door that gives a ringing or buzzing

signal when pushed
3: the sound of a bell

ring
1: make a ringing sound
2: ring or echo with sound
3: make (bells) ring, often for the purposes of musical edifica-

tion

Sunday
1: first day of the week; observed as a day of rest and worship

by most Christians

bell ring

[1.46]

[0.99]

[0.96] [2.56]

[0.63]

[0.58]

[0.42]

[0.67]

Sundaychurch

S2

S1

s3

s2

s3

s2

S3

s1 S1s1

0.35

0.501.06

0.40

0.19

0.34

1.01

0.55 [0.73]

0.30

[0.93]

0.35

0.31

0.80

0.85

0.23

Figure 2: The label graph for assigning senses to
words in the sentence The church bells no longer rung
on Sundays.

most three senses for each word, which are shown in
Figure 2. Word senses and definitions are obtained
from the WordNet sense inventory (Miller, 1995). All
word senses are added as vertices in the label graph,
and weighted edges are drawn as dependencies among
word senses, derived using the definition-based sim-
ilarity measure (no edges are drawn between word
senses with a similarity of zero). The resulting label
graph is an undirected weighted graph, as shown in
Figure 2. After running the ranking algorithm, scores
are identified for each word-sense in the graph, indi-
cated between brackets next to each node. Selecting
for each word the sense with the largest score results in
the following sense assignment: The church#2 bells#1

were also made available for this data.
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no longer rung#3 on Sundays#1, which is correct ac-
cording to annotations performed by professional lex-
icographers.

3.3 Results and Discussion

The algorithm was primarily evaluated on the
SENSEVAL-2 English all-words data set, consisting
of three documents from Penn Treebank, with 2,456
open-class words (Palmer et al., 2001). Unlike other
sense-annotated data sets, e.g. SENSEVAL-3 or Sem-
Cor, SENSEVAL-2 is the only testbed for all-words
word sense disambiguation that includes a sense map,
which allows for additional coarse-grained sense eval-
uations. Moreover, there is a larger body of previous
work that was evaluated on this data set, which can be
used as a base of comparison.

The performance of our algorithm is compared with
the disambiguation accuracy obtained with a variation
of the Lesk algorithm3 (Lesk, 1986), which selects the
meaning of an open-class word by finding the word
sense that leads to the highest overlap between the cor-
responding dictionary definition and the current con-
text. Similar to the definition similarity function used
in the graph-based disambiguation algorithm (Section
3.1), the overlap measure used in the Lesk implemen-
tation does not take into account stop-words, and it is
normalized with the length of each definition to avoid
promoting longer definitions.

We are thus comparing the performance of se-
quence data labeling, which takes into account label
dependencies, with individual data labeling, where a
label is selected independent of the other labels in
the text. Note that both algorithms rely on the same
knowledge source, i.e. dictionary definitions, and thus
they are directly comparable. Moreover, none of the
algorithms take into account the dictionary sense order
(e.g. the most frequent sense provided by WordNet),
and therefore they are both fully unsupervised.

Table 1 shows precision and recall figures4 for a

3Given a sequence of words, the original Lesk algorithm at-
tempts to identify the combination of word senses that maxi-
mizes the redundancy (overlap) across all corresponding defini-
tions. The algorithm was later improved through a method for
simulated annealing (Cowie et al., 1992), which solved the com-
binatorial explosion of word senses, while still finding an optimal
solution. However, recent comparative evaluations of different
variants of the Lesk algorithm have shown that the performance
of the original algorithm is significantly exceeded by an algorithm
variation that relies on the overlap between word senses and cur-
rent context (Vasilescu et al., 2004). We are thus using this latter
Lesk variant in our implementation.

4Recall is particularly low for each individual part-of-speech
because it is calculated with respect to the entire data set. The
overall precision and recall figures coincide, reflecting the 100%
coverage of the algorithm.

context size (MaxDist) equal to the length of each
sentence, using: (a) sequence data labeling with itera-
tive graph-based algorithms; (b) individual data label-
ing with a version of the Lesk algorithm; (c) random
baseline. Evaluations are run for both fine-grained
and coarse-grained sense distinctions, to determine
the algorithm performance under different classifica-
tion granularities.

The accuracy of the graph-based sequence data la-
beling algorithm exceeds by a large margin the indi-
vidual data labeling algorithm, resulting in 10.7% er-
ror rate reduction for fine-grained sense distinctions,
which is statistically significant (p < 0.0001, paired
t-test). Performance improvements are equally dis-
tributed across all parts-of-speech, with comparable
improvements obtained for nouns, verbs, and adjec-
tives. A similar error rate reduction of 11.0% is ob-
tained for coarse-grained sense distinctions, which
suggests that the performance of the graph-based se-
quence data labeling algorithm does not depend on
classification granularity, and similar improvements
over individual data labeling can be obtained regard-
less of the average number of labels per word.

We also measured the variation of performance with
context size, and evaluated the disambiguation ac-
curacy for both algorithms for a window size rang-
ing from two words to an entire sentence. The win-
dow size parameter limits the number of surround-
ing words considered when seeking label dependen-
cies (sequence data labeling), or the words counted
in the measure of definition–context overlap (individ-
ual data labeling). Figure 3 plots the disambiguation
accuracy of the two algorithms as a function of con-
text size. As seen in the figure, both algorithms ben-
efit from larger contexts, with a steady increase in
performance observed for increasingly larger window
sizes. Although the initial growth observed for the se-
quence data labeling algorithm is somewhat sharper,
the gap between the two curves stabilizes for window
sizes larger than five words, which suggests that the
improvement in performance achieved with sequence
data labeling over individual data labeling does not de-
pend on the size of available context.

The algorithm was also evaluated on two other
data sets, SENSEVAL-3 English all-words data
(Snyder and Palmer, 2004) and a subset of SemCor
(Miller et al., 1993), although only fine-grained sense
evaluations could be conducted on these test sets.
The disambiguation precision on the SENSEVAL-3
data was measured at 52.2% using sequence data
labeling, compared to 48.1% obtained with individual
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Fine-grained sense distinctions Coarse-grained sense distinctions
Random Individual Sequence Random Individual Sequence

Part-of baseline (Lesk) (graph-based) baseline (Lesk) (graph-based)
speech P R P R P R P R P R P R
Noun 41.4% 19.4% 50.3% 23.6% 57.5% 27.0% 42.7% 20.0% 51.4% 24.1% 58.8% 27.5%
Verb 20.7% 3.9% 30.5% 5.7% 36.5% 6.9% 22.8% 4.3% 31.9% 6.0% 37.9% 7.1%
Adjective 41.3% 9.3% 49.1% 11.0% 56.7% 12.7% 42.6% 42.6% 49.8% 11.2% 57.6% 12.9%
Adverb 44.6% 5.2% 64.6% 7.6% 70.9% 8.3% 40.7% 4.8% 65.3% 7.7% 71.9% 8.5%
ALL 37.9% 37.9% 48.7% 48.7% 54.2% 54.2% 38.7% 38.7% 49.8% 49.8% 55.3% 55.3%

Table 1: Precision and recall for graph-based sequence data labeling, individual data labeling, and random
baseline, for fine-grained and coarse-grained sense distinctions.
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Figure 3: Disambiguation results using sequence data
labeling, individual labeling, and random baseline, for
various context sizes.

data labeling, and 34.3% achieved through random
sense assignment. The average disambiguation figure
obtained on all the words in a random subset of 10
SemCor documents, covering different domains, was
56.5% for sequence data labeling, 47.4% for individ-
ual labeling, and 35.3% for the random baseline.

Comparison with Related Work
For a given sequence of ambiguous words, the origi-
nal definition of the Lesk algorithm (Lesk, 1986), and
more recent improvements based on simulated anneal-
ing (Cowie et al., 1992), seek to identify the combina-
tion of senses that maximizes the overlap among their
dictionary definitions. Tests performed with this algo-
rithm on the SENSEVAL-2 data set resulted in a dis-
ambiguation accuracy of 39.5%. This precision is ex-
ceeded by the Lesk algorithm variation used in the ex-
periments reported in this paper, which measures the
overlap between sense definitions and the current con-
text, for a precision of 48.7% on the same data set (see
Table 1). In the SENSEVAL-2 evaluations, the best

performing fully unsupervised algorithm5 was devel-
oped by (Litkowski, 2001), who combines analysis of
multiword units and contextual clues based on collo-
cations and content words from dictionary definitions
and examples, for an overall precision and recall of
45.1%. More recently, (McCarthy et al., 2004) reports
one of the best results on the SENSEVAL-2 data set,
using an algorithm that automatically derives the most
frequent sense for a word using distributional similari-
ties learned from a large raw corpus, for a disambigua-
tion precision of 53.0% and a recall of 49.0%.

Another related line of work consists of the disam-
biguation algorithms based on lexical chains (Morris
and Hirst, 1991), and the more recent improvements
reported in (Galley and McKeown, 2003) – where
threads of meaning are identified throughout a text.
Lexical chains however only take into account con-
nections between concepts identified in a static way,
without considering the importance of the concepts
that participate in a relation, which is recursively de-
termined in our algorithm. Moreover, the construction
of lexical chains requires structured dictionaries such
as WordNet, with explicitly defined semantic relations
between word senses, whereas our algorithm can also
work with simple unstructured dictionaries that pro-
vide only word sense definitions. (Galley and McK-
eown, 2003) evaluated their algorithm on the nouns
from a subset of SEMCOR, reporting 62.09% dis-
ambiguation precision. The performance of our al-
gorithm on the same subset of SEMCOR nouns was
measured at 64.2%6. Finally, another disambiguation
method relying on graph algorithms that exploit the

5Algorithms that integrate the most frequent sense in Word-
Net are not considered here, since this represents a supervised
knowledge source (WordNet sense frequencies are derived from a
sense-annotated corpus).

6Note that the results are not directly comparable, since (Gal-
ley and McKeown, 2003) used the WordNet sense order to break
the ties, whereas we assume that such sense order frequency is not
available, and thus we break the ties through random choice.
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structure of semantic networks was proposed in (Mi-
halcea et al., 2004), with a disambiguation accuracy of
50.9% measured on all the words in the SENSEVAL-2
data set.

Although it relies exclusively on dictionary defini-
tions, the graph-based sequence data labeling algo-
rithm proposed in this paper, with its overall perfor-
mance of 54.2%, exceeds significantly the accuracy
of all these previously proposed unsupervised word
sense disambiguation methods, proving the benefits of
taking into account label dependencies when annotat-
ing sequence data. An additional interesting benefit of
the algorithm is that it provides a ranking over word
senses, and thus the selection of two or more most
probable senses for each word is also possible.

4 Conclusions

We proposed a graphical algorithm for sequence data
labeling that relies on random walks on graphs encod-
ing label dependencies. Through the label graphs it
builds for a given sequence of words, the algorithm ex-
ploits relations between word labels, and implements
a concept of recommendation. A label recommends
other related labels, and the strength of the recom-
mendation is recursively computed based on the im-
portance of the labels making the recommendation.
In this way, the algorithm simultaneously annotates
all the words in an input sequence, by identifying the
most probable (most recommended) set of labels.

The algorithm was illustrated and tested on an unsu-
pervised word sense disambiguation problem, target-
ing the annotation of all words in unrestricted texts.
Through experiments performed on standard sense-
annotated data sets, the graph-based sequence data la-
beling algorithm was shown to significantly outper-
form the accuracy achieved through individual data la-
beling, resulting in a statistically significant error rate
reduction of 10.7%. The disambiguation method was
also shown to exceed the performance of previously
proposed unsupervised word sense disambiguation al-
gorithms. Moreover, comparative results obtained un-
der various experimental settings have shown that the
algorithm is robust to changes in classification granu-
larity and context size.
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Abstract

Distributionsof the sensesof words are
oftenhighlyskewed.Thisfactis exploited
by wordsensedisambiguation(WSD) sys-
temswhich back off to the predominant
senseof a wordwhencontextualcluesare
not strongenough.Thedomainof a doc-
umenthasa stronginfluenceon thesense
distribution of words, but it is not feasi-
ble to producelarge manuallyannotated
corporafor every domainof interest. In
this paperwe describetheconstructionof
threesenseannotatedcorporain different
domainsfor a sampleof English words.
We apply an existing methodfor acquir-
ing predominantsenseinformationauto-
maticallyfrom raw text, andfor our sam-
ple demonstratethat (1) acquiring such
informationautomaticallyfrom a mixed-
domaincorpusis moreaccuratethande-
riving it from SemCor, and(2) acquiring
it automaticallyfrom text in thesamedo-
main as the target domainperformsbest
by a large margin. We also show that
for an all wordsWSD taskthis automatic
methodis bestfocussedon wordsthatare
salientto the domain,andon wordswith
a differentacquiredpredominantsensein
that domain comparedto that acquired
from abalancedcorpus.

1 Intr oduction

From analysisof manually sensetaggedcorpora,
Kilgarrif f (2004)hasdemonstratedthatdistributions
of thesensesof wordsareoftenhighlyskewed.Most
researchersworking on word sensedisambiguation
(WSD) usemanuallysensetaggeddatasuchasSem-

Cor (Miller et al., 1993) to train statisticalclassi-
fiers,but alsousetheinformationin SemCoron the
overall sensedistribution for eachword asa back-
off model.In WSD, theheuristicof justchoosingthe
mostfrequentsenseof a word is very powerful, es-
pecially for wordswith highly skewedsensedistri-
butions(Yarowsky andFlorian,2002).Indeed,only
5 out of the 26 systemsin the recentSENSEVAL-3
English all words task (Snyder and Palmer, 2004)
outperformedtheheuristicof choosingthemostfre-
quentsenseasderivedfrom SemCor(which would
give61.5%precisionandrecall1). Furthermore,sys-
temsthatdid outperformthefirst senseheuristicdid
soonly by a smallmargin (thetop scorebeing65%
precisionandrecall).

Over a decadeago, Gale et al. (1992) observed
the tendency for onesenseof a word to prevail in a
givendiscourse.To takeadvantageof this,amethod
for automaticallydeterminingthe“onesense”given
a discourseor documentis required.Magnini et al.
(2002) have shown that informationaboutthe do-
mainof a documentis very usefulfor WSD. This is
becausemany conceptsarespecificto particulardo-
mains,andfor many wordstheir mostlikely mean-
ing in context is stronglycorrelatedto thedomainof
thedocumentthey appearin. Thus,sincewordsense
distributionsareskewedanddependon thedomain
at handwe would like to know for each domainof
applicationthemostlikely senseof aword.

However, there are no extant domain-specific
sensetaggedcorporato derive suchsensedistribu-
tion informationfrom. Producingthemwouldbeex-
tremelycostly, sinceasubstantialcorpuswouldhave
to beannotatedby handfor everydomainof interest.
In responseto this problem,McCarthyet al. (2004)
proposeda methodfor automatically inducing the

1This figure is the meanof two different estimates(Sny-
der andPalmer, 2004), the differencebeingdueto multiword
handling.
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predominantsenseof a word from raw text. They
carriedout a limited testof their methodon text in
two domainsusingsubjectfield codes(Magniniand
Cavaglià, 2000)to assesswhethertheacquiredpre-
dominantsenseinformationwasbroadlyconsistent
with the domainof the text it was acquiredfrom.
But they did not evaluatetheir methodon hand-
taggeddomain-specificcorporasincetherewasno
suchdatapublicly available.

In this paper, we evaluatethe methodon domain
specifictext by creatingasense-annotatedgoldstan-
dard2 for asampleof words.Weuseda lexical sam-
plebecausethecostof handtaggingseveralcorpora
for anall-wordstaskwouldbeprohibitive.Weshow
that the sensedistributions of words in this lexical
samplediffer dependingon domain. We alsoshow
thatsensedistributionsaremoreskewedin domain-
specifictext. Using McCarthyet al.’s method,we
automaticallyacquirepredominantsenseinforma-
tion for the lexical samplefrom the (raw) corpora,
andevaluatethe accuracy of this andpredominant
senseinformationderived from SemCor. We show
that in our domainsandfor thesewords,first sense
informationautomaticallyacquiredfrom a general
corpus is more accuratethan first sensesderived
from SemCor. Wealsoshow thatderiving first sense
informationfrom text in thesamedomainasthetar-
get dataperformsbest,particularlywhen focusing
onwordswhicharesalientto thatdomain.

The paperis structuredas follows. In section2
we summariseMcCarthyet al.’s predominantsense
method.We then(section3) describethenew gold
standardcorpora,and evaluatepredominantsense
accuracy (section4). We discussthe resultswith
a proposalfor applyingthe methodto anall-words
task,andananalysisof our resultsin termsof this
proposalbeforeconcludingwith futuredirections.

2 Finding PredominantSenses

We use the methoddescribedin McCarthy et al.
(2004) for finding predominantsensesfrom raw
text. The methodusesa thesaurusobtainedfrom
thetext by parsing,extractinggrammaticalrelations
andthenlisting eachword ( � ) with its top � nearest
neighbours,where � is a constant.Like McCarthy

2This resourcewill bemadepublicly availablefor research
purposesin thenearfuture.

etal. (2004)weuse�����	� andobtainourthesaurus
using the distributional similarity metric described
by Lin (1998). We useWordNet(WN) asour sense
inventory. Thesensesof aword � areeachassigned
a rankingscorewhich sumsover the distributional
similarity scoresof theneighboursandweightseach
neighbour’s scoreby a WN Similarity score(Pat-
wardhanandPedersen,2003)betweenthe senseof
� andthesenseof theneighbourthatmaximisesthe
WN Similarity score. This weight is normalisedby
the sum of suchWN similarity scoresbetweenall
sensesof � andandthesensesof theneighbourthat
maximisesthisscore.We usetheWN Similarity jcn
score(JiangandConrath,1997)sincethis gaverea-
sonableresultsfor McCarthyetal. andit is efficient
at runtimegivenprecompilationof frequency infor-
mation. The jcn measureneedsword frequency in-
formation,which we obtainedfrom theBritish Na-
tional Corpus(BNC) (Leech,1992). The distribu-
tional thesauruswasconstructedusingsubject,di-
rectobjectadjective modifierandnounmodifierre-
lations.

3 Creatingthe Thr eeGold Standards

In our experiments, we compare for a sample
of nouns the senserankings createdfrom a bal-
ancedcorpus(theBNC) with rankingscreatedfrom
domain-specificcorpora(FINANCE andSPORTS)
extracted from the Reuterscorpus (Rose et al.,
2002).In moredetail,thethreecorporaare:

BNC: The ‘written’ documents,amountingto 3209
documents(around89.7M words), and covering a
wide rangeof topic domains.

FINANCE: 117734FINANCE documents(around
32.5Mwords)topic codes:ECAT andMCAT

SPORTS: 35317SPORTS documents(around9.1M
words)topiccode:GSPO

We computedthesaurusesfor eachof thesecorpora
usingtheprocedureoutlinedin section2.

3.1 Word Selection

In ourexperimentsweusedFINANCEandSPORTS
domains. To ensurethat a significantnumberof
the chosenwords are relevant for thesedomains,
we did not choosethe words for our experiments
completelyrandomly. The first selectioncriterion
we appliedusedthe SubjectField Code(SFC) re-
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source(MagniniandCavaglià,2000),whichassigns
domainlabelsto synsetsin WN version1.6. We se-
lectedall thepolysemousnounsin WN 1.6thathave
at leastonesynsetlabelledSPORT andonesynset
labelledFINANCE. This reducedthe setof words
to 38. However, someof thesewordswere fairly
obscure,did not occurfrequentlyenoughin oneof
thedomaincorporaor weresimply toopolysemous.
We narroweddown thesetof wordsusingthecrite-
ria: (1) frequency in the BNC 
 1000,(2) at most
12 senses,and(3) at least75 examplesin eachcor-
pus. Finally a coupleof wordswere removed be-
causethedomain-specificsensewasparticularlyob-
scure3. Theresultingsetconsistsof 17words4: club,
manager, record, right, bill, check, competition,con-
version,crew, delivery, division,fishing,reserve,re-
turn, score, receiver, running

Wereferto thissetof wordsasF&S cds. Thefirst
four wordsoccurin theBNCwith highfrequency ( 

10000occurrences),thelasttwo with low frequency
( � 2000)andtherestaremid-frequency.

Threefurther setsof wordswereselectedon the
basisof domainsalience.Wechoseeightwordsthat
areparticularlysalientin theSportcorpus(referred
to asS sal), eightin theFinancecorpus(F sal), and
seventhathadequal(not necessarilyhigh) salience
in both,(eqsal). Wecomputedsalienceasaratioof
normaliseddocumentfrequencies,usingtheformula��
 �������������	�������� � ���
where� �"! is thenumberof documentsin domain�
containingthenoun(lemma)� , �#! is thenumberof
documentsin domain � , � � is the total numberof
documentscontainingthenoun � and � is thetotal
numberof documents.

To obtainthesetsS sal, F sal andeq sal we gen-
eratedthe 50 mostsalientwordsfor both domains
and50 wordsthatwereequallysalientfor bothdo-
mains.Theselistsof 50wordsweresubjectedto the
sameconstraintsassetF&S cds, that is occurring
in the BNC 
 1000,having at most12 senses,and
having at least75 examplesin eachcorpus. From
theremainingwordswe randomlysampled8 words

3For examplethe Financesenseof ‘eagle’ (a former gold
coin in USworth10 dollars)is veryunlikely to befound.

4Onemoreword,‘pitch’, wasin theoriginalselection.How-
ever, wedid notobtainenoughusableannotatedsentences(sec-
tion 3.2)for thisparticularwordandthereforeit wasdiscarded.

from the Sport saliencelist andFinance list and7
from thesaliencelist for wordswith equalsalience
in bothdomains.Theresultingsetsof wordsare:

Ssal: fan,star, transfer, striker, goal,title, tie, coach

F sal: package,chip, bond, market, strike, bank,
share,target

eq sal: will, phase,half, top, performance,level,
country

The averagedegreeof polysemyfor this setof 40
nounsin WN (version1.7.1)is 6.6.

3.2 The Annotation Task

For theannotationtaskwe recruitedlinguisticsstu-
dentsfrom two universities. All tenannotatorsare
nativespeakersof English.

We setupannotationasanOpenMind Word Ex-
pert task5. OpenMind is a web basedsystemfor
annotatingsentences.The usercanchoosea word
from a pull down menu. Whena word is selected,
theuseris presentedwith a list of sensedefinitions.
Thesensedefinitionsweretakenfrom WN1.7.1 and
presentedin randomorder. Below thesensedefini-
tions, sentenceswith the target word (highlighted)
aregiven. Left of the sentenceon thescreen,there
are as many tick-boxesas therearesensesfor the
word plusboxesfor ‘unclear’ and‘unlisted-sense’.
Theannotatoris expectedto first readthesensedefi-
nitionscarefullyandthen,afterreadingthesentence,
decidewhich senseis best for the instanceof the
word in a particularsentence.Only the sentencein
which theword appearsis presented(not moresur-
roundingsentences).In casethe sentencedoesnot
giveenoughevidenceto decide,theannotatoris ex-
pectedto checkthe‘unclear’box. Whenthecorrect
senseis not listed, the annotatorshouldcheckthe
‘unlisted-sense’box.

The sentencesto be annotatedwere randomly
sampledfrom the corpora. The corporawerefirst
part of speechtaggedandlemmatisedusingRASP
(Briscoeand Carroll, 2002). Up to 125 sentences
were randomlyselectedfor eachword from each
corpus.Sentenceswith clearproblems(e.g.contain-
ing a begin or endof documentmarker, or mostly
not text) were removed. The first 100 remaining
sentenceswere selectedfor the task. For a few

5http://www.teach-computers.org/word-expert/english/
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wordstherewerenot exactly 100sentencespercor-
pusavailable. The Reuterscorpuscontainsquite a
few duplicatedocuments.No attemptsweremade
to remove duplicates.

3.3 Characterisation of the Annotated Data

Most of the sentenceswere annotatedby at least
threepeople. Somesentenceswere only doneby
two annotators.Thecompletesetof datacomprises
33225taggingacts.

Theinter-annotatoragreementonthecompleteset
of datawas65%6. For theBNC datait was60%,for
the Sportsdata65% andfor the Financedata69%.
This is lower than reportedfor othersetsof anno-
tateddata(for exampleit was75%for thenounsin
the SENSEVAL-2 Englishall-wordstask),but quite
closeto thereported62.8%agreementbetweenthe
first two taggingsfor single noun tagging for the
SENSEVAL-3 Englishlexical sampletask(Mihalcea
etal., 2004).Thefairestcomparisonis probablybe-
tweenthe latter and the inter-annotatoragreement
for the BNC data. Reasonswhy our agreementis
relatively low includethe fact thatalmostall of the
sentencesareannotatedby threepeople,andalsothe
highdegreeof polysemyof thissetof words.

Problematiccases

The unlistedcategory wasusedasa miscellaneous
category. In somecasesa sensewastruly missing
from theinventory(e.g.theword ‘tie’ hasa ‘game’
sensein British Englishwhich is not includedin WN

1.7.1). In other caseswe had not recognisedthat
thewordwasreallypartof amultiword(e.g.anum-
ber of sentencesfor the word ‘chip’ containedthe
multiword ‘blue chip’). Finally therewerea num-
ber of caseswherethe word hadbeenassignedthe
wrong part of speechtag (e.g. the verb ‘will’ had
oftenbeenmistaggedasa noun). We identifiedand
removedall thesesystematicproblemcasesfromthe
unlistedsenses.After removing theproblematicun-
listedcases,wehadbetween0.9%(FINANCE) and
4.5%(SPORTS)unlistedinstancesleft. Wealsohad
between1.8%(SPORTS) and4.8%(BNC) unclear
instances.The percentageof unlistedinstancesre-
flectsthefit of WN to thedatawhilst thatof unclear
casesreflectsthegeneralityof thecorpus.

6To computeinter-annotatoragreementweusedAmrutaPu-
randareandTedPedersen’sOMtoSVAL2 Packageversion0.01.

The sensedistributions

WSD accuracy is stronglyrelatedto the entropyof
thesensedistribution of the target word (Yarowsky
andFlorian,2002).Themoreskewedthesensedis-
tributionis towardsasmallpercentageof thesenses,
the lower the entropy. Accuracy is relatedto this
becausethereis moredata(both training and test)
sharedbetweenfewer of thesenses.Whenthefirst
senseisverypredominant(exceeding80%)it ishard
for any WSD systemto beatthe heuristicof always
selectingthatsense(Yarowsky andFlorian,2002).

Thesensedistributionfor a givenwordmayvary
dependingon the domain of the text being pro-
cessed.In somecases,this may result in a differ-
ent predominantsense;othercharacteristicsof the
sensedistributionmayalsodiffer suchasentropyof
thesensedistributionandthedominanceof thepre-
dominantsense.In Table1 weshow theentropyper
word in our sampleandrelative frequency (relfr) of
its first sense(fs), for eachof our threegold stan-
dardannotatedcorpora.We computetheentropyof
a word’s sensedistributionasa fractionof the pos-
sibleentropy(Yarowsky andFlorian,2002)$#% 
'& ��� (*),+�-.0/21�3 )5476982:;698<69-
where

$ 
'& �=� >@?BADC 6982:;698<6FE

'G �'H2IKJFL E


MG � . This
measurereducestheimpactof thenumberof senses
of a wordandfocuseson theuncertaintywithin the
distribution. For eachcorpus,we alsoshow theav-
erageentropyandaveragerelative frequency of the
first senseover all words.

From Table 1 we can seethat for the vast ma-
jority of wordsthe entropyis highestin the BNC.
However thereare exceptions: return, fan and ti-
tle for FINANCE and return, half, level, running
strike and share for SPORTS. Surprisingly, eq sal
words, which are not particularly salient in either
domain,alsotypically have lowerentropyin thedo-
main specificcorporacomparedto the BNC. Pre-
sumablythis is simply becauseof this small setof
words, which seemparticularly skewed to the fi-
nancialdomain. Note that whilst the distributions
in thedomain-specificcorporaaremoreskewedto-
wardsa predominantsense,only 7 of the40 words
in the FINANCE corpusand5 of the 40 words in
the SPORTS corpushave only one senseattested.
Thus,even in domain-specificcorporaambiguityis
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Training Testing
BNC FINANCE SPORTS

BNC 40.7 43.3 33.2
FINANCE 39.1 49.9 24.0
SPORTS 25.7 19.7 43.7
RandomBL 19.8 19.6 19.4
SemCorFS 32.0(32.9) 33.9(35.0) 16.3(16.8)

Table 2: WSD using predominantsenses,training
andtestingonall domaincombinations.

still present,even thoughit is lessthanfor general
text. We show the sensenumberof the first sense
(fs) alongsidethe relative frequency of that sense.
Weuse‘ucl’ for unclearand‘unl’ for unlistedsenses
wherethesearepredominantin our annotateddata.
Althoughthepredominantsenseof a word is notal-
waysthedomain-specificsensein adomain-specific
corpus,the domain-specificsensestypically occur
morethanthey do in non-relevantcorpora.For ex-
ample,sense11 of return (a tennisstroke)wasnot
thefirst sensein SPORTS,howeverit did havearel-
ativefrequency of 19%in thatcorpusandwasabsent
from BNC andFINANCE.

4 PredominantSenseEvaluation

We have run the predominantsensefinding algo-
rithm on the raw text of eachof the threecorpora
in turn (the first stepbeing to computea distribu-
tional similarity thesaurusfor each,as outlined in
section2). We evaluatetheaccuracy of performing
WSD purelywith thepredominantsenseheuristicus-
ing all 9 combinationsof training andtestcorpora.
The resultsarepresentedin Table 2. The random
baselineis ? ADCON /MP 82:;6

Q
476982:;698<6M) A - . We alsogive the

accuracy usinga first senseheuristicfrom SemCor
(‘SemCorFS’); the precisionis given alongsidein
bracketsbecausea predominantsenseis not sup-
plied by SemCorfor every word. 7 The automatic
methodproposesapredominantsensein everycase.

The bestresultsareobtainedwhentraining on a
domainrelevantcorpus.In all cases,whentraining
on appropriatetraining datathe automaticmethod
for finding predominantsensesbeatsboth the ran-
dombaselineandthebaselineprovidedby SemCor.

Table3 comparesWSD accuracy usingthe auto-
maticallyacquiredfirst senseon the4 categoriesof

7Thereis onesuchword in oursample,striker.

Test- Train F&S cds F sal Ssal eq sal
BNC-APPR 33.3 51.5 39.7 48.0
BNC-SC 28.3 44.0 24.6 36.2
FINANCE-APPR 37.0 70.2 38.5 70.1
FINANCE-SC 30.3 51.1 22.9 33.5
SPORTS-APPR 42.6 18.1 65.7 46.9
SPORTS-SC 9.4 38.1 13.2 12.2

Table3: WSD usingpredominantsenses,with train-
ing datafrom thesamedomainor from SemCor.

wordsF&S cds, F sal, S sal andeq sal separately.
Resultsusingthetrainingdatafrom theappropriate
domain(e.g.SPORTStrainingdatafor SPORTStest
data)areindicatedwith ‘ APPR’ andcontrastedwith
theresultsusingSemCordata,indicatedwith ‘SC’. 8

We seethatfor wordswhich arepertinentto thedo-
mainof the testtext, it paysto usedomainspecific
trainingdata. In someothercases,e.g.F sal tested
onSPORTS, it is betterto useSemCordata.For the
eq sal words,accuracy is highestwhenFINANCE
datais usedfor training, reflectingtheir bias to fi-
nancialsensesasnotedin section3.3.

5 Discussion

Wearenotawareof any otherdomain-specificman-
ually sensetaggedcorpora. We have createdsense
taggedcorporafromtwospecificdomainsfor asam-
pleof words,andasimilar resourcefrom abalanced
corpuswhich coversa wide rangeof domains.We
have usedtheseresourcesto do a quantitativeeval-
uation which demonstratesthat automaticacquisi-
tion of predominantsensesoutperformstheSemCor
baselinefor thissampleof words.

The domain-specificmanually sensetaggedre-
sourceis an interestingsourceof informationin it-
self. It shows for example that (at least for this
particularlexical sample),thepredominantsenseis
muchmoredominantin a specificdomainthanit is
in the generalcase,even for wordswhich are not
particularly salientin that domain. Similar obser-
vationscan be madeaboutthe averagenumberof
encounteredsensesand the skew of the sensedis-
tributions. It alsoshows thatalthoughthe predom-
inant senseis more dominantand domain-specific

8For SemCor, precisionfiguresfor the S sal wordsareup
to 4% higherthantheaccuracy figuresgiven,however they are
still lower thanaccuracy usingthedomainspecificcorpora;we
leave themoutdueto lackof space.
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sensesare used more within a specific domain,
thereis still a needfor taking local context into ac-
count when disambiguatingwords. The predomi-
nantsenseheuristicis hardto beatfor somewords
within a domain,but othersremainhighly ambigu-
ouseven within a specificdomain. The return ex-
amplein section3.3illustratesthis.

Our resultsare for a lexical samplebecausewe
did not have the resourcesto producemanually
taggeddomain-specificcorpora for an all words
task. Althoughsensedistributiondataderivedfrom
SemCorcan be more accuratethan suchinforma-
tion derivedautomatically(McCarthyet al., 2004),
in a given domain therewill be words for which
the SemCorfrequency distributionsare inappropri-
ateor unavailable.Thework presentedheredemon-
stratesthat the automaticmethodfor finding pre-
dominantsensesoutperformsSemCoron a sample
of words,particularlyononesthataresalienttoado-
main.As well asdomain-salientwords,therewill be
wordswhicharenotparticularlysalientbut still have
different distributions than in SemCor. We there-
fore proposethat automaticmethodsfor determin-
ing thefirst senseshouldbeusedwheneitherthere
is no manuallytaggeddata,or themanuallytagged
dataseemsto beinappropriatefor theword anddo-
mainunderconsideration.While it is trivial to find
the wordswhich are absentor infrequentin train-
ing data,suchasSemCor, it is lessobvious how to
find wordswherethetrainingdataisnotappropriate.
Onewayof findingthesewordswouldbeto look for
differencesin theautomaticsenserankingsof words
in domainspecificcorporacomparedto thoseof the
samewordsin balancedcorpora,suchastheBNC.
We assumethat thesenserankingsfrom a balanced
text will moreor lesscorrelatewith a balancedre-
sourcesuchasSemCor. Of coursetherewill bedif-
ferencesin the corpusdata,but thesewill be less
radical than thosebetweenSemCorand a domain
specificcorpus.Thentheautomaticrankingmethod
shouldbeappliedin caseswherethereis a clearde-
viation in therankinginducedfrom thedomainspe-
cific corpuscomparedto thatfrom thebalancedcor-
pus.Otherwise,SemCoris probablymorereliableif
datafor thegivenword is available.

Thereareseveralpossibilitiesfor thedefinitionof
“clear deviation” above. Onecould look at differ-
encesin the ranking over all words, using a mea-

Training Testing
FINANCE SPORTS

Finance 35.5 -
Sports - 40.9
SemCor 14.2(15.3) 10.0

Table 4: WSD accuracy for wordswith a different
first senseto theBNC.

suresuchas pairwiseagreementof rankingsor a
rankingcorrelationcoefficient,suchasSpearman’s.
One could alsousethe rankingsto estimateprob-
ability distributions and comparethe distributions
with measuressuchasalpha-skew divergence(Lee,
1999). A simple definition would be where the
rankingsassigndifferent predominantsensesto a
word. Takingthissimpledefinitionof deviation,we
demonstratehow thismightbedonefor ourcorpora.

We comparedthe automaticrankingsfrom the
BNC with thosefrom eachdomainspecificcorpus
(SPORTS andFINANCE) for all polysemousnouns
in SemCor. Althoughthemajority areassignedthe
samefirst sensein the BNC as in the domainspe-
cific corpora,asignificantproportion(31%SPORTS
and 34% FINANCE) are not. For all words WSD

in eitherof thesedomains,it would bethesewords
for which automaticranking shouldbe used. Ta-
ble 4 shows the WSD accuracy usingthis approach
for thewordsin our lexical samplewith a different
automaticallycomputedfirst sensein theBNC com-
paredto thetargetdomain(SPORTS or FINANCE).
We trainedon the appropriatedomainfor eachtest
corpus,andcomparedthis with usingSemCorfirst
sensedata. The resultsshow clearly thatusingthis
approachto decidewhetherto useautomaticsense
rankingsperformsmuch better than alwaysusing
SemCorrankings.

6 Conclusions

The methodfor automaticallyfinding the predomi-
nantsensebeatSemCorconsistentlyin our experi-
ments. So for somewords, it paysto obtainauto-
matic informationon frequency distributions from
appropriatecorpora. Our senseannotatedcorpora
exhibit higherentropyfor word sensedistributions
for domain-specifictext, even for wordswhich are
not specific to that domain. They also show that
different sensespredominatein different domains
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and that dominanceof the first sensevaries to a
greatextent,dependingon theword. Previouswork
in all wordsWSD hasindicatedthat techniquesus-
ing hand-taggedresourcesoutperformunsupervised
methods.However, we demonstratethat it is possi-
ble to applya fully automaticmethodto a subsetof
pertinentwordsto improve WSD accuracy. Theau-
tomaticmethodseemsto leadto betterperformance
for wordsthataresalientto adomain.Therearealso
otherwordswhich thoughnot particularlydomain-
salient,haveadifferentsensedistributionto thatan-
ticipatedfor a balancedcorpus.We proposethat in
order to tacklean all words task, automaticmeth-
odsshouldbe appliedto wordswhich have a sub-
stantialdifferencein senserankingcomparedto that
obtainedfrom a balancedcorpus. We demonstrate
that for a setof wordswhich meetthis condition,
theperformanceof theautomaticmethodis far bet-
ter thanwhenusingdatafrom SemCor. We will do
furtherwork to ascertainthebestmethodfor quanti-
fying “substantialchange”.

We also intend to exploit the automaticranking
to obtain informationon sensefrequency distribu-
tions(ratherthanjustpredominantsenses)giventhe
genreaswell asthedomainof the text. We plan to
combinethis with local context, usingcollocatesof
neighboursin thethesaurus,for contextual WSD.
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BNC FINANCE SPORTS
word RTS�UWVYX relf (fs) RTSZUWVYX relf (fs) RTSZUWVYX relf (fs)

F&S cds
bill 0.503 42.6(1) 0.284 77.0(1) 0.478 45.2(2)
check 0.672 34.4(6) 0.412 44.2(1) 0.519 50.0(1)
club 0.442 75.3(2) 0.087 96.6(2) 0.204 90.6(2)
competition 0.833 42.0(1) 0.159 95.7(1) 0.142 95.8(2)
conversion 0.670 53.2(9) 0.350 75.6(8) 0.000 100 (3)
crew 0.726 61.6(1) 0.343 85.4(1) 0.508 79.2(4)
delivery 0.478 74.5(1) 0.396 72.4(unc) 0.051 98.0(6)
division 0.730 34.2(2) 0.323 76.9(2) 0.000 100 (7)
fishing 0.922 66.3(1) 0.500 89.0(2) 0.422 91.4(1)
manager 0.839 73.2(1) 0.252 95.8(1) 0.420 91.5(2)
receiver 0.781 47.4(3) 0.283 89.4(2) 0.206 92.0(5)
record 0.779 36.0(3) 0.287 81.6(3) 0.422 68.5(3)
reserve 0.685 50.0(5) 0.000 100 (2) 0.265 86.4(3)
return 0.631 33.0(5) 0.679 34.8(6) 0.669 28.6(2 5)
right 0.635 38.6(1 3) 0.357 71.6(1) 0.468 60.3(3)
running 0.621 64.3(4) 0.485 56.1(4) 0.955 28.3(unl)
score 0.682 38.8(3) 0.476 69.0(4) 0.200 84.1(3)
F&S cdsaverages 0.684 50.9 0.334 77.1 0.349 75.9

F sal
bank 0.427 71.3(1) 0.000 100 (1) 0.247 85.4(1)
bond 0.499 46.7(2) 0.000 100 (2) 0.319 75.0(2)
chip 0.276 82.8(7) 0.137 92.7(7) 0.178 91.5(8)
market 0.751 62.3(1) 0.524 70.3(2) 0.734 46.7(2)
package 0.890 50.0(1) 0.285 91.8(1) 0.192 94.6(1)
share 0.545 62.9(1) 0.519 65.3(1) 0.608 47.9(3)
strike 0.152 93.5(1) 0.000 100 (1) 0.409 66.7(unl)
target 0.712 61.6(5) 0.129 95.6(5) 0.300 85.4(5)
F salaverages 0.532 66.4 0.199 89.5 0.373 74.1

Ssal
coach 0.777 45.7(1) 0.623 62.5(5) 0.063 97.9(1)
fan 0.948 47.6(3) 0.992 39.5(3) 0.181 95.0(2)
goal 0.681 46.9(2) 0.000 100 (1) 0.245 91.8(2)
star 0.779 47.7(6) 0.631 41.7(2) 0.285 80.9(2)
striker 0.179 94.0(1) 0.000 100 (3) 0.000 100 (1)
tie 0.481 45.1(1) 0.025 99.0(2) 0.353 51.0(unl)
title 0.489 50.0(4) 0.661 42.1(6) 0.000 100 (4)
transfer 0.600 45.7(1) 0.316 84.9(6) 0.168 92.5(6)
Ssalaverages 0.617 52.8 0.406 71.2 0.162 88.6

eq sal
country 0.729 45.2(2) 0.195 92.9(2) 0.459 73.8(2)
half 0.642 83.7(1) 0.000 100 (1) 0.798 75.8(2)
level 0.609 56.0(1) 0.157 91.5(1) 0.675 31.1(unl)
performance 0.987 23.7(4 5) 0.259 90.1(2) 0.222 92.0(5)
phase 0.396 84.7(2) 0.000 100 (2) 0.000 100 (2)
top 0.593 51.7(1) 0.035 98.4(5) 0.063 96.6(5)
will 0.890 46.9(2) 0.199 94.3(2) 0.692 62.2(2)
eqsalaverages 0.692 56.0 0.121 95.3 0.416 75.9

Overallaverages 0.642 55.3 0.284 81.6 0.328 78.1

Table1: Entropyandrelative frequency of thefirst sensein thethreegoldstandards.
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Abstract 

This paper proposes a hybrid Chinese 
named entity recognition model based on 
multiple features. It differentiates from 
most of the previous approaches mainly 
as follows. Firstly, the proposed Hybrid 
Model integrates coarse particle feature 
(POS Model) with fine particle feature 
(Word Model), so that it can overcome 
the disadvantages of each other. Secondly, 
in order to reduce the searching space and 
improve the efficiency, we introduce heu-
ristic human knowledge into statistical 
model, which could increase the perform-
ance of NER significantly. Thirdly, we 
use three sub-models to respectively de-
scribe three kinds of transliterated person 
name, that is, Japanese, Russian and 
Euramerican person name, which can im-
prove the performance of PN recognition. 
From the experimental results on People's 
Daily testing data, we can conclude that 
our Hybrid Model is better than the mod-
els which only use one kind of features. 
And the experiments on MET-2 testing 
data also confirm the above conclusion, 
which show that our algorithm has consis-
tence on different testing data. 

1 Introduction 

Named Entity Recognition (NER) is one of the key 
techniques in the fields of Information Extraction, 
Question Answering, Parsing, Metadata Tagging in 
Semantic Web, etc. In MET-2 held in conjunction 

with the Seventh Message Understanding Confer-
ence (MUC-7), the task of NER is defined as rec-
ognizing seven sub-categories entities: person (PN), 
location (LN), organization (ON), time, date, cur-
rency and percentage. As for Chinese NEs, we fur-
ther divide PN into five sub-classes, that is, 
Chinese PN (CPN), Japanese PN (JPN), Russian 
PN (RPN), Euramerican PN (EPN) and abbrevi-
ated PN (APN) like "吴先生/Mr. Wu". Similarly, 
LN is split into common LN (LN) like "中关村
/Zhongguancun" and abbreviated LN (ALN) such 
as "京/Beijing", "沪/Shanghai". The recognition of 
time (TM) and numbers (NM) is comparatively 
simpler and can be implemented via finite state 
automata. Therefore, our research focuses on the 
recognition of CPN, JPN, RPN, EPN, APN, LN, 
ALN and ON. 

Compared to English NER, Chinese NER is 
more difficult. We think that the main differences 
between Chinese NER and English NER lie in: (1) 
Unlike English, Chinese lacks the capitalization 
information which can play very important roles in 
identifying named entities. (2) There is no space 
between words in Chinese, so we have to segment 
the text before NER. Consequently, the errors in 
word segmentation will affect the result of NER. 

In this paper, we proposes a hybrid Chinese 
NER model based on multiple features which em-
phasizes on (1) combining fine particle features 
(Word Model) with coarse particle features (POS 
Model); (2) integrating human knowledge into sta-
tistical model; (3) and using diverse sub-models 
for different kinds of entities. Especially, we divide 
transliterated person name into three sub-classes 
according to their characters set, that is, JPN, RPN 
and EPN. In order to deduce the complexity of the 
model and the searching space, we divide the rec-
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ognition process into two steps: (1) word segmen-
tation and POS tagging; (2) named entity recogni-
tion based on the first step. 

Trained on the NEs labeled corpus of five-
month People's Daily corpus and tested on one-
month People's Daily corpus, the Hybrid Model 
achieves the following performance. The precision 
and the recall of PN (including CPN, JPN, RPN, 
EPN, AP N), LN (including ALN) and ON are re-
spectively (94.06%, 95.21%), (93.98%, 93.48%), 
and (84.69%, 86.86%). From the experimental re-
sults on People's Daily testing data, we can con-
clude that our Hybrid Model is better than other 
models which only use one kind of features. And 
the experiments on MET-2 testing data also con-
firm the above conclusion, which show that our 
algorithm has consistence on different testing data. 

2 Related Work 

On the impelling of international evaluations like 
MUC, CoNLL, IEER and ACE, the researches on 
English NER have achieved impressive results. For 
example, the best English NER system[Chinchor. 
1998] in MUC7 achieved 95% precision and 92% 
recall. However, Chinese NER is far from mature. 
For example, the performance (precision, recall) of 
the best Chinese NER system in MET-2 is (66%, 
92%), (89%, 91%), (89%, 88%) for PN, LN and 
ON respectively.  

Recently, approaches for NER are a shift away 
from handcrafted rules[Grishman, et al. 1995] 
[Krupka, et al. 1998][Black et al. 1998] towards 
machine learning algorithms, i.e. unsupervised 
model like DL-CoTrain, CoBoost[Collins, 1999, 
2002], supervised learning like Error-driven [Ab-
erdeen, et al. 1995], Decision Tree [Sekine, et al. 
1998], HMM[Bikel, et al. 1997] and Maximum 
Entropy[Borthwick, et al. 1999][Mikheev, et 
al.1998].  

Similarly, the models for Chinese NER can also 
be divided into two categories: Individual Model 
and Integrated Model.  

Individual Model[Chen, et al. 1998][Sun, et al. 
1994][Zheng, et al. 2000] consists of several sub-
models, each of them deals with a kind of entities. 
For example, the recognition of PN may be statis-
tical-based model, while LN and ON may be rule-
based model like [Chen, et al. 1998]. Integrated 
Model[Sun, et al. 2002] [Zhang, et al. 2003][Yu, et 
al. 1998][Chua, et al. 2002] deals with all kinds of 

entities in a unified statistical framework. Most of 
these integrated models can be viewed as a HMM 
model. The differences among them are the defini-
tion of state and the features used in entity model 
and context model.  

In fact, a NER model recognizes named entities 
through mining the intrinsic features in the entities 
and the contextual features around the entities. 
Most of existing approaches employ either coarse 
particle features, like POS and ROLE[Zhang, et al. 
2003], or fine particle features like word. The data 
sparseness problem is serious if only using fine 
particle features, and coarse particle features will 
lose much important information though without 
serious data sparseness problem. Our idea is that 
coarse particle features should be integrated into 
fine particle features to overcome the disadvan-
tages of them. However, most systems do not com-
bine them and especially ignore the impact of POS. 

Inspired by the algorithms of identifying 
BaseNP and Chunk[Xun, et al. 2000], we propose 
a hybrid NER model which emphasizes on com-
bining coarse particle features (POS Model) with 
fine particle features (Word Model). Though the 
Hybrid Model can overcome the disadvantages of 
the Word Model and the POS Model, there are still 
some problems in such a framework. Data sparse-
ness still exists and very large searching space in 
decoding will influence efficiency. Our idea is that 
heuristic human knowledge can not only improve 
the time efficiency, but also solve the data sparse-
ness problem to some extent by restricting the gen-
eration of entity candidates. So we intend to 
incorporate human knowledge into the statistical 
model to improve efficiency and effectivity of the 
Hybrid Model.  

Similarly, for capturing intrinsic features in dif-
ferent types of entities, we design several sub-
models for each kind of entities. For example, we 
divide transliterated person name into three sub-
classes according to their characters sets, that is, 
JPN, RPN and EPN. 

3 Chinese NER with Multiple Features 

Chinese NEs have very distinct word features in 
their composition and contextual information. For 
example, about 365 highest frequently used sur-
names cover 99% Chinese surnames[Sun, et al. 
1994]. Similarly the characters used for transliter-
ated names are also limited. LNs and ONs often 
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end with the specific words like "省/province" and 
"公司/company". However, data sparseness is very 
serious when using word features. So we try to 
introduce coarse particle feature to overcome the 
data sparseness problem. POS features are simplest 
and easy to obtain. Therefore, our hybrid model 
combines word feature with POS feature to recog-
nize Chinese NEs. 

Given a word/pos sequence as equation (1): 

nnii twtwtwTW //// 11 LL=                    (1) 

where n is the number of words and ti is the POS 
of word wi. The task of Chinese NE identification 
is to find the optimal sequence WC*/ TC* by split-
ting, combining and classifying the sequence of (1). 

mmii21 tc/wctc/wctc/wc*TC/*WC LL=     (2) 
where [ ]ljji wwwc += L , [ ]ljji tttc += L , nm ≤ . 

Note that the definition of words in {wi} set is 
that each kind of NEs (including PN, APN, LN, 
ALN, ON, TM, NM) is defined as a word and all 
the other words in the vocabulary are also defined 
as individual words. Consequently, {wi} set has 
|V|+7 words, where |V| is the size of vocabulary. 
The size of {ti} set is 48 which include PKU POS 
tagging set1 and each kind of NEs. 

Obviously, we could obtain the optimal se-
quence WC*/TC* through the following three 
models: the Word Model, the POS Model and the 
Hybrid Model.  

The Word Model employs word features for 
NER, which is introduced by [Sun, et al. 2002]. 
The POS Model employs POS features for NER. 
This paper proposes a Hybrid Model which com-
bines word features with POS features.  

We will describe these models in detail in fol-
lowing section. 

3.1 The Hybrid Model 

For the convenience of description, we take apart 
equation (1) into two components: word sequence 
as equation (3) and POS sequence as (4).  

ni21 wwwwW LL=                                     (3) 

ni21 ttttT LL=                                          (4) 
The Word Model estimates the probability of 

generating a NE from the viewpoint of word se-
quence, which can be expressed in equation (5).  
                                                           
1 http://icl.pku.edu.cn/nlp-tools/catetkset.html 

( ) ( )WC|WPWCPargmax*WC wc=                  (5) 

The POS Model estimates the probability of 
generating a NE from the viewpoint of POS se-
quence, which can be expressed in equation (6). 

( ) ( )TC|TPTCPargmax*TC TC=                      (6) 

Our proposed Hybrid Model combines the Word 
Model with the POS Model, which can be ex-
pressed in the equation (7). 

( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ξ]TCPTC|T[PWCPWC|WPargmax

W,TWC,TC,Pargmax
T,WPW,TWC,TC,Pargmax

W,T|WC,TCPargmax
*TC*,WC

TCWC,

TCWC,

TCWC,

TCWC,

≈

=

=

=
  (7) 

where factor ζ > 0 is to balance the Word Model 
and the POS Model. 

Therefore, the Hybrid Model consists of four 
sub-models: word context model P(WC), POS con-
text model P(TC), word entity model P(W|WC) 
and POS entity model P(T|TC). 

3.2 Context Model 

The word context model and the POS context 
model estimate the probability of generating a 
word or a POS given previous context. P(WC) and 
P(TC) can be estimated according to (8) and (9) 
respectively.  

( ) ( )∏
=

=
m

1i
1i2ii wcwc|wcPWCP                       (8) 

( ) ( )∏
=

=
m

1i
1i2ii tctc|tcPTCP                             (9) 

3.3 Word Entity Model  

Different types of NEs have different structures 
and intrinsic characteristics. Therefore, a single 
model can't capture all types of entities. Typical, 
character-based model is more appropriate for PNs, 
whereas, word-based model is more competent for 
LNs and ONs. Especially, we divided transliterated 
PN into three categories such as JPN, RPN and 
EPN.  

For the sake of estimating the probability of 
generating a NE, we define 19 sub-classes shown 
as Table 1 according to their position in NEs. 
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Tag Description 
Sur Surname of CPN 
Dgb First character of Given Name of CPN 
Dge Last character of Give Name of CPN 
Bfn First character of EPN 
Mfn Middle character of EPN 
Efn Last character of EPN 
RBfn First character of RPN 
RMfn Middle character of RPN 
REfn Last character of RPN 
JBfn surname of JPN 
JMfn Middle character of JPN 
JEfn Last character of JPN 
Bol First word of LN 
Mol Middle word of LN 
Eol Last word of LN 
Aloc Single character LN 
Boo First word of ON 
Moo Middle word of ON 
Eoo Last word of ON 

Table 1 Sub-classes in Entity Model 

3.3.1 Word Entity Model for PN 

For the class of PN (including CPN, APN, JPN, 
RPN and EPN), the word entity model is a charac-
ter-based trigram model which can be expressed in 
equation (10). 

( )

( )
( )

( )
( )

( )
1kiik

1liil1i

ik1i

ik1i
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1k

2l
wcwcwc

2k
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wc|wwP
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×

×≅


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







=

∏
−

=

− 4484476
LL

L

       (10) 

where, BNe, MNe and ENe denotes the first, mid-
dle and last characters respectively. 

The word entity models for PN are estimated 
with Chinese, Japanese, Russian and Euramerican 
names lists which contain 15.6 million, 0.15 mil-
lion, 0.44 million, 0.4 million entities respectively. 

3.3.2 Word Entity Model for LN and ON 

For the class of LN and ON, the word entity model 
is a word-based trigram model. The model can be 
expressed by (11). 
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The word entity models and the POS entity 
model for LN and ON are estimated with LN and 
ON names lists which respectively contain 0.44 
mil-lion and 3.2 million entities. 

3.3.3 Word Entity Model for ALN 

For the class of ALN, we use word-based bi-gram 
model. The entity model for ALN can be expressed 
by equation (12). 

( ) ( )
)LocA(C

ocAL,wC
ocAL|wP i

i =                           (12) 

where wi is the ALN which includes single and 
multiple characters ALN. 

3.4 POS Entity Model 

But for the class of PN, it's very difficult to obtain 
the corpus to train POS Entity Model. For the sake 
of simplification, we use word entity model shown 
in equation (10) to replace the POS entity model. 

For the class of LN and ON, POS entity model 
can be expressed by equation (13). 

( )

( ) ( )
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    (13) 

While for the class of ALN, POS entity model is 
shown as equation (14). 

( ) ( )
)ocAL(C

ocAL,tiCocAL|tP i =                               (14) 

4 Heuristic Human Knowledge 

In this section, we will introduce heuristic human 
knowledge that is used for Chinese NER and the 
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method of how to incorporate them into statistical 
model which are shown as follows. 

1. CPN surname list (including 476 items) and 
JPN surnames list (including 9189 items): Only 
those characters in the surname list can trigger per-
son name recognition. 

2. RPN and EPN characters lists: Only those 
consecutive characters in the transliterated charac-
ter list form a candidate transliterated name. 

3. Entity Length Restriction: Person name can-
not span any punctuation and the length of CN 
cannot exceed 8 characters while the length of TN 
is unrestrained. 

4. Location keyword list (including 607 items):  
If the word belongs to the list, 2~6 words before 
the salient word are accepted as candidate LNs. 

5. General word list (such as verbs and preposi-
tions): Words in the list usually is followed by a 
location name, such as "在/at", "去/go". If the cur-
rent word is in the list, 2~6 words following it are 
accepted as candidate LNs. 

6. ALN name list (including 407 items): If the 
current word belongs to the list, we accept it as a 
candidate ALN. 

7. Organization keyword list (including 3129 
items): If the current word is in organization key-
word list, 2~6 words before keywords are accepted 
as the candidate ONs. 

8. An organization name template list: We 
mainly use organization name templates to recog-
nize the missed nested ONs in the statistical model. 
Some of these templates are as follows: 

ON-->LN D* OrgKeyWord 
ON-->PN D* OrgKeyWord 
ON-->ON OrgKeyWord 
D and OrgKeyWord denote words in the middle 

of ONs and ONs keywords. D* means repeating 
zero or more times. 

5 Back-off Model to Smooth 

Data sparseness problem still exists. As some pa-
rameters were never observed in training corpus, 
the model will back off to a less powerful model. 
The escape probability[Black, et al. 1998] was ad-
opted to smooth the statistical model shown as (15). 

00N11N2N1N

1N1NN1N1N

^

p)W(p)WWW(p

)WWW(p)WWW(p

λλλ

λ

+++

+=

LL

LL  (15) 

where NN e1λ = , Ni0,e)e1(λ
N

1ik
kii <<=

+=
∑ , and ei 

is the escape probability which can be estimated by 
equation (16). 

)WWW(f
)WWW(q

e
1N21

1N21
N

L

L
=                           (16) 

q(w1w2…wN-1) in (16) denotes the number of dif-
ferent symbol wN that have directly followed the 
word sequence w1w2…wN-1. 

6 Experiments 

In this chapter, we will conduct experiments to 
answer the following questions.  

Will the Hybrid Model be more effective than 
the Word Model and the POS Model? To answer 
this question, we will compare the performances of 
models with different parameter ζ and find the best 
value of ζ in equation (7). 

Will the conclusion from different testing sets be 
consistent? To answer this question, we evaluate 
models on the MET-2 test data and compare the 
performances of the Word Model, the POS Model 
and the Hybrid Model. 

Will the performance be improved significantly 
after combining human knowledge? To answer this 
question, we compare two models with and with-
out human knowledge.  

In our evaluation, only NEs with correct 
boundaries and correct categories are considered as 
the correct recognition. We conduct evaluations in 
terms of precision, recall and F-Measure. Note that 
PNs in experiments includes all kinds of PNs and 
LNs include ALNs. 

6.1 Will the Hybrid Model be More Effective 
Than the Word Model and POS Model? 

The parameter ζ in equation (7) denotes the balanc-
ing factor of the Word Model and the POS Model. 
The larger ζ, the larger contribution of the POS 
Model. The smaller ζ, the larger contribution of the 
Word Model. So the task of this experiment is to 
find the best value of ζ. In this experiment, the 
training corpus is from five-month's People's Daily 
tagged with NER tags and the testing set is from 
one-month's People's Daily. 

With the change of ζ, the performances of rec-
ognizing PNs are shown in Fig.1.  

Note that the left, middle and right point in ab-
scissa respectively denote the performance of the 
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Word Model, the Hybrid Model and the POS 
Model. 
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Fig.1 Performance of Recognizing LNs Impacted 

by ζ 

From Fig.1, we can find that the performances 
of recognizing PNs are improved with the increas-
ing of ζ in the beginning stage but decline in the 
ending. This experiment shows that the Word 
Model and the POS Model can overcome their dis-
advantages, and it is a feasible approach to inte-
grate the Word Model and the POS Model in order 
to improve the performance PNs recognition.  

With the change of ζ, the performances of rec-
ognizing LNs are shown in Fig.2. 
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Fig.2 Performance of Recognizing LNs Impacted 

by ζ 

As the Fig.2 shows, the precision and recall of 
LNs are improved with the increasing of ζ and de-
creased in the later stage. This phenomenon also 
proves that the Hybrid Model is better for recog-
nizing LN than either the Word Model or the POS 
Model. 

Similarly, with the change of ζ, the perform-
ances of recognizing ONs are shown in Fig.3. 
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Fig.3 Performance of Recognizing LNs Impacted 

by ζ 

Comparing Fig.3 with Fig.1 and Fig.2, we find 
that the POS Model has different impact on recog-
nizing ONs from that on recognizing PNs and LNs. 
Especially, the POS Model has obvious side-effect 
on the recall. We speculate that the reasons may be 
that the probability of generating POS sequence by 
POS entity model is lower than that by POS con-
text model. 

According to Fig.1~Fig.3, we choose the best 
value ζ = 2.8. And the performances of different 
models are shown in Table 2 in detail. 

 P(%) R(%) F(%) 
PN 94.06 95.21 94.63 
LN 93.98 93.48 93.73 

Hybrid 
Model 
(ζ= 2.8) 

ON 84.69 86.86 85.76 
 

PN 88.24 90.11 89.16 
LN 91.50 93.17 92.32 

Word 
Model 

ON 78.85 88.77 83.52 
    

PN 93.44 95.11 94.27 
LN 89.97 92.20 91.07 

POS 
Model 

ON 80.90 69.29  74.65 
Table 2 Performance of the Hybrid Model, the 

Word Model and the POS Model 

From Table 2, we find that the F-Measures of 
the Hybrid Model for PN, LN, ON are improved 
by 5.4%, 1.4%, 2.2% respectively in comparison 
with the Word Model, and these F-Measures are 
improved by 0.4%, 2.7%, 11.1% respectively in 
comparison with the POS Model. 
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Conclusion 1: The experimental results validate 
our idea that the Hybrid Model can improve the 
performance of both the Word Model and the POS 
Model. However, the improvements for PN, LN 
and ON are different. That is, the POS Model has 
obvious side-effect on the recall of ON recognition 
at all times, while the recalls for PN and ON rec-
ognition are improved in the beginning but de-
creased in the ending with the increasing of ζ. 

6.2 Will the Conclusion from Different Test-
ing Sets be Consistent? 

We also conduct experiments on the MET-2 test-
ing corpus to validate our conclusion from Exp.1, 
that is, the Hybrid Model could achieve better per-
formance than either the Word Model or the POS 
Model alone. The experimental results (F-Measure) 
on MET-2 are shown in Table 3. 

Model Word 
Model 

Hybrid 
Model 

POS 
Model 

PN 75.21% 80.77% 76.61% 
LN 89.78% 90.95% 89.81% 
ON 76.30% 80.21% 76.83% 
Table 3 F-Measure on MET-2 test corpus  

Comparing Table 3 with Table 2, we find that 
the performances of models on MET-2 are not as 
good as that on People Daily's testing data. The 
main reason lies in that the NE definitions in Peo-
ple Daily's corpus are different from that in MET-2. 
However, Table 3 can still validate our conclude 1, 
that is, the Hybrid Model is better than both the 
Word Model and the POS Model. For example, the 
F-Measures of the Hybrid Model for PN, LN and 
ON are improved by 5.6%, 1.2% and 3.9% respec-
tively in comparison with the Word Model, and 
these F-Measures are improved by 4.2%, 3.1% and 
3.4% respectively in comparison with the POS 
Model. 

Conclusion 2: Though the performances of the 
Hybrid Model on MET-2 are not as good as that 
on People's Daily corpus, the experimental results 
also support conclusion 1, i.e. the Hybrid Model 
which combining the Word Model with the POS 
Model can achieve better performance than either 
the Word Model or the POS Model. 

6.3 Will the Performance be Improved Sig-
nificantly after Incorporating Human 
Knowledge?  

One of our ideas in this paper is that human 
knowledge can not only reduce the search space, 
but also improve the performance through avoiding 
generating the noise NEs. This experiment will be 
conducted to validate this idea. Table 4 shows the 
performances of models with and without human 
knowledge.  

 P(%) R(%) F(%) 
PN 91.81 70.65 79.85 
LN 79.47 88.83 83.89 Model I 

ON 64.95 80.63 71.95 
 

PN 94.06 95.21 94.63 
LN 93.98 93.48 93.73 Model II 

ON 84.69 86.86 85.76 
Table 4 Performances Impacted by Human Know-

ledge 

From Table 4, we find that F-Measure of model 
with human knowledge (Model II) is improved by 
14.8%，9.8%，13.8% for PN, LN and ON respec-
tively compared with that of the model without 
human knowledge (Model I). 

Conclusion 3: From this experiment, we learn 
that human knowledge can not only reduce the 
search space, but also significantly improve the 
performance of pure statistical model. 

7 Conclusion 

In this paper, we propose a hybrid Chinese NER 
model which combines multiple features. The main 
contributions are as follows: ① The proposed Hy-
brid Model emphasizes on integrating coarse parti-
cle feature (POS Model) with fine particle feature 
(Word Model), so that it can overcome the disad-
vantages of each other; ② In order to reduce the 
search space and improve the efficiency of model, 
we incorporate heuristic human knowledge into 
statistical model, which could increase the per-
formance of NER significantly; ③ For capturing 
intrinsic features in different types of entities, we 
design several sub-models for different entities. 
Especially, we divide transliterated person name 
into three sub-classes according to their characters 
set, that is, CPN JPN, RPN and EPN. 

There is a lack of effective recognition strategy 
for abbreviated ONs such as 昆明机床(Kunming 
Machine Tool Co.,Ltd), 凤 凰 光 学 (Phoenix 
Photonics Ltd) in this paper. And most of mis-
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recognized ONs in current system belong to them. 
So in the future work, we will be focusing more on 
recognizing abbreviated ONs. 
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Abstract 

Existing named entity (NE) transliteration 
approaches often exploit a general model to 
transliterate NEs, regardless of their origins. 
As a result, both a Chinese name and a 
French name (assuming it is already trans-
lated into Chinese) will be translated into 
English using the same model, which often 
leads to unsatisfactory performance. In this 
paper we propose a cluster-specific NE 
transliteration framework. We group name 
origins into a smaller number of clusters, 
then train transliteration and language mod-
els for each cluster under a statistical ma-
chine translation framework. Given a source 
NE, we first select appropriate models by 
classifying it into the most likely cluster, 
then we transliterate this NE with the corre-
sponding models. We also propose a phrase-
based name transliteration model, which ef-
fectively combines context information for 
transliteration. Our experiments showed 
substantial improvement on the translitera-
tion accuracy over a state-of-the-art baseline 
system, significantly reducing the 
transliteration character error rate from 
50.29% to 12.84%. 

1 Introduction 

Named Entity (NE) translation and transliteration 
are very important to many multilingual natural 
language processing tasks, such as machine trans-
lation, crosslingual information retrieval and ques-
tion answering. Although some frequently 
occurring NEs can be reliably translated using in-
formation from existing bilingual dictionaries and 
parallel or monolingual corpora (Al-Onaizan and 

Knight, 2002; Huang and Vogel, 2002; Lee and 
Chang, 2003), less frequently occurring NEs, espe-
cially new names, still rely on machine translitera-
tion to generate their translations. 

NE machine transliteration generates a phoneti-
cally similar equivalent in the target language for a 
source NE, and transliteration patterns highly de-
pend on the name’s origin, e.g., the country or the 
language family this name is from. For example, 
when transliterating names 1  from Chinese into 
English, as shown in the following example, the 
same Chinese character “金” is transliterated into 
different English letters according to the origin of 
each person. 

金人庆 --- Jin Renqing (China) 
金大中 --- Kim Dae-jung (Korea) 
丁马  路德 金 --- Martin Luther King (USA) 

金丸信 --- Kanemaru Shin (Japan) 
何塞 华金 布伦纳 --- Jose Joaquin Brunner (Chile) 

Several approaches have been proposed for 
name transliteration. (Knight and Graehl, 1997) 
proposed a generative transliteration model to 
transliterate foreign names in Japanese back to 
English using finite state transducers. (Stalls and 
Knight, 1998) expanded that model to Arabic-
English transliteration. (Meng et al. 2001) devel-
oped an English-Chinese NE transliteration tech-
nique using pronunciation lexicon and phonetic 
mapping rules. (Virga and Khudanpur, 2003) ap-
plied statistical machine translation models to 
“translate” English names into Chinese characters 
for Mandarin spoken document retrieval. All these 
approaches exploit a general model for NE trans-
literation, where source names from different ori-
gins or language families are transliterated into the 
target language with the same rules or probability 
distributions, which fails to capture their different 
                                                 
1 Assuming foreign names are already transliterated into Chi-
nese. 
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transliteration patterns. Alternatively, (Qu and Gre-
fenstette, 2004) applied language identification of 
name origins to select language-specific translit-
erations when back-transliterating Japanese names 
from English to Japanese. However, they only 
classified names into three origins: Chinese, Japa-
nese and English, and they used the Unihan data-
base to obtain the mapping between kenji 
characters and romanji representations.  

Ideally, to explicitly model these transliteration 
differences we should construct a transliteration 
model and a language model for each origin. How-
ever, some origins lack enough name translation 
pairs for reliable model training. In this paper we 
propose a cluster-specific NE transliteration 
framework. Considering that several origins from 
the same language family may share similar trans-
literation patterns, we group these origins into one 
cluster, and build cluster-specific transliteration 
and language models.  

Starting from a list of bilingual NE translation 
pairs with labeled origins, we group closely related 
origins into clusters according to their language 
and transliteration model perplexities. We train 
cluster-specific language and transliteration models 
with merged name translation pairs. Given a source 
name, we first select appropriate models by classi-
fying it into the most likely cluster, then we trans-
literate the source name with the corresponding 
models under the statistical machine translation 
framework. This cluster-specific transliteration 
framework greatly improves the transliteration per-
formance over a general transliteration model. Fur-
ther more, we propose a phrase-based 
transliteration model, which effectively combines 
context information for name transliteration and 
achieves significant improvements over the tradi-
tional character-based transliteration model.  

The rest of the paper is organized as following: 
in section 2 we introduce the NE clustering and 
classification schemes, and we discuss the phrase-
based NE transliteration in section 3. Experiment 
settings and results are given in section 4, which is 
followed by our conclusion. 

2 Name Clustering and Classification 

Provided with a list of bilingual name translation 
pairs whose origins are already labeled, we want to 
find the origin clusters where closely related ori-

gins (countries sharing similar languages or cul-
tural heritages) are grouped together.  

We define the similarity measure between two 
clusters as their LM and TM perplexities. Let 

)},{( iii EFS = denote a set of name translation 
pairs from origin i , from which model iθ is trained: 

),,( )(it)()( ieici PPP=θ . Here and are N-gram 
character language models (LM) for source and 
target languages, and is a character translation 
model trained based on IBM translation model 1 
(Brown et.al. 1993). The distance between origin i  
and origin 
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We calculate the pair-wise distances among 
these origins, and cluster them with group-average 
agglomerative clustering. The distance between 
clusters and is defined as the average dis-
tance between all origin pairs in each cluster. This 
clustering algorithm initially sets each origin as a 
single cluster, then recursively merges the closest 
cluster pair into one cluster until an optimal num-
ber of clusters is formed.  

iC jC

Among all possible cluster configurations, we 
select the optimal cluster number based on the 
model perplexity. Given a held-out data set L, a list 
of name translation pairs from different origins, the 
probability of generating L from a cluster configu-
ration ωΘ is the product of generating each name 
pair from its most likely origin cluster: 
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We calculate the language model perplexity: 
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and select the model configuration with the small-
est perplexity. We clustered 56K Chinese-English 
name translation pairs from 112 origins, and evalu-
ate the perplexities of different models (number of  
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 Figure 1. Perplexity value of LMs with different 
number of clusters  

Afghanistan, Algeria, Egypt, Iran, Iraq, 
Jordan, Kuwait, Pakistan, Palestine, 

clusters) with regard to a held-out 3K name pairs. 
As shown in Figure 1, the perplexity curve reaches 
its minimum when . This indicates that the 
optimal cluster number is 45. 

45=n

Table 1 lists some typical origin clusters. One 
may notice that countries speaking languages from 
the same family are often grouped together. These 
countries are either geographically adjacent or his-
torically affiliated. For example, in the English 
cluster, the Netherlands (Dutch) seems an abnor-
mality. In the clustering process it was first 
grouped with the South Africa, which was colo-
nized by the Dutch and the English in the seven-
teenth century. This cluster was further grouped 
into the English-speaking cluster. Finally, some 
origins cannot be merged with any other clusters 
because they have very unique names and transla-
tion patterns, such as China and Japan, thus they 
are kept as single origin clusters.  

For name transliteration task, given a source 
name F we want to classify it into the most likely 
cluster, so that the appropriate cluster-specific 
model can be selected for transliteration. Not 
knowing F’s translation E, we cannot apply the 
translation model and the target language model 
for name origin classification. Instead we train a 
Bayesian classifier based on N-gram source char-
acter language models, and assign the name to the 
cluster with the highest LM probability. Assuming 
a source name is composed of a sequence of source 
characters: . We want to find the 
cluster such that  
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where )( jP θ is the prior probability of cluster j, 
estimated based on its distribution in all the train-
ing data, and is the probability of generat-
ing this source name based on cluster

)()( FP jc

j ’s character 
language model. 

3 Phrase-Based Name Transliteration  

Statistical NE transliteration is similar to the statis-
tical machine translation in that an NE translation 
pair can be considered as a parallel sentence pair, 
where “words” are characters in source and target 
languages. Due to the nature of name translitera-
tion, decoding is mostly monotone.  
 

Arabic Saudi Arabia, Sudan, Syria, Tunisia, 
Yemen, … 

Spanish- 
Portuguese 

Angola, Argentina, Bolivia, Brazil, 
Chile, Colombia, Cuba, Ecuador, Mex-
ico, Peru, Portugal, Spain, Venezuela, 

… 

English Australia, Canada, Netherlands, New 
Zealand, South Africa, UK, USA, … 

Russian Belarus, Kazakhstan, Russia, Ukraine 
East Euro-

pean 
Bosnia and Herzegovina, Croatia, 

Yugoslavia 

French  
(African) 

Benin, Burkina Faso, Cameroon, Cen-
tral African Republic, Congo, Gabon, 

Ivory Coast 

German Austria, Germany, Switzerland 

French Belgium, France, Haiti 

Korean North Korea, South Korea 

Danish- 
Swedish Denmark, Norway, Sweden 

Single Clus-
ters 

China 
Japan 

Indonesia 
Israel 
…… 

Table 1 Typical name clusters (n=45) 
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NE transliteration process can be formalized as: 

)()|(maxarg)|(maxarg* EPEFPFEPE EE ==  

where *E is the most likely transliteration for the 
source NE F, P(F|E) is the transliteration model 
and P(E) is the character-based target language 
model. We train a transliteration model and a lan-
guage model for each cluster, using the name 
translation pairs from that cluster. 

3.1 Transliteration Model 

A transliteration model provides a conditional 
probability distribution of target candidates for a 
given source transliteration unit: a single character 
or a character sequence, i.e., “phrase”. Given 
enough name translation pairs as training data, we 
can select appropriate source transliteration units, 
identify their target candidates from a character 
alignment path within each name pair, and estimate 
their transliteration probabilities based on their co-
occurrence frequency.  

A naive choice of source transliteration unit is a 
single character. However, single characters lack 
contextual information, and their combinations 
may generate too many unlikely candidates. Moti-
vated by the success of phrase-based machine 
translation approaches (Wu 1997, Och 1999, 
Marcu and Wong 2002 and Vogel et. al., 2003), we 
select transliteration units which are long enough 
to capture contextual information while flexible 
enough to compose new names with other units. 
We discover such source transliteration phrases 
based on a character collocation likelihood ratio 
test (Manning and Schutze 1999). This test accepts 
or rejects a null hypothesis that the occurrence of 
one character is independent of the other, , by 
calculating the likelihood ratio between the inde-
pendent ( ) and dependent ( ) hypotheses: 
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L is the likelihood of getting the observed character 
counts under each hypothesis. Assuming the char-
acter occurrence frequency follows a binomial dis-
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We calculate the likelihood ratio for any adja-
cent source character pairs, and select those pairs 
whose ratios are higher than a predefined threshold.  
Adjacent character bigrams with one character 
overlap can be recursively concatenated to form 
longer source transliteration phrases. All these 
phrases and single characters are combined to con-
struct a cluster-specific phrase segmentation vo-
cabulary list, T. For each name pair in that cluster, 
we  

1. Segment the Chinese character sequence 
into a source transliteration phrase se-
quence based on maximum string match-
ing using T; 

2. Convert Chinese characters into their ro-
manization form, pinyin, then align the 
pinyin with English letters via phonetic 
string matching, as described in (Huang et. 
al., 2003); 

3. Identify the initial phrase alignment path 
based on the character alignment path; 

4. Apply a beam search around the initial 
phrase alignment path, searching for the 
optimal alignment which minimizes the 
overall phrase alignment cost, defined as: 

∑
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Here is the i th source phrase in F, is its tar-
get candidate under alignment A. Their alignment 
cost D is defined as the linear interpolation of the 
phonetic transliteration cost log  and semantic 
translation cost log : 
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where is the trlP product of the letter transliteration 
probabilities over aligned pinyin-English letter 
pairs, transP is the phrase translation probability  
calculated from word translation probabilities, 
where a “word” refers to a Chinese character or a 
English letter. More details about these costs are 
described in (Huang et. al., 2003). λ  is a cluster-
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specific interpolation weight, reflecting the relative 
contributions of the transliteration cost and the 
translation cost. For example, most Latin language 
names are often phonetically translated into Chi-
nese, thus the transliteration cost is usually the 
dominant feature. However, Japanese names are 
often semantically translated when they contain 
characters borrowed from Chinese, therefore the 
translation cost is more important for the Japanese 
model ( λ =0 in this case). We empirically select 
the interpolation weight for each cluster, based on 
their transliteration performance on held-out name 
pairs, and the combined model with optimal inter-
polation weights achieves the best overall perform-
ance. 

We estimate the phrase transliteration probabil-
ity according to their normalized alignment fre-
quencies. We also include frequent sub-name 
translations (first, middle and last names) in the 
transliteration dictionary. Table 2 shows some 
typical transliteration units (characters or phrases) 
from three clusters. They are mostly names or sub-
names capturing cluster-specific transliteration 
patterns. It also illustrates that in different clusters 
the same character has different transliteration 
candidates with different probabilities, which justi-
fies the cluster-specific transliteration modeling. 
 

        穆罕默德   mohamed 
阿卜杜勒 abdul 
艾哈迈德 ahmed Arabic 

尤: yo (0.27)  y(0.19)  you(0.14)… 
约翰 john 
威廉 william 
彼得 peter English 

尤: u(0.25)  you(0.38)  joo(0.16)… 
弗拉基米尔 vladimir 

伊万诺夫 ivanov 
-耶维奇 -yevich Russian 

尤： yu(0.49)  y(0.08)  iu(0.07)… 
Table 2. Transliteration units examples from three 
name clusters. 

3.2 Language model and decoding 

For each cluster we train a target character lan-
guage model from target NEs. We use the N-gram 
models with standard smoothing techniques. 

During monotone decoding, a source NE is 
segmented into a sequence of transliteration units, 
and each source unit is associated with a set of tar-
get candidate translations with corresponding prob-
abilities. A transliteration lattice is constructed to 
generate all transliteration hypotheses, among 
which the one with the minimum transliteration 
and language model costs is selected as the final 
hypothesis.   

4 Experiment Results 

We selected 62K Chinese-English person name 
translation pairs for experiments. These origin-
labeled NE translation pairs are from the name 
entity translation lists provided by the LDC 2  
(including the who’swho (china) and who’swho 
(international) lists), and devided into three parts: 
system training (90%), development (5%) and 
testing (5%). In the development and test data, 
names from each cluster followed the same 
distribution as in the training data. 

4.1 NE Classification Evaluation 

We evaluated the source name classification ac-
curacy, because classification errors will lead to 
incorrect model selection, and result in bad 
transliteration performance in the next step. We 
trained 45 cluster-specific N-gram source character 
language models, and classified each source name 
into the most likely cluster according to formula 1. 
We evaluated the classification accuracy on a held-
out test set with 3K NE pairs. We also experi-
mented with different N values. Table 3 shows the 
classification accuracy, where the 3-gram model 
achieves the highest classification accuracy. A de-
tailed analysis indicates that some classification 
errors are due to the inherent uncertainty of some 
names, e. g, “骆家辉 (Gary Locke)”, a Chinese 
American, was classified as a Chinese name based 
on its source characters while his origin was la-
beled as USA. 

 
Table 3. Source name origin classification accura-
cies

                                                 
2 http://www.ldc.upenn.edu 

N=2 N=3 N=4 N=5 N=6 N=7 
83.62 84.88 84.00 84.04 83.94 83.94
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4.2 NE Transliteration Evaluation 

We first evaluated transliteration results for each 
cluster, then evaluated the overall results on the 
whole test set, where a name was transliterated 
using the cluster-specific model in which it was 
classified. The evaluation metrics are:  

• Top1 accuracy (Top1), the percentage 
that the top1 hypothesis is correct, i.e., 
the same as the reference translation; 

• Top 5 accuracy (Top5), the percentage 
that the reference translation appears in 
the generated top 5 hypotheses; 

• Character error rate (CER), the percent-
age of incorrect characters (inserted, de-
leted and substituted English letters) 
when the top 1 hypothesis is aligned to 
the reference translation. 

Our baseline system was a character-based 
general  transliteration model, where 56K NE pairs 
from all clusters were merged to train a general 
transliteration model and a language model 
(CharGen). We compare it with a character-based 
cluster-specific model (CharCls) and a phrase-
based cluster-specific model (PhraCls). The CERs 
of several typical clusters are shown in Table 4. 

Because more than half of the training name 
pairs are from Latin language clusters, the general 
transliteration and language models adopted the 
Latin name transliteration patterns. As a result, it 
obtained reasonable performance (20-30% CERs) 
on  Latin language names, such as Spanish, 
English and French names, but strikingly high 
(over 70%) CERs on oriental language names such 
as Chinese and Japanese names, even though the 
Chinese cluster has the most training data.  

When applying the character-based cluster-
specific models, transliteration CERs consistently 
decreased for all clusters (ranging from 6.13% 
relative reduction for the English cluster to 97% 
for the Chinese cluster). As expected, the oriental 
language names obtained the most significant error 
reduction because the cluster-specific models were 
able to represent their unique transliteration 
patterns. When we applied the phrased-based 
transliteration models, CERs were further reduced 
by 23% ~ 51% for most clusters, because the 
context information were encapsulated in the 
transliteration phrases. An exception was the 

Chinese cluster, where names were often translated 
according to the pinyin of single characters, thus 
phrase-based transliteration slightly decreased the 
performance.  

The transliteration performance of different 
clusters varied a lot. The Chinese cluster achieved 
96.09% top 1 accuracy and 1.69% CER with the 
character-based model, and other clusters had 
CERs ranging from 7% to 30%. This was partly 
because of the lack of training data (e.g, for the 
Japanese cluster), and partly because of unique 
transliteration patterns of different languages. We  
try to measure this difference using the average 
number of translations per source phrase 
(AvgTrans), as shown in Table 4. This feature 
reflected the transliteration pattern regularity, and 
seemed linearly correlated with the CERs. For 
example, compared with the English cluster, 
Russian names have more regular translation 
patterns, and its CER is only 1/3 of the English 
cluster, even with only half size of training data.  

In Table 5 we compared translation examples 
from the baseline system (CharGen), the phrase-
based cluster-specific system (PhraCls) and a 
online machine translation system, the BabelFish3. 
The CharGen system transliterated every name in 
the Latin romanization way, regardless of each 
name’s original language. The BabelFish system 
inappropriately translated source characters based 
on their semantic meanings, and the results were 
difficult to understand. The PhraCls model 
captured cluster-specific contextual information, 
and achieved the best results. 

We evaluated three models’ performances on all 
the test data, and showed the result in Table 6. The 
CharGen model performed rather poorly 
transliterating oriental names, and the overall CER 
was around 50%. This result was comparable to 
other state-of-the-art statistical name transliteration 
systems (Virga and Khudanpur, 2003). The 
CharCls model significantly improved the top1 
and top 5 transliteration accuracies from 3.78% to 
51.08%, and from 5.84% to 56.50%, respectively.  
Consistently, the CER was also reduced from 
50.29% to 14.00%. Phrase-based transliteration 
further increased the top 1 accuracy by 9.3%, top 5 
accuracy by 10.7%, and reduced the CER by 8%, 
relatively. All these improvements were 
statistically significant. 

                                                 
3 http://babelfish.altavista.com/ 
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Table 4. Cluster-specific transliteration comparison 
 
 

 
 

Table 5. Transliteration examples from some typical clusters 
 
 

 
 

Cluster Training 
data size 

CharGen 
(CER) 

CharCls 
(CER) 

PhraCls 
(CER) AvgTrans 

Arabic 8336 22.88 18.93 14.47 4.58 

Chinese 27093 76.45 1.69 1.71 3.43 

English 8778 31.12 29.21 17.27 5.02 

French 2328 27.66 18.81 9.07 3.51 

Japanese 2161 86.94 38.65 29.60 7.57 

Russian 4407 29.17 9.62 6.55 3.64 

Spanish 8267 18.87 15.99 10.33 3.61 

Cluster Source  Reference CharGen PhraCls BabelFish 

Arabic 纳吉 萨布里

艾哈迈德 
Nagui Sabri 

Ahmed 
Naji Saburi 

Ahamed 
Naji Sabri  

Ahmed 

In natrium 吉
萨 cloth    

Aihamaide 

Chinese 范志伦 Fan Zhilun Van Tylen Fan zhilun Fan Zhilun 

English 罗伯特       
斯特德沃德 

Robert    
Steadward 

Robert   
Stdwad 

Robert       
Sterdeward 

Robert Stead 
Warder 

French 让-吕克      
科雷捷 

Jean-luc    
Cretier 

Jean-luk  
Crete 

Jean-luc    
Cretier 

Let - Lu Keke 
lei Jie 

Japanese 小林隆治 Kobayashi 
Ryoji Felinonge Kobayashi 

Takaji 

Xiaolin pros-
perous gov-

erns 

Russian 弗拉基米尔 
萨姆索诺夫 

Vladimir  
Samsonov 

Frakimir  
Samsonof 

Vladimir  
Samsonov 

弗拉基 mil 
sum rope 

Knoff 

Spanish 道夫鲁        
卡多索 

Rodolfo     
Cardoso 

Rudouf      
Cardoso 

Rodolfo 
Cadozo 

Rudolph card 
multi- ropes 
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Model Top1 (%) Top5 (%) CER (%) 

CharGen 3.78±0.69 5.84±0.88 50.29±1.21 

CharCls 51.08±0.84 56.50±0.87 14.00±0.34 

PhraCls 56.00±0.84 62.66±0.91 12.84±0.41 

Table 6 Transliteration result comparison 

5 Conclusion 

We have proposed a cluster-specific NE translit-
eration framework. This framework effectively 
modeled the transliteration differences of source 
names from different origins, and has demon-
strated substantial improvement over the baseline 
general model. Additionally, phrase-based translit-
eration further improved the transliteration per-
formance by a significant margin. 
 

References  

Y. Al-Onaizan and K. Knight. 2002. Translating 
named entities using monolingual and bilingual 
resources. In Proceedings of the ACL-2002, 
pp400-408, Philadelphia, PA, July, 2002. 

F. Huang and S. Vogel. 2002. Improved Named 
Entity Translation and Bilingual Named Entity 
Extraction, Proceedings of the ICMI-2002. 
Pittsburgh, PA, October 2002 

F. Huang, S. Vogel and A. Waibel. 2003. Auto-
matic Extraction of Named Entity Translingual 
Equivalence Based on Multi-feature Cost Mini-
mization.  Proceedings of the ACL-2003, Work-
shop on Multilingual and Mixed Language 
Named Entity Recognition. Sapporo, Japan. 

K. Knight and J. Graehl. 1997. Machine Translit-
eration. Proceedings of the ACL-1997. pp.128-
135, Somerset, New Jersey. 

C. J. Lee and J. S. Chang. 2003. Acquisition of 
English-Chinese Transliterated Word Pairs from 
Parallel-Aligned Texts using a Statistical Ma-
chine Transliteration Model. HLT-NAACL 2003 
Workshop: Building and Using Parallel Texts: 
Data Driven Machine Translation and Beyond. 
pp96-103, Edmonton, Alberta, Canada. 

C. D. Manning and H. Schütze. 1999. Foundations 
of Statistical Natural Language Processing. MIT 
Press. Boston MA. 

H. Meng, W. K. Lo, B. Chen and K. Tang. 2001. 
Generating Phonetic Cognates to Handle Named 
Entities in English-Chinese Cross-Language 
Spoken Document Retrieval. Proceedings of the 
ASRU-2001, Trento, Italy, December.2001 

D. Marcu and W. Wong. A Phrase-Based, Joint 
Probability Model for Statistical Machine Trans-
lation. Proceedings of EMNLP-2002, Philadel-
phia, PA, 2002 

F. J. Och, C. Tillmann, and H. Ney. Improved 
Alignment Models for Statistical Machine 
Translation. pp. 20-28; Proc. of the Joint Conf. 
of Empirical Methods in Natural Language 
Processing and Very Large Corpora; University 
of Maryland, College Park, MD, June 1999. 

Y. Qu, and G. Grefenstette. Finding Ideographic 
Representations of Japanese Names Written in 
Latin Script via Language Identification and 
Corpus Validation. ACL 2004: 183-190 

P. Virga and S. Khudanpur. 2003. Transliteration 
of Proper Names in Cross-Lingual Information 
Retrieval. Proceedings of the ACL-2003 Work-
shop on Multi-lingual Named Entity Recognition 
Japan. July 2003. 

S. Vogel, Y. Zhang, F. Huang, A. Tribble, A. 
Venogupal, B. Zhao and A. Waibel. The CMU 
Statistical Translation System, Proceedings of 
MT Summit IX New Orleans, LA, USA, Sep-
tember 2003 

D. Wu. Stochastic Inversion Transduction Gram-
mars and Bilingual Parsing of Parallel Corpora. 
Computational Linguistics 23(3):377-404, Sep-
tember 1997. 

442



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 443–450, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Extracting Personal Names from Email: Applying Named Entity
Recognition to Informal Text

Einat Minkov andRichard C. Wang
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15217

{einat,rcwang}@cs.cmu.edu

William W. Cohen
Ctr for Automated Learning & Discovery

Carnegie Mellon University
Pittsburgh, PA 15217

wcohen@cs.cmu.edu

Abstract

There has been little prior work on Named
Entity Recognition for ”informal” docu-
ments like email. We present two meth-
ods for improving performance of per-
son name recognizers for email: email-
specific structural features and a recall-
enhancing method which exploits name
repetition across multiple documents.

1 Introduction

Named entity recognition (NER), the identification
of entity names in free text, is a well-studied prob-
lem. In most previous work, NER has been applied
to news articles (e.g., (Bikel et al., 1999; McCal-
lum and Li, 2003)), scientific articles (e.g., (Craven
and Kumlien, 1999; Bunescu and Mooney, 2004)),
or web pages (e.g., (Freitag, 1998)). These genres of
text share two important properties: documents are
written for a fairly broad audience, and writers take
care in preparing documents. Important genres that
donot share these properties include instant messag-
ing logs, newsgroup postings and email messages.
We refer to these genres as “informal” text.

Informal text is harder to process automatically.
Informal documents do not obey strict grammatical
conventions. They contain grammatical and spelling
errors. Further, since the audience is more restricted,
informal documents often use group- and task-
specific abbreviations and are not self-contained.
Because of these differences, existing NER methods
may require modifications to perform well on infor-
mal text.

In this paper, we investigate NER for informal
text with an experimental study of the problem of
recognizing personal names in email—a task that is
both useful and non-trivial. An application of in-
terest is corpus anonymization. Automatic or semi-
automatic email anonymization should allow using
large amounts of informal text for research purposes,
for example, of medical files. Person-name extrac-
tion and other NER tasks are helpful for automatic
processing of informal text for a large variety of ap-
plications (Culotta et al., 2004; Cohen et al., 2005).

We first present four corpora of email text, anno-
tated with personal names, each roughly compara-
ble in size to the MUC-6 corpus1. We experimen-
tally evaluate the performance of conditional ran-
dom fields (CRF) (Lafferty et al., 2001), a state-
of-the art machine-learning based NER methods on
these corpora. We then turn to examine the special
attributes of email text (vs. newswire) and suggest
venues for improving extraction performance. One
important observation is that email messages often
include some structured, easy-to-recognize names,
such as names within a header, names appearing in
automatically-generated phrases, as well as names in
signature files or sign-offs. We therefore suggest a
set of specializedstructural features for email; these
features are shown to significantly improve perfor-
mance on our corpora.

We also present and evaluate a novel method for
exploitingrepetition of names in a test corpus. Tech-
niques for exploiting name repetition within docu-
ments have been recently applied to newswire text

1Two of these are publicly available. The others can not be
distributed due to privacy considerations.
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(e.g., (Humphreys et al., 1998)), scientific abstracts
(e.g., (Bunescu and Mooney, 2004)) and seminar an-
nouncements (Sutton and Mccallum, 2004); how-
ever, these techniques rely on either NP analysis or
capitalization information to pre-identify candidate
coreferent name mentions, features which are not re-
liable in email. Furthermore, we argue that name
repetition in email should be inferred by examining
multiple documents in a corpus, which is not com-
mon practice. We therefore present an alternative
efficient scheme for increasing recall in email, us-
ing the whole corpus. This technique is shown to
always improve recall substantially, and to almost
always improve F1 performance.

2 Corpora

Two email corpora used in our experiments were
extracted from the CSpace email corpus (Kraut et
al., 2004), which contains email messages collected
from a management course conducted at Carnegie
Mellon University in 1997. In this course, MBA stu-
dents, organized in teams of four to six members,
ran simulated companies in different market scenar-
ios. We believe this corpus to be quite similar to
the work-oriented mail of employees of a small or
medium-sized company. This text corpus contains
three header fields: “From”, “Subject”, and “Time”.
Mgmt-Game is a subcorpora consisting of all emails
written over a five-day period. In the experiments,
the first day worth of email was used as a training
set, the fourth for tuning and the fifth day as a test
set. Mgmt-Teams forms another split of this data,
where the training set contains messages between
different teams than in the test set; hence inMgmt-
Teams, the person names appearing in the test set
are generally different than those that appear in the
training set.

The next two collections of email were extracted
from the Enron corpus (Klimt and Yang, 2004). The
first subset,Enron-Meetings, consists of messages in
folders named ”meetings” or ”calendar”2. Most but
not all of these messages are meeting-related. The
second subset,Enron-Random, was formed by re-
peatedly sampling a user name (uniformly at random
among 158 users), and then sampling an email from

2with two exceptions: (a) six very large files were removed,
and (b) one very large “calendar” folder was excluded.

that user (uniformly at random).
Annotators were instructed to include nicknames

and misspelled names, but exclude person names
that are part of an email address and names that are
part of a larger entity name like an organization or
location (e.g., “David Tepper School of Business”).

The sizes of the corpora are given in Table 1. We
limited training size to be relatively small, reflecting
a real-world scenario.

Corpus
# Documents #Words

#NamesTrain Tune Test x1000
Mgmt-Teams 120 82 83 105 2,792
Mgmt-Game 120 216 264 140 2,993
Enron-Meetings 244 242 247 204 2,868
Enron-Random 89 82 83 286 5,059

Table 1: Summary of the corpora used in the experiments.
The number of words and names refer to the whole annotated
corpora.

3 Existing NER Methods

In our first set of experiments we apply CRF, a
machine-learning based probabilistic approach to la-
beling sequences of examples, and evaluate it on the
problem of extracting personal names from email.
Learning reduces NER to the task oftagging (i.e.,
classifying) each word in a document. We use a set
of five tags, corresponding to (1) a one-token entity,
(2) the first token of a multi-token entity, (3) the last
token of a multi-token entity, (4) any other token of
a multi-token entity and (5) a token that is not part
of an entity.

The sets of features used are presented in Table
2. All features are instantiated for the focus word, as
well as for a window of 3 tokens to the left and to the
right of the focus word. Thebasic features include
the lower-case value of a tokent, and itscapital-
ization pattern, constructed by replacing all capital
letters with the letter “X”, all lower-case letters with
“x”, all digits with “9” and compressing runs of the
same letter with a single letter. Thedictionary fea-
tures define various categories of words including
common words, first names, last names3 and “roster
names”4 (international names list, where first and

3We used US Census’ lists of the most com-
mon first and last names in the US, available from
http://www.census.gov/genealogy/www/freqnames.html

4A dictionary of 16,623 student names across the country,
obtained as part of the RosterFinder project (Sweeney, 2003)
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Basic Features
t, lexical value, lowercase (binary form, e.g.f(t=”hello”)=1)
capitalization pattern oft (binary form, e.g.f(t.cap=x+)=1)
Dictionary Features
inCommon:t in common words dictionary
inFirst: t in first names dictionary
inLast: t in last names dictionary
inRoster:t in roster names dictionary
First: inFirst∩ ¬isLast∩ ¬inCommon
Last:¬inFirst∩ inLast∩ ¬inCommon
Name: (First∪ Last∪ inRoster)∩ ¬ inCommon
Title: t in a personal prefixes/suffixes dictionary
Org: t in organization suffixes dictionary
Loc: t in location suffixes dictionary
Email Features
t appears in the header
t appears in the “from” field
t is a probable “signoff”

(≈ after two line breaks and near end of message)
t is part of an email address (regular expression)
does the word starts a new sentence

(≈ capitalized after a period, question or exclamation mark)
t is a probable initial (X or X.)

t followed by the bigram ”and I”
t capitalized and followed by a pronoun within 15 tokens

Table 2: Feature sets

last names are mixed.) In addition, we constructed
some composite dictionary features, as specified in
Table 2: for example, a word that is in the first-name
dictionary and is not in the common-words or last-
name dictionaries is designated a ”sure first name”.

The common-words dictionary used consists of
base forms, conjugations and plural forms of com-
mon English words, and a relatively small ad-hoc
dictionary representing words especially common in
email (e.g., ”email”, ”inbox”). We also use small
manually created word dictionaries of prefixes and
suffixes indicative of persons (e.g., ”mr”, ”jr”), loca-
tions (e.g., ”ave”) and organizations (e.g., ”inc”).

Email structure features: We perform a simplified
document analysis of the email message and use this
to construct some additional features. One is an in-
dicator as to whether a tokent is equal to some to-
ken in the ”from” field. Another indicates whether
a tokent in the email body is equal to some token
appearing in the whole header. An indicator feature
based on a regular expression is used to mark tokens
that are part of a probable ”sign-off” (i.e., a name at
the end of a message). Finally, since the annotation
rules do not consider email addresses to be names,
we added an indicator feature for tokens that are in-
side an email address.

l.2.mr l.1.president
l.2.mrs l.2.dr
l.1.jr r.2.who
l.1.judge r.2.jr
r.3.staff l.3.by
l.2.ms r.3.president
r.2.staff l.3.by
r.1.family l.3.rep
l.3.says l.2.rep
r.3.reporter r.1.administration

l.1.by r.2.home
l.2.by r.1.or
l.3.name l.1.with
l.2.name l.1.thanks
l.3.by r.1.picked
r.3.his l.3.meet
r.1.ps r.1.started
r.3.home r.1.told
r.1.and l.2.prof
l.1.called l.2.email

Figure 1: Predictive contexts for personal-name words for
MUC-6 (left) and Mgmt-Game (right) corpora. A features is
denoted by its direction comparing to the focus word (l/r), offset
and lexical value.

We experimented with features derived from POS
tags and NP-chunking of the email, but found the
POS assignment too noisy to be useful. We did in-
clude some features based on approximate linguistic
rules. One rule looks for capitalized words that are
not common words and are followed by a pronoun
within a distance of up to 15 tokens. (As an exam-
ple, consider “Contact Puck tomorrow.He should be
around.”). Another rule looks for words followed by
the bigram “and I”. As is common for hand-coded
NER rules, both these rules have high precision and
low recall.

3.1 Email vs Newswire

In order to explore some of the differences between
email and newswire NER problems, we stripped all
header fields from the Mgmt-Game messages, and
trained a model (using basic features only) from the
resulting corpus of email bodies. Figure 1 shows the
features most indicative of a token being part of a
name in the models trained for the Mgmt-Game and
MUC-6 corpora. To make the list easier to interpret,
it includes only the features corresponding to tokens
surrounding the focus word.

As one might expect, the important features from
the MUC-6 dataset are mainly formal name titles
such as ”mr”, ”mrs”, and ”jr”, as well as job ti-
tles and other pronominal modifiers such as ”pres-
ident” and ”judge”. However, for the Mgmt-Game
corpus, most of the important features are related
to email-specific structure. For example, the fea-
tures ”left.1.by” and “left.2.by” are often associated
with a quoted excerpt from another email message,
which in the Mgmt-Game corpus is often marked
by mailers with text like ”Excerpts from mail: 7-
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Sep-97 Re: paper deadline by Richard Wang”. Sim-
ilarly, features like ”left.1.thanks” and ”right.1.ps”
indicate a ”signoff” section of an email, as does
”right.2.home” (which often indicates proximity to
a home phone number appearing in a signature).

3.2 Experimental Results

We now turn to evaluate the usefulness of the fea-
ture sets described above. Table 3 gives entity-level
F1 performance5 for CRF trained models for all
datasets, using the basic features alone (B); the ba-
sic and email-tailored features (B+E); the basic and
dictionary features (B+D); and, all of the feature sets
combined (B+D+E). All feature sets were tuned us-
ing the Mgmt-Game validation subset. The given
results relate to previously unseen test sets.

Dataset B B+E B+D B+D+E
Mgmt-Teams 68.1 75.7 82.0 87.9
Mgmt-Game 79.2 84.2 90.7 91.9
Enron-Meetings 59.0 71.5 78.6 76.9
Enron-Random 68.1 70.2 72.9 76.2

Table 3:F1 entity-leavel performance for the sets of features,
across all datasets, with CRF training.

The results show that the email-specific features
are very informative. In addition, they show that
the dictionary features are especially useful. This
can be explained by the relatively weak contextual
evidence in email. While dictionaries are useful in
named entities extraction in general, they are in fact
more essential when extracting names from email
text, where many name mentions are part of headers,
names lists etc. Finally, the results for the combined
feature set are superior in most cases to any subset
of the features.

Overall the level of performance using all fea-
tures is encouraging, considering the limited training
set size. Performance on Mgmt-Teams is somewhat
lower than for Mgmt-Game mainly because (by de-
sign) there is less similarity between training and
test sets with this split. Enron emails seem to be
harder than Mgmt-Game emails, perhaps because
they include fewer structured instances of names.
Enron-Meetings emails also contain a number of
constructs that were not encountered in the Mgmt-
Game corpus, notably lists (e.g., of people attending
a meeting), and also include many location and or-

5No credit awarded for partially correct entity boundaries.
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Figure 2: Cumulative percentage of person-name tokensw
that appear in at mostK distinct documents as a function ofK.

ganization names, which are rare in Mgmt-Game. A
larger set of dictionaries might improve performance
for the Enron corpora.

4 Repetition of named entities in email

In the experiments described above, the extractors
have high precision, but relatively low recall. This
typical behavior suggests that some sort of recall-
enhancing procedure might improve overall perfor-
mance.

One family of recall-enhancing techniques are
based on looking for multiple occurrences of names
in a document, so that names which occur in am-
biguous contexts will be more likely to be recog-
nized. It is an intuitive assumption that the ways in
which names repeat themselves in a corpus will be
different in email and newswire text. In news stories,
one would expect repetitions within asingle docu-
ment to be common, as a means for an author to es-
tablish a shared context with the reader. In an email
corpus, one would expect names to repeat more fre-
quently across the corpus, inmultiple documents—
at least when the email corpus is associated with a
group that works together closely. In this section we
support this conjecture with quantitative analysis.

In a first experiment, we plotted the percentage
of person-name tokensw that appear in at most
K distinct documents as a function ofK. Figure
2 shows this function for the Mgmt-Game, MUC-
6, Enron-Meetings, and Enron-Random datasets.
There is a large separation between MUC-6 and
Mgmt-Game, the most workgroup-oriented email
corpus. In MUC-6, for instance, almost 80% of the
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Figure 3: Upper bounds on recall and recall improvements
associated with methods that look for terms that re-occur within
a single document (SDR) or across multiple documents (MDR).

names appear in only a single document, while in
Mgmt-Game, only 30% of the names appear in only
a single document. At the other extreme, in MUC-6,
only 1.3% of the names appear in 10 or more docu-
ments, while in Mgmt-Game, almost 20% do. The
Enron-Random and Enron-Meetings datasets show
distributions of names that are intermediate between
Mgmt-Game and MUC-6.

As a second experiment, we implemented two
very simple extraction rules. Thesingle document
repetition (SDR) rule marks every token that oc-
curs more than once inside a single document as a
name. Adding tokens marked by the SDR rule to
the tokens marked by the learned extractor generates
a new extractor, which we will denote SDR+CRF.
Thus, the recall of SDR+CRF serves as an upper
bound on the token recall6 of any recall-enhancing

6Token level recall is recall on the task of classifying tokens
as inside or outside an entity name.

method that improves the extractor by exploiting
repetition within a single document. Analogously,
themultiple document repetition (MDR) rule marks
every token that occurs in more than one document
as a name. Again, the token recall of MDR+CRF
rule is an upper bound on the token recall of any
recall-enhancing method that exploits token repeti-
tion across multiple documents.

The left bars in Figure 3 show the recall obtained
by the SDR (top) and the MDR rule (bottom). The
MDR rule has highest recall for the two Mgmt cor-
pora, and lowest recall for the MUC-6 corpus. Con-
versely, for the SDR rule, the highest recall level
obtained is for MUC-6. The middle bars show the
token recall obtained by the CRF extractor, using
all features. The right bars show the token recall
of the SDR+CRF and MDR+CRF extractors. Com-
paring them to the other bars, we see that the maxi-
mal potential recall gain from a SDR-like method is
on MUC-6. For MDR-like methods, there are large
potential gains on the Mgmt corpora as well as on
Enron-Meetings and Enron-Random to a lesser de-
gree. This probably reflects the fact that the Enron
corpora are from a larger and more weakly interact-
ing set of users, compared to the Mgmt datasets.

These results demonstrate the importance of ex-
ploiting repetition of names across multiple docu-
ments for entity extraction from email.

5 Improving Recall With Inferred
Dictionaries

Sequential learners of the sort used here classify to-
kens from each document independently; moreover,
the classification of a wordw is independent of the
classification of other occurrences ofw elsewhere in
the document. That is, the fact that a wordw has ap-
peared somewhere in a context that clearly indicates
that it is a name does not increase the probability that
it will be classified as a name in other, more ambigu-
ous contexts.

Recently, sequential learning methods have been
extended to directly utilize information about name
co-occurrence in learning the sequential classifier.
This approach provides an elegant solution to mod-
eling repetition within a single document. However,
it requires identifying candidate related entities in
advance, applying some heuristic. Thus, Bunescu &
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Mooney (2004) link between similar NPs (requiring
their head to be identical), and Sutton and Mccallum
(2004) connect pairs of identical capitalized words.
Given that in email corpora capitalization patterns
are not followed to a large extent, there is no ad-
equate heuristic that would link candidate entities
prior to extraction. Further, it is not clear if a col-
lective classification approach can scale to modeling
multiple-document repetition.

We suggest an alternative approach of recall-
enhancing name matching, which is appropriate for
email. Our approach has points of similarity to
the methods described by Stevenson and Gaizauskas
(2000), who suggest matching text against name dic-
tionaries, filtering out names that are also common
words or appear as non-names in high proportion
in the training data. The approach described here
is more systematic and general. In a nutshell, we
suggest applying thenoisy dictionary of predicted
names over the test corpus, and use the approximate
(predicted) name to non-name proportions over the
test set itself to filter out ambiguous names. There-
fore, our approach does not require large amount of
annotated training data. It also does not require word
distribution to be similar between train and test data.
We will now describe our approach in detail.

5.1 Matching names from dictionary

First, we construct a dictionary comprised of all
spans predicted as names by the learned model. For
personal names, we suggest expanding this dictio-
nary further, using a transformation scheme. Such a
scheme would construct a family of possible varia-
tions of a namen: as an example, Figure 4 shows
name variations created for the name span “Ben-
jamin Brown Smith”. Once a dictionary is formed,
a single pass is made through the corpus, and ev-
ery longest match to some name-variation is marked
as a name7. It may be that a partial name spann1

identified by the extractor is subsumed by the full
name spann2 identified by the dictionary-matching
scheme. In this case, entity-level precision is in-
creased, having corrected the entity’s boundaries.

7Initials-only variants of a name, e.g., ”bs” in Figure 4 are
marked as a name only if the “inSignoff” feature holds—i.e.,if
they appear near the end of a message in an apparent signature.

benjamin brown smith benjamin-brown-s. b. brown s. bbs
benjamin-brown smith benjamin-b. s. b. b. smith bs
benjamin brown-smith benjamin-smith b. brown-s.
benjamin-brown-smith benjamin smith benjamin
benjamin brown s. b. brown smith brown
benjamin-b. smith benjamin b. s. smith
benjamin b. smith b. brown-smith b. smith
benjamin brown-s. benjamin-s. b. b. s
benjamin-brown s. benjamin s. b. s.

Figure 4: Names variants created from the name “Benjamin

Brown Smith”

5.2 Dictionary-filtering schemes

The noisy dictionary-matching scheme is suscepti-
ble to false positives. That is, some words predicted
by the extractor to be names are in fact non-names.
Presumably, these non-names could be removed by
simply eliminating low-confidence predictions of
the extractor; however, ambiguous words –that are
not exclusively personal names in the corpus– may
need to be identified and removed as well. We note
that ambiguity better be evaluated in the context of
the corpus. For example, “Andrew” is a common
first name, and may be confidently (and correctly)
recognized as one by the extractor. However, in the
Mgmt-Game corpus, “Andrew” is also the name of
an email server, and most of the occurrences of this
name in this corpus arenot personal names. The
high frequency of the word “Andrew” in the cor-
pus, coupled with the fact that it is only sometimes a
name, means that adding this word to the dictionary
leads to a substantial drop in precision.

We therefore suggest a measure for filtering the
dictionary. This measure combines two metrics. The
first metric,predicted frequency (PF), estimates the
degree to which a word appears to be used consis-
tently as a name throughout the corpus:

PF (w) ≡
cpf(w)

ctf(w)

wherecpf(w) denotes the number of times that a
wordw is predicted as part of a name by the extrac-
tor, andctf(w) is the number of occurrences of the
word w in the entire test corpus (we emphasize that
estimating this statistic based on test data is valid, as
it is fully automatic ”blind” procedure).

Predicted frequency does not assess the likely cost
of adding a word to a dictionary: as noted above,
ambiguous or false dictionary terms that occur fre-
quently will degrade accuracy. A number of statis-
tics could be used here; for instance, practitioners
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sometimes filter a large dictionary by simply dis-
carding all words that occur more thank times in a
test corpus. We elected to use theinverse document
frequency (IDF) of w to measure word frequency:

IDF (w) ≡
log(N+0.5

df(w) )

log(N + 1)

Heredf(w) is the number of documents that contain
a wordw, andN is the total number of documents
in the corpus. Inverse document frequency is often
used in the field of information retrieval (Allan et al.,
1998), and the formula above has the virtue of being
scaled between 0 and 1 (like our PF metric) and of
including some smoothing. In addition to bounding
the cost of a dictionary entry, the IDF formula is in
itself a sensible filter, since personal names will not
appear as frequently as common English words.

The joint filter combines these two multiplica-
tively, with equal weights:

PF.IDF (w) : PF (w)× IDF (w)

PF.IDF takes into consideration both the probability
of a word being a name, and how common it is in
the entire corpus. Words that get low PF.IDF scores
are therefore either words that are highly ambiguous
in the corpus (as derived from the extractors’ pre-
dictions) or are common words, which were inaccu-
rately predicted as names by the extractor.

In the MDR method of Figure 3, we imposed
an artificial requirement that words must appear in
more than one document. In the method described
here, there is no such requirement: indeed, words
that appear in a small number of documents are
given higher weights, due to the IDF factor. Thus
this approach exploits both single-document and
multiple-document repetitions.

In a set of experiments that are not described here,
the PF.IDF measure was found to be robust to pa-
rameter settings, and also preferable to its separate
components in improving recall at minimal cost in
precision. As described, the PF.IDF values per word
range between 0 and 1. One can vary the threshold,
under which a word is to be removed from the dic-
tionary, to control the precision-recall trade-off. We
tuned the PF.IDF threshold using the validation sub-
sets, optimizing entity-level F1 (a threshold of 0.16
was found optimal).

In summary, our recall-enhancing strategy is as
follows:

1. Learn an extractorE from the training corpusCtrain .

2. Apply the extractorE to a test corpusCtest to assign a
preliminary labeling.

3. Build a dictionarySθ∗ including the namesn such that
(a) n is extracted somewhere in the preliminary label-
ing of the test corpus, or is derived from an extracted
name applying the name transformation scheme and (b)
PF.IDF (n) > θ∗.

4. Apply the dictionary-matching scheme of Section 5.1, us-
ing the dictionarySθ∗ to augment the preliminary label-
ing, and output the result.

5.3 Experiments with inferred dictionaries

Table 4 shows results using the method described
above. We consider all of the email corpora and the
CRF learner, trained with the full feature set. The
results are given in terms of relative change, com-
pared to the baseline results generated by the extrac-
tors (scoreresult/scorebaseline − 1) and final value.

As expected, recall is always improved. Entity-
level F1 is increased as well, as recall is increased
more than precision is decreased. The largest im-
provements are for the Mgmt corpora —the two e-
mail datasets shown to have the largest potential im-
provement from MDR-like methods in Figure 3. Re-
call improvements are more modest for the Enron
datasets, as was anticipated by the MDR analysis.
Another reason for the gap is that extractor baseline
performance is lower for the Enron datasets, so that
the Enron dictionaries are noisier.

As detailed in Section 2, the Mgmt-Teams dataset
was constructed so that the names in the training
and test set have only minimal overlap. The perfor-
mance improvement on this dataset shows that rep-
etition of mostly-novel names can be detected using
our method. This technique is highly effective when
names are novel, or dense, and is optimal when ex-
tractor baseline precision is relatively high.

Dataset Precision Recall F1
Mgmt-Teams -0.9% / 92.9 +8.5% / 89.8 +3.9% / 91.3
Mgmt-Game -0.8% / 94.5 +8.4% / 96.2 +3.8% / 95.4
Enron-Meetings -2.5% / 81.1 +4.7% / 74.9 +1.2% / 77.9
Enron-Random -3.8% / 79.2 +4.9% / 74.3 +0.7% / 76.7

Table 4: Entity-level relative improvement and final result,
applying name-matching on models trained with CRF and the
full feature set (F1 baseline given in Table 3).
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6 Conclusion

This work applies recently-developed sequential
learning methods to the task of extraction of named
entities from email. This problem is of interest as an
example of NER from informal text—text that has
been prepared quickly for a narrow audience.

We showed that informal text has different char-
acteristics from formal text such as newswire. Anal-
ysis of the highly-weighted features selected by the
learners showed that names in informal text have
different (and less informative) types of contextual
evidence. However, email also has some structural
regularities which make it easier to extract personal
names. We presented a detailed description of a set
of features that address these regularities and signif-
icantly improve extraction performance on email.

In the second part of this paper, we analyzed
the way in which names repeat in different types
of corpora. We showed that repetitions within a
single document are more common in newswire
text, and that repetitions that span multiple docu-
ments are more common in email corpora. Addi-
tional analysis confirms that the potential gains in
recall from exploiting multiple-document repetition
is much higher than the potential gains from exploit-
ing single-document repetition.

Based on this insight, we introduced a simple and
effective method for exploiting multiple-document
repetition to improve an extractor. One drawback of
the recall-enhancing approach is that it requires the
entire test set to be available: however, our test sets
are of only moderate size (83 to 264 documents),
and it is likely that a similar-size sample of unlabeled
data would be available in many practical applica-
tions. The approach substantially improves recall
and often improves F1 performance; furthermore, it
can be easily used with any NER method.

Taken together, extraction performance is sub-
stantially improved by this approach. The improve-
ments seem to be strongest for email corpora col-
lected from closely interacting groups. On the
Mgmt-Teams dataset, which was designed to reduce
the value of memorizing specific names appearing
in the training set, F1 performance is improved from
68.1% for the out-of-the-box system (or 82.0% for
the dictionary-augmented system) to 91.3%. For the
less difficult Mgmt-Game dataset, F1 performance

is improved from 79.2% for an out-of-the-box CRF-
based NER system (or 90.7% for a CRF-based sys-
tem that uses several large dictionaries) to 95.4%.
As future work, experiments should be expanded to
include additional entity types and other types of in-
formal text, such as blogs and forum postings.
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Abstract

Many proper names are spelled inconsis-
tently in speech recognizer output, posing
a problem for applications where locating
mentions of named entities is critical. We
model the distortion in the spelling of a
name due to the speech recognizer as the
effect of a noisy channel. The models fol-
low the framework of the IBM translation
models. The model is trained using a par-
allel text of closed caption and automatic
speech recognition output. We also test a
string edit distance based method. The ef-
fectiveness of these models is evaluated on
a name query retrieval task. Our methods
result in a 60% improvement in F1. We
also demonstrate why the problem has not
been critical in TREC and TDT tasks.

1 Introduction
Proper names are key to our understanding of topics
in news. For example, to determine that a news
story is on the 2004 elections in the United States,
the words President Bush, John Kerry and USA
are necessary features of the story. In other words,
names of people, places and organizations are key
entities of a news story. For many tasks, like in
topic detection and tracking (TDT), the entities
form an important feature for distinguishing topics
from one another. For example, it is the people
that distinguish stories on the 2004 election from
stories on the 2000 U.S election. Names, especially
rare and foreign ones are a problem for automatic

speech recognition (ASR) systems as they are often
out of vocabulary (OOV) i.e., they do not exist in
the lexicon of the ASR system. An OOV word is
replaced with the most similar word in the lexicon
of the speech recognizer. Sometimes, even if a
name is in the lexicon of the speech recognizer, it
may have multiple spelling variants. The following
is a sample ASR snippet from the TDT3 1 corpus
that demonstrates how the same entity may have
different spellings even within the same snippet of
ASR text.

...newspaper quotes qaddafi is saying they’ll
turn them over but only if they’re allowed ..leader
moammar gadhafi says he doesn’t want an interna-
tional confrontation over the suspects in the..

In this work, we aim to find methods by which to
cluster or group names in ASR text. We evaluate
a variety of techniques that range from a simple
string-edit distance model to generative models
using both intrinsic and extrinsic evaluations. We
get statistically significant improvements in results
for ad-hoc retrieval when the query is just the name
of a person. We also explain why the problem
of misspelled proper names in ASR has not been
an issue in the TREC spoken document retrieval
(SDR) track or in topic detection and tracking
(TDT). We demonstrate how the problem would be
of significance when the query is short, containing
mainly names with little or no context.

1http:///www.ldc.upenn.edu/projects/tdt3/

451



2 Related Work
That names can be spelled differently is a prob-
lem that has been addressed by the database com-
munity in great detail. They found that the prob-
lem was rising in significance with the increasing
interest in reconciling different databases. Differ-
ences in names due to spelling errors, spelling vari-
ants and transliteration errors have been dealt with
by different kinds of approximate string matching
techniques like Soundex, Phonix, and String Edit
distance (James C. French, 1997; Zobel and Dart,
1996). The nature of the problem is identical when
the domain consists of databases of documents but
in order to apply techniques that were developed for
names by the database community one would have
to first detect names in the corpus, and then normal-
ize them to some canonical form. This is the ap-
proach taken by Raghavan and Allan (Raghavan and
Allan, 2004) who showed that normalizing names
using Soundex codes resulted in a 10% improvement
on the TDT3 Story Link Detection Task. They tested
their method on newswire stories only. Their diffi-
culty in applying Soundex to the ASR documents
was that detecting names in ASR is too error prone
for their methods to be useful (Miller et al., 2000).

Spoken document retrieval was a track at the
TREC-6,7 and 8 (Voorhees and Harman, 1997;
Voorhees and Harman, 1998; Voorhees and Harman,
1999) conferences. At the TREC-8 SDR track the
conclusion was that ASR is not really an issue for
ad hoc retrieval. However, the queries in those tracks
were not centered on any entity. The TREC-8 pro-
ceedings also acknowledge that mean average preci-
sion dropped as named entity word error rate (NE-
WER) increased. A typical speech recognizer has a
lexicon of about 60K and for this size of a lexicon,
about 10% of the person names are out of vocabu-
lary (OOV).

The problem of alternate spellings of names has
also been explored by the cross lingual information
retrieval community (Virga and Khudanpur, 2003;
AbdulJaleel and Larkey, 2003). The problem with
names in machine translated text is quite similar to
the problem with names in ASR text, except that the
errors caused by a speech recognizer are often pho-
netic confusions, which is not necessarily the case
for machine translation errors. Spelling errors of
names in machine translated text are typically con-

sistent. A given word in the source language always
translates to the same word in the target language for
a given machine translation system. As seen earlier,
ASR systems do not exhibit such consistency.

Another problem that resembles the one we are
addressing in this paper is that of spelling correc-
tion. Spelling correction has been tackled in several
different ways (Durham et al., 1983), in some cases
with the use of contextual cues (Golding and Roth,
1999) and in some cases it has been modeled as a
“noisy channel problem” (Kernighan et al., 1990).
The latter approach is similar to ours because we
also approach the problem of spelling variations due
to speech recognizer errors as analogous to the er-
rors caused by a noisy channel. However, spelling
correction methods must rectify human errors (ty-
pographic errors and common confusions) whereas
speech recognizer errors are different.

Additionally, the argument that Jon Smith and
John Smythe may genuinely be different people and
should not be considered to be the same entity is
more of a cross-document co-reference problem.
The problem we are attempting to solve in this
paper is one of grouping names that “sound like”
each other together, without considering the prob-
lem of cross document co-reference. For example,
the name Lewinsky has 199 occurrences in the TDT3
corpus, and also appears as Lewinski (1324 times),
and Lewenskey (171 times). Most of these occur-
rences refer to Monica Lewinsky. The aim is to
group all these variants together, without taking into
consideration which ones refer to the same person.
We then measure the effectiveness of our methods
on various retrieval tasks.

Perhaps the most similar work from the point of
view of the task is work in word spotting in audio
output (Amir et al., 2001). The queries are single
words and the task is to locate their mention in au-
dio. The starting point in that work is however, a
phonetic transcript of the audio signal and the em-
phasis is not on locating names. Our starting point
is automatic speech recognizer output, and we aim
to locate names in particular.

3 Our Approaches
In this section we explain the techniques by which
we group names together. One method uses string
edit distance to group names that are variants of each
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other. The other techniques are some of the possible
generative models suitable to this task.

An equivalence class is defined as a group of
names such that any two names in that class are vari-
ants of each other and such that there exist no two
names from different equivalence classes that are
variants of each other. An equivalence class is rep-
resented as a set of names enclosed in curly braces
as {name-1 name-2 ...}

Four of our models are trained on a parallel text
of ASR and manual transcripts (or closed caption
depending on availability) in order to learn a proba-
bilistic model of ASR errors. The parallel text con-
sists of pairs of sentences: sentences from the ASR
output and the corresponding manual transcripts.
This is a common technique in machine translation
for which the IBM translation models are popular
methods (Brown et al., 1993).

As a convention, we use uppercase letters to de-
note ASR output and lowercase for manual tran-
scriptions. Given an input of parallel text of ASR
and manual transcriptions, the model learns a prob-
abilistic dictionary. The dictionary contains pairs
of closed caption and ASR words and the probabil-
ity that the closed caption word is generated from a
given word in ASR. Thus, the model might learn a
high probability for P(CAT|kate).

3.1 Overview of Methods

We generate equivalence classes of names by clus-
tering a list of names. The algorithm draws links be-
tween pairs of words and then clusters the words into
equivalence classes such that if a and b are linked
and b and c are linked then a, b and c are in the same
equivalence class. Links between words are gener-
ated in five different ways described below.

In the first of our methods we align manual tran-
scripts and ASR sentences using the IBM transla-
tion model (Brown et al., 1993) to obtain a proba-
bilistic dictionary. We give details of the translation
model in section 3.2. Names are grouped such that
if P(CAT|kate) is high (above some threshold) then
there is a link between CAT and kate. This is called
the Simple Aligned method. Some sample pairs of
words obtained by this technique are shown in fig-
ure 1.

We can also ask a human to create a list of equiv-
alence classes of names. We describe our method

african AFRICA albania ALBANIAN
alex ALEC cardoso CARDOZO
ann ANNE ching CHIANG

Figure 1: Example of pairs of words obtained by
Simple Aligned

of obtaining such a list in section 4. This method is
called the Supervised method.

Given a list of equivalence classes, pairs of names
that go together can easily be generated such that for
each pair, both words are obtained from the same
equivalence class. In this way equivalence classes
of names obtained from the Simple Aligned and Su-
pervised methods can be used to create a list of pairs
of names that form parallel text to train a charac-
ter level machine translation model. We would ex-
pect this model to learn a high probability for simi-
lar sounding alphabets, e.g., a high probability for
P (C|k). Depending on where the training set of
pairs of names for this method comes from, we get
two possible systems. These are called the Gener-
ative Unsupervised method and Generative Super-
vised method respectively. Note that the Genera-
tive Unsupervised method is not completely unsu-
pervised; we still need the parallel text of ASR and
manual transcripts, but we don’t need a human to
do the added grouping of names into equivalence
classes. A character level translation model helps
us generalize better to unseen words.

We also grouped together names that differ by a
string edit distance of one, giving a fifth system. In
particular, we use the Levenshtein distance (Lev-
enshtein, 1966), that is the number of insertions,
deletions and substitutions needed to convert one
string to the other. Many methods employed by the
database community build on string edit distance.
The method works well but has some disadvantages.
Consider a user who types in a query containing a
name such that the spelling, as typed by the user,
never occurs in the corpus. To employ string edit
distance, one would have to compare the query name
against all the words in the vocabulary of the cor-
pus to find the most similar strings. With a gener-
ative model, only the query needs to be expanded
using the translation model, thereby speeding up the
search process. The string edit distance model on the
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other hand, is completely unsupervised and needs no
training in the form of parallel text. Both methods
have their advantages and disadvantages, and the use
of one method over the other is situation dependent.

3.2 Details

To learn alignments, translation probabilities, etc in
the first method we used work that has been done in
statistical machine translation (Brown et al., 1993),
where the translation process is considered to be
equivalent to a corruption of the source language text
to the target language text due to a noisy channel.
We can similarly consider that an ASR system cor-
rupts the spelling of a name as a result of a noisy
channel. To obtain the closed caption word c, of an
ASR word a, we want to find the string for which
the probability P (c|a) is highest. This is modeled as

P (c|a) =
P (c)P (a|c)

P (a)
(1)

For a given name a, since P (a) is constant, the
problem reduces to one of maximizing P (c)P (a|c).
P (c) is called the language model. We need
to model P (a|c) as opposed to directly modeling
P (c|a) so that our model assigns more probability
to well formed English names.

Given a pair of sentences (c, a), an alignment
A(c, a) is defined as the mapping from the words
in c to the words in a. If there are l closed caption
words and m ASR words, there are 2lm alignments
in A(c, a). l ∈ A(c, a) can be denoted as a series
lm
1

= l1, l2...lm where lj = i means that a word in
position j of the ASR string is aligned with a word in
position i of the closed caption string. Then P (a|c)
is computed as follows:

P (a|c) =
∑

l

P (a, l|c)

P (a, l|c) = P (m|c)
m∏

j

P (lj |l
j−1

1
, a

j−1

1
, m, e)

×P (aj |l
j
1
, a

j−1

1
, m, c) (2)

where aj is a word in position j of the string a, and
a

j
1

is the series a1...aj . The model is generative in
the following way: we first choose for each word in
the closed caption string the number of ASR words
that will be connected to it, then we pick the identity

of those ASR words and finally we pick the actual
positions that these words will occupy. There are
five different IBM translation models (Brown et al.,
1993). Models 3 and 4 build on the above equations,
and also incorporate the notion of fertility. Fertility
takes into account that a given word in closed cap-
tion may be omitted by an ASR system, or one word
may result in two or more, like Iraq → I ROCK (This
is a true example). The models are trained using Ex-
pectation Maximization. Further details are in the
original paper (Brown et al., 1993).

The IBM models have shown good performance
in machine translation, and especially so within cer-
tain families of languages, for example in translating
between French and English or between Sinhalese
and Tamil (Brown et al., 1993; Weerasinghe, 2004).
Pairs of closed caption and ASR sentences or words
(as the case may be) are akin to a pair of closely re-
lated languages.

For the Generative Unsupervised and Generative
Supervised methods, we use the same models, but in
this case the training set consists of pairs of words
obtained from the ASR and closed caption text as
opposed to sentences. In other words, the place of
words in the previous case is taken by characters.
Modeling fertility, etc, again fits very well in this
case. For example the terminal character e is often
dropped in ASR, and a single o in closed caption
may result in a double o in ASR or vice versa.

4 Experimental Set Up

4.1 Corpora

For experiments in this paper we used the TREC-6
and TREC-7 SDR track data (Voorhees and Harman,
1998). We also used the TDT2 and TDT3 corpora.
For TREC-6 we had the ASR output provided by
NIST (WER 34%). The TREC-7 corpus consists of
the output of the Dragon systems speech recognizer
(WER 29.5%). For the TDT sources we had the
ASR output of the BBN Byblos Speech recognizer
provided by the LDC. NIST provides human gener-
ated transcripts for the TREC corpora and LDC pro-
vides closed caption quality transcripts with a WER
of 14.5% for the TDT corpora. There are 3943,
23282, 1819 and 2866 ASR documents in the TDT2
TDT3, TREC-6 and TREC-7 corpora respectively.
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4.2 Intrinsic Evaluation

The Paice evaluation (Paice, 1996) for stemming al-
gorithms (algorithms that reduce a word to its mor-
phological root), attempts to compare the equiva-
lence classes generated by our methods with human
judgments.

The Paice evaluation measures the performance
of a stemmer based on its understemming and over-
stemming indices (UI and OI respectively). UI
measures the total number of missed links between
words and OI measures the total number of false
alarm links. A perfect stemmer would have a UI and
OI value of zero.

We obtained a list of names to be grouped into
equivalence classes in the following way. We did
not use a named entity tagger on the corpus because
named entity taggers typically have very high word
error rates for ASR text (Bikel et al., 1999). Instead
we ran the Unix spell command on the corpus and
used the list of rejected words as the list of names
for the annotators to group into equivalence classes.
These 296 OOV words are taken to correspond to
the names in the corpus. We then obtained the set of
ground-truth equivalence classes by a method simi-
lar to Paice.

A group of undergraduate students was hired. The
list of names was provided to each student in a text
editor in alphabetical order. The purpose as ex-
plained to them was to group together names that
were alternate spellings of similar sounding names
together. The student was instructed to go through
the list systematically, and for each word to look
at the previous 10 words, as well as the following
10 words to see if there were any other variants. If
there was a word or a group where the current word
was likely to fit in, they were asked to cut the word
and paste it into the appropriate group. In this way,
groups were created such that no word could belong
to more than one group. The annotators were also
asked to mark the words that were indeed names. Of
the 296 OOV words, 292 were found to be actual
names.

4.3 Extrinsic evaluation

In addition to the Paice evaluation we propose two
extrinsic or task based evaluations for our methods.
In the first task, given a name as a query, we aim to

Query Equivalence class
1: {christy christie}
2: {christina christine}
3: {toney toni}
4: {michelle michel mitchell}
5: {columbia colombia colombian}

Figure 2: Some sample query equivalence classes

find all documents that have a mention of that name
or any of its variants. In order to obtain queries
and relevance judgments for this task we arbitrar-
ily chose 35 groups of names from the ground-truth
set of equivalence classes. The TDT3 corpus was
chosen to be the test corpus for this task. Hence we
eliminated those words that had no occurrence in the
TDT3 corpus from the 35 groups of names giving a
total of 76 names. Each of the 76 words formed a
query. For each name query we consider all docu-
ments that contain a mention of any of the names in
the equivalence class of the query as relevant to that
query. In this way we obtained relevance judgments
for the name query task. Some sample queries are
shown in figure 2. We use F1 (harmonic mean of the
precision and recall) as a measure of performance.

Our extrinsic evaluation is spoken document re-
trieval. The queries on the TREC-6 and TREC-7
corpora are standard TREC spoken document re-
trieval track queries. For the TDT2 corpus we use
one randomly chosen document from each topic as
the query. This document is like a long query with
plenty of entities and plenty of contextual informa-
tion. For the TDT3 corpus we use the topic de-
scriptions as provided by the LDC as the queries.
The LDC topic descriptions discuss the events that
describe a topic and the key entities and locations
involved in the event. These are representative of
shorter queries, rich in entities. LDC has provided
relevance judgments for both the TDT2 and TDT3
corpora. Mean average precision was used as the
measure of evaluation.

4.4 Implementation Details

We use GIZA++ (Och and Ney, 2003) to train the
machine translation system and the ISI ReWrite
Decoder (ISI, 2001) to do the actual translations.
The decoder takes as input the models learned by
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GIZA++ and a sentence from the foreign language.
It can output the top n translations of the input sen-
tence. The ReWrite decoder can translate using IBM
Model-3 or Model-4. We found Model 3 to have
lower perplexity and hence chose it for our experi-
ments. In order to build the language model P (c),
we used the CMU Language Modeling toolkit 2.
All retrieval experiments were performed using the
LEMUR 3 toolkit, and using the traditional vector
space model. In the traditional vector space model
queries and documents are represented as vectors of
words. Each word in the vector is weighted using
a product of term frequency and inverse document
frequency. The similarity between a query and a
document is measured using the cosine of the angle
between the query and document vectors.

The Simple Aligned and Generative Unsuper-
vised methods require a parallel corpus of ASR and
closed caption for training. For the name query task
we used TDT2, TREC-6 and TREC-7 to train these
methods and TDT3 as the test corpus.

The Supervised and Generative Supervised meth-
ods require a human to provide pairs of words that
are variants of each other. We filtered out those
words from the human generated list of equivalence
classes that occurred exclusively in the test corpus
and in no other corpus. This is equivalent to asking
a human to group words in the training corpus. Sim-
ilarly we trained the Simple Aligned and Generative
Unsupervised models using ASR and closed caption
text from all other sources except those in the test
set.

The models were trained similarly for the SDR
experiments. The models were tested on each of
the four corpora in turn, and in each case they were
trained on everything but the test corpus.

5 Results
5.1 Intrinsic Experiments

Table 1 shows how the different methods perform on
the intrinsic evaluation. We also show the UI and OI
values for methods that use string edit distances of
2, 3, 4 and 5. Note that the Supervised method is the
ground truth for this evaluation, and hence it has a UI
and OI value of zero. A string edit distance of 1 has

2http://mi.eng.cam.ac.uk/prc14/toolkit documentation.html
3http://www.cs.cmu.edu/lemur

Method UI OI
Simple Aligned 0.236 0.004
Supervised 0 0
Gen Sup 0.393 0.023
Gen Uns 0.351 0.003
Str. Ed. (1) 0.229 0.000
Str. Ed. (2) 0.083 0.003
Str. Ed. (3) 0.039 0.001
Str. Ed. (4) 0.031 0.124
Str. Ed. (5) 0.023 0.336

Table 1: Understemming and Overstemming indices
for each of the methods (lower is better)

the lowest OI value, meaning there are very few false
alarms. Higher string edit distances have lower UI
values, with an increase in OI. We will interpret the
UI and OI values again after observing performance
on the retrieval tasks, so as to interpret the impact of
missed links and false alarm links for retrieval.

5.2 Name Query Retrieval experiments

The results of our experiments on the name query
task are given in table 2. We report both Macro
and Micro averaged (averaged over the equivalence
classes of the queries) F1 measures. They do not dif-
fer much since the equivalence classes have almost
the same number (2-3) of names.

From table 2, all methods improve the baseline
F1 score significantly (statistical significance mea-
sured using a two tailed t-test with a confidence of
95%). In general, the Simple Aligned, Generative
Unsupervised and string edit distance methods are
the best performing for this task. The string edit
distance improves the baseline by over 60%. The
Supervised method is also not as good as the other
four of our methods as it does not generalize well to
names that occur exclusively in the test set.

String edit distance performs very well on cer-
tain equivalence classes of names. For example, on
the equivalence class {Seigal, Segal, Siegal, Siegel}
the precision and recall are 100% each since all of
the words in the equivalence class differ from each
other by a string edit distance of one. In the case of
the equivalence class {Lewenskey Lewinski Lewin-
sky}, the term Lewenskey has a string edit distance
of 2 (greater than one) from the other two members,
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Method Micro avg Micro avg Micro Macro avg Macro avg Macro
Recall Precision F1 Recall Precision F1

Baseline 0.401 1 0.573 0.400 1 0.571
Simple Aligned 0.632 0.933 0.754 0.608 0.925 0.734
Sup 0.477 0.961 0.638 0.463 0.960 0.625
Gen Sup 0.530 0.937 0.677 0.517 0.938 0.667
Gen Uns 0.590 0.921 0.720 0.576 0.913 0.706
Str. Ed 0.752 0.867 0.806 0.751 0.871 0.807

Table 2: Results on the Name Query Retrieval task

Lewinsky and Lewinski. The equivalence class of
{John Jon Joan} has very low precision and recall.
This is because both John and Jon differ by a string
edit distance of one from so many other names in the
corpus, such as Jong, resulting in lowered precision.

The Simple Aligned method fails on names it has
not seen in the training set. However, for cases
like {Greensborough Greensboro} the link between
these two names is detected using the simple aligned
method and by no other. The generative methods can
detect variations in spelling due to similar sounding
alphabets. For example it can detect the link be-
tween Sydney and Sidney. The generative models
were also able to learn that c and k are substitutable
for each other. Therefore these models could detect
the links between the words in the equivalence class
{Katherine Kathryn Catherine}.

The Simple Aligned model performs well on the
extrinsic evaluations although it has a high OI value.
The intrinsic evaluations use judgments by humans.
The Simple Aligned method would conflate Kofi and
Copy into one class if that was a genuine ASR error
and the alignment was correct, but these two words
would not be conflated into the same equivalence
class by our annotators and would actually count
as a false alarm on the intrinsic evaluations. There-
fore, although the OI is high for the Simple Aligned
Method, on closer examination we found that some
of the false alarms were actually representative of
ASR errors.

5.3 Spoken Document Retrieval

We now move on to discuss results on the SDR task.
For TDT3 we got statistically significant improve-
ments (an improvement in mean average precision
from 0.715 to 0.757) over the baseline using string

edit distance. On the remaining corpora we got little
or no improvement by our methods. We proceed to
explain why this is the case for each of the corpora.

The TREC-7 corpus has only 5 queries with a
mention of a name resulting in hardly any gains
overall. Similar was the case for TREC-6. Again
in the case of the TDT2 corpus, since we used en-
tire documents as stories, there are enough words in
the query that a few recognition errors can be toler-
ated and therefore traditional retrieval is good for the
task. There is evidence from previous TREC tracks
(Voorhees and Harman, 1999) that shorter queries
result in a decrease in retrieval performance and
hence we see some improvements for TDT3. Be-
sides, the TDT3 queries were rich in names.

We wanted to check how our methods performed
on outputs of different ASR systems. Spoken doc-
ument retrieval on the TREC-7 data with the out-
put of Dragon systems, which has a word error rate
of 29.5%, results in an improvement of 6% using
the Simple Aligned method. The NIST-B2 system
with a higher WER (46.6%) has an improvement in
Mean Average Precision of 6.5%. Similarly with the
CUHTK (WER 35.6%) and NIST-B1 (WER 33.8%)
and Sheffield (WER 24.6 %) systems we obtained
improvements of 1.6%, 0.39% and 0.05% respec-
tively using the Simple Aligned method. Thus, with
increasing WER, the named entity word error rate
increases significantly, and therefore the benefits of
our method are more apparent in such situations.

6 Discussion and Conclusions
We showed (both intrinsically and extrinsically) that
string edit distance is an effective technique for lo-
cating name variants. We also developed a set of
generative models and showed that they are almost
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as effective at name finding and document retrieval,
but are probably more efficient than string edit dis-
tance. The generative models need to be trained on
parallel text and therefore require human effort for
training the models. The advantage of one method
over the other is dependent on the size of the corpus
and the availability of resources.

The problem has not been of significance in previ-
ous TREC tasks or in TDT, because we have always
escaped the problem of misspelled names by virtue
of the nature of those tasks. In the TREC tasks very
few queries are centered on an entity. In all the TDT
tasks, one is usually required to compare entire sto-
ries with each other. A story is long enough that
there are enough words that are in the vocabulary
(just like a very long query) or that are correctly rec-
ognized, that the ASR errors do not really matter.
Therefore, the TDT tasks also do not suffer as a re-
sult of these ASR errors.

We can improve and apply our methods to other
domains like Switchboard data (Godfrey et al.,
1992). Our methods also generalize well across lan-
guages since there are no language specific tech-
niques employed.
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Abstract

We present a part-of-speech tagger which
introduces two new concepts: virtual evi-
dence in the form of an “observed child”
node, and negative training data to learn
the conditional probabilities for the ob-
served child. Associated with each word
is a flexible feature-set which can in-
clude binary flags, neighboring words, etc.
The conditional probability of Tag given
Word + Features is implemented using
a factored language-model with back-off
to avoid data sparsity problems. This
model remains within the framework of
Dynamic Bayesian Networks (DBNs) and
is conditionally-structured, but resolves
the label bias problem inherent in the con-
ditional Markov model (CMM).

1 Introduction

A common sequence-labeling task in natural lan-
guage processing involves assigning a part-of-
speech (POS) tag to each word in the input text.
Previous authors have used numerous HMM-based
models (Banko and Moore, 2004; Collins, 2002;
Lee et al., 2000; Thede and Harper, 1999) and
other types of networks including maximum entropy
models (Ratnaparkhi, 1996), conditional Markov
models (Klein and Manning, 2002; McCallum et
al., 2000), conditional random fields (CRF) (Laf-
ferty et al., 2001), and cyclic dependency networks
(Toutanova et al., 2003). All of these models make

use of varying amounts of contextual information.
In this paper, we present a new model which re-
mains within the well understood framework of Dy-
namic Bayesian Networks (DBNs), and we show
that it produces state-of-the-art results when ap-
plied to the POS-tagging task. This new model is
conditionally-structured and, through the use of vir-
tual evidence (Pearl, 1988; Bilmes, 2004), resolves
the explaining-away problems (often described as
label or observation bias) inherent in the CMM.

This paper is organized as follows. In sec-
tion 2 we discuss the differences between a hidden
Markov model (HMM) and the corresponding con-
ditional Markov model (CMM). In section 3 we de-
scribe our observed-child model (OCM), introduc-
ing the notion of virtual evidence, and providing an
information-theoretic foundation for the use of nega-
tive training data. In section 4 we discuss our exper-
iments and results, including a comparison of three
simple first-order models and state-of-the-art results
from our feature-rich second-order OCM.

For clarity, the comparisons and derivations in
sections 2 and 3 are done for first-order models us-
ing a single binary feature. The same ideas are then
generalized to a higher order model with more fea-
tures (including adjacent words).

2 Generative vs. Conditional Models

In this section we discuss the tradeoffs between the
generative hidden Markov model (HMM) and the
conditional Markov model (CMM). For pedagogical
reasons, the figures and equations are for first order
models with a single word-feature.

The HMM shown in Figure 1 includes a single
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feature (the binary flag isCap) in addition to the
word itself. Each observation, oi = (wi, fi), is a
word-feature pair. Let o = {oi} be the observation
sequence and s = {si} be the associated tag (state)
sequence. The HMM1 factorizes the joint probabil-
ity distribution over these two sequences as:

P (s,o) =
∏

i

P (si|si−1)P (wi|si)P (fi|si)

Tag

Word

isCap

Figure 1: First order HMM.

A similar model often used for sequence label-
ing tasks is the conditional Markov model (CMM)
which reverses the arrows between the words and
the tags (Figure 2), and factorizes as:

P (s,o) =
∏

i

P (si|si−1, wi, fi)P (wi)P (fi)

Tag

Word

isCap

Figure 2: First order CMM.

Because the words and features are observed, this
model does not require that we compute the proba-
bility of the evidence, P (o), when finding the opti-
mal tag sequence. The tag-sequence s which max-
imizes the joint probability P (s,o) is the same one
that maximizes the conditional probability P (s|o).
The CMM, therefore, does not require that we model
the language, allowing us to focus on modeling the
conditional probability of the tags given the words.

The HMM has its advantages as well, principally
that it is easier to train than the CMM because it

1In this HMM, Word and isCap are independent given Tag,
but this need not be true in general.

factorizes the joint probability into simpler com-
ponents. The tables required for P (si|si−1) and
P (oi|si) are significantly smaller than the one for
P (si|si−1, oi) which may be difficult to estimate due
to either data sparsity or normalization issues. One
potential disadvantage of the HMM is that when it is
trained using a maximum likelihood procedure, it is
not necessarily encouraged to optimally classify tags
due to its generative nature. One solution is to train
the HMM using a discriminative procedure. Another
option is to use entirely different models.

A key disadvantage of the CMM is that it
makes critical statements about independence that
the HMM does not: the converging arrows at each
tag put the parent nodes (the previous tag and the
current observation) into causal competition and as
a result the model states that the previous tag is inde-
pendent of the current observation. In other words,
all states (tags) are independent of future observa-
tions (words). The CMM thus incorporates a strong
directional bias which does not exist in the HMM.

One way to eliminate this bias is to use a CRF
(Lafferty et al., 2001; McCallum, 2003), where fac-
tors over neighboring tags may use features from
anywhere in the observation sequence. The CRF
is discriminative and avoids label/observation bias
by using a model that is constrained only in that
the conditional distribution factorizes over an undi-
rected Markov chain. However, most popular train-
ing procedures for a CRF are time-consuming and
complex processes.

3 Using Virtual Evidence

Our goals in this work are to: 1) keep the discrimi-
native nature of the CMM to the extent possible; 2)
avoid label and observation bias issues; and 3) stay
entirely within the DBN framework where training
is relatively simple. We thus propose a new solu-
tion to the problem, which retains the discrimina-
tive conditional form of “tag given word” from the
CMM, but avoids label bias by temporally linking
adjacent tags in a new way. Specifically, we employ
virtual evidence in the form of a binary observed
child node, ci, between adjacent tags (Figure 3) or
a windowed sequence of tags. During decoding, this
node will always be observed to be equal to 1 (one).
Intuitively, this binary variable acts as an indicator of
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Tag

Word

isCap

C

Figure 3: First order observed-child model (OCM)
with the tags connected in pairs.

tag-pair consistency. When the tag pairs are consis-
tent (as they are in real text), we should have a high
conditional probability that ci = 1; and when the
tag pairs are not consistent, the conditional probabil-
ity that ci = 1 should be low. With this conditional
distribution, observing ci = 1 during decoding ex-
presses a preference for consistent tag pairs.

The presence of this observed-child node results
in a term in the factorization of the joint probability
distribution that couples its parents:

P (c, s,o) ∝
∏

i

P (ci|si−1, si)P (si|wi, fi)

where ci is the observed-child node of tags si−1 and
si, and we omit the probability of the observations,
P (wi, fi) which do not affect the final choice of s.

By the rules of d-separation (Pearl, 1988), the ex-
istence of ci defined in this way means that the par-
ents (the adjacent tags) are not conditionally inde-
pendent given the child. This link between adja-
cent tags through an observed-child node allows for
a probabilistic relationship to exist between the ad-
jacent tags. Thus, future words can influence tags,
which is not true for the CMM. Whether or not a
relationship between tags will actually be learned,
however, will critically depend on how the model is
trained. In a graphical model, it is the lack of an
edge that ensures some form of independence; the
presence of an edge (or a path made up of two or
more edges) does not necessarily ensure the reverse.

3.1 Training
The introduction of virtual evidence into a graph-
ical model requires that careful thought be given
to the training process. If we were to naı̈vely add
ci = 1 to all samples of the training data, the model
would learn that ci is constant rather than random,
and therefore that it is independent of its parents,
si−1 and si. In other words, this naı̈vely-trained

model would assume that P (ci = 1|si−1, si) =
1 ∀ (si−1, si), and when used to tag the sentences
in the test-set (also labeled with ci = 1), it would
maximize this simplified joint probability in which
the relationship between si−1 and si has been lost:

P (c, s,o) ∝
∏

i

P (si|wi, fi)

In order to induce and thereby have the model
learn the relationship between the adjacent tags si−1

and si, the training has to be modified to include
samples that are labeled with ci = 0. The proba-
bility table P (ci = 1|si−1, si) should favor common
(consistent) tag-pairs with high probabilities, while
discouraging rare tag-pairs with low probabilities.

Although all observations (in both training and
test sets) are labeled with ci = 1, we hypothesize
an alternate set of observations labeled with ci = 0.
This alternate set will be the source of the negative
training data 2. It is a set of nonsensical sentences
with the same distribution over individual tags, i.e.
the same P (si), but in this set adjacent tags are in-
dependent. We denote the total number of training
samples by M . This is divided into positive train-
ing samples, M1, and negative training samples, M0,
with M1+M0 = M . The ratio of the amount of pos-
itive to negative training data should be the same as
the ratio of our prior beliefs about tag-pair consis-
tency, namely the ratio of P (ci = 1) to P (ci = 0).
With no evidence to support that one is more likely
than the other, one option is to use the strategy of
“assuming the least” and use a maximum entropy
prior, setting M0 = M1. More flexibly, we can de-
fine n to be the ratio of the two so that M0 = n ·M1.

Now we derive a method for training the condi-
tional probability table P (ci|si−1, si) in terms of the
pointwise mutual information between the adjacent
tags si−1 and si. We first rewrite the conditional
probability (henceforth abbreviated as p) as:

p = P (ci = 1|si−1, si) =
P (ci = 1, si−1, si)

P (si−1, si)

If the probabilities are maximum likelihood (ML)
estimates derived from counts on the training data,
we can equivalently write:

p =
N(ci = 1, si−1, si)

N(si−1, si)

2This use of implied negative training data is similar to the
“neighborhood” concept described in (Smith and Eisner, 2005)
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where N(·) is the count function.
Expanding the denominator into two terms:

p =
N(ci = 1, si−1, si)

N(ci = 1, si−1, si) + N(ci = 0, si−1, si)

Without any negative training data (labeled with
ci = 0), this ratio would always evaluate to 1, and no
probabilistic relationship between si−1 and si would
be learned.

From the start, we have implicitly postulated a re-
lationship between adjacent tags. We now formally
state two hypotheses: H1 that there is a relationship
between adjacent tags which can be described by
some joint probability distribution P (si−1, si), and
the null hypothesis, H0, that there is no such rela-
tionship, i.e. si−1 and si are independent:

PH1
= P (si−1, si)

PH0
= P (si−1)P (si)

Now we can express the counts as follows:

N(ci = 1, si−1, si) = M1 · P (si−1, si)

N(ci = 0, si−1, si) = M0 · P (si−1)P (si)

where M1 is the total number of tokens in the (posi-
tive) training data, and M0 is the total number of to-
kens in the induced negative training data. We sub-
stitute M0 with n · M1 for the reasons mentioned
earlier, and simplify to obtain:

p =
P (si−1, si)

P (si−1, si) + nP (si−1)P (si)

which can be simplified to obtain:

p =
1

1 + n

[

P (si−1,si)
P (si−1)P (si)

]

−1

The ratio of probabilities in the denominator is the
ratio used in computing the pointwise mutual infor-
mation between si−1 and si. This ratio, which we
will call λ, is also the likelihood ratio between the
two previously stated hypotheses. Finally, we write
the conditional probability as a function of λ:

P (ci = 1|si−1, si) =
1

1 + nλ−1
=

λ

λ + n

where λ =
PH1

PH0

=
P (si−1, si)

P (si−1)P (si)
=

P (si|si−1)

P (si)

The conditional probability, P (ci = 1|si−1, si) is a
mapping g(λ) from λ ∈ [0,∞) to p ∈ [0, 1).

Beginning with (Church and Hanks, 1989), nu-
merous authors have used the pointwise mutual in-
formation between pairs of words to analyze word
co-locations and associations. This ratio tells us
whether si−1 and si co-occur more or less often than
would be expected by chance alone.

Consider, for example, the tags DT (determiner)
and NN (noun), and the four possible ordered tag-
pairs. The probabilities P (si) and P (si|si−1) de-
rived from the training data (see section 4.1), the
likelihood ratio score λ, the conditional probability
p = P (ci = 1|si−1, si), and the occurrence counts
N are shown in Table 1. As expected, the sequence
DT-NN (e.g. the surplus) occurs very often and gets
a high score, while DT-DT (e.g. this a) and NN-
DT (e.g. surplus the) occur infrequently and get low
scores. The sequence NN-NN (e.g. trade surplus)
gets a neutral score (λ ≈ 1) indicating that if the pre-
ceding word is a noun, the likelihood that the current
word is a noun is nearly equal to the likelihood that
any randomly chosen word is a noun.

We present two methods for inducing the negative
training counts that are required to train the condi-
tional probability table for P (ci|si−1, si).

In the first method, we generate “nonsense” sen-
tences by randomly scrambling each sentence in the
training-set n times, using a uniform distribution
over all possible permutations. This results in n

negative training sentences for each positive training
sentence and therefore M0 = n·M1. Effectively, the
ratio of priors on ci is now:

P (ci = 1)

P (ci = 0)
=

M1

M0
=

1

n

The conditional probability table P (ci|si−1, si) is

si−1-si P (si) P (si|si−1) λ p N
DT-NN 0.129 0.4905 3.80 0.79 37301
NN-NN 0.129 0.1270 0.98 0.49 15571
NN-DT 0.080 0.0071 0.09 0.08 870
DT-DT 0.080 0.0018 0.02 0.02 134

Table 1: Sample likelihood ratio scores (λ), proba-
bilities, p (for n = 1), and counts for four tag-pairs.
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then trained using all n+1 versions of each sentence,
thus inducing the desired dependence between si−1

and si. The method of scrambling sentences n-times
only approximates the theory described above be-
cause it is performed on a sentence-by-sentence ba-
sis rather than across the entire training set. Also, the
resulting negative training data represents only n re-
alizations of a random process, so the total number
of samples may not be large enough to approximate
the underlying distribution.

In the second method, rather than generate the
negative training data in the form of scrambled sen-
tences, we compute the negative-training counts di-
rectly, based on the positive unigram counts and the
hypotheses presented in section 3.1. For example,
the negative bigram counts are a function of the
marginal probability of each tag, P (si):

N(ci = 0, si−1, si) = nM1 · P (si−1)P (si)

Negative unigram and trigram counts are computed
in a similar fashion, and then the conditional proba-
bility table is derived as a smoothed back-off model
directly from the combined sets of counts.

These two methods are conceptually similar but
may exhibit subtle differences: one is randomizing
at the sentence level while the other operates over
the entire training set and does not have the same
sensitivity to small values of n.

4 Experiments and Results

In this section we describe our experiments and the
results obtained. Sections 4.1 and 4.2 describe the
data sets and features. Section 4.3 presents compar-
isons between several simple models using just the
tags, the words, and a single binary feature for each
word. Section 4.4 presents results from a feature-
rich second-order observed-child model in which
tags are linked in groups of three.

All training of language models is done using the
SRILM toolkit (Stolcke, 2002) with the FLM exten-
sions (Bilmes and Kirchhoff, 2003), and the imple-
mentation and testing of the various graphical mod-
els is carried out with the help of the graphical mod-
els toolkit (GMTK) (Bilmes and Zweig, 2002).

4.1 Data Sets
The data used for these experiments is the Wall
Street Journal data from Penn Treebank III (Mar-

cus et al., 1994). We extracted tagged sentences
from the parse trees and divided the data into train-
ing (sections 0-18), development (sections 19-21),
and test (sections 22-24) sets as in (Toutanova et al.,
2003). Except for the final results for the feature-
rich model, all results are on the development set.

4.2 Features
The tagged sentences extracted from the Penn Tree-
bank are pre-processed to generate appropriately-
formatted training data for the SRILM toolkit, as
well as the vocabulary and observation files to be
used during testing.

The pre-processing includes building a dictionary
based on the training data. All words containing
uppercase letters are converted to lowercase before
being written to the dictionary. Words that occur
rarely are excluded from the dictionary and are in-
stead mapped to a single out-of-vocabulary word.
This is based on the idea from (Ratnaparkhi, 1996)
that rare words in the training set are similar to un-
known words in the test set, and can be used to learn
how to tag the unknown words that will be encoun-
tered during testing. In this work, rare words are
those that occurr fewer than 5 times. The dictio-
nary also includes special begin-sentence and end-
sentence words, as well as punctuation marks, re-
sulting in a total of 10,824 words. A list of the 45
tags found in the training data is also created, and
is similarly augmented with special begin-sentence
and end-sentence tags, for a total of 47 distinct tags.

Each word has associated with it a set of features.
During training, these features are used to learn a
smoothed back-off model for P (si|wi, fi) (where fi

is a vector of features associated with word wi).
The following five binary flags, taken from

(Toutanova et al., 2003), are derived from the cur-
rent word wi and used as features :

• is-capitalized (refers to the first letter only);
• has-digits (word contains one or more digits);
• is-hyphenated (word contains ‘-’);
• is-all-caps (all letters are capitalized);
• is-conjunction (true if is-all-caps, has-digits,

and is-hyphenated are all true, for example
CFC-12 or F/A-18).

Prefixes and suffixes are also known to be infor-
mative and so we add a prefix-feature and a suffix-
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feature to our set. Previous work used all possible
prefixes and suffixes ranging in length from 1 to k

characters, with k = 4 (Ratnaparkhi, 1996), and
k = 10 (Toutanova et al., 2003). This method re-
sults in very long lists of thousands of suffixes and
prefixes. In this work, we instead analyzed the rare
words in the training data to generate shorter lists of
informative prefixes and suffixes, with lengths be-
tween 1 and 7 characters. Each prefix/suffix was
scored based on the number of times it appeared
with a particular tag, and all prefixes/suffixes that
scored above 20 (an arbitrarily chosen threshold)
were kept. This process resulted in two separate
lists: one with 377 prefixes, and the other with 704
suffixes. Each word is then assigned a single pre-
fix feature and a single suffix feature from these
lists (which both include an entry for “unknown”).
When assigning prefix and suffix features to the rare
words (in the training data) or the unknown words
(in the test data), we assume that the longest string is
the most informative. (This may not necessarily be
true: for example, although the suffix ing is certainly
more informative than g, it is less clear whether ulat-
ing would be more or less informative than ing.)

We also include the two adjacent words as fea-
tures of the current word. Our model provides great
flexibility in the choice of features to be included
in the current word’s feature-set. This feature-set is
not limited to binary flags and indeed can include
anything that can be extracted from the observa-
tion sequence in the pre-processing stage. By using
a smoothed back-off model, issues related to data-
sparsity and over-fitting are avoided.

4.3 First Order Model Comparisons

In this section we compare results obtained from
three first-order models: HMM, CMM, and OCM,
using a Naı̈ve Bayes (NB) model as a baseline. The
Naı̈ve Bayes model is a zeroth-order model with no
connection between adjacent tags, while the first-
order models connect adjacent tags in pairs. (Note
that the HMM in this case is just a “temporal” NB
since given the tag, the features are independent.) In
these experiments, the only feature used is the is-
capitalized flag (the most informative of the binary
flags tested). The results are shown in Table 2.

The conditional probability tables (CPTs) for
the CMM and the OCM were generated using the

model token known-w. unk.-w.
type accur. accur. accur.

Naı̈ve Bayes 90.56% 93.83% 43.4%
OCMn=0 90.89% 94.07% 45.2%
CMM 93.23% 95.69% 57.9%
OCMn=1 93.94% 96.39% 58.6%
HMM 94.30% 96.53% 62.3%
OCMn=4 94.42% 96.63% 62.7%

Table 2: Scores for first order models.

factored language model (FLM) extensions to the
SRILM toolkit, wth generalized parallel backoff
and Witten-Bell smoothing. (Modified Kneser-Ney
smoothing could not be applied because some of the
required low-order meta-counts needed by the dis-
count estimator were zero.) The negative training
data for the OCM was generated using the scram-
ble method, with values of n as in the table. When
no negative training data is used (n = 0), the CPT
for the observed-child shows a very weak depen-
dence on the specific tag-pair (si−1, si): the proba-
bility values in the tag-bigram model range only be-
tween 0.89 and 1. This weak dependence results in
performance comparable to that of the Naı̈ve Bayes
model. That there is any dependence at all is due to
the smoothing since ci = 0 is never observed in the
training data. With negative training data (n = 4),
there is a much stronger dependence on the tag-pair,
and the values for P (ci = 1|si−1, si) range between
0.0002 and 1.

We found experimentally that the OCM reached
peak performance with n = 4 and that for larger n

the performance stayed relatively constant: the vari-
ation for values of n up to 14 was only 0.05%.

4.4 Feature-Rich Second-Order OCM

In this section we describe the results obtained from
a more complex second order OCM with the addi-
tional word features described in section 4.2.

This model is illustrated in Figure 4 which, for
clarity highlights the details only for one (tag,word)
pair. The observed-child node, ci, now has three par-
ents: the tags si−1, si, and si+1. Each tag, si, in
turn has K + 1 parents: the current word, wi, and
a set of K features (shown bundled together). The
model switches between the two feature bundles as
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model description token known-word unknown-word
accuracy accuracy accuracy

OCM-I, scramble, n = 4 96.39% 96.87% 89.5%
OCM-I, computed counts, n = 4 96.41% 96.90% 89.3%
OCM-I, computed counts, n = 1 96.41% 96.92% 89.0%
OCM-II, computed counts, n = 1 96.64% 97.12% 89.5%
OCM-II, as above, on test-set 96.77% 97.25% 90.0%

Table 3: Tagging accuracy using the feature-rich 2nd order observed-child model.

illustrated, based on the current word. For known
words, a small set of features is used, while a much
larger set of features is used for unknown words.
This switching increases the speed of the model at
no cost: the additional features increase the tagging
accuracy for unknown words but are redundant for
known words.

This model factorizes the joint probability as:

P (c, s,o) ∝
∏

i

P (ci|si−1, si, si+1)P (si|wi, fi)

where fi is the appropriate feature bundle for word
wi, depending on whether wi is known or unknown.

ci

si-1 si si+1

wi

known-word features

unknown-word features

Figure 4: Second order OCM with tags connected in
triples and switching sets of word features.

Two sets of experiments were performed using
two models, which we will refer to as OCM-I and
OCM-II. Both of these are second order models
(connecting tags in triples), but with different sets
of features. In model OCM-I, the only feature used
for known words is the is-capitalized flag used in
section 4.3. The unknown words use a total of seven
features: suffix, prefix, and all five of the binary flags
described in section 4.2. Model OCM-II adds the ad-

jacent words (wi−1 and wi+1) to the feature-set for
both known and unknown words.

As seen above, the model factorizes the joint
probability into two conditional probability terms.
Each of these CPTs is implemented as a smoothed,
factored-language back-off model.

The observed-child CPT uses generalized back-
off, combining at run-time the results of backing off
from each of the three parents if the specific tag-
triple is not found in the table. The tag CPT uses
linear backoff, dropping the adjacent words first.
The backoff order for the other features was cho-
sen based on experiments to determine the relative
information content of each feature. This resulted
in the following backoff order: prefix, has-digit, is-
conjunction, is-all-caps, is-hyphenated, suffix, is-
capitalized, word (where the least informative fea-
ture, prefix, is the first feature to be dropped).

Results from these experiments are shown in Ta-
ble 3. Except for the last line, which reports results
on the test set, all results are on the development
set. The first three lines show results obtained from
OCM-I (without adjacent word features). The two
methods of generating negative training data yield
nearly identical results, showing that they are com-
parable. Comparing rows 2 and 3 in the table we see
that the computed-counts method is relatively insen-
sitive to the value of n (for n ≥ 1).

OCM-II, which uses the adjacent words as fea-
tures for both known and unknown words further
improves overall accuracy, and produces state-of-
the-art results. The token-level accuracy result ob-
tained from the OCM-II model on the development
set (96.64%) can be directly compared to an accu-
racy of 96.57% reported in (Toutanova et al., 2003)
for a cyclic dependency network using similar word
features and the same three tag context.
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5 Conclusions

In this paper, we have introduced two new concepts
to the problem of part-of-speech tagging: virtual evi-
dence and negative training data. We have moreover
shown that this new model can produce state-of-the-
art results on this NLP task with appropriately cho-
sen features. The model stays entirely within the
mathematically formal language of Bayesian net-
works, and even though it is conditional in nature,
the model does not suffer from label or observa-
tion (or directional) bias. Staying within this frame-
work has other advantages as well, including that
the training procedures remain within the relatively
simple maximum likelihood framework, albeit with
appropriate smoothing. We believe that this model
holds great promise for other NLP tasks as well as in
other applications of machine-learning such as com-
putational biology. In particular the way it factor-
izes the joint probability into a “horizontal” com-
ponent which connects various nodes to the virtual-
evidence node, and a “vertical” component (used
here to link a tag to a set of observations), provides
great simplicity, flexibility, and power.

6 Acknowledgements

The authors would like to thank the anonymous re-
viewers for their constructive comments. Sheila
Reynolds is supported by an NDSEG fellowship.

References
Michele Banko and Robert C. Moore. 2004. Part of

Speech Tagging in Context. Proceedings of COLING.

Jeff Bilmes. 2004. On Soft Evidence in Bayesian Net-
works. Tech. Rep. UWEETR-2004-0016, U. Wash-
ington Dept. of Electrical Engineering, 2004.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan-
guage models and generalized parallel backoff. Pro-
ceedings of HLT-NAACL: Short Papers, 4-6.

Jeff Bilmes and Geoffrey Zweig. 2002. The graphi-
cal models toolkit: An open source software system
for speech and time-series processing. Proceedings of
ICASSP, vol4, 3916-3919.

Kenneth W. Church and Patrick Hanks. 1989. Word As-
sociation Norms, Mutual Information, and Lexicogra-
phy. Proceedings of ACL, 76-83.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. Proc. EMNLP.

Dan Klein and Christopher D. Manning. 2002. Condi-
tional Structure versus Conditional Estimation in NLP
Models. Proceedings of EMNLP, 9-16.

John Lafferty, Andrew McCallum and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic Mod-
els for Segmenting and Labeling Sequence Data. Pro-
ceedings of ICML, 282-289.

Sang-Zoo Lee, Jun-ichi Tsujii and Hae-Chang Rim.
2000. Part-of-Speech Tagging Based on Hidden
Markov Model Assuming Joint Independence. Pro-
ceedings of 38th ACL, 263-269.

Mitchell P. Marcus, Beatrice Santorini and Mary A.
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19:313-330.

Andrew McCallum. 2003. Efficiently Inducing Features
of Conditional Random Fields. Proceedings of UAI.

Andrew McCallum, Dayne Freitag and Fernando Pereira.
2000. Maximum-Entropy Markov Models for Infor-
mation Extraction and Segmentation. Proc. 17th In-
ternational Conf. on Machine Learning, 591-598.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. EMNLP 1, 133-142.

Noah A. Smith and Jason Eisner 2005. Contrastive Es-
timation: Training Log-Linear Models on Unlabeled
Data. Proceedings of ACL.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. Proc. ICASSP, vol 2, 901-904.

Scott M. Thede and Mary P. Harper. 1999. A Second-
Order Hidden Markov Model for Part-of-Speech Tag-
ging. Proceedings of 37th ACL, 175-182.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.
Proceedings of HLT-NAACL, 252-259.

466



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 467–474, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Bidirectional Inference with the Easiest-First Strategy
for Tagging Sequence Data

Yoshimasa Tsuruoka12 and Jun’ichi Tsujii 231

1 CREST, JST (Japan Science and Technology Corporation)
Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012 Japan
2 Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 Japan
3 School of Informatics, University of Manchester

POBox 88, Sackville St, MANCHESTER M60 1QD, UK
{tsuruoka,tsujii }@is.s.u-tokyo.ac.jp

Abstract

This paper presents a bidirectional in-
ference algorithm for sequence label-
ing problems such as part-of-speech tag-
ging, named entity recognition and text
chunking. The algorithm can enumerate
all possible decomposition structures and
find the highest probability sequence to-
gether with the corresponding decomposi-
tion structure in polynomial time. We also
present an efficient decoding algorithm
based on the easiest-first strategy, which
gives comparably good performance to
full bidirectional inference with signifi-
cantly lower computational cost. Exper-
imental results of part-of-speech tagging
and text chunking show that the proposed
bidirectional inference methods consis-
tently outperform unidirectional inference
methods and bidirectional MEMMs give
comparable performance to that achieved
by state-of-the-art learning algorithms in-
cluding kernel support vector machines.

1 Introduction

The task of labeling sequence data such as part-of-
speech (POS) tagging, chunking (shallow parsing)
and named entity recognition is one of the most im-
portant tasks in natural language processing.

Conditional random fields (CRFs) (Lafferty et al.,
2001) have recently attracted much attention be-
cause they are free from so-called label bias prob-
lems which reportedly degrade the performance of

sequential classification approaches like maximum
entropy markov models (MEMMs).

Although sequential classification approaches
could suffer from label bias problems, they have sev-
eral advantages over CRFs. One is the efficiency
of training. CRFs need to perform dynamic pro-
gramming over the whole sentence in order to com-
pute feature expectations in each iteration of numer-
ical optimization. Training, for instance, second-
order CRFs using a rich set of features can require
prohibitive computational resources. Max-margin
methods for structured data share problems of com-
putational cost (Altun et al., 2003).

Another advantage is that one can employ a vari-
ety of machine learning algorithms as the local clas-
sifier. There is huge amount of work about devel-
oping classification algorithms that have high gener-
alization performance in the machine learning com-
munity. Being able to incorporate such state-of-the-
art machine learning algorithms is important. In-
deed, sequential classification approaches with ker-
nel support vector machines offer competitive per-
formance in POS tagging and chunking (Gimenez
and Marquez, 2003; Kudo and Matsumoto, 2001).

One obvious way to improve the performance of
sequential classification approaches is to enrich the
information that the local classifiers can use. In stan-
dard decomposition techniques, the local classifiers
cannot use the information about future tags (e.g.
the right-side tags in left-to-right decoding), which
would be helpful in predicting the tag of the target
word. To make use of the information about fu-
ture tags, Toutanova et al. proposed a tagging algo-
rithm based on bidirectional dependency networks
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(Toutanova et al., 2003) and achieved the best ac-
curacy on POS tagging on the Wall Street Journal
corpus. As they pointed out in their paper, however,
their method potentially suffers from “collusion” ef-
fects which make the model lock onto conditionally
consistent but jointly unlikely sequences. In their
modeling, the local classifiers can always use the in-
formation about future tags, but that could cause a
double-counting effect of tag information.

In this paper we propose an alternative way of
making use of future tags. Our inference method
considers all possible ways of decomposition and
chooses the “best” decomposition, so the informa-
tion about future tags is used only in appropriate
situations. We also present a deterministic version
of the inference method and show their effective-
ness with experiments of English POS tagging and
chunking, using standard evaluation sets.

2 Bidirectional Inference

The task of labeling sequence data is to find the se-
quence of tagst1...tn that maximizes the following
probability given the observationo = o1...on

P (t1...tn|o). (1)

Observations are typically words and their lexical
features in the task of POS tagging. Sequential clas-
sification approaches decompose the probability as
follows,

P (t1...tn|o) =
n∏
i=1

p(ti|t1...ti−1o). (2)

This is the left-to-right decomposition. If we
make a first-order markov assumption, the equation
becomes

P (t1...tn|o) =
n∏
i=1

p(ti|ti−1o). (3)

Then we can employ a probabilistic classifier
trained with the preceding tag and observations in
order to obtainp(ti|ti−1o) for local classification. A
common choice for the local probabilistic classifier
is maximum entropy classifiers (Berger et al., 1996).
The best tag sequence can be efficiently computed
by using a Viterbi decoding algorithm in polynomial
time.

t1

(a)

t2 t3

o

t1

(b)

t2 t3

t1

(c)

t2 t3 t1

(d)

t2 t3

o

o o

Figure 1: Different structures for decomposition.

The right-to-left decomposition is

P (t1...tn|o) =
n∏
i=1

p(ti|ti+1o). (4)

These two ways of decomposition are widely used
in various tagging problems in natural language pro-
cessing. The issue with such decompositions is that
you have only the information about the preceding
(or following) tags when performing local classifi-
cation.

From the viewpoint of local classification, we
want to give the classifier as much information as
possible because the information about neighboring
tags is useful in general.

As an example, consider the situation where we
are going to annotate a three-word sentence with
part-of-speech tags. Figure 1 shows the four possi-
ble ways of decomposition. They correspond to the
following equations:

(a) P (t1...t3|o) = P (t1|o)P (t2|t1o)P (t3|t2o) (5)

(b) P (t1...t3|o) = P (t3|o)P (t2|t3o)P (t1|t2o) (6)

(c) P (t1...t3|o) = P (t1|o)P (t3|o)P (t2|t3t1o) (7)

(d) P (t1...t3|o) = P (t2|o)P (t1|t2o)P (t3|t2o) (8)

(a) and (b) are the standard left-to-right and right-
to-left decompositions. Notice that in decomposi-
tion (c), the local classifier can use the information
about the tags on both sides when decidingt2. If,
for example, the second word is difficult to tag (e.g.
an unknown word), we might as well take the de-
composition structure (c) because the local classifier
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can use rich information when deciding the tag of
the most difficult word. In general if we have an
n-word sentence and adopt a first-order markov as-
sumption, we have2n−1 possible ways of decompo-
sition because each of then − 1 edges in the cor-
responding graph has two directions (left-to-right or
right-to-left).

Our bidirectional inference method is to consider
all possible decomposition structures and choose the
“best” structure and tag sequence. We will show in
the next section that this is actually possible in poly-
nomial time by dynamic programming.

As for the training, let us look at the equa-
tions of four different decompositions above. You
can notice that there are only four types of local
conditional probabilities:P (ti|ti−1o), P (ti|ti+1o),
P (ti|ti−1ti+1o), andP (ti|o).

This means that if we have these four types of lo-
cal classifiers, we can consider any decomposition
structures in the decoding stage. These local classi-
fiers can be obtained by training with corresponding
neighboring tag information. Training the first two
types of classifiers is exactly the same as the train-
ing of popular left-to-right and right-to-left sequen-
tial classification models respectively.

If we take a second-order markov assumption, we
need to train 16 types of local classifiers because
each of the four neighboring tags of a classification
target has two possibilities of availability. In gen-
eral, if we take ak-th order markov assumption, we
need to train22k types of local classifies.

2.1 Polynomial Time Inference

This section describes an algorithm to find the de-
composition structure and tag sequence that give the
highest probability. The algorithm for the first-order
case is an adaptation of the algorithm for decoding
the best sequence on a bidirectional dependency net-
work introduced by (Toutanova et al., 2003), which
originates from the Viterbi decoding algorithm for
second-order markov models.

Figure 2 shows a polynomial time decoding al-
gorithm for our bidirectional inference. It enumer-
ates all possible decomposition structures and tag
sequences by recursive function calls, and finds the
highest probability sequence. Polynomial time is
achieved by caching. Note that for each local clas-
sification, the function chooses the appropriate local

function bestScore()
{

return bestScoreSub(n+2,〈end, end, end〉, 〈L,L〉);
}

function bestScoreSub(i+1,〈ti−1, ti, ti+1〉, 〈di−1, di〉)
{

// memorization
if (cached(i+1,〈ti−1, ti, ti+1〉, 〈di−1, di〉))

return cache(i+1,〈ti−1, ti, ti+1〉, 〈di−1, di〉);
// left boundary case
if (i = -1)

if (〈ti−1, ti, ti+1〉 = 〈start, start, start〉) return 1;
else return 0;

// recursive case
P = localClassification(i,〈ti−1, ti, ti+1〉, 〈di−1, di〉);
returnmaxdi−2 maxti−2 P×

bestScoreSub(i,〈ti−2, ti−1, ti〉, 〈di−2, di−1〉);
}

function localClassification(i,〈ti−1, ti, ti+1〉, 〈di−1, di〉)
{

if (di−1 = L & di = L) returnP (ti|ti+1, o);
if (di−1 = L & di = R) returnP (ti|o);
if (di−1 = R & di = L) returnP (ti|ti−1ti+1, o);
if (di−1 = R & di = R) returnP (ti|ti−1, o);
}

Figure 2: Pseudo-code for bidirectional inference
for the first-order conditional markov models.di is
the direction of the edge betweenti andti+1.

classifier by taking into account the directions of the
adjacent edges of the classification target.

The second-order case is similar but slightly more
complex. Figure 3 shows the algorithm. The recur-
sive function needs to consider the directions of the
four adjacent edges of the classification target, and
maintain the directions of the two neighboring edges
to enumerate all possible edge directions. In addi-
tion, the algorithm rules out cycles in the structure.

2.2 Decoding with the Easiest-First Strategy

We presented a polynomial time decoding algorithm
in the previous section. However, polynomial time is
not low enough in practice. Indeed, even the Viterbi
decoding of second-order markov models for POS
tagging is not practical unless some pruning method
is involved. The computational cost of the bidirec-
tional decoding algorithm presented in the previous
section is, of course, larger than that because it enu-
merates all possible directions of the edges on top of
the enumeration of possible tag sequences.

In this section we present a greedy version of the
decoding method for bidirectional inference, which
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function bestScore()
{

return bestScoreSub(n+3,〈end, end, end, end, end〉, 〈L,L, L, L〉, 〈L,L〉);
}

function bestScoreSub(i+2,〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′i−1, di−1, di, d
′
i+1〉, 〈di−2, d

′
i〉)

{
// to avoid cycles
if (di−1 = di & di != d′i) return 0;
// memorization
if (cached(i+2,〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′i−1, di−1, di, d

′
i+1〉, 〈di−2, d

′
i〉)

return cache(i+2,〈ti−2, ti−1, ti, ti+1ti+2〉, 〈d′i−1, di−1, di, d
′
i+1〉, 〈di−2, d

′
i〉);

// left boundary case
if (i = -2)

if (〈ti−2, ti−1, ti, ti+1, ti+2〉 = 〈start, start, start, start, start〉) return 1;
else return 0;

// recursive case
P = localClassification(i,〈ti−2, ti−1, ti, ti+1, ti+2〉, 〈d′i−1, di−1, di, d

′
i+1〉);

returnmaxd′
i−2

maxdi−3 maxti−3 P× bestScoreSub(i+1,〈ti−3, ti−2, ti−1, titi+1〉, 〈d′i−2, di−2, di−1, d
′
i〉, 〈di−3, d

′
i−1〉);

}

Figure 3: Pseudo-code for bidirectional inference for the second-order conditional markov models.di is the
direction of the edge betweenti andti+1. d′i is the direction of the edge betweenti−1 andti+1. We omit the
localClassification function because it is the obvious extension of that for the first-order case.

is extremely simple and significantly more efficient
than full bidirectional decoding.

Instead of enumerating all possible decomposi-
tion structures, the algorithm determines the struc-
ture by adopting the easiest-first strategy. The whole
decoding algorithm is given below.

1. Find the “easiest” word to tag.

2. Tag the word.

3. Go back to 1. until all the words are tagged.

We assume in this paper that the “easiest” word
to tag is the word for which the classifier outputs
the highest probability. In finding the easiest word,
we use the appropriate local classifier according to
the availability of the neighboring tags. Therefore,
in the first iteration, we always use the local classi-
fiers trained with no contextual tag information (i.e.
(P (ti|o)). Then, for example, ift3 has been tagged
in the first iteration in a three-word sentence, we use
P (t2|t3o) to compute the probability for taggingt2
in the second iteration (as in Figure 1 (b)).

A naive implementation of this algorithm requires
O(n2) invocations of local classifiers, wheren is the
number of the words in the sentence, because we
need to update the probabilities over the words at

each iteration. However, ak-th order Markov as-
sumption obviously allows us to skip most of the
probability updates, resulting inO(kn) invocations
of local classifiers. This enables us to build a very
efficient tagger.

3 Maximum Entropy Classifier

For local classifiers, we used a maximum entropy
model which is a common choice for incorporating
various types of features for classification problems
in natural language processing (Berger et al., 1996).

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy
modeling with inequality constraints (Kazama and
Tsujii, 2003). The model gives equally good per-
formance as the maximum entropy modeling with
Gaussian priors (Chen and Rosenfeld, 1999), and
the size of the resulting model is much smaller than
that of Gaussian priors because most of the param-
eters become zero. This characteristic enables us
to easily handle the model data and carry out quick
decoding, which is convenient when we repetitively
perform experiments. This modeling has one param-
eter to tune, which is called thewidth factor. We
tuned this parameter using the development data in
each type of experiments.
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Current word wi & ti
Previous word wi−1 & ti
Next word wi+1 & ti
Bigram features wi−1, wi & ti

wi, wi+1 & ti
Previous tag ti−1 & ti
Tag two back ti−2 & ti
Next tag ti+1 & ti
Tag two ahead ti+2 & ti
Tag Bigrams ti−2, ti−1 & ti

ti−1, ti+1 & ti
ti+1, ti+2 & ti

Tag Trigrams ti−2, ti−1, ti+1 & ti
ti−1, ti+1, ti+2 & ti

Tag 4-grams ti−2, ti−1, ti+1, ti+2 & ti
Tag/Word ti−1, wi & ti
combination ti+1, wi & ti

ti−1, ti+1, wi & ti
Prefix features prefixes ofwi & ti

(up to length 10)
Suffix features suffixes ofwi & ti

(up to length 10)
Lexical features whetherwi has a hyphen &ti

whetherwi has a number &ti
whetherwi has a capital letter &ti
whetherwi is all capital &ti

Table 1: Feature templates used in POS tagging ex-
periments. Tags are parts-of-speech. Tag features
are not necessarily used in all the models. For ex-
ample, “next tag” features cannot be used in left-to-
right models.

4 Experiments

To evaluate the bidirectional inference methods pre-
sented in the previous sections, we ran experiments
on POS tagging and text chunking with standard En-
glish data sets.

Although achieving the best accuracy is not the
primary purpose of this paper, we explored useful
feature sets and parameter setting by using develop-
ment data in order to make the experiments realistic.

4.1 Part-of-speech tagging experiments

We split the Penn Treebank corpus (Marcus et al.,
1994) into training, development and test sets as in
(Collins, 2002). Sections 0-18 are used as the train-
ing set. Sections 19-21 are the development set, and
sections 22-24 are used as the test set. All the ex-
periments were carried out on the development set,
except for the final accuracy report using the best
setting.

For features, we basically adopted the feature set

Method Accuracy Speed
(%) (tokens/sec)

Left-to-right (Viterbi) 96.92 844
Right-to-left (Viterbi) 96.89 902
Dependency Networks 97.06 1,446
Easiest-last 96.58 2,360
Easiest-first 97.13 2,461
Full bidirectional 97.12 34

Table 2: POS tagging accuracy and speed on the de-
velopment set.

Method Accuracy (%)
Dep. Networks (Toutanova et al., 2003) 97.24
Perceptron (Collins, 2002) 97.11
SVM (Gimenez and Marquez, 2003) 97.05
HMM (Brants, 2000) 96.48
Easiest-first 97.10
Full Bidirectional 97.15

Table 3: POS tagging accuracy on the test set (Sec-
tions 22-24 of the WSJ, 5462 sentences).

provided by (Toutanova et al., 2003) except for com-
plex features such as crude company-name detection
features because they are specific to the Penn Tree-
bank and we could not find the exact implementation
details. Table 1 lists the feature templates used in our
experiments.

We tested the proposed bidirectional methods,
conventional unidirectional methods and the bidirec-
tional dependency network proposed by Toutanova
(Toutanova et al., 2003) for comparison.1. All
the models are second-order. Table 2 shows the
accuracy and tagging speed on the development
data2. Bidirectional inference methods clearly out-
performed unidirectional methods. Note that the
easiest-first decoding method achieves equally good
performance as full bidirectional inference. Table 2
also shows that the easiest-last strategy, where we
select and tag the most difficult word at each itera-
tion, is clearly a bad strategy.

An example of easiest-first decoding is given be-
low:

1For dependency network and full bidirectional decoding,
we conducted pruning because the computational cost was too
large to perform exhaustive search. We pruned a tag candidate if
the zero-th order probability of the candidateP (ti|o) was lower
than one hundredth of the zero-th order probability of the most
likely tag at the token.

2Tagging speed was measured on a server with an AMD
Opteron 2.4GHz CPU.
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The/DT/4 company/NN/7 had/VBD/11
sought/VBN/14 increases/NNS/13 total-
ing/VBG/12 $/$/2 80.3/CD/5 million/CD/8
,/,/1 or/CC/6 22/CD/9 %/NN/10 ././3

Each token represents Word/PoS/DecodingOrder.
Typically, punctuations and articles are tagged first.
Verbs are usually tagged in later stages because their
tags are likely to be ambiguous.

We applied our bidirectional inference methods
to the test data. The results are shown in Table 3.
The table also summarizes the accuracies achieved
by several other research efforts. The best accuracy
is 97.24% achieved by bidirectional dependency net-
works (Toutanova et al., 2003) with a richer set of
features that are carefully designed for the corpus. A
perceptron algorithm gives 97.11% (Collins, 2002).
Gimenez and Marquez achieve 97.05% with support
vector machines (SVMs). This result indicates that
bidirectional inference with maximum entropy mod-
eling can achieve comparable performance to other
state-of-the-art POS tagging methods.

4.2 Chunking Experiments

The task of chunking is to find non-recursive phrases
in a sentence. For example, a chunker segments the
sentence “He reckons the current account deficit will
narrow to only 1.8 billion in September” into the fol-
lowing,

[NP He] [VP reckons] [NP the current account
deficit] [VP will narrow] [PP to] [NP only 1.8 bil-
lion] [PP in] [NP September] .

We can regard chunking as a tagging task by con-
verting chunks into tags on tokens. There are several
ways of representing text chunks (Sang and Veen-
stra, 1999). We tested the Start/End representation
in addition to the popular IOB2 representation since
local classifiers can have fine-grained information
on the neighboring tags in the Start/End represen-
tation.

For training and testing, we used the data set pro-
vided for the CoNLL-2000 shared task. The training
set consists of section 15-18 of the WSJ corpus, and
the test set is section 20. In addition, we made the
development set from section 213.

We basically adopted the feature set provided in

3We used the Perl script provided on
http://ilk.kub.nl/˜ sabine/chunklink/

Current word wi & ti
Previous word wi−1 & ti
Word two back wi−2 & ti
Next word wi+1 & ti
Word two ahead wi+2 & ti
Bigram features wi−2, wi−1 & ti

wi−1, wi & ti
wi, wi+1 & ti
wi+1, wi+2 & ti

Current POS pi & ti
Previous POS pi−1 & ti
POS two back pi−2 & ti
Next POS pi+1 & ti
POS two ahead pi+2 & ti
Bigram POS features pi−2, pi−1 & ti

pi−1, pi & ti
pi, pi+1 & ti
pi+1, pi+2 & ti

Trigram POS features pi−2, pi−1, pi & ti
pi−1, pi, pi+1 & ti
pi, pi+1, pi+2 & ti

Previous tag ti−1 & ti
Tag two back ti−2 & ti
Next tag ti+1 & ti
Tag two ahead ti+2 & ti
Bigram tag features ti−2, ti−1 & ti

ti−1, ti+1 & ti
ti+1, ti+2 & ti

Table 4: Feature templates used in chunking experi-
ments.

(Collins, 2002) and used POS-trigrams as well. Ta-
ble 4 lists the features used in chunking experiments.

Table 5 shows the results on the development set.
Again, bidirectional methods exhibit better perfor-
mance than unidirectional methods. The difference
is bigger with the Start/End representation. Depen-
dency networks did not work well for this chunking
task, especially with the Start/End representation.

We applied the best model on the development
set in each chunk representation type to the test
data. Table 6 summarizes the performance on the
test set. Our bidirectional methods achieved F-
scores of 93.63 and 93.70, which are better than the
best F-score (93.48) of the CoNLL-2000 shared task
(Sang and Buchholz, 2000) and comparable to those
achieved by other state-of-the-art methods.

5 Discussion

There are some reports that one can improve the
performance of unidirectional models by combining
outputs of multiple taggers. Shen et al. (2003) re-
ported a 4.9% error reduction of supertagging by
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Representation Method Order Recall Precision F-score Speed (tokens/sec)
IOB2 Left-to-right 1 93.17 93.05 93.11 1,775

2 93.13 92.90 93.01 989
Right-to-left 1 92.92 92.82 92.87 1,635

2 92.92 92.74 92.87 927
Dependency Networks 1 92.71 92.91 92.81 2,534

2 92.61 92.95 92.78 1,893
Easiest-first 1 93.17 93.04 93.11 2,441

2 93.35 93.32 93.33 1,248
Full Bidirectional 1 93.29 93.14 93.21 712

2 93.26 93.12 93.19 48
Start/End Left-to-right 1 92.98 92.69 92.83 861

2 92.96 92.67 92.81 439
Right-to-left 1 92.92 92.83 92.87 887

2 92.89 92.74 92.82 451
Dependency Networks 1 87.10 89.56 88.32 1,894

2 87.16 89.44 88.28 331
Easiest-first 1 93.33 92.95 93.14 1,950

2 93.31 92.95 93.13 1,016
Full Bidirectional 1 93.52 93.26 93.39 392

2 93.44 93.20 93.32 4

Table 5: Chunking F-scores on the development set.

Method Recall Precision F-score
SVM (Kudoh and Matsumoto, 2000) 93.51 93.45 93.48
SVM voting (Kudo and Matsumoto, 2001) 93.92 93.89 93.91
Regularized Winnow (with basic features) (Zhang et al., 2002)93.60 93.54 93.57
Perceptron (Carreras and Marquez, 2003) 93.29 94.19 93.74
Easiest-first (IOB2, second-order) 93.59 93.68 93.63
Full Bidirectional (Start/End, first-order) 93.70 93.65 93.70

Table 6: Chunking F-scores on the test set (Section 20 of the WSJ, 2012 sentences).

pairwise voting between left-to-right and right-to-
left taggers. Kudo et al. (2001) attained performance
improvement in chunking by conducting weighted
voting of multiple SVMs trained with distinct chunk
representations. The biggest difference between our
approach and such voting methods is that the lo-
cal classifier in our bidirectional inference methods
can have rich information for decision. Also, vot-
ing methods generally need many tagging processes
to be run on a sentence, which makes it difficult to
build a fast tagger.

Our algorithm can be seen as an ensemble classi-
fier by which we choose the highest probability one
among the different taggers with all possible decom-
position structures. Although choosing the highest
probability one is seemingly natural and one of the
simplest ways for combining the outputs of different
taggers, one could use a different method (e.g. sum-
ming the probabilities over the outputs which share
the same label sequence). Investigating the methods

for combination should be an interesting direction of
future work.

As for the computational cost for training, our
methods require us to train22n types of classifiers
when we adopt annth order markov assumption. In
many cases a second-order model is sufficient be-
cause further increase ofn has little impact on per-
formance. Thus the training typically takes four or
16 times as much time as it would take for training a
single unidirectional tagger, which looks somewhat
expensive. However, because each type of classi-
fier can be trained independently, the training can
be performed completely in parallel and run with
the same amount of memory as that for training a
single classifier. This advantage contrasts with the
case for CRFs which requires substantial amount of
memory and computational cost if one tries to incor-
porate higher-order features about tag sequences.

Tagging speed is another important factor in
building a practical tagger for large-scale text min-
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ing. Our inference algorithm with the easiest-first
strategy needs no Viterbi decoding unlike MEMMs
and CRFs, and makes it possible to perform very fast
tagging with high precision.

6 Conclusion

We have presented a bidirectional inference algo-
rithm for sequence labeling problems such as POS
tagging, named entity recognition and text chunk-
ing. The algorithm can enumerate all possible de-
composition structures and find the highest prob-
ability sequence together with the corresponding
decomposition structure in polynomial time. We
have also presented an efficient bidirectional infer-
ence algorithm based on the easiest-first strategy,
which gives comparable performance to full bidi-
rectional inference with significantly lower compu-
tational cost.

Experimental results of POS tagging and text
chunking show that the proposed bidirectional in-
ference methods consistently outperform unidi-
rectional inference methods and our bidirectional
MEMMs give comparable performance to that
achieved by state-of-the-art learning algorithms in-
cluding kernel support vector machines.

A natural extension of this work is to replace
the maximum entropy modeling, which was used as
the local classifiers, with other machine learning al-
gorithms. Support vector machines with appropri-
ate kernels is a good candidate because they have
good generalization performance as a single classi-
fier. Although SVMs do not output probabilities, the
easiest-first method would be easily applied by con-
sidering the margins output by SVMs as the confi-
dence of local classification.
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Abstract

Finite-state approaches have been highly successful at describ-
ing the morphological processes of many languages. Such
approaches have largely focused on modeling the phone- or
character-level processes that generate candidate lexicaltypes,
rather thantokensin context. For the full analysis of words
in context,disambiguationis also required (Hakkani-T̈ur et al.,
2000; Hajǐc et al., 2001). In this paper, we apply a novel
source-channel model to the problem of morphological disam-
biguation (segmentation into morphemes, lemmatization, and
POS tagging) for concatenative, templatic, and inflectional lan-
guages. The channel model exploits an existing morphological
dictionary, constraining each word’s analysis to be linguistically
valid. The source model is a factored, conditionally-estimated
random field (Lafferty et al., 2001) that learns to disambiguate
the full sentence by modeling local contexts. Compared with
baseline state-of-the-art methods, our method achieves statisti-
cally significant error rate reductions on Korean, Arabic, and
Czech, for various training set sizes and accuracy measures.

1 Introduction

One of the great successes in computational linguistics
has been the construction of morphological analyzers for
diverse languages. Such tools take in words and enu-
merate the possible morphological analyses—typically a
sequence of morphemes, perhaps part-of-speech tagged.
They are often encoded as finite-state transducers (Ka-
plan and Kay, 1981; Koskenniemi, 1983; Beesley and
Karttunen, 2003).

What such tools do not provide is a means todis-
ambiguatea word incontext. For languages with com-
plex morphological systems (inflective, agglutinative,
and polysynthetic languages, for example), a word form
may have many analyses. To pick the right one, we
must consider the word’s context. This problem has
been tackled using statistical sequence models for Turk-
ish (Hakkani-T̈ur et al., 2000) and Czech (Hajič et al.,
2001); their approaches (and ours) are not unlike POS
tagging, albeit with complex tags.

∗This work was supported by a Fannie and John Hertz
Foundation Fellowship, a NSF Fellowship, and a NDSEG Fel-
lowship (sponsored by ARO and DOD). The views expressed
are not necessarily endorsed by sponsors. We thank Eric Gold-
lust and Markus Dreyer for Dyna language support and Jason
Eisner, David Yarowsky, and three anonymous reviewers for
comments that improved the paper. We also thank Jan Hajič
and Pavel Krbec for sharing their Czech tagger.

In this paper, we describe context-based models for
morphological disambiguation that take full account of
existing morphological dictionaries by estimatingcondi-
tionally against only dictionary-accepted analyses of a
sentence (§2). These models are an instance of condi-
tional random fields (CRFs; Lafferty et al., 2001) and
include overlapping features. Our applications include
diverse disambiguation frameworks and we make use of
linguistically-inspired features, such as local lemma de-
pendencies and inflectional agreement. We apply our
model to Korean and Arabic, demonstrating state-of-the-
art results in both cases (§3). We then describe how our
model can be expanded to complex, structured morpho-
logical tagging, including an efficient estimation method,
demonstrating performance on Czech (§4).

2 Modeling Framework

Our framework is a source-channel model (Jelinek,
1976). Thesource(modeled probabilistically byps) gen-
erates a sequence of unambiguous tagged morphemes
y = 〈y1, y2, ...〉 ∈ Y+ (Y is the set of unambiguous
tagged morphemes in the language).1 The precise con-
tents of the tag will vary by language and corpus but
will minimally include POS.y passes through achan-
nel (modeled bypc), which outputsx = 〈x1, x2, ...〉 ∈
(X ∪ {OOV})+, a sequence of surface-level words in the
language and out-of-vocabulary words (OOV; X is the
language’s vocabulary). Note that|x| may be smaller
than |y|, since some morphemes may combine to make
a word. We will denote byyi the contiguous subse-
quence ofy that generatesxi; ~y will refer to a dictionary-
recognizedtypein Y+.

At test time, wedecodethe observedx into the most
probable sequence of tag/morpheme pairs:

ŷ = argmax
y

p(y | x) = argmax
y

ps(y) · pc(x | y) (1)

Training involves constructingps andpc. We assume
that there exists a training corpus of text (each wordxi

annotated with its correct analysisy∗i ) and a morpholog-
ical dictionary. We next describe the channel model and
the source model.

1The sequence also includes segmentation markings be-
tween words, not shown to preserve clarity.
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a. There are many kinds of trench mortars.

b. . — 1998 1998—Sanaa accuses Riyadh of occupying border territories.

0 1
NUM/1998

2
PUNC/-

3

NOUN_PROP/SnEA’

NOUN_PROP/SanoEA’

4

IV3FS/tu

IV2MS/tu

5

IV3FS/ta

IV2MS/ta 6

NOUN_PROP/tthm

IV_PASS/t~aham

IV/t~ahim 7 8

9 10 11

12 13 14

c. Klimatizovańa j́ıdelna, sv̌etlá ḿıstnost pro sńıdaňe. Air-conditioned dining room, well-lit breakfast room.

0 1

Adj {Neu Pl Acc Pos Aff}/klimatizovaný

Adj {Neu Pl Voc Pos Aff}/klimatizovaný

Adj {Fem Si Voc Pos Aff}/klimatizovaný

Adj {Fem Si Nom Pos Aff}/klimatizovaný

Adj {Neu Pl Nom Pos Aff}/klimatizovaný

2
Noun {Fem Si Nom Aff}/jídelna

3
Punc/,

4

Adj {Neu Pl Pos Aff}/svetlý

Adj {Fem Si Voc Pos Aff}/svetlý

Adj {Neu Pl Acc Pos Aff}/svetlý
Adj {Neu Pl Voc Pos Aff}/svetlý

Adj {Fem Si Nom Pos Aff}/svetlý

5

Noun {Fem Si Acc Aff}/místnost

Noun {Fem Si Nom Aff}/místnost
6 7 8

Figure 1: Lattices for example sentences in Korean (a), Arabic (b), and Czech (c). Arabic lemmas are not shown, and some Arabic
and Czech arcs are unlabeled, for readability. The Arabic morphemes are shown in Buckwalter’s encoding. The arcs in the correct
path through each lattice are solid (incorrect arcs are dashed). Note the adjective-noun agreement in the correct path through the
Czech lattice (c). The Czech lattice has no lemma-ambiguity; this is typical in Czech (see§4).

2.1 Morphological dictionaries and the channel

A great deal of research has gone into developing mor-
phological analysis tools that enumerate valid analyses
~y ∈ Y+ for a particular wordx ∈ X. Typically these
tools are unweighted and therefore do not enable token
disambiguation.2

They are available for many languages. We will refer
to this source of categorial lexical information as a mor-
phological dictionaryd that mapsX → 2Y+

. The setd(x)
is the set of analyses for wordx; the setd(x) is the set of
whole-sentence analyses for sentencex = 〈x1, x2, ...〉.

d(x) can be represented as an acyclic lattice with a
“sausage” shape familiar from work in speech recogni-
tion (Mangu et al., 1999). Note that for languages with
bound morphemes,d(x) will consist of a set of sequences
of tokens, so a given “link” in the sausage lattice may
contain paths of different lengths. Fig. 1 shows sausage
lattices for sentences in three languages.

In this paper, the dictionary defines the support set of
the channel model. That is,pc(x | y) > 0 if and only
if y ∈ d(x). This is a clean way to incorporate do-
main knowledge into the probabilistic model; this kind
of constraint has been applied in previous work at decod-
ing time (Hakkani-T̈ur et al., 2000; Hajǐc et al., 2001). In
such a model, each word is independent of its neighbors
(because the dictionary ignores context).

Estimation. A unigramchannel model defines

2Probabilistic modeling of what we call the morphologi-
cal channel was first carried out by Levinger et al. (1995), who
used unlabeled data to estimatep(~y | x) for Hebrew, with the
support defined by a dictionary.

pc(x | y) def=
|x|∏
i=1

p(xi | yi) (2)

The simplest estimate of this model is to makep(·, ·)
uniform over (x, ~y) such that~y ∈ d(x). Doing so and
marginalizing to getp(x | ~y) makes the channel model
encode categorial information only, leaving all learning
to the source model.3

Another way to estimate this model is, of course,
from data. This is troublesome, because—modulo
optionality—x is expected to beknowngiven ~y, result-
ing in a huge model with mostly 1-valued probabili-
ties. Our solution is to take aprojectionπ of ~y and let
p(· | ~y) ≈ p(· | π(~y)). In this paper,π maps the analysis
to its morphological tag (or tag sequence). We will refer
to this as the “tag channel.”

OOV. Morphological dictionaries typically do not have
complete coverage of a language. We can augment them
in two ways using the training data. If a known wordx
(one for whichd(x) is non-empty) appears in the training
dataset with an analysis not ind(x), we add the entry to
the dictionary. Unknown words (those not recognized by
the dictionary) are replaced by anOOV symbol. d(OOV)
is taken to be the set of all analyses for anyOOV word
seen in training. Rather than attempt to recover the mor-
pheme sequence for anOOV word, in this paper we try
only for the tag sequence, replacing all of anOOV’s mor-
phemes with theOOV symbol. SinceOOV symbols ac-
count for less than 2% of words in our corpora, we leave

3Note that this makes the channel term in Eq. 1 a constant.
Then decoding means maximizingps(y) overy ∈ d(x), equiv-
alently maximizingp(y | d(x)).
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more sophisticated channel models to future work.

2.2 The source model

The source modelps defines a probability distribution
overY+, sequences of (tag, morpheme) pairs. Our source
models can be viewed as weighted multi-tape finite-state
automata, where the weights are associated with local, of-
ten overlapping features of the path through the automa-
ton.

Estimation. We estimate the sourceconditionallyfrom
annotated data. That is, we maximize∑

(x,y)∈X+×Y+

p̃(x,y) log ps

(
y | d(x), ~θ

)
(3)

wherep̃(·, ·) is the empirical distribution defined by the
training data and~θ are the model parameters. In terms
of Fig. 1, our learner maximizes the weight of the correct
(solid) path through each lattice, at the expense of the
other incorrect (dashed) paths. Note that

log ps

(
y | d(x), ~θ

)
= log

ps

(
y | ~θ

)
∑

y′∈d(x) ps

(
y′ | ~θ

) (4)

The sum in the denominator is computed using a dynamic
programming algorithm (akin to the forward algorithm);
it involves computing the sum of all paths through the
“sausage” lattice of possible analyses forx. By doing
this, we allow knowledge of the support of thechannel
model to enter into our estimation of thesourcemodel. It
is important to note that theestimationof the model (the
objective function used in training, Eq. 3) is distinct from
the source-channelstructureof the model (Eq. 1).

The lattice-conditional estimation approach was
first used by Kudo et al. (2004) for Japanese seg-
mentation and hierarchical POS-tagging and by
Smith and Smith (2004) for Korean morphological
disambiguation. The resulting model is an instance of
a conditional random field(CRF; Lafferty et al., 2001).
When training a CRF for POS tagging, IOB chunking
(Sha and Pereira, 2003), or word segmentation (Peng
et al., 2004), one typically structures the conditional
probabilities (in the objective function) using domain
knowledge: in POS tagging, the set of allowed tags for
a word is used; in IOB chunking, the bigram “O I” is
disallowed; and in segmentation, a lexicon is used to
enumerate the possible word boundaries.4

4This refinement is in the same vein as the move frommax-
imum likelihoodestimation toconditional estimation. MLE
would make the sum in the denominator of Eq. 4Y+, which
for log-linear models is often intractable to compute (and for
sequence models may not converge). Conditional estimation
limits the sum to the subset ofY+ that is consistent withx, and
our variant further stipulates consistency with the dictionary en-
tries forx.

Our approach is the same, with two modifications.
First, we model the relationship between labelsyi and
wordsxi in a separately-estimated channel model (§2.1).
Second, our labels are complex. Each wordxi is tagged
with a sequenceof one or more tagged morphemes; the
tags may include multiple fields. This leads to models
with more parameters. It also makes the dictionary es-
pecially important for limiting the size of the sum in the
denominator, since a complex label setY could in prin-
ciple lead to a huge hypothesis space for a given sen-
tencex. Importantly, it makes training conditions more
closely match testing conditions, ruling out hypotheses a
dictionary-aware decoder would never consider.

Optimization. The objective function (Eq. 3) is con-
cave and known to have a unique global maximum. Be-
cause log-linear models and CRFs have been widely de-
scribed elsewhere (e.g., Lafferty, 2001), we note only that
we apply a standard first-order numerical optimization
method (L-BFGS; Liu and Nocedal, 1989). The struc-
ture, features, and regularization of our models will be
described in§3 and§4.

Prior work (morphological source models).
Hakkani-T̈ur et al. (2000) described a system for Turkish
that was essentially a source model; Hajič et al. (2001)
described an HMM-based system for Czech that could
be viewed as a combined source and channel. Both
used dictionaries and estimated their (generative) models
using maximum likelihood (with smoothing).5 Given
enough data, a ML-estimated model will learn to recog-
nize a good pathy, but it may not learn to discriminate
a goody from wrong alternativesper se. The generative
framework is limiting as well, disallowing the straight-
forward inclusion of arbitrary overlapping features. We
present a competitive Czech model in§4.

3 Concatenative Models

The beauty of log-linear models is that estimation is
straightforward givenany features, even ones that are
not orthogonal (i.e., “overlap”). This permits focusing
on feature (or feature template) selection without worries
about the mathematics of training.

We consider two languages modeled by concatenative
processes with surface changes at morpheme boundaries:
Korean and Arabic.

Our model includes features for tagn-grams, mor-
phemen-grams, and pairs of the two (possibly of differ-
ent lengths and offsets). Fig. 2 illustratesTM3, our base
model. TM3 includes feature templates for some tuples
of three or fewer elements, plus begin and end templates.

5Hajič et al. also included a rule-based system for pruning
hypotheses, which gave slight performance gains.
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Figure 2: The base two-level trigram source model,TM3. Each
polygon corresponds to a feature template. This is a two level,
second-order Markov model (weighted finite-state machine) pa-
rameterized with overlapping features. Note that only some fea-
tures are labeled in the diagram.

A variant, TM3H, includes all of the same templates,
plus a similar set of templates that look only atheadmor-
phemes. For instance, a feature fires for each trigram
of heads, even though there are (bound) morphemes be-
tween them. This increases the domain of locality for se-
mantic content-bearing morphemes. This model requires
slight changes to the dynamic programming algorithms
for inference and training (the previous two heads must
be remembered at each state).

Every instantiation of the templates seen inany lattice
d(x) built from training data is included in the model, not
just those seen in correct analysesy∗.6

3.1 Experimental design

In all of our experiments, we vary the training set size
and the amount of smoothing, which is enforced by a di-
agonal Gaussian prior (L2 regularizer) with varianceσ2.
The σ2 = ∞ case is equivalent to not smoothing. We
compare performance to the expected performance of a
randomized baseline that picks for each word tokenx an
analysis fromd(x); this gives a measure of the amount of
ambiguity and is denoted “channel only.” Performance
of unigram, bigram, and trigram HMMs estimated us-
ing maximum likelihood (barely smoothed, using add-
10−14) is also reported. (The unigram HMM simply
picks the most likely~y for eachx, based on training data
and is so marked.)

In the experiments in this section, we report three per-
formance measures.Tagging accuracy is the fraction
of words whose tag sequence was correctly identified
in entirety; morphemeaccuracy is defined analogously.

6If we used only features observed to occur iny∗, we would
not be able to learn negative weights forunlikelybits of structure
seen in the latticed(x) but not iny∗.

Lemmaaccuracy is the fraction of words whose lemma
was correctly identified.

3.2 Korean experiments

We appliedTM3 and TM3H to Korean. The dataset is
the Korean Treebank (Han et al., 2002), with up to 90%
used for training and 10% (5K words) for test. The mor-
phological dictionary isklex (Han, 2004). There are 27
POS tags in the tag set; the corpus contains 10K word
types and 3,272 morpheme types. There are 1.7 mor-
phemes per word token on average (σ = 0.75). A Ko-
rean word generally consists of a head morpheme with a
series of enclitic suffixes. In training the head-augmented
model TM3H, we assume the first morpheme of every
word is the head and lemma.

Results are shown in Tab. 1.TM3H achieved very slight
gains overTM3, and the tag channel model was helpful
only with the smaller training set. The oracle (last line
of Tab. 1) demonstrates that the coverage of the dictio-
nary remains an obstacle, particularly for recovering mor-
phemes. Another limitation is the small amount of train-
ing data, which may be masking differences among esti-
mation conditions. We report the performance ofTM3H

with “factored” estimation. This will be discussed in
detail in §4; it means that a model containingonly the
head features was trained on its own, then combined with
the independently trainedTM3 model at test time. Fac-
tored training was slightly faster and did not affect per-
formance at all; accuracy scores were identical with un-
factored training.

Prior work (Korean). Similar results were presented
by Smith and Smith (2004), using a similar estimation
strategy with a model that included far more feature tem-
plates. TM3 has about a third as many parameters and
TM3H about half; performance is roughly the same (num-
bers omitted for space). Korean disambiguation results
were also reported by Cha et al. (1998), who applied a
deterministic morpheme pattern dictionary to segment
words, then used a bigram HMM tagger. They also ap-
plied transformation-based learning to fix common er-
rors. Due to differences in tag set and data, we cannot
compare to that model; a bigram baseline is included.

3.3 Arabic experiments

We appliedTM3 andTM3H to Arabic. The dataset is the
Arabic Treebank (Maamouri et al., 2003), with up to 90%
used for training and 10% (13K words) for test. The mor-
phological dictionary is Buckwalter’s analyzer (version
2), made available by the LDC (Buckwalter, 2004).7 This
analyzer has total coverage of the corpus; there are no

7Arabic morphological processing was also addressed by
Kiraz (2000), who gives a detailed review of symbolic work in
that area, and by Darwish (2002).
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Korean Arabic
POS tagging morpheme lemma POS tagging morpheme lemma

accuracy accuracy accuracy accuracy accuracy accuracy
σ2 32K 49K 32K 49K 32K 49K 38K 76K 114K 38K 76K 114K 38K 76K 114K

most likely~y 86.0 86.9 87.5 88.8 95.3 95.7 84.5 87.0 88.3 83.2 86.2 87.0 37.9 39.8 40.9
channel only 62.6 62.6 70.3 70.8 86.4 86.4 43.7 43.7 43.7 41.2 41.2 41.2 27.2 27.2 27.2
bigram HMM 90.7 91.2 83.2 86.1 96.9 97.2 90.3 92.0 92.8 89.2 91.4 91.6 85.7∗ 87.8∗ 87.9∗

trigram HMM 91.5 91.8 83.3 86.0 97.0 97.2 89.8 92.0 93.0 88.5 91.3 91.3 85.2∗ 87.8∗ 87.7∗

TM3 ∞ 90.7 91.3 89.3 90.5 97.1 97.4 94.6 95.4 95.9 93.4 94.3 94.9 89.7∗ 90.5∗ 90.7∗

un
ifo

rm
ch

an
ne

l

10 91.2 91.7 89.4 90.6 97.1 97.6 95.3 95.7 96.1 93.9 94.5 95.0 90.2∗ 90.6∗ 91.1∗

1 91.5 92.2 89.4 90.6 97.1 97.5 95.2 95.7 96.0 93.9 94.5 94.7 90.0∗ 90.7∗ 91.0∗

TM3H ∞ 91.1 91.1 89.3 90.4 97.2 97.5 95.0 95.7 96.0 94.0 94.8 95.3 93.3 93.9 94.2
(factored) 10 91.3 91.9 89.5 90.6 97.3 97.6 95.3 95.7 96.1 94.2 94.7 95.4 93.4 93.6 94.4

1 91.4 92.2 89.5 90.7 97.3 97.6 95.4 95.8 96.1 94.4 94.8 95.1 93.3 93.8 94.2
channel only 51.4 51.3 60.6 60.4 81.2 81.7 41.4 40.6 40.1 39.9 39.1 38.6 26.7∗ 26.5∗ 26.4∗

bigram HMM 91.2 90.9 88.9 90.1 97.0 97.3 91.0 92.3 93.4 89.7 91.5 91.9 88.1∗ 89.9∗ 90.0∗

trigram HMM 91.6 91.9 88.9 90.2 97.1 97.4 91.1 92.9 93.7 89.6 92.2 92.0 88.1∗ 90.6∗ 90.4∗

TM3 ∞ 90.8 91.0 89.5 90.5 97.4 97.5 95.1 95.7 96.0 93.8 94.6 95.0 92.2∗ 93.1∗ 93.2∗

ta
g

ch
an

ne
l

10 90.6 91.1 89.5 90.7 97.2 97.6 95.2 95.6 96.0 93.9 94.7 95.0 92.4∗ 93.2∗ 93.5∗

1 90.1 90.9 89.5 90.7 97.1 97.6 94.9 95.5 95.8 93.8 94.5 94.8 92.2∗ 93.0∗ 93.1∗

TM3H ∞ 91.0 91.0 89.4 90.5 97.2 97.6 95.1 95.8 96.0 94.0 95.1 95.4 93.3 94.3 94.4
(factored) 10 90.4 91.2 89.6 90.7 97.4 97.6 95.2 95.7 96.0 94.1 94.8 95.4 93.3 94.0 94.6

1 90.1 91.0 89.5 90.7 97.3 97.6 95.1 95.5 95.9 94.1 94.9 95.1 93.3 94.0 94.4
oracle givend(x) 95.3 95.7 90.2 91.2 98.1 98.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 1: Korean (left, 5K test-set) and Arabic (right, 13K test-set) disambiguation. A word is marked correct only if its entire
tag (or morpheme) sequence (or lemma) was correctly identified. Morpheme and lemma accuracy do not includeOOV words. The
oracle is an upper bound on accuracy given the morphological dictionary.∗These models do not explicitly predict lemmas; the
lemma is chosen arbitrarily from those that match the hypothesized tag/morpheme sequence for each word.Bold scores indicate a
significant improvement over the trigram HMM (binomial sign test,p < 0.05).

OOV words. There are 139 distinct POS tags; these con-
tain some inflectional information which we treat atom-
ically. For speed,TM3H was trained in two separate
pieces:TM3 and the lemma features added byTM3H.

Arabic has a templatic morphology in which conso-
nantal roots are transformed into surface words by the
insertion of vowels and ancillary consonants. Our sys-
tem does not model this process except through the use
of Buckwalter’s dictionary to define the set of analyses
for each word (cf., Daya et al., 2004, who modeled inter-
digitation in Hebrew). We treat the analysis of an Ara-
bic word as a sequence~y of pairs of morphemes and
POS tags, plus a lemma. The lemma, given in the dic-
tionary, provides further disambiguation beyond the head
morpheme. The lemma is a standalone dictionary head-
word and not merely the consonantal root, as in some
other work. The “heads” modeled byTM3H correspond
to these lemmas. There are 20K word types, and 34K
morpheme types. There are 1.7 morphemes per word to-
ken on average (σ = 0.77).

Results are shown in Tab. 1. Across tasks and training
set sizes, our models reduce error rates by more than 36%
compared to the trigram HMM source with tag channel.
The TM3H model and the tag channel offer slight gains
over the baseTM3 model (especially on lemmatization),
though the tag channel offers no help in POS tagging.

Prior work (Arabic). Both Diab et al. (2004) and
Habash and Rambow (2005) use support-vector ma-
chines with local features; the former for tokenization,
POS tagging, and base phrase chunking; the latter for
full morphological disambiguation. Diab et al. report
results for a coarsened 24-tag set, while we use the full
139 tags from the Arabic Treebank, so the systems are
not directly comparable. Habash and Rambow present
even better results on the same POS tag set. Our full dis-
ambiguation results appear to be competitive with theirs.
Khoja (2001) and Freeman (2001) describe Arabic POS
taggers and many of the issues involved in developing
them, but because tagged corpora did not yet exist, there
are no comparable quantitative results.

4 Czech: Model and Experiments

Inflective languages like Czech present a new set of chal-
lenges. Our treatment of Czech is not concatenative;
following prior work, the analysis for each wordx is a
single tag/lemma pairy. Inflectional affixes in the sur-
face form are represented as features in the tag. While
lemmatization of Czech is not hard (there is little ambi-
guity), tagging is quite difficult, because morphological
tags are highly complex. Our tag set is the Prague Depen-
dency Treebank (PDT; Hajič, 1998) set, which consists of
fifteen-field tags that indicate POS as well as inflectional
information (case, number, gender, etc.). There are over
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Figure 3: The Czech model, shown as an undirected graphi-
cal model. The structure of the full model is on the left; fac-
tored components for estimation are shown on the right. Each
of these five models contains a subset of theTM3 features. The
full model is only used to decode. The factored models make
training faster and are used for pruning.

1,400 distinct tag types in the PDT.
Czech has been treated probabilistically before, per-

haps most successfully by Hajič et al. (2001).8 In con-
trast, we estimate conditionally (rather than by maximum
likelihood for a generative HMM) and separate the train-
ing of the source and the channel. We also introduce a
novelfactoredtreatment of the morphological tags.

4.1 Factored tags and estimation

Because Czech morphological tags are not monolithic,
the choice among them can be treated as several more or
less orthogonal decisions. The case feature of one word,
for example, is expected to be conditionally independent
of the next word’s gender, given the next word’s case.
Constraints in the language are expected to cause features
like case, number, and gender to agree locally (on words
that have such features) and somewhat independently of
each other. Coarser POS tagging may be treated as an-
other, roughly independent stream.

Log-linear models and the use of a morphological dic-
tionary make this kind of tag factoring possible. Our
approach is to separately train five log-linear models.
Each model is itself an instance of some of the templates
from TM3, modeling a projection of the full analysis.
The model and its factored components are illustrated in
Fig. 3.

POS model. The full tag is replaced by the POS tag
(the first two fields); there are 60 POS tags. TheTM3

8Czech morphological processing was studied by
Petkevǐc (2001), Hlav́acov́a (2001) (who focuses on han-
dling OOV words), and Mŕakov́a and Sedlacek (2003) (who use
partial parsing to reduce the set of possible analyses),inter alia.

feature templates are included twice: once for the full tag
and once for a coarser tag (the first PDT field, for which
there are 12 possible values).9

Gender, number, and case models. The full tag is re-
placed by the gender (or case or number) field. This
model includes bigrams and trigrams as well as field-
morpheme unigram features. These models are intended
to learn to predict local agreement.

Tag-lemma model. This model contains unigram fea-
tures of full PDT tags, both alone and with lemmas. It is
intended to learn to penalize morphological tags that are
rare, or that are rare with a particular lemma. In our for-
mulation, this isnot a channel model, because it ignores
the surface word forms.

Each model is estimated independently of the others.
The latticed(x) against which the conditional probabili-
ties are estimated contains the relevantprojectionof the
full morphological tags (with lemmas). To decode, we
run a Viterbi-like algorithm that uses the union of all
models’ features to pick the best analysis (full morpho-
logical tags and lemmas) allowed by the dictionary.

There are two important advantages of factored train-
ing. First, each model is faster to train alone than a model
with all features merged; in fact, training the fully merged
model takes far too long to be practical. Second, factored
models can be held out at test time to measure their effect
on the system, without retraining.

Prior work (factored training). Separately training
different models that predict the same variables (e.g.,x
andy) then combining them for consensus-based infer-
ence (either through a mixture or a product of proba-
bilities) is an old idea (Genest and Zidek, 1986). Re-
cent work in learning weights for the component “ex-
pert” models has turned tocooperativetechniques (Hin-
ton, 1999). Decoding that findsy (givenx) to maximize
some weighted average of log-probabilities is known as
a logarithmic opinion pool(LOP). LOPs were applied
to CRFs (for named entity recognition and tagging) by
Smith et al. (2005), with an eye toward regularization.
Their experts (each a CRF) contained overlapping feature
sets, and the combined model achieved much the same
effect as training a single model with smoothing. Note
that our models, unlike theirs,partition the feature space;
there is only one CRF, but some parameters are ignored
when estimating other parameters. We have not estimated
log-domain mixing coefficients—we weight all models’
contributions equally. Sutton and McCallum (2005) have
applied factored estimation to CRFs, motivated (like us)
by speed; they also describe how factored estimation

9Lemma-trigram and fine POS-unigram/lemma-bigram fea-
tures were eliminated to limit model size.
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full morph. lemma POS OOV POS
accuracy accuracy accuracy accuracy

σ2 376K 768K 376K 768K 376K 768K 376K 768K
channel only 61.4 60.3 85.1 84.2 88.5 87.2 17.8 16.4
most likely~y 80.0 80.8 98.1 98.1 97.9 97.8 52.0 52.0
Hajič et al. HMM 88.8 89.2 97.9 97.9 95.8 95.8 52.0 52.0
+ OOV model 90.5 90.8 97.9 97.9 96.7 96.6 93.0 92.9

full ∞ 88.1 88.5 98.3 98.5 98.3 98.3 60.2 61.8
oracle given pruning 98.6 99.3 99.5 99.6 99.1 99.7 60.2 90.3

10 88.4 88.5 98.4 98.4 98.3 98.2 61.8 59.4
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.7 93.4 90.6

1 88.6 88.6 98.4 98.4 98.2 98.1 60.0 56.7
oracle given pruning 99.3 99.3 99.5 99.6 99.8 99.8 95.0 94.0

– POS ∞ 87.9 88.0† 98.2 98.2† 98.0 97.9† 55.7 51.7†

10 88.1 88.3† 98.2 98.3† 98.0 97.9† 55.4 51.6†

1 88.4 88.5† 98.2 98.2† 98.0 97.9† 55.0 51.9†

– tag-lemma ∞ 87.8 88.3 98.3 98.6 98.3 98.3 60.2 59.7
10 88.0 88.1 98.4 98.5 98.3 98.2 59.1 59.1
1 88.0 88.1 98.4 98.4 98.2 98.1 59.0 58.1

POS only ∞ 65.6∗ 65.5∗ 98.3 98.6 98.3 98.4 60.2 63.7
10 65.7∗ 65.5∗ 98.5 98.6 98.5 98.5 65.2 66.4
1 65.7∗ 65.5∗ 98.6 98.7 98.6 98.6 67.2 67.2

POS & ∞ 81.2 82.3 98.3 98.6 98.3 98.4 60.2 63.9
tag-lemma† 10 81.9 82.3 98.5 98.6 98.4 98.5 65.8 67.2

1 82.0 82.3 98.4 98.5 98.5 98.4 67.8 66.3
oracle givend(x) 99.8 99.8 99.5 99.6 99.9 99.9 100.0 100.0

Table 2: Czech disambiguation:
test-set (109K words) accuracy. A
word is marked correct only if its
entire morphological tag (or mor-
pheme or POS tag) was correctly
identified. Note that the full tag
is a complex, 15-field morphologi-
cal label, while “POS” is a projec-
tion down to a tagset of size 60.
Lemma accuracy does not include
OOV words. ∗The POS-only model
selects only POS, not full tags; these
measures are expected performance
if the full tag is selected randomly
from those in the dictionary that
match the selected POS.†Required
more aggressive pruning. Bold
scores were significantly better than
the HMM of Hajič et al. (binomial
sign test,p < 0.05). Our models
were slightly but significantly worse
on full tagging, but showed signif-
icant improvements on recovering
POS tags and lemmas.

maximizes a lower bound on the unfactored objective.
Smith and Smith (2004) applied factored estimation to a
bilingual weighted grammar, driven by data limitations.

4.2 Experiments

Our corpus is the PDT (Hajič, 1998), with up to 60% used
for training and 10% (109K words) used for test.10 The
morphological dictionary is the one packaged with the
PDT; it covers about 98% of the tokens in the corpus. The
remaining 2% have (unsurprisingly) a diverse set of 300–
400 distinct tags, depending on the training set size.11

Results are shown in Tab. 2. We compare to the HMM
of (Hajič et al., 2001)without its OOV component.12 We
report morphological tagging accuracy on words; we also
report lemma accuracy (on non-OOV words), POS accu-

10We used less than the full corpus to keep training time
down; note that the training sets are nonetheless substantially
larger than in the Korean and Arabic experiments.

11During training, these project down to manageable num-
bers of hypotheses in the factored models. At test-time, how-
ever, Viterbi search is quite difficult whenOOV symbols occur
consecutively. To handle this, we pruneOOV arcs from the lat-
tices using the factored POS and inflectional models. For each
OOV, every model prunes a projection of the analysis (e.g., the
POS model prunes POS tags) until 90% of the posterior mass or
3 arcs remain (whichever is more conservative). Viterbi decod-
ing is run on a lattice containingOOV arcs consistent with the
pruned projected lattices.

12Resultswith theOOV component are also reported in Tab. 2,
but we cannot guarantee their experimental validity, since the
OOV component is pre-trained and may have been trained on
data in our test set.

racy on all words, and POS accuracy onOOV words. The
channel model (not shown) tended to have a small, harm-
ful effect on performance.

Without any explicit OOV treatment, our POS-only
component model significantly reduces lemma and POS
errors compared to Hajič et al.’s model. On recovering
full morphological tags, ourfull model is close in perfor-
mance to Hajǐc et al., but still significantly worse. It is
likely that for many tasks, these performance gains are
more helpful than the loss on full tagging is harmful.

Why doesn’t our full model perform as well as Hajič et
al.’s model? An error analysis reveals that our full model
(768K,σ2 = 1), compared to the HMM (768K) had 91%
as many number errors but 0.1% more gender and 31%
more case errors. Taking out those three models (“POS
& tag-lemma” in Fig. 2) is helpful on all measures ex-
cept full tagging accuracy, due in part to substantially
increased errors on gender (87% increase), case (54%),
and number (35%). The net effect of these components,
then, is helpful, but not quite helpful enough to match
a well-smoothed HMM on complex tagging. We com-
pared the models on the training set and found the same
pattern, demonstrating that this is not merely a matter of
over-fitting.

5 Future Work

Two clear ways to improve our models present them-
selves. The first is betterOOV handling, perhaps through
an improved channel model. Possibilities include learn-
ing weights to go inside the FST-encoded dictionaries and
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directly modeling spelling changes. The second is to turn
our factored model into a LOP. Training the mixture co-
efficients should be straightforward (if time-consuming)
with a development dataset.

A drawback of our system (especially for Czech) is
that some components (most notably, the Czech POS
model) take a great deal of time to train (up to two weeks
on 2GHz Pentium systems). Speed improvements are
expected to come from eliminating some of the over-
lapping feature templates, generalized speedups for log-
linear training, and perhaps further factoring.

6 Conclusion

We have explored morphological disambiguation of di-
verse languages using log-linear sequence models. Our
approach reduces error rates significantly on POS tag-
ging (Arabic and Czech), morpheme sequence recovery
(Korean and Arabic), and lemmatization (all three lan-
guages), compared to baseline state-of-the-art methods
For complex analysis tasks (e.g., Czech tagging), we have
demonstrated that factoring a large model into smaller
components can simplify training and achieve excel-
lent results. We conclude that aconditionally-estimated
source model informed by an existing morphological dic-
tionary (serving as an unweighted channel) is an effective
approach to morphological disambiguation.
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Abstract 

Key phrases are usually among the most 
information-bearing linguistic structures. 
Translating them correctly will improve 
many natural language processing appli-
cations. We propose a new framework to 
mine key phrase translations from web 
corpora. We submit a source phrase to a 
search engine as a query, then expand 
queries by adding the translations of 
topic-relevant hint words from the re-
turned snippets. We retrieve mixed-
language web pages based on the ex-
panded queries.  Finally, we extract the 
key phrase translation from the second-
round returned web page snippets with 
phonetic, semantic and frequency-
distance features. We achieve 46% phrase 
translation accuracy when using top 10 re-
turned snippets, and 80% accuracy with 
165 snippets. Both results are signifi-
cantly better than several existing meth-
ods. 

1 Introduction 

Key phrases such as named entities (person, loca-
tion and organization names), book and movie ti-
tles, science, medical or military terms and others 
1, are usually among the most information-bearing 
linguistic structures. Translating them correctly 
will improve the performance of cross-lingual in-
formation retrieval, question answering and ma-
chine translation systems. However, these key 
phrases are often domain-specific, and people con-

                                                                                                                     
1 Some name and terminology is a single word, which could 
be regarded as a one-word phrase. 

stantly create new key phrases which are not cov-
ered by existing bilingual dictionaries or parallel 
corpora, therefore standard data-driven or knowl-
edge-based machine translation systems cannot 
translate them correctly. 

 As an increasing amount of web information be-
comes available, exploiting such a huge informa-
tion resource is becoming more attractive. (Resnik 
1999) searched the web for parallel corpora while 
(Lu et al. 2002) extracted translation pairs from 
anchor texts pointing to the same webpage. How-
ever, parallel webpages or anchor texts are quite 
limited, and these approaches greatly suffer from 
the lack of data.  

However, there are many web pages containing 
useful bilingual information where key phrases and 
their translations both occur. See the example in 
Figure 1. This example demonstrates web page 
snippets2 containing both a Chinese key phrase “浮
士德” and its translation, “Faust”. 

We thus can transform the translation problem 
into a data mining problem by retrieving these 
mixed-language web pages and extracting their 
translations. We propose a new framework to mine 
key phrase translations from web corpora. Given a 
source key phrase (here a Chinese phrase), we first 
retrieve web page snippets containing this phrase 
using the Google search engine. We then expand 
queries by adding the translations of topic-relevant 
hint words from the returned snippets. We submit 
the source key phrase and expanded queries again 
to Google to retrieve mixed-language web page 
snippets.  Finally, we extract the key phrase trans-
lation from the second-round returned snippets 
with phonetic, semantic and frequency-distance 
features.  

 
2A snippet is a sentence or paragraph containing the key 
phrase, returned with the web page URLs. 
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Figure 1. Returned mixed-language web page snip-

pets using source query 
 

We achieve 46% phrase translation accuracy 
when using 10 returned snippets, and 80% accu-
racy with 165 snippets. Both results are signifi-
cantly better than several existing methods. 
   The reminder of this paper is organized as fol-
lows: cross-lingual query expansion is discussed in 
section 2; key phrase translation extraction is ad-
dressed in section 3. In section 4 we present ex-
perimental results, which is followed by relevant 
works and conclusions. 

2 Retrieving Web Page Snippets through 
Cross-lingual Query Expansion 

For a Chinese key phrase f, we want to find its 
translation e from the web, more specifically, from 
the mixed-language web pages or web page snip-
pets containing both f and e. As we do not know e, 
we are unable to directly retrieve such mixed-
language web page using (f,e) as the query.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 2. Returned mixed-language web page snip-
pets using cross-lingual query expansion 

However, we observed that when the author of a 
web page lists both f and e in a page, it is very 
likely that f' and e' are listed in the same page, 
where f’ is a Chinese hint word topically relevant 
to f, and e’ is f’s translation. Therefore if we know 
a Chinese hint word f’, and we know its reliable 
translation, e’, we can send (f, e’) as a query to re-
trieve mixed language web pages containing (f, e).    

For example, to find web pages which contain 
translations of “浮士德”(Faust), we expand the 
query to “浮士德+goethe” since “歌德” (Goethe) 
is the author of “浮士德”(Faust). Figure 2 illus-
trates retrieved web page snippets with expanded 
queries. We find that newly returned snippets con-
tain more correct translations with higher ranks. 
   To propose a “good” English hint e' for f, first we 
need to find a Chinese hint word f' that is relevant 
to f. Because f is often an OOV word, it is unlikely 
that such information can be obtained from exist-
ing Chinese monolingual corpora. Instead, we 
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query Google for web pages containing f. From the 
returned snippets we select Chinese words f' based 
on the following criteria: 
 

1. f' should be relevant to f based on the co-
occurrence frequency. On average, 300 
Chinese words are returned for each query 
f. We only consider those words that occur 
at least twice to be relevant. 

2. f' can be reliably translated given the cur-
rent bilingual resources (e.g. the LDC 
Chinese-English lexicon 3  with 81,945 
translation entries). 

3. The meaning of f' should not be too am-
biguous. Words with many translations 
are not used. 

4. f' should be translated into noun or noun 
phrases. Given the fact that most OOV 
words are noun or noun phrases, we ig-
nore those source words which are trans-
lated into other part-of-speech words. The 
British National Corpus4 is used to gener-
ate the English noun lists. 
 

For each f, the top Chinese words f' with the 
highest frequency are selected. Their correspond-
ing translations are then used as the cross-lingual 
hint words for f. For example, for OOV word f = 
浮士德 (Faust), the top candidate f's are “歌德

(Goethe)”, “ 介简 (introduction)”, “文学

(literature)” and “悲剧(tragedy)”. We expand 
the original query “浮士德” to “浮士德 + 
goethe”, “浮士德 + introduction”, “浮士德 + lit-
erature”, “浮士德 + tragic”, and then query Google 
again for web page snippets containing the correct 
translation “Faust”. 

3 Extracting Key Phrase Translation 

When the Chinese key phrase and its English hint 
words are sent to Google as the query, returned 
web page snippets contain the source query and 
possibly its translation. We preprocess the snippets 
to remove irrelevant information. The preprocess-
ing steps are: 

1. Filter out HTML tags; 

                                                           
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogI
d=LDC2002L27 
4 http://www.natcorp.ox.ac.uk/ 

2. Convert HTML special characters (e.g., 
“&lt”) to corresponding ASCII code (“>”); 

3. Segment Chinese words based on a maxi-
mum string matching algorithm, which is 
used to calculate the translation probability 
between a Chinese key phrase and an Eng-
lish translation candidate. 

4. Replace punctuation marks with phrase sepa-
rator ‘|’; 

5. Replace non-query Chinese words with 
placeholder mark ‘+’, as they indicate the 
distance between an English phrase and the 
Chinese key phrase. 

For example, the snippet  

《 <b> 廊桥遗梦 </b> 》 (the bridges of 
madison county)[review]. 发布者：anjing | 
发布时间：2004-01-25 星期日 02:13 | 最
新更新时间 

is converted into 

| <b> 廊  桥  遗  梦 </b> | 
the_bridges_of_Madison_county | review | 
++ + | anjing | ++ ++  | 2004-01-25 +++ 02 
13 | + + ++ ++, 

where “<b>” and “</b>” mark the start and end 
positions of the Chinese key phrase. The candidate 
English phrases, “the bridges of madison county”, 
“review” and “anjing”, will be aligned to the 
source key phrase according to a combined feature 
set using a transliteration model which captures the 
pronunciation similarity, a translation model which 
captures the semantic similarity and a frequency-
distance model reflecting their relevancy. These 
models are described below. 

3.1 Transliteration Model 

The transliteration model captures the phonetic 
similarity between a Chinese phrase and an Eng-
lish translation candidate via string alignment. 
Many key phrases are person and location names, 
which are phonetically translated and whose writ-
ten forms resemble their pronunciations. Therefore 
it is possible to discover these translation pairs 
through their surface strings. Surface string trans-
literation does not need a pronunciation lexicon to 
map words into phoneme sequences; thus it is es-
pecially appealing for OOV word translation. For 
non-Latin languages like Chinese, a romanization 
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script called “pinyin” maps each Chinese character 
into Latin letter strings. This normalization makes 
the string alignment possible. 
     We adopt the transliteration model proposed in 
(Huang, et al. 2003). This model calculates the 
probabilistic Levinstein distance between a roman-
ized source string and a target string. Unlike the 
traditional Levinstein distance calculation, the 
character alignment cost is not binary (0/1); rather 
it is the logarithm of character alignment probabil-
ity, which ensures that characters with similar pro-
nunciations (e.g. `p` and `b`) have higher 
alignment probabilities and lower cost. These 
probabilities are automatically learned from bilin-
gual name lists using EM. 

Assume the Chinese phrase f has J Chinese 
characters, , and the English candidate 
phrase e has L English words, . The 
transliteration cost between a Chinese query and 
an English translation candidate  is calculated as: 

Jfff ,..., 21

Leee ,...,, 21

f
e

 
 
where is the pinyin of Chinese character ,  

is the i th letter in , and and are their 

aligned English letters, respectively.  
is the letter transliteration probability. The translit-
eration costs between a Chinese phrase and an 
English phrase is approximated by the sum of their 
letter transliteration cost along the optimal align-
ment path, which is identified based on dynamic 
programming.   

jy jf

ijy , jy
jae

),( ijae

)|( ,),( jiji yep

3.2 Translation Model 

The translation model measures the semantic 
equivalence between a Chinese phrase and an Eng-
lish candidate. One widely used model is the IBM 
model (Brown et al. 1993). The phrase translation 
probability is computed using the IBM model-1 as: 
  
 
 
where is the lexical translation probabili-
ties, which can be calculated according to the IBM 
models. This alignment model is asymmetric, as 
one source word can only be aligned to one target 
word, while one target word can be aligned to mul-
tiple source words. We estimate both  

and , and define the NE translation 
cost as: 

)|( lj efp

)|( efPtrans

)|( fePtrans

).|(log)|(log),( efPfePfeC transtranstrans +=

3.3 Frequency-Distance Model 

The more often a bilingual phrase pair co-occurs, 
or the closer a bilingual phrase pair is within a 
snippet, the more likely they are translations of 
each other. The frequency-distance model meas-
ures this correlation.  
   Suppose S is the set of returned snippets for 
query , and a single returned snippet isf Ssi ∈ . 
The source phrase occurs in si as  ( since f 
may occur several times in a snippet). The fre-
quency-distance weight of an English candidate 

is  

jif , 1≥j

e
∑∑=

i jis f ji efd
ew

,
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j i
jia

j
jatrl yepyepfe where is the distance between phrase   

and e, i.e., how many words are there between the 
two phrases (the separator `|` is not counted).  

),( efd jif ,

3.4 Feature Combination 

Define the confidence measure for the translitera-
tion model as: 
 

 
where e and e’ are English candidate phrases, and 
m is the weight of the distance model. We empiri-
cally choose m=2 in our experiments. This 
measure indicates how good the English phrase e is 
compared with other candidates based on translit-
eration model. Similarly the translation model con-
fidence measure is defined as: 
 
 
 
 
   The overall feature cost is the linear combination 
of transliteration cost and translation cost, which 
are weighted by their confidence scores respec-
tively: 
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 廊桥遗梦 the Bridges of Madison-
County                                                                                   

where the linear combination weight λ  is chosen 
empirically. While trlφ and transφ  represent the rela-
tive rank of the current candidate among all com-
pared candidates, C and  indicate its 
absolute likelihood, which is useful to reject the 
top 1 incorrect candidate if the true translation does 
not occur in any returned snippets.  

trl transC

                                                          

4 Experiments 

We evaluated our approach by translating a set of 
key phrases from different domains. We selected 
310 Chinese key phrases from 12 domains as the 
test set, which were almost equally distributed 
within these domains. We also manually translated 
them as the reference translations. Table 1 shows 
some typical phrases and their translations, where 
one may find that correct key phrase translations 
need both phonetic transliterations and semantic 
translations. We evaluated inclusion rate, defined 
as the percentage of correct key phrase translations 
which can be retrieved in the returned snippets; 
alignment accuracy, defined as the percentage of 
key phrase translations which can be correctly 
aligned given that these translations are included in 
the snippets; and overall translation accuracy, de-
fined as the percentage of key phrases which can 
be translated correctly. We compared our approach 
with the LiveTrans5 (Cheng et.al. 2004) system, an 
unknown word translator using web corpora, and 
we observed better translation performance using 
our approach. 

4.1 Query Translation Inclusion Rate 

In the first round query search, for each Chinese 
key phrase f, on average 13 unique snippets were 
returned to identify relevant Chinese hint words f’, 
and the top 5 f's were selected to generate hint 
words e’s. In the second round f and e’s were sent 
to Google again to retrieve mixed language snip-
pets, which were used to extract e, the correct 
translation of f. 

Figure 3 shows the inclusion rate vs. the number 
of snippets used for three mixed-language web 
page searching strategies: 

 
                                                          

5 http://livetrans.iis.sinica.edu.tw/lt.html 

 Table 1. Test set key phrases 

• Search any web pages containing f (Zhang 
and Vines 2004); 

• Only search English web pages6 contain-
ing f (Cheng et al. 2004); 

• Search any web pages containing f and 
hint words e’, as proposed in this paper.  

 
   The first search strategy resulted in a relatively 
low inclusion rate; the second achieved a much 
higher inclusion rate. However, because such Eng-
lish pages were limited, and on average only 45 
unique snippets could be found for each f, which 
resulted in a maximum inclusion rate of 85.8%. In 
the case of the cross-lingual query expansion, the 
search space was much larger but more focused 
and we achieved a high inclusion rate of 89.7% 
using 32 mixed-language snippets and 95.2% using 
165 snippets, both from the second round retrieval.  

 
6 These web pages are labeled by Google as “English” web 
pages, though they may contain non-English characters. 

Movie Title 
阿甘正传            Forrest Gump 

Book Title 红楼梦   Dream of the Red Mansion 
茶花女    La Dame aux camellias 

Organization 
Name 

圣母大学   University of Notre Dame  
大卫与露西派克德基金会 David and 
Lucile Packard Foundation  

Person 
Name 

贝多芬          Ludwig Van Beethoven 
奥黛丽赫本 Audrey Hepburn 

Location 
Name 

勘察加半岛 Kamchatka 
塔克拉玛干沙漠 Taklamakan desert 

Company /
Brand 

汉莎航空 Lufthansa German 
Airlines 
雅诗兰黛 Estee Lauder 

Sci&Tech 
Terms 

遗传算法 genetic algorithm 
语音识别 speech recognition  

Specie Term 秃鹫               Aegypius monachus 
穿山甲              Manispentadactyla 

Military 
Term 

宙斯盾              Aegis  
费尔康              Phalcon 

Medical 
Term 

非典型性肺炎 SARS 
动脉硬化 Arteriosclerosis 

Music Term 空山鸟语     Bird-call in the Mountain 
巴松管        Bassoon 

Sports Term 休斯敦火箭队 Houston Rockets 
环法自行车赛 Tour de France 

)]()|()( ffφλ exp[1
)],(exp[)|(),(

eCe
feCfefeC

transtrans

trltrl= λφ +
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Table 2. Alignment accuracies using different features 
 

These search strategies are further discussed in the 
section 5. 

4.2 Translation Alignment Accuracy 

We evaluated our key phrase extraction model by 
testing queries whose correct translations were in-
cluded in the returned snippets. We used different 
feature combinations on differently sized snippets 
to compare their alignment accuracies. Table 2 
shows the result. Here “Trl” means using the trans-
literation model, “Trans” means using the transla-
tion model, and “Fq-dis” means using Frequency-
Distance model. The frequency-distance model 
seemed to be the strongest single model in both 
cases (with and without hint words), while incor-
porating phonetic and semantic features provided 
additional strength to the overall performance. 
Combining all three features together yielded the 
best accuracy. Note that when more candidate 
translations were available through query expan-
sion, the alignment accuracy improved by 30% 
relative due to the frequency-distance model. 
However, using transliteration and/or translation 
models alone decreased performance because of 
more incorrect translation candidates from returned 
snippets. After incorporating the frequency-
distance model, correct translations have the 
maximum frequency-distance weights and are 
more likely to be selected as the top hypothesis. 
Therefore the combined model obtained the high-
est translation accuracy. 

4.3 Overall Translation Quality  

The overall translation qualities are listed in Table 
3, where we showed the translation accuracies of  

 
No Hints 

(Inc = 44.19%) 
With Hints 

(Inc = 95.16%) 

Table 3. Overall translation accuracy 

the top 5 hypotheses using different number of 
snippets. A hypothesized translation was consid-
ered to be correct when it matched one of the ref-
erence translations.  Using more snippets always 
increased the overall translation accuracy, and with 
all the 165 snippets (on average per query), our 
approach achieved 80% top-1 translation accuracy, 
and 90% top-5 accuracy. 

We compared the translations from a research 
statistical machine translation system (CMU-SMT, 
Vogel et al. 2003) and a web-based MT engine 
(BabelFish). Due to the lack of topic-relevant con-
texts and many OOV words occurring in the source 
key phrases, their results were not satisfactory. We 
also compare our system with LiveTrans, which 
only searched within English web pages, thus with 
limited search space and more noises (incorrect 
English candidates). Therefore it was more diffi-
cult to select the correct translation. Table 4 lists 
some example key phrase translations mined from 
web corpora, as well as translations from the Ba-
belFish.  

5 Relevant Work 

Both (Cheng et al. 2004) and (Zhang and Vines 
2004) exploited web corpora for translating OOV 
terms and queries. Compared with their work, our 
proposed method differs in both webpage search 

                                                           
7 http://babelfish.altavista.com/ 

Features (avg. snippets = 
10) 

(avg. snip-
pets=130) 

Trl 51.45 17.97 

Trans 51.45 40.68 

Fq-dis 53.62 73.22 

Trl+Trans 63.04 51.36 
Trl+Trans+ 

Fq-dis 65.94 86.73 

Accuracy of the Top-N Hyp. (%) Snippets 
Used Top1 Top2 Top3 Top4 Top5 

10 46.1 55.2 59.0 61.3 62.3 

20 57.4 64.2 69.7 72.6 72.9 

50 63.2 74.5 77.7 79.7 80.6 

100 75.2 84.5 85.8 87.4 87.4 

165 80.0 86.5 89.0 90.0 90.0 

Babel-
Fish7 MT 31.3 N/A N/A N/A N/A 

CMU-
SMT 21.9 N/A N/A N/A N/A 

LiveTrans
(Fast) 20.6 30.0 36.8 41.9 45.2 

LiveTrans
(Smart) 30.0 41.9 48.7 51.0 52.9 
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Figure 3. Inclusion rate vs. the number of snippets used 
 

Examples Category Chinese Key Phrase Web-Mining Translation BabelFish™ Result 
Movie  

Title 廊桥遗梦 
the Bridges of Madison 

County 
*Love has gone and only good 
memory has left in the dream 

Book  
Title 理智与情感 Sense and Sensibility *Reason and emotion 

Organization 
Name 

Woodrow Wilson National 
Fellowship Foundation 

*Wood the Wilson nation gets to-
gether the foundation 

伍德威尔逊全国联谊基

金会 

Person  
小泽征尔 Seiji Ozawa *Young Ze drafts you Name 

Location 
Name 柴达木盆地 Tsaidam Basin Qaidam Basin 

Company / 
倩碧 Clinique *Attractive blue Brand 

Sci&Tech 
Terms 贝叶斯网络 Bayesian network *Shell Ye Si network 

Specie  
海象 walrus walrus Term 

Military 
Term 同温层堡垒 stratofortress stratofortress 

Medical 
Term 青光眼 glaucoma glaucoma 

Music  
巴松管 bassoon bassoon Term 

Sports  
环法自行车赛 Km Tour de France *Link law bicycle match Term 

*: Incorrect translations 
 

Table 4. Key phrase translation from web mining and a MT engine 
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space and translation extraction features. Figure 4 
illustrates three different search strategies. Suppose 
we want to translate the Chinese query “浮士德”. 
(Cheng et al. 2004) only searched 188 English web 
pages which contained the source query, and 53% 
of them (100 pages) had the correct translations.  
(Zhang and Vines 2004) searched the whole 
55,100 web pages, 10% of them (5490 pages) had 
the correct translation. Our approach used query 
expansion to search any web pages containing “浮
士德” and English hint words, which was a larger 
search space than (Cheng et al. 2004) and more 
focused compared with (Zhang and Vines 2004), 
as illustrated with the shaded region in Figure 4. 
For translation extraction features, we took advan-
tage of machine transliteration and machine trans-
lation models, and combined them with frequency 
and distance information.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Web search space strategy comparison 

6 Discussion and Future Work 

In this paper we demonstrated the feasibility of 
the proposed approach by searching for the English 
translation for a given Chinese key phrase, where 
we use punctuations and Chinese words as the 
boundary of candidate English translations. In the 
future we plan to try more flexible translation can-
didate selection methods, and apply them to other 
language pairs. We also would like to test our ap-
proach on more standard test sets, and compare the 
performance with other systems.  

Our approach works on short snippets for query 
expansion and translation extraction, and the com-
putation time is short. Therefore the search en-
gine’s response time is the major factor of 
computational efficiency.  

 
 

7 Conclusion 

We proposed a novel approach to mine key phrase 
translations from web corpora. We used cross-
lingual query expansion to retrieve more relevant 
web pages snippets, and extracted target transla-
tions combining transliteration, translation and fre-
quency-distance models. We achieved significantly 
better results compared to the existing methods.  
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Abstract

Traditional approaches to Information Ex-
traction (IE) from speech input simply
consist in applying text based methods to
the output of an Automatic Speech Recog-
nition (ASR) system. If it gives satis-
faction with low Word Error Rate (WER)
transcripts, we believe that a tighter inte-
gration of the IE and ASR modules can
increase the IE performance in more dif-
ficult conditions. More specifically this
paper focuses on the robust extraction of
Named Entities from speech input where
a temporal mismatch between training and
test corpora occurs. We describe a Named
Entity Recognition (NER) system, de-
veloped within the French Rich Broad-
cast News Transcription program ESTER,
which is specifically optimized to pro-
cess ASR transcripts and can be integrated
into the search process of the ASR mod-
ules. Finally we show how somemeta-
data information can be collected in or-
der to adapt NER and ASR models to new
conditions and how they can be used in a
task of Named Entity indexation of spoken
archives.

1 Introduction

Named Entity Recognition (NER) is a crucial step
in many Information Extraction (IE) tasks. It
has been a specific task in several evaluation pro-

grams such as the Message Understanding Confer-
ences (MUC), the Conferences on Natural Language
Learning (CoNLL), the DARPA HUB-5 program or
more recently the French ESTER Rich Transcription
program on Broadcast News data. Most of these
conferences have studied the impact of using tran-
scripts generated by an Automatic Speech Recogni-
tion (ASR) system rather than written texts. It ap-
pears from these studies that unlike other IE tasks,
NER performance is greatly affected by the Word
Error Rate (WER) of the transcripts processed. To
tackle this problem, different ideas have been pro-
posed: modeling explicitly the ASR errors (Palmer
and Ostendorf, 2001) or using the ASR system
alternate hypotheses found in word lattices (Sar-
aclar and Sproat, 2004). However performance in
NER decreases dramatically when processing high
WER transcripts like the ones that are obtained
with unmatched conditions between the ASR train-
ing model and the data to process. This paper in-
vestigates this phenomenon in the framework of the
NER task of the French Rich Transcription program
of Broadcast News ESTER (Gravier et al., 2004).
Several issues are addressed:

• how to jointly optimize the ASR and the NER
models ?

• what is the impact in term of ASR and NER
performance of a temporal mismatch between
the corpora used to train and test the models
and how can it be recovered by means of meta-
data information ?

• Can metadata information be used for indexing
large spoken archives ?
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After a quick overview of related works in IE
from speech input, we present the ESTER evaluation
program ; then we introduce a NER system tightly
integrated to the ASR process and show how it
can successfully index high WER spoken databases
thanks to metadata.

2 Information extraction from large
spoken archives

The NIST Topic Detection and Tracking (Fiscus and
Doddington, 2002) and TREC document retrieval
evaluation programs has studied the impact of recog-
nition errors in the overall performance of Informa-
tion Extraction systems for tasks like story segmen-
tation or topic detection and retrieval. This impact
has been shown to be very limited compared to clean
text corpora. The main explanation for this phe-
nomenon is theredundancy effect: themes, topics
are very likely to be represented in texts by many
occurrences of salient words characterizing them.
Therefore, even if some of these words are missing,
numerical Information Extraction methods can use
the remaining salient words and discard the noise
generated by ASR errors.

However, this phenomenon is not true for tasks
related to the extraction of fine grained entities, like
Named Entities. Indeed, several studies have shown
that F-measure and WER are strongly correlated :
0.7 points of F-measure lost for each additional 1%
of WER according to (Miller et al., 2000) on the ex-
periments of 1998 NIST Hub-4 evaluations (Przy-
bocki et al., 1999).

Despite the continuous improvement of ASR
techniques, high WER transcriptions are inevitable
in difficult conditions like those found in large spo-
ken archives like in the MALACH project (Ramab-
hadran et al., 2003). Moreover, Named Entities ex-
traction performance is greatly affected by a mis-
match between training and testing data. This is
due mainly because proper names, which represent
most of the Named Entity items, are a very dynamic
category of words, strongly related to the period of
time representing the documents to process. There-
fore this mismatch is inevitable when dealing with
archives spreading over a long period of time and
containing multiple domain information.

One way of tackling this problem is to gather

metadatainformation related to the documents to
process. This information can be newspaper corpora
related to the same period of time, abstract describ-
ing the document content, or simply lists of terms or
entities likely to occur. Although such collected data
can be used to update the ASR and NER models,
the potential gain is rather small unless the metadata
corpus gathered fits perfectly the document to pro-
cess and is of a reasonable size. But another way
of exploiting this metadata information is to use it
as set of index terms that are going to be explicitly
looked for in the processed documents. We present
in section 7 an implementation of this idea that uses
word lattices as input.

3 The ESTER Named Entity evaluation
program

This work has been done within the framework of
the French Rich Transcription program of Broadcast
News ESTER. ESTER is organized byl’Association
Francophone de la Communication Parlée(AFCP),
la Délégation Ǵeńerale pour l’Armement(DGA)
and theEvaluation language Resources Distribution
Agency(ELDA). The ESTER corpus is made of 100
hours of Broadcast News data (from 6 French speak-
ing radio channels), manually transcribed, and la-
beled with a tagset of about 30 Named Entity cate-
gories folded in 8 main types:

• persons (pers): human beings, fiction charac-
ters, animals;

• locations (loc): geographical, traffic lines, elec-
tronic and real addresses, dial numbers;

• organizations (org): political, business, non
profit;

• geo-socio-political groups (gsp): clans, fami-
lies, nations, administrative regions;

• amounts (amount): durations, money, lengths,
temperature, age, weight and speed;

• time (time): relative and absolute time expres-
sions, hours;

• products (prod): art, printings, awards and ve-
hicles;
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• facilities (fac): buildings, monuments.

This data is divided in 3 sets: a training set (84%),
a development set(8%) and a test set (8%). There
is a 6 month gap difference between the training
corpus and the test corpus while the development
corpus matches the training data from a temporal
point of view: the training corpus contains Broad-
cast News spreading from 2002 to December 2003;
the development corpus contains news from 2003;
the test corpus has been recorded in October 2004.
There are also 2 new radio channels in the test cor-
pus which were not in the training data.

For these reasons the development data is called
the matched corpusas the recording conditions
match those of the training corpus and the test data
is called theunmatched corpus. As a consequence,
we can study the effect of unmatched conditions on
ASR as well as IE performance and propose solu-
tions for dealing with this problem.

One of the main characteristics of the ESTER cor-
pus is the size of the NE tagset and the high ambi-
guity rate among the NE categories (eg. administra-
tive regions and geographical locations): 83% of the
matched corpusentities occur in the training corpus
and 40% of them are ambiguous whereas only 61%
of theunmatched corpusentities occur in the train-
ing corpus and 32% of them are ambiguous.

The most commonly used measures for evaluat-
ing NE extraction performance are Slot Error Rate
(SER) and F-measure. SER is very similar to WER
because it takes into account fine grained errors like
insertions, deletions and substitutions (entity type
and extent). The scoring process is based on the
same alignment between reference and hypothesis
data than the one obtained for measuring WER and
SER is known for being more accurate and penal-
izing than F-measure. Both measures weights can
be adjusted to favor recall or precision and therefore
adapted to a specific task.

SER = 100 ∗

∑
e∈E

αe|e|

|Ref slots| Fβ = (1+β2)RP

R+β2P

R = |Correct slots|
|Ref slots| P = |Correct slots|

|Hyp slots|

with e ∈ E being an error type (insertion, dele-
tion, type, extent, type+extent, multiple) andαe its

weight (resp.1, 1, .5, .5, .8, 1.5) ; P is the precision
andR the recall;F1 is used in this paper.

4 Extracting NE from written text vs. ASR
output

As previously mentioned in section 2, WER and
SER performance are strongly correlated. Besides
the intrinsic difficulties of ASR (robustness to noise,
speaker variation, lack of coverage of the Language
Models used, . . . ), there is a source of errors which
is particularly important in IE from speech input:
the Out-Of-Vocabulary (OOV) word phenomenon.
Indeed, ASR models are built on huge textual cor-
pus and only contain the most frequent words to
limit computation and memory usage. If this is the
right approach to WER reduction, it is certainly not
valuable to information extraction where unlikely
events are considered as important. For instance,
many document retrieval models use inverse docu-
ment frequency (rareness) as a word weighting pa-
rameter. So, unlikely proper names are not in reach
of the ASR transcription system and hence cannot
be spotted by a Named Entity extraction module.

In addition to Out-of-Vocabulary words, two other
phenomenons have also a strong impact on NER
performance: the insertion of erroneous proper
names that automatically trigger the insertion of an
entity and spontaneous speech phenomenons. These
speech dysfluencies (hesitations, filled pauses, false
starts...) reduce the quality of the transcript because
they are usually not covered by language models
(built from textual data) or artificially introduced.
One should remove these from the transcript to im-
prove the quality of the labeling.

In order to deal with ASR errors two approaches
have been proposed:

• modeling explicitly the ASR errors, thanks to
a development corpus and a set of confidence
measures, in order to detect the possible er-
rors of the 1-best word string hypothesis (with
the type of errors) before extracting the NEs
(Palmer and Ostendorf, 2001);

• exploiting a search space bigger than the 1-best
hypothesis alone, either by taking into account
an n-best list (Zhai et al., 2004) or the whole
word lattice (Saraclar and Sproat, 2004).
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The method proposed in this paper is close to this
second approach where the whole word lattice out-
put by the ASR system is used in order to increase
NER performance from noisy input.

We will present also in the next section a new
strategy for adapting NER models to ASR tran-
scripts, based on one of the main characteristics of
such transcripts: a closed vocabulary is used by
the ASR system. To our knowledge this has never
been fully exploited by NER systems. Indeed while
the key point of NER systems on written text is
their generalization capabilities when processing un-
known words, this feature is not relevant for ASR
transcripts as the system cannot generate words out
of the lexicon (there are no unknown words). There-
fore we propose here to fully exploit this constraint
(close vocabulary): since the OOV words cannot ap-
pear in the ASR transcripts, the NER models can
by over-trained on the words belonging to the ASR
lexicon. This is going to be developed in the next
section.

5 Robust Named Entity extraction

We have developed in this study two NER systems:
one is based on the freely available NLP toolLing-
pipe1, adapted and trained on the French ESTER
corpus and dedicated to process text input. This sys-
tem is going to be calledNERtext in the experiment
section. The second NER system has been devel-
oped for this study and is specifically built for being
tightly integrated with the ASR processes. The two
main features of this system, calledNERasr in the
following, are its ability to process word lattices and
the fact that the NER models are trained for a spe-
cific ASR lexicon. These two systems are going to
be presented in the next sections.

5.1 Text-based NER system:NERtext
Among all the different methods that have been pro-
posed for NER, one can find rule based models
(Cunningham et al., 2002), Maximum Entropy mod-
els (Brothwick et al., 1998), Conditionnal Random
Fields or probabilistic HMM-based models (Bikel et
al., 1999).

Lingpipe implements an HMM-based model. It
maximizes the probability of a tag sequenceTi over

1Lingpipe:http://alias-i.com/lingpipe/

a word sequenceWi. A context of two preceding
words and one preceding tag is used to approximate
this probability. Generalization is done through a
simple process: words occurring with low frequency
are replaced by feature based categories (capitalized,
contains digits, . . . ). In this approach, there must be
one tag per word. Words starting and ending entities
are labeled with special tags. Because some features
are lacking in ASR transcripts (e.g. capitalization,
digits, sentence boundaries, . . . ) some word lists for
each kind of features are added as presented in (Ap-
pelt and Martin, 1999).

5.2 ASR-based NER system:NERasr

Errors occurring in ASR output lead NER systems
to overgenerate NE detections. This is due to both
erroneous words insertions in the ASR transcripts
as well as some abusive generalization made by the
NER systems. If these generalization capabilities
are very important for processing unknown words
in written texts, they can be an handicap in a closed-
vocabulary situation like the one observed when pro-
cessing ASR output. In order to reduce and con-
trol the insertion rate of our NER system, we im-
plemented a two level approach: the first level is
made of NE grammars coded as Finite State Ma-
chine (FSM) transducers and the second level is a
statistical HMM-based tagger.

5.2.1 NE transducers

To each NE category is attached a set of regular
grammars, extracted from the ESTER training cor-
pus and generalized thanks to the annotation guide-
lines and web-gathered word lists. Theses grammars
are represented by Finite State Machines (FSMs)
(thanks to the AT&T GRM/FSM toolkit (Allauzen et
al., 2003)). These FSMs are transducers that accept
word sequences on the input symbols and output NE
labels on the output symbols. They are all grouped
together in a single transducer, calledTgram, with
a filler model that accepts any string of words. Be-
cause these FSMs are lexicalized with the words of
the ASR lexicon, one can control the generalization
capabilities of the grammars thanks to the occur-
rence contexts of these words in the training corpus.
During the NER process, the first step is to compose
the FSM representing the NE transducer and the out-
put of the ASR module (either a 1-best word string
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or a word lattice, both encoded as an FSM calledG).

5.2.2 NE tagger

The result of the composition of the NE trans-
ducer with the ASR output is an FSM (G ◦ Tgram)
containing all the possible parsing made by the NE
grammars. In order to find the best analysis a sta-
tistical model is used to decide between entity types
and entities boundaries. This model is a 2nd order
n-gram model (trigram) represented by a weighted
FSM (calledTtagger) with the same framework as
the grammars. The most likely NE label sequence
is obtained by finding the best path in the FSM:
G◦Tgram◦Ttagger. This corresponds to maximize
the following probability:

PW =
n∏

i=1

P (Wi, Ti|Wi−1, Ti−1, Wi−2, Ti−2)

This model is similar to the one implemented in
Lingpipe but it uses different smoothing methods.
Similarly, first and last words of entities are repre-
sented by special tags (this helps getting more accu-
rate boundaries) and low frequency words (appear-
ing less than a fixed number of times in the training
corpus) are generalized using their Part-Of-Speech
tags. The key points of this approach are that it has a
better control of the generalization capabilities than
a feature based NER system, thanks to the NE gram-
mars; it integrates the closed vocabulary constraint
of the ASR systems; and it is not limited to the 1-
best word hypothesis but can use the full ASR search
space (through word lattices) in order to detect en-
tities. Processing word lattices allows us to output,
at the end of the extraction process, an n-best list of
NE hypotheses. To each hypothesis are attached two
scores:

• the likelihood score given by the ASR model to
the best word string supporting this NE hypoth-
esis in the word lattice;

• the probabilityP (Wn, Tn, . . . , W0, T0) given
by the NE tagger to the sequence of NE la-
bels T0, . . . , Tn and the sequence of words
W0, . . . , Wn.

From this n-best list we can estimate theOracle
performance of the NER system. This measure is
the recall measure upper bound than can be obtained

by extracting all the possible entities from a word
lattice, thanks to the NE transducers, and simulating
a perfect strategy that always take the right decision
in choosing among all the possible entities.

Decision strategies on such an n-best of NE hy-
pothesis can also involve other levels of informa-
tion on the document to process like the date or
the theme, for example. In the evaluation presented
in the next section we compare this Oracle perfor-
mance measure to the results of the simplest deci-
sion strategy which consists in choosing the NE hy-
pothesis with the highest likelihood.

5.3 Evaluation

The evaluation presented in Tables 1 and 2 is per-
formed using the Slot Error Rate and the F-measure
on thematchedandunmatchedcorpora presented in
section 3.

corpus matched unmatched
tagger SER F-m SER F-m
NERtext 21 84 27 79
NERasr 23 84 37 74

WER 0 0

Figure 1: F-measure and Slot Error Rate measures
on the ESTER reference corpora (matchedandun-
matched) for both NER systems

corpus matched unmatched
tagger SER F-m SER F-m Oracle
NERtext 42 72 55 63 61.9
NERasr 41 73 54 63 76.9

WER 21.2 26.4

Figure 2: F-measure, Slot Error Rate and Oracle re-
call measures on the ASR output of thematchedand
unmatchedcorpora for both NER systems

Figure 1 presents SER and F-measure on the two
test sets (matchedandunmatched) for the text ori-
ented (NERtext) and the speech oriented (NERasr)
NER systems, on clean text (manual transcripts).
Figure 2 shows the results obtained on the ASR tran-
scripts.

As expected on manually transcribed data,
NERtext obtains better results thanNERasr (which
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has poorer generalization capabilities). On the ASR
outputs the results obtained by both systems are
comparable howeverNERasr has the advantage of
processing word lattices, leading to an interesting
Oracle performance. We are studying now more
elaborate decision strategies in order to take fully
advantage of this feature.

The decrease in F-measure observed between the
reference and the ASR transcripts is similar to the
one obtained in other studies (Miller et al., 2000).
One observation that can be made on these results is
the impact of the time mismatch between the train-
ing and the test corpora. A 6 month difference in the
unmatchedcorpus leads to a very big drop in both
SER and F-measure. This can be explained by the
fact that NEs are very time-dependent. We are going
now to present some methods developed to tackle
this problem.

6 Updating Language and NE models with
metadata information

The only mismatch between the training and theun-
matchedcorpus of our experiments is a 6 months
temporal mismatch, therefore we collected a cor-
pus of newsletters made on a daily basis by the
French newspaperLe Mondecorresponding to these
6 months. These newsletters contain an abstract of
the news of each day. We make the following two
hypotheses:

• firstly these newsletters are related to the same
time period as theunmatchedcorpus, there-
fore integrating them into the ASR models (lex-
icon+Language Model) should help reducing
the OOV word effect;

• secondly because they represent an abstract of
the news of each day, the Named Entities oc-
curring in a particular newsletter should contain
all the major events of the corresponding day
and therefore constitutes a useful list of terms
that can be used for indexing a Broadcast News
document related to the same period of time.

6.1 NE distribution analysis

This newsletter corpus contains 1M words and after
being tagged by theNERtext system, 140k entities
were extracted. To check the relevance of this cor-
pus for adapting the models to theunmatchedtest

corpus, we studied the distribution of the words and
the entities for each day, from January to December
2004. Theunmatchedtest corpus is made of Broad-
cast News ranging from October 10th to October
16th 2004. The following observations were made:
72% of the NEs and 60% of the words contained in
them occur only one day in this corpus; the inter-
section of the NEs occurring in both the newsletter
of a particular day and the entities belonging to the
unmatchedtest corpus shows a peak, illustrated by
figure 3, for the days of the test corpus; at this peak,
25% of the NEs are used the same day in the two
corpora.
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Figure 3: Percentage of entities of the unmatched
corpus occuring at leastn days earlier or later in the
newsletter corpus (at a window of 0 days, entities
appear on the same day in both corpus).

The first observation matches those presented in
(Whittaker, 2001) and validates our approach which
consists in carefully adapting the ASR and NER
models with data corresponding to the exact period
of time as the one of the documents to process: by
taking into account a larger period of time for the
adaptation corpus, the necessity of restraining the
models to the most frequent entities would lead to
discard low frequency terms that can be crucial for
characterizing the news of a given day.

If the second observation clearly highlights the
correlation between the NE distribution in both cor-
pora, it also points out that only 25% of the enti-
ties of theunmatchedcorpus occur in the newslet-
ters corresponding to the same days. Therefore the
potential improvement in the overall NER perfor-
mance is clearly limited. This will be confirmed in
the next section, however one can think that if these
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entities are shared, for a given day, by both corpora,
it is because they represent the key topics of this day
and therefore they can be considered as very rele-
vant indexing terms for applications like document
retrieval. This last point is developed in section 7.

6.2 Model adaptation

Several studies (Whittaker, 2001; Federico and
Bertoldi, 2001; Chen et al., 2004) propose adap-
tation methods of a general language model to the
possibly small corpora extracted from these kinds of
metadata information (an overview of these meth-
ods can be found in (Bellegarda, 2004)). Depending
on the adaptation method and the kind of metadata
information used, some gains in performance have
been reported. But it appears that the choice of the
metadata and the size of the adaptation corpus col-
lected are critical in this adaptation process: if the
adaptation corpus is not exactly related to the topics
of the document to process, no real gains are ob-
tained (e.g. (Chen et al., 2004) reports that the best
gains were obtained with a story-based adaptation
method).

From all these previous works, our system imple-
ments the following adaptation process:

• the text corpus corresponding to the newsletters
is added to the ASR language model by means
of a linear interpolation;

• proper names occuring twice or more in the
newsletter corpus are added to the ASR lexi-
con;

• for the same days as those of theunmatched
corpus, this cutoff is suppressed and all the
proper names are added;

• the Named Entity wordlists and grammars are
also enriched with these proper names and en-
tities extracted from the collected corpus.

1K new proper names were added to the 65K
word ASR lexicon. The general OOV reduction ob-
tained was 0.14% leading to an absolute WER re-
duction of 0.3%. Similarly the SER decreased of
about 0.3% thanks to this adaptation and the Ora-
cle recall measure in the word lattices was improved
by an absolute 3%. These improvements are not
significant enough to justify the use of this kind of

metadata information for improving the general per-
formance of both ASR and NER processes. How-
ever, if we focus now on the entities occurring in the
newsletters corresponding to the exact days of the
unmatchedcorpus, the improvement is much more
significant, as presented in the next section.

7 Named Entity Indexation

As previously mentioned, 25% of theunmatched
corpus entities occur in the newsletters correspond-
ing to the same day as those of theunmatchedtest.
In order to measure the improvement obtained with
our adaptation technique on these particular entities,
we did the following experiment:

• a set of 352 entities was selected from the
newsletters related to same period of time as the
test, these entities represent the indexing terms
that are going to be looked for in the word lat-
tices of theunmatchedcorpus;

• the NERasr system was then applied to these
word lattices with two conditions: the word
lattices and the NER models before adaptation
and those obtained after adaptation with the
newsletter corpus;

• precision, recall, F-measure and Oracle error
rate were estimated for both conditions.

Condition Prec. Recall F-m Oracle
no adaptation 87.0 75.7 80.9 83.6

with adaptation 87.5 83.9 85.7 92

Figure 4: Extraction results on the selected NEs on
the unmatchedcorpus with and without adaptation
of the ASR and NER models on the newsletter cor-
pus

As we can see in table 4, the adaptation process
increases very significantly the recall measure of the
NE extraction. This is particularly relevant in some
IE tasks like the document retrieval task.

8 Conclusion

We have presented in this paper a robust Named En-
tity Recognition system dedicated to process ASR
transcripts. The FSM-based approach allows us to
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control the generalization capabilities of the system
while the statistical tagger provides good labeling
decisions. The main feature of this system is its
ability to extract n-best lists of NE hypothesis from
word lattices leaving the decision strategy choosing
to either emphasize the recall or the precision of the
extraction, according to the task targeted. A compar-
ison between this approach and a standard approach
based on the NLP toolsLingpipevalidates our hy-
potheses. This integration of the ASR and the NER
processes is particularly important in difficult con-
ditions like those that can be found in large spoken
archives where the training corpus does not match
all the documents to process. A study of the use of
metadata information in order to adapt the ASR and
NER models to a specific situation showed that if the
overall improvement is small, some salient informa-
tion related to the metadata added can be better ex-
tracted by means of this adaptation.
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Abstract 

We have studied how context specific web 
corpus can be automatically created and 
mined for discovering semantic similarity 
relationships between terms (words or 
phrases) from a given collection of 
documents (target collection). These 
relationships between terms can be used to 
adjust the standard vectors space 
representation so as to improve the 
accuracy of similarity computation between 
text documents in the target collection. Our 
experiments with a standard test collection 
(Reuters) have revealed the reduction of 
similarity errors by up to 50%, twice as 
much as the improvement by using other 
known techniques.  

1 Introduction 
Many modern information management tasks such as 
document retrieval, clustering, filtering and 
summarization rely on algorithms that compute 
similarity between text documents. For example, 
clustering algorithms, by definition, place documents 
similar to each other into the same cluster. Topic 
detection algorithms attempt to detect documents or 
passages similar to those already presented to the 
users. “Query by example” retrieval is based on 
similarity between a document selected as example 
and the other ones in the collection. Even a classical 
retrieval task can be formulated as rank ordering 
according to the similarity between the document 
(typically very short) representing user’s query and 
all the documents in the collection. 
For similarity computation, text documents are 
represented by terms (words or phrases) that they 
have, and encoded by vectors according to a 
predominantly used vector space model (Salton & 
McGill, 1983). Each coordinate corresponds to a 
term (word or phrase) possibly present within a 
document. Within that model, a high similarity 
between a pair of documents can be only indicated 
by sharing same terms. This approach has apparent 
limitations due to the notorious vocabulary problem 
(Furnas et al., 1997): people very often use different 
words to describe semantically similar objects. For 
example, within a classical vector space model, the 

similarity algorithm would treat words car and 
automobile as entirely different, ignoring semantic 
similarity relationship between them. 
It has been known for a long time that semantic 
similarity relationships between terms can be 
discovered by their co-occurrence in the same 
documents or in the vicinity of each other within 
documents (von Rijsbergen, 1977).  Until the 1990s, 
the studies exploring co-occurrence information for 
building a thesaurus and using it in automated query 
expansion (adding similar words to the user query) 
resulted in mixed results (Minker et al., 1972; Peat & 
Willett, 1991). The earlier difficulties may have 
resulted from the following reasons: 
1) The test collections were small, sometimes only 
few dozens of documents. Thus, there was only a 
small amount of data available for statistical co-
occurrence analysis (mining), not enough to establish 
reliable associations. 
2) The evaluation experiments were based on 
retrieval tasks,  short, manually composed queries. 
The queries were at times ambiguous and, as a result, 
wrong terms were frequently added to the query. E.g. 
initial query “jaguar” may be expanded with the 
words “auto”, “power”, “engine” since they co-occur 
with “jaguar” in auto related documents. But, if the 
user was actually referring to an animal then the 
retrieval accuracy would degrade after the expansion.  
3) The expansion models were overly simplistic, e.g. 
by merely adding more keywords to Boolean queries 
(e.g. “jaguar OR auto OR power OR car”). 
Although more recent works removed some of the 
limitations and produced more encouraging results 
(Grefenstette, 1994; Church et al., 1991; Hearst et 
al., 1992;  Schutze and Pedersen, 1997; Voorhees, 
1994) there are still a number of questions that 
remain open: 
1) What is the range for the magnitude of the 
improvement. Can the effect be of practical 
importance?  
2) What are the best mining algorithms and 
formulas? How crucial is the right choice of them? 
3) What is the best way to select a corpus for 
mining? Specifically, is it enough to mine only 
within the same collection that is involved in 
retrieval, clustering or other processing (target 
collection), or constructing and mining a larger 
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external corpus (like a subset of World Wide Web) 
would be of much greater help? 
4) Even if the techniques studied earlier are effective 
(or not) for query expansion within the document 
retrieval paradigm, are they also effective for a more 
general task of document similarity computation? 
Similarity computation stays behind almost all 
information retrieval tasks including text document 
retrieval, summarization, clustering, categorization, 
query by example etc. Since documents are typically 
longer than user composed queries, their vector 
space representations are much richer and thus 
expanding them may be more reliable due to implicit 
disambiguation. 
Answering these questions constitutes the novelty of 
our work. We have developed a Context Specific 
Similarity Expansion (CSSE) technique based on 
word co-occurrence analysis within pages 
automatically harvested from the WWW (Web 
corpus) and performed extensive testing with a well 
known Reuters collection (Lewis, 1997). To test the 
similarity computation accuracy, we designed a 
simple combinatorial metric which reflects how 
accurately (as compared to human judgments) the 
algorithm, given a document in the collection, orders 
all the other documents in the collection by the 
perceived (computed) similarity. We believe that 
using this metric is more objective and reliable than 
trying to include all the traditional metrics specific to 
each application (e.g. recall/precision for document 
retrieval, type I/II errors for categorization, 
clustering accuracy etc.) since the latter may depend 
on the other algorithmic and implementation details 
in the system. For example, most clustering 
algorithms rely on the notion of similarity between 
text documents, but each algorithm (k-means, 
minimum variance, single link, etc.) follows its own 
strategy to maximize similarity within a cluster. 
We have found out that our CSSE technique have 
reduced similarity errors by up to 50%, twice as 
much as the improvement due to using other known 
techniques such as Latent Semantic Indexing (LSI) 
and Pseudo Relevance Feedback (PRF) within the 
same experimental framework. In addition to this 
dramatic improvement, we have established the 
importance of the following for the success of the 
expansion: 1) using external corpus (a constructed 
subset of WWW) in addition to the target collection 
2) taking the context of the target collection into 
consideration 3) using the appropriate mining 
formulas. We suggest that these three crucial 
components within our technique make it 
significantly distinct from those explored early and 
also explain more encouraging results.  
The paper is structured as follows.  Section 2 
discusses previous research  results that are closely 
related to our investigation.  Section 3 presents  
algorithms implemented in our experiments. Section 
4 describes our  experiments including error 
reduction, sensitivity analysis, and  comparison with 
other techniques.  Finally, Section 5 concludes the 
paper by explaining our key contributions and 
outlining our future research. 

2 Related Work 
Most of the prior works performed only mining 
within the target collection itself and revealed results 
ranging from small improvements to negative effects 
(degrading performance). Throughout our paper, we 
refer to them as self -mining to distinguish from 
mining external corpus, which we believe is more 
promising for similarity computation between 
documents due to the following intuitive 
consideration. Within self-mining paradigm, terms t1 
and t2 have to frequently co-occur in the collection 
in order to be detected as associated (synonymic). In 
that case, expanding document D representation with 
a term t2 when the document already has term t1 is 
not statistically likely to enrich its representation 
since t2 is likely to be in document D anyway. We 
believe mining external larger and contextually 
related corpus has the potential to discover more 
interesting associations with much higher reliability 
than just from the target collection. That is why, this 
paper focuses on constructing and mining the 
external corpus.  
There are very few studies that used external corpus 
and standard evaluation collections. Grefenstette 
(1994) automatically built a thesaurus and applied it 
for query expansion, producing better results than 
using the original queries. Gauch et al. (1998) used 
one standard collection for mining (TREC4) and 
another (TREC5) for testing and achieved 7.6% 
improvement. They also achieved 28.5% 
improvement on the narrow-domain Cystic Fibrosis 
collection. Kwok (1998) also reported similar results 
with TREC non Web collections.  Ballesteros and 
Croft (1998) used unlinked corpora to reduce the 
ambiguity associated with phrasal and term 
translation in Cross-Language Retrieval. 
There are even fewer studies involving semantic 
mining on the Web and its methodological 
evaluation. Géry and Haddad Géry (1999) used 
about 60,000 documents from one specific domain 
for mining similarity among French terms and tested 
the results using 4 ad hoc queries. Sugiura and 
Etzioni (2000) developed a tool called Q-Pilot that 
mined the web pages retrieved by commercial search 
engines and expanded the user query by adding 
similar terms. They reported preliminary yet 
encouraging results but tested only the overall 
system, which includes the other, not directly related 
to mining features, such as clustering, pseudo-
relevance feedback, and selecting the appropriate 
external search engine. Furthermore, they only used 
the correctness of the engine selection as the 
evaluation metric . There are some other well known 
techniques that do not perform mining for a 
thesaurus explicitly but still capture and utilize 
semantic similarity between the terms in an implicit 
way, namely Latent Semantic Indexing (LSI) and 
Pseudo Relevance Feedback (PRF). Latent Semantic 
Indexing (Analysis) (Deerwester et al., 1998) a 
technique based on Singular Value Decomposition, 
was studied in a number of works . It reduces the 
number of dimensions in the document space thus 
reducing the noise (linguistic variations) and 
bringing semantically similar terms together, thus it 
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takes into consideration the correlation between the 
terms. The reported improvements so far however 
have not exceeded 10-15% in standard collections) 
and sensitive to the choice of the semantic axis 
(reduced dimensions). The general idea behind the 
Pseudo Relevance Feedback (PRF) (Croft & 
Harper, 1979) or its more recent variation called 
Local Context Analysis (Xu & Croft, 2000) is to 
assume that the top rank retrieved documents are 
relevant and use certain terms from them for the 
query expansion. A simple approach has been found 
to increase performance over 23% on the TREC3 
and TREC4 collections and became internal part of 
modern IR systems. Although this idea has been only 
applied so far to users’ queries, we extended it in this 
study to similarity computation between documents 
in order to compare with our approach. Although we 
believe this extension is novel, it is not the focus of 
this study. It is also worth mentioning that both LSI 
and PRF fall into “self-mining” category since they 
do not require external corpus.  
A manually built and maintained ontology (a 
thesaurus), such as WorldNet, may serve as a source 
of similarity between terms and has been shown to 
be useful for retrieval tasks (Voorhees, 1994). 
However, one major drawback of manual approach 
is high cost of creating and maintaining. Besides, the 
similarity between terms is context specific. For 
example, for a campus computer support center the 
words student, faculty, user are almost synonyms, 
but for designers of educational software (e.g. 
Blackboard), the words student and faculty would 
represent entirely different roles. 
Although the terms “mining”, “web mining” and 
“knowledge discovery” have been used by other 
researchers in various contexts (Cooley, 1997), we 

believe it is legitimate to use them to describe our 
work for two major reasons: 1) We use algorithms 
and formulas coming from the data mining field, 
specifically signal to noise ratio association metric  
(Church, 1989; Church, 1991) 2) Our approach 
interacts with commercial search engines and 
harvests web pages contextually close to the target 
collection, and there is mining of resources (the 
search engine database) and discovery of content 
(web pages) involved. We admit that the term 
“mining” may be also used for a more sophisticated 
or different kind of processing than our approach 
here. 
3 Algorithms And Implementations  
The target collection (Reuters in our experiment) is 
indexed and its most representative terms are used to 
construct a corpus from an external source (e. g. 
World Wide Web). The term-to-term similarity 
matrix is created by co-occurrence analysis within 
the corpus and subsequently used to expand 
document vectors in order to improve the accuracy 
(correctness) of similarity computation between the 
documents in the target collection. Although in this 
work we do not study the effects on the individual 
applications of the similarity computation, it is 
crucial for such tasks as retrieval, clustering, 
categorization or topic detection. 
3.1 Building a Web Corpus  
We designed and implemented a heuristic algorithm 
that takes advantage of the capabilities provided by 
commercial web search engines. In our study, we 
used AltaVista (www.altavista.com), but most other 
search engines would also qualify for the task. 
Ideally, we would like to obtain web pages that 
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contain the terms from the target collection in the 
similar context.  While constructing Web corpus, our 
spider automatically sends a set of queries to 
AltaVista and obtains the resulting URLs. The spider 
creates one query for each term ti out of 1000 most 
frequent terms in the target collection (stop words 
excluded) according to the following formula: 

qi = “+” + ti + “ ” + context_hint 
, where + means string concatenation, quotes are 
used to represent text strings literally and 
context_hint is composed of the top most frequent 
terms in the target collection (stop words excluded) 
separated by empty space. Although this way of 
defining context may seem a bit simplistic , it still 
worked surprisingly well for our purpose.  
According to AltaVista, a word or phrase preceded 
by '+' sign has to be present in the search results. The 
presence of the other words and phrases (context hint 
string in our case) is only desirable but not required. 
The total number of the context hint terms (108 in 
this study) is limited by the maximum length of the 
query string that the search engine can accept.  
We chose to use only top 1000 terms for constructing 
corpus to keep the downloading time manageable. 
We believe using a larger corpus would demonstrate 
even larger improvement. Approximately 10% of 
those terms were phrases. We only used the top 200 
hits from each query and only first 20Kbytes of 
HTML source from each page to convert it into plain 
text. After removing duplicate URLs and empty 
pages, we had 19,198 pages in the Web corpus to 
mine.
Downloading took approximately 6 hours and was 
performed in parallel, spawning up to 20 java 
processes at a time, but it still remained the largest 
scalability bottleneck. 
3.2 Semantic Similarity Discovery 
CSSE performs co-occurrence analysis at the 
document level and computes the following values: 
df(t1, t2) is the joint document frequency, i.e., the 
number of web pages where both terms t1 and t2  
occur. df(t) is the document frequency of the term t, 

i.e., the number of web pages in which the term t 
occurs. Then, CSSE applies a well known signal to 
noise ratio formula coming from data mining 
(Church, 1991) to establish similarity between terms 
t1 and t2: 

sim(t1, t2)=
)2()1(
)2,1(

log
tdftdf
ttdfN

⋅
⋅

/ Nlog ,         (1)  

 
where N is the total number of documents in the 
mining collection (corpus),  
log N is the normalizing factor, so the sim value 
would not exceed 1 and be comparable across 
collections of different size. 
Based on the suggestions from the other studies 
using formula (1), before running our tests, we 
decided to discard as spurious all the co-occurrences 
that happened only within one or two pages and all 
the similarities that are less than the specified 
threshold (Thresh).  
3.3 Vector Expansion 
Since we were modifying document vectors (more 
general case), but not queries as in the majority of 
prior studies, we refer to the process as vector 
expansion. As we wrote in literature review, there 
are many possible heuristic ways to perform vector 
expansion. After preliminary tests, we settled on the 
simple linear modification with post re-normalization 
as presented below. The context of the target 
collection is represented by the similarity matrix 
sim(t1, t2) mined as described in the preceding 
section. Our vector expansion algorithm adds all the 
related terms to the vector representation of the 
document D with the weights proportional to the 
degree of the relationships and the global inverse 
document frequency (IDF) weighting of the added 
terms: 
w(t, D)’ = w(t, D) + 

∑
∈ dt tdf

NttsimDtwa
1 )(

log),'(),'( , where 
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w(t, D) is the initial, not expanded, weight of the 
term t in the document D (assigned according to TF-
IDF weighting scheme in our case); w’(t, D) is the 
modified weight of the term t in the document D; t’ 
iterates through all (possibly repeating) terms in the 
document D ; a is the adjustment factor (a parameter 
controlled in the expansion process). 

4 Experiments 
4.1 Similarity Error Reduction 
Since in this study we were primarily concerned with 
improving similarity computation but not retrieval 
per se, we chose a widely used for text categorization 
Reuters collection (Lewis, 1997) over TREC or 
similar collections with relevance judgments. We 
used a modified version of Lewis’ (1992) suggestion 
to derive our evaluation metric, which is similar to 
the metric derived from Kruskal-Goodman statistics 
used in Haveliwala et al. (2002) for a study with 
Yahoo web directory (www.yahoo.com). Intuitively, 
the metric reflects the probability of algorithm 
guessing the correct order (called ground truth), 
imposed by a manually created hierarchy (simplified 
to a partition in Reuters case). Ideally, for each 
document D, the similarity computation algorithm 
should indicate documents sharing one or more 
Reuters categories with document D to be more 
similar to the document D than the documents not 
sharing any categories with D. We formalized this 
intuitive requirement into a metric by the following 
way. Let’s define a test set Sa to be the set of all the 
document triples (D, D1, D2) such that D≠D1, 
D≠D2, D1≠D2, and furthermore D shares at least one 
common category with D1 but no common 
categories with D2. We defined total error count 
(Ec) as the number of triples in the test set Sa such 
that sim(D, D1) < sim(D, D2) since it should be the 
other way around. Our accuracy metric reported 
below is the total error count normalized by the size 
of the test set Sa: similarity error = Ec / #Sa, 
computed for each Reuters topics and averaged 
across all of them. The metric ranges from 0 (ideal 
case) to .5 (random ordering). It also needed an 
adjustment to provide the necessary continuity as 
justified in the following. Since the documents are 
represented by very sparse vectors, very often (about 
5% of all triples) documents D, D1, D2 do not have 
any terms in common and as a result similarity 
computation results in a tie: sim(D,D1) = sim (D, 
D2). A tie can not be considered an error because in 
that case one can suggest a trivial improvement to 
the similarity algorithm by simply breaking the ties 
at random in any direction with an equal chance, and 
thus reducing errors in 50% of all ties. This is why 
the metric counts half of all the ties as errors, which 
completely removes this discontinuity.  
We used all the Reuters 78 topics from the 
“commodity code” group since they are the most 
“semantic ”, not trying the others (Economic 
Indicator Codes, Currency Codes, Corporate Codes). 
We discarded the topics that had only 1 document 
and used only the documents that had at least one of 

the topics. This reduced our test collection to 1841 
documents, still statistically powerful and 
computationally demanding since millions of triples 
had to be considered (even after some 
straightforward algorithmic optimizations). After 
indexing and stemming (Porter, 1980) the total 
number of unique stems used for the vector 
representation was 11461. 

Weighting 
Scheme 

boolean 
vectors 

TF only  IDF only  TF-
IDF 

Similarity Error 0.1750 0.1609 0.1278 0.1041 
Table 2. Comparison of different weighting schemes 

with the original (not expanded) documents. 
Table 2 lists the similarity error averaged by topics 
for the different weighting schemes we tried first in 
our experiment.  Since TF-IDF weighting was by far 
the best in this evaluation set up, we limited our 
expansion experiments to TF-IDF scheme only. For 
similarity measure between document vectors, we 
used the most common negative Euclidian distance 
after normalizing the vectors to unit length. It can be 
shown, that cosine metric (dot product), the other 
popular metric, results in the same order and, thus 
same similarity error as well. Without normalization 
or stemming the errors were almost twice as much 
larger. 
Although we varied the adjustment parameter a in 
our experiment, for better interpretation, we plotted 
our primary metric (average error reduction) as a 
function of Ca, the average Euclidian distance 
between the original and the modified document 
vectors when both vectors are normalized to unit 
length. Ca serves as a convenient parameter 
controlling the degree of change in the document 
vectors, better than a, because same values of a may 
result in different changes depending on the term-to-
term similarity matrix sim(t1, t2). In theory, Ca 
varies from 0 (no change) to 2 , the case of 
maximum possible change (no common terms 
between initial and expanded representation). By 
varying adjustment factor a from 0 to 10 and higher 
we observed almost the entire theoretical range of 
Ca: starting from negligible change and going all the 
way to 2 , where the added terms entirely 
dominated the original ones. The average number of 
terms in the document representation was in 60-70 
range before expansion and in 200-300 range after 
the expansion. This of course increased 
computational burden. Nevertheless, even after the 
expansion, the vector representations still remained 
sparse and we were able to design and implement 
some straightforward algorithmic improvements 
taking advantage of this sparsity to keep processing 
time manageable. The expansion for entire Reuters 
collection was taking less than one minute on a 
workstation with Pentium III 697 MHz processor, 
256 MB of RAM, with all the sparse representations 
of the documents and similarity matrix stored in 
primary memory. This renders the expansion suitable 
for online processing.  
To evaluate the performance of each technique, we 
used the error reduction (%) relatively to the baseline 
shown in Table 1 (TF-IDF column) averaged across 
all the topics, which corresponds to the lowest 
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original non-expanded similarity error. Figure 1 
shows the error reduction as a function of Ca for 
various values of Thresh. We stopped increasing Ca 
once the improvement dropped below -10% to save 
testing time. Several facts can be observed from the 
results: 
1) The error reduction for Thresh in the mid range of 
Ca [.2-.4] is very stable, achieves 50% , which is 
very large compared with the other known 
techniques we used for comparison as discussed 
below. The effect is also comparable with the 
difference between various weighting functions 
(Table 2), which we believe renders the 
improvement practically significant. 
2) For small thresholds (Thresh < .1), the effect is 
not that stable, possibly since many non-reliable 
associations are involved in the expansion.  
3) Larger thresholds (Thresh > .4) are also not very 
reliable since they result in a small number of 
associations created, and thus require large values of 
adjustment parameter a in order to produce 
substantial average changes in the document vectors 
(Ca), which results in too drastic change in some 
document vectors.   
4) The error reduction curve is unimodal: it starts 
from 0 for small Ca, since document vectors almost 
do not change, and grows to achieve maximum for 
Ca somewhere in relatively wide .1 - .5 range. Then, 
it decreases, because document vectors may be 
drifting too far from the original ones, falling below 
0 for some large values of Ca.  
5) For thresholds (Thresh) .2 and .3, the effect stays 
positive even for large values of Ca, which is an 
interesting phenomenon because document vectors 
are getting almost entirely replaced by their 
expanded representations. 
Some sensitivity of the results with respect to the 
parameters Thresh, Ca is a limitation as occurs 
similarly to virtually all modern IR improvement 
techniques. Indeed, Latent Semantic Indexing (LSI) 
needs to have number of semantic axis to be 
correctly set, otherwise the performance may 
degrade. Pseudo Relevance Feedback (PRF) depends 
on several parameters such as number of documents 
to use for feedback, adjustment factor, etc. All 

previously studied expansion techniques depend on 
the adjustment factor as  well. The specific choice of 
the parameters for real life applications is typically 
performed manually based on trial and error or by 
following a machine learning approach: splitting data 
into training and testing sets. Based on the above 
results, the similarity threshold (Thresh) in .2-.4 and 
Ca in .1-.5 range seem to be a safe combination, not 
degrading and likely to significantly (20-50%)  
improve performance. The performance curve being 
unimodal with respect to both Ca and Thresh also 
makes it easier to tune by looking for maxima. 
Although we have involved only one test collection 
in this study, this collection (Reuters) varies greatly 
in the content and the size of the documents, so we 
hope our results will generalize to other collections.  
We also verified that the effect typically diminishes 
when the size of the mining collection (corpus) is 
reduced by random sub-sampling. Those results were 
also similar to those obtained 4 months earlier, 
although only 80% of the pages in the mining corpus 
remained. 
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Figure 4. Comparing to LSI. 
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Figure 5. The error reduction as the function of the 

average vector change due to Pseudo Relevance 
Feedback for several cut-off numbers Nc. 

4.2 Sensitivity Analysis  
To test the importance of the context, we removed 
the “context hint” terms from the queries used by our 
agent, and created another (less context specific) 
corpus for mining. We obtained 175,336 unique 
URLs, much more than with using “context hint” 
terms since the overlap between different query 
results was much smaller. We randomly selected 
25,000 URLs of them and downloaded the referred 
pages. Then, to make the comparison more objective, 
we randomly selected  19,198 pages (same number 
as with using context hint) of the non-empty 
downloaded pages. We mined the similarity 
relationships from the selected documents in the 
same way as described above. The resulting 
improvement (shown in the Figure 2) was indeed 
much smaller (13% and less) than with using 
“context hint” terms. It also degrades much quicker 
for larger Ca and more sensitive to the choice of 
Thresh. This may explain why mixed results were 
reported in the literate when the similarity thesaurus 
was constructed in a very general setting, but not 
specifically for the target collection in mind. It is 
also interesting to note a similar behavior of error 
reduction as the function of Ca and Thresh: it is 
unimodal with maximum in approximately same 
range of arguments. This may also serve as indirect 
evidence of stability of the effect (even if smaller in 
that case) with respect to the parameters involved. 
To verify the importance of using external corpus vs. 
self-mining, we mined the similarity relationships 
from the same collection (Reuters) that we used for 
the tests (target collection) using the same mining 
algorithms. Figure 3 shows that the effect of such 
“self-mining” is relatively modest (up to 20%), 
confirming that using the external corpus (the Web 
in our approach) was crucial. Again, the behavior of 
the error reduction (even smaller in that case) with 
respect to Ca and Thresh is similar to the context 
specific web corpus mining. 
4.3 Comparison with Other Techniques 
Figure 4 shows the similarity error reduction as a 
function of the number of semantic axis when LSI is 
applied. The effect with the entire collection (second 
column) is always negative. So, the Reuters 

collection in our experiment set up was found to be 
not a good application of LSI technique, possibly 
because many of the topics have already small errors 
even before applying LSI. To verify our 
implementation and the applicability of LSI to the 
similarity computation, we applied it only to the 
“tougher” 26 topics, those in the upper half if 
ordered by the original similarity error. As Figure 4 
reveals, LSI is effective in that case for numbers of 
semantic axis comparable with number of topics in 
the target collection. Our findings are well in line 
with reported in prior research. 
We adapted the classic Pseudo Relevance Feedback 
algorithm (Qiu, 1993), which has been so far applied 
only to document retrieval tasks, to similarity 
computation in a straightforward way and also tried 
several variations of if (not described here due to 
lack of space). Figure 5 shows the effect as a 
function of adjustment factor a for various cut-off 
parameters Nc (the number of top ranked documents 
used for feedback). The effect achieves the 
maximum of around 21%, consistent with the results 
reported in prior research. The improvement is close 
in magnitude to the one due to “self-mining”  
described above. We do not claim that our approach 
is better than PRF since it is not entirely meaningful 
to make this comparison due to the number of 
parameters and implementation details involved in 
both. Also, more important, the techniques rely on 
different source of data: PRF is a “self-mining” 
approach while CSSE builds and mines external 
corpus. Thus, CSSE can be used in addition to PRF.  

5 Conclusions  
In this paper, we proposed and empirically studied an 
approach to improve similarity computation between 
text documents by creating a context specific Web 
corpus and performing similarity mining within it. 
The results demonstrated that the similarity errors 
can be reduced by additional 50% after all the 
standard procedures such as stemming, term 
weighting, and vector normalization. We also 
established the crucial importance of the following 
three factors, which we believe make our technique 
distinct from those already explored early and 
explain more encouraging results that we obtained:  
1) Using external corpus. 2) Taking the context of 
the target collection into consideration. 3) Using the 
appropriate mining formula.  Another important 
distinction and possible explanation of a more 
dramatic effect is our focus on similarity 
computation between text documents, rather than on 
document retrieval tasks, which have been more 
extensively studied in the past. Similarity 
computation is a more general procedure, which in 
turns defines the quality of virtually all other specific 
tasks such as document retrieval, summarization, 
clustering, categorization, topic detection, query by 
example, etc.  Our future plans are to overcome some 
of the limitations in this study, specifically using 
more than a single (although standard and very 
diverse) collection and study other experimental 
setups, such as document retrieval, text 
categorization, or topic detection and tracking.  
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Abstract
We describe a new method for the repre-
sentation of NLP structures within rerank-
ing approaches. We make use of a condi-
tional log–linear model, with hidden vari-
ables representing the assignment of lexi-
cal items to word clusters or word senses.
The model learns to automatically make
these assignments based on a discrimina-
tive training criterion. Training and de-
coding with the model requires summing
over an exponential number of hidden–
variable assignments: the required sum-
mations can be computed efficiently and
exactly using dynamic programming. As
a case study, we apply the model to
parse reranking. The model gives anF–
measure improvement of≈ 1.25% be-
yond the base parser, and an≈ 0.25%
improvement beyond the Collins (2000)
reranker. Although our experiments are
focused on parsing, the techniques de-
scribed generalize naturally to NLP struc-
tures other than parse trees.

1 Introduction

A number of recent approaches in statistical NLP
have focused onreranking algorithms. In rerank-
ing methods, a baseline model is used to generate a
set of candidate output structures for each input in
training or test data. A second model, which typi-
cally makes use of more complex features than the
baseline model, is then used to rerank the candidates
proposed by the baseline. Reranking approaches
have given improvements in accuracy on a number
of NLP problems including parsing (Collins, 2000;
Charniak and Johnson, 2005), machine translation
(Och and Ney, 2002; Shen et al., 2004), informa-
tion extraction (Collins, 2002), and natural language
generation (Walker et al., 2001).

The success of reranking approaches depends
critically on the choice ofrepresentationused by the

reranking model. Typically, each candidate struc-
ture (e.g., each parse tree in the case of parsing) is
mapped to a feature–vector representation. Previous
work has generally relied on two approaches to rep-
resentation: explicitly hand–crafted features (e.g., in
Charniak and Johnson (2005)) or features defined
through kernels (e.g., see Collins and Duffy (2002)).

This paper describes a new method for the rep-
resentation of NLP structures within reranking ap-
proaches. We build on the intuition that lexical items
in natural language often fall into word clusters (for
example,presidentand chairmanmight belong to
the same cluster) or fall into distinct word senses
(e.g., bank might have two distinct senses). Our
method involves a hidden–variable model, where
the hidden variables correspond to an assignment
of words to either clusters or word–senses. Lexical
items are automatically assigned their hidden values
using unsupervised learning within a discriminative
reranking approach.

We make use of a conditional log–linear model
for our task. Formally, hidden variables within
the log–linear model consist ofglobal assignments,
where a global assignment entails an assignment of
every word in the sentence to some hidden cluster
or sense value. The number of such global assign-
ments grows exponentially fast with the length of
the sentence being processed. Training and decod-
ing with the model requires summing over the ex-
ponential number of possible global assignments, a
major technical challenge in our model. We show
that the required summations can be computed ef-
ficiently and exactly using dynamic–programming
methods (i.e., the belief propagation algorithm for
Markov random fields (Yedidia et al., 2003)) under
certain restrictions on features in the model.

Previous work on reranking has made heavy use
of lexical statistics, but has treated lexical items as
atoms. The motivation for our method comes from
the observation that statistics based on lexical items
are critical, but that these statistics suffer consid-
erably from problems of data sparsity and word–
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sense polysemy. Our model has the ability to allevi-
ate data sparsity issues by learning to assign words
to word clusters, and can mitigate problems with
word–sense polysemy by learning to assign lexical
items to underlying word senses based upon con-
textual information. A critical difference between
our method and previous work on unsupervised ap-
proaches to word–clustering or word–sense discov-
ery is that our model is trained using a discriminative
criterion, where the assignment of words to clusters
or senses is driven by the reranking task in question.

As a case study, in this paper we focus on syn-
tactic parse reranking. We describe three model
types that can be captured by our approach. The
first method emulates a clustering operation, where
the aim is to place similar words (e.g.,presidentand
chairman) into the same cluster. The second method
emulates arefinementoperation, where the aim is to
recover distinct senses underlying a single word (for
example, distinct senses underlying the nounbank).
The third definition makes use of an existing ontol-
ogy (i.e., WordNet (Miller et al., 1993)). In this case
the set of possible hidden values for each word cor-
responds to possible WordNet senses for the word.

In experimental results on the Penn Wall Street
Journal treebank parsing domain, the hidden–
variable model gives anF–measure improvement of
≈ 1.25% beyond a baseline model (the parser de-
scribed in Collins (1999)), and gives an≈ 0.25%
improvement beyond the reranking approach de-
scribed in Collins (2000). Although the experiments
in this paper are focused on parsing, the techniques
we describe generalize naturally to other NLP struc-
tures such as strings or labeled sequences. We dis-
cuss this point further in Section 6.1.

2 Related Work

Various machine–learning methods have been used
within reranking tasks, including conditional log–
linear models (Ratnaparkhi et al., 1994; Johnson et
al., 1999), boosting methods (Collins, 2000), vari-
ants of the perceptron algorithm (Collins, 2002;
Shen et al., 2004), and generalizations of support–
vector machines (Shen and Joshi, 2003). There have
been several previous approaches to parsing using
log–linear models and hidden variables. Riezler
et al. (2002) describe a discriminative LFG pars-
ing model that is trained on standard (syntax only)

treebank annotations by treating each tree as a full
LFG analysis with an observedc-structure and hid-
denf -structure. Clark and Curran (2004) present an
alternative CCG parsing approach that divides each
CCG parse into a dependency structure (observed)
and a derivation (hidden). More recently, Matsuzaki
et al. (2005) introduce a probabilistic CFG aug-
mented with hidden information at each nontermi-
nal, which gives their model the ability to tailor it-
self to the task at hand. The form of our model is
closely related to that of Quattoni et al. (2005), who
describe a hidden–variable model for object recog-
nition in computer vision.

The approaches of Riezler et al., Clark and Cur-
ran, and Matsuzaki et al. are similar to our own
work in that the hidden variables are exponential
in number and must be handled with dynamic–
programming techniques. However, they differ from
our approach in the definition of the hidden variables
(the Matsuzaki et al. model is the most similar). In
addition, these three approaches don’t use rerank-
ing, so their features must be restricted to local scope
in order to allow dynamic–programming approaches
to training. Finally, these approaches use Viterbi
or other approximations during decoding, something
our model can avoid (see section 6.2).

In some instantiations, our model effectively clus-
ters words into categories. Our approach differs
from standard word clustering in that the cluster-
ing criteria is directly linked to the reranking objec-
tive, whereas previous word–clustering approaches
(e.g. Brown et al. (1992) or Pereira et al. (1993))
have typically leveraged distributional similarity. In
other instantiations, our model establishes word–
sense distinctions. Bikel (2000) has done previous
work on incorporating the WordNet hierarchy into
a generative parsing model; however, this approach
requires data with word–sense annotations whereas
our model deals with word–sense ambiguity through
unsupervised discriminative training.

3 The Hidden–Variable Model

In this section we describe a hidden–variable model
based on conditional log–linear models. Each sen-
tencesi for i = 1 . . . n in our training data has a
set ofni candidate parse treesti,1, . . . , ti,ni , which
are the output of anN–best baseline parser. Each
candidate parse has an associatedF–measure score,
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indicating its similarity to the gold–standard parse.
Without loss of generality, we defineti,1 to be the
parse with the highestF–measure for sentencesi.

Given a candidate parse treeti,j , the hidden–
variable model assigns a domain of hidden val-
ues to each word in the tree. For example, the
hidden–value domain for the wordbank could be
{bank1,bank2,bank3} or {NN1,NN2,NN3}. De-
tailed descriptions of the domains we used are given
in Section 4.1. Formally, ifti,j spansm words then
the hidden–value domains for each word are the sets
H1(ti,j), . . . ,Hm(ti,j). A global hidden–value as-
signment, which attaches a hidden value to every
word in ti,j , is writtenh = (h1, . . . , hm) ∈ H(ti,j),
whereH(ti,j) = H1(ti,j)× . . .×Hm(ti,j) is the set
of all possible global assignments forti,j .

We define a feature–based representationΦ such
that Φ(ti,j ,h) ∈ Rd is a vector of feature occur-
rence counts that describes candidate parseti,j with
global assignmenth ∈ H(ti,j). We write Φk for
k = 1 . . . d to denote thekth component of the vec-
tor Φ. Each component of the feature vector is the
count of some substructure within(ti,j ,h). For ex-
ample,Φ12 andΦ101 could be defined as follows:

Φ12(ti,j ,h) =
Number of times the wordthe
occurs with hidden valuethe3

and part of speech tagDT in
(ti,j ,h).

Φ101(ti,j ,h) =
Number of timesCEO1 ap-
pears as the subject ofowns2
in (ti,j ,h)

(1)

We use a parameter vectorΘ ∈ Rd to define a
log–linear distribution over candidate trees together
with global hidden–value assignments:

p(ti,j ,h | si,Θ) =
eΦ(ti,j ,h)·Θ∑

j′,h′∈H(ti,j′ )
eΦ(ti,j′ ,h

′)·Θ

By marginalizing out the global assignments, we ob-
tain a distribution over the candidate parses alone:

p(ti,j | si,Θ) =
∑

h∈H(ti,j)
p(ti,j ,h | si,Θ) (2)

Later in this paper we will describe how to train
the parameters of the model by minimizing the fol-
lowing loss function—which is the negative log–
likelihood of the training data—with respect toΘ:

L(Θ) = −
∑
i

log p(ti,1 | si,Θ)

= −
∑
i

log
∑

h∈H(ti,1) p(ti,1,h | si,Θ)
(3)

saw with
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VP(saw)

S(saw)

a telescope

NP(telescope)

the boy

NP(boy)

The man

NP(man)
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man

The the

with
boy

telescope

a

Figure 1:A sample parse tree and its dependency tree.

3.1 Local Feature Vectors

Note that the number of possible global assignments
(i.e.,|H(ti,j)|) grows exponentially fast with respect
to the number of words spanned byti,j . This poses
a problem when training the model, or when calcu-
lating the probability of a parse tree through Eq. 2.
This section describes how to address this difficulty
by restricting features to sufficiently local scope. In
Section 3.2 we show that this restriction allows effi-
cient training and decoding of the model.

The restriction to local feature–vectors makes use
of the dependency structure underlying the parse
tree ti,j . Formally, for treeti,j , we define the cor-
responding dependency treeD(ti,j) to be a set of
edges between words inti,j , where(u, v) ∈ D(ti,j)
if and only if there is a head–modifier dependency
between wordsu andv. See Figure 1 for an exam-
ple dependency tree. We restrict the definition of
Φ in the following way1. If w, u and v are word
indices, we introduce single–variable local feature
vectorsφ(ti,j , w, hw) ∈ Rd and pairwise local fea-
ture vectorsφ(ti,j , u, v, hu, hv) ∈ Rd. The global
feature vectorΦ(ti,j ,h) is then decomposed into a
sum over the local feature vectors:

Φ(ti,j ,h) =
∑

1≤w≤m
φ(ti,j , w, hw) +∑

(u,v)∈D(ti,j)
φ(ti,j , u, v, hu, hv)

(4)

Notice that the second sum, over pairwise local
feature vectors, respects the dependency structure
D(ti,j). Section 3.2 describes how this decompo-
sition of Φ leads to an efficient and exact dynamic–
programming approach that, during training, allows
us to calculate the gradient∂L∂Θ and, during testing,
allows us to find the most probable candidate parse.

In our implementation, each dimension of the lo-
cal feature vectors is an indicator function signaling
the presence of a feature, so that a sum over local
feature vectors in a tree gives the occurrence count

1Note that the restriction on local feature vectors only con-
cerns the inclusion of hidden values; features may still observe
arbitrary structure within the underlying parse treeti,j .
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of features in that tree. For instance, define

φ12(ti,j , w, hw) =
r
hw = the3 and treeti,j assigns word
w to part–of–speechDT

z

φ101(ti,j , u, v, hu, hv) =
s

(hu, hv) = (CEO1, owns2)
and treeti,j places(u, v) in
a subject–verb relationship

{

where the notationJPK signifies a0/1 indicator of
predicateP. When summed over the tree, these defi-
nitions ofφ12 andφ101 yield global featuresΦ12 and
Φ101 as given in the previous example (see Eq. 1).

3.2 Training the Model

We now describe how the loss function in Eq. 3 can
be optimized using gradient descent. The gradient
of the loss function is given by:
∂L
∂Θ = −

∑
i
F (ti,1,Θ) +

∑
i,j
p(ti,j | si,Θ)F (ti,j ,Θ)

whereF (ti,j ,Θ) =
∑

h∈H(ti,j)

p(ti,j ,h | si,Θ)
p(ti,j | si,Θ) Φ(ti,j ,h)

is the expected value of the feature vector produced
by parse treeti,j . As we remarked earlier,|H(ti,j)|
is exponential in size so direct calculation of either
p(ti,j | si,Θ) or F (ti,j ,Θ) is impractical. However,
using the feature–vector decomposition in Eq. 4, we
can rewrite the key functions ofΘ as follows:

p(ti,j | si,Θ) = Zi,j∑
j′ Zi,j′

F (ti,j ,Θ) =∑
1 ≤ w ≤ m

hw ∈ Hw(ti,j)

p(ti,j , w, hw)φ(ti,j , w, hw) +

∑
(u, v) ∈ D(ti,j)
hu ∈ Hu(ti,j)
hv ∈ Hv(ti,j)

p(ti,j , u, v, hu, hv)φ(ti,j , u, v, hu, hv)

where p(ti,j , w, hw) and p(ti,j , u, v, hu, hv) are
marginalized probabilities andZi,j is the associated
normalization constant:

Zi,j =
∑

h∈H(ti,j)
eΦ(ti,j ,h)·Θ

p(ti,j , w, x) =
∑

h |hw=x
p(ti,j ,h | si,Θ)

p(ti,j , u, v, x, y) =
∑

h |hu=x,hv=y
p(ti,j ,h | si,Θ)

The three quantities above can be computed with be-
lief propagation (Yedidia et al., 2003), a dynamic–
programming technique that is efficient2 and exact

2The running time of belief propagation varies linearly with
the number of nodes inD(ti,j) and quadratically with the car-
dinality of the largest hidden–value domain.

when the graphD(ti,j) is a tree, which is the case
in our parse reranking model. Having calculated
the gradient in this way, we minimize the loss using
stochastic gradient descent3 (LeCun et al., 1998).

4 Features for Parse Reranking

The previous section described hidden–variable
models for discriminative reranking. We now de-
scribe features for the parse reranking problem. We
focus on the definition of hidden–value domains and
local feature vectors in the reranking model.

4.1 Hidden–Value Domains and Local Features

Each word in a parse tree is given a domain of pos-
sible hidden values by the hidden–variable model.
Models with widely varying behavior can be created
by changing the way these domains are defined. In
particular, in this section we will see how different
definitions of the domains give rise to the three main
model types: clustering, refinement, and mapping
into a pre–built ontology such as WordNet.

As illustration, consider a simple approach that
splits each word into a domain of three word–sense
hidden values (e.g., the wordbankwould yield the
domain{bank1,bank2,bank3}). In this approach,
each word receives a domain of hidden values that
is not shared with any other word. The model is
then able to distinguish several different usages for
each word, emulating a refinement operation. An
alternative approach is to split each word’s part–of–
speech tag into several sub–tags (e.g.,bank would
yield {NN1,NN2,NN3}). This approach assigns the
same domain to many words; for instance, singular
nouns such asbond, market, andbankall receive the
same domain. The behavior of the model then emu-
lates a clustering operation.

Figure 2 shows the single–variable and pairwise
features used in our experiments. The features
are shown with hidden variables corresponding to
word–specific hidden values, such asshares1 or
bought3. In our experiments, we made use of fea-
tures such as those in Figure 2 in combination with
the following four definitions of the hidden–value

3We also performed some experiments using the conjugate
gradient descent algorithm (Johnson et al., 1999). However, we
did not find a significant difference between the performance of
either method. Since stochastic gradient descent was faster and
required less memory, our final experiments used the stochastic
gradient method.
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bought yesterday1.5m shares in heavy trading

VBD(bought) PP(in) NP(yesterday)NP(shares)

S(bought)

VP(bought)

PSfrag replacements

Pairwise features generated for (shares1, bought3) =
(shares1, bought3, Dependency: VBD, NP, VP, Right, +Adj, -CC)
(shares1, bought3, Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, bought3, Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)

Single–variable features generated for (shares1) =
(shares1)
(shares1, Word: shares)
(shares1, POS: NN)
(shares1, Word: shares, POS: NN)
(shares1, Highest NT: NP)
(shares1, Word: shares, Highest NT: NP)
(shares1, POS: NN, Highest NT: NP)
(shares1, Word: shares, POS: NN, Highest NT: NP)
(shares1, Up Path: NP, VP, S)
(shares1, Word: shares, Up Path: NP, VP, S)
(shares1, Down Path: NP, NN)
(shares1, Word: shares, Down Path: NP, NN)
(shares1, Head Rule: NP→ CD, CD, NNShead)
(shares1, Word: shares, Head Rule: NP→ CD, CD, NNShead)
(shares1, Mod Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, Word: shares, Mod Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, Head Gpar Rule: VP→ NP→ CD, CD, NNShead)
(shares1, Word: shares, Head Gpar Rule: VP→ NP→ CD, CD, NNShead)
(shares1, Mod Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)
(shares1, Word: shares, Mod Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)

Figure 2: The features used in our model. We
show the single–variable features produced for hidden value
shares1 and the pairwise features produced for hidden values
(shares1, bought3), in the context of the given parse fragment.
Highest NT = highest nonterminal,Up Path = sequence of ances-
tor nonterminals,Down Path = sequence of headed nonterminals,
Head Rule = rules headed by the word,Mod Rule = rule in which
word acts as modifier,Head/Mod Gpar Rule = Head/Mod Rule plus
grandparent nonterminal.

domains (in each case we give the model type that
results from the definition—clustering, refinement,
or pre–built ontology—in parentheses):

Lexical (Refinement) Each word is split into
three sub–values. See Figure 2 for an example of
features generated for this choice of domain.

Part–of–Speech (Clustering) The part–of–
speech tag of each word is split into five sub–values.
In Figure 2, the wordshareswould be assigned
the domain{NNS1, . . . ,NNS5}, and the wordbought
would have the domain{VBD1, . . . , VBD5}.

Highest Nonterminal (Clustering) The high-
est nonterminal to which each word propagates as
a headword is split into five sub–values. In Figure 2
the wordboughtyields domain{S1, . . . , S5}, while
in yields{PP1, . . . , PP5}.

Supersense (Pre–Built Ontology) We borrow
the idea of using WordNet lexicographer filenames
as broad “supersenses” from Ciaramita and John-
son (2003). For each word, we split each of its

supersenses into three sub–supersenses. If no su-
persenses are available, we fall back to splitting
the part–of–speech into five sub–values. For ex-
ample,shareshas the supersensesnoun.possession,
noun.act and noun.artifact, which yield the do-
main {noun.possession1, noun.act1, noun.artifact1, . . .
noun.possession3, noun.act3, noun.artifact3}. On the
other hand,in does not have any WordNet super-
senses, so it is assigned the domain{IN1, . . . , IN5}.

4.2 The Final Feature Sets

We created eight feature sets by combining the
four hidden–value domains above with two alterna-
tive definitions of dependency structures: standard
head–modifier dependencies and “sibling dependen-
cies.” When using sibling dependencies, connec-
tions are established between the headwords of ad-
jacent siblings. For instance, the head–modifier
dependencies produced by the tree fragment in
Figure 2 are(bought, shares), (bought, in), and
(bought, yesterday), while the corresponding sibling
dependencies are(bought, shares), (shares, in), and
(in, yesterday).

4.3 Mixed Models

The different hidden–variable models display vary-
ing strengths and weaknesses. We created mixtures
of different models using a weighted average:

log p(ti,j |si) =
M∑
m=1

λm log pm(ti,j |si,Θm)−Z(si)

whereZ(si) is a normalization constant that can be
ignored, as it does not affect the ranking of parses.
The λm weights are determined through optimiza-
tion of parsing scores on a development set.

5 Experimental Results

We trained and tested the model on data from the
Penn Treebank (Marcus et al., 1994). Candidate
parses were produced by anN–best version of the
Collins (1999) parser. Our training data consists of
Treebank Sections 2–21, divided into a training cor-
pus of 35,540 sentences and a development corpus
of 3,676 sentences. In later experiments, we made
use of a secondary development corpus of 1,914 sen-
tences from Section 0. Sections 22–24, containing
5,455 sentences, were held out as the test set.

For each of the eight feature sets described in
Section 4.2, we used the stochastic gradient descent
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Section 22 Section 23 Section 24 Total
LR LP LR LP LR LP LR LP

C99 89.12 89.20 88.14 88.56 87.17 87.97 88.19 88.60
MIX 90.43 90.61 89.25 89.69 88.46 89.29 89.41 89.87
C2K 90.27 90.62 89.43 89.97 88.56 89.58 89.46 90.07

MIX+ 90.57 90.79 89.80 90.27 88.78 89.73 89.78 90.29

Table 1:The results on Sections 22–24.LR = Labeled Recall,
LP = Labeled Precision.

method to optimize the parameters of the model. We
created various mixtures of the eight models using
the weighted–average technique described in Sec-
tion 4.3, testing the accuracy of each mixture on the
secondary development set. Our final model was a
mixture of three of the eight possible models: super-
sense hidden values with sibling trees, lexical hid-
den values with sibling trees, and highest nontermi-
nal hidden values with normal head–modifier trees.

Our final tests evaluated four models. The two
baseline models are the Collins (1999) base parser,
C99, and the Collins (2000) reranker,C2K. The first
new model is theMIX model, which is a combina-
tion of the C99 base model with the three models
described above. The second new model,MIX+, is
created by augmentingMIX with features from the
method inC2K. Table 1 shows the results. The
MIX model obtains anF–measure improvement of
≈ 1.25% over theC99 baseline, an improvement that
is comparable to theC2K reranker. TheMIX+ model
yields an improvement of≈ 0.25% beyondC2K.

We tested the significance of 8 comparisons cor-
responding to the results in Table 1 using the sign
test4: we testedMIX vs. C99 on Sections 22, 23, and
24 individually, as well as on Sections 22–24 taken
as a whole; we also testedMIX+ vs. C2K on these 4
test sets. Of the 8 comparisons, all showed signif-
icant improvements at the levelp ≤ 0.01 with the
exception of one test,MIX+ vs.C2K on Section 24.

6 Discussion
6.1 Applying the Model to Other NLP Tasks

In this section, we discuss how hidden–variable
models might be applied to other NLP problems, and
in particular to structures other than parse trees. To

4The input to the sign test is a set of sentences with judge-
ments for each sentence indicating whether model 1 gives a
better parse than model 2, model 2 gives a better parse than
model 1, or models 1 and 2 give equal quality parses. When
using the sign test, for each sentence in question we calculate
theF–measure at the sentence level for the two models being
compared, deriving the required judgement from these scores.

summarize the model, the major components of the
approach are as follows:
•We assume some set of candidate structuresti,j ,

which are to be reranked by the model. Each struc-
tureti,j hasni,j wordsw1, . . . , wni,j , and each word
wk has a setHk(ti,j) of possible hidden values.
•We assume a graphD(ti,j) for eachti,j that de-

fines possible interactions between hidden variables
in the model. We assume some definition of local
feature vectors, which consider either single hidden
variables, or pairs of hidden variables that are con-
nected by an edge inD(ti,j).

The approach can be instantiated in several ways
when applying the model to other NLP tasks. We
have already seen that by changing the definition
of the hidden–value domainsHk(ti,j), we can de-
rive models with widely varying behavior. In ad-
dition, there is no requirement that the hidden vari-
ables only be associated with words in the structure;
the hidden variables could be associated with other
units. For example, in speech recognition hidden
variables could be associated with phonemes rather
than words, and in Chinese word segmentation, hid-
den variables could be associated with individual
characters rather than words.

NLP tasks other than parsing involve structures
ti,j that are not necessarily parse trees. For example,
in speech recognition candidates are simply strings
(utterances); in tagging tasks candidates are labeled
sequences (e.g., sentences labeled with part–of–
speech tag sequences); in machine translation can-
didate structures may be source–language/target–
language pairs, along with alignment structures
specifying the correspondence between words in the
two languages. Sentences and labeled sequences are
in a sense simplifications of the parsing case, where
a natural choice for the underlying graphD(ti,j)
would be anN th order Markov structure, where each
word depends on the previousN words. Machine
translation alignments are a more interesting type of
structure, where the choice ofD(ti,j) might actually
depend on the alignment between the two sentences.

As a final note, there is some flexibility in the
choice ofD(ti,j). In the case thatD(ti,j) is a tree
belief propagation is exact. In the more general case
whereD(ti,j) contains cycles, there are alternative
algorithms that are either exact (Cowell et al., 1999)
or approximate (Yedidia et al., 2003).
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6.2 Packed Representations and Locality

One natural extension of our reranker is to adapt it to
candidate parses represented as a packed parse for-
est, so that it can operate on the base parser’s full
output instead of a limitedN -best list. However,
as we described in Section 3.1, our features are lo-
cally scoped with respect to hidden–variable interac-
tions but unrestricted regarding information derived
from the underlying candidate parses, which poses
a problem for the use of packed representations.
For instance, theUp/Down Path features (see Figure
2) enumerate the vertical sequences of nontermi-
nals that extend above and below a given headword.
We could restrict the features to local scope on the
candidate parses, allowing dynamic–programming
to be used to train the model with a packed rep-
resentation. However, even with these restrictions,
finding arg maxt

∑
h p(t,h | s,Θ) is NP–hard, and

the Viterbi approximationarg maxt,h p(t,h | s,Θ)
— or other approximations — would have to be used
(see Matsuzaki et al. (2005)).

6.3 Empirical Analysis of the Hidden Values

Our model makes no assumptions about the interpre-
tation of the hidden values assigned to words: dur-
ing training, the model simply learns a distribution
over global hidden–value assignments that is useful
in improving the log–likelihood of the training data.
Intuitively, however, we expect that the model will
learn to make hidden–value assignments that are rea-
sonable from a linguistic standpoint. In this section
we describe some empirical observations concern-
ing hidden values assigned by the model.

We established a corpus of parse trees with
hidden–value annotations, as follows. First, we find
the optimal parametersΘ∗ on the training set. For
every sentencesi in the training set, we then use
Θ∗ to find t∗i , the most probable candidate parse un-
der the model. Finally, we useΘ∗ to decodeh∗i ,
the most probable global assignment of hidden val-
ues, for each parse treet∗i . We created a corpus of
(t∗i ,h

∗
i ) pairs for the feature set defined by part–of–

speech hidden–value domains and standard depen-
dency structures. The remainder of this section de-
scribes trends for several of the most common part–
of–speech categories in the corpus.

As a first example, consider the hidden values
for the part–of–speechVB (infinitival verb). In the

majority of cases, words taggedVB either modify a
modal verb taggedMD (e.g., inthe new rate will/MD

be/VB payable) or the infinitival markerto (e.g., inin
an effort to streamline/VB bureaucracy). The statis-
tics of our corpus reflect this distinction. In 11,546
cases of theVB1 hidden value, 10,652 cases mod-
ified to, and 81 cases modified modals taggedMD.
In contrast, in 11,042 cases of theVB2 value, the
numbers were 8,354 and 599 for modification of
modals andto respectively, showing the opposite
preference. This polarization of hidden values al-
lows modifiers to theVB (e.g.,payablein the new
rate will be payable) to be sensitive to whether the
verb is modifying a modal orto.

In a related case, the hidden values for the part–
of–speechTO (corresponding to the wordto) also
show that the model is learning useful structure.
Consider cases whereto heads a clause which may
or may not have a subject (e.g., init expects〈its sales
to remain steady〉 vs. a proposal〈to ease reporting
requirements〉). We find that for hidden valuesTO1

andTO5 together, 946 out of 976 cases have a sub-
ject. In contrast, for the hidden valueTO4, only 29
out of 10,148 cases have a subject. This splitting
of the TO part–of–speech allows modifiers toto, or
words modified byto, to be sensitive to the presence
or absence of a subject in the clause headed byto.

Finally, consider the hidden values for the part–
of–speechNNS (plural noun). In this case, the model
distinguishes contexts where a plural noun acting as
the head of a noun–phrase is or isn’t modified by a
post–modifier (such as a prepositional phrase or rel-
ative clause). For hidden valueNNS3, 12,003 out
of the 12,664 instances in our corpus have a post–
modifier, but for hidden valueNNS5, only 4,099 of
the 39,763 occurrences have a post–modifier. Sim-
ilar contextual effects were observed for other noun
categories such as singular or proper nouns.

7 Conclusions and Future Research

The hidden–variable model is a novel method for
representing NLP structures in the reranking frame-
work. We can obtain versatile behavior from the
model simply by manipulating the definition of the
hidden–value domains, and we have experimented
with models that emulate word clustering, word re-
finement, and mappings from words into an existing
ontology. In the case of the parse reranking task,

513



the hidden–variable model achieves reranking per-
formance comparable to the reranking approach de-
scribed by Collins (2000), and the two rerankers can
be combined to yield an additive improvement.

Future work may consider the use of hidden–
value domains with mixed contents, such as a do-
main that contains 3 refinement–oriented lexical val-
ues and 3 clustering–oriented part–of–speech val-
ues. These mixed values would allow the hidden–
variable model to exploit interactions between clus-
tering and refinement at the level of words and de-
pendencies. Another area for future research is to
investigate the use of unlabeled data within the ap-
proach, for example by making use of clusters de-
rived from large amounts of unlabeled data (e.g., see
Miller et al. (2004)). Finally, future work may apply
the models to NLP tasks other than parsing.
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Abstract

German has a productive morphology and
allows the creation of complex words
which are often highly ambiguous. This
paper reports on the development of a
head-lexicalized PCFG for the disam-
biguation of German morphological anal-
yses. The grammar is trained on unla-
beled data using the Inside-Outside algo-
rithm. The parser achieves a precision
of more than 68% on difficult test data,
which is 23% more than the baseline ob-
tained by randomly choosing one of the
simplest analyses. Remarkable is the fact
that precision drops to 52% without lexi-
calization.

1 Introduction

German words may be as complex as the fol-
lowing title of a bill: Rindfleischetikettierungs-
überwachungsaufgabenübertragungsgesetz (law for
the transfer of the task of controlling the labeling
of beef). The complexity is due to the productive
morphological processes of derivation (e.g. Etiket-
tierung (labeling) = Etikett (label) + ier (deriva-
tional suffix) + ung (nominalization suffix)) and
compounding (e.g. Rindfleisch (beef) = Rind (cattle)
+ Fleisch (meat)). For many words, there is more
than one possible analysis. The German SMOR
morphology (Schmid et al., 2004) e.g. generates 24
analyses for the word Abteilungen. If differences in
the case feature are ignored, there are still six analy-
ses, all of them plural:

• Abt (abbot) Ei (egg) Lunge (lung) n (plural in-
flectional ending)

• Abt (abbot) ei (abbot → abbey) Lunge (lung) n
(plural inflectional ending)

• Abt (abbot) eil (hurry) ung (nominalization suf-
fix) en (plural inflectional ending)

• Abtei (abbey) Lunge (lung) n (plural inflec-
tional ending)

• Abteilung (department) en (plural inflectional
ending)

• ab (separable verb prefix) teil (divide) ung
(nominalization suffix) en (plural inflectional
ending)

Here – and in many other cases, as well – the least
complex analysis (defined as the number of deriva-
tion and compounding steps), namely the plural of
Abteilung (department), is the correct one. This
heuristic is not always successful, however. The
word Reisende e.g. is analyzed as the compound of
Reis (rice) + Ende (end), and alternately as the nom-
inalization of the present participle reisend (travel-
ing). The latter one is correct although it requires
two derivational steps (formation of the participle
plus nominalization), while the former requires only
one compounding step.

The least complex analysis is not necessarily
unique. One reason is, that German word forms are
often ambiguous wrt. number, gender and case. The
adjective kleine (small) e.g. receives 7 analyses by
SMOR which differ only in the agreement features.
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Another reason is that word forms are ambiguous
wrt. the part of speech. The word gerecht e.g. is ei-
ther an adjective (fair) or the past participle of the
verb rechen (to rake). Similarly, the word gerade
is either an adjective (straight) or an adverb (just).
These ambiguities can be resolved based on the con-
text e.g. with a part-of-speech tagger.

Other types of ambiguities are not disambiguated
by the syntactic context because the morphosyntac-
tic features are invariant. Compounds with three el-
ements like Sonderpreisliste, for instance, are sys-
tematically ambiguous between a left-branching (list
of special prices) and a right-branching structure
(special price-list), but unambiguous regarding their
part of speech and agreement features. Some word
forms like Schmerzfreiheit (absence of pain) can ei-
ther be analyzed as derivations (schmerzfrei-heit –
“painless-ness”) or as compounds (Schmerz-freiheit
– “pain freedom”). Again, there is no difference in
the morphosyntactic features. A further source of
ambiguity are the stems: Consider the word Mit-
telzuweisung (allocation of resources). The com-
pounding stem mittel could either originate from the
adjective mittel (average) or from the noun Mittel
(means). All these ambiguities are not resolvable by
the syntactic context because their syntactic prop-
erties are identical. However, most of these words
have a preferred reading. Nah verkehrs zug (com-
muter train) e.g. is likely to have a left-branching
structure, whereas the correct analysis of Computer
bild schirm (computer monitor) is right-branching.

Considering these features of German morphol-
ogy, the following disambiguation strategy for mor-
phological ambiguities is proposed: Frequent words
should be manually disambiguated and the cor-
rect analysis/analyses should be explicitly stored in
the lexicon. Ambiguities involving different mor-
phosyntactic features should be resolved by a tagger
or parser. The elimination of the remaining ambigui-
ties, namely ambiguities of rare words which are not
reflected by the morphosyntactic features, requires a
different method. A general strategy is to generate
the set of possible analyses, to rank them accord-
ing to some criterion and to return the best analysis
(or analyses). One very simple ranking criterion is
the complexity of the analysis e.g. measured by the
number of derivational and compounding steps. We
will use this criterion as a baseline to which we com-

pare our method.
Given an FST-based morphological analyzer and

a training corpus consisting of manually disam-
biguated analyses, it is also possible to estimate tran-
sition probabilities for the finite state transducer and
to disambiguate by choosing the most probable path
through the transducer network for a given word. A
drawback of this approach is the limitation of the
type of analyses that finite state transducers can gen-
erate. A finite state transducer maps a regular lan-
guage, the set of word forms, to another regular lan-
guage, the set of analyses. Therefore it is not able to
produce structured analyses as shown in figure 1 (for
arbitrary depths). It also fails to represent non-local
dependencies, like the one between Vertrag (con-
tract) and Lösung (solution) in the second analysis
of figure 1.

ung

auf

Losung..

N

N N

V N V N

miet Vertrag saufV

los..

N N

N

V N

miet Vertrags

V Suff

Pref

Figure 1: Two morphological analyses of the Ger-
man word Mietvertragsauflösung (leasing contract
cancellation); the first one is correct.

Given the limitations of weighted finite-state
transducers, we propose to use a more power-
ful formalism, namely head-lexicalized probabilis-
tic context-free grammars (Carroll and Rooth, 1998;
Charniak, 1997) to rank the analyses. Context-free
grammars have, of course, no difficulties to generate
the analyses shown in figure 1. By assigning prob-
abilities to the grammar rules, we obtain a proba-
bilistic context-free grammar (PCFG) which allows
the parser to distinguish between frequent and rare
morphological constructions. Nouns e.g. are much
more likely to be compounds than verbs. In head-
lexicalized PCFGs (HL-PCFGs), the probability of
a rule also depends on the lexical head of the con-
stituent. HL-PCFGs are therefore able to learn that
nouns headed by Problem (problem) are more likely
to be compounds (e.g. Schulprobleme (school prob-
lems)) than nouns headed by Samstag (Saturday).
Moreover, HL-PCFGs represent lexical dependen-
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cies like that between Vertrag and Lösung in fig-
ure 1.

b b b bb bb b
Abt
Ab ung

lunge
en
nei

eil

Abtei

Abteilung

teil

Figure 2: Morpheme lattice

In this paper, we present a HL-PCFG-based dis-
ambiguator for German. Using the SMOR morpho-
logical analyzer, the input words are first split into
morpheme sequences and then analyzed with a HL-
PCFG parser. Due to ambiguities, the parser’s input
is actually a lattice rather than a sequence (see the
example in figure 2).

The rest of the paper is organized as follows:
In section 2, we briefly review head-lexicalized
PCFGs. Section 3 summarizes some important fea-
tures of SMOR. The development of the grammar
will be described in section 4. Section 5 explains the
training strategy, and section 6 reports on the annota-
tion of the test data. Section 7 presents the results of
an evaluation, section 8 comments on related work,
and section 9 summarizes the main points of the pa-
per. Finally, section 10 gives an outlook on future
work.

2 Head-Lexicalized PCFGs

A head-lexicalized parse tree is a parse tree in which
each constituent is labeled with its category and its
lexical head. The lexical head of a terminal symbol
is the symbol itself and the lexical head of a non-
terminal symbol is the lexical head of its (unique)
head child.

In a head-lexicalized PCFG (HL-PCFG) (Carroll
and Rooth, 1998; Charniak, 1997), one symbol on
the right-hand side of each rule is marked as the
head. A HL-PCFG assumes that (i) the probability
of a rule depends on the category and the lexical
head of the expanded constituent and (ii) that the
lexical head of a non-head node depends on its
own category, and the category and the lexical
head of the parent node. The probability of a
head-lexicalized parse tree is therefore:

pstart(cat(root)) pstart(head(root)|cat(root))∗∏
n∈N prule(rule(n)|cat(n), head(n))∗∏
n∈A phead(head(n)|cat(n), pcat(n), phead(n))

where

root is the root node of the parse tree
cat(n) is the syntactic category of node n
head(n) is the lexical head of node n
rule(n) is the grammar rule which expands node n
pcat(n) is the syntactic category of the parent of n
phead(n) is the lexical head of the parent of n

HL-PCFGs have a large number of parameters
which need to estimated from training data. In
order to avoid sparse data problems, the parameters
usually have to be smoothed. HL-PCFGs can either
be trained on labeled data (supervised training) or
on unlabeled data (unsupervised training) using
the Inside-Outside algorithm, an instance of the
EM algorithm. Training on labeled data usually
gives better results, but it requires a treebank
which is expensive to create. In our experiments,
we used unsupervised training with the LoPar
parser which is available at http://www.ims.uni-
stuttgart.de/projekte/gramotron/SOFTWARE/LoPar-
en.html.

3 SMOR

SMOR (Schmid et al., 2004) is a German FST-
based morphological analyzer which covers inflec-
tion, compounding, and prefix as well as suffix
derivation. It builds on earlier work reported in
(Schiller, 1996) and (Schmid et al., 2001).

SMOR uses features to represent derivation con-
straints. German derivational suffixes select their
base in terms of part of speech, the stem type
(derivation or compounding stem)1, the origin (na-
tive, classical, foreign), and the structure (simplex,
compound, prefix derivation, suffix derivation) of
the stem which they combine with. This informa-
tion is encoded with features. The German deriva-
tion suffix lich e.g. combines with a simplex deriva-
tion stem of a native noun to form an adjective. The
feature constraints of lich are therefore (1) part of
speech = NN (2) stem type = deriv (3) origin = na-
tive and (4) structure = simplex.

1Suffixes which combine with compounding stems histori-
cally evolved from compounding constructions.
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4 The Grammar

The grammar used by the morphological disam-
biguator has a small set of rather general cate-
gories for prefixes (P), suffixes (S), uninflected base
stems (B), uninflected base suffixes (SB), inflec-
tional endings (F) and other morphemes (W). There
is only one rule for compounding and prefix and
suffix derivation, respectively, and two rules for the
stem and suffix inflection. Additional rules intro-
duce the start symbol TOP and generate special
word forms like hyphenated (Thomas-Mann-Straße)
or truncated words (Vor-). Overall, the base gram-
mar has 13 rules. Inflection is always attached low
in order to avoid spurious ambiguities. The part of
speech is encoded as a feature.

Like SMOR, the grammar encodes derivation
constraints with features. Number, gender and case
are not encoded. Ambiguities in the agreement fea-
tures are therefore not reflected in the parses which
the grammar generates. This allows us to abstract
away from this type of ambiguity which cannot be
resolved without contextual information. If some
application requires agreement information, it has to
be reinserted after disambiguation.

The feature grammar is compiled into a context-
free grammar with 1973 rules. In order to reduce
the grammar size, the features for origin and com-
plexity were not compiled out. Figure 3 shows a
compounding rule (building a noun base stem from
a noun compounding stem and a noun base stem),
a suffix derivation rule (building an adjective base
stem from a noun derivation stem and a derivation
suffix), a prefix derivation rule (prefixing a verbal
compounding stem) and two inflection rules (for the
inflection of a noun and a nominal derivation suffix,
respectively) from the resulting grammar. The quote
symbol marks the head of a rule.

W.NN.base → W.NN.compound W.NN.base’
W.ADJ.base → W.NN.deriv S.NN.deriv.ADJ.base
W.V.compound → P.V W.V.compound’
W.NN.base → B.NN.base’ F.NN
S.ADJ.deriv.NN.base → SB.ADJ.deriv.NN.base’
F.NN

Figure 3: Some rules from the context-free grammar

The parser retrieves the categories of the mor-

phemes from a lexicon which also contains infor-
mation about the standard form of a morpheme.
The representation of the morphemes returned by
the FST-based word splitter is close to the surface
form. Only capitalization is taken over from the
standard form. The adjective ursächlich (causal), for
instance, is split into Ursäch and lich. The lexicon
assigns to Ursäch the category W.NN.deriv and the
standard form Ursache (cause).

5 PCFG Training

PCFG training normally requires manually anno-
tated training data. Because a treebank of Ger-
man morphological analyses was not available,
we decided to try unsupervised training using the
Inside-Outside algorithm (Lari and Young, 1990).
We worked with unlexicalized as well as head-
lexicalized PCFGs (Carroll and Rooth, 1998; Char-
niak, 1997). The lexicalized models used the stan-
dard form of the morphemes (see the previous sec-
tion) as heads.

The word list from a German 300 million word
newspaper corpus was used as training data. From
the 3.2 million tokens in the word list, SMOR suc-
cessfully analyzed 2.3 million tokens which were
used in the experiment. Training was either type-
based (with each word form having the same weight)
or token-based (with weights proportional to the fre-
quency). We experimented with uniform and non-
uniform initial distributions. In the uniform model,
each rule had an initial frequency of 1 from which
the probabilities were estimated. In the non-uniform
model, the frequency of two classes of rules was in-
creased to 1000. The first class are the rules which
expand the start symbol TOP to an adjective or ad-
verb, leading to a preference of these word classes
over other word classes, in particular verbs. The
second class is formed by rules generating inflec-
tional endings, which induces a preference for sim-
pler analyses.

6 Test Data

The test data was extracted from a corpus of the Ger-
man newspaper Die Zeit which was not part of the
training corpus. We prepared two different test cor-
pora. The first test corpus (data1) consisted of 425
words extracted from a randomly selected part of the
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corpus. We only extracted words with at least one
letter which were ambiguous (ignoring ambiguities
in number, gender and case) and either nouns, verbs
or adjectives and not from the beginning of a sen-
tence. Duplicates were retained. The words were
parsed and manually disambiguated. We looked at
the context of a word, where this was necessary for
disambiguation. Words without a correct analysis
were deleted.

In order to obtain more information on the types
of ambiguity and their frequency, 200 words were
manually classified wrt. the class of the ambiguity.
The following results were obtained:

• 39 words (25%) were ambiguous between an
adjective and a verb like gerecht - “just” (ad-
jective) vs. past participle of rechen (to rake).

• 28 words (18%) were ambiguous between a
noun and a proper name like Mann - “man” vs.
Thomas Mann

• 19 words were ambiguous between an adjective
and an adverb like gerade - “straight” vs. “just”
(adverb)

• 14 words (9%) showed a complex ambiguity
involving derivation and compounding like the
word überlieferung (tradition) which is either
a nominalization of the prefix verb überliefern
(to bequeath) or a compound of the stems über
(over) and Lieferung (delivery).

• 13 words (8%) were compounds which were
ambiguous between a left-branching and a
right-branching structure like Welt rekord höhe
(world record height)

• In 10 words (5%), there was an ambiguity be-
tween an adjective and a proper name or noun
stem - as in Höchstleistung (maximum perfor-
mance) where höchst can be derived from the
proper name Höchst (a German city) or the su-
perlative höchst (highest)

• 6 words (3%) showed a systematic ambigu-
ity between an adjective and a noun caused
by adding the suffix er to a city name, like
Moskauer - “Moskau related” vs. “person from
Moskau”

• Another 6 words were ambiguous between two
different noun stems like Halle which is either
singular form of Halle (hall) or the plural form
of Hall (reverberation)

Overall 50% of the ambiguities involved a part-of-
speech ambiguity.

The second set of test data (data2) was designed
to contain only infrequent words which were not
ambiguous wrt. part of speech. It was extracted
from the same newspaper corpus. Here, we ex-
cluded words which were (1) sentence-initial (in or-
der to avoid problems with capitalized words) (2)
not analyzed by SMOR (3) ambiguous wrt. part of
speech (4) from closed word classes or (5) simplex
words. Furthermore, we extracted only words with
more than one simplest2 analysis, in order to make
the test data more challenging. The extracted words
were sorted by frequency and a block of 1000 word
forms was randomly selected from the lower fre-
quency range. All of them had occurred 4 times. We
focussed on rare words because frequent words are
better disambiguated manually and stored in a table
(see the discussion in the introduction).

The 1000 selected word forms were parsed and
manually disambiguated. 193 problematic words
were deleted from the evaluation set because either
(1) no analysis was correct (e.g. Elsevier, which was
not analyzed as a proper name) or (2) there was a
true ambiguity (e.g. Rottweiler which is either a dog
breed or a person from the city of Rottweil or (3)
the lemma was not unique (Drehtür (revolving door)
could be lemmatized to Drehtür or Drehtüre with no
difference in meaning.) or (4) several analyses were
equivalent. The disambiguation was often difficult.
Even among the words retained in the test set, there
were many that we were not fully sure about. An
example is the compound Natur eis bahn (“natural
ice rink”) which we decided to analyze as Natur-
Eisbahn (nature ice-rink) rather than Natureis-Bahn
(nature-ice rink).

7 Results

The parser was trained using the Inside-Outside al-
gorithm. By default, (a) the initialization of the rule

2The complexity of an analysis is measured by the number
of derivation and compounding steps.
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probabilities was non-uniform as described in sec-
tion 5, (b) training was based on tokens (i.e. the
frequency of the training items was taken into ac-
count), and (c) all training iterations were lexical-
ized. Training was quite fast. One training iteration
on 2.3 million word forms took about 10 minutes on
a Pentium IV running at 3 GHz.

Figure 4 shows the exact match accuracy of the
Viterbi parses depending on the number of training
iterations, which ranges from 0 (the initial, untrained
model) to 15. For comparison, a baseline result is
shown which was obtained by selecting the set of
simplest analyses and choosing one of them at ran-
dom3. The baseline accuracy was 45.3%. The pars-
ing accuracy of the default model jumps from a start-
ing value of 41.8% for the untrained model (which is
below the baseline) to 58.5% after a single training
iteration. The peak performance is reached after 8
iterations with 65.4%. The average accuracy of the
models obtained after 6-25 iterations is 65.1%.
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Figure 4: Exact match accuracy on data2

Results obtained with type-based training, where
each word receives the same weight ignoring its
frequency, were virtually identical to those of the
default model. If the parser training was started
with a uniform initial model, however, the accu-
racy dropped by about 6 percentage points. Figure 4
also shows that the performance of an unlexicalized

3In fact, we counted a word with n simplest analyses as 1/n
correct instead of actually selecting one analysis at random, in
order to avoid a dependency of the baseline result on the random
number generation.

PCFG is about 13% lower.
We also experimented with a combination of un-

lexicalized and lexicalized training. Lexicalized
models have a huge number of parameters. There-
fore, there is a large number of locally optimal pa-
rameter settings to which the unsupervised training
can be attracted. Purely lexicalized training is likely
to get stuck in a local optimum which is close to the
starting point. Unlexicalized models, on the other
hand, have fewer parameters, a smaller number of
local optima and a smoother search space. Unlex-
icalized training is therefore more likely to reach a
globally (near-)optimal point and provides a better
starting point for the lexicalized training.

Figure 5 shows that initial unlexicalized training
indeed improves the accuracy of the parser. With
one iteration of unlexicalized training (see “unlex 1”
in figure 5), the accuracy increased by about 3%.
The maximum of 68.4% was reached after 4 iter-
ations of lexicalized training. The results obtained
with 2 iterations of unlexicalized training were very
similar. With 3 iterations, the performance dropped
almost to the level of the default model. It seems
that some of the general preferences learned during
unlexicalized training are so strong after three itera-
tions that they cannot be overruled anymore by the
lexeme-specific preferences learned in the lexical-
ized training.
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Figure 5: Results on data2 with 0 (default), 1, 2,
or 3 iterations of unlexicalized training, followed by
lexicalized training

In order to assess the parsing results qualitatively,
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100 parsing errors of version “unlex 2” were ran-
domly selected and inspected. It turned out that
the parser always preferred right-branching struc-
tures over left-branching structures in complex com-
pounds with three or more elements, which resulted
in 57 errors caused by left-branching structures.
Grammars trained without the initial unlexicalized
training showed no systematic preference for right-
branching structures. In the test data, left-branching
structures were two times more frequent than right-
branching structures.

29 disambiguation errors resulted from selecting
the wrong stem although the structure of the analy-
sis was otherwise correct. In the word Rechtskon-
struktion (legal construction), for instance, the first
element Rechts was derived from the adjective rechts
(right) rather than the noun Recht (law). Similarly,
the adjective quelloffen (open-source) was derived
from the verb quellen (to swell) rather than the noun
Quelle (source).

Six errors involved a combination of compound-
ing and suffix derivation (e.g. the word Flugbe-
gleiterin (stewardess)). The parser preferred the
analysis where the derivation is applied first (Flug-
Begleiterin (flight attendant[female])), whereas in
the gold standard analysis, the compound is formed
first (Flugbegleiter-in (steward-ess).

In order to better understand the benefits of unlex-
icalized training, we also examined the differences
between the best model obtained with one iteration
of unlexicalized (unlex1), and the best model ob-
tained without unlexicalized training (default).

30 cases involved left-branching vs. right-
branching compounds. The unlex1 model showed a
higher preference for right-branching structures than
the default model, but produced also left-branching
structures (unlike the model unlex2). In 15 of
the 30 cases, unlex1 correctly decided for a right-
branching structure; in 13 cases, unlex1 was wrong
with proposing a right-branching structure. In two
cases, unlex1 correctly predicted a left-branching
structure and the default model predicted a right-
branching structure.

32 differences were caused by lexical ambigui-
ties. In 24 cases, only one stem was ambiguous. 15
times unlex1 was right (e.g. Moskaureise - Moskow
trip[sg] vs. Moskow rice[pl]) and nine times the de-
fault model was right (e.g. Jodtabletten - iodine pill

vs. iodine tablet). In 8 cases, two morphemes were
involved in the ambiguity. In all these cases, un-
lex1 generated the correct analysis (e.g. Sportraum -
“sport room” vs. “Spor[name] dream”).

Nine ambiguities involved the length of verb pre-
fixes. Six times, unlex1 correctly decided for a
longer prefix (e.g. gegenüber-stehen (to face) instead
of gegen-überstehen (to “counter-survive”).
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Figure 6: Accuracy on data1 after 0, 1, or 2 itera-
tions of unlexicalized training followed by lexical-
ized training

In another experiment, we tested the parser on the
first test data set (data1) where simplex words, part-
of-speech ambiguities, frequent words and repeated
occurrences were not removed. The baseline accu-
racy on this data was 43.75%. Figure 6 shows the
results obtained with different numbers of unlexical-
ized training iterations analogous to figure 5. Strictly
lexicalized training produced the best results, here.
The maximal accuracy was 58.59% which was ob-
tained after 7 iterations. In contrast to the exper-
iments on data2, the accuracy decreased by more
than 1.5% when the training was continued. As said
in the introduction, we think that part-of-speech am-
biguities are better resolved by a part-of-speech tag-
ger and that frequent words can be disambiguated
manually.

8 Related Work

New methods are often first developed for English
and later adapted to other languages. This might ex-
plain why morphological disambiguation has been
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so rarely addressed in the past: English morphology
is seldom ambiguous except for noun compounds.

We are not aware of any work on the disam-
biguation of morphological analyses which is di-
rectly comparable to ours. Mark Lauer (1995) only
considered English noun compounds and applied a
different disambiguation strategy based on word as-
sociation scores.

Koehn and Knight (2003) proposed a splitting
method for German compounds and showed that
it improves statistical machine translation. Com-
pounds are split into smaller pieces (which have to
be words themselves) if the geometric mean of the
word frequencies of the pieces is higher than the fre-
quency of the compound. Information from a bilin-
gual corpus is used to improve the splitting accuracy.

Andreas Eisele (unpublished work) implemented
a statistical disambiguator for German based on
weighted finite-state transducers as described in the
introduction. However, his system fails to represent
and disambiguate the ambiguities observed in com-
pounds with three or more elements and similar con-
structions with structural ambiguities.

9 Summary

We presented a disambiguation method for German
morphological analyses which is based on a head-
lexicalized probabilistic context-free grammar. The
words are split into morpheme lattices by a finite
state morphology, and then parsed with the prob-
abilistic context-free grammar. The grammar was
trained on unlabeled data using the Inside-Outside
algorithm and evaluated on 807 manually disam-
biguated analyses of infrequent words. Different
training strategies have been compared. A com-
bination of one iteration of unlexicalized training
and four iterations of lexicalized training returned
the best results with over 68% exact match accu-
racy, compared to a baseline of 45% which was ob-
tained by randomly choosing one of the minimally
complex analyses. Without lexicalization, the ac-
curacy dropped by 15 percentage points, indicating
that lexicalization is essential for morphological dis-
ambiguation.

10 Future Work

There are several starting points for improvement.
Guidelines should be developed for the manual an-
notation of data in order to make it less dependent on
the annotator’s intuitions. More data should be an-
notated to create a treebank of morphological anal-
yses. Given such a treebank, the parser could be
trained on labeled data or on a combination of la-
beled and unlabeled data, which presumably would
further increase the parsing accuracy.
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Abstract

We formalize weighted dependency pars-
ing as searching for maximum spanning
trees (MSTs) in directed graphs. Using
this representation, the parsing algorithm
of Eisner (1996) is sufficient for search-
ing over all projective trees in O(n3) time.
More surprisingly, the representation is
extended naturally to non-projective pars-
ing using Chu-Liu-Edmonds (Chu and
Liu, 1965; Edmonds, 1967) MST al-
gorithm, yielding an O(n2) parsing al-
gorithm. We evaluate these methods
on the Prague Dependency Treebank us-
ing online large-margin learning tech-
niques (Crammer et al., 2003; McDonald
et al., 2005) and show that MST parsing
increases efficiency and accuracy for lan-
guages with non-projective dependencies.

1 Introduction

Dependency parsing has seen a surge of inter-
est lately for applications such as relation extrac-
tion (Culotta and Sorensen, 2004), machine trans-
lation (Ding and Palmer, 2005), synonym genera-
tion (Shinyama et al., 2002), and lexical resource
augmentation (Snow et al., 2004). The primary
reasons for using dependency structures instead of
more informative lexicalized phrase structures is
that they are more efficient to learn and parse while
still encoding much of the predicate-argument infor-
mation needed in applications.

root John hit the ball with the bat

Figure 1: An example dependency tree.

Dependency representations, which link words to
their arguments, have a long history (Hudson, 1984).
Figure 1 shows a dependency tree for the sentence
John hit the ball with the bat. We restrict ourselves
to dependency tree analyses, in which each word de-
pends on exactly one parent, either another word or a
dummy root symbol as shown in the figure. The tree
in Figure 1 is projective, meaning that if we put the
words in their linear order, preceded by the root, the
edges can be drawn above the words without cross-
ings, or, equivalently, a word and its descendants
form a contiguous substring of the sentence.

In English, projective trees are sufficient to ana-
lyze most sentence types. In fact, the largest source
of English dependency trees is automatically gener-
ated from the Penn Treebank (Marcus et al., 1993)
and is by convention exclusively projective. How-
ever, there are certain examples in which a non-
projective tree is preferable. Consider the sentence
John saw a dog yesterday which was a Yorkshire Ter-
rier. Here the relative clause which was a Yorkshire
Terrier and the object it modifies (the dog) are sep-
arated by an adverb. There is no way to draw the
dependency tree for this sentence in the plane with
no crossing edges, as illustrated in Figure 2. In lan-
guages with more flexible word order than English,
such as German, Dutch and Czech, non-projective
dependencies are more frequent. Rich inflection
systems reduce reliance on word order to express
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root John saw a dog yesterday which was a Yorkshire Terrier

root O to nové většinou nemá ani zájem a taky na to většinou nemá penı́ze

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Figure 2: Non-projective dependency trees in English and Czech.

grammatical relations, allowing non-projective de-
pendencies that we need to represent and parse ef-
ficiently. A non-projective example from the Czech
Prague Dependency Treebank (Hajič et al., 2001) is
also shown in Figure 2.

Most previous dependency parsing models have
focused on projective trees, including the work
of Eisner (1996), Collins et al. (1999), Yamada and
Matsumoto (2003), Nivre and Scholz (2004), and
McDonald et al. (2005). These systems have shown
that accurate projective dependency parsers can be
automatically learned from parsed data. However,
non-projective analyses have recently attracted some
interest, not only for languages with freer word order
but also for English. In particular, Wang and Harper
(2004) describe a broad coverage non-projective
parser for English based on a hand-constructed con-
straint dependency grammar rich in lexical and syn-
tactic information. Nivre and Nilsson (2005) pre-
sented a parsing model that allows for the introduc-
tion of non-projective edges into dependency trees
through learned edge transformations within their
memory-based parser. They test this system on
Czech and show improved accuracy relative to a pro-
jective parser. Our approach differs from those ear-
lier efforts in searching optimally and efficiently the
full space of non-projective trees.

The main idea of our method is that dependency
parsing can be formalized as the search for a maxi-
mum spanning tree in a directed graph. This formal-
ization generalizes standard projective parsing mod-
els based on the Eisner algorithm (Eisner, 1996) to
yield efficient O(n2) exact parsing methods for non-
projective languages like Czech. Using this span-
ning tree representation, we extend the work of Mc-
Donald et al. (2005) on online large-margin discrim-

inative training methods to non-projective depen-
dencies.

The present work is related to that of Hirakawa
(2001) who, like us, reduces the problem of depen-
dency parsing to spanning tree search. However, his
parsing method uses a branch and bound algorithm
that is exponential in the worst case, even though
it appears to perform reasonably in limited experi-
ments. Furthermore, his work does not adequately
address learning or measure parsing accuracy on
held-out data.

Section 2 describes an edge-based factorization
of dependency trees and uses it to equate depen-
dency parsing to the problem of finding maximum
spanning trees in directed graphs. Section 3 out-
lines the online large-margin learning framework
used to train our dependency parsers. Finally, in
Section 4 we present parsing results for Czech. The
trees in Figure 1 and Figure 2 are untyped, that
is, edges are not partitioned into types representing
additional syntactic information such as grammati-
cal function. We study untyped dependency trees
mainly, but edge types can be added with simple ex-
tensions to the methods discussed here.

2 Dependency Parsing and Spanning Trees

2.1 Edge Based Factorization

In what follows, x = x1 · · · xn represents a generic
input sentence, and y represents a generic depen-
dency tree for sentence x. Seeing y as the set of tree
edges, we write (i, j) ∈ y if there is a dependency
in y from word xi to word xj .

In this paper we follow a common method of fac-
toring the score of a dependency tree as the sum of
the scores of all edges in the tree. In particular, we
define the score of an edge to be the dot product be-
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tween a high dimensional feature representation of
the edge and a weight vector,

s(i, j) = w · f(i, j)

Thus the score of a dependency tree y for sentence
x is,

s(x,y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

Assuming an appropriate feature representation as
well as a weight vector w, dependency parsing is the
task of finding the dependency tree y with highest
score for a given sentence x.

For the rest of this section we assume that the
weight vector w is known and thus we know the
score s(i, j) of each possible edge. In Section 3 we
present a method for learning the weight vector.

2.2 Maximum Spanning Trees

We represent the generic directed graph G = (V,E)
by its vertex set V = {v1, . . . , vn} and set E ⊆ [1 :
n]× [1 : n] of pairs (i, j) of directed edges vi → vj .
Each such edge has a score s(i, j). Since G is di-
rected, s(i, j) does not necessarily equal s(j, i). A
maximum spanning tree (MST) of G is a tree y ⊆ E
that maximizes the value

∑

(i,j)∈y
s(i, j) such that

every vertex in V appears in y. The maximum pro-
jective spanning tree of G is constructed similarly
except that it can only contain projective edges rel-
ative to some total order on the vertices of G. The
MST problem for directed graphs is also known as
the maximum arborescence problem.

For each sentence x we define the directed graph
Gx = (Vx, Ex) given by

Vx = {x0 = root, x1, . . . , xn}
Ex = {(i, j) : i 6= j, (i, j) ∈ [0 : n] × [1 : n]}

That is, Gx is a graph with the sentence words and
the dummy root symbol as vertices and a directed
edge between every pair of distinct words and from
the root symbol to every word. It is clear that de-
pendency trees for x and spanning trees for Gx co-
incide, since both kinds of trees are required to be
rooted at the dummy root and reach all the words
in the sentence. Hence, finding a (projective) depen-
dency tree with highest score is equivalent to finding
a maximum (projective) spanning tree in Gx.

Chu-Liu-Edmonds(G, s)
Graph G = (V, E)
Edge weight function s : E → R

1. Let M = {(x∗, x) : x ∈ V, x∗ = arg maxx′ s(x′, x)}
2. Let GM = (V, M)
3. If GM has no cycles, then it is an MST: return GM

4. Otherwise, find a cycle C in GM

5. Let GC = contract(G, C, s)
6. Let y = Chu-Liu-Edmonds(GC , s)
7. Find a vertex x ∈ C s. t. (x′, x) ∈ y, (x′′, x) ∈ C
8. return y ∪ C − {(x′′, x)}

contract(G = (V, E), C, s)
1. Let GC be the subgraph of G excluding nodes in C
2. Add a node c to GC representing cycle C
3. For x ∈ V − C : ∃x′∈C(x′, x) ∈ E

Add edge (c, x) to GC with
s(c, x) = maxx′∈C s(x′, x)

4. For x ∈ V − C : ∃x′∈C(x, x′) ∈ E
Add edge (x, c) to GC with

s(x, c) = maxx′∈C [s(x, x′)− s(a(x′), x′) + s(C)]
where a(v) is the predecessor of v in C
and s(C) =

P

v∈C
s(a(v), v)

5. return GC

Figure 3: Chu-Liu-Edmonds algorithm for finding
maximum spanning trees in directed graphs.

2.2.1 Non-projective Trees

To find the highest scoring non-projective tree we
simply search the entire space of spanning trees with
no restrictions. Well-known algorithms exist for the
less general case of finding spanning trees in undi-
rected graphs (Cormen et al., 1990).

Efficient algorithms for the directed case are less
well known, but they exist. We will use here the
Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;
Edmonds, 1967), sketched in Figure 3 follow-
ing Leonidas (2003). Informally, the algorithm has
each vertex in the graph greedily select the incoming
edge with highest weight. If a tree results, it must be
the maximum spanning tree. If not, there must be a
cycle. The procedure identifies a cycle and contracts
it into a single vertex and recalculates edge weights
going into and out of the cycle. It can be shown that
a maximum spanning tree on the contracted graph is
equivalent to a maximum spanning tree in the orig-
inal graph (Leonidas, 2003). Hence the algorithm
can recursively call itself on the new graph. Naively,
this algorithm runs in O(n3) time since each recur-
sive call takes O(n2) to find the highest incoming
edge for each word and to contract the graph. There
are at most O(n) recursive calls since we cannot
contract the graph more then n times. However,
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Tarjan (1977) gives an efficient implementation of
the algorithm with O(n2) time complexity for dense
graphs, which is what we need here.

To find the highest scoring non-projective tree for
a sentence, x, we simply construct the graph Gx

and run it through the Chu-Liu-Edmonds algorithm.
The resulting spanning tree is the best non-projective
dependency tree. We illustrate here the application
of the Chu-Liu-Edmonds algorithm to dependency
parsing on the simple example x = John saw Mary,
with directed graph representation Gx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that an MST in this
graph can be transformed into an MST in the orig-
inal graph (Leonidas, 2003). Thus, we recursively
call the algorithm on this graph. Note that we need
to keep track of the real endpoints of the edges into
and out of wjs for reconstruction later. Running the
algorithm, we must find the best incoming edge to
all words

root

saw

John Mary

40

30

wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root to wjs represented a tree from root to
saw to John, so we include all those edges to get the
final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space
of spanning trees is that we have not used any syn-
tactic constraints to guide the search. Many lan-
guages that allow non-projectivity are still primarily
projective. By searching all possible non-projective
trees, we run the risk of finding extremely bad trees.
We address this concern in Section 4.

2.2.2 Projective Trees

It is well known that projective dependency pars-
ing using edge based factorization can be handled
with the Eisner algorithm (Eisner, 1996). This al-
gorithm has a runtime of O(n3) and has been em-
ployed successfully in both generative and discrimi-
native parsing models (Eisner, 1996; McDonald et
al., 2005). Furthermore, it is trivial to show that
the Eisner algorithm solves the maximum projective
spanning tree problem.

The Eisner algorithm differs significantly from
the Chu-Liu-Edmonds algorithm. First of all, it is a
bottom-up dynamic programming algorithm as op-
posed to a greedy recursive one. A bottom-up al-
gorithm is necessary for the projective case since it
must maintain the nested structural constraint, which
is unnecessary for the non-projective case.

2.3 Dependency Trees as MSTs: Summary

In the preceding discussion, we have shown that nat-
ural language dependency parsing can be reduced to
finding maximum spanning trees in directed graphs.
This reduction results from edge-based factoriza-
tion and can be applied to projective languages with
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the Eisner parsing algorithm and non-projective lan-
guages with the Chu-Liu-Edmonds maximum span-
ning tree algorithm. The only remaining problem is
how to learn the weight vector w.

A major advantage of our approach over other
dependency parsing models is its uniformity and
simplicity. By viewing dependency structures as
spanning trees, we have provided a general frame-
work for parsing trees for both projective and non-
projective languages. Furthermore, the resulting
parsing algorithms are more efficient than lexi-
calized phrase structure approaches to dependency
parsing, allowing us to search the entire space with-
out any pruning. In particular the non-projective
parsing algorithm based on the Chu-Liu-Edmonds
MST algorithm provides true non-projective pars-
ing. This is in contrast to other non-projective meth-
ods, such as that of Nivre and Nilsson (2005), who
implement non-projectivity in a pseudo-projective
parser with edge transformations. This formulation
also dispels the notion that non-projective parsing is
“harder” than projective parsing. In fact, it is eas-
ier since non-projective parsing does not need to en-
force the non-crossing constraint of projective trees.
As a result, non-projective parsing complexity is just
O(n2), against the O(n3) complexity of the Eis-
ner dynamic programming algorithm, which by con-
struction enforces the non-crossing constraint.

3 Online Large Margin Learning

In this section, we review the work of McDonald et
al. (2005) for online large-margin dependency pars-
ing. As usual for supervised learning, we assume a
training set T = {(xt,yt)}

T
t=1, consisting of pairs

of a sentence xt and its correct dependency tree yt.
In what follows, dt(x) denotes the set of possible
dependency trees for sentence x.

The basic idea is to extend the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2003) to learning with struc-
tured outputs, in the present case dependency trees.
Figure 4 gives pseudo-code for the MIRA algorithm
as presented by McDonald et al. (2005). An on-
line learning algorithm considers a single training
instance at each update to w. The auxiliary vector
v accumulates the successive values of w, so that the
final weight vector is the average of the weight vec-

Training data: T = {(xt, yt)}
T
t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. min
‚

‚

‚
w(i+1) − w(i)

‚

‚

‚

s.t. s(xt, yt)− s(xt, y
′) ≥ L(yt, y

′), ∀y′ ∈ dt(xt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T )

Figure 4: MIRA learning algorithm.

tors after each iteration. This averaging effect has
been shown to help overfitting (Collins, 2002).

On each update, MIRA attempts to keep the new
weight vector as close as possible to the old weight
vector, subject to correctly classifying the instance
under consideration with a margin given by the loss
of the incorrect classifications. For dependency
trees, the loss of a tree is defined to be the number
of words with incorrect parents relative to the correct
tree. This is closely related to the Hamming loss that
is often used for sequences (Taskar et al., 2003).

For arbitrary inputs, there are typically exponen-
tially many possible parses and thus exponentially
many margin constraints in line 4 of Figure 4.

3.1 Single-best MIRA

One solution for the exponential blow-up in number
of trees is to relax the optimization by using only the
single margin constraint for the tree with the highest
score, s(x,y). The resulting online update (to be
inserted in Figure 4, line 4) would then be:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt) − s(xt,y
′) ≥ L(yt,y

′)
where y

′ = arg maxy′ s(xt,y
′)

McDonald et al. (2005) used a similar update with
k constraints for the k highest-scoring trees, and
showed that small values of k are sufficient to
achieve the best accuracy for these methods. How-
ever, here we stay with a single best tree because k-
best extensions to the Chu-Liu-Edmonds algorithm
are too inefficient (Hou, 1996).

This model is related to the averaged perceptron
algorithm of Collins (2002). In that algorithm, the
single highest scoring tree (or structure) is used to
update the weight vector. However, MIRA aggres-
sively updates w to maximize the margin between
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the correct tree and the highest scoring tree, which
has been shown to lead to increased accuracy.

3.2 Factored MIRA

It is also possible to exploit the structure of the out-
put space and factor the exponential number of mar-
gin constraints into a polynomial number of local
constraints (Taskar et al., 2003; Taskar et al., 2004).
For the directed maximum spanning tree problem,
we can factor the output by edges to obtain the fol-
lowing constraints:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(l, j) − s(k, j) ≥ 1
∀(l, j) ∈ yt, (k, j) /∈ yt

This states that the weight of the correct incoming
edge to the word xj and the weight of all other in-
coming edges must be separated by a margin of 1.
It is easy to show that when all these constraints
are satisfied, the correct spanning tree and all incor-
rect spanning trees are separated by a score at least
as large as the number of incorrect incoming edges.
This is because the scores for all the correct arcs can-
cel out, leaving only the scores for the errors causing
the difference in overall score. Since each single er-
ror results in a score increase of at least 1, the entire
score difference must be at least the number of er-
rors. For sequences, this form of factorization has
been called local lattice preference (Crammer et al.,
2004). Let n be the number of nodes in graph Gx.
Then the number of constraints is O(n2), since for
each node we must maintain n − 1 constraints.

The factored constraints are in general more re-
strictive than the original constraints, so they may
rule out the optimal solution to the original prob-
lem. McDonald et al. (2005) examines briefly fac-
tored MIRA for projective English dependency pars-
ing, but for that application, k-best MIRA performs
as well or better, and is much faster to train.

4 Experiments

We performed experiments on the Czech Prague De-
pendency Treebank (PDT) (Hajič, 1998; Hajič et al.,
2001). We used the predefined training, develop-
ment and testing split of this data set. Furthermore,
we used the automatically generated POS tags that
are provided with the data. Czech POS tags are very

complex, consisting of a series of slots that may or
may not be filled with some value. These slots rep-
resent lexical and grammatical properties such as
standard POS, case, gender, and tense. The result
is that Czech POS tags are rich in information, but
quite sparse when viewed as a whole. To reduce
sparseness, our features rely only on the reduced
POS tag set from Collins et al. (1999). The num-
ber of features extracted from the PDT training set
was 13, 450, 672, using the feature set outlined by
McDonald et al. (2005).

Czech has more flexible word order than English
and as a result the PDT contains non-projective de-
pendencies. On average, 23% of the sentences in
the training, development and test sets have at least
one non-projective dependency. However, less than
2% of total edges are actually non-projective. There-
fore, handling non-projective edges correctly has a
relatively small effect on overall accuracy. To show
the effect more clearly, we created two Czech data
sets. The first, Czech-A, consists of the entire PDT.
The second, Czech-B, includes only the 23% of sen-
tences with at least one non-projective dependency.
This second set will allow us to analyze the effec-
tiveness of the algorithms on non-projective mate-
rial. We compared the following systems:

1. COLL1999: The projective lexicalized phrase-structure
parser of Collins et al. (1999).

2. N&N2005: The pseudo-projective parser of Nivre and
Nilsson (2005).

3. McD2005: The projective parser of McDonald et al.
(2005) that uses the Eisner algorithm for both training and
testing. This system uses k-best MIRA with k=5.

4. Single-best MIRA: In this system we use the Chu-Liu-
Edmonds algorithm to find the best dependency tree for
Single-best MIRA training and testing.

5. Factored MIRA: Uses the quadratic set of constraints
based on edge factorization as described in Section 3.2.
We use the Chu-Liu-Edmonds algorithm to find the best
tree for the test data.

4.1 Results

Results are shown in Table 1. There are two main
metrics. The first and most widely recognized is Ac-
curacy, which measures the number of words that
correctly identified their parent in the tree. Complete
measures the number of sentences in which the re-
sulting tree was completely correct.

Clearly, there is an advantage in using the Chu-
Liu-Edmonds algorithm for Czech dependency pars-
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Czech-A Czech-B
Accuracy Complete Accuracy Complete

COLL1999 82.8 - - -
N&N2005 80.0 31.8 - -
McD2005 83.3 31.3 74.8 0.0

Single-best MIRA 84.1 32.2 81.0 14.9
Factored MIRA 84.4 32.3 81.5 14.3

Table 1: Dependency parsing results for Czech. Czech-B is the subset of Czech-A containing only sentences
with at least one non-projective dependency.

ing. Even though less than 2% of all dependencies
are non-projective, we still see an absolute improve-
ment of up to 1.1% in overall accuracy over the
projective model. Furthermore, when we focus on
the subset of data that only contains sentences with
at least one non-projective dependency, the effect
is amplified. Another major improvement here is
that the Chu-Liu-Edmonds non-projective MST al-
gorithm has a parsing complexity of O(n2), versus
the O(n3) complexity of the projective Eisner algo-
rithm, which in practice leads to improvements in
parsing time. The results also show that in terms
of Accuracy, factored MIRA performs better than
single-best MIRA. However, for the factored model,
we do have O(n2) margin constraints, which re-
sults in a significant increase in training time over
single-best MIRA. Furthermore, we can also see that
the MST parsers perform favorably compared to the
more powerful lexicalized phrase-structure parsers,
such as those presented by Collins et al. (1999) and
Zeman (2004) that use expensive O(n5) parsing al-
gorithms. We should note that the results in Collins
et al. (1999) are different then reported here due to
different training and testing data sets.

One concern raised in Section 2.2.1 is that search-
ing the entire space of non-projective trees could
cause problems for languages that are primarily pro-
jective. However, as we can see, this is not a prob-
lem. This is because the model sets its weights with
respect to the parsing algorithm and will disfavor
features over unlikely non-projective edges.

Since the space of projective trees is a subset of
the space of non-projective trees, it is natural to won-
der how the Chu-Liu-Edmonds parsing algorithm
performs on projective data since it is asymptotically
better than the Eisner algorithm. Table 2 shows the
results for English projective dependency trees ex-
tracted from the Penn Treebank (Marcus et al., 1993)
using the rules of Yamada and Matsumoto (2003).

English
Accuracy Complete

McD2005 90.9 37.5
Single-best MIRA 90.2 33.2

Factored MIRA 90.2 32.3

Table 2: Dependency parsing results for English us-
ing spanning tree algorithms.

This shows that for projective data sets, training
and testing with the Chu-Liu-Edmonds algorithm is
worse than using the Eisner algorithm. This is not
surprising since the Eisner algorithm uses the a pri-
ori knowledge that all trees are projective.

5 Discussion

We presented a general framework for parsing de-
pendency trees based on an equivalence to maxi-
mum spanning trees in directed graphs. This frame-
work provides natural and efficient mechanisms
for parsing both projective and non-projective lan-
guages through the use of the Eisner and Chu-Liu-
Edmonds algorithms. To learn these structures we
used online large-margin learning (McDonald et al.,
2005) that empirically provides state-of-the-art per-
formance for Czech.

A major advantage of our models is the abil-
ity to naturally model non-projective parses. Non-
projective parsing is commonly considered more
difficult than projective parsing. However, under
our framework, we show that the opposite is actually
true that non-projective parsing has a lower asymp-
totic complexity. Using this framework, we pre-
sented results showing that the non-projective model
outperforms the projective model on the Prague De-
pendency Treebank, which contains a small number
of non-projective edges.

Our method requires a tree score that decomposes
according to the edges of the dependency tree. One
might hope that the method would generalize to
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include features of larger substructures. Unfortu-
nately, that would make the search for the best tree
intractable (Höffgen, 1993).
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Abstract

Humor is one of the most interesting and
puzzling aspects of human behavior. De-
spite the attention it has received in fields
such as philosophy, linguistics, and psy-
chology, there have been only few at-
tempts to create computational models for
humor recognition or generation. In this
paper, we bring empirical evidence that
computational approaches can be success-
fully applied to the task of humor recogni-
tion. Through experiments performed on
very large data sets, we show that auto-
matic classification techniques can be ef-
fectively used to distinguish between hu-
morous and non-humorous texts, with sig-
nificant improvements observed over apri-
ori known baselines.

1 Introduction

... pleasure has probably been the main goal all along. But I hesitate
to admit it, because computer scientists want to maintain their image
as hard-working individuals who deserve high salaries. Sooner or
later society will realize that certain kinds of hard work are in fact
admirable even though they are more fun than just about anything
else. (Knuth, 1993)

Humor is an essential element in personal com-
munication. While it is merely considered a way
to induce amusement, humor also has a positive ef-
fect on the mental state of those using it and has the
ability to improve their activity. Therefore computa-
tional humor deserves particular attention, as it has
the potential of changing computers into a creative
and motivational tool for human activity (Stock et
al., 2002; Nijholt et al., 2003).

Previous work in computational humor has fo-
cused mainly on the task of humor generation (Stock
and Strapparava, 2003; Binsted and Ritchie, 1997),
and very few attempts have been made to develop
systems for automatic humor recognition (Taylor
and Mazlack, 2004). This is not surprising, since,
from a computational perspective, humor recogni-
tion appears to be significantly more subtle and dif-
ficult than humor generation.

In this paper, we explore the applicability of
computational approaches to the recognition of ver-
bally expressed humor. In particular, we investigate
whether automatic classification techniques are a vi-
able approach to distinguish between humorous and
non-humorous text, and we bring empirical evidence
in support of this hypothesis through experiments
performed on very large data sets.

Since a deep comprehension of humor in all of
its aspects is probably too ambitious and beyond
the existing computational capabilities, we chose
to restrict our investigation to the type of humor
found in one-liners. A one-liner is a short sen-
tence with comic effects and an interesting linguistic
structure: simple syntax, deliberate use of rhetoric
devices (e.g. alliteration, rhyme), and frequent use
of creative language constructions meant to attract
the readers attention. While longer jokes can have
a relatively complex narrative structure, a one-liner
must produce the humorous effect “in one shot”,
with very few words. These characteristics make
this type of humor particularly suitable for use in an
automatic learning setting, as the humor-producing
features are guaranteed to be present in the first (and
only) sentence.

We attempt to formulate the humor-recognition
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problem as a traditional classification task, and feed
positive (humorous) and negative (non-humorous)
examples to an automatic classifier. The humor-
ous data set consists of one-liners collected from
the Web using an automatic bootstrapping process.
The non-humorous data is selected such that it
is structurally and stylistically similar to the one-
liners. Specifically, we use three different nega-
tive data sets: (1) Reuters news titles; (2) proverbs;
and (3) sentences from the British National Corpus
(BNC). The classification results are encouraging,
with accuracy figures ranging from 79.15% (One-
liners/BNC) to 96.95% (One-liners/Reuters). Re-
gardless of the non-humorous data set playing the
role of negative examples, the performance of the
automatically learned humor-recognizer is always
significantly better than apriori known baselines.

The remainder of the paper is organized as fol-
lows. We first describe the humorous and non-
humorous data sets, and provide details on the Web-
based bootstrapping process used to build a very
large collection of one-liners. We then show experi-
mental results obtained on these data sets using sev-
eral heuristics and two different text classifiers. Fi-
nally, we conclude with a discussion and directions
for future work.

2 Humorous and Non-humorous Data Sets

To test our hypothesis that automatic classification
techniques represent a viable approach to humor
recognition, we needed in the first place a data set
consisting of both humorous (positive) and non-
humorous (negative) examples. Such data sets can
be used to automatically learn computational mod-
els for humor recognition, and at the same time eval-
uate the performance of such models.

2.1 Humorous Data

For reasons outlined earlier, we restrict our attention
to one-liners, short humorous sentences that have the
characteristic of producing a comic effect in very
few words (usually 15 or less). The one-liners hu-
mor style is illustrated in Table 1, which shows three
examples of such one-sentence jokes.

It is well-known that large amounts of training
data have the potential of improving the accuracy of
the learning process, and at the same time provide
insights into how increasingly larger data sets can
affect the classification precision. The manual con-

enumerations matching
stylistic constraint (2)?

yes

yes

seed one−liners

automatically identified
        one−liners

Web search

webpages matching 
thematic constraint (1)?

candidate
webpages

Figure 1: Web-based bootstrapping of one-liners.

struction of a very large one-liner data set may be
however problematic, since most Web sites or mail-
ing lists that make available such jokes do not usu-
ally list more than 50–100 one-liners. To tackle this
problem, we implemented a Web-based bootstrap-
ping algorithm able to automatically collect a large
number of one-liners starting with a short seed list,
consisting of a few one-liners manually identified.

The bootstrapping process is illustrated in Figure
1. Starting with the seed set, the algorithm auto-
matically identifies a list of webpages that include at
least one of the seed one-liners, via a simple search
performed with a Web search engine. Next, the web-
pages found in this way are HTML parsed, and ad-
ditional one-liners are automatically identified and
added to the seed set. The process is repeated sev-
eral times, until enough one-liners are collected.

An important aspect of any bootstrapping algo-
rithm is the set of constraints used to steer the pro-
cess and prevent as much as possible the addition of
noisy entries. Our algorithm uses: (1) a thematic
constraint applied to the theme of each webpage;
and (2) a structural constraint, exploiting HTML an-
notations indicating text of similar genre.

The first constraint is implemented using a set
of keywords of which at least one has to appear
in the URL of a retrieved webpage, thus poten-
tially limiting the content of the webpage to a
theme related to that keyword. The set of key-
words used in the current implementation consists
of six words that explicitly indicate humor-related
content: oneliner, one-liner, humor, humour, joke,
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One-liners
Take my advice; I don’t use it anyway.
I get enough exercise just pushing my luck.
Beauty is in the eye of the beer holder.

Reuters titles
Trocadero expects tripling of revenues.
Silver fixes at two-month high, but gold lags.
Oil prices slip as refiners shop for bargains.

BNC sentences
They were like spirits, and I loved them.
I wonder if there is some contradiction here.
The train arrives three minutes early.

Proverbs
Creativity is more important than knowledge.
Beauty is in the eye of the beholder.
I believe no tales from an enemy’s tongue.

Table 1: Sample examples of one-liners, Reuters ti-
tles, BNC sentences, and proverbs.

funny. For example, http://www.berro.com/Jokes
or http://www.mutedfaith.com/funny/life.htm are the
URLs of two webpages that satisfy this constraint.

The second constraint is designed to exploit the
HTML structure of webpages, in an attempt to iden-
tify enumerations of texts that include the seed one-
liner. This is based on the hypothesis that enumer-
ations typically include texts of similar genre, and
thus a list including the seed one-liner is likely to
include additional one-line jokes. For instance, if a
seed one-liner is found in a webpage preceded by the
HTML tag <li> (i.e. “list item”), other lines found
in the same enumeration preceded by the same tag
are also likely to be one-liners.

Two iterations of the bootstrapping process,
started with a small seed set of ten one-liners, re-
sulted in a large set of about 24,000 one-liners.
After removing the duplicates using a measure of
string similarity based on the longest common sub-
sequence metric, we were left with a final set of
approximately 16,000 one-liners, which are used in
the humor-recognition experiments. Note that since
the collection process is automatic, noisy entries are
also possible. Manual verification of a randomly se-
lected sample of 200 one-liners indicates an average
of 9% potential noise in the data set, which is within
reasonable limits, as it does not appear to signifi-
cantly impact the quality of the learning.

2.2 Non-humorous Data

To construct the set of negative examples re-
quired by the humor-recognition models, we tried
to identify collections of sentences that were non-
humorous, but similar in structure and composition

to the one-liners. We do not want the automatic clas-
sifiers to learn to distinguish between humorous and
non-humorous examples based simply on text length
or obvious vocabulary differences. Instead, we seek
to enforce the classifiers to identify humor-specific
features, by supplying them with negative examples
similar in most of their aspects to the positive exam-
ples, but different in their comic effect.

We tested three different sets of negative exam-
ples, with three examples from each data set illus-
trated in Table 1. All non-humorous examples are
enforced to follow the same length restriction as the
one-liners, i.e. one sentence with an average length
of 10–15 words.

1. Reuters titles, extracted from news articles pub-
lished in the Reuters newswire over a period of
one year (8/20/1996 – 8/19/1997) (Lewis et al.,
2004). The titles consist of short sentences with
simple syntax, and are often phrased to catch
the readers attention (an effect similar to the
one rendered by one-liners).

2. Proverbs extracted from an online proverb col-
lection. Proverbs are sayings that transmit, usu-
ally in one short sentence, important facts or
experiences that are considered true by many
people. Their property of being condensed, but
memorable sayings make them very similar to
the one-liners. In fact, some one-liners attempt
to reproduce proverbs, with a comic effect, as
in e.g. “Beauty is in the eye of the beer holder”,
derived from “Beauty is in the eye of the be-
holder”.

3. British National Corpus (BNC) sentences, ex-
tracted from BNC – a balanced corpus covering
different styles, genres and domains. The sen-
tences were selected such that they were similar
in content with the one-liners: we used an in-
formation retrieval system implementing a vec-
torial model to identify the BNC sentence most
similar to each of the 16,000 one-liners1 . Un-
like the Reuters titles or the proverbs, the BNC
sentences have typically no added creativity.
However, we decided to add this set of negative
examples to our experimental setting, in order

1The sentence most similar to a one-liner is identified by
running the one-liner against an index built for all BNC sen-
tences with a length of 10–15 words. We use a tf.idf weighting
scheme and a cosine similarity measure, as implemented in the
Smart system (ftp.cs.cornell.edu/pub/smart)
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to observe the level of difficulty of a humor-
recognition task when performed with respect
to simple text.

To summarize, the humor recognition experiments
rely on data sets consisting of humorous (positive)
and non-humorous (negative) examples. The posi-
tive examples consist of 16,000 one-liners automat-
ically collected using a Web-based bootstrapping
process. The negative examples are drawn from: (1)
Reuters titles; (2) Proverbs; and (3) BNC sentences.

3 Automatic Humor Recognition

We experiment with automatic classification tech-
niques using: (a) heuristics based on humor-specific
stylistic features (alliteration, antonymy, slang); (b)
content-based features, within a learning framework
formulated as a typical text classification task; and
(c) combined stylistic and content-based features,
integrated in a stacked machine learning framework.

3.1 Humor-Specific Stylistic Features

Linguistic theories of humor (Attardo, 1994) have
suggested many stylistic features that characterize
humorous texts. We tried to identify a set of fea-
tures that were both significant and feasible to im-
plement using existing machine readable resources.
Specifically, we focus on alliteration, antonymy, and
adult slang, which were previously suggested as po-
tentially good indicators of humor (Ruch, 2002; Bu-
caria, 2004).

Alliteration. Some studies on humor appreciation
(Ruch, 2002) show that structural and phonetic prop-
erties of jokes are at least as important as their con-
tent. In fact one-liners often rely on the reader’s
awareness of attention-catching sounds, through lin-
guistic phenomena such as alliteration, word repeti-
tion and rhyme, which produce a comic effect even if
the jokes are not necessarily meant to be read aloud.
Note that similar rhetorical devices play an impor-
tant role in wordplay jokes, and are often used in
newspaper headlines and in advertisement. The fol-
lowing one-liners are examples of jokes that include
one or more alliteration chains:

Veni, Vidi, Visa: I came, I saw, I did a little shopping.
Infants don’t enjoy infancy like adults do adultery.

To extract this feature, we identify and count the
number of alliteration/rhyme chains in each exam-
ple in our data set. The chains are automatically ex-

tracted using an index created on top of the CMU
pronunciation dictionary2 .

Antonymy. Humor often relies on some type of
incongruity, opposition or other forms of apparent
contradiction. While an accurate identification of
all these properties is probably difficult to accom-
plish, it is relatively easy to identify the presence of
antonyms in a sentence. For instance, the comic ef-
fect produced by the following one-liners is partly
due to the presence of antonyms:

A clean desk is a sign of a cluttered desk drawer.
Always try to be modest and be proud of it!

The lexical resource we use to identify antonyms
is WORDNET (Miller, 1995), and in particular the
antonymy relation among nouns, verbs, adjectives
and adverbs. For adjectives we also consider an in-
direct antonymy via the similar-to relation among
adjective synsets. Despite the relatively large num-
ber of antonymy relations defined in WORDNET,
its coverage is far from complete, and thus the
antonymy feature cannot always be identified. A
deeper semantic analysis of the text, such as word
sense disambiguation or domain disambiguation,
could probably help detecting other types of seman-
tic opposition, and we plan to exploit these tech-
niques in future work.

Adult slang. Humor based on adult slang is very
popular. Therefore, a possible feature for humor-
recognition is the detection of sexual-oriented lexi-
con in the sentence. The following represent exam-
ples of one-liners that include such slang:

The sex was so good that even the neighbors had a cigarette.
Artificial Insemination: procreation without recreation.

To form a lexicon required for the identification of
this feature, we extract from WORDNET DOMAINS3

all the synsets labeled with the domain SEXUALITY.
The list is further processed by removing all words
with high polysemy (≥ 4). Next, we check for the
presence of the words in this lexicon in each sen-
tence in the corpus, and annotate them accordingly.
Note that, as in the case of antonymy, WORDNET

coverage is not complete, and the adult slang fea-
ture cannot always be identified.

Finally, in some cases, all three features (alliteration,
2Available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3WORDNET DOMAINS assigns each synset in WORDNET

with one or more “domain” labels, such as SPORT, MEDICINE,
ECONOMY. See http://wndomains.itc.it.

534



antonymy, adult slang) are present in the same sen-
tence, as for instance the following one-liner:

Behind every greatal manant is a greatal womanant, and
behind every greatal womanant is some guy staring at her
behindsl!

3.2 Content-based Learning

In addition to stylistic features, we also experi-
mented with content-based features, through ex-
periments where the humor-recognition task is for-
mulated as a traditional text classification problem.
Specifically, we compare results obtained with two
frequently used text classifiers, Naı̈ve Bayes and
Support Vector Machines, selected based on their
performance in previously reported work, and for
their diversity of learning methodologies.

Naı̈ve Bayes. The main idea in a Naı̈ve Bayes text
classifier is to estimate the probability of a category
given a document using joint probabilities of words
and documents. Naı̈ve Bayes classifiers assume
word independence, but despite this simplification,
they perform well on text classification. While there
are several versions of Naı̈ve Bayes classifiers (vari-
ations of multinomial and multivariate Bernoulli),
we use the multinomial model, previously shown to
be more effective (McCallum and Nigam, 1998).

Support Vector Machines. Support Vector Ma-
chines (SVM) are binary classifiers that seek to find
the hyperplane that best separates a set of posi-
tive examples from a set of negative examples, with
maximum margin. Applications of SVM classifiers
to text categorization led to some of the best results
reported in the literature (Joachims, 1998).

4 Experimental Results

Several experiments were conducted to gain insights
into various aspects related to an automatic hu-
mor recognition task: classification accuracy using
stylistic and content-based features, learning rates,
impact of the type of negative data, impact of the
classification methodology.

All evaluations are performed using stratified ten-
fold cross validations, for accurate estimates. The
baseline for all the experiments is 50%, which rep-
resents the classification accuracy obtained if a label
of “humorous” (or “non-humorous”) would be as-
signed by default to all the examples in the data set.
Experiments with uneven class distributions were
also performed, and are reported in section 4.4.

4.1 Heuristics using Humor-specific Features

In a first set of experiments, we evaluated the classi-
fication accuracy using stylistic humor-specific fea-
tures: alliteration, antonymy, and adult slang. These
are numerical features that act as heuristics, and the
only parameter required for their application is a
threshold indicating the minimum value admitted for
a statement to be classified as humorous (or non-
humorous). These thresholds are learned automat-
ically using a decision tree applied on a small subset
of humorous/non-humorous examples (1000 exam-
ples). The evaluation is performed on the remaining
15,000 examples, with results shown in Table 24.

One-liners One-liners One-liners
Heuristic Reuters BNC Proverbs
Alliteration 74.31% 59.34% 53.30%
Antonymy 55.65% 51.40% 50.51%
Adult slang 52.74% 52.39% 50.74%
ALL 76.73% 60.63% 53.71%

Table 2: Humor-recognition accuracy using allitera-
tion, antonymy, and adult slang.

Considering the fact that these features represent
stylistic indicators, the style of Reuters titles turns
out to be the most different with respect to one-
liners, while the style of proverbs is the most sim-
ilar. Note that for all data sets the alliteration feature
appears to be the most useful indicator of humor,
which is in agreement with previous linguistic find-
ings (Ruch, 2002).

4.2 Text Classification with Content Features

The second set of experiments was concerned with
the evaluation of content-based features for humor
recognition. Table 3 shows results obtained using
the three different sets of negative examples, with
the Naı̈ve Bayes and SVM text classifiers. Learning
curves are plotted in Figure 2.

One-liners One-liners One-liners
Classifier Reuters BNC Proverbs
Na ı̈ve Bayes 96.67% 73.22% 84.81%
SVM 96.09% 77.51% 84.48%

Table 3: Humor-recognition accuracy using Naı̈ve
Bayes and SVM text classifiers.

4We also experimented with decision trees learned from a
larger number of examples, but the results were similar, which
confirms our hypothesis that these features are heuristics, rather
than learnable properties that improve their accuracy with addi-
tional training data.
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Figure 2: Learning curves for humor-recognition using text classification techniques, with respect to three
different sets of negative examples: (a) Reuters; (b) BNC; (c) Proverbs.

Once again, the content of Reuters titles appears
to be the most different with respect to one-liners,
while the BNC sentences represent the most simi-
lar data set. This suggests that joke content tends to
be very similar to regular text, although a reasonably
accurate distinction can still be made using text clas-
sification techniques. Interestingly, proverbs can be
distinguished from one-liners using content-based
features, which indicates that despite their stylistic
similarity (see Table 2), proverbs and one-liners deal
with different topics.

4.3 Combining Stylistic and Content Features

Encouraged by the results obtained in the first
two experiments, we designed a third experiment
that attempts to jointly exploit stylistic and con-
tent features for humor recognition. The feature
combination is performed using a stacked learner,
which takes the output of the text classifier, joins it
with the three humor-specific features (alliteration,
antonymy, adult slang), and feeds the newly created
feature vectors to a machine learning tool. Given
the relatively large gap between the performance
achieved with content-based features (text classifi-
cation) and stylistic features (humor-specific heuris-
tics), we decided to implement the second learning
stage in the stacked learner using a memory based
learning system, so that low-performance features
are not eliminated in the favor of the more accu-
rate ones5. We use the Timbl memory based learner
(Daelemans et al., 2001), and evaluate the classifica-
tion using a stratified ten-fold cross validation. Table

5Using a decision tree learner in a similar stacked learning
experiment resulted into a flat tree that takes a classification de-
cision based exclusively on the content feature, ignoring com-
pletely the remaining stylistic features.

4 shows the results obtained in this experiment, for
the three different data sets.

One-liners One-liners One-liners
Reuters BNC Proverbs
96.95% 79.15% 84.82%

Table 4: Humor-recognition accuracy for combined
learning based on stylistic and content features.

Combining classifiers results in a statistically sig-
nificant improvement (p < 0.0005, paired t-test)
with respect to the best individual classifier for the
One-liners/Reuters and One-liners/BNC data sets,
with relative error rate reductions of 8.9% and 7.3%
respectively. No improvement is observed for the
One-liners/Proverbs data set, which is not surpris-
ing since, as shown in Table 2, proverbs and one-
liners cannot be clearly differentiated using stylistic
features, and thus the addition of these features to
content-based features is not likely to result in an
improvement.

4.4 Discussion

The results obtained in the automatic classification
experiments reveal the fact that computational ap-
proaches represent a viable solution for the task of
humor-recognition, and good performance can be
achieved using classification techniques based on
stylistic and content features.

Despite our initial intuition that one-liners are
most similar to other creative texts (e.g. Reuters ti-
tles, or the sometimes almost identical proverbs),
and thus the learning task would be more difficult in
relation to these data sets, comparative experimental
results show that in fact it is more difficult to distin-
guish humor with respect to regular text (e.g. BNC
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sentences). Note however that even in this case the
combined classifier leads to a classification accuracy
that improves significantly over the apriori known
baseline.

An examination of the content-based features
learned during the classification process reveals in-
teresting aspects of the humorous texts. For in-
stance, one-liners seem to constantly make reference
to human-related scenarios, through the frequent use
of words such as man, woman, person, you, I. Simi-
larly, humorous texts seem to often include negative
word forms, such as the negative verb forms doesn’t,
isn’t, don’t, or negative adjectives like wrong or bad.
A more extensive analysis of content-based humor-
specific features is likely to reveal additional humor-
specific content features, which could also be used in
studies of humor generation.

In addition to the three negative data sets, we also
performed an experiment using a corpus of arbitrary
sentences randomly drawn from the three negative
sets. The humor recognition with respect to this neg-
ative mixed data set resulted in 63.76% accuracy for
stylistic features, 77.82% for content-based features
using Naı̈ve Bayes and 79.23% using SVM. These
figures are comparable to those reported in Tables 2
and 3 for One-liners/BNC, which suggests that the
experimental results reported in the previous sec-
tions do not reflect a bias introduced by the negative
data sets, since similar results are obtained when the
humor recognition is performed with respect to ar-
bitrary negative examples.

As indicated in section 2.2, the negative exam-
ples were selected structurally and stylistically sim-
ilar to the one-liners, making the humor recognition
task more difficult than in a real setting. Nonethe-
less, we also performed a set of experiments where
we made the task even harder, using uneven class
distributions. For each of the three types of nega-
tive examples, we constructed a data set using 75%
non-humorous examples and 25% humorous exam-
ples. Although the baseline in this case is higher
(75%), the automatic classification techniques for
humor-recognition still improve over this baseline.
The stylistic features lead to a classification accu-
racy of 87.49% (One-liners/Reuters), 77.62% (One-
liners/BNC), and 76.20% (One-liners/Proverbs),
and the content-based features used in a Naı̈ve
Bayes classifier result in accuracy figures of 96.19%
(One-liners/Reuters), 81.56% (One-liners/BNC),

and 87.86% (One-liners/Proverbs).
Finally, in addition to classification accuracy, we

were also interested in the variation of classifica-
tion performance with respect to data size, which
is an aspect particularly relevant for directing fu-
ture research. Depending on the shape of the learn-
ing curves, one could decide to concentrate future
work either on the acquisition of larger data sets, or
toward the identification of more sophisticated fea-
tures. Figure 2 shows that regardless of the type of
negative data, there is significant learning only un-
til about 60% of the data (i.e. about 10,000 positive
examples, and the same number of negative exam-
ples). The rather steep ascent of the curve, especially
in the first part of the learning, suggests that humor-
ous and non-humorous texts represent well distin-
guishable types of data. An interesting effect can
be noticed toward the end of the learning, where for
both classifiers the curve becomes completely flat
(One-liners/Reuters, One-liners/Proverbs), or it even
has a slight drop (One-liners/BNC). This is probably
due to the presence of noise in the data set, which
starts to become visible for very large data sets6.
This plateau is also suggesting that more data is not
likely to help improve the quality of an automatic
humor-recognizer, and more sophisticated features
are probably required.

5 Related Work

While humor is relatively well studied in scientific
fields such as linguistics (Attardo, 1994) and psy-
chology (Freud, 1905; Ruch, 2002), to date there
is only a limited number of research contributions
made toward the construction of computational hu-
mour prototypes.

One of the first attempts is perhaps the work de-
scribed in (Binsted and Ritchie, 1997), where a for-
mal model of semantic and syntactic regularities was
devised, underlying some of the simplest types of
puns (punning riddles). The model was then ex-
ploited in a system called JAPE that was able to au-
tomatically generate amusing puns.

Another humor-generation project was the HA-
HAcronym project (Stock and Strapparava, 2003),
whose goal was to develop a system able to au-
tomatically generate humorous versions of existing

6We also like to think of this behavior as if the computer
is losing its sense of humor after an overwhelming number of
jokes, in a way similar to humans when they get bored and stop
appreciating humor after hearing too many jokes.
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acronyms, or to produce a new amusing acronym
constrained to be a valid vocabulary word, starting
with concepts provided by the user. The comic ef-
fect was achieved mainly by exploiting incongruity
theories (e.g. finding a religious variation for a tech-
nical acronym).

Another related work, devoted this time to the
problem of humor comprehension, is the study re-
ported in (Taylor and Mazlack, 2004), focused on
a very restricted type of wordplays, namely the
“Knock-Knock” jokes. The goal of the study was
to evaluate to what extent wordplay can be automati-
cally identified in “Knock-Knock” jokes, and if such
jokes can be reliably recognized from other non-
humorous text. The algorithm was based on auto-
matically extracted structural patterns and on heuris-
tics heavily based on the peculiar structure of this
particular type of jokes. While the wordplay recog-
nition gave satisfactory results, the identification of
jokes containing such wordplays turned out to be
significantly more difficult.

6 Conclusion
A conclusion is simply the place where you got tired of thinking.
(anonymous one-liner)

The creative genres of natural language have been
traditionally considered outside the scope of any
computational modeling. In particular humor, be-
cause of its puzzling nature, has received little atten-
tion from computational linguists. However, given
the importance of humor in our everyday life, and
the increasing importance of computers in our work
and entertainment, we believe that studies related to
computational humor will become increasingly im-
portant.

In this paper, we showed that automatic classifi-
cation techniques can be successfully applied to the
task of humor-recognition. Experimental results ob-
tained on very large data sets showed that computa-
tional approaches can be efficiently used to distin-
guish between humorous and non-humorous texts,
with significant improvements observed over apriori
known baselines. To our knowledge, this is the first
result of this kind reported in the literature, as we
are not aware of any previous work investigating the
interaction between humor and techniques for auto-
matic classification.

Finally, through the analysis of learning curves
plotting the classification performance with respect
to data size, we showed that the accuracy of the au-

tomatic humor-recognizer stops improving after a
certain number of examples. Given that automatic
humor-recognition is a rather understudied problem,
we believe that this is an important result, as it pro-
vides insights into potentially productive directions
for future work. The flattened shape of the curves
toward the end of the learning process suggests that
rather than focusing on gathering more data, fu-
ture work should concentrate on identifying more
sophisticated humor-specific features, e.g. semantic
oppositions, ambiguity, and others. We plan to ad-
dress these aspects in future work.
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Abstract

While there have been many successful applica-
tions of machine learning methods to tasks in NLP,
learning algorithms are not typically designed to
optimize NLP performance metrics. This paper
evaluates an ensemble selection framework de-
signed to optimize arbitrary metrics and automate
the process of algorithm selection and parameter
tuning. We report the results of experiments that in-
stantiate the framework for three NLP tasks, using
six learning algorithms, a wide variety of parame-
terizations, and 15 performance metrics. Based on
our results, we make recommendations for subse-
quent machine-learning-based research for natural
language learning.

1 Introduction

Among the most successful natural language learn-
ing techniques for a wide variety of linguistic phe-
nomena are supervised inductive learning algo-
rithms for classification. Because of their capa-
bilities for accurate, robust, and efficient linguistic
knowledge acquisition, they have been employed in
many natural language processing (NLP) tasks.

Unfortunately, supervised classification algo-
rithms are typically designed to optimize accuracy
(e.g.decision trees) or mean squared error (e.g.neu-
ral networks). For many NLP tasks, however, these
standard performance measures are inappropriate.
For example, NLP data can be highly skewed in its
distribution of positive and negative examples. In
these situations, another metric (perhaps F-measure
or a task-specific measure) that focuses on the per-
formance of the minority cases is more appropriate.
Indeed, as the NLP field matures more consideration
will be given to evaluating the performance of NLP

components in context (e.g.Is the system easy to use
by end users? Does the component respect user pref-
erences? How well does the entire system solve the
specific problem?), leading to new and complicated
metrics. Optimizing machine learning algorithms to
arbitrary performance metrics, however, is not easily
done.

To exacerbate matters, the metric of interest might
change depending on how the natural language
learning (NLL) component is employed. Some ap-
plications might need components with high re-
call, for example; others, high precision or high F-
measure or low root mean squared error. To obtain
good results w.r.t. the new metric, however, a dif-
ferent parameterization or different algorithm alto-
gether might be called for, requiring re-training the
classifier(s) from scratch.

Caruanaet al. (2004) have recently proposeden-
semble selectionas a technique for building an en-
semble of classifiers that is optimized to an arbitrary
performance metric. The approach trains a large
number of classifiers using multiple algorithms and
parameter settings, with the idea that at least some
of the classifiers will perform well on any given per-
formance measure. The best set of classifiers, w.r.t.
the target metric, is then greedily selected. (Select-
ing a set of size 1 is equivalent to parameter and
algorithm tuning.) Like other ensemble learning
methods (e.g.bagging (Breiman, 1996) and boost-
ing (Freund and Schapire, 1996)), ensemble selec-
tion has been shown to exhibit reliably better perfor-
mance than any of the contributing classifiers for a
number of learning tasks.

In addition, ensemble selection provides an ancil-
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lary benefit: no human expertise is required in se-
lecting an appropriate machine learning algorithm or
in choosing suitable parameter settings to get good
performance. This is particularly attractive for the
NLP community where researchers often rely on the
same one or two algorithms and use default param-
eter settings for simplicity. Ensemble selection is a
tool usable by non-experts to find good classifiers
optimized to task-specific metrics.

This paper evaluates the utility of the ensemble se-
lection framework for NLL.We use three NLP tasks
for the empirical evaluation: noun phrase corefer-
ence resolution and two problems from sentiment
analysis — identifying private state frames and the
hierarchy among them. The evaluation employs six
learning algorithms, a wide selection of parameteri-
zations, 8 standard metrics, and 7 task-specific met-
rics. Because ensemble selection subsumes param-
eter and algorithm selection, we also measure the
impact of parameter and algorithm tuning.

Perhaps not surprisingly, we find first that no one
algorithm or parameter configuration performs the
best across all tasks or across all metrics. In ad-
dition, an algorithm’s “tuned” performance (i.e. the
performance after tuning parameter settings) almost
universally matches or exceeds the algorithm’s de-
fault performance (i.e. when using default parame-
ter settings). Out of 154 total cases, the tuned clas-
sifier outperforms the default classifier 114 times,
matches performance 28 times, and underperforms
12 times. Together, these results indicate the impor-
tance of algorithm and parameter selection for com-
parative empirical NLL studies. In particular, our
results show the danger of relying on the same one
or two algorithms for all tasks. These results cast
doubt on conclusions regarding differences in algo-
rithm performance for NLL experiments that give
inadequate attention to parameter selection.

The results of our experiments that use ensem-
ble selection to optimize the ensemble to arbitrary
metrics are mixed. We see reliable improvements
in performance across almost all of the metrics for
only two of the three tasks; for the other data set,
ensemble selection tends to hurt performance (al-
though losses are very small). Perhaps more impor-
tantly for our purposes, we find that ensemble se-
lection provides small, but consistent gains in per-
formance when considering only the more complex,

task-specific metrics — metrics that learning algo-
rithms would find difficult to optimize.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general learning framework and
provides an overview of ensemble selection. We
present the particular instantiation of the framework
employed in our experiments in Section 3. Section 4
describes the three NLP tasks. Experimental results
are given in Section 5. Related work and conclu-
sions follow (sections 6 and 7).

2 Ensemble Selection Framework

2.1 Terminology

We use the termmodel to refer to a classifier pro-
duced by some learning algorithm using some par-
ticular set of parameters. A model’sconfiguration
is simply the algorithm and parameter settings used
to create the classifier. Amodel family is the set of
models made by varying the parameters for one ma-
chine learning algorithm. Finally, amodel library
is a collection of models trained for a given task.

2.2 Framework

Abstractly, the framework is the following:
1. Select a variety of learning algorithms.
2. For each algorithm, choose a wide range of set-

tings for the algorithm’s parameters.
3. Divide data into training, tuning, and test sets.
4. Build model library.
5. Select target metrics appropriate to problem.
6. Tune parameter settings and/or run ensemble

selection algorithm for target metrics.
Building the model library consists of (a) using

the training data to train models for all the learning
algorithms under all desired combinations of param-
eter settings, and (b) applying each model to the tun-
ing and test set instances and storing the predictions
for use in step (6). Note that models are placed in the
library regardless of performance, even though some
models have very bad performance. Intuitively, this
is because there is no way to knowa priori which
models will perform well on a given metric. Note
that producing the base models is fully automatic
and requires no expert tuning.

Parameter Tuning: The goal of parameter tun-
ing is to identify the best model for the task accord-
ing to each target metric. Parameter tuning is han-
dled in the standard way: for each metric, we select
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the model from the model library with the highest
performance on the tuning data and report its perfor-
mance on the test data.

Ensemble Selection Algorithm: The ensemble
selection algorithm (Caruanaet al., 2004) ignores
model-specific details byonly using the predictions
made by the models:the ensemble makes predic-
tions by averaging the predictions of its constituents.
Advantageously, this only requires that predictions
made by different models fall in the same range, and
that they can be averaged in a meaningful way. Oth-
erwise, models can take any form, including other
ensemble methods (e.g.bagging or boosting). Con-
ceptually, ensemble selection builds on top of the
models in the library and uses their performance as
a starting point from which to improve.

The basic ensemble selection algorithm is:
a. Start with an empty ensemble.
b. Add the model that results in the best perfor-

mance for the current ensemble with respect to
the tuning data and the target metric.

c. Repeat (b) for a large, fixed number of itera-
tions.

d. The final ensemble is the ensemble from the
best performing iteration on the tuning data for
the target metric.

To prevent the algorithm from overfitting the tun-
ing data we use two enhancements given by Caruana
et al.(2004). First, in step (b) the same model can be
selected multiple times (i.e. selection with replace-
ment). Second, the ensemble is initialized with the
topN models (again, with respect to the target met-
ric on the tuning data).N is picked automatically
such that removing or adding a model decreases per-
formance on the tuning data.1

The main advantage to this framework is its
reusability. After an instantiation of the framework
exists, it is straightforward to apply it to multiple
NLL tasks and to add additional metrics. Steps (1)
and (2) only need to be done once, regardless of the
number of tasks and metrics explored. Steps (3)-(5)
need only be done once per NLL task. Importantly,
the model library is created once for each task (i.e.
each model configuration is only trained once) re-
gardless of the number (or addition) of performance

1We also experimented with the bagging improvement de-
scribed by Caruanaet al.(2004). In our experiments using bag-
ging hurt the performance of ensemble selection.

metrics. Finally, finding a classifier or ensemble op-
timized to a new metric (step (6)) does not require
re-building the model library and is very fast com-
pared to training the classifiers—it only requires av-
eraging the stored predictions. For example, training
the model library for our smallest data set took mul-
tiple days; ensemble selection built optimized en-
sembles for each metric in a few minutes.

3 Framework Instantiation

In this section we describe our instantiation of the
ensemble selection framework.

Algorithms: We use bagged decision trees
(Breiman, 1996), boosted decision stumps (Fre-
und and Schapire, 1996),k-nearest neighbor, a rule
learner, and support vector machines (SVM’s). We
use the following implementations of these algo-
rithms, respectively: IND decision tree package
(Buntine, 1993);WEKAtoolkit (Witten and Frank,
2000); TiMBL (Daelemanset al., 2000); RIPPER
(Cohen, 1995); andSVMlight (Joachims, 1999). Ad-
ditionally, we use logistic regression (LR) for coref-
erence resolution because an implementation using
theMALLET(McCallum, 2002) toolkit was readily
available for the task. The predictions from all algo-
rithms are scaled to the range[0, 1] with values close
to 1 indicating positive predictions and values close
to 0 indicating negative predictions.2

Parameter Settings: Table 1 lists the parame-
ter settings we vary for each algorithm. Additional
domain-specific parameters are also varied for coref-
erence resolution models (see Section 4.1). The
model libraries contain models corresponding to the
cross product of the various parameter settings for a
given algorithm.

Standard Performance Metrics: We evaluate
the framework with 8 metrics: accuracy (ACC),
average precision (APR), break even point (BEP),
F-measure (F1), mean cross entropy (MXE), root
mean squared error (RMS), area under the ROC
curve (ROC), and SAR. Caruanaet al. (2004) de-
fine SAR asSAR = ACC+ROC+(1−RMS)

3 . We also
evaluate the effects of model selection with task-
specific metrics. These are described in Section 4.
Our F-measure places equal emphasis on precision

2We follow Caruanaet al. (2004) in using Platt (2000) scal-
ing to convert the SVM predictions from the range(−∞,∞) to
the required[0, 1] by fitting them to a sigmoid.
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Algorithm Parameter Values
Bagged Trees† tree type bayes,c4, cart, cart0, id3, mml, smml

# bags 1, 5, 10,25
Boosted
Stumps

# iterations 2, 4, 8, . . . ,256, . . . 1024, 2048

LR ‡ gaussian gamma 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5,10, 50
K-NN k 1, 3, 5

search algorithm ib1, igtree
similarity metric overlap, modified value difference
feature weighting gain ratio, information gain, chi-squared, shared variance

Rule Learner class learning order unordered,pos first, neg first, heuristic determined order
loss ratio 0.5,1, 1.5, 2, 3, 4

SVM margin tradeoff* 10−7, 10−6, . . . ,10−2, 10−1, . . . ,102

kernel linear, rbf
rbf gamma parm 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2

Table 1: Summary of model configurations used in experiments.The default settings for each algorithm are in bold.
† Bagged trees are not used for identifying PSF’s since the IND package does not support features with more than 255 values.
Also, for coreference resolution the number of bags is not varied and is always 25.‡ LR is only used for coreference resolution.
* SVMlight determines the default margin tradeoff based on data properties. We calculate this value for each data set and use the
closest setting among our configurations.

and recall (i.e. β = 1). Note that precision and re-
call are calculatedwith respect to the positive class.

Ensemble Selection:For the sentiment analysis
tasks, ensemble selection iterates 150 times; for the
coreference task, the algorithm iterates 200 times.
This should be enough iterations, given that the
model libraries contain 202, 173, and 338 mod-
els. Because computing the MUC-F1 and BCUBED
metrics (see Section 4.1) is expensive, ensemble se-
lection only iterates 50 times for these metrics.

4 Tasks

Because of space issues, we necessarily provide
only brief descriptions of each NLL task. Readers
are referred to the cited papers to obtain detailed de-
scriptions.

4.1 Noun Phrase Coreference Resolution

The goal for a standard noun phrase coreference res-
olution system is to identify the noun phrases in a
document and determine which of them refer to the
same entity. Entities can be people, places, things,
etc. The resulting partitioning of noun phrases cre-
ates reference chains with one chain per entity.

We use the same problem formulation as Soonet
al. (2001) and Ng and Cardie (2002) — a combi-
nation of classification and clustering. Briefly, ev-
ery noun phrase is paired with all preceding noun
phrases, creating multiple pairs. For the training
data, the pairs are labeled as coreferent or not. A
binary classifier is trained to predict the pair labels.
During classification, the predicted labels are used

to form clusters. Two noun phrasesA andB share
a cluster if they are either predicted as coreferent by
the classifier or if they are transitively predicted as
coreferent through one or more other noun phrases.
Instance selection (Soonet al., 2001; Ng, 2004) is
used to increase the percentage of positive instances
in the training set.3

We use the learning features described by Ng
and Cardie (2002). All learning algorithms are
trained with the full set of features. Additionally,
the rule learner, SVM, and LR are also trained with
a hand-selected subset of the features that Ng and
Cardie (2002) find to outperform the full feature set.
Essentially this is an additional parameter to set for
the learning task.

Special Metrics: Rather than focusing on per-
formance at the pairwise coreference classification
level, performance for this task is typically reported
using either the MUC metric (Vilainet al., 1995)
or the BCUBED metric (Bagga and Baldwin, 1998).
Both of these metrics measure the degree that pre-
dicted coreference chains agree with an answer key.
In particular they measure the chain-level precision
and recall (and the corresponding F-measure). We
abbreviate these metrics MUC-F1, and B3F1.

Data Set: For our experiments we use the MUC-
6 corpus, which contains 60 documents annotated
with coreference information. The training, tuning,
and test sets consist of documents 1-20, 21-30, and

3Soon-1 instance selection is used for all algorithms; we
also usesoon-2 (Ng, 2004) instance selection for the rule
learner.
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31-60, respectively.

4.2 Identifying Private State Frames

NLP research has recently started looking at how
to detect and understand subjectivity in discourse.
A key step in this direction is automatically identi-
fying phrases that express subjectivity. In this set-
ting, subjectivity is defined to include implicit and
explicit opinions, internal thoughts and emotions,
and bias introduced through second-hand reporting.
Phrases expressing any of these are calledprivate
state frames, which we will abbreviate as PSF.

We build directly on experiments done by Wiebe
et al. (2003). The task is to learn to identify explicit
single-word PSF’s in context. One learning instance
is created for every word in the corpus. Classifica-
tion labels each instance as a PSF or not. We use the
same features as Wiebeet al.

Special Metrics: Because the data is highly
skewed (2% positive instances), performance mea-
sures that focus on how well the minority class is
learned are of primary interest. The F-measure de-
fined in Section 3 is a natural choice. We also eval-
uate performance using geometric accuracy, defined
asGACC =

√
posacc× negacc whereposacc and

negacc are the accuracy with respect to the positive
and negative instances (Kubat and Matwin, 1997).

Conceivably, an automatic PSF extractor with
high precision and mediocre recall could be used
to automate the annotation process. For this reason
we measure the performance with an unbalanced F-
measure that emphasizes precision. Specifically, we
try β = 0.5 (F0.5) andβ = 0.2 (F0.2).

Data Set: We use 400 documents from the
MPQA corpus (2002), a collection of news stories
manually annotated with PSF information. The 400
documents are randomly split to get 320 training, 40
tuning, and 40 testing documents.

4.3 Determining PSF Hierarchy

The third task is taken from Breck and Cardie
(2004). Explicit PSF’s each have asourcethat cor-
responds to the person or entity expressing the sub-
jectivity. In the presence of second-hand reporting,
sources are often nested. This has the effect of filter-
ing subjectivity through a chain of sources.

Given sentences annotated with PSF information
(i.e. which spans are PSF’s), the task is to discover

the hierarchy among the PSF’s that corresponds to
the nesting of their respective sources. From each
sentence, multiple instances are created by pair-
ing every PSF with every other PSF in the sen-
tence.4 Let (PSFparent, PSFtarget) denote one of
these instances. The classification task is to decide
if PSFparent is the parent ofPSFtarget in the hi-
erarchy and to associate a confidence with that pre-
diction. The complete hierarchy can easily be con-
structed from the predictions by choosing for each
PSF its most confidently predicted parent.

Special Metrics: Breck and Cardie (2004) mea-
sure task performance with three metrics. The first
is the accuracy of the predictions over the instances.
The second is a derivative of a measure used to score
dependency parses. Essentially, a sentence’s score is
the fraction of parent links correctly identified. The
score for a set of sentences is the average of the indi-
vidual sentence scores. We refer to this measure as
average sentence accuracy (SENTACC). The third
measure is the percentage of sentences whose hier-
archical structures are perfectly determined (PERF-
SENT).

Data Set: We use the same data set and fea-
tures as Breck and Cardie (2004). The annotated
sentences from 469 documents in the MPQA Cor-
pus (MPQA Corpus, 2002) are randomly split into
training (80%), tuning (10%), and test (10%) sets.

5 Experiments and Results

We evaluate the potential benefits of the ensemble
selection framework with two experiments. The first
experiment measures the performance improvement
yielded by parameter tuning and finds the best per-
forming algorithm. The second experiment mea-
sures the performance improvement from ensemble
selection.

Performance improvements are measured in
terms of performancegain. Let a andb be the mea-
sured performances for two modelsA and B on
some metric.A’s gain overB is simply a − b. A
performed worse thanB if the gain is negative.5

4Sentences containing fewer than two PSF’s are discarded
and not used.

5MXE and RMS have inverted scales where the best perfor-
mance is 0. Gain for these metrics equals(1− a)− (1− b) so
that positive gains are always good. Similarly, where raw MXE
and RMS scores are reported we show1− score.
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Metric BAG Parm∆ BST Parm∆ LR Parm∆ KNN Parm∆ RULE Parm∆ SVM Parm∆ Avg ∆

ACC 0.9861 -0.0000 0.9861 -0.0001 0.9849 0.0006 0.9724 0.0131 0.9840 0.0023 0.9859 -0.0001 0.0026
APR 0.5373 0.0000 0.5475 0.0000 0.3195 -0.0004 0.1917 0.2843 0.2491 0.1127 0.5046 0.0323 0.0715
BEP 0.6010 0.0000 0.5577 0.0193 0.3747 -0.0022 0.3243 0.2057 0.3771 0.1862 0.5965 0.0045 0.0689
F1 0.5231 0.0664 0.3881 0.0000 0.4600 0.0087 0.4105 0.1383 0.4453 0.1407 0.3527 0.0571 0.0685
MXE 0.9433 0.0082 0.9373 0.0000 0.5400 0.1828 0.4953 0.3734 0.9128 0.0222 0.9366 0.0077 0.0990
RMS 0.8925 0.0041 0.8882 0.0000 0.6288 0.1278 0.8334 0.0559 0.8756 0.0097 0.8859 0.0047 0.0337
ROC 0.9258 0.0158 0.9466 0.0000 0.4275 0.0022 0.7746 0.0954 0.6845 0.1990 0.8418 0.0551 0.0612

co
re

fe
re

nc
e

SAR 0.9255 0.0069 0.9309 0.0000 0.6736 -0.0037 0.8515 0.0538 0.8396 0.0695 0.8955 0.0165 0.0238
MUC-F1 0.6691 0.0000 0.6242 0.0046 0.6405 0.0344 0.5340 0.1185 0.6500 0.0291 0.5181 0.1216 0.0514
B3F1 0.4625 0.0000 0.4512 0.0000 0.4423 0.0425 0.0965 0.3357 0.4249 0.0675 0.3323 0.1430 0.0981

ACC — — 0.9854 0.0007 — — 0.9873 0.0011 0.9862 0.0003 0.9886 0.0000 0.0005
APR — — 0.6430 0.0316 — — 0.5588 0.1948 0.4335 0.0381 0.7697 0.0372 0.0754
BEP — — 0.5954 0.0165 — — 0.6727 0.0302 0.4436 0.0718 0.6961 0.0385 0.0393
F1 — — 0.5643 0.0276 — — 0.6837 0.0019 0.5770 0.0367 0.6741 0.0062 0.0181
MXE — — 0.9342 0.0029 — — 0.8089 0.1425 0.9265 0.0062 0.9572 0.0093 0.0402
RMS — — 0.8838 0.0028 — — 0.8896 0.0118 0.8839 0.0020 0.9000 0.0068 0.0058
ROC — — 0.9576 0.0121 — — 0.8566 0.1149 0.7181 0.1593 0.9659 0.0188 0.0763

P
S

F
id

en
tifi

ca
tio

n

SAR — — 0.9329 0.0052 — — 0.9021 0.0407 0.8541 0.0532 0.9420 0.0085 0.0269
GACC — — 0.6607 -0.0004 — — 0.7962 0.0223 0.6610 0.0506 0.7401 0.0209 0.0233
F0.5 — — 0.6829 0.0221 — — 0.7150 0.0503 0.7132 0.0000 0.7811 -0.0054 0.0167
F0.2 — — 0.7701 0.0157 — — 0.7331 0.0875 0.8171 0.0110 0.8542 0.0045 0.0297

ACC 0.8133 0.0000 0.7554 0.0009 — — 0.7940 0.0000 0.7446 0.0428 0.7761 0.0381 0.0164
APR 0.8166 0.0296 0.7455 0.0013 — — 0.8035 0.0000 0.5957 0.1996 0.6363 0.1520 0.0765
BEP 0.7385 -0.0066 0.6597 -0.0030 — — 0.7096 0.0000 0.6317 0.0567 0.6940 0.0432 0.0181
F1 0.7286 0.0033 0.6810 0.0226 — — 0.7000 0.0000 0.6774 0.0525 0.6933 0.0400 0.0237
MXE 0.6091 0.0166 0.4940 0.0076 — — 0.0379 0.4715 0.4022 0.1197 0.4681 0.1012 0.1433
RMS 0.6475 0.0054 0.5910 0.0033 — — 0.6057 0.0000 0.5556 0.0514 0.5836 0.0423 0.0205
ROC 0.8923 0.0096 0.8510 0.0000 — — 0.8519 0.0364 0.7514 0.1094 0.7968 0.0757 0.0462

P
S

F
hi

er
ar

ch
y

SAR 0.7765 0.0073 0.7251 0.0009 — — 0.7430 0.0000 0.6770 0.0672 0.7116 0.0482 0.0247
SENTACC 0.7571 0.0045 0.7307 -0.0011 — — 0.7399 -0.0007 0.6801 0.0141 0.6889 0.0726 0.0179
PERFSENT 0.4948 0.0069 0.4880 0.0000 — — 0.4880 -0.0034 0.4055 0.0206 0.4158 0.1031 0.0254

Table 2: Performance gains from parameter tuning.The left column for each algorithm family is the algorithm’s
performance with default parameter settings. The adjacent ‘Parm∆’ column gives the performance gain from tuning parameters.
For each metric, the best default and tuned performance across all algorithms areitalicizedandbold-faced, respectively.

5.1 Experiment 1: Parameter Tuning

Experiment 1 measures, for each of the 3 tasks, the
performance of every model on both the tuning and
test data for every metric of interest.Based on tun-
ing set performance,the best default model, the best
model overall, and the best model within each fam-
ily are selected. Thebest default model is the
highest-scoring model that emerges after comparing
algorithms without doing any parameter tuning. The
best overall modelcorresponds to “tuning” both the
algorithm and parameters. Thebest model in each
family corresponds to “tuning” the parameters for
that algorithm.Using the test set performances,the
best family models are compared to the correspond-
ing default models to find the gains from parameter
tuning.

Table 2 lists the gains achieved by parameter tun-
ing. Each algorithm column compares the algo-
rithm’s best model to its default model. On the
coreference task, for example, the best KNN model
with respect to BEP shows a 20% improvement (or
gain) over the default KNN model (for a final BEP
score of .5300). The “Avg∆” column shows the av-
erage gain from parameter tuning for each metric.

For each metric, the best default model is itali-

cized while the best overall model is bold-faced. Re-
ferring again to the coreference BEP row, the best
overall model is a SVM while the best default model
is a bagged decision tree. Recall that these distinc-
tions are based onabsolute performanceand not
gain. Thus, the best tuned SVM outperforms all
other models on this task and metric.6

Three conclusions can be drawn from Table 2.
First, no algorithm performs the best on all tasks
or on all metrics. For coreference, the best over-
all model is either a bagged tree, a rule learner, or
a SVM, depending on the target metric. Similarly,
for PSF identification the best model depends on the
metric, ranging from a KNN to a SVM. Interest-
ingly, bagged decision trees on the PSF hierarchy
data outperform the other algorithms on all metrics
and seem especially well-suited to the task.

Second, an algorithm’s best-tuned model reliably
yields non-trivial gains over the corresponding de-
fault model.This trend appears to hold regardless of
algorithm, metric, and data set. In 114 of the 154

6Another interesting example is the best overall model for
BEP on the PSF hierarchy task. The baseline (a bagged tree)
outperforms the “best” model (a different bagged tree) on the
test set even though the best model performed better on the tun-
ing set—otherwise it would not have been selected as the best.
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cases parameter tuning improves an algorithm’s per-
formance by more than 0.001 (0.1%). In the remain-
ing 40 cases, parameter tuning only hurts 12 times,
and never by more than 0.01.

Third, the best default algorithm is not necessar-
ily the best algorithm after tuning parameters.The
coreference task, in particular, illustrates the poten-
tial problem with using default parameter settings
when judging which algorithm is most suited for
a problem: 7 out of 10 times the best algorithm
changes after parameter tuning.

These results corroborate those found else-
where (Daelemans and Hoste, 2002; Hosteet al.,
2002; Hoste, 2005)—parameter settings greatly in-
fluence performance. Further, algorithmic perfor-
mance differences can change when parameters are
changed. Going beyond previous work, our results
also underline the need to consider multiple algo-
rithms for NLL. Ultimately, it is important for re-
searchers to thoroughly explore options forboth al-
gorithm and parameter tuning and to report these in
their results.

5.2 Experiment 2: Ensemble Selection

In experiment 2 an ensemble is built to optimize
each target metric. The ensemble’s performance is
compared to that of the best overall model for the
metric. Both the ensemble and the best model are
selected according to tuning set performance.

Table 3 lists the gains from ensemble selection
over the best parameter tuned model. For compar-
ison, the best default and overall performances from
Table 2 are reprinted. For example, the ensemble op-
timized for F1 on the coreference data outperforms
the best bagged tree model by about 1% (and the
best default model by almost 8%).

Disappointingly, ensemble selection does not
consistently improve performance. Indeed, for the
PSF hierarchy task ensemble selection reliably hurts
performance a small amount. For the other two tasks
ensemble selection reliably improves all metrics ex-
cept GACC (a small loss). In other experiments,
however, we optimized F-measure withβ = 1.5 for
the PSF identification task. Ensemble selection hurt
F1.5 by almost 2%, leading us to question the tech-
nique’s reliability for our second data set. Interest-
ingly, the aggregate metrics—metrics that measure
performance by combining multiple predictions—

Metric Best Default Best Tuned∆ Ens. Sel.∆

ACC 0.9861 0.0002 0.0001
APR 0.5373 0.0000 0.0736
BEP 0.6010 0.0000 0.0124
F1 0.5231 0.0664 0.0115
MXE 0.9373 0.0142 0.0035
RMS 0.8882 0.0023 0.0049
ROC 0.9466 -0.0051 0.0120

co
re

fe
re

nc
e

SAR 0.9309 0.0015 0.0032
MUC-F1 0.6691 0.0000 0.0073
B3F1 0.4625 0.0299 0.0077

ACC 0.9886 0.0000 0.0003
APR 0.7697 0.0372 0.0109
BEP 0.6961 0.0385 0.0136
F1 0.6741 0.0062 0.0222
MXE 0.9572 0.0093 0.0029
RMS 0.9000 0.0068 0.0025
ROC 0.9659 0.0188 0.0043

P
S

F
id

en
tifi

ca
tio

n

SAR 0.9420 0.0085 0.0021
GACC 0.7962 0.0223 -0.0012
F0.5 0.7811 -0.0054 0.0063
F0.2 0.8171 0.0110 0.0803

ACC 0.8133 0.0000 -0.0028
APR 0.8035 0.0427 -0.0064
BEP 0.7385 -0.0066 0.0056
F1 0.7286 0.0033 -0.0016
MXE 0.6091 0.0166 -0.0012
RMS 0.6475 0.0054 -0.0019
ROC 0.8923 0.0096 -0.0036

P
S

F
hi

er
ar

ch
y

SAR 0.7765 0.0073 -0.0015
SENTACC 0.7571 0.0045 0.0024
PERFSENT 0.4948 0.0069 0.0172

Table 3: Impact from tuning and ensemble selection.
Best defaultshows the performance of the best classifier with
no parameter tuning (i.e. algorithm tuning only).Best tuned∆
gives the performance gain from parameter and algorithm tun-
ing. Ens. Sel.∆ is the performance gain from ensemble selec-
tion over the best tuned model. The best performance for each
metric is marked in bold.

all benefit from ensemble selection, even for the hi-
erarchy task,albeit for small amounts. For our tasks
these comprise a subset of the task-specific perfor-
mance measures: B3F1, MUC-F1, SENTACC, and
PERFSENT.

While we are not surprised that the positive gains
are small,7 we are surprised at how often ensemble
selection hurts performance. As a result, we investi-
gated some of the metrics where ensemble selection
hurts performance and found that ensemble selec-
tion overfits the tuning data. At this time we are not
sure why this overfitting happens for these tasks and
not for the ones used by Caruanaet al. Preliminary
investigations suggest that having a smaller model
library is a contributing factor (Caruanaet al. use
libraries containing∼ 2000 models). This is con-
sistent with the fact that the task with the largest
model library, coreference, benefits the most from
ensemble selection. Perhaps the reason that ensem-
ble selection consistently improves performance for

7Caruanaet al. (2004) find the benefit from ensemble selec-
tion is only half as large as the benefit from carefully optimizing
and selecting the best models in the first place.
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the aggregate metrics is that these metrics are harder
to overfit.

Based on our results, ensemble selection seems
too unreliable for general use in NLL—at least un-
til the model library requirements are better under-
stood. However, ensemble selection is perhaps trust-
worthy enough to optimize metrics that are difficult
to overfit and could not be easily optimized other-
wise — in our case, the task-specific aggregate per-
formance measures.

6 Related Work

Hosteet al. (2002) and Hoste (2005) study the im-
pact of tuning parameters fork-NN and a rule-
learning algorithm on word sense disambiguation
and coreference resolution, respectively, and find
that parameter settings greatly change results. Simi-
lar work by Daelemans and Hoste (2002) shows the
fallacy of comparing algorithm performance without
first tuning parameters. They find that the best algo-
rithm for a task frequently changes after optimizing
parameters. In contrast to our work, these earlier
experiments investigate at most two algorithms and
only measure performance with one metric per task.

7 Conclusion

We evaluate an ensemble selection framework that
enables optimizing classifier performance to arbi-
trary performance metrics without re-training. An
important side benefit of the framework is the fully
automatic production of base-level models, remov-
ing the need for human expertise in choosing algo-
rithms and parameter settings.

Our experiments show that ensemble selection,
compared to simple algorithm and parameter tuning,
reliably improves performance for six of the seven
task-specific metrics and all four “aggregate” met-
rics, but only benefitsall of the metrics for one of
our three data sets. We also find that exploring mul-
tiple algorithms with a variety of settings is impor-
tant for getting the best performance. Tuning pa-
rameter settings results in 0.05% to 14% average
improvements, with most improvements falling be-
tween 2% and 10%. To this end, the ensemble selec-
tion frameworkcan be used as an environment for
automatically choosing the best algorithm and pa-
rameter settings for a given NLP classification task.

More work is needed to understand when ensemble
selection can be safely used for NLL.
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Abstract

We present a novel almost-unsupervised
approach to the task of Word Sense Dis-
ambiguation (WSD). We build sense ex-
amples automatically, using large quanti-
ties of Chinese text, and English-Chinese
and Chinese-English bilingual dictionar-
ies, taking advantage of the observation
that mappings between words and mean-
ings are often different in typologically
distant languages. We train a classifier on
the sense examples and test it on a gold
standard English WSD dataset. The eval-
uation gives results that exceed previous
state-of-the-art results for comparable sys-
tems. We also demonstrate that a little
manual effort can improve the quality of
sense examples, as measured by WSD ac-
curacy. The performance of the classifier
on WSD also improves as the number of
training sense examples increases.

1 Introduction

The results of the recent Senseval-3 competition
(Mihalcea et al., 2004) have shown that supervised
WSD methods can yield up to72.9% accuracy1

on words for which manually sense-tagged data are
available. However, supervised methods suffer from
the so-called knowledge acquisition bottleneck: they
need large quantities of high quality annotated data

1This figure refers to the highest accuracy achieved in the
Senseval-3 English Lexical Sample task with fine-grained scor-
ing.

to produce reliable results. Unfortunately, very
few sense-tagged corpora are available and manual
sense-tagging is extremely costly and labour inten-
sive. One way to tackle this problem is trying to
automate the sense-tagging process. For example,
Agirre et al. (2001) proposed a method for building
topic signatures automatically, where a topic signa-
ture is a set of words, each associated with some
weight, that tend to co-occur with a certain concept.
Their system queries an Internet search engine with
monosemous synonyms of words that have multiple
senses in WordNet (Miller et al., 1990), and then ex-
tracts topic signatures by processing text snippets re-
turned by the search engine. They trained a classifier
on the topic signatures and evaluated it on a WSD
task, but the results were disappointing.

In recent years, WSD approaches that exploit
differences between languages have shown great
promise. Several trends are taking place simulta-
neously under this multilingual paradigm. A clas-
sic one is to acquire sense examples using bilin-
gual parallel texts (Gale et al., 1992; Resnik and
Yarowsky, 1997; Diab and Resnik, 2002; Ng et al.,
2003): given a word-aligned parallel corpus, the dif-
ferent translations in a target language serve as the
“sense tags” of an ambiguous word in the source
language. For example, Ng et al. (2003) acquired
sense examples using English-Chinese parallel cor-
pora, which were manually or automatically aligned
at sentence level and then word-aligned using soft-
ware. A manual selection of target translations was
then performed, grouping together senses that share
the same translation in Chinese. Finally, the occur-
rences of the word on the English side of the parallel
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texts were considered to have been disambiguated
and “sense tagged” by the appropriate Chinese trans-
lations. A classifier was trained on the extracted
sense examples and then evaluated on the nouns in
Senseval-2 English Lexical Sample dataset. The re-
sults appear good numerically, but since the sense
groups are not in the gold standard, comparison with
other Senseval-2 results is difficult. As discussed by
Ng et al., there are several problems with relying on
bilingual parallel corpora for data collection. First,
parallel corpora, especially accurately aligned par-
allel corpora are rare, although attempts have been
made to mine them from the Web (Resnik, 1999).
Second, it is often not possible to distinguish all
senses of a word in the source language, by merely
relying on parallel corpora, especially when the cor-
pora are relatively small. This is a common problem
for bilingual approaches: useful data for some words
cannot be collected because different senses of poly-
semous words in one language often translate to the
same word in the other. Using parallel corpora can
aggravate this problem, because even if a word sense
in the source language has a unique translation in the
target language, the translation may not occur in the
parallel corpora at all, due to the limited size of this
resource.

To alleviate these problems, researchers seek
other bilingual resources such as bilingual dictio-
naries, together with monolingual resources that can
be obtained easily. Dagan and Itai (1994) proposed
an approach to WSD using monolingual corpora, a
bilingual lexicon and a parser for the source lan-
guage. One of the problems of this method is that for
many languages, accurate parsers do not exist. With
a small amount of classified data and a large amount
of unclassified data in both the source and the tar-
get languages, Li and Li (2004) proposed bilingual
bootstrapping. This repeatedly constructs classifiers
in the two languages in parallel and boosts the per-
formance of the classifiers by classifying data in
each of the languages and by exchanging informa-
tion regarding the classified data between two lan-
guages. With a certain amount of manual work, they
reported promising results, but evaluated on rela-
tively small datasets.

In previous work, we proposed to use Chinese
monolingual corpora and Chinese-English bilin-
gual dictionaries to acquire sense examples (Wang,

2004)2. We evaluated the sense examples using a
vector space WSD model on a small dataset con-
taining words with binary senses, with promising
results. This approach does not rely on scarce re-
sources such as aligned parallel corpora or accurate
parsers.

This paper describes further progress based on our
proposal: we automatically build larger-scale sense
examples and then train a Naı̈ve Bayes classifier on
them. We have evaluated our system on the English
Lexical Sample Dataset from Senseval-2 and the re-
sults show conclusively that such sense examples
can be used successfully in a full-scale fine-grained
WSD task. We tried to analyse whether more sense
examples acquired this way would improve WSD
accuracy and also whether a little human effort on
sense mapping could further improve WSD perfor-
mance.

The reminder of the paper is organised as fol-
lows. Section 2 outlines the acquisition algorithm
for sense examples. Section 3 describes details of
building this resource and demonstrates our appli-
cation of sense examples to WSD. We also present
results and analysis in this section. Finally, we con-
clude in Section 4 and talk about future work.

2 Acquisition of Sense Examples

Following our previous proposal (Wang, 2004), we
automatically acquire English sense examples using
large quantities of Chinese text and English-Chinese
and Chinese-English dictionaries. The Chinese lan-
guage was chosen because it is a distant language
from English and the more distant two languages
are, the more likely that senses are lexicalised differ-
ently (Resnik and Yarowsky, 1999). The underlying
assumption of this approach is that in general each
sense of an ambiguous English word corresponds to
a distinct translation in Chinese. As shown in Fig-
ure 1, firstly, the system translates senses of an En-
glish word into Chinese words, using an English-
Chinese dictionary, and then retrieves text snippets
from a large amount of Chinese text, with the Chi-
nese translations as queries. Then, the Chinese text
snippets are segmented and then translated back to
English word by word, using a Chinese-English dic-

2Sense examples were referred to as “topic signatures” in
that paper.
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Figure 1. Process of automatic acquisition of sense examples.
For simplicity, assumew has two senses.

tionary. In this way, for each sense, a set of sense
examples is produced. As an example, suppose one
wants to retrieve sense examples for thefinancial
sense ofinterest. One first looks up the Chinese
translations of this sense in an English-Chinese dic-
tionary, and finds that|E is the right Chinese
translation corresponding to this particular sense.
Then, the next stage is to automatically build a col-
lection of Chinese text snippets by either searching
in a large Chinese corpus or on the Web, using|
E as query. Since Chinese is a language written
without spaces between words, one needs to use a
segmentor to mark word boundaries before translat-
ing the snippets word by word back to English. The
result is a collection of sense examples for thefinan-
cial sense ofinterest, each containing a bag of words
that tend to co-occur with that particular sense. For
example,{interest rate, bank, annual, economy, ...}
might be one of the sense examples extracted for the
financialsense ofinterest. Note that words in a sense
example are unordered.

Since this method acquires training data for WSD
systems from raw monolingual Chinese text, it
avoids the problem of the shortage of English sense-
tagged corpora, and also of the shortage of aligned
bilingual corpora. Also, if existing corpora are
not big enough, one can always harvest more text
from the Web. However, like all methods based
on the cross-language translation assumption men-
tioned above, there are potential problems. For ex-

ample, it is possible that a Chinese translation of an
English sense is also ambiguous, and thus the con-
tents of text snippets retrieved may be regarding a
concept other than the one we want. In general,
when the assumption does not hold, one could use
the glossesdefined in a dictionary as queries to re-
trieve text snippets, as comprehensive bilingual dic-
tionaries tend to include translations to all senses of
a word, where multiword translations are used when
one-to-one translation is not possible. Alternatively,
a human annotator could map the senses and trans-
lations by hand. As we will describe later in this
paper, we chose the latter way in our experiments.

3 Experiments and Results

We firstly describe in detail how we prepared the
sense examples and then describe a large scale WSD
evaluation on the English Senseval-2 Lexical Sam-
ple dataset (Kilgarriff, 2001). The results show that
our system trained with the sense examples achieved
significantly better accuracy than comparable sys-
tems. We also show that when a little manual effort
was invested in mapping the English word senses
to Chinese monosemous translations, WSD perfor-
mance improves accordingly. Based on further ex-
periments on a standard binary WSD dataset, we
also show that the technique scales up satisfacto-
rily so that more sense examples help achieve better
WSD accuracy.

3.1 Building Sense Examples

Following the approach described in Section 2,
we built sense examples for the44 words in the
Senseval-2 dataset3. These44 words have223
senses in total to disambiguate. The first step was
translating English senses to Chinese. We used the
Yahoo! Student English-Chinese On-line Dictio-
nary4, as well as a more comprehensive electronic
dictionary. This is because theYahoo!dictionary is
designed for English learners, and its sense granu-
larity is rather coarse-grained. It is good enough for
words with fewer or coarse-grained senses. How-

3These 44 words cover all nouns and adjectives in the
Senseval-2 dataset, but exclude verbs. We discuss this point
in section 3.2.

4See: http://cn.yahoo.com/dictionary.
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ever, the Senseval-2 Lexical Sample task5 uses
WordNet1.7 as gold standard, which has very fine
sense distinctions and translation granularity in the
Yahoo!dictionary does not conform to this standard.
PowerWord 20026 was chosen as a supplementary
dictionary because it integrates several comprehen-
sive English-Chinese dictionaries in a single appli-
cation. For each sense of an English word entry, both
Yahoo! and PowerWord 2002dictionaries list not
only Chinese translations but also English glosses,
which provides a bridge between WordNet synsets
and Chinese translations in the dictionaries. In de-
tail, to automatically find a Chinese translation for
senses of an English wordw, our system looks up
w in both dictionaries and determines whetherw has
the same or greater number of senses as in Word-
Net. If it does, in one of the bilingual dictionaries,
we locate the English glossg which has the max-
imum number of overlapping words with the gloss
for s in the WordNet synset. The Chinese transla-
tion associated withg is then selected. Although
this simple method successfully identified Chinese
translations for 23 out of the 44 words (52%), trans-
lations for the remaining word senses remain un-
known because the sense distinctions are different
between our bilingual dictionaries and WordNet. In
fact, unless an English-Chinese bilingual WordNet
becomes available, this problem is inevitable. For
our experiments, we solved the problem by manu-
ally looking up dictionaries and identifying transla-
tions. For each one of the44 words, PowerWord
2002 provides more Chinese translations than the
number of its synsets in WordNet1.7. Thus the an-
notator simply selects the Chinese translations that
he considers a best match to the corresponding En-
glish senses. This task took an hour for an annotator
who speaks both languages fluently.

It is possible that the Chinese translations are also
ambiguous, which can make the topic of a collection
of text snippets deviate from what is expected. For
example, theoral sense ofmouthcan be translated as
� or�n in Chinese. However, the first translation

5The task has two variations: one to disambiguate fine-
grained senses and the other to coarse-grained ones. We evalu-
ated our sense examples on the former variation, which is obvi-
ously more difficult.

6A commercial electronic dictionary application. We used
the free on-line version at: http://cb.kingsoft.com.

(�) is a single-character word and is highly ambigu-
ous: by combining with other characters, its mean-
ing varies. For example,Ñ�means “an exit” or “to
export”. On the other hand, the second translation
(�n) is monosemous and should be used. To as-
sess the influence of such “ambiguous translations”,
we carried out experiments involving more human
labour to verify the translations. The same annotator
manually eliminated those highly ambiguous Chi-
nese translations and then replaced them with less
ambiguous or ideally monosemous Chinese trans-
lations. This process changed roughly half of the
translations and took about five hours. We compared
the basic system with this manually improved one.
The results are presented in section 3.2.

Using translations as queries, the sense examples
were automatically extracted fromthe Chinese Gi-
gaword Corpus(CGC), distributed by the LDC7,
which contains2.7GB newswire text, of which
900MB are sourced fromXinhua News Agency of
Beijing, and1.8GB are drawn fromCentral News
from Taiwan. A small percentage of words have
different meanings in these two Chinese dialects,
and since the Chinese-English dictionary (LDC
Mandarin-English Translation Lexicon Version 3.0)
we use later is compiled with Mandarin usages in
mind, we mainly retrieve data fromXinhua News.
We set a threshold of100, and only when the amount
of snippets retrieved fromXinhua Newsis smaller
than100, do we turn toCentral Newsto collect more
data. Specifically, for48 out of the223 (22%) Chi-
nese queries, the system retrieved less than 100 in-
stances fromXinhua Newsso it extracted more data
from Central News. In theory, if the training data is
still not enough, one could always turn to other text
resources, such as the Web.

To decide the optimal length of text snippets to
retrieve, we carried out pilot experiments with two
length settings:250 (≈ 110 English words) and
400 (≈ 175 English words) Chinese characters, and
found that more context words helped improve WSD
performance (results not shown). Therefore, we re-
trieve text snippets with a length of400 characters.

We then segmented all text snippets, using an ap-
plication ICTCLAS8. After the segmentor marked

7Available at: http://www.ldc.upenn.edu/Catalog/
8See: http://mtgroup.ict.ac.cn/∼zhp/ICTCLAS
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all word boundaries, the system automatically trans-
lated the text snippets word by word using the elec-
tronic LDC Mandarin-English Translation Lexicon
3.0. As expected, the lexicon does not cover all
Chinese words. We simply discarded those Chi-
nese words that do not have an entry in this lexi-
con. We also discarded those Chinese words with
multiword English translations. Since the discarded
words can be informative, one direction of our re-
search in the future is to find an up-to-date wide cov-
erage dictionary, and to see how much difference it
will make. Finally, we filtered the sense examples
with a stop-word list, to ensure only content words
were included.

We ended up with223 sets of sense examples
for all senses of the44 nouns and adjectives in the
test dataset. Each sense example contains a set of
words that were translated from a Chinese text snip-
pet, whose content should closely relate to the En-
glish word sense in question. Words in a sense ex-
ample are unordered, because in this work we only
used bag-of-words information. Except for the very
small amount of manual work described above to
map WordNet glosses to those in English-Chinese
dictionaries, the whole process is automatic.

3.2 WSD Experiments on Senseval-2 Lexical
Sample dataset

The Senseval-2 English Lexical Sample Dataset
consists of manually sense-tagged training and test
instances for nouns, adjectives and verbs. We only
tested our system on nouns and adjectives because
verbs often have finer sense distinctions, which
would mean more manual work would need to be
done when mapping WordNet synsets to English-
Chinese dictionary glosses. This would involve us in
a rather different kind of enterprise since we would
have moved from an almost-unsupervised to a more
supervised setup.

We did not use the training data supplied with the
dataset. Instead, we train a classifier on our auto-
matically built sense examples and test it on the test
data provided. In theory, any machine learning clas-
sifier can be applied. We chose the Naı̈ve Bayes al-
gorithm with kernel estimation9 (John and Langley,
1995) which outperformed a few other classifiers in

9We used the implementation in the Weka machine learning
package, available at: http://www.cs.waikato.ac.nz/∼ml/weka.
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48.3

35.4

79.3

78.7

21.6

65.6
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34.2
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Table 1. WSD accuracy on words in the English Senseval-2
Lexical Sample dataset. The left most column shows words,
their POS tags and how many senses they have. “Sys A” and
“Sys B” are our systems, and “MW” denotes a multi-word de-
tection module was used in conjunction with the “Basic” sys-
tem. For comparison, it also shows two baselines: “RB” is the
random baseline and “MFB” is the most-frequent-sense base-
line. “UNED” is one of the best unsupervised participants
in the Senseval-2 competition and “Lesk(U)” is the highest
unsupervised-baseline set in the workshop. All accuracies are
expressed as percentages.

our pilot experiments on other datasets (results not
shown). The average length of a sense example is
35 words, which is much shorter than the length of
the text snippets, which was set to400 Chinese char-
acters (≈ 175 English words). This is because func-
tion words and words that are not listed in theLDC
Mandarin-Englishlexicon were eliminated. We did
not apply any weighting to the features because per-
formance went down in our pilot experiments when
we applied a TF.IDF weighting scheme (results not
shown). We also limited the maximum number of
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training sense examples to6000, for efficiency pur-
poses. We attempted to tag every test data instance,
so our coverage (on nouns and adjectives) is100%.

To assess the influence of ambiguous Chinese
translations, we prepared two sets of training data.
As described in section 3.1: sense examples in the
first set were prepared without taking ambiguity in
Chinese text into consideration, while those in the
second set were prepared with a little more human
effort involved trying to reduce ambiguity by us-
ing less ambiguous translations. We call the system
trained on the first set “Sys A” and the one trained
on the second “Sys B”.

In this lexical sample task, multiwords are ex-
pected to be picked out by participating WSD sys-
tems. For example, the answerart collectionshould
be supplied when this multiword occurs in a test
instance. It would be judged wrong if one tagged
theart in art collectionas theartworkssense, even
though one could argue that this was also a cor-
rect answer. To deal with multiwords, we imple-
mented a very simple detection module, which tries
to match multiword entries in WordNet to the am-
biguous word and its left and right neighbours. For
example, if the module findsart collectionis an en-
try in WordNet, it tags all occurrences of this multi-
word in the test data, regardless of the prediction by
the classifier.

The results are shown in Table 1. Our “Sys B”
system, with and without the multiword detection
module, outperformed “Sys A”, which shows that
sense examples acquired with less ambiguous Chi-
nese translations contain less noise and therefore
boost WSD performance. For comparison, the ta-
ble also shows various baseline performance figures
and a system that participated in Senseval-210. Con-
sidering that the manual work involved in our ap-
proach is negligible compared with manual sense-
tagging, we classify our systems as unsupervised
and we should aim to beat the random baseline.
This all four of our systems do easily. We also eas-
ily beat another unsupervised baseline – the Lesk
(1986) baseline, which disambiguates words using
WordNet definitions. The MFB baseline is actu-
ally a ‘supervised’ baseline, since an unsupervised

10Accuracies for each word and averages were calculated
by us, based on the information on Senseval-2 Website. See:
http://www.sle.sharp.co.uk/senseval2/.

system does not have such prior knowledge before-
hand. McCarthy et al. (2004) argue that this is a
very tough baseline for an unsupervised WSD sys-
tem to beat. Our “Sys B” with multiword detection
exceeds it. “Sys B” also exceeds the performance
of UNED (Ferńandez-Amoŕos et al., 2001), which
was the second-best ranked11 unsupervised systems
in the Senseval-2 competition.

There are a number of factors that can influence
WSD performance. The distribution of training data
for senses is one. In our experiments, we used all
sense examples that we built for a sense (with an
upper bound of6000). However, the distribution of
senses in English text often does not match the dis-
tribution of their corresponding Chinese translations
in Chinese text. For example, suppose an English
word w has two senses:s1 ands2, wheres1 rarely
occurs in English text, whereas senses2 is used fre-
quently. Also supposes1’s Chinese translation is
much more frequently used thans2’s translation in
Chinese text. Thus, the distribution of the two senses
in English is different from that of the translations in
Chinese. As a result, the numbers of sense exam-
ples we would acquire for the two senses would be
distributed as if they were in Chinese text. A clas-
sifier trained on this data would then tend to predict
unseen test instances in favour of the wrong distribu-
tion. The wordnation, for example, has three senses,
of which thecountrysense is used more frequently
in English. However, in Chinese, thecountrysense
and thepeoplesense are almost equally distributed,
which might be the reason for its WSD accuracy be-
ing lower with our systems than most of the other
words. A possible way to alleviate this problem is to
select training sense examples according to an esti-
mated distribution in natural English text, which can
be done by analysing available sense-tagged corpora
with help of smoothing techniques, or with the un-
supervised approach of (McCarthy et al., 2004).

Cultural differences can cause difficulty in retriev-
ing sufficient training data. For example, transla-
tions of senses ofchurchandhearthappear only in-
frequently in Chinese text. Thus, it is hard to build
sense examples for these words. Another problem,

11One system performed better but their answers were not
on the official Senseval-2 website so that we could not do the
comparison. Also, that system did not attempt to disambiguate
as many words as UNED and us.
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as mentioned above, is that translations of English
senses can be ambiguous in Chinese. For exam-
ple, Chinese translations of the wordsvital, natu-
ral, local etc. are also ambiguous to some extent,
and this might be a reason for their low perfor-
mance. One way to solve this, as we described, is
to manually check the translations. Another auto-
matic way is that, before retrieving text snippets, we
could segment or even parse the Chinese corpora,
which should reduce the level of ambiguity and lead
to better sense examples.

3.3 Further WSD Experiments

One of the strengths of our approach is that training
data come cheaply and relatively easily. However,
the sense examples are acquired automatically and
they inevitably contain a certain amount of noise,
which may cause problems for the classifier. To as-
sess the relationship between accuracy and the size
of training data, we carried out a series of experi-
ments, feeding the classifier with different numbers
of sense examples as training data.

For these experiments, we used another standard
WSD dataset, the TWA dataset. This is a manu-
ally sense-tagged corpus (Mihalcea, 2003), which
contains 2-way sense-tagged text instances, drawn
from the British National Corpus, for 6 nouns. We
first built sense examples for all the12 senses using
the approach described above, then trained the same
Näıve Bayes algorithm (NB) on different numbers
of sense examples.

In detail, for all of the 6 words, we did the fol-
lowing: given a wordwi, we randomly selectedn
sense examples for each of its sensessi, from the
total amount of sense examples built forsi. Then
the NB algorithm was trained on the2 ∗ n exam-
ples and tested onwi’s test instances in TWA. We
recorded the accuracy and repeated this process200
times and calculated the mean and variance of the
200 accuracies. Then we assigned another value to
n and iterated the above process untiln took all the
predefined values. In our experiments,n was taken
from{50, 100, 150, 200, 400, 600, 800, 1000, 1200}
for wordsmotion, plantandtankand from{50, 100,
150, 200, 250, 300, 350} for bass, craneandpalm,
because there were less sense example data available
for the latter three words. Finally, we used the t-test
(p = 0.05) on pairwise sets of means and variances

to see if improvements were statistically significant.
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Figure 2. Accuracy scores with increasing number of training
sense examples. Each bar is a standard deviation.

The results are shown in Figure 212. 34 out of 42
t-scores are greater than the t-test critical values, so
we are fairly confident that the more training sense
examples used, the more accurate the NB classifier
becomes on this disambiguation task.

4 Conclusions and Future Work

We have presented WSD systems that use sense ex-
amples as training data. Sense examples are ac-
quired automatically from large quantities of Chi-
nese text, with the help of Chinese-English and
English-Chinese dictionaries. We have tested our
WSD systems on the English Senseval-2 Lexical
Sample dataset, and our best system outperformed
comparable state-of-the-art unsupervised systems.
Also, we found that increasing the number of the
sense examples significantly improved WSD perfor-
mance. Since sense examples can be obtained very
cheaply from any large Chinese text collection, in-

12These experiments showed that our systems outperformed
the most-frequent-sense baseline and Mihalcea’s unsupervised
system (2003).
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cluding the Web, our approach is a way to tackle the
knowledge acquisition bottleneck.

There are a number of future directions that we
could investigate. Firstly, instead of using a bilin-
gual dictionary to translate Chinese text snippets
back to English, we could use machine translation
software. Secondly, we could try this approach on
other language pairs, Japanese-English, for exam-
ple. This is also a possible solution to the problem
that ambiguity may be preserved between Chinese
and English. In other words, when a Chinese transla-
tion of an English sense is still ambiguous, we could
try to collect sense examples using translation in a
third language, Japanese, for instance. Thirdly, it
would be interesting to try to tackle the problem of
Chinese WSD using sense examples built using En-
glish, the reverse process to the one described in this
paper.
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Abstract

MONA is an automata toolkit provid-
ing a compiler for compiling formulae of
monadic second order logic on strings or
trees into string automata or tree automata.
In this paper, we evaluate the option of
using MONA as a treebank query tool.
Unfortunately, we find that MONA is not
an option. There are several reasons why
the main being unsustainable query an-
swer times. If the treebank contains larger
trees with more than 100 nodes, then even
the processing of simple queries may take
hours.

1 Introduction

In recent years large amounts of electronic texts have
become available providing a new base for empiri-
cal studies in linguistics and offering a chance to lin-
guists to compare their theories with large amounts
of utterances from “the real world”. While tagging
with morphosyntactic categories has become a stan-
dard for almost all corpora, more and more of them
are nowadays annotated with refined syntactic in-
formation. Examples are the Penn Treebank (Mar-
cus et al., 1993) for American English annotated at
the University of Pennsylvania, the French treebank
(Abeillé and Clément, 1999) developed in Paris, the
TIGER Corpus (Brants et al., 2002) for German
annotated at the Universities of Saarbrücken and

∗ This research was funded by a German Science Founda-
tion grant (DFG SFB441-6).

Stuttgart, and the Tübingen Treebanks (Hinrichs et
al., 2000) for Japanese, German and English from
the University of Tübingen. To make these rich syn-
tactic annotations accessible for linguists, the devel-
opment of powerful query tools is an obvious need
and has become an important task in computational
linguistics.

Consequently, a number of treebank query tools
have been developed. Probably amongst the most
important ones are CorpusSearch (Randall, 2000),
ICECUP III (Wallis and Nelson, 2000), fsq (Kepser,
2003), TGrep2 (Rohde, 2001), and TIGERSearch
(König and Lezius, 2000). A common feature of
these tools is the relatively low expressive power
of their query languages. Explicit or implicit ref-
erences to nodes in a tree are mostly interpreted ex-
istentially. The notable exception is fsq, which em-
ploys full first order logic as its query language.

The importance of the expressive power of the
query language is a consequence of the sizes of the
available treebanks, which can contain several ten-
thousand trees. It is clearly impossible to browse
these treebanks manually searching for linguistic
phenomena. But a query tool that does not permit
the user to specify the sought linguistic phenomenon
quite precisely is not too helpful, either. If the user
can only approximate the phenomenon he seeks an-
swer sets will be very big, often containing several
hundred to thousand trees. Weeding through answer
sets of this size is cumbersome and not really fruit-
ful. If the task is to gain small answer sets, then
query languages must be powerful. The reason why
the above mentioned query tools still offer query
languages of limited expressive power is the fear that

555



there may be a price to be paid for offering a pow-
erful query language, namely longer query answer
times due to more complex query evaluation algo-
rithms.

At least on a theoretical level, this fear is not
necessarily justified. As was recently shown by
Kepser (2004), there exists a powerful query lan-
guage with a query evaluation algorithm of low com-
plexity. The query language is monadic second-
order logic (MSO henceforth), an extension of first-
order logic that additionally allows for the quantifi-
cation over sets of tree nodes. The fact that makes
this language so appealing beyond its expressive
power is that the evaluation time of an MSO query
on a tree is only linear in the size of the tree. The
query evaluation algorithm proceeds in two steps. In
the first step, a query is compiled into an equivalent
tree automaton. In the second, the automaton is run
on each tree of the treebank. Since a run of an au-
tomaton on a tree is linear in the size of the tree, the
evaluation of an MSO query is linear in the size of a
tree.

There has sometimes been the question whether
the expressive power of MSO is really needed. Be-
yond the statements above about retrieving small an-
swer sets there is an important argument concern-
ing the expressive power of the grammars underly-
ing the annotation of the treebanks. A standard as-
sumption in the description of the syntax of natural
languages is that at least context-free string gram-
mars are required. On the level of trees, these corre-
spond to regular tree grammars (Gécseg and Steinby,
1997). It is natural to demand that the expressive
power of the query language matches the expressive
power of the underlying grammar. Otherwise there
can be linguistic phenomena annotated in the tree-
bank for which a user cannot directly query. The
query language which exactly matches the expres-
sive power of regular tree grammars is MSO. In
other words, a set of trees is definable by a regu-
lar tree grammar iff there is an MSO formula that
defines this set of trees (Gécseg and Steinby, 1997).
Hence MSO is a natural choice of query language
under the given assumption that the syntax of natu-
ral language is (at least) context-free on the string or
token level.

Since the use of MSO as a query language for
treebanks is – at least on a theoretical level – quite

appealing, it is worth trying to develop a query sys-
tem that brings these theoretical concepts to prac-
tise. The largest and most demanding subpart of
this enterprise is the development of a tree automata
toolkit, a toolkit that compiles formulae into tree au-
tomata and performs standard operations on tree au-
tomata such as union, intersection, negation, and de-
termination. Since this task is very demanding, it
makes sense to investigate whether one could use
existing tree automata toolkits before starting to de-
velop a new one. To the authors’ knowledge, there
exists only one of-the-shelf usable tree automata
toolkit, and that is MONA (Klarlund, 1998). It is
the aim of this paper to give an evaluation of using
MONA for querying linguistic treebanks.

2 The Tree Automata Toolkit MONA

Tree automata are generalisations of finite state au-
tomata to trees. For a general introduction to tree au-
tomata, we refer the reader to (Gécseg and Steinby,
1997). There exists a strong connection between tree
automata and MSO. A set of trees is definable by
an MSO formula if and only if there exists a tree
automaton accepting this set. This equivalence is
constructive, there is an algorithm that constructs an
automaton from a given MSO formula.

MONA is an implementation of this relation-
ship. It is being developed by Nils Klarlund, Anders
Møller, and Michael Schwartzbach. Its intended
main uses are hardware and program verification.
MONA is actually an implementation of the compi-
lation of monadic second order logic on strings and
trees into finite state automata or tree automata, re-
spectively. But we focus exclusively on the tree part
here. As we will see later, MONA was not devel-
oped with linguistic applications in mind.

2.1 The Language of MONA

The language of MONA is pure monadic second or-
der logic of two successors. We will only mention
the part of the language that is needed for describing
trees. There are first-order and second-order terms.
A first-order variable is a first-order term. The con-
stant root is a first-order term denoting the root node
of a tree. If t is a first-order term and s is a non-
empty sequence of 0’s and 1’s, then t.s is a first-
order term. 0 denotes the left daughter, and 1 the
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right daughter of a node. A sequence of 0’s and
1’s denotes a path in the tree. The term root.011,
e.g., denotes the node that is reached from the root
by first going to the left daughter and then going
twice down to the right daughter. A set variable is
a second-order term. If t1, . . . , tk are first-order terms
then {t1, . . . , tk} is a second-order term. We consider
the following formulae. Let t, t ′ be first-order terms
and T,T ′ be second order terms. Atomic formulae
are
• t = t ′ – Equality of nodes,
• T = T ′ – Equality of node sets,
• t in T – t is a member of set T ,
• empty(T ) – Set T is empty.

Formulae are constructed from atomic formulae
using the boolean connectives and quantification.
Let φ and ψ be formulae. Then we define complex
formulae as
• ∼ φ – Negation of φ,
• φ & ψ – Conjunction of φ and ψ,
• φ | ψ – Disjunction of φ and ψ,
• φ => ψ – Implication of φ and ψ,
• ex1 x : φ – First-order existential quantifica-

tion of x in φ,
• all1 x : φ – First-order universal quantifica-

tion of x in φ,
• ex2 X : φ – Existential quantification of set X

in φ,
• all2 X : φ – Universal quantification of set X in

φ.
We note that there is no way to extend this lan-

guage. This has three important consequences.
Firstly, we are restricted to using binary trees only.
And secondly, we cannot accommodate linguistic la-
bels in a direct way. We have to find some coding.
Finally, and this is a significant drawback that may
exclude the use of MONA for many applications,
we cannot code the tokens, the word sequence at the
leaves of a tree. Hence we can neither query for par-
ticular words or sequences of words. We can only
query the structure of a tree – including the labels.

2.2 The MONA Compiler

The main program of MONA is a compiler that com-
piles formulae in the above described language into
tree automata. The input is a file containing the for-
mulae. The output is an analysis of the automaton
that is constructed. In particular, it is stated whether
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Figure 1: Method of using MONA for querying.

the formula is satisfiable at all, i.e., whether an au-
tomaton can be constructed.

MONA does not provide a method to execute an
automaton on a tree. But if a formula can be com-
piled into an automaton, this automaton can be out-
put to file. And a file containing an automaton can be
imported into a file containing a formula. We there-
fore use the following strategy to query treebanks
using MONA. Each tree from the treebank is trans-
lated into a formula in the MONA language. How
this can be done, will be described later. The for-
mula representing the tree is then compiled into an
automaton and written to file. Now the treebank ex-
ists as a set of automata files. A query to the original
treebank will also be translated into a MONA for-
mula. For each tree of the treebank, this formula is
extended by an import statement for the automaton
representing the tree. If and only if the extended for-
mula representing query and tree can be compiled
into an automaton, then the tree is a match for the
original query. This way we can use MONA to query
the treebank. The method is depicted in Figure 1.

3 The Tübingen Treebanks

In order to evaluate the usability of MONA as a
query tool we had to chose some treebank to do our
evaluation on. We opted for the Tübingen Treebank
of spoken German. The Tübingen Treebanks, an-
notated at the University of Tübingen, comprise a
German, an English and a Japanese treebank con-
sisting of spoken dialogs restricted to the domain of
arranging business appointments. For our evalua-
tion, we focus on the German treebank (TüBa-D/S)
(Stegmann et al., 2000; Hinrichs et al., 2000) that
contains approximately 38.000 trees.

The treebank is part-of-speech tagged using the
Stuttgart-Tübingen tag set (STTS) developed by
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Figure 2: An example tree from TüBa-D/S.

Schiller et al. (1995). One of the design decisions
for the development of the treebank was the commit-
ment to reusability. As a consequence, the choice of
the syntactic annotation scheme should not reflect a
particular syntactic theory but rather be as theory-
neutral as possible. Therefore a surface-oriented
scheme was adopted to structure German sentences
that uses the notion of topological fields in a sense
similar to that of Höhle (1985). The verbal elements
have the categories LK (linke Klammer) and VC (ver-
bal complex); roughly everything preceeding the LK
forms the “Vorfeld” VF, everything between LK and
VC forms the “Mittelfeld” MF, and the material fol-
lowing the VC forms the “Nachfeld” NF.

The treebank is annotated with syntactic cate-
gories as node labels, grammatical functions as edge
labels and dependency relations. The syntactic cat-
egories follow traditional phrase structure and the
theory of topological fields. An example of a tree
can be found in Figure 2. To cope with the charac-
teristics of spontaneous speech, the data structures in
the Tübingen Treebanks are of a more general form
than trees. For example, an entry may consist of sev-
eral tree structures. It may also contain completely
disconnected nodes. In contrast to TIGER or the
Penn Treebank, there are neither crossing branches
nor empty categories.

There is no particular reason why we chose this
treebank. Many others could have been used as well
for testing the applicability of MONA.

4 Converting Trees into Automata

4.1 Translating Trees into Tree Descriptions

When translating trees from the treebank into
MONA formulae describing these trees we consider
proper trees only. Many treebanks, including TüBa-
D/S, contain more complex structures than proper
trees. For the evaluation purpose here we simplify
these structures as follows. We ignore the secondary
relations. And we introduce a new super root. All
disconnected subparts are connected to this super
root. Note that we employ this restriction for the
evaluation purpose only. The general method does
not require these restrictions, because even more
complex tree-like structures can be recoded into
proper binary trees, as is shown in (Kepser, 2004).

As stated above, the translation of trees into for-
mulae has to perform two tasks. The trees, which
are arbitrarily branching, must be transformed into
binary trees. And the linguistic labels, i.e., the node
categories and grammatical functions, have to be
coded. For the transformation into binary trees, we
employ the First-Daughter-Next-Sibling encoding,
a rather standard technique. Consider an arbitrary
node x in the tree. If x has any daughters, its left-
most daughter will become the left daughter of x in
the transformed tree. If x has any sisters, then its
leftmost sister will become the right daughter of x in
the transformed tree. This transformation is applied
recursively to all nodes in the tree. For example, the
tree in Figure 2 is transformed into the binary tree in
Figure 3.

Note how the disconnected punctuation node at
the lower right corner in Figure 2 becomes the right
daughter of the SIMPX node in Figure 3. Note also
that we have both category and grammatical func-
tion as node labels for those nodes that have a gram-
matical function.

Such a binary tree is now described by a several
formulae. The first formula, called Carcase, collects
the addresses of all nodes in the tree to describe the
tree structure without any labels. For our example
tree, the formula would be
Carcase = {root,root.0,root.00,root.000,root.0000,

root.01,root.001,root.0010,root.00100,

root.001001,root.0010010,root.0010011}.
A syntactic category or grammatical function is

coded as the set of nodes in the tree that are labelled
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Figure 3: Binary recoding of the tree in Figure 2.

with this category or function. This is the way to cir-
cumvent the problem that we cannot extend the lan-
guage of MONA. Here are some formulae for some
labels of the example tree.
LK = {root.00}, ART = {root.00100}, HD =
{root.000,root.0000,root.0010010, root.0010011}.

For all category or function labels that are not
present at a particular tree, but part of the label set of
the treebank, we state that the corresponding sets are
empty. For example, the description of the example
tree contains the formula empty(VC).

We implemented a program that actually performs
this translation step. The input is a fraction of
the TüBa-D/S treebank in NEGRA export format
(Brants, 1997). The output is a file for each tree
containing the MONA formulae coding this tree. In
this way, we get a set of MONA formulae describing
each tree.

4.2 Compiling Tree Descriptions into
Automata

As mentioned above, the next step consists in com-
piling each tree description into an equivalent au-
tomaton. This is the first part of the evaluation.
We tested whether MONA can actually perform this
compilation. Astonishingly, the answer is not as
simple as one might expect. It turns out that the com-
puting power required to perform the compilation is
quite high. To start, we chose a very small subset of
the TüBa-D/S, just 1000 trees. Some of these trees
contain more than 100 nodes, one more than 200

nodes. Processing descriptions of these large trees
actually requires a lot of computing power.

It seems it is not possible to perform this compi-
lation step on a desktop machine. We used an AMD
2200 machine with 2GB Ram for a try, but aborted
the compilation of the 1000 trees after 15 hours. At
that time, only 230 trees had been compiled.

To actually get through the compilation of the
treebank we transfered the task to a cluster com-
puter. On this cluster we used 4 nodes each equipped
with two AMD Opteron 146 (2GHz, 4GB Ram) in
parallel. Parallelisation is simple since each tree de-
scription can be compiled independently of all the
others. The parallelisation was done by hand. Using
this equipment we could compile 999 trees in about
4 hours. These 4 hours are the time needed to com-
plete the whole task, not pure processing time. The
tree containing more than 200 nodes could still not
be compiled. Its compilation terminated unsuccess-
fully after 6 hours. We decided to drop this tree from
the sample.

It is obvious that this is a major obstacle for using
MONA. It is difficult to believe that many linguists
will have access to a cluster computers and sufficient
knowledge to use it. And we expect on the base of
our experiences that a compilation on an ordinary
desktop machine can take several days, provided the
machine is equipped with large amounts of memory.
Otherwise it will fail. One still has to consider that
1000 trees are not much. The TIGER corpus and the
TüBa-D/S have each about 40.000 trees. Thus one
may argue that this fact alone makes MONA unsuit-
able for use by linguists. But the compilation step
has to be performed only once. The files contain-
ing the resulting automata are machine independent.
Hence a corpus provider could at least in theory pro-
vide his corpus as a collection of MONA automata.
This labour would be worth trying, if the resulting
automata could be used for efficient querying.

5 Querying the Treebank

In order to query the treebank we designed a query
language that has MSO as its core but contains fea-
tures desirable for treebank querying. Naturally the
language is designed to query the original trees, not
their codings. It is therefore necessary to translate
a query into an equivalent MONA formula that re-
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spects the translation of the trees.

5.1 The Query Language

The query language is defined as follows. The lan-
guage has a LISP-like syntax. First-order variables
(x,y, . . .) range over nodes, set variables (X ,Y, . . .)
range over sets of nodes. The atomic formulae are
• (cat x NX) – Node x is of category NX,
• (fct x HD) – Node x is of grammatical function

HD,
• (> x y) – Node x is the mother of node y,
• (>+ x y) – Node x properly dominates y,
• (. x y) – Node x is immediately to the left

of y,
• (.. x y) – Node x is to the left of y,
• (= x y) – Node x and y are identical,
• (= X Y) – Node sets X and Y are identical,
• (in x X) – Node x is a member of set X .

Complex formulae are constructed by boolean
connectives and quantification. Let x be a node
variable, X a set variable, and φ and ψ formulae.
Then we have
• (! φ) – Negation of φ,
• (& φ ψ) – Conjunction of φ and ψ,
• (| φ ψ) – Disjunction of φ and ψ,
• (-> φ ψ) – Implication of φ and ψ,
• (E x φ) – Existential quantification of x in φ,
• (A x φ) – Universal quantification of x in φ,
• (E2 X φ) – Existential quantification of set

variable X in φ,
• (A2 X φ) – Universal quantification of set vari-

able X in φ.

5.2 Translating the Query Language

The next step consists of translating queries in this
language into MONA formulae. As is simple to see,
the translation of the complex formulae is straight
forward, because they are essentially the same in
both languages. The more demanding task is con-
nected with the translation of formulae on category
and function labels and the tree structure, i.e., dom-
inance and precedence.

As described above, categories and functions are
coded as sets. Hence a query for a category or func-
tion is translated into a formula expressing set mem-
bership in the relevant set. For example, the query
(cat x SIMPX) is translated into (x in SIMPX).

The translations of dominance and precedence are

the most complicated ones, because we transformed
the treebank trees into binary trees. Now we have to
reconstruct the original tree structures out of these
binary trees. In the first step we have to define
dominance on coded binary trees. The MONA lan-
guage contains formulae for the left and right daugh-
ter of a node, but there is no formula for dominance,
the transitive closure of the daughter relation. That
we can define dominance at all is a consequence of
the expressive power of MSO. As was shown by
Courcelle (1990), the transitive closure of any MSO-
definable binary relation is also MSO-definable. Let
R be an MSO-definable binary relation. Then

∀X (∀z,w(z ∈ X ∧R(z,w) → w ∈ X)∧
∀z(R(x,z) → z ∈ X)) → y ∈ X

is a formula with free variables x and y that defines
the transitive closure of R. If we now take R(x,y) in
the above formula to be (x.0 = y | x.1 = y) we define
dominance (dom). In a similar fashion we can define
that y is on the rightmost branch of x (rb(x,y)) by
taking R(x,y) to be (x.1 = y).

Now for immediate dominance, if node x is the
mother of y in the original tree, we have to distin-
guish to cases. In the simpler case, y is the leftmost
daughter of x, so after transformation, y is the left
daughter of x. Or y is not the leftmost daughter of
x, in that case it is a sister of the leftmost daugh-
ter z of x. All sisters of z are found on the rightmost
branch of z in the transformed trees. Hence (> x y)
is translated into (x.0 = y | ex1 z : x.0 = z & rb(z,y)).

Proper dominance is treated similarly. If we iter-
ate the above argument that the daughters of a node
x in the original tree become the left daughter z of x
and the rightmost successors of z, we can see that z
and all the nodes dominated by z in the translated
tree are actually all the nodes dominated by x in
the original tree. Hence (>+ x y) is translated into
(x.0 = y | ex1 z : x.0 = z & dom(z,y)).

For precedence, consider a node x in a coded bi-
nary tree. By definition the left daughter of x and
all her successors are nodes that preceed the right
daughter of x and her successors in the original tree.
Thus (.. x y) is translated into
(x.1 = y | ( ex1 z,w,v : z.0 = w & z.1 = v &

(w = x | dom(w,x)) &
(v = y | dom(v,y)))).
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Immediate precedence can be expressed using
precedence. Node x immediately precedes y if x pre-
cedes y there is no node z that is preceeded by x and
precedes y.

There is a small issue in the translation of quan-
tified formulae. In the translation of a first-order
quantification (existential or universal) of a variable
x we have to make sure that x actually ranges over
the nodes in a particular tree. Otherwise MONA
may construct an automaton that contains the coded
tree as a substructure, but is more general. In such
a case we could no longer be certain that a solution
found by MONA actually represents a proper match
of the original query on the original tree. To solve
this problem, we add (x in Carcase) to the transla-
tion of (E x φ) or (A x φ). E.g., (E x φ) trans-
lates to (ex1 x : x in Carcase & φ′) where φ′ is the
translation of φ. The same holds – mutatis mutandis
– for set variable quantification.

5.3 Performing a Query

We implemented a small program that performs the
above described translation of queries. It actually
does a little bit more. It adds the defining formulae
for dom and rb. Furthermore, as mentioned above,
MONA allows to include a precompiled automaton
into a set of MONA formulae via a special import
declaration. Such an import declaration is used to
include the automata representing the (coded) trees
from the treebank. Thus the set of MONA formulae
to evaluate a query consist of the translation of the
query, the formulae for dom and rb, and an import
declaration for one tree from the treebank. This set
of MONA formulae can now be fed into MONA to
try to compile it into an automaton. If the compila-
tion is successful, there exists an automaton that at
the same time represents the translation of the query
and the translation of the given tree. Hence the tree
is a match for the query. If there is no automaton, the
tree is no match for the query. To perform the query
on the whole treebank there is a loop that stepwise
imports every tree and calls MONA to check if an
automaton can be compiled. The result is the set of
tree IDs that identify the trees that match the query.

We tested this method on our small treebank of
999 trees from TüBa-D/S. Unfortunately it turned
out that the reloading of large precompiled automata
(representing large trees) also requires enormous

computational resources. We experimented with
a very simple query: ∃x NX(x) (or (E x (cat x
NX))). On our desktop machine (AMD 2200, 2GB
Ram), it took 6 hours and 9 minutes to process this
query. If we pose the same query on the whole tree-
bank TüBa-D/S (with about 38.000 trees) using es-
tablished query tools like TIGERSearch or fsq, pro-
cessing time is about 5 seconds. Hence the method
of using MONA is clearly not appropriate for desk-
top computers.

Even access to larger computing power does not
solve the problem. We processed the same query
on one processor (AMD Opteron 146, 2GHz, 4GB
Ram) of the cluster computer mentioned above.
There it took 1 minute and 30 seconds. About the
same query answer time was required for a second,
more complex query that asked for two different NX
nodes and a third SIMPX node. These query answer
times are still too long, because we queried only
about one fortieth of the whole treebank. Since each
tree is queried separately, we can expect a linear time
increase in the query time in the number of trees. In
other words, evaluating the query on the whole tree-
bank would probably take about 1 hour. And that
on a computer with such massive computing power.
TIGERSearch and fsq are 720 times faster, and they
run on desktop computers.

6 Conclusions

Despite the many reported successful applications of
MONA in other areas, we have to state that MONA
is clearly not a choice for querying linguistic tree-
banks. Firstly, we cannot use MONA to query for to-
kens (or words). Secondly, the compilation of a tree-
bank into a set of automata is extremely difficult and
resources consuming, if not impossible. And finally,
practical query answer times are way too long. Ap-
parently, reloading precompiled automata represent-
ing large trees takes too much time, because the au-
tomata representing these large trees are themselves
huge.

We note that this is unfortunately not the first neg-
ative experience of trying to apply MONA to com-
putational linguistics tasks. Morawietz and Cor-
nell (1999), who try to use MONA to compile logi-
cal formalisations of GB-theory, also report that au-
tomata get too large to work with.
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The general problem behind these two unsuccess-
ful applications of MONA to problems in computa-
tional linguistics seems to be that MONA does not
allow users to define their own signatures. Hence
linguistic labels have to be coded in an indirect fash-
ion. Though this coding works in theory, the result-
ing automata can become huge. The reason for this
explosion in automata size, though, remains myste-
rious.

The negative experience we made with MONA
does on the other hand not mean that the whole en-
terprise of using tree automata for querying tree-
banks is deemed to fail. It seems that it is rather
this particular deficit of MONA of providing no di-
rect way to cope with labelled trees that causes the
negative result. It could therefore well be worth try-
ing to implement tree automata for labelled trees and
use these for treebank querying.
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Abstract

Numerous NLP applications rely on
search-engine queries, both to ex-
tract information from and to com-
pute statistics over the Web corpus.
But search engines often limit the
number of available queries. As a
result, query-intensive NLP applica-
tions such as Information Extraction
(IE) distribute their query load over
several days, making IE a slow, off-
line process.
This paper introduces a novel archi-
tecture for IE that obviates queries to
commercial search engines. The ar-
chitecture is embodied in a system
called KNOWITNOW that performs
high-precision IE in minutes instead
of days. We compare KNOWITNOW
experimentally with the previously-
published KNOWITALL system, and
quantify the tradeoff between re-
call and speed. KNOWITNOW’s ex-
traction rate is two to three orders
of magnitude higher than KNOW-
ITALL’s.

1 Background and Motivation
Numerous modern NLP applications use the Web as their
corpus and rely on queries to commercial search engines
to support their computation (Turney, 2001; Etzioni et al.,
2005; Brill et al., 2001). Search engines are extremely
helpful for several linguistic tasks, such as computing us-
age statistics or finding a subset of web documents to an-
alyze in depth; however, these engines were not designed
as building blocks for NLP applications. As a result,
the applications are forced to issue literally millions of
queries to search engines, which limits the speed, scope,
and scalability of the applications. Further, the applica-

tions must often then fetch some web documents, which
at scale can be very time-consuming.

In response to heavy programmatic search engine use,
Google has created the “Google API” to shunt program-
matic queries away from Google.com and has placed hard
quotas on the number of daily queries a program can is-
sue to the API. Other search engines have also introduced
mechanisms to limit programmatic queries, forcing ap-
plications to introduce “courtesy waits” between queries
and to limit the number of queries they issue.

To understand these efficiency problems in more detail,
consider the KNOWITALL information extraction sys-
tem (Etzioni et al., 2005). KNOWITALL has a generate-
and-test architecture that extracts information in two
stages. First, KNOWITALL utilizes a small set of domain-
independent extraction patterns to generate candidate
facts (cf. (Hearst, 1992)). For example, the generic pat-
tern “NP1 such as NPList2” indicates that the head of
each simple noun phrase (NP) in NPList2 is a member of
the class named in NP1. By instantiating the pattern for
class City, KNOWITALL extracts three candidate cities
from the sentence: “We provide tours to cities such as
Paris, London, and Berlin.” Note that it must also fetch
each document that contains a potential candidate.

Next, extending the PMI-IR algorithm (Turney, 2001),
KNOWITALL automatically tests the plausibility of the
candidate facts it extracts using pointwise mutual in-
formation (PMI) statistics computed from search-engine
hit counts. For example, to assess the likelihood that
“Yakima” is a city, KNOWITALL will compute the PMI
between Yakima and a set of k discriminator phrases that
tend to have high mutual information with city names
(e.g., the simple phrase “city”). Thus, KNOWITALL re-
quires at least k search-engine queries for every candidate
extraction it assesses.

Due to KNOWITALL’s dependence on search-engine
queries, large-scale experiments utilizing KNOWITALL
take days and even weeks to complete, which makes re-
search using KNOWITALL slow and cumbersome. Pri-
vate access to Google-scale infrastructure would provide
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sufficient access to search queries, but at prohibitive cost,
and the problem of fetching documents (even if from a
cached copy) would remain (as we discuss in Section
2.1). Is there a feasible alternative Web-based IE system?
If so, what size Web index and how many machines are
required to achieve reasonable levels of precision/recall?
What would the architecture of this IE system look like,
and how fast would it run?

To address these questions, this paper introduces a
novel architecture for web information extraction. It
consists of two components that supplant the generate-
and-test mechanisms in KNOWITALL. To generate ex-
tractions rapidly we utilize our own specialized search
engine, called the Bindings Engine (or BE), which ef-
ficiently returns bindings in response to variabilized
queries. For example, in response to the query “Cities
such as ProperNoun(Head(〈NounPhrase〉))”, BE will
return a list of proper nouns likely to be city names. To
assess these extractions, we use URNS, a combinatorial
model, which estimates the probability that each extrac-
tion is correct without using any additional search engine
queries.1 For further efficiency, we introduce an approx-
imation to URNS, based on frequency of extractions’ oc-
currence in the output of BE, and show that it achieves
comparable precision/recall to URNS.

Our contributions are as follows:

1. We present a novel architecture for Information Ex-
traction (IE), embodied in the KNOWITNOW sys-
tem, which does not depend on Web search-engine
queries.

2. We demonstrate experimentally that KNOWITNOW
is the first system able to extract tens of thousands
of facts from the Web in minutes instead of days.

3. We show that KNOWITNOW’s extraction rate is two
to three orders of magnitude greater than KNOW-
ITALL’s, but this increased efficiency comes at the
cost of reduced recall. We quantify this tradeoff for
KNOWITNOW’s 60,000,000 page index and extrap-
olate how the tradeoff would change with larger in-
dices.

Our recent work has described the BE search engine
in detail (Cafarella and Etzioni, 2005), and also analyzed
the URNS model’s ability to compute accurate probability
estimates for extractions (Downey et al., 2005). However,
this is the first paper to investigate the composition of
these components to create a fast IE system, and to com-
pare it experimentally to KNOWITALL in terms of time,

1In contrast, PMI-IR, which is built into KNOWITALL, re-
quires multiple search engine queries to assess each potential
extraction.

recall, precision, and extraction rate. The frequency-
based approximation to URNS and the demonstration of
its success are also new.

The remainder of the paper is organized as follows.
Section 2 provides an overview of BE’s design. Sec-
tion 3 describes the URNS model and introduces an ef-
ficient approximation to URNS that achieves similar pre-
cision/recall. Section 4 presents experimental results. We
conclude with related and future work in Sections 5 and
6.

2 The Bindings Engine
This section explains how relying on standard search en-
gines leads to a bottleneck for NLP applications, and pro-
vides a brief overview of the Bindings Engine (BE)—our
solution to this problem. A comprehensive description of
BE appears in (Cafarella and Etzioni, 2005).

Standard search engines are computationally expen-
sive for IE and other NLP tasks. IE systems issue multiple
queries, downloading all pages that potentially match an
extraction rule, and performing expensive processing on
each page. For example, such systems operate roughly as
follows on the query (“cities such as 〈NounPhrase〉”):

1. Perform a traditional search engine query to find
all URLs containing the non-variable terms (e.g.,
“cities such as”)

2. For each such URL:

(a) obtain the document contents,
(b) find the searched-for terms (“cities such as”) in

the document text,
(c) run the noun phrase recognizer to determine

whether text following “cities such as” satisfies
the linguistic type requirement,

(d) and if so, return the string

We can divide the algorithm into two stages: obtaining
the list of URLs from a search engine, and then process-
ing them to find the 〈NounPhrase〉 bindings. Each stage
poses its own scalability and speed challenges. The first
stage makes a query to a commercial search engine; while
the number of available queries may be limited, a single
one executes relatively quickly. The second stage fetches
a large number of documents, each fetch likely resulting
in a random disk seek; this stage executes slowly. Nat-
urally, this disk access is slow regardless of whether it
happens on a locally-cached copy or on a remote doc-
ument server. The observation that the second stage is
slow, even if it is executed locally, is important because
it shows that merely operating a “private” search engine
does not solve the problem (see Section 2.1).

The Bindings Engine supports queries contain-
ing typed variables (such as NounPhrase) and
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string-processing functions (such as “head(X)” or
“ProperNoun(X)”) as well as standard query terms. BE
processes a variable by returning every possible string
in the corpus that has a matching type, and that can be
substituted for the variable and still satisfy the user’s
query. If there are multiple variables in a query, then all
of them must simultaneously have valid substitutions.
(So, for example, the query “<NounPhrase> is located
in <NounPhrase>” only returns strings when noun
phrases are found on both sides of “is located in”.) We
call a string that meets these requirements a binding for
the variable in question. These queries, and the bindings
they elicit, can usefully serve as part of an information
extraction system or other common NLP tasks (such as
gathering usage statistics). Figure 1 illustrates some of
the queries that BE can handle.

president Bush <Verb>

cities such as ProperNoun(Head(<NounPhrase>))
<NounPhrase> is the CEO of <NounPhrase>

Figure 1: Examples of queries that can be handled by
BE. Queries that include typed variables and string-
processing functions allow NLP tasks to be done ef-
ficiently without downloading the original document
during query processing.

BE’s novel neighborhood index enables it to process
these queries with O(k) random disk seeks and O(k) se-
rial disk reads, where k is the number of non-variable
terms in its query. As a result, BE can yield orders of
magnitude speedup as shown in the asymptotic analysis
later in this section. The neighborhood index is an aug-
mented inverted index structure. For each term in the cor-
pus, the index keeps a list of documents in which the term
appears and a list of positions where the term occurs, just
as in a standard inverted index (Baeza-Yates and Ribeiro-
Neto, 1999). In addition, the neighborhood index keeps
a list of left-hand and right-hand neighbors at each posi-
tion. These are adjacent text strings that satisfy a recog-
nizer for one of the target types, such as NounPhrase.

As with a standard inverted index, a term’s list is pro-
cessed from start to finish, and can be kept on disk as a
contiguous piece. The relevant string for a variable bind-
ing is included directly in the index, so there is no need
to fetch the source document (thus causing a disk seek).
Expensive processing such as part-of-speech tagging or
shallow syntactic parsing is performed only once, while
building the index, and is not needed at query time. It
is important to note that simply preprocessing the corpus
and placing the results in a database would not avoid disk
seeks, as we would still have to explicitly fetch these re-
sults. The run-time efficiency of the neighborhood index

Query Time Index Space
BE O(k) O(N)

Standard engine O(k + B) O(N)

Table 1: BE yields considerable savings in query time
over a standard search engine. k is the number of con-
crete terms in the query, B is the number of variable
bindings found in the corpus, and N is the number of
documents in the corpus. N and B are typically ex-
tremely large, while k is small.

comes from integrating the results of corpus processing
with the inverted index (which determines which of those
results are relevant).

The neighborhood index avoids the need to return to
the original corpus, but it can consume a large amount
of disk space, as parts of the corpus text are folded into
the index several times. To conserve space, we perform
simple dictionary-lookup compression of strings in the
index. The storage penalty will, of course, depend on the
exact number of different types added to the index. In our
experiments, we created a useful IE system with a small
number of types (including NounPhrase) and found that
the neighborhood index increased disk space only four
times that of a standard inverted index.

Asymptotic Analysis:
In our asymptotic analysis of BE’s behavior, we count

query time as a function of the number of random disk
seeks, since these seeks dominate all other processing
tasks. Index space is simply the number of bytes needed
to store the index (not including the corpus itself).

Table 1 shows that BE requires only O(k) random disk
seeks to process queries with an arbitrary number of vari-
ables whereas a standard engine takes O(k + B), where
k is the number of concrete query terms, and B is the
number of bindings found in a corpus of N documents.
Thus, BE’s performance is the same as that of a standard
search engine for queries containing only concrete terms.
For variabilized queries, N may be in the billions and B

will tend to grow with N . In our experiments, eliminating
the B term from our query processing time has resulted
in speedups of two to three orders of magnitude over a
standard search engine. The speedup is at the price of a
small constant multiplier to index size.

2.1 Discussion
While BE has some attractive properties for NLP compu-
tations, is it necessary? Could fast, large-scale informa-
tion extraction be achieved merely by operating a “pri-
vate” search engine?

The release of open-source search engines such as
Nutch2, coupled with the dropping price of CPUs and

2http://lucene.apache.org/nutch/
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Figure 2: Average time to return the relevant bindings
in response to a set of queries was 0.06 CPU minutes
for BE, compared to 8.16 CPU minutes for the com-
parable processing on Nutch. This is a 134-fold speed
up. The CPU resources, network, and index size were
the same for both systems.

disks, makes it feasible for NLP researchers to operate
their own large-scale search engines. For example, Tur-
ney operates a search engine with a terabyte-sized index
of Web pages, running on a local eight-machine Beowulf
cluster (Turney, 2004). Private search engines have two
advantages. First, there is no query quota or need for
“courtesy waits” between queries. Second, since the en-
gine is local, network latency is minimal.

However, to support IE, we must also execute the sec-
ond stage of the algorithm (see the beginning of this sec-
tion). In this stage, each document that matches a query
has to be retrieved from an arbitrary location on a disk.3

Thus, the number of random disk seeks scales linearly
with the number of documents retrieved. Moreover, many
NLP applications require the extraction of strings match-
ing particular syntactic or semantic types from each page.
The lack of linguistic data in the search engine’s index
means that many pages are fetched only to be discarded
as irrelevant.

To quantify the speedup due to BE, we compared it to a
standard search index built on the open-source Nutch en-
gine. All of our Nutch and BE experiments were carried
out on the same corpus of 60 million Web pages and were
run on a cluster of 23 dual-Xeon machines, each with two
local 140 Gb disks and 4 Gb of RAM. We set all config-
uration values to be exactly the same for both Nutch and
BE. BE gave a 134-fold speed up on average query pro-
cessing time when compared to the same queries with the
Nutch index, as shown in Figure 2.

3Moving the disk head to an arbitrary location on the disk
is a mechanical operation that takes about 5 milliseconds on
average.

3 The URNS Model
To realize the speedup from BE, KNOWITNOW must also
avoid issuing search engine queries to validate the cor-
rectness of each extraction, as required by PMI compu-
tation. We have developed a probabilistic model obviat-
ing search-engine queries for assessment. The intuition
behind this model is that correct instances of a class or
relation are likely to be extracted repeatedly, while ran-
dom errors by an IE system tend to have low frequency
for each distinct incorrect extraction.

Our probabilistic model, which we call URNS, takes the
form of a classic “balls-and-urns” model from combina-
torics. We think of IE abstractly as a generative process
that maps text to extractions. Each extraction is modeled
as a labeled ball in an urn. A label represents either an
instance of the target class or relation, or represents an
error. The information extraction process is modeled as
repeated draws from the urn, with replacement.

Formally, the parameters that characterize an urn are:

• C – the set of unique target labels; |C| is the number
of unique target labels in the urn.

• E – the set of unique error labels; |E| is the number
of unique error labels in the urn.

• num(b) – the function giving the number of balls
labeled by b where b ∈ C ∪ E. num(B) is the
multi-set giving the number of balls for each label
b ∈ B.

The goal of an IE system is to discern which of the
labels it extracts are in fact elements of C, based on re-
peated draws from the urn. Thus, the central question we
are investigating is: given that a particular label x was
extracted k times in a set of n draws from the urn, what
is the probability that x ∈ C? We can express the prob-
ability that an element extracted k of n times is of the
target relation as follows.

P (x ∈ C|x appears k times in n draws) =∑
r∈num(C)(

r
s
)k(1 − r

s
)n−k

∑
r′∈num(C∪E)(

r′

s
)k(1 − r′

s
)n−k

(1)

where s is the total number of balls in the urn, and the
sum is taken over possible repetition rates r.

A few numerical examples illustrate the behavior of
this equation. Let |C| = |E| = 2, 000 and assume
for simplicity that all labels are repeated on the same
number of balls (num(ci) = RC for all ci ∈ C, and
num(ei) = RE for all ei ∈ E). Assume that the ex-
traction rules have precision p = 0.9, which means that
RC = 9 × RE — target balls are nine times as common
in the urn as error balls. Now, for k = 3 and n = 10, 000
we have P (x ∈ C) = 93.0%. Thus, we see that a small
number of repetitions can yield high confidence in an ex-
traction. However, when the sample size increases so that
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n = 20, 000, and the other parameters are unchanged,
then P (x ∈ C) drops to 19.6%. On the other hand, if
C balls repeat much more frequently than E balls, say
RC = 90×RE (with |E| set to 20,000, so that p remains
unchanged), then P (x ∈ C) rises to 99.9%.

The above examples enable us to illustrate the advan-
tages of URNS over the noisy-or model used in previous
work. The noisy-or model assumes that each extraction is
an independent assertion that the extracted label is “true,”
an assertion that is correct a fraction p of the time. The
noisy-or model assigns the following probability to ex-
tractions:

Pnoisy−or(x ∈ C|x appears k times) = 1 − (1 − p)k

Therefore, the noisy-or model will assign the same
probability — 99.9% — in all three of the above exam-
ples, although this is only correct in the case for which
n = 10, 000 and RC = 90×RE . As the other two exam-
ples show, for different sample sizes or repetition rates,
the noisy-or model can be highly inaccurate. This is not
surprising given that the noisy-or model ignores the sam-
ple size and the repetition rates.

URNS uses an EM algorithm to estimate its parameters,
and currently the algorithm takes roughly three minutes
to terminate.4 Fortunately, we determined experimen-
tally that we can approximate URNS’s precision and recall
using a far simpler frequency-based assessment method.
This is true because good precision and recall merely re-
quire an appropriate ordering of the extractions for each
relation, and not accurate probabilities for each extrac-
tion. For unary relations, we use the simple approxima-
tion that items extracted more often are more likely to
be true, and order the extractions from most to least ex-
tracted. For binary relations like CapitalOf(X,y),
in which we extract several different candidate capitals y
for each known country X, we use a smoothed frequency
estimate to order the extractions. Let freq(R(X, y)) de-
note the number of times that the binary relation R(X, y)
is extracted; we define:

smoothed freq(R(X, y)) =
freq(R(X, y))

maxy′ freq(R(X, y′)) + 1

We found that sorting by smoothed frequency (in de-
scending order) performed better than simply sorting by
freq for relations R(X, y) in which different known X val-
ues may have widely varying Web presence.

Unlike URNS, our frequency-based assessment does
not yield accurate probabilities to associate with each ex-
traction, but for the purpose of returning a ranked list of
high-quality extractions it is comparable to URNS (see

4This code has not been optimized at all. We believe that
we can easily reduce its running time to less than a minute on
average, and perhaps substantially more.
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Figure 3: Country: KNOWITALL maintains some-
what higher precision than KNOWITNOW throughout
the recall-precision curve.

Figures 3 through 6), and it has the advantage of being
much faster. Thus, in the experiments reported on below,
we use frequency-based assessment as part of KNOWIT-
NOW.

4 Experimental Results
This section contrasts the performance of KNOWITNOW
and KNOWITALL experimentally. Before considering the
experiments in detail, we note that a key advantage of
KNOWITNOW is that it does not make any queries to Web
search engines. As a result, KNOWITNOW’s scale is not
limited by a query quota, though it is limited by the size
of its index.

We report on the following metrics:

• Recall: how many distinct extractions does each
system return at high precision?5

• Time: how long did each system take to produce
and rank its extractions?

• Extraction Rate: how many distinct high-quality
extractions does the system return per minute? The
extraction rate is simply recall divided by time.

We contrast KNOWITALL and KNOWITNOW’s preci-
sion/recall curves in Figures 3 through 6. We com-
pared KNOWITNOW with KNOWITALL on four rela-
tions: Corp, Country, CeoOf(Corp,Ceo), and
CapitalOf(Country,City). The unary relations
were chosen to examine the difference between a relation
with a small number of correct instances (Country) and
one with a large number of extractions (Corp). The bi-
nary relations were chosen to cover both functional rela-
tions (CapitalOf) and set-valued relations (CeoOf—
we treat former CEOs as correct instances of the relation).

5Since we cannot compute “true recall” for most relations
on the Web, the paper uses the term “recall” to refer to the size
of the set of facts extracted.
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Figure 4: CapitalOf: KNOWITNOW does nearly as
well as KNOWITALL, but has more difficulty than
KNOWITALL with sparse data for capitals of more ob-
scure countries.

For the two unary relations, both systems created ex-
traction rules from eight generic patterns. These are hy-
ponym patterns like “NP1 {,} such as NPList2” or ”NP2
{,} and other NP1”, which extract members of NPList2
or NP2 as instances of NP1. For the binary relations,
the systems instantiated rules from four generic patterns.
These are patterns for a generic “of” relation. They are
“NP1 , rel of NP2”, “NP1 the rel of NP2”, “rel of NP2
, NP1”, and “NP2 rel NP1”. When rel is instantiated for
CeoOf, these patterns become “NP1 , CEO of NP2” and
so forth.

Both KNOWITNOW and KNOWITALL merge extrac-
tions with slight variants in the name, such as those dif-
fering only in punctuation or whitespace, or in the pres-
ence or absence of a corporate designator. For binary
extractions, CEOs with the same last name and same
company were also merged. Both systems rely on the
OpenNlp maximum-entropy part-of-speech tagger and
chunker (Ratnaparkhi, 1996), but KNOWITALL applies
them to pages downloaded from the Web based on the re-
sults of Google queries, whereas KNOWITNOW applies
them once to crawled and indexed pages.6 Overall, each
of the above elements of KNOWITALL and KNOWIT-
NOW are the same to allow for controlled experiments.

Whereas KNOWITNOW runs a small number of vari-
abilized queries (one for each extraction pattern, for
each relation), KNOWITALL requires a stopping crite-
rion. Otherwise, KNOWITALL will continue to query
Google and download URLs found in its result pages over
many days and even weeks. We allowed a total of 6 days
of search time for KNOWITALL, allocating more search
for the relations that continued to be most productive. For
CeoOf KNOWITNOW returned all pairs of Corp,Ceo

6Our time measurements for KNOWITALL are not affected
by the tagging and chunking time because it is dominated
by time required to query Google, waiting a second between
queries.
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Figure 5: Corp: KNOWITALL’s PMI assessment main-
tains high precision. KNOWITNOW has low recall up
to precision 0.85, then catches up with KNOWITALL.

in its corpus; KNOWITALL searched for CEOs of a ran-
dom selection of 10% of the corporations it found, and
we projected the total extractions and search effort for all
corporations. For CapitalOf, both KNOWITNOW and
KNOWITALL looked for capitals of a set of 195 coun-
tries.

Table 2 shows the number of queries, search time, dis-
tinct correct extractions at precision 0.8, and extraction
rate for each relation. Search time for KNOWITNOW is
measured in seconds and search time for KNOWITALL
is measured in hours. The number of extractions per
minute counts the distinct correct extractions. Since we
limit KNOWITALL to one Google query per second, the
time for KNOWITALL is proportional to the number of
queries. KNOWITNOW’s extraction rate is from 275 to
4,707 times that of KNOWITALL at this level of preci-
sion.

While the number of distinct correct extractions from
KNOWITNOW at precision 0.8 is roughly comparable to
that of 6 days search effort from KNOWITALL, the sit-
uation is different at precision 0.9. KNOWITALL’s PMI
assessor is able to maintain higher precision than KNOW-
ITNOW’s frequency-based assessor. The number of cor-
rect corporations for KNOWITNOW drops from 23,128 at
precision 0.8 to 1,116 at precision 0.9. KNOWITALL is
able to identify 17,620 correct corporations at precision
0.9. Even with the drop in recall, KNOWITNOW’s ex-
traction rate is still 305 times higher than KNOWITALL’s.
The reason for KNOWITNOW’s difficulty at precision 0.9
is due to extraction errors that occur with high frequency,
particularly generic references to companies (“the Seller
is a corporation ...”, “corporations such as Banks”, etc.)
and truncation of certain company names by the extrac-
tion rules. The more expensive PMI-based assessment
was not fooled by these systematic extraction errors.

Figures 3 through 6 show the recall-precision curves
for KNOWITNOW with URNS assessment, KNOWIT-
NOW with the simpler frequency-based assessment, and
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Google Queries Time Extractions Extractions per minute
NOW ALL NOW (sec) ALL (hrs) NOW ALL NOW ALL ratio

Corp 0 (16) 201,878 42 56.1 23,128 23,617 33,040 7.02 4,707
Country 0 (16) 35,480 42 9.9 161 203 230 0.34 672
CeoOf 0 (6) 263,646 51 73.2 2,402 5,823 2,836 1.33 2,132
CapitalOf 0 (6) 17,216 55 4.8 169 192 184 0.67 275

Table 2: Comparison of KNOWITNOW with KNOWITALL for four relations, showing number of Google queries
(local BE queries in parentheses), search time, correct extractions at precision 0.8, and extraction rate (the
number of correct extractions at precision 0.8 per minute of search). Overall, KNOWITNOW took a total of
slightly over 3 minutes as compared to a total of 6 days of search for KNOWITALL.
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Figure 6: CeoOf: KNOWITNOW has difficulty dis-
tinguishing low frequency correct extractions from
noise. KNOWITALL is able to cope with the sparse
data more effectively.

KNOWITALL with PMI-based assessment. For each of
the four relations, PMI is able to maintain a higher pre-
cision than either frequency-based or URNS assessment.
URNS and frequency-based assessment give roughly the
same levels of precision.

For the relations with a small number of correct in-
stances, Country and CapitalOf, KNOWITNOW is
able to identify 70-80% as many instances as KNOW-
ITALL at precision 0.9. In contrast, Corp and CeoOf
have a huge number of correct instances and a long tail
of low frequency extractions that KNOWITNOW has dif-
ficulty distinguishing from noise. Over one fourth of
the corporations found by KNOWITALL had Google hit
counts less than 10,500, a sparseness problem that was
exacerbated by KNOWITNOW’s limited index size.

Figure 7 shows projected recall from larger KNOW-
ITNOW indices, fitting a sigmoid curve to the recall
from index size of 10M, 20M, up to 60M pages. The
curve was fitted using logistic regression, and is restricted
to asymptote at the level reported for Google-based
KNOWITALL for each relation. We report re-
call at precision 0.9 for capitals of 195 coun-
tries and CEOs of a random selection of the
top 5,000 corporations as ranked by PMI.
Recall is defined as the percent of countries with a
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Figure 7: Projections of recall (at precision 0.9) as a
function of KNOWITNOW index size. At 400 million
pages, KNOWITNOW’s recall rapidly approaches the
recall achieved by KNOWITALL using roughly 300,000
Google queries.

correct capital or the number of correct CEOs divided by
the number of corporations.

The curve for CeoOf is rising steeply enough that a
400 million page KNOWITNOW index may approach the
same level of recall yielded by KNOWITALL when it uses
300,000 Google queries. As shown in Table 2, KNOW-
ITALL takes slightly more than three days to generate
these results. KNOWITNOW would operate over a cor-
pus 6.7 times its current one, but the number of required
random disk seeks (and the asymptotic run time analy-
sis) would remain the same. We thus expect that with a
larger corpus we can construct a KNOWITNOW system
that reproduces KNOWITALL levels of precision and re-
call while still executing in the order of a few minutes.

5 Related Work
There has been very little work published on how to make
NLP computations such as PMI-IR and IE fast for large
corpora. Indeed, extraction rate is not a metric typically
used to evaluate IE systems, but we believe it is an im-
portant metric if IE is to scale.

Hobbs et al. point out the advantage of fast text
processing for rapid system development (Hobbs et al.,
1992). They could test each change to system parameters
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and domain-specific patterns on a large sample of docu-
ments, having moved from a system that took 36 hours to
process 100 documents to FASTUS, which took only 11
minutes. This allowed them to develop one of the highest
performing MUC-4 systems in only one month.

While there has been extensive work in the IR and
Web communities on improvements to the standard in-
verted index scheme, there has been little work on effi-
cient large-scale search to support natural language ap-
plications. One exception is Resnik’s Linguist’s Search
Engine (Elkiss and Resnik, 2004), a tool for searching
large corpora of parse trees. There is little published in-
formation about its indexing system, but the user man-
ual suggests its corpus is a combination of indexed sen-
tences and user-specific document collections driven by
the user’s AltaVista queries. In contrast, the BE system
has a single index, constructed just once, that serves all
queries. There is no published performance data avail-
able for Resnik’s system.

6 Conclusions and Future Directions
In previous work, statistical NLP computation over large
corpora has been a slow, offline process, as in KNOW-
ITALL (Etzioni et al., 2005) and also in PMI-IR appli-
cations such as sentiment classification (Turney, 2002).
Technology trends, and open source search engines such
as Nutch, have made it feasible to create “private” search
engines that index large collections of documents; but as
shown in Figure 2, firing large numbers of queries at pri-
vate search engines is still slow.

This paper described a novel and practical approach
towards substantially speeding up IE. We described
KNOWITNOW, which extracts thousands of facts in min-
utes instead of days. Furthermore, we sketched URNS,
a probabilistic model that both obviates the need for
search-engine queries and outputs more accurate prob-
abilities than PMI-IR. Finally, we introduced a simple,
efficient approximation to URNS, whose probability esti-
mates are not as good, but which has comparable preci-
sion/recall to URNS, making it an appropriate assessor for
KNOWITNOW.

The speed and massively improved extraction rate of
KNOWITNOW come at the cost of reduced recall. We
quantified this tradeoff in Table 2, and also argued that as
KNOWITNOW’s index size increases from 60 million to
400 million pages, KNOWITNOW would achieve in min-
utes the same precision/recall that takes KNOWITALL
days to obtain. Of course, a hybrid approach is possi-
ble where KNOWITNOW has, say, a 100 million page
index and, when necessary, augments its results with a
limited number of queries to Google. Investigating the
extraction-rate/recall tradeoff in such a hybrid system is
a natural next step.

While our experiments have used the Web corpus, our

approach transfers readily to other large corpora; exper-
imentation with other corpora is another topic for future
work. In conclusion, we believe that our techniques trans-
form IE from a slow, offline process to an online one.
They could open the door to a new class of interactive IE
applications, of which KNOWITNOW is merely the first.
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Abstract

In the past decade, several researchers
have started reinvestigating the use of
sub-phonetic models for lexical represen-
tations within automatic speech recogni-
tion systems. Lest history repeat itself,
it may be instructive to mine the further
past for models of lexical representations
in the lexical access literature. In this
work, we re-evaluate the model of Briscoe
(1989), in which a hybrid strategy of lex-
ical representation between phones and
manner classes is promoted. While many
of Briscoe’s assumptions do not match up
with current ASR processing models, we
show that his conclusions are essentially
correct, and that reconsidering this struc-
ture for ASR lexica is an appropriate av-
enue for future ASR research.

1 Introduction

Almost every state-of-the-art large vocabulary au-
tomatic speech recognition (ASR) system requires
the sharing of sub-word units in order to achieve
the desired vocabulary coverage. Traditionally,
these sub-word units are determined by the phones
or phonemes of a language (depending on desired
detail of representation). However, phonetic (or
phonemic) representation has its pitfalls (cf. (Os-
tendorf, 1999)). Among the problems cited in
the literature are that (1) segments are often dif-
ficult for machines to recognize from the acoustic
cues alone, because the acoustic cues to a particu-
lar phoneme are multi-faceted, and (2) the intended

words and phrases are not always recoverable even
from correctly recognized segments, because speak-
ers themselves will also fail to articulate words with
the dictionary-listed phonemes. The first of these
problems refers to thediscriminability of phonemes
within an inventory; the second to thereliability of
(actual) phone sequences mapping to the canonical
phonemic representations of words. This is partic-
ularly true in conversational speech (such as that
found in the Switchboard corpus), where pragmatic
context and conversational conventions assist human
comprehension (but not current ASR systems).

A common approach for handling pronunciation
variation is to introduce alternative entries into the
lexicon. However, phones that are perceived as non-
canonical (for example, when an /eh/ is heard as
an /ih/ by linguistic transcribers) often are closer
in acoustic space to the Gaussian means of the
canonical phones, rather than the perceived phones
(Saraçlar et al., 2000). This insight suggests that
acoustic models need to be cognizant of potential
pronunciation changes. Thus the lexical and acous-
tic models should work hand in hand.

Another way to model this type of pronunciation
variation is to find the commonalities that the canon-
ical and perceived phone share in terms of a sub-
phonetic representation. In the past decade, a signif-
icant community in acoustic-phonetic ASR research
has been turning to distinctive features (Jakobson et
al., 1952) for building ASR lexica. While an ex-
haustive description of these approaches is beyond
the scope of this paper, estimates of phonological
feature probabilities have been combined to obtain
phone probabilities (Kirchhoff, 1998), or incorpo-
rated into “feature bundles” that allow representa-
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tion of phonological processes (Finke et al., 1999).
More recent work has integrated phonological

features into graphical models (Livescu et al., 2003)
and landmark based systems (Juneja and Espy-
Wilson, 2004). The common thread among this
research is the notion that acoustic models should
be sensitive to sub-phonetic information. With this
trend in phonological representation research, it is
time to re-examine some older hypotheses about lex-
ical access and speech processing in order to gain
some insight in this current featural renaissance.

Sub-phonetic ASR research is also driven by the
fact that deviations from canonical pronunciation
and from correct perception of phones is far from
random; indeed, there have been a number of stud-
ies demonstrating that both of these variations have
defined, modelable trends. Deviations from canon-
ical pronunciation can be described by phonologi-
cal rules, and errors in perception also tend to con-
form to phonological patterns. By and large, con-
fusions occur (at least in humans) between phones
with phonological features in common (e.g., (Miller
and Nicely, 1955)). In particular, three features
(voicing, manner, and place) have been postulated as
relatively invariant (see e.g., (Stevens, 1981), quoted
in (Church, 1987)). It follows from this phonetic de-
tection based on the most reliable features may han-
dle highly variable speech more robustly than sys-
tems which demand full identity over all the features
for a given phone or phone sequence.

Consequently, a number of researchers have pre-
viously suggested using certain broad classes of seg-
ments, rather than full phonemic identification, for a
first pass on recognition. For instance, Shipman and
Zue (1982), working on large-vocabulary isolated
word recognition, used both two-way consonant-
vowel distinctions and a six-way distinction based
on manner in order to divide their 20,000-word dic-
tionary into “cohorts” or groups of words. They
found that this partial specification of segments re-
duced the search space of word candidates signifi-
cantly. Carlson et al. (1985) found similar results
for English and four other languages.

2 A suggested compromise: a hybrid
phone-manner representation

Briscoe (1989) extended this broad-class approach
to address the problem of lexical access on con-
nected speech. However, Briscoe argues against the

use of broad, manner-based classes at all times. He
argues that manner cues provide no particular ad-
vantage for stressed syllables, but that all cues are
sufficiently reliable in stressed syllables to justify
a full segmental analysis. Working with a 30,000-
word lexicon, Briscoe shows that the manner-based
broad classes for weak (reduced) syllables, together
with full identification of strong (unreduced) sylla-
bles constrained the set of possible candidates satis-
factorily. Unfortunately, he only provides results for
one sentence from his corpus.

This approach proposes to adjust the granularity
of recognition dynamically, depending on the stress
level of the current syllable. The details of how this
would be managed are left somewhat vague. As it
stands, it would seem to depend crucially on first de-
tecting the stress of each frame, so as to determine
which alphabet of symbols to apply to incoming in-
put. Alternatively, it could recognize the broad class
as a first pass, and then refine this into a full phone-
mic analysis for stressed syllables in a second pass,
at the cost of multiplying passes through the speech
data. It is not possible in this system to recover from
the miscategorization of stress.

One possible remedy is to bypass a hard decision
on stress and run both a manner-based broad-class
detector and a traditional phonemic system in paral-
lel. These then may be combined according to the
probability of lexical stress, such that those frames
judged less likely to be stressed weight the broad-
class analysis more heavily, and those judged more
likely to be stressed weight the narrow phonemic
analysis more heavily. Its advantage is that a full
phonemic analysis is recoverable for each frame and
phone, but those in weak syllables (and hence less
likely to be accurate) weigh in less heavily.

Briscoe’s analysis is in terms of lexical access ac-
tivations: taking a cue from the lexical access com-
munity, he assumes that any “partially activated”
word (e.g., “boat” and “both” being active after pro-
cessing “bo”) will contribute linearly to the process-
ing time in ASR. However, most large-vocabulary
ASR systems today use a tree-based lexicon where
common phonetic prefixes of words are processed
only once, thus invalidating this conjecture. Briscoe
experimented with several triggers for starting a new
word — at every phone, at the beginnings of sylla-
bles, at the beginnings of syllables with unreduced
vowels, and at the beginnings of word boundaries.
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Category Example (Vietnamese) Cohorts
# of Words 6247
Stress pattern only
(lower bound) 0001 84
Identify phones
in stressed syllables 0001:miy z 4709
+CV pattern of
unstressed syllables 0001:CV:VC:CV:miy z 5609
+manner pattern of
unstressed syllables 0001:FV:CS:NV:miy z 6076
Phonetic prons.
(upper bound) v iy . eh t . n aa . m iy z 6152

Table 1: Cohorts for varied lexical representations

However, the latter three require oracle information
as to where word or syllable boundaries can occur. A
more appropriate measure commensurate with cur-
rent ASR practice would be to only allow words to
start where a previous word hypothesis ends.

In the remainder of the paper, we seek to validate
(or invalidate) Briscoe’s claim that a hybrid phonetic
and feature model is appropriate for ASR process-
ing. In the 15 years since Briscoe’s paper, the ASR
community has developed large phonetically tran-
scribed corpora and more advanced computational
tools (such as the AT&T Finite-State Toolkit (Mohri
et al., 2001)) that we can apply to this problem.

3 Experiment 1: Effective Partitioning by
Manner-based Broad Classes

Our first experiment explores various types of broad
classes to determine the effects of these encodings
on cohort size within a sample 6,000 word dictio-
nary.1 Here we use the lexical stress-marked dictio-
nary provided with the TIMIT database (Garofolo
et al., 1993), which was syllabified using the NIST
Tsylb2 syllabifier (Fisher, 1996).

Rather than calculate cohort size directly, we cal-
culate the number of cohorts into which our dictio-
nary is partitioned, a measure which Carlson et al.
(1985) showed to correlate well with expected co-
hort size. (Note that this is an inverse correlation.)
This describes the staticdiscriminabilityof the lexi-
con: systems that have words with the same lexical
representation will not be able to discriminate be-
tween these two words acoustically and must rely on
the language model to discriminate between them.

1“Cohort size” is used here (as with Shipman and Zue
(1982)) to mean the number of distinct vocabulary items that
match a particular broad-class encoding. It is not intendedto
imply a particular theory of lexical access.

Before proceeding, it may useful to set upper and
lower bounds for this exercise (Table 1). An obvi-
ous upper bound is the full phonemic disambigua-
tion of every word. Of the 6247 words in the dictio-
nary, 6152 unique pronunciations are found (a few
cohorts consisting of sets of homophones). A con-
venient lower bound is the lexical stress pattern of
the word, devoid of any segmental information: e.g.,
“unidirectional” has its stress on the 4th of 6 sylla-
bles; hence, 000100 is its lexical-stress profile. 84
unique lexical-stress profiles exist in the dictionary.

Between these two bounds, three variant broad-
class partitions were explored for isolated word
recognition. All three use the lower-bound stress
profile as a starting place, combined with full phone-
mic information for the syllable with primary stress.
The first, with no additional segmental information,
produces 4709 distinct cohorts. The second adds a
consonant-vowel (CV) profile for the unstressed syl-
lables, which boosts the number of distinct cohorts
to 5609. The final partition replaces the CV pro-
file with a six-class manner-based broad-class par-
tition (Nasals, Stops, Fricatives, Glides, Liquids,
and Vowels). Including a manner-class representa-
tion for unstressed vowels increases the number of
cohorts to 6076, which is very close to the upper
bound. Thus, there is not much loss of lexical dis-
criminability when using this type of representation.

3.1 Caveats

Now, for this scheme to be maximally useful for
recognition, several conditions must obtain. First,
we have assumed that we can reliably detect lex-
ically stressed syllables within the speech signal.
Waibel (Waibel, 1988) has shown that stress cor-
relates with various acoustic cues such as spectral
change. As a side experiment, we have shown
that very basic methods provide encouraging re-
sults (only sketched here due to space constraints).
We re-annotated TIMIT with lexical stress mark-
ings, where all frames of each stressed syllable (in-
cluding onset and coda consonants, not just the nu-
cleus) were marked as stressed. A multi-layer per-
ceptron with 100 hidden units was trained to pre-
dict P (Stress|Acoustics) with a nine-frame context
window. No additional phonetic information be-
sides the binary label stressed/unstressed was used
in training. Frame-by-frame results on the TIMIT
test set were 75% accurate (chance: 52%), and when
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MLP output was greater than 0.9, a precision of 89%
was obtained (recall: 20%). While far from perfect,
this result strongly suggests that even very simple
methods can predict lexical stress fairly reasonably.

A second assumption in the above analysis was
that words occur in isolation. It is clear that in con-
nected speech, there are a larger number of poten-
tial lexical confusions. A third assumption is that
those features we are relying upon in our partitions
(namely, all features within stressed syllables, and
manner of articulation for unstressed syllables) are
perfectly reliable and discriminable. In the next two
sections, we relax these assumptions by applying ex-
tensions of this method to connected speech.

4 Experiment 2: What does a hybrid
representation buy you?

As Experiment 1 shows, the hybrid phone/feature
representation does not drastically decrease the dis-
criminability of the (albeit small) lexicon. It is also
possible that such a representation reduces pronun-
ciation variation, by allowing the canonical repre-
sentation to more closely match actual pronuncia-
tions. For example, we have demonstrated that for
common ASR corpora (Switchboard and TIMIT),
segments in unstressed syllables were much more
likely to deviate from their canonical lexical rep-
resentation (Fosler-Lussier et al., 1999). If phones
that deviate from canonical still keep the same man-
ner class, then a dictionary built with Briscoe-esque
representations should more closely match the ac-
tual pronunciations of words in running speech (as
transcribed by a phonetician).

4.1 Method

In order to test this theory, we used phonetic data
from (Fosler-Lussier et al., 1999) in which the
ICSI phonetic transcripts of the Switchboard corpus
(Greenberg et al., 1996; NIST, 1992) were aligned to
a syllabified version of the Pronlex dictionary (Lin-
guistic Data Consortium (LDC), 1996), which has
71014 entries for 66293 words. In this alignment,
for every canonical phone given by the lexicon, there
were zero or more corresponding realized phones.
From these data we extracted the canonical and real-
ized pronunciation of each word token, for a total of
38,527 tokens. Generally, high-frequency function
words show the most variation, so they may benefit
most from a manner-based representation.

Lexicon type Strict Matching
matching w/ deletion

1) Phonetic units 37.0% 50.1%
2) Manner-based function words 50.2% 69.6%
3) + Manner for unstressed syls 53.4% 74.6%
4) + Manner for secondary stress55.7% 77.9%
5) Manner for all syls 60.7% 85.2%

Table 2: Percent of words pronounced canonically
for phonetic and hybrid lexical representations

Given these word pronunciation data, we can ex-
amine how many word tokens have transcriptions
that match their dictionary-listed pronunciations,
given the broad-class mappings for various sets of
syllables. We built lexica and mapped phonetic tran-
scriptions according to five different criteria:

1. Every segment is phone based (no classes).
2. Function words use manner-based classes.
3. Unstressed syllables and function words use

manner only.
4. Secondary stressed syllables also use manner.

(Primary stressed syllables are phone based.)
5. Every segment uses manner-based classes.

We noted in the data (as others have done) that a
large proportion of the pronunciation variation was
due to phone deletion (29% of words) — which
would not be handled by the manner-based lexicon.
However, it is likely that not every phone deletion
leads to an ASR error (as attested by the fact that
state-of-the-art Switchboard ASR error rates are typ-
ically less than 29%). Often there is enough residual
phonetic evidence of the deleted phone, or enough
phonetic evidence in other parts of the word, to rec-
ognize a word correctly despite the deletion. Thus,
we decided to use a two-part strategy in calculating
canonical pronunciation (Table 2). The first column,
“strict matching”, allows no insertions or deletions
when comparing the canonical and realized pronun-
ciation. “Matching with deletion” reports the ideal
situation where phone deletions were perfectly re-
coverable in their canonical form. Including and ig-
noring deletions provides upper and lower bounds
on the true lexical access results. (Insertions are rel-
atively rare and not anticipated to affect the results
significantly, and hence are not examined.)

4.2 Results and Discussion

In Table 2, we see that a standard ASR lexicon ap-
proach (strict matching 1), does not match the tran-
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scribed data very well, with only 37% of words
pronounced according to the dictionary. The strict
matching hybrid scenario on line 3 most closely re-
sembles Briscoe’s experiment, and shows a marked
improvement in matching the dictionary and real-
ized pronunciations; comparing the two, we see that
using manner-based broad classes reduces mismatch
by 25% of the total error (from 63% error to 47%),
most of which comes from improved modeling of
function words (line 2). Whether this gain in repre-
sentation is worthwhile will depend of course on the
cost in terms of the increased hypothesis space.

By allowing for perfect deletion recovery (which
will of necessity entail another large expansion of
the hypothesis space), a somewhat more optimistic
is obtained. Comparing the “matching with dele-
tion” columns of lines 1 and 3, we see that a little
over half of the non-deletion pronunciation variation
is due to manner changes in unstressed syllables.
Again, a good chunk of this is in function words.
By moving to manner class for stressed syllables as
well would bring the hypothetical error from 25% to
15%, but at the cost of a huge explosion in the hy-
pothesis space (as Briscoe rightly points out and as
discussed in the next section).

One interesting implication of this data is that
over all types of segments (stressed and unstressed),
roughly three-quarters of word pronunciation vari-
ants differ from the canonical only in terms of
within-manner variation and phonetic deletion.

The moral of this story is that manner-based broad
classes may be a useful type of back off from truly
reduced and variable syllables (particularly func-
tion words), but the full benefit of such a maneuver
would only be realized after a reasonable solution
for recovering large-scale deletions is found. This
may come from predicting with increased specificity
where deletions are likely to occur (e.g., complex
codas), and what reduced realizations (e.g., of func-
tion words) are most common.

5 Experiment 3: What is the cost of a
hybrid representation?

Briscoe measured the cost of hybrid representation
in terms of the number of lexical activations that
a partially-completed word creates (see Section 2).
Yet Briscoe’s methodology has several shortcom-
ings when applied to today’s ASR technology; a
summary of the arguments presented above are: (1)

Tree-based lexica now share processing for words
with identical prefixes. (2) New words are acti-
vated only when other word hypotheses end. (3) We
now have a large amount of phonetically transcribed,
spontaneous speech. (4) Perfect stress detection is
not really achievable.

Given criticism 1, a better measure of potential
processing requirements is to generate a lattice of
hypothesized words and count the number of arcs in
the lattice. This lattice can be constructed in such
a way that criticism 2 is satisfied. In the next sec-
tion, we present a finite state machine formalism for
generating such a lattice.

We apply this technique to the phonetic transcrip-
tion of the Switchboard corpus (thus alleviating crit-
icism 3). However, this introduces several problems.
As Experiment 2 shows, many words have pronun-
ciations that do not appear in the dictionary. Thus,
we must find a way to alleviate the mismatch be-
tween the phonetic transcription and the dictionary
in a way that is plausible for ASR processing.

We can address criticism 4 by creating phone-
based and manner-based transcriptions that will run
in parallel; thus, the lattice generator would be
free to choose whichever representation allows the
matching to a dictionary word.

5.1 Method

In this experiment we consider a finite-state trans-
ducer model of the strategy described above. This
corresponds not to the ASR system as a whole, but
rather to the pronunciation model of a traditional
system. We assume that the pronunciation as given
by the transcriber is correct, but we model the trans-
formation of realized phones into canonical dictio-
nary pronunciations. Since we are only investigating
the combined acoustic-phonetic-lexical representa-
tion, we have left out the re-weighting and prun-
ing of hypotheses due to integration of a language
model, discourse model, or any other constraints.

Specifically, this model consists of three finite
state transducers composed. The first FSM,R,
encodes the representation of therealized phonetic
transcription of the spoken corpus. In order to match
this to dictionary pronunciations, we train a confu-
sion matrix on all realized/canonical phone pairs, to
obtain P (dictionary phone|transcribed phone);
these confusion probabilities are encoded as a finite
state transducerC. Thus,C is derived by computing
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the strength of all correspondences between the
phonetic transcription of what was actually said
at the phone level and the canonical pronuncia-
tion of the corresponding words. This confusion
matrix consists of three parts, corresponding to
substitutions, insertions, and deletions.

1. Pairwise substitutions are counted to yield a
standard confusion matrix.

2. Where two or more realized phones correspond
to a single canonical phone (a rare occurrence,
as in e.g.,really /r iy l iy/ → [r ih ax l iy]), each
realized phone is allowed (independently) to be
either deleted or substituted with its pairwise
confusions from (1).

3. Deleted phones are assumed to be potentially
recoverable (as in Experiment 2), so both an
epsilon transition and the canonical pronunci-
ation are preserved in the confusion matrix.

In each of these confusion matrices, we have al-
ways preserved the pathway from each realized ut-
terance to its canonical representation for the whole
corpus. So for this seen corpus, it is always possi-
ble in theory to recover the canonical representation,
such that the right answer is always one of the pos-
sible hypotheses. While this may seem a bit strange,
here we can only overestimate the potential hypoth-
esis space (by adding the correct string and by as-
suming that deletions are recoverable); the point of
this exercise is to see the number of total hypotheses
(the search space) generated under such a system.

The third transducer,D, is the ASR dictionary that
we wish to test. Thus, composingR◦C◦D will give
the graph of all potential complete hypotheses in this
space. Figure 1 shows a pruned hypothesis graph for
the phrase “it’s really sad” (the full hypothesis graph
has 12216 arcs).

5.2 Results and Discussion

By choosing different sub-word representations, we
can test Briscoe’s contention that backing off to
manner-based broad classes for certain (e.g., un-
stressed) syllables will reduce the search space
and/or facilitate recovery of the intended word
string. When a phone is substituted with a manner
class, we constructC so that the generated confu-
sions are over manner classes rather than phones.
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Figure 1: Pruned hypothesis graph forIt’s really sad

Figure 2 shows how the number of hypotheses per
word changes as a function of the number of words
in the hypothesis. Note that if the relationship were
linear, we would expect to see a flat line. The figure
demonstrates that that Briscoe’s conclusions were
correct, given the assumption that one can accu-
rately detect lexical stress (as illustrated by the line
with circles on 2). Across all utterances, the average
number of hypotheses per word for the hybrid dictio-
nary was 510 (roughly 1/3 of the phone-based aver-
age of 1429). However, when one allows for the fact
that stress detection is not perfect, one sees anin-
creasein the amount of necessary computation: the
non-ideal hybrid dictionary has an average of 3322
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hypotheses per word (2.3 times the phone-based av-
erage). Yet this is much lower than the potential
growth of the hypothesis space given with manner-
only dictionaries. This dictionary generated a hy-
pothesis space 12 times as large as a phone based
dictionary (17186 hypotheses/word average); more-
over, the curve grows significantly as a function of
the number of words, so longer utterances will take
disproportionately more space. Thus, Briscoe’s hy-
pothesis that purely manner-based decoding is too
expensive seems to be confirmed.

6 Integration into ASR

This paper has investigated hybrid representations
along computational phonology lines, but we have
also trained an ASR system with a hybrid lexicon for
the Wall Street Journal (WSJ0) corpus. Space does
not permit a full explanation of the experiment here
(for more details, see (Fosler-Lussier et al., 2005)),
but we include the results from this experiment as
evidence of the validity of the approach.

In this experiment, we trained phonetic and
manner-based acoustic models for all segments us-
ing the flat-start recipe of the HTK recognizer
(Young et al., 2002). After a number of itera-
tions of EM-training, we constructed a hybrid set of
acoustic models and lexicon in which phones in un-
stressed syllables were replaced with manner classes
(Hybrid-all). We also derived a lexicon in which the
recognizer could choose whether a manner or pho-
netic representation was appropriate for unstressed
segments (Hybrid-choice). During evaluation, we
found that the Hybrid-choice lexicon degraded only
slightly over a phone-based lexicon (9.9% word er-
ror vs. 9.1%), and in fact improved recognition
in mild (10dB SNR) additive car noise (13.0% vs.
15.4%). The Hybrid-all was worse on clean speech
(13.1% WER) but statistically the same as phone-
based on noisy speech (15.8%). While not conclu-
sive, this suggests that hybrid models may provide
an interesting avenue for robustness research.

7 Conclusion

Our studies verify to some degree Briscoe’s claim
that a hybrid representation for lexical modeling,
with stressed syllables receiving full phonetic rep-
resentation and unstressed syllables represented by
manner classes, can improve ASR processing. How-

ever, our analysis shows that the argument for this
hypothesis plays out along very different lines than
in Briscoe’s study. A hybrid phone-manner lexi-
con can theoretically benefit ASR because (a) the
discriminative power of the lexicon is not reduced
greatly, (b) such a representation is a much better
model of the types of pronunciation variation seen
in spontaneous speech corpora such as Switchboard,
and (c) the theoretical average hypothesis space in-
creases only by a little over a factor of 2. This
last fact is contrary to Briscoe’s finding that the
search space would be reduced because it incorpo-
rates more realistic assumptions about the detection
of stressed versus unstressed syllables.

These experiments were designed primarily to in-
vestigate the validity of Briscoe’s claims, and thus
we attempted to remain true to his model. However,
it is clear that our analysis can be extended in sev-
eral ways. We have begun experimenting with prun-
ing the hypothesis graph to remove unlikely arcs –
this would give a more accurate model of the ASR
processing that would occur. However, this only
makes sense if language model constraints are in-
tegrated into the processing, since some word se-
quences in the graph would be discarded as unlikely.
This analysis could also benefit from a more accu-
rate model of the ASR system’s transformation be-
tween realized phones and lexical representations.
This could be achieved by comparing the Gaussian
acoustic model distributions in an HMM system or
sampling the acoustic model’s space (McAllaster et
al., 1998). Both of these extensions will be consid-
ered in future work.

The results clearly indicate that further investiga-
tion and development of a hybrid lexical strategy in
an ASR system is worthwhile, particularly for spon-
taneous speech corpora where the problem of pro-
nunciation variation is most rampant.
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Abstract

In addition to information, text con-
tains attitudinal, and more specifically,
emotional content. This paper explores
the text-based emotion prediction prob-
lemempirically, using supervised machine
learning with the SNoW learning archi-
tecture. The goal is to classify the emo-
tional affinity of sentences in the narra-
tive domain of children’s fairy tales, for
subsequent usage in appropriate expres-
sive rendering of text-to-speech synthe-
sis. Initial experiments on a preliminary
data set of 22 fairy tales show encourag-
ing results over a naı̈ve baseline and BOW
approach for classification of emotional
versus non-emotional contents, with some
dependency on parameter tuning. We
also discuss results for a tripartite model
which covers emotional valence, as well
as feature set alternations. In addition, we
present plans for a more cognitively sound
sequential model, taking into considera-
tion a larger set of basic emotions.

1 Introduction

Text does not only communicate informative con-
tents, but also attitudinal information, including
emotional states. The following reports on an em-
pirical study oftext-based emotion prediction.

Section 2 gives a brief overview of the intended
application area, whereas section 3 summarizes re-
lated work. Next, section 4 explains the empirical

study, including the machine learning model, the
corpus, the feature set, parameter tuning, etc. Sec-
tion 5 presents experimental results from two classi-
fication tasks and feature set modifications. Section
6 describes the agenda for refining the model, before
presenting concluding remarks in 7.

2 Application area: Text-to-speech

Narrative text is often especially prone to having
emotional contents. In the literary genre of fairy
tales, emotions such asHAPPINESSandANGER and
related cognitive states, e.g.LOVE or HATE, become
integral parts of the story plot, and thus are of par-
ticular importance. Moreover, the story teller read-
ing the story interprets emotions in order to orally
convey the story in a fashion which makes the story
come alive and catches the listeners’ attention.

In speech, speakers effectively express emotions
by modifying prosody, including pitch, intensity,
and durational cues in the speech signal. Thus, in
order to make text-to-speech synthesis sound as nat-
ural and engaging as possible, it is important to con-
vey the emotional stance in the text. However, this
implies first having identified the appropriate emo-
tional meaning of the corresponding text passage.

Thus, an application for emotional text-to-speech
synthesis has to solve two basic problems. First,
what emotion or emotions most appropriately de-
scribe a certain text passage, and second, given a text
passage and a specified emotional mark-up, how to
render the prosodic contour in order to convey the
emotional content, (Cahn, 1990). Thetext-based
emotion predictiontask (TEP) addresses the first of
these two problems.
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3 Previous work

For a complete general overview of the field ofaf-
fective computing, see (Picard, 1997). (Liu, Lieber-
man and Selker, 2003) is a rare study in text-
based inference of sentence-level emotional affin-
ity. The authors adopt the notion ofbasic emotions,
cf. (Ekman, 1993), and use six emotion categories:
ANGER, DISGUST, FEAR, HAPPINESS, SADNESS,
SURPRISE. They critique statistical NLP for being
unsuccessful at the small sentence level, and instead
use a database of common-sense knowledge and cre-
ate affect models which are combined to form a rep-
resentation of the emotional affinity of a sentence.
At its core, the approach remains dependent on an
emotion lexicon and hand-crafted rules for concep-
tual polarity. In order to be effective, emotion recog-
nition must go beyond such resources; the authors
note themselves that lexical affinity is fragile. The
method was tested on 20 users’ preferences for an
email-client, based on user-composed text emails
describing short but colorful events. While the users
preferred the emotional client, this evaluation does
not reveal emotion classification accuracy, nor how
well the model generalizes on a large data set.

Whereas work on emotion classification from
the point of view of natural speech and human-
computer dialogues is fairly extensive, e.g. (Scherer,
2003), (Litman and Forbes-Riley, 2004), this ap-
pears not to be the case for text-to-speech synthe-
sis (TTS). A short study by (Sugimoto et al., 2004)
addresses sentence-level emotion recognition for
Japanese TTS. Their model uses a composition as-
sumption: the emotion of a sentence is a function of
the emotional affinity of the words in the sentence.
They obtain emotional judgements of 73 adjectives
and a set of sentences from 15 human subjects and
compute words’ emotional strength based on the ra-
tio of times a word or a sentence was judged to fall
into a particular emotion bucket, given the number
of human subjects. Additionally, they conducted an
interactive experiment concerning the acoustic ren-
dering of emotion, using manual tuning of prosodic
parameters for Japanese sentences. While the au-
thors actually address the two fundamental problems
of emotional TTS, their approach is impractical and
most likely cannot scale up for a real corpus. Again,
while lexical items with clear emotional meaning,

such ashappy or sad, matter, emotion classifica-
tion probably needs to consider additional inference
mechanisms. Moreover, a naı̈ve compositional ap-
proach to emotion recognition is risky due to simple
linguistic facts, such as context-dependent seman-
tics, domination of words with multiple meanings,
and emotional negation.

Many NLP problems address attitudinal mean-
ing distinctions in text, e.g. detectingsubjective
opinion documents or expressions, e.g. (Wiebe et
al, 2004), measuringstrengthof subjective clauses
(Wilson, Wiebe and Hwa, 2004), determining word
polarity (Hatzivassiloglou and McKeown, 1997) or
texts’ attitudinal valence, e.g. (Turney, 2002), (Bai,
Padman and Airoldi, 2004), (Beineke, Hastie and
Vaithyanathan, 2003), (Mullen and Collier, 2003),
(Pang and Lee, 2003). Here, it suffices to say that
the targets, the domain, and the intended application
differ; our goal is to classify emotional text passages
in children’s stories, and eventually use this infor-
mation for rendering expressive child-directed sto-
rytelling in a text-to-speech application. This can be
useful, e.g. in therapeutic education of children with
communication disorders (van Santen et al., 2003).

4 Empirical study

This part covers the experimental study with a for-
mal problem definition, computational implementa-
tion, data, features, and a note on parameter tuning.

4.1 Machine learning model

Determining emotion of a linguistic unit can be
cast as a multi-class classification problem. For
the flat case, letT denote the text, ands an em-
bedded linguistic unit, such as a sentence, where
s ∈ T . Let k be the number of emotion classesE =
{em1, em2, .., emk}, whereem1 denotes the special
case ofneutrality, or absence of emotion. The goal
is to determine a mapping functionf : s → emi,
such that we obtain an ordered labeled pair(s, emi).
The mapping is based onF = {f1, f2, .., fn}, where
F contains the features derived from the text.

Furthermore, if multiple emotion classes can
characterizes, then givenE’ ⊂ E, the target of the
mapping function becomes the ordered pair(s,E′).
Finally, as further discussed in section 6, the hier-
archical case of label assignment requires a sequen-
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tial model that further defines levels of coarse ver-
sus fine-grained classifiers, as done by (Li and Roth,
2002) for thequestion classificationproblem.

4.2 Implementation

Whereas our goal is to predict finer emotional mean-
ing distinctions according to emotional categories in
speech; in this study, we focus on the basic task of
recognizing emotional passages and on determining
their valence (i.e. positive versus negative) because
we currently do not have enough training data to ex-
plore finer-grained distinctions. The goal here is to
get a good understanding of the nature of the TEP
problem and explore features which may be useful.

We explore two cases of flat classification, us-
ing a variation of the Winnow update rule imple-
mented in the SNoW learning architecture (Carl-
son et al., 1999),1 which learns a linear classifier
in feature space, and has been successful in sev-
eral NLP applications, e.g. semantic role labeling
(Koomen, Punyakanok, Roth and Yih, 2005). In
the first case, the set of emotion classes E consists
of EMOTIONAL versus non-emotional orNEUTRAL,
i.e. E = {N,E}. In the second case, E has been
incremented with emotional distinctions according
to the valence, i.e.E = {N, PE, NE}. Experi-
ments used 10-fold cross-validation, with 90% train
and 10% test data.2

4.3 Data

The goal of our current data annotation project is
to annotate a corpus of approximately 185 children
stories, including Grimms’, H.C. Andersen’s and B.
Potter’s stories. So far, the annotation process pro-
ceeds as follows: annotators work in pairs on the
same stories. They have been trained separately and
work independently in order to avoid any annota-
tion bias and get a true understanding of the task
difficulty. Each annotator marks the sentence level
with one of eightprimary emotions, see table 1, re-
flecting an extended set ofbasic emotions(Ekman,
1993). In order to make the annotation process more
focused, emotion is annotated from the point of view
of the text, i.e. thefeeler in the sentence. While the
primary emotions are targets, the sentences are also

1Available from http://l2r.cs.uiuc.edu/∼cogcomp/
2Experiments were also run for Perceptron, however the re-

sults are not included. Overall, Perceptron performed worse.

marked for other affective contents, i.e. background
mood, secondaryemotions viaintensity, feeler, and
textualcues. Disagreements in annotations are re-
solved by a second pass of tie-breaking by the first
author, who chooses one of the competing labels.
Eventually, the completed annotations will be made
available.

Table 1: Basic emotions used in annotation
Abbreviation Emotion class
A ANGRY

D DISGUSTED

F FEARFUL

H HAPPY

Sa SAD

Su+ POSITIVELY SURPRISED

Su- NEGATIVELY SURPRISED

Emotion annotation is hard; interannotator agree-
ment currently range atκ = .24 − .51, with the ra-
tio of observed annotation overlap ranging between
45-64%, depending on annotator pair and stories as-
signed. This is expected, given the subjective nature
of the annotation task. The lack of a clear defini-
tion for emotion vs. non-emotion is acknowledged
across the emotion literature, and contributes to dy-
namic and shifting annotation targets. Indeed, a
common source of confusion isNEUTRAL, i.e. de-
ciding whether or not a sentence is emotional or
non-emotional. Emotion perception also depends on
which character’s point-of-view the annotator takes,
and on extratextual factors such as annotator’s per-
sonality or mood. It is possible that by focusing
more on the training of annotator pairs, particularly
on joint training, agreement might improve. How-
ever, that would also result in a bias, which is prob-
ably not preferable to actual perception. Moreover,
what agreement levels are needed for successful ex-
pressive TTS remains an empirical question.

The current data set consisted of a preliminary an-
notated and tie-broken data set of 1580 sentence, or
22 Grimms’ tales. The label distribution is in table
2. NEUTRAL was most frequent with 59.94%.

Table 2: Percent of annotated labels
A D F H
12.34% 0.89% 7.03% 6.77%
N SA SU+ SU.-
59.94% 7.34% 2.59% 3.10%
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Table 3: %EMOTIONAL vs. NEUTRAL examples
E N
40.06% 59.94%

Table 4: %POSITIVE vs. NEGATIVE vs. NEUTRAL
PE NE N
9.87% 30.19% 59.94%

Next, for the purpose of this study, all emotional
classes, i.e.A, D, F, H, SA , SU+, SU-, were com-
bined into one emotional superclassE for the first
experiment, as shown in table 3. For the second ex-
periment, we used two emotional classes, i.e. pos-
itive versus negative emotions;PE={H, SU+} and
NE={A, D, F, SA , SU-}, as seen in table 4.

4.4 Feature set

The feature extraction was written in python. SNoW
only requires active features as input, which resulted
in a typical feature vector size of around 30 features.
The features are listed below. They were imple-
mented as boolean values, with continuous values
represented by ranges. The ranges generally over-
lapped, in order to get more generalization coverage.

1. First sentence in story

2. Conjunctions of selected features (see below)

3. Direct speech (i.e. whole quote) in sentence

4. Thematic story type (3 top and 15 sub-types)

5. Special punctuation (! and ?)

6. Complete upper-case word

7. Sentence length in words (0-1, 2-3, 4-8, 9-15,
16-25, 26-35,>35)

8. Ranges of story progress (5-100%, 15-100%,
80-100%, 90-100%)

9. Percent of JJ, N, V, RB (0%, 1-100%, 50-
100%, 80-100%)

10. V count in sentence, excluding participles (0-1,
0-3, 0-5, 0-7, 0-9,> 9)

11. Positive and negative word counts (≥ 1, ≥ 2,
≥ 3,≥ 4,≥ 5,≥ 6)

12. WordNet emotion words

13. Interjections and affective words

14. Content BOW: N, V, JJ, RB words by POS

Feature conjunctions covered pairings of counts of
positive and negative words with range of story
progress or interjections, respectively.

Feature groups 1, 3, 5, 6, 7, 8, 9, 10 and 14 are ex-
tracted automatically from the sentences in the sto-
ries; with the SNoW POS-tagger used for features
9, 10, and 14. Group 10 reflects how many verbs
are active in a sentence. Together with the quotation
and punctuation, verb domination intends to capture
the assumption that emotion is often accompanied
by increased action and interaction. Feature group
4 is based on Finish scholar Antti Aarne’s classes
of folk-tale types according to their informative the-
matic contents (Aarne, 1964). The current tales
have 3 top story types (ANIMAL TALES , ORDINARY

FOLK-TALES, and JOKES AND ANECDOTES), and
15 subtypes (e.g.supernatural helpersis a subtype
of theORDINARY FOLK-TALE). This feature intends
to provide an idea about the story’s general affective
personality(Picard, 1997), whereas the feature re-
flecting the story progress is hoped to capture that
some emotions may be more prevalent in certain
sections of the story (e.g. the happy end).

For semantic tasks, words are obviously impor-
tant. In addition to considering ‘content words’, we
also explored specific word lists. Group 11 uses
2 lists of 1636 positive and 2008 negative words,
obtained from (Di Cicco et al., online). Group 12
uses lexical lists extracted from WordNet (Fellbaum,
1998), on the basis of the primary emotion words
in their adjectival and nominal forms. For the ad-
jectives, Py-WordNet’s (Steele et al., 2004) SIMI-
LAR feature was used to retrieve similar items of
the primary emotion adjectives, exploring one addi-
tional level in the hierarchy (i.e. similar items of all
senses of all words in the synset). For the nouns and
any identical verbal homonyms, synonyms and hy-
ponyms were extracted manually.3 Feature group 13
used a short list of 22 interjections collected manu-
ally by browsing educational ESL sites, whereas the
affective word list of 771 words consisted of a com-
bination of the non-neutral words from (Johnson-
Laird and Oatley, 1989) and (Siegle, online). Only a
subset of these lexical lists actually occurred.4

3Multi-words were transformed to hyphenated form.
4At this point, neither stems and bigrams nor a list of ono-

matopoeic words contribute to accuracy. Intermediate resource
processing inserted some feature noise.
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The above feature set is henceforth referred to as
all features, whereascontent BOWis just group 14.
Thecontent BOWis a more interesting baseline than
the näıve one,P(Neutral), i.e. always assigning the
most likely NEUTRAL category. Lastly, emotions
blend and transform (Liu, Lieberman and Selker,
2003). Thus, emotion and background mood of im-
mediately adjacent sentences, i.e. thesequencing,
seems important. At this point, it is not implemented
automatically. Instead, it was extracted from the
manual emotion and mood annotations. Ifsequenc-
ing seemed important, an automatic method using
sequential target activation could be added next.

4.5 Parameter tuning

The Winnow parameters that were tuned included
promotionalα, demotionalβ, activation threshold
θ, initial weightsω, and the regularization parame-
ter,S, which implements a margin between positive
and negative examples. Given the currently fairly
limited data, results from 2 alternative tuning meth-
ods, applied toall features, are reported.

• For the condition calledsep-tune-eval, 50%
of the sentences were randomly selected and
set aside to be used for the parameter tuning
process only. Of this subset, 10% were subse-
quently randomly chosen as test set with the re-
maining 90% used for training during the auto-
matic tuning process, which covered 4356 dif-
ferent parameter combinations. Resulting pa-
rameters were:α = 1.1, β = 0.5, θ = 5,
ω = 1.0, S = 0.5. The remaining half of
the data was used for training and testing in the
10-fold cross-validation evaluation. (Also, note
the slight change forP(Neutral)in table 5, due
to randomly splitting the data.)

• Given that the data set is currently small, for the
condition namedsame-tune-eval, tuning was
performed automatically on all data using a
slightly smaller set of combinations, and then
manually adjusted against the 10-fold cross-
validation process. Resulting parameters were:
α = 1.2, β = 0.9, θ = 4, ω = 1, S = 0.5. All
data was used for evaluation.

Emotion classification was sensitive to the selected
tuning data. Generally, a smaller tuning set resulted

in pejorative parameter settings. The random selec-
tion could make a difference, but was not explored.

5 Results and discussion

This section first presents the results from exper-
iments with the two different confusion sets de-
scribed above, as well as feature experimentation.

5.1 Classification results

Average accuracy from 10-fold cross validation for
the first experiment, i.e. classifying sentences as ei-
ther NEUTRAL or EMOTIONAL, are included in ta-
ble 5 and figure 1 for the two tuning conditions on
the main feature sets and baselines. As expected,

Table 5:Mean classification accuracy: N vs. E, 2 conditions

same-tune-eval sep-tune-eval

P(Neutral) 59.94 60.05

Content BOW 61.01 58.30

All features except BOW 64.68 63.45

All features 68.99 63.31

All features + sequencing 69.37 62.94

degree of success reflects parameter settings, both
for content BOWandall features. Nevertheless, un-
der these circumstances, performance above a naı̈ve
baseline and a BOW approach is obtained. More-
over, sequencingshows potential for contributing
in one case. However, observations also point to
three issues: first, the current data set appears to
be too small. Second, the data is not easily separa-
ble. This comes as no surprise, given the subjective
nature of the task, and the rather low interannota-
tor agreement, reported above. Moreover, despite
the schematic narrative plots of children’s stories,
tales still differ in their overall affective orientation,
which increases data complexity. Third and finally,
the EMOTION class is combined by basic emotion
labels, rather than an original annotated label.

More detailed averaged results from 10-fold
cross-validation are included in table 6 usingall
featuresand the separated tuning and evaluation
data conditionsep-tune-eval. With these parame-
ters, approximately 3% improvement in accuracy
over the näıve baselineP(Neutral) was recorded,
and 5% over thecontent BOW, which obviously did
poorly with these parameters. Moreover, precision is

583



0 10 20 30 40 50 60 70

same-tune-eval

sep-tune-eval

Tuning sets

% Accuracy

P(Neutral) Content BOW

All features except BOW All features

All features + sequencing

Figure 1: Accuracy under different conditions (in %)

Table 6:Classifying N vs. E (all features, sep-tune-eval)

Measure N E
Averaged accuracy 0.63 0.63

Averaged error 0.37 0.37

Averaged precision 0.66 0.56

Averaged recall 0.75 0.42

Averaged F-score 0.70 0.47

higher than recall for the combinedEMOTION class.
In comparison, with thesame-tune-evalprocedure,
the accuracy improved by approximately 9% over
P(Neutral)and by 8% overcontent BOW.

In the second experiment, the emotion category
was split into two classes: emotions with positive
versus negative valence. The results in terms of pre-
cision, recall, and F-score are included in table 7, us-
ing all featuresand thesep-tune-evalcondition. The
decrease in performance for the emotion classes mir-
rors the smaller amounts of data available for each
class. As noted in section 4.3, only 9.87% of the
sentences were annotated with a positive emotion,
and the results for this class are worse. Thus, perfor-
mance seems likely to improve as more annotated
story data becomes available; at this point, we are
experimenting with merely around 12% of the total
texts targeted by the data annotation project.

5.2 Feature experiments

Emotions are poorly understood, and it is espe-
cially unclear which features may be important for
their recognition from text. Thus, we experimented

Table 7:N, PE, and NE (all features, sep-tune-eval)

N NE PE
Averaged precision 0.64 0.45 0.13

Averaged recall 0.75 0.27 0.19

Averaged F-score 0.69 0.32 0.13

Table 8: Feature group members
Word lists interj., WordNet, affective lists, pos/neg

Syntactic length ranges, % POS, V-count ranges

Story-related % story-progress, 1st sent., story type

Orthographic punctuation, upper-case words, quote

Conjunctions Conjunctions with pos/neg

Content BOW Words (N,V,Adj, Adv)

with different feature configurations. Starting with
all features, again using 10-fold cross-validation for
the separated tuning-evaluation conditionsep-tune-
eval, one additional feature group was removed un-
til none remained. The feature groups are listed in
table 8. Figure 2 on the next page shows the accu-
racy at each step of the cumulative subtraction pro-
cess. While some feature groups, e.g. syntactic, ap-
peared less important, the removal order mattered;
e.g. if syntactic features were removed first, accu-
racy decreased. This fact also illustrated that fea-
tures work together; removing any group degraded
performance because features interact and there is
no true independence. It was observed that fea-
tures’ contributions were sensitive to parameter tun-
ing. Clearly, further work on developing features
which fit the TEP problem is needed.

6 Refining the model

This was a “first pass” of addressing TEP for TTS.
At this point, the annotation project is still on-going,
and we only had a fairly small data set to draw on.
Nevertheless, results indicate that our learning ap-
proach benefits emotion recognition. For example,
the following instances, also labeled with the same
valence by both annotators, were correctly classified
both in the binary (N vs. E) and the tripartite polar-
ity task (N, NE, PE), given the separated tuning and
evaluation data condition, and usingall features:
(1a) E/NE: Then he offered the dwarfs money, and prayed and

besought them to let him take her away; but they said, ”We will

not part with her for all the gold in the world.”

584



Cumulative removal of feature groups

61.81

63.31

62.57

57.95

58.30

58.93

59.56

55

60

65

All features

- W
ord lists

- Syntactic

- Story-related

- Orthographic

- Conjunctions

- Content words

%
 A

c
c
u

ra
c
y

All features P(Neutral) BOW

Figure 2: Averaged effect of feature group removal, usingsep-tune-eval

(1b) N: And so the little girl really did grow up; her skin was as

white as snow, her cheeks as rosy as the blood, and her hair as

black as ebony; and she was called Snowdrop.

(2a) E/NE: “Ah,” she answered, “have I not reason to weep?

(2b) N: Nevertheless, he wished to try him first, and took a stone

in his hand and squeezed it together so that water dropped out

of it.

Cases (1a) and (1b) are from the well-knownFOLK

TALE Snowdrop, also calledSnow White. (1a)
and (1b) are also correctly classified by the sim-
ple content BOWapproach, although our approach
has higher prediction confidence for E/NE (1a); it
also considers, e.g. direct speech, a fairly high verb
count, advanced story progress, connotative words
and conjunctions thereof with story progress fea-
tures, all of which the BOW misses. In addition, the
simplecontent BOWapproach makes incorrect pre-
dictions at both the bipartite and tripartite levels for
examples (2a) and (2b) from theJOKES AND ANEC-
DOTES storiesClever Hansand The Valiant Little
Tailor, while our classifier captures the affective dif-
ferences by considering, e.g. distinctions in verb
count, interjection, POS, sentence length, connota-
tions, story subtype, and conjunctions.

Next, we intend to use a larger data set to conduct
a more complete study to establish mature findings.

We also plan to explore finer emotional meaning dis-
tinctions, by using a hierarchical sequential model
which better corresponds to different levels of cog-
nitive difficulty in emotional categorization by hu-
mans, and to classify the full set of basic level emo-
tional categories discussed in section 4.3. Sequential
modeling of simple classifiers has been successfully
employed to question classification, for example by
(Li and Roth, 2002). In addition, we are working
on refining and improving the feature set, and given
more data, tuning can be improved on a sufficiently
large development set. The three subcorpora in the
annotation project can reveal how authorship affects
emotion perception and classification.

Moreover, arousal appears to be an important
dimension for emotional prosody (Scherer, 2003),
especially in storytelling (Alm and Sproat, 2005).
Thus, we are planning on exploring degrees of emo-
tional intensity in a learning scenario, i.e. a prob-
lem similar to measuring strength of opinion clauses
(Wilson, Wiebe and Hwa, 2004).

Finally, emotions are not discrete objects; rather
they have transitional nature, and blend and overlap
along the temporal dimension. For example, (Liu,
Lieberman and Selker, 2003) include parallel esti-
mations of emotional activity, and include smooth-
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ing techniques such as interpolation and decay to
capture sequential and interactive emotional activity.
Observations from tales indicate that some emotions
are more likely to be prolonged than others.

7 Conclusion

This paper has discussed an empirical study of the
text-based emotion predictionproblem in the do-
main of children’s fairy tales, with child-directed ex-
pressive text-to-speech synthesis as goal. Besides
reporting on encouraging results in a first set of com-
putational experiments using supervised machine
learning, we have set forth a research agenda for
tackling the TEP problem more comprehensively.
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Abstract

This paper studies how to go beyond relevance
and enable a filtering system to learn more in-
teresting and detailed data driven user models
from multiple forms of evidence. We carry out
a user study using a real time web based per-
sonal news filtering system, and collect exten-
sive multiple forms of evidence, including ex-
plicit and implicit user feedback. We explore
the graphical modeling approach to combine
these forms of evidence. To test whether the ap-
proach can help us understand the domain bet-
ter, we use graph structure learning algorithm
to derive the causal relationships between dif-
ferent forms of evidence. To test whether the
approach can help the system improve the per-
formance, we use the graphical inference algo-
rithms to predict whether a user likes a docu-
ment based on multiple forms of evidence. The
results show that combining multiple forms
of evidence using graphical models can help
us better understand the filtering problem, im-
prove filtering system performance, and handle
various data missing situations naturally.

1 Introduction

An adaptive personal information filtering system is an
autonomous agent that delivers information to the user in
a dynamic environment over a period of time. A com-
mon filtering approach is adapting existing text classi-
fication/retrieval algorithms to classify incoming docu-
ments as either relevant or non relevant using user pro-
files learned from explicit user feedback on documents
the user has seen. However, there are other important
criteria for the user besides relevance, such as readabil-
ity (Collins-Thompson and Callan, 2004), novelty (Har-
man, 2003), and authority (Kleinberg, 1998). Besides,
much information about the user and the document can
be collected by a filtering system. These suggest a way to
improve the current filtering system: going beyond rele-
vance and using multiple forms of evidence.

∗This research was done while at the Language Technolo-
gies Institute, Carnegie Mellon University.

Unfortunately, there is no standard evaluation data set
for this research, and there is not much work on finding
a good theory to combine various forms of evidence. To
solve the first problem, we designed a user study and col-
lect thousands of cases with multiple forms of evidence,
including the content of a document, explicit and im-
plicit user feedback, such as a user’s mouse usage, key
board usage, document length, novelty, relevance, read-
ability, authority, user profile characteristics, news source
information, and whether a user likes a document or not.
Solving the second problem is very challenging. A good
model should have the representation power to combine
multiple forms of evidence; it should be able to help us
understand the relationships between various forms of ev-
idence; it should use the evidence to improve filtering
system performance; and it should handle various prob-
lems like missing data in an operational environment ro-
bustly.

On the other hand, researchers have identified three
major advantages of graphical modeling approach: 1) it
provides inference tools to naturally handle situations of
missing data entry because of the conditional dependen-
cies encoded in the graph structure; 2) it can learn causal
relationships in the domain, thus help us to understand
the problem and to predict the consequences of interven-
tion; and 3) it can easily combine prior knowledge (such
as partial information about the causal relationship) with
data in this framework. This approach has been applied
to model computer software users (Horvitz et al., 1998),
car drivers (Pynadath and Wellman, 1995), and students
(Conati et al., 1997). Motivated by the prior work, we
choose to use graphical models as our solution. To under-
stand relationships between various forms of evidence,
we use the causal graph structure learning algorithms (ad-
vantage 2), together with some prior knowledge of the
domain (advantage 3), to derive the causal relationships
between different user feedback, actions and user con-
text. To improve the existing filtering system, especially
in the situation of missing data, we use statistical infer-
ence tools to predict how a user will like a document,
using information available in different missing evidence
situations (advantage 1). We also try linear regression as
an alternative approach.

The following sections describe our efforts towards
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Figure 1: The user study system structure. The structured
information, such as user feedback and crawler statistics,
are kept in the database. The content of each web page
crawled is saved in the news repository.

collecting data and customizing the graphical modeling
approach to combine multiple forms of evidence for fil-
tering. We begin with a description of the user study in
Section 2, followed by some preliminary data analysis
on the data collected in Section 3. Section 4 explores
causal structure learning algorithm to understand the re-
lationships between various forms of evidence from the
data and Section 5 explores how to improve the system
performance using multiple forms of evidence. Section
6 discusses related work and how this work differs from
existing work, and Section 7 concludes.

2 User Study

No existing filtering database contains the level of detail
that we needed for our study, so we developed a web
based news story filtering system to collect an evalua-
tion data set (Figure 1). This system constantly gathers
and recommends information to the users. The system
includes a crawler with 8000 candidate RSS news feeds
(Pilgrim, 2002) to crawl every day. The Lemur indexer
indexes the crawled document stream incrementally, and
an adaptive filtering system recommends documents to
the users using a modified logistic regression algorithm
(Zhang, 2004). Users read and evaluate what the system
has delivered to them. An example of the web interface
after user login is in Figure 2.

More than 20 paid subjects from 19 different programs
at Carnegie Mellon University, who are otherwise not af-
filiated with our research, participated in the study for 4
weeks. We expected to collect enough data for evalua-
tion over this period of time. The subjects were required
to read the news for about 1 hour per day and provide
explicit feedback for each page they visited.1 28 users

1In the last week of the study, some subjects read 2 hours
per day. They are encouraged but not required to do so.

Figure 2: Web interface after a user logged in.

Figure 3: Evaluation user interface. The interface for user
to give their explicit feedback of the current news story.

tried this system. However, only 21 users are official paid
subjects, among which one worked only for 2 weeks and
20 worked for about 4 weeks.

2.1 Data collected

We have collected 7881 feedback entries from all 28
users, among which 7839 were from the 21 official par-
ticipants. Each entry contains several different forms of
evidence for a news story a user clicked.2 Our intention
to collect the evidence is not to be exhaustive, but repre-
sentative. The evidence can be roughly classified into the
following five categories listed in Tables 1 to 5.3

Explicit user feedback After finishing reading a news
story, a user clicks a button on the toolbar of the
browser to bring up an evaluation interface shown in
Figure 3. Through this interface, the user provided
the explicit feedback to tell the hidden properties
about current story, including the topics the news
belongs to (classes), how the user likes this news

2Each entry is for a<document, user class, time> tuple.
3The forms of evidence are listed in the first column and we

will get the the other columns later in Section 3.
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(user likes), how relevant the news is related to the
class(es) (relevant), how novel the news is (novel),
whether the news matches the readability level of
the user (readable), and whether the news is au-
thoritative (authoritative). user likes, relevant
andnovel are recorded as integers ranging from 1
(least) to 5 (most).readable andauthoritative are
recorded as 0 or 1. A user has the option to provide
partial instead of all explicit feedback. A user can
create new classes, and choose multiple classes for
one documents.

User actions The browser adapted from (Claypool et al.,
2001) recorded some user actions, such as mouse ac-
tivities, scroll bar activities, and keyboard activities
(Table 2). TimeOnPage is the number of seconds the
user spent on a page, and EventOnScroll is the num-
ber of clicks on the scroll bars. When the mouse
is out of the browser window or when the browser
window is not focused, the browser does not capture
any activities. More details about the actions are in
(Le and Waseda, 2000).

Topic information Each participant filled out an exit
questionnaire and answered several topic/class4 spe-
cific questions for each of his/her most popular 10
topics and other topics with more than 20 evalu-
ated documents each (Table 3). The questions in-
clude how familiar the user is with the topic be-
fore the study (topic familiar before), how the user
likes this topic (topic like), and how confident the
user is with respect to the answers he/she provided
(topic confidence). We include this information
as evidence, because they may be collected when
a topic is created and used by filtering systems.
Whether collecting them in exit questionnaire af-
fects the answers needs further investigation.

News Source Information For each news source (RSS
feed), we collected the number of web pages that
link to it (RSSlink), the number of pages that link to
the server that provided it (host link), and the speed
of the server that hosts it.

Content based evidenceThree pieces of evidence are
collected to represent the content of each document:
the relevance score, the readability score and the
number of words in the document (doc len) (Table
5). To estimate the relevance score of a document,
the system processes all the documents a user put
into a class ordered by the feedback time and adap-
tively learns a topic specific relevance model using
the relevance feedback the user provided. The rel-
evance score of a documents is estimated using a

4“topic” and “class” are used interchangeably in the paper.

Table 1: Basic descriptive statistics about explicit feed-
backs.

Variable Mean variance corr miss
user likes 3.5 1.2 1 0.05
relevant 3.5 1.3 0.73 0.005
novel 3.6 1.33 0.70 0.008

authoritative 0.88 0.32 0.50 0.065
readable 0.90 0.30 0.54 0.012

modified logistic regression model learned from all
feedback before it (Zhang, 2004). To estimate the
readability score of document, the system processes
all the documents in all users’ classes ordered by the
feedback time and adaptively learns a user indepen-
dent readability model using a logistic regression al-
gorithm.

3 Preliminary data analysis

The means and variances of all variables are in Tables 1 to
5. These basic descriptive statistics are very diverse. The
values of some evidence may be missing; only the user
actions and news source information were always col-
lected. Out of the 7991 entries, only 4522 (57%) entries
contain no missing value. The missing rate of each form
of evidence is also reported in the tables. There are sev-
eral reasons for missing data. For example, the explicit
feedback is missing because users didn’t always follow
instructions, the relevance score is missing for the first
story in a class, and thetopic familiar before values
for many topics are missing because we only collected
the topic specific answers for larger topics. We expect
missing data to be common in operational environments.

The correlation coefficient between each evidence and
the explicit feedbackuser likes is also listed (corr).
The high correlation coefficients betweenuser likes and
other forms of explicit feedback are not very interest-
ing because we can only get explicit feedback after a
user reads the document. The correlation coefficient be-
tween relevance score anduser likes is 0.37, the highest
among all forms of evidence that the system can get be-
fore delivering a document. This is not surprising since
most filtering systems only consider relevance and use
relevance score to make decisions.

The correlation coefficients betweenuser likes and
the topic information (Table 3) are relatively high.
This suggests collectingtopic familiar before or
topic like in a real filtering system, since they are in-
formative and collecting them requires less user effort (a
user only needs to provide information on the class level
instead of document level). Section 5 will show how to
use it with other forms of evidence in a filtering system.
The correlation coefficients between the news source in-
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Table 2: Basic descriptive statistics about user actions.
The unit for time is second.

Variable Mean variance corr
TimeOnPage 7.2× 104 1.3× 105 0.14

EventOnScroll 1 3.6 0.1
ClickOnWindow 0.93 2.5 0.05
TimeOnMouse 2× 103 5.8× 103 0.02

MSecForDownArrow 211 882 0.08
NumOfDownArrow 1.1 4.7 0.09
MSecForUpArrow 29 240 0.03
NumOfUpArrow 0.10 0.8 0.04
NumOfPageUp 0.12 0.9 ' 0

NumOfPageDown 0.14 1 ' 0
MSecForPageUp 22 202 ' 0

MSecForPageDown 28 251 ' 0

Table 3: Basic descriptive statistics about topics. Each
variable ranges from 1 to 7.

variable Mean variance corr miss
topic familiar before 3.6 1.9 0.30 0.27

topic like 4.9 2.0 0.30 0.27
topic confidence 4.7 2.0 0.34 0.27

Table 4: Basic descriptive statistics about news sources.
variable Mean variance corr
RSSlink 90.35 4.89 0.14
host link 4.41× 104 7.5× 107 0.08

RSSSPEED 3.92× 105 3.7× 109 -0.08

Table 5: Basic descriptive statistics about documents.
The length of the document does not include HTML tags.

variable mean variance corr miss
doc length 837 1.2× 103 0.04 0.05

relevantscore 0.49 0.42 0.37 0.18
readabilityscore 0.52 0.16 0.25 0.11

formation anduser likes are weaker (Table 4). The cor-
relation coefficient betweenuser likes and each user ac-
tion (Table 2) is even lower (Table 1). Some actions, such
asTimeOnPage, are more correlated withuser likes
than other refined actions, such asNumOfPageDown.
This finding agrees with (Claypool et al., 2001).

4 Understanding the domain using causal
structure learning

Correlation analysis in Section 3 has helped us to get
some initial idea about the data collected. However, in
order to better understand the underlying truth of the do-
main, we need to go beyond correlation and uncover the
causal relationships between different variables.

To do that, we first specify N nodes, one for each form
of evidence to be included in the model. Then PC algo-

rithm is used (Spirtes et al., 2000) to search the causal
relationships between multiple forms of evidence from
the data collected. To make the search space smaller,
some prior domain knowledge, such as forbidden edges,
required edges or temporal tiers, can be introduced be-
fore searching. In our experiments, we manually spec-
ified some prior knowledge based on the first authors’
experience and intuition as the following 5-tier tempo-
ral tier: 5 1) Topic info = (familiar topic before),
RSS info =(RSSlink, host link), document length
(doc len); 2) hidden criteria, such asrelevant, novel,
authoritative, and readable; 3) system generated
scores, such asrelevance scoreandreadability score; 4)
user likes; 5) user actions, such as seconds spent on a
page (TimeOnPage) or the number of clicks on the↓ key
(NumOfDownArrow). This informs the learning algo-
rithm that→ from a higher level to lower level is prohib-
ited.

It is very encouraging to see that the structure learned
automatically looks reasonable (Figure 4). Accord-
ing to the graph,novel, relevant, authoritative,
readabilty of a document and whether a user is
familiar with the topic before using the system
(familar topic before) are direct causes of the user’s
preference for a document (user likes) . How fa-
miliar with this topic a user is before participating
the study (topic familiar before) and the number of
web links to the news source (RSS link) directly af-
fect the user’srelevant and authoritative feedback
and readability score. Relevant, authoritative,
familiar topic before andhost link influence a user’s
actions, such as theEventOnScroll.

Comparing Tables 2 to 5 with Figure 4, one may ask
why some variables are correlated withuser likesal-
though there is no direct links between them anduser
likes. For example, why the correlation betweenrele-
vance scoreanduser likesis 0.39, while there is no di-
rect link between them. Does Figure 4 contradict Ta-
ble 5? The answer is “no”. In fact the indirect causal
relationship between them tells us whyrelevance score
and user likesare correlated:relevance scoreand user
likes have a common causerelevant. Most of the re-
fined actions, such as the number of pressing page up key
(NumOfPageUp), are far away fromuser likes. This
implies that these refined actions are not very informative
if we want to use the learned model to predict whether
a user likes a document or not. This finding agree with
(Claypool et al., 2001) and Table 2.

The node authoritative is directly linked to
readability score and host link. The link between
host link andauthoritative confirms the existing ap-
proaches that use the web link structure to estimate the

5Other priors are also possible.
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Figure 4: User independent causal graphical structure
learned using PC algorithm.X → Y means X is a di-
rect cause of Y.X −Y means the algorithm cannot tell if
X causes Y or if Y causes X.X ←→ Y means the algo-
rithm found some problem, which may happen due to a
latent common cause of X and Y, a chance pattern in the
sample, or other violations of assumptions.

Figure 5: Structure of GMcomplete.

Figure 6: Structure of GMcausal.

authority of a page (Kleinberg, 1998). The links between
readability score, readable andauthoritative are very
interesting. They suggest the difficulty to understand a
page may make the user feel it is not authoritative. Fur-
ther investigation shows that although the percentage of
un-authoritative news is less than15% in general, among
the 187 news stories some users identified as “difficult”
using class labels,73% were also rated as not authorita-
tive. Besides some successful web page authority algo-
rithms that only use hyper links, the estimation of author-
ity may be further improved using the content of a page.

There are links amongrelevant, novel, readableand
authoritative. Although the algorithm failed to tell the
causal direction between some pairs of variables, it sug-
gests that the four variables influence each other. This
may be an inherent property of the document; or because
a user is likely to rate one aspect of the document higher
than he/she should if the other aspects are good.

One may ask why the structure in Figure 4 contains
no link betweenreadable andreadability score, since
intuitively it should exist. To answer this question, one
needs to understand that the causal relationships learned
automatically are what the algorithm “believes” based on
the evidence of the data, the assumptions it makes, and
the prior constraints we engineered. They may have er-
rors, because the data is noisy, or the assumptions and
the prior constraints may be wrong. For example, the PC
algorithm do statistical test about the independence re-
lationships among variables using the data and the final
results are subject to the error of the statistical test. The
PC algorithm assumes no hidden variables, however be-
sidesrelevant, novel, authoritative, and readable, other
hidden variables, such aswhether a document is up-to-
date, interesting, misleading, etc.(Schamber and Bate-
man, 1996), may exist and influence a user’s preference
for a document. Thus it is not surprising that some of the
causal relationships, such as the link betweenreadable
andreadability score, are missed in the final graph be-
cause of the limitation of the learning algorithms. The
model learned only sheds some light on the relationships
between the variables instead of uncovering the whole
truth. It only serves as a starting point for us. To further
understand the domain, we may want to break down some
variables in the current graph further and relate them to
either the user or document properties. In general, causal
discovery is inherently difficult and far from solved.

5 Improving system performance using
inference algorithms

A primary task of a filtering system is to predict user
preference (user likes) for a document so that the sys-
tem can decide whether to deliver it to the user. To
tell whether combining multiple forms of evidence using
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graphical models can improve system performance, we
evaluate the proposed solution on the task of predicting
user likes while filtering.

To predict user likes, the system needs to learn a
graphical model: the combination of a graph structure
and a set of local conditional probability functions or po-
tential functions. Doing inference over the causal struc-
ture learned in the previous section is difficult because of
the circles and a mixture of directed and undirected links
on the graph. So, we tried the following directed acyclic
graphical models.

GM complete, an almost complete Bayesian network:
In this graph, we order the nodes from top to bot-
tom, and the parents of a node are all the nodes
above it, such as in Figure 5. For this structure, the
order of the nodes is not very important when using
Gaussian distributions.

GM causal, a graphical model inspired by causal models:
We manually modify the causal structure in Figure
4 to make it a directed acyclic graph as in Figure 6.

In the graphs,RSS info=(RSSlink, host link) andTopic
info=topic familiar before, topiclike) are 2 dimensional
vectors representing the information about the news
source and the topic in Table 4 and Table 3.actions =
(TimeOnPage, ...) is a 12 dimensional vector repre-
senting the user actions in Table 1.user likes is the
target variable the system wants to predict.

Before learning the parameters of the model, we need
to choose a specific conditional form for the probability
function associated with each node. We chose Gaussian
distributions. If the parents of node X are Y,P (X|Y ) =
N(m + W × Y,Σ), whereN(µ,Σ) is a gaussian distri-
bution with meanµ and covarianceΣ. This is a com-
monly used distribution for continuous valued nodes. It
assumes the joint distribution of these variables is mul-
tivariate Gaussian, which may be wrong. Nevertheless,
because of the mathematical convenience, the existence
of efficient learning and inference algorithms for Gaus-
sian networks, and the availability of modeling tools, we
chose this distribution. Using the BNT Toolbox (Mur-
phy, 2001), the maximum likelihood estimations of the
parameters(m,W, Σ) were learned using EM algorithm
and junction tree inference engine(Cowell et al., 1999)
over the graphical models, with whatever information
was available on the first2/3 of the data.

An alternative approach to combine multiple forms of
evidence is linear regression. We tried two special meth-
ods to solve the missing evidence problem while using
linear regression: 1) building a model that does not use
the evidence that is missing for each missing situation
(LR different); or 2)mean substitution: replacing each
missing value for an evidence with the average of the

Figure 7: Comparison of the prediction power of differ-
ent models using 7952 cases for evaluation. The vertical
axis is the correlation coefficient between the predicted
value ofuser likes using the model and the true explicit
feedback provided by the users. The order of different
forms of evidence is set manually, based on how easy it
is to collect each evidence.

observed evidence (LR mean). For K different forms
of evidence, the system may need to handle2K differ-
ent evidence missing situations. A large number of linear
regression models need to be learned if we use the first
approach, considering K is higher than 15 in some of our
experiments. Building215 models is almost impossible
for us, so a heuristic approach, which is discussed later,
was used to make the experiments possible.

Not all 7991 cases collected in the user study were
used in the experiments. We conducted two sets of ex-
periments. For the first set of experiments, we use 7952
cases for whichuser likes is not missing. For the other
set of runs, we use only cases without missing value. In
this task, the value of each variable is continuous and nor-
malized to variance one. Each model is learned using all
information available on the first2/3 of the cases, and
tested on the remaining1/3 of the cases. The correlation
coefficient between the predicted value ofuser likes and
the true explicituser likes feedback provided by the
users is used as the evaluation measure. Our baseline is
usingrelevance score alone, which has a correlation co-
efficient of 0.367 with 95% confidence interval 0.33-0.40
on the last 1/3 of the 7952 cases.

5.1 Experimental results and discussions

Figure 7 shows the effectiveness of different models
at different testing conditions as indicated by the hor-
izontal axis. From left to right, additional sources
of evidence are given when testing. At the very left
of the figure (x=RSS info), a model predicts the
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value ofuser likes only given the value ofRSS info
at testing time. “+explicit” means the explicit feed-
back (exceptuser likes) about the current document is
given besides the value ofactions, relevance score,
readability score, RSS info, and TopicInfo. The
graphical models andLR mean model were trained with
all evidence/features, and the learned models are inde-
pendent of the testing condition.LR different models
were only trained with features that are also provided at
testing time, so there is one model per testing condition.
6

The results show thatGM complete performs sim-
ilarly to LR different. This is not surprising. Theo-
retically, if there is no missing entries in training data,
GM complete’s estimation of the conditional distribu-
tion of P (user likes|available evidence) would be the
same as that ofLR differenton a testing case with miss-
ing evidence.

Comparing the correlation coefficients under dif-
ferent testing conditions when usingLR different or
GM complete, we can see that as more forms of ev-
idence are available, the performance improves. If
only the news source information of a document
(RSS info) is given, all models perform poorly. The
readability score improves the system performance sig-
nificantly. This is nice and interesting, because the evi-
dence is user independent and can be estimated efficiently
for each document. The performance keeps improving
as topic info and relevance score were added. To
collect them, we needs user feedback on previous doc-
uments. The performance improvement is not very ob-
vious with actions added. This means that given other
evidence (RSS info, topic info, relevance score and
readability score), the system won’t improve its predic-
tion of the document much by observing these actions.
However, this is only true when we use a model learned
for all users and other forms of evidence are available. It
does not mean the actions are useless if we learn user
specific model, or if other forms of evidence (such as
relevance score) are not available. All models perform
very good withexplicit feedbackadded. However, this is
a “cheating” condition of less interest to us.

The performances ofLR mean and GM causal
do not increase monotonically as more forms of ev-
idence are added. They perform much worse than
LR different andGM complete. Why does a structure
that looks more causally reasonable not perform well

6However, for a specific testing condition, the training data
and testing data contain cases where some evidence that is sup-
posed to be available is missing. These cases in training data
were ignored and not used to learn aLR different model.
However, ignoring such kind of cases in testing data makes
comparison of different runs difficult. So we used mean sub-
stitution approach to fill the required missing features in testing
data while usingLR different.

Model Cond. corr RLow RUp
LR mean +R 0.2783 0.2426 0.3132

LR different +R 0.4372 0.4058 0.4677
GM complete +R 0.4247 0.3928 0.4555

GM causal +R 0.3078 0.2728 0.342
LR mean +A 0.2646 0.2286 0.2998

LR different +A 0.4375 0.406 0.4679
GM complete +A 0.4315 0.3999 0.4622

GM causal +A 0.3086 0.2736 0.3428

Table 6: A comparison of different models on all data un-
der the+relevance score (+R) and+action (+A) con-
ditions. Corr is the correlation coefficient between the
predicted value ofuser likes using the model and the
true explicit feedback provided by the users. RLO and
RUP are the lower and upper bounds for a 95% confi-
dence interval for each coefficient.

as the simpleGM complete? We may answer this
question better by comparing the underlying assumptions
of these algorithms.GM complete only assumes the
joint distribution of all variables is multivariate Gaus-
sian. GM causal makes much stronger independence
assumptions by removing some links between variables.
As mentioned before, the causal relationships learned au-
tomatically are not perfect, which may cause the poor
performance ofGM causal. LR mean also suffers
from the strong conditional independent assumptions.

Table 6 reports the performance together with the
confidence intervals of all the models under the
+relevance score and +actions conditions. Under
both conditions,GM complete and LR different are
statistically significantly better than the baseline 0.367.
LR mean andGM causal are significantly worse. It
means using multiple forms of evidence may hurt some
models and benefit others. Further analysis about the
+actions runs shows thatLR mean gaveexplicit feed-
back too much weight and overlooked other less strong
evidence. At testing time, it did not handle the problem of
missingexplicit feedbackwell and thus performed poorly.
AlthoughGM complete also gave very high weights to
explicit feedback, it could infer the missing values based
on other available evidence at testing time, thus per-
formed better thanLR mean. LR differentdidn’t con-
sider explicit feedbackfor training, thus it didn’t over-
look other forms of evidence and suffer from the problem
less. LR mean may work reasonably if explicit vari-
ables are not included, however the large difference on
how informative each evidence is will still hurt the per-
formance ofLR mean to some extent when some strong
evidence is missing. ForGM complete approach, a sin-
gle model is needed to handle various evidence missing
situations. If we useLR differentapproach, several mod-
els are needed. As we mentioned before, there are2K
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Model Cond. Corr RLow RUp
LR mean +R 0.13 0.08 0.18

LR different +R 0.41 0.37 0.45
GM complete +R 0.41 0.37 0.45

GM causal +R 0.41 0.375 0.45
LR mean +A 0.11 0.061 0.16

LR different +A 0.42 0.38 0.46
GM complete +A 0.42 0.38 0.46

GM causal +A 0.38 0.33 0.42

Table 7: The performance on 4522 no missing value cases
under the+relevance score (+R) and+action (+A)
conditions.

different evidence missing combinations, and2K linear
regression models are needed in order to handle all these
situations usingLR differentapproach.LR differentmay
be preferred if K is small, while graphical modeling us-
ing GM complete may be a better approach to handle
different data missing situations if K is big.

So far, all results are based on 7952 cases where
some evidence may be missing. We also compared
the models under different testing conditions using the
4522 cases that do not have any missing value (Table
7). GM causal performs significantly better than be-
fore. We need to be very careful with the structures while
using the graphical modeling approach, since a structure
that looks more reasonable may work poorly on the in-
ference task. However, we couldn’t not draw any con-
clusion on whetherGM complete is better in general,
because the answer may be different with different con-
ditional probability distributions, different data sets, or a
better structure learning algorithm.

6 Related Work

There has been some research on news filtering using
time-coded implicit feedback (Lang, 1995; Morita and
Shinoda, 1994). We noticed that an independent work
uses a different graphical modeling approach, depen-
dency network, to understand the relationships between
implicit measures and explicit satisfaction while user
were conducting their web searches and viewing results,
and then uses decision tree to predict user satisfaction
with results (Fox et al., 2005). Our work differs from
the previous work in the goal of the task, the range of ev-
idence considered, the modeling approach we took, and
the findings reached.

There has been a lot of related research on using im-
plicit feedback (Kelly and Teevan, 2003). The user
actions we collected are based on (Claypool et al.,
2001). There is much work about how to handle miss-
ing data. (Schafer and Graham, 2002) discussed several
approaches such as case deletion, mean substitution, and

recommended maximum likelihood (ML) and Bayesian
multiple imputation (MI).LR mean uses mean substitu-
tion, LR differentuses case deletion, and graphical mod-
els follow the ML approach.

There has been some research on criteria beyond topic
relevance (Carbonell and Goldstein, 1998) (Zhang et al.,
2002) (Collins-Thompson and Callan, 2004) (Kleinberg,
1998). (Schamber and Bateman, 1996) identified crite-
ria underlying users’ relevance judgements and explored
how users employed the criteria in making evaluations
by asking users to interpret and sort criteria independent
of document manually. In the literature, the word “rele-
vant” is used ambiguously, either as a narrow definition
of “related to the matter at hand (aboutness)” or a broader
definition of “having the ability to satisfy the needs of the
user”. When it is used by the second definition, such as
in (Schamber and Bateman, 1996), researchers are usu-
ally studying what we refer to asuser likes. In this paper,
we use “relevant” as is defined in the first definition and
use the phrase “user likes” for the second definition. De-
spite the vocabulary difference, our work is motivated by
the early research. The major contributions of our work
in this area are: 1) we model theuser likesand other cri-
teria as hidden variables; 2) we quantify the importance
of various criteria based on probabilistic reasoning; and
3) we have explored the new methodology for combining
these criteria with implicit and explicit user feedback.

7 CONCLUSION

We have explored how to combine multiple forms of evi-
dence using the graphical modeling approach. This work
is significant because it addresses some long-standing is-
sues in the adaptive information filtering community: the
integration of a wider range of user-specific and user-
independent evidence, and handling situations like miss-
ing data that occur in operational environments.

We have analyzed the user study data using graphical
models, as well as linear regression algorithms. The ex-
perimental results show that the graphical modeling ap-
proach can help us to understand the causal relationships
between multiple forms of evidence in the domain and
explain the real world scenario better. It can also help
the filtering system to predict user preference more accu-
rately with multiple forms of evidence compared to using
a relevance model only.

As more forms of evidence are added, missing data is a
common problem because of system glitches or because
users will not behave as desired. A real system needs to
handle missing data by either ignoring it or by estimat-
ing it based on what is known. The graphical modeling
approach addresses this problem naturally.LR different
handles the problem by building many different models to
be used at different data missing conditions.LR different
andGM complete perform similarly. When the types
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of evidence is few,LR different probably is preferable
because of the simplicity. However, as more forms of
evidence are added, a more powerful model, such as
GM complete, may be preferred because of the com-
putation and space efficiency.

We only collected data for documents users clicked.
Further investigation is needed to look at data not clicked,
which is a critical step to see whether the improvement on
prediction accuracy of user preference will help the sys-
tem serve the user better in a real system. This is the first
step towards using graphical models to combine multiple
forms of evidence while filtering. The proposed solution,
especially the data analyzing methodology used in this
paper, can also be used in other IR tasks besides filtering,
such as context-based retrieval.

8 Acknowledgments

We thank Jaime Carbonell, Tom Minka, Stephen Robert-
son, Yiming Yang, Wei Xu, Peter Spirtes, Diane Kelley,
Paul Ogilvie, Kevyn Collins-Thompson, Luo Si, Joemon
Jose for valuable discussions about the work described in
this paper.

This research was funded in part by a fellowship from
IBM and a grant from National Science Foundation. Any
opinions, findings, conclusions or recommendations ex-
pressed in this paper are the authors’, and do not neces-
sarily reflect those of the sponsors.

References

Jaime Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering docu-
ments and producing summaries. InProceedings of
the 21st annual international ACM SIGIR conference.

Mark Claypool, Phong Le, Makoto Wased, and David
Brown. 2001. Implicit interest indicators. InIntel-
ligent User Interfaces.

K. Collins-Thompson and J. Callan. 2004. A language
modeling approach to predicting reading difficulty. In
Proceedings of the HLT/NAACL 2004 Conference.

C. Conati, A. S. Gertner, K. VanLehn, and M. J.
Druzdzel. 1997. On-line student modeling for
coached problem solving using Bayesian networks. In
Proceedings of the Sixth International Conference on
User Modeling, pages 231–242.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen,
and David J. Spiegelhalter. 1999.Probabilistic Net-
works and Expert Systems. Springer.

Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan
Dumais, and Thomas White. 2005. Evaluating im-
plicit measures to improve web search. InACM Trans.
Information Systems, volume 23.

Donna Harman. 2003. Overview of the TREC 2002 nov-
elty track. InThe Eleventh Text REtrieval Conference
(TREC-11). NIST 500-251.

E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. 1998. The Lumiere project: Bayesian
user modeling for inferring the goals and needs of soft-
ware users. InProceedings of the Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence, July.

Diane Kelly and Jaime Teevan. 2003. Implicit feedback
for inferring user preference: a bibliography.SIGIR
Forum, 37(2):18–28.

J. Kleinberg. 1998. Authoritative sources in a hyper-
linked environment. InProc. 9th ACM-SIAM Sympo-
sium on Discrete Algorithms.

Ken Lang. 1995. Newsweeder: Learning to filter news.
In Proceedings of the Twelfth International Conference
on Machine Learning.

Phong Le and Makoto Waseda. 2000. A curious browser:
Implicit ratings. http://www.cs.wpi.edu/ clay-
pool/mqp/iii/.

Masahiro Morita and Yoichi Shinoda. 1994. Informa-
tion filtering based on user behavior analysis and best
match text retrieval. InProceedings of the 17th ACM
SIGIR conference.

Kevyn Murphy. 2001. The Bayes net toolbox for matlab.
In Computing Science and Statistics.

Mark Pilgrim. 2002. What is RSS.
http://www.xml.com/pub/a/2002/12/18/dive-into-
xml.html.

D.V. Pynadath and W.P. Wellman. 1995. Accounting for
context in plan recognition, with application to traffic
monitoring. InProceedings of the Eleventh Confer-
ence on Uncertainty in Artificial Intelligence.

Joseph L. Schafer and John W. Graham. 2002. Missing
data: Our view of the state of art. InPsychological
Methods, volume 7, No 2.

Linda Schamber and Judy Bateman. 1996. User crite-
ria in relevance evaluation: Toward development of a
measurement scale. InASIS 1996 Annual Conference
Proceedings, October.

Perter Spirtes, Clark Glymour, and Richard Scheines.
2000. Causation, Prediction, and Search. The MIT
Press.

Yi Zhang, Jamie Callan, and Tom Minka. 2002. Novelty
and redundancy detection in adaptive filtering. InPro-
ceedings of the 25th Annual International ACM SIGIR
Conference.

Yi Zhang. 2004. Using Bayesian priors to combine clas-
sifiers for adaptive filtering. InProceedings of the 27th
Annual International ACM SIGIR Conference.

595



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 596–603, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Handling Biographical Questions with Implicature 
 
 

Donghui Feng Eduard Hovy 
Information Sciences Institute Information Sciences Institute 

University of Southern California University of Southern California 
Marina del Rey, CA, 90292 Marina del Rey, CA, 90292 

donghui@isi.edu hovy@isi.edu 
 

 

 

 

Abstract 

Traditional question answering systems 
adopt the following framework: parsing 
questions, searching for relevant docu-
ments, and identifying/generating an-
swers. However, this framework does not 
work well for questions with hidden as-
sumptions and implicatures. In this paper, 
we describe a novel idea, a cascading 
guidance strategy, which can not only 
identify potential traps in questions but 
further guide the answer extraction pro-
cedure by recognizing whether there are 
multiple answers for a question. This is 
the first attempt to solve implicature prob-
lem for complex QA in a cascading fash-
ion using N-gram language models as 
features. We here investigate questions 
with implicatures related to biography 
facts in a web-based QA system, Power-
Bio. We compare the performances of 
Decision Tree, Naïve Bayes, SVM (Sup-
port Vector Machine), and ME (Maxi-
mum Entropy) classification methods. 
The integration of the cascading guidance 
strategy can help extract answers for 
questions with implicatures and produce 
satisfactory results in our experiments. 

1 Motivation 

Question Answering has emerged as a key area in 
natural language processing (NLP) to apply ques-
tion parsing, information extraction, summariza-
tion, and language generation techniques (Clark et 

al., 2004; Fleischman et al., 2003; Echihabi et al., 
2003; Yang et al., 2003; Hermjakob et al., 2002; 
Dumais et al., 2002). Traditional question answer-
ing systems adopt the framework of parsing ques-
tions, searching for relevant documents, and then 
pinpointing and generating answers. However, this 
framework includes potential dangers. For exam-
ple, to answer the question “when did Beethoven 
get married?”, a typical QA system would identify 
the question target to be a “Date” and would apply 
techniques to identify the date Beethoven got mar-
ried. Since Beethoven never married, this direct 
approach is likely to deliver wrong answers. The 
trick in the question is the implicature that Beetho-
ven got married. In the main task of QA track of 
TREC 2003, the performances of most systems on 
providing “NIL” when no answer is possible range 
from only 10% to 30% (Voorhees, 2003). 

Just as some questions have no answer, others 
may have multiple answers. For instance, with 
“who was Ronald Reagan’s wife?”, a QA system 
may give only “Nancy Davis” as the answer. How-
ever, there is another correct answer: Jane Wyman. 
The problem here is the implicature in the question 
that Reagan only got married once. 

An implicature is anything that is inferred from 
an utterance but that is not a condition for the truth 
of the utterance (Gazdar, 1979; Levinson, 1983). 
Implicatures in questions either waste computa-
tional effort or impair the performance of a QA 
system or both. Therefore, when answering ques-
tions, it is prudent to identify the questions with 
implicatures before processing starts.  

In this paper, we describe a novel idea to solve 
the problem: a strategy of cascading guidance. This 
is the first attempt to solve implicature problem for 
complex QA in a cascading fashion using N-gram 
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language models as features. The cascading guid-
ance part is designed to be inserted immediately 
before the search procedure to handle questions 
with implicatures. It can not only first identify the 
potential “no answer” traps but also identify 
whether multiple answers for this question are 
likely.  

To investigate the performance of the cascading 
guidance strategy, we here study two types of 
questions related to biography facts in a web-based 
biography QA system, PowerBio. This web-based 
QA system extracts biographical facts from the 
web obtained by querying a web search engine 
(Google in our case).  Figure 1 provides the two 
types of questions we selected, which we refer to 
as SPOUSE_QUESTION and CHIL-
D_QUESTION.  
 
 
 
 
 
 

 
 
 
 
 

 
Figure 1. SPOUSE_QUESTION and 

CHILD_QUESTION 
 

Both types of questions have implicatures to jus-
tify the use of the cascading guidance strategy. In-
tuitively, to answer these questions, we have two 
issues related to implicatures to clarify:  

 

• Does the person have a spouse/child?  
• What's the number of answers for this ques-

tion? (One or many?) 
 

We therefore create two successive classifica-
tion engines in the cascading classifier.  

For learning, our approach queries the search 
engine with every person listed in the training set, 
extracts related features from the documents, and 
trains the cascading classifiers. For application, 
when a new question is given, the cascading classi-
fier is applied before activation of the search sub-
system. We compare the performances of four 
popular classification approaches in the cascading 
classifier, namely Decision Tree, Naïve Bayes, 

SVM (Support Vector Machine), and ME (Maxi-
mum Entropy) classifications. 

The paper is structured as follows: related work 
is discussed in Section 2. We introduce our cascad-
ing guidance technique in Section 3, including De-
cision Tree, Naïve Bayes and SVM (Support 
Vector Machine) and ME (Maximum Entropy) 
classifications. The experimental results are pre-
sented in Section 4. We discuss related issues and 
future work in Section 5.  

2 Related Work 

Question Answering has attracted much attention 
from the areas of Natural Language Processing, 
Information Retrieval and Data Mining (Fleisch-
man et al., 2003; Echihabi et al., 2003; Yang et al., 
2003; Hermjakob et al., 2002; Dumais et al., 2002; 
Hermjakob et al., 2000). It is tested in several ven-
ues, including the TREC and CLEF Question An-
swering tracks (Voorhees, 2003; Magnini et al., 
2003). Most research efforts in the Question An-
swering community have focused on factoid ques-
tions and successful Question Answering systems 
tend to have similar underlying pipelines structures 
(Prager et al., 2004; Xu et al., 2003; Hovy et al., 
2000; Moldovan et al., 2000). 

Recently more techniques for answer extraction, 
answer selection, and answer validation have been 
proposed (Lita et al., 2004; Soricut and Brill, 2004; 
Clark et al., 2004).  

Prager et al. (2004) proposed applying constraint 
satisfaction obtained by asking auxiliary questions 
to improve system performance. This approach 
requires the creation of auxiliary questions, which 
may be complex to automate. 

Ravichandran and Hovy (2002) proposed auto-
matically learning surface text patterns for answer 
extraction. However, this approach will not work if 
no explicit answers exist in the source. The first 
reason is that in that situation the anchors to learn 
the patterns cannot be determined. Secondly, most 
of the facts without explicit values are not ex-
pressed with long patterns including anchors. For 
example, the phrase “the childless marriage” gives 
enough information that a person has no child. But 
it is almost impossible to learn such surface text 
patterns following (Ravichandran and Hovy, 2002). 

Reported work on question processing focuses 
mainly on the problems of parsing questions, de-
termining the question target for search subsystem 

I. SPOUSE_QUESTION 
    E.g. Who is <PERSON>’s wife?      
           Who is <PERSON>’s husband? 
           Whom did <PERSON> marry? 
            … 
II. CHILD_QUESTION 
    E.g. Who is <PERSON>’s son?      
           Who is <PERSON>’s daughter? 
           Who is <PERSON>’s child? 

…
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(Pasca and Harabagiu, 2001; Hermjakob et al., 
2000). Saquete et al. (2004) decompose complex 
temporal questions into simpler ones based on the 
temporal relationships in the question. 

To date, there has been little published work on 
handling implicatures in questions. Just-In-Time 
Information Seeking Agents (JITISA) was pro-
posed by Harabagiu (2001) to process questions in 
dialogue and implicatures. The agents are created 
based on pragmatic knowledge. Traditional answer 
extraction and answer fusion approaches assume 
the question is always correct and explicit answers 
do exist in the corpus. Reported work attempts to 
rank the candidate answer list to boost the correct 
one into top position. This is not enough when 
there may not be an answer for the question posed.  

For biographical fact extraction and generation, 
Zhou et al. (2004) and Schiffman et al. (2001) use 
summarization techniques to generate human biog-
raphies. Mann and Yarowsky (2005) propose fus-
ing the extracted information across documents to 
return a consensus answer. In their approach, they 
did not consider multiple values or no values for 
biography facts, although multiple facts are com-
mon for some biography attributes, such as multi-
ple occupations, children, books, places of 
residence, etc. In these cases a consensus answer is 
not adequate. 

Our work differs from theirs because we are not 
only working on information/answer extraction; 
the focus in this paper is the guidance for answer 
extraction of questions (or IE task for values) with 
implicatures. This work can be of great help for 
immediate biographical information extraction. 

We describe details of the cascading guidance 
technique and investigate how it will help for ques-
tion answering in Section 3.  

3 Cascading Guidance Technique 

We turn to the Web by querying a web search en-
gine (Google in our case) to find evidence to create 
guidance for answer extraction. 

3.1 Classification Procedure 

The cascading classifier is applied after the name 
of the person and the answer types are identified. 
Figure 2 gives the pipeline of the classification 
procedure. 

With the identified person name, we query the 
search engine (Google) to obtain the top N web 

pages/documents. A simple data cleaning program 
only keeps the content texts in the web page, which 
is broken up into separate sentences. Following 
that, topic sentences are identified with the key-
word topic identification technique. For each topic 
we provide a list of possible related keywords and 
any sentences containing both the person’s name 
(or reference) and at least one of the keywords will 
be selected. The required features are extracted 
from the topic sentences and passed to the cascad-
ing classifier as supporting evidence to generate 
guidance for answer extraction. 

 
Figure 2. Procedure of Cascading Classifier 

3.2 Feature Extraction 

Intuitively, sentences elaborating a biographical 
fact in a given topic should have similar styles 
(short patterns) of organizing words and phrases. 
Here, topic means an aspect of biographical facts, 
e.g., marriage, children, birthplace, and so on. In-
spired by this, we consider taking N-grams in sen-
tences as our features. However, N-gram features 
not closely related to the topic will bring more 
noise into the system. Therefore, we only take the 
N-grams within a fixed-length window around the 
topic keywords for features calculation, and pass 
them as evidence to cascading classifier.  

Classification Results 

Search EnginePerson 
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Web 
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For N-grams, instead of using the multiplication 
of conditional probabilities of each word in the N-
gram, we only consider the last conditional prob-
ability (see below). The reason is that the last con-
ditional probability is a strong sign of the pattern’s 
importance and how this sequence of words is or-
ganized. Simply multiplying all the conditional 
probabilities will decrease the value and require 
normalization. Realizing that in a set of documents 
the frequency of each N-gram is very important 
information, we combine the last conditional prob-
ability with the frequency. 

The computation for each feature of unigram, 
bigram and trigram are defined as the following 
formulas:  

)(*)( iiunigram wfreqwpf =                             (1) 

),(*)|( 11 iiiibigram wwfreqwwpf −−=             (2) 

),,(*),|( 1212 iiiiiitrigram wwwfreqwwwpf −−−−=     
                                                                           (3) 

We here investigate four kinds of classifiers, 
namely Decision Tree, Naïve Bayes, Support Vec-
tor Machine (SVM), and Maximum Entropy (ME).  

3.3 Classification Approaches 

The cascading classifier is composed of two suc-
cessive parts. Given the set of extracted features, 
the classification result could lead to different re-
sponses to the question, either answering with “no 
value” with strong confidence or directing the an-
swer extraction model how many answers should 
be sought. 

For text classification, there are several well-
studied classifiers in the machine learning and 
natural language processing communities.  
 

Decision Tree Classification 
The Decision Tree classifier is simple and matches 
human intuitions perfectly while it has been proved 
efficient in many application systems. The basic 
idea is to break up the classification decision into a 
union of a set of simpler decisions based on N-
gram features. Due to the large feature set, we use 
C5.0, the decision tree software package developed 
by RuleQuest Research (Quinlan, 1993), instead of 
C4.5. 
 

Naïve Bayes Classification 
The Naïve Bayes classifier utilizes Bayes' rule as 
follows. Supposing we have the feature 

set { }nfffF ,...,, 21= , the probability that person 
p belongs to a class c is given as: 

)|'(maxarg
'
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Based on Bayes’ rule, we have 
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This was used for both successive classifiers of the 
cascading engine. 
 

SVM Classification 
SVM (Support Vector Machines) has attracted 
much attention since it was introduced in (Boser et 
al., 1992). As a special and effective approach for 
kernel based methods, SVM creates non-linear 
classifiers by applying the kernel trick to maxi-
mum-margin hyperplanes.  

Suppose nipi ,...,1, =  represent the training set 
of persons, and the classes for classifications are 

},{ 21 ccC = (for simplicity, we represent the 
classes with { }1,1−=C ). Then the classification 
task requires the solution of the following optimi-
zation problem (Hsu et al., 2003): 
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We use the SVM classification package 
LIBSVM (Chang and Lin, 2001) in our problem. 
 

ME Classification 
ME (Maximum Entropy) classification is used here 
to directly estimate the posterior probability for 
classification. 

Suppose p represents the person and the classes 
for classifications are { }21,ccC = , we have M fea-
ture functions Mmpchm ,...,1),,( = . For each fea-
ture function, we have a model 
parameter Mmm ,...,1, =λ . The classification with 
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maximum likelihood estimation can be defined as 
follows (Och and Ney, 2002): 
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The decision rule to choose the most probable 
class is (Och and Ney, 2002): 
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We use the published package YASMET 1  to 
conduct parameters training and classification. 
YASMET requires supervised learning for the 
training of maximum entropy model. 

The four classification approaches are assem-
bled in a cascading fashion. We discuss their per-
formance next. 

4 Experiments and Results 

4.1 Experimental Setup 

We download from infoplease.com 2  and biogra-
phy.com 3  two corpora of people’s biographies, 
which include 24,975 and 24,345 bios respectively. 
We scan each whole corpus and extract people 
having spouse information. To create the data set, 
we manually check and categorize each person as 
having multiple spouses, only one spouse, or no 
spouse. Similarly, we obtained another list of per-
sons having multiple children, only one child, and 
no child. The sizes of data extracted are given in 
Table 1.  

 

Type Child Spouse 
No_value 25 20 
One_value 35 32 

Multiple_values 107 43 
Table 1. Extracted experimental data 

 

For the cascading classification, in the first step, 
when classifying whether a person has a 
spouse/child or not, we merge the last two subsets 

                                                           
1 http://www.fjoch.com/YASMET.html 
2 http://www.infoplease.com/people.html 
3 http://www.biography.com/search/index.jsp 

with one value and multiple values into one. Table 
2 presents the data used for each level of classifica-
tion. 
 

 class Child Spouse
No_value 25 20 First-level 

Classification With_value 142 75 
One_value 35 32 Second-level 

Classification Multiple_value 107 43 
Table 2. Data set used for classification 

To investigate the performances of our cascad-
ing classifiers, we divided the two sets into training 
set and testing set, with half of them in the training 
set and half in the testing set. 

4.2 Empirical Results 

For each situation of the two questions, when the 
answer type has been determined to be the child or 
spouse of a person, we send the person’s name to 
Google and collect the top N documents. As de-
scribed in Figure 2, topic sentences in each docu-
ment are selected by keyword matching. A window 
with the length of w is applied to the sentence. All 
word sequences in the window are selected for fea-
ture calculation. We take all the three N-gram lan-
guage models (unigram, bigram, and trigram) in 
the window for feature computation. Table 3 gives 
the sizes of the bigram feature sets for first-level 
classification as we take more and more documents 
into the system. 
 

Top N Docs Child Spouse 
1 3468 1958 

10 27733 12325 
20 46431 27331 
30 61057 36637 
40 76687 43771 
50 87020 50868 
60 96393 61632 
70 108053 67712 
80 118947 73306 
90 130526 77370 

100 139722 82339 
Table 3. Sizes of feature sets 

 

As described in Section 3, the feature values are 
applied in the classifiers. Tables 4 and 5 give the 
best performances of the 4 classifiers in the two 
situations when we select the top N articles using 
N-gram probability for feature computation. 

Due to the large size of the feature set, C5.0, 
SVM, and ME packages will not work at some 
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point as more documents are encountered. The Na-
ïve Bayes classification is more scalable as we use 
intermediate file to store probability tables. 
 

Precision First-level 
Classification 

Second-level 
Classification

C5.0 82.90% 65.70% 
Naïve 
Bayes 

87.80% 72.86% 

SVM 84.15% 75.71% 
ME 86.59% 75.71% 

Table 4. Precision scores for child classification 
 
 

Precision First-level 
Classification 

Second-level 
Classification

C5.0 80.90% 56.80% 
Naïve 
Bayes 

83.00% 
 

59.46% 

SVM 78.72% 54.05% 
ME 78.72% 51.35% 

Table 5. Precision scores for spouse classification 
 

 
Feature # of times  

identified  
(out of 75) 

p(wi|wi-2,wi-1) 

and his wife 35  0.6786 
her husband , 33 0.3082 

and her husband 26   0.5476 
was married to 20 0.8621 
with his wife 14   0.875 

her second husband   13 0.6667 
her marriage to 13 0.5 

ex - wife           12 0.3333 
ex - husband 11    0.6667 

her first husband     10  0.75 
second husband ,     10       1 

his first wife 8 0.3333 
first husband ,  7        0.6667 
second wife ,   7 0.3333 

his first marriage     5        0.1667 
s second wife 5 0.75 

Table 6. Example trigram features for second-level 
classification for Spouse (one or multiple values) 

 

The feature set has a large number of features. 
However, not all of them will be used for each per-
son. We studied the number of times features are 
identified/used in the training and testing sets and 
their probabilities. Table 6 presents a list of some 
trigram features for second-level classification 
(one or multiple values) for Spouse. Obviously, 

indicating features have a large probability as ex-
pected. The second column gives the number of 
times the feature is used out of the training and 
testing set (75 persons in total). 
 

Will more complex N-gram features work bet-
ter? 
Intuitively, being less ambiguous, more complex 
N-gram features carry more precise information 
and therefore should work better than simple ones. 
We studied the performances for different N-gram 
language model features. Below are the results of 
Naïve Bayes first-level classification for Child, 
using different N-gram features. 
 
 

Top N 
Docs 

Unigram Bigram Trigram 

1 34.78% 54.35% 67.39% 
10 30.48% 79.27% 86.59% 
20 26.83% 82.93% 85.37% 
30 24.39% 81.71% 86.59% 

Table 7. Comparisons of classification precisions 
using different N-gram features for child 

 

From Table 7, we can infer that bigram features 
work better than unigram features, and trigram fea-
tures work better than bigrams when we select dif-
ferent numbers of top N documents. Trigram 
features actually bring enough evidence in classifi-
cation. However, when we investigated 4-grams 
language features in the collected data, most of 
them are very sparse in the feature space of all the 
cases. Applying 4-grams or higher may not help in 
our task. 
 

Will more data/documents help? 
The performance of corpus-based statistical ap-
proaches usually depends on the size of corpus. A 
traditional view for most NLP problems is that 
more data will help to improve the system’s per-
formance. However, for data collected from a 
search engine, this may not be the case, since web 
data is usually ambiguous and noisy. We therefore 
investigate the data size’s effect on system per-
formance. Figure 3 gives the precision curves of 
the Naïve Bayes classifier for the first-level classi-
fication for Child. 

Except for the case of top 1, where the top 
document alone may not contain too much useful 
information on selected topics, precision scores 
only have slight variations for increasing numbers 
of documents. For bigram features, over the top 50 
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through top 70 documents, the precision scores 
even get a little worse.  
 

Performances on Top N Docs
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Figure 3. Performance on top N documents 

4.3 Examples 

Equipped with the cascading guiding strategy, we 
are able to handle questions containing implica-
tures. In our system, when we can determine the 
answer type is child or spouse, the cascading guid-
ing system will help the answer extraction part to 
extract answers from the designated corpus. Figure 
4 gives two examples of the strategy.  

 
Figure 4. Classification Example for question 

 

For the first question, the classifier recognizes 
there is no spouse for the target person and returns 
information for the answer generation. The fea-
tures used here are the first-level classification re-
sult for SPOUSE_QUESTION. For the second 
question, the classifier recognizes the target person 
has a child first, followed by recognizing that the 
answer has multiple values. In this way, the strat-
egy integrated to the question answering system 
can improve the system’s performance by handling 
questions with implicatures. 

5 Discussion and Future Work 

Questions may have implicatures due to the flexi-
bility of human language and conversation. In real 

question-answering systems, failure to handle them 
may either waste huge computation cost or impair 
system’s performance. The traditional QA frame-
work does not work well for questions containing 
implicatures. We describe a novel idea in this pa-
per to identify potential traps in biographical ques-
tions and recognize whether there are multiple 
answers for a question. 

Question-Answering systems, even when fo-
cused upon biographies, have to handle many facts, 
such as birth date, birth place, parents, training, 
accomplishments, etc. These values can be ex-
tracted using typical text harvesting approaches. 
However, when there are no values for some bio-
graphical information, the task becomes much 
more difficult because text seldom explicitly states 
a negative. For example, the following two ques-
tions require schools attended:  
 

• Where did <person> graduate from? 
• What university did <person> attend? 
 

Our program scanned the two corpora of bios 
and found only 2 out 49320 bios explicitly stating 
that the subject never attended any school. There-
fore, for some types of information, it will be much 
harder to identify null values through evidence 
from text. Some more complicated reasoning and 
inference may be required. Classifiers for some 
biographical facts may need to incorporate extra 
knowledge from other resources. The inherent rela-
tions between biography facts can also be used to 
validate each other. For example, the relations of 
marriage and child, birth place and childhood 
home, etc. may provide clues for cross-validation. 
We plan to investigate these problems in the future.  
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Abstract 
A reading comprehension (RC) system 
attempts to understand a document and returns 
an answer sentence when posed with a 
question.  RC resembles the ad hoc question 
answering (QA) task that aims to extract an 
answer from a collection of documents when 
posed with a question.  However, since RC 
focuses only on a single document, the system 
needs to draw upon external knowledge 
sources to achieve deep analysis of passage 
sentences for answer sentence extraction.  
This paper proposes an approach towards RC 
that attempts to utilize external knowledge to 
improve performance beyond the baseline set 
by the bag-of-words (BOW) approach.  Our 
approach emphasizes matching of metadata 
(i.e. verbs, named entities and base noun 
phrases) in passage context utilization and 
answer sentence extraction. We have also 
devised an automatic acquisition process for 
Web-derived answer patterns (AP) which 
utilizes question-answer pairs from TREC QA, 
the Google search engine and the Web.  This 
approach gave improved RC performances for 
both the Remedia and ChungHwa corpora, 
attaining HumSent accuracies of 42% and 
69% respectively.  In particular, performance 
analysis based on Remedia shows that relative 
performances of 20.7% is due to metadata 
matching and a further 10.9% is due to the 
application of Web-derived answer patterns. 

1. Introduction 
A reading comprehension (RC) system attempts to 
understand a document and returns an answer 
sentence when posed with a question.  The RC 

task was first proposed by the MITRE 
Corporation which developed the Deep Read 
reading comprehension system (Hirschman et al., 
1999).  Deep Read was evaluated on the Remedia 
Corpus that contains a set of stories, each with an 
average of 20 sentences and five questions (of 
types who, where, when, what and why). The 
MITRE group also defined the HumSent scoring 
metric, i.e. the percentage of test questions for 
which the system has chosen a correct sentence as 
the answer.  HumSent answers were compiled by a 
human annotator, who examined the stories and 
chose the sentence(s) that best answered the 
questions.  It was judged that for 11% of the 
Remedia test questions, there is no single sentence 
in the story that is judged to be an appropriate 
answer sentence.  Hence the upper bound for RC 
on Remedia should by 89% HumSent accuracy.  
(Hirschman et al. 1999) reported a HumSent 
accuracy of 36.6% on the Remedia test set.  
Subsequently, (Ng et al., 2000) used a machine 
learning approach of decision tree and achieved 
the accuracy of 39.3%.   Then (Riloff and Thelen, 
2000) and (Charniak et al., 2000) reported 
improvements to 39.7% and 41%, respectively.  
They made use of handcrafted heuristics such as 
the WHEN rule: 

if contain(S, TIME), then Score(S)+=4 
i.e. WHEN questions reward candidate answer 
sentences with four extra points if they contain a 
name entity TIME.  

RC resembles the ad hoc question answering 
(QA) task in TREC.1  The QA task finds answers 
to a set of questions from a collection of 
documents, while RC focuses on a single 

                                                                 
1 http://www.nist.gov. 
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document.  (Light et al. 1998) conducted a 
detailed compared between the two tasks.  They 
found that the answers of most questions in the 
TREC QA task appear more than once within the 
document collection.  However, over 80% of the 
questions in the Remedia corpus correspond to 
answer sentences that have a single occurrence 
only.  Therefore an RC system often has only one 
shot at finding the answer. The system is in dire 
need of extensive knowledge sources to help with 
deep text analysis in order to find the correct 
answer sentence.   

Recently, many QA systems have exploited 
the Web as a gigantic data repository in order to 
help question answering (Clarke et al., 2001; 
Kwok et al., 2001; Radev et al., 2002).  Our 
current work attempts to incorporate a similar idea 
in exploiting Web-derived knowledge to aid RC.  
In particular, we have devised an automatic 
acquisition process for Web-derived answer 
patterns. Additionally we propose to emphasize 
the importance of metadata matching in our 
approach to RC.  By metadata, we are referring to 
automatically labeled verbs, named entities as well 
as base noun phrases in the passage.  It is 
important to achieve a metadata match between 
the question and a candidate answer sentence 
before the candidate is selected as the final answer.  
The candidate answer sentence may be one with a 
high degree of word overlap with the posed 
question, or it may come from other sentences in 
the neighboring context. We apply these different 
techniques step by step and obtain better results 
than have ever previously been reported. 
Especially, we give experiment analysis for 
understanding the results. 
    In the rest of this paper, we will first describe 
three main aspects of our approach towards RC – 
(i) metadata matching, (ii)automatic acquisition of 
Web-derived answer patterns and (iii) the use of 
passage context.  This will be followed by a 
description of our experiments, analysis of results 
and conclusions. 

2. Metadata Matching 
A popular approach in reading comprehension is 
to represent the information content of each 
question or passage sentence as a bag of words 
(BOW).  This approach incorporates stopword 

removal and stemming.  Thereafter, two words are 
considered a match if they share the same 
morphological root.  Given a question, the BOW 
approach selects the passage sentence with the 
maximum number of matching words as the 
answer.  However, the BOW approach does not 
capture the fact that the informativeness of a word 
about a passage sentence varies from one word to 
another.  For example, it has been pointed out by 
(Charniak et al. 2000) that the verb seems to be 
especially important for recognizing that a passage 
sentence is related to a specific question.  In view 
of this, we propose a representation for questions 
and answer sentences that emphasizes three types 
of metadata:  

(i) Main Verbs (MVerb), identified by the link 
parser (Sleator and Temperley 1993);  
(ii) Named Entities (NE), including names of 
locations (LCN), persons (PRN) and organizations 
(ORG), identified by a home-grown named entity 
identification tool; and  
(iii) Base Noun Phrases (BNP), identified by a 
home-grown base noun phrase parser respectively. 

We attempt to quantify the relative importance 
of such metadata through corpus statistics 
obtained only from the training set of the Remedia 
corpus, which has 55 stories. The Remedia test set, 
which contains 60 stories, is set aside for 
evaluation. On average, each training story has 20 
sentences and five questions. There are 274 
questions in all in the entire training set.  Each 
question corresponds to a marked answer sentence 
within the story text.  We analyzed all the 
questions and divided them into three question 
sets (Q_SETS) based on the occurrences of 
MVerb, NE and BNP identified with the tools 
mentioned above.  The following are illustrative 
examples of the Q_SETS as well as their sizes: 

Q_SETMverb  
(Count:169) 

Who helped the Pilgrims? 

Q_SETNE    

 (Count:62) 
When was the first merry-go-
round built in the United States? 

Q_SETBNP   
(Count:232) 

Where are the northern lights? 

Table 1.  Examples and sizes of question sets (Q_SETS) 
with different metadata – main  verb (MVerb), named 
entity (NE) and base noun phrase (BNP). 
   It may also occur that a question belongs to 
multiple Q_SETS.  For example:  
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Q_SETMVerb 
 

When was the first merry-go-round built 
in the United States? 

Q_SETNE 
 

When was the first merry-go-round built 
in the United States? 

Q_SETBNP 
 

When was the first merry-go-round built 
in the United States? 

Table 2.  An example sentence that belongs to multiple 
Q_SETS. 

As mentioned earlier, each question 
corresponds to an answer sentence, which is 
annotated in the story text by MITRE.  Hence we 
can follow the Q_SETS to divide the answer 
sentences into three answer sets (A_SETS).  
Examples of A_SETS that correspond to Table 1 
include: 

A_SETMVerb 
 

An Indian named Squanto came 
to help them. 

A_SETNE 
 

The first merry-go-round in the 
United States was built in 1799.

A_SETBNP 
 

Then these specks reach the air 
high above the earth. 

Table 3.  Examples of the answer sets (A_SETS) 
corresponding to the different metadata categories, 
namely, main verb (MVerb), named entity (NE) and 
base noun phrase) (BNP). 
    In order to quantify the relative importance of 
matching the three kinds of metadata between 
Q_SET and A_SET for reading comprehension, 
we compute the following relative weights based 
on corpus statistics: 

|_|
||

Metadata

Metadata
Metadata SETA

SWeight =  …..Eqn (1) 

where SMetadata is the set of answer sentences in 
|A_SETMetadata| that contain the metadata of its 
corresponding question.  For example, referring to 
Tables 2 and 3, the question in Q_SETNE “When 
was the first merry-go-round built in the United 
Sates?” contains the named entity (underlined) 
which is also found in the associated answer 
sentence from A_SETNE, “The first merry-go-
round in the United States was built in 1799.”  
Hence this answer sentence belongs to the set SNE.   
Contrarily, the question in Q_SETBNP “Where are 
the northern lights?” contains the base noun 
phrase (underlined) but it is not found in the 
associated answer sentence from A_SETBNP, 
“Then these specks reach the air high above the 
earth.”  Hence this answer sentence does not 

belong to the set SBNP.  Based on the three sets, we 
obtain the metadata weights: 

WeightMVerb=0.64, WeightNE=0.38, WeightBNP=0.21 

To illustrate how these metadata weights are 
utilized in the RC task, consider again the 
question, “Who helped the Pilgrims?” together 
with three candidate answers that are “equally 
good” with a single word match when the BOW 
approach is applied.  We further search for 
matching metadata among these candidate 
answers and use the metadata weights for scoring.   

Question Who helped the Pilgrims? 
MVerb identified: “help” 
BNP identified: “the Pilgrams” 

Candidate 
Sentence 1 
 

An Indian named Squanto came to help. 
Matched MVerb (underlined) 
Score= WeightMVerb=0.64 

Candidate 
Sentence 2 
 

By fall, the Pilgrims had enough food for 
the winter. 
Matched BNP (underlined) 
Score= WeightBNP=0.21 

Candidate 
Sentence 3 
 

Then the Pilgrims and the Indians ate and 
played games. 
Matched BNP (underlined) 
Score= WeightBNP=0.21 

Table 4.  The use of metadata matching to extend the 
bag-of-words approach in reading comprehension.  

3. Web-derived Answer Patterns 
In addition to using metadata for RC, the proposed 
approach also leverages knowledge sources that 
are external to the core RC resources – primarily 
the Web and other available corpora.  This section 
describes our approach that attempts to 
automatically derive answer patterns from the 
Web as well as score useful answer patterns to aid 
RC.  We utilize the open domain question-answer 
pairs (2393 in all) from the Question Answering 
track of TREC (TREC8-TREC12) as a basis for 
automatic answer pattern acquisition.   

3.1 Deriving Question Patterns 

We define a set of question tags (Q_TAGS) that 
extend the metadata above in order to represent 
question patterns.  The tags include one for main 
verbs (Q_MVerb), three for named entities 
(Q_LCN, Q_PRN and Q_ORG) and one for base 
noun phrases (Q_BNP). We are also careful to 
ensure that noun phrases tagged as named entities 
are not further tagged as base noun phrases. 
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    A question pattern is expressed in terms of 
Q_TAGS.  A question pattern can be used to 
represent multiple questions in the TREC QA 
resource.  An example is shown in Table 5.  
Tagging the TREC QA resource provides us with 
a set of question patterns {QPi} and for each 
pattern, up to mi example questions. 

Question Pattern (QPi): 
When do Q_PRN Q_MVerb Q_BNP? 
Represented questions: 
Q1: When did Alexander Graham Bell invent the 
telephone? 
Q2: When did Maytag make Magic Chef 
refrigerators? 
Q3: When did Amumdsen reach the South Pole? 
(mi example questions in all) 

Table 5.  A question pattern and some example 
questions that it represents. 
3.2  Deriving Answer Patterns 
For each question pattern, we aim to derive 
answer patterns for it automatically from the Web. 
The set of answer patterns capture possible ways 
of embedding a specific answer in an answer 
sentence.  We will describe the algorithm for 
deriving answer patterns as following and 
illustrate with the following question answer pair 
from TREC QA:  
Q: When did Alexander Graham Bell invent the 
telephone? 
A: 1876 
1. Formulate the Web Query 

The question is tagged and the Web query is 
formulated as “Q_TAG”+ “ANSWER”, i.e. 
Question: “When did Alexander Graham Bell 

invent the telephone?” 
QP:            When do Q_PRN Q_MVerb Q_BNP ? 
where Q_PRN= “Alexander Graham Bell”, 

Q_MVerb= “invent”, and  Q_BNP=  “the 
telephone” 

hence Web query:  “Alexander Graham Bell”+ 
“invent” + “the telephone” + “1876” 

2. Web Search and Snippet Selection 
The Web query is submitted to the search 

engine Google using the GoogleAPI and the top 
100 snippets are downloaded.  From each 
snippet, we select up to ten contiguous words to 
the left as well as to the right of the “ANSWER” 
for answer pattern extraction.  The selected 
words must be continuous and do not cross the 
snippet boundary that Google denotes with ‘…’. 

3. Answer Pattern Selection 
We label the terms in each selected snippet with 
the Q_TAGs from the question as well as the 
answer tag <A>.  The shortest string containing 
all these tags (underlined below) is extracted as 
the answer pattern (AP).  For example:  

Snippet 1: 1876, Alexander Graham Bell 
invented the telephone in the United States… 
AP 1:   <A>, Q_PRN Q_MVerb Q_BNP. 
(N.B.  The answer tag <A> denotes “1876” in this 
example). 
Snippet 2: …which has been invented by 
Alexander Graham Bell in 1876… 
AP 2:    Q_MVerb by Q_PRN in <A>. 

    As may be seen in above, the acquisition 
algorithm for Web-derived answer questions calls 
for specific answers, such as a factoid in a word or 
phrase.  Hence the question-answer pairs from 
TREC QA are suitable for use.  On the other hand, 
Remedia is less suitable here because it contains 
labelled answer sentences instead of factoids.  
Inclusion of whole answer sentences in Web 
query formulation generally does not return the 
answer pattern that we seek in this work. 
3.3 Scoring the Acquired Answer Patterns 
The answer pattern acquisition algorithm returns 
multiple answer patterns for every question-
answer pair submitted to the Web.   In this 
subsection we present an algorithm for deriving 
scores for these answer patterns.  The 
methodology is motivated by the concept of 
confidence level, similar to that used in data 
mining.  The algorithm is as follows: 
1. Formulate the Web Query 

For each question pattern QPi (see Table 5) 
obtained previously, randomly select an example 
question among the mi options that belongs to this 
pattern.  The question is tagged and the Web 
query is formulated in terms of the Q_TAGs only.  
(Please note that the corresponding answer is 
excluded from Web query formulation here, 
which differs from the answer pattern acquisition 
algorithm).  E.g., 
Question: “When did Alexander Graham Bell 

invent the telephone? 
Q_TAGs: Q_PRN Q_MVerb Q_BNP 

Web query:  “Alexander Graham Bell”+ 
“invent” + “the telephone” 

2.   Web Search and Snippet Selection 
The Web query is submitted to the search engine 
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Google and the top 100 snippets are downloaded. 
3.   Scoring each Answer Pattern APij relating to 
QPi 

Based on the question, its pattern QPi, the answer 
and the retrieved snippets, totally the following 
counts for each answer pattern APij relating to 
QPi . 
cij – # snippets matching APij and for which the 

tag <A> matches the correct answer. 
nij – #  snippets matching APij and for which the 

tag <A> matches any term 
Compute the ratio rij= cij / nij..........Eqn(2) 
Repeat steps 1-3 above for another example 
question randomly selected from the pool of mi 
example under QPi.  We arbitrarily set the 
maximum number of iterations to be ki =

⎥⎥
⎤

⎢⎢
⎡

im
3
2  

in order to achieve decent coverage of the 
available examples.  The confidence for APij.is 
computed as          

k

r
APConfidence

k

i
ij

ij

∑
== 1)( ……Eqn(3) 

Equation (3) tries to assign high confidence 
values to answer patterns APij that choose the 
correct answers, while other answer patterns are 
assigned low confidence values.  E.g.: 
<A>, Q_PRN Q_MVerb Q_BNP     (Confidence=0.8) 
Q_MVerb by Q_PRN in <A>.         (Confidence=0.76) 

3.4 Answer Pattern Matching in RC 
The Web-derived answer patterns are used in the 
RC task.  Based on the question and its QP, we 
select the related AP to match among the answer 
sentence candidates.  The candidate that matches 
the highest-scoring AP will be selected.  We find 
that this technique is very effective for RC as it 
can discriminate among candidate answer 
sentences that are rated “equally good” by the 
BOW or metadata matching approaches, e.g.: 
Q:   When is the Chinese New Year? 
QP: When is the Q_BNP? 

where Q_BNP=Chinese New Year 
Related AP:  Q_BNP is <A> (Confidence=0.82) 
Candidate answer sentences 1: you must wait a few more 
weeks for the Chinese New Year. 
Candidate answer sentences 2: Chinese New Year is most 
often between January 20 and February 20. 

Both candidate answer sentences have the same 
number of matching terms – “Chinese”, “New” 
and “Year” and the same metadata, i.e. 
Q_BNP=Chinese New Year. The term “is” is 
excluded by stopword removal. However the 

Web-derived answer pattern is able to select the 
second candidate as the correct answer sentence. 

Hence our system gives high priority to the 
Web-derived AP – if a candidate answer sentence 
can match an answer pattern with confidence > 
0.6, the candidate is taken as the final answer.  No 
further knowledge constraints will be enforced. 
4. Context Assistance 
During RC, the initial application of the BOW 
approach focuses the system’s attention on a small 
set of answer sentence candidates.  However, it 
may occur the true answer sentence is not 
contained in this set.  As was observed by (Riloff 
and Thelen, 2000) and (Charniak et al., 2000), the 
correct answer sentence often precedes/follows the 
sentence with the highest number of matching 
words.  Hence both the preceding and following 
context sentences are searched in their work to 
find the answer sentence especially for why 
questions. 

Our proposed approach references this idea in 
leveraging contextual knowledge for RC.  
Incorporation of contextual knowledge is very 
effective when used in conjunction with named 
entity (NE) identification.  For instance, who 
questions should be answered with words tagged 
with Q_PRN (for persons).  If the candidate 
sentence with the highest number of matching 
words does not contain the appropriate NE, it will 
not be selected as the answer sentence.  Instead, 
our system searches among the two preceding and 
two following context sentences for the 
appropriate NE.  Table 6 offers an illustration. 
Data analysis Remedia training set shows that the 
context window size selected is appropriate for 
when, who and where questions.   

Football Catches On Fast 
(LATROBE, PA., September 4, 1895) - The new 

game of football is catching on fast, and each month new 
teams are being formed. 

Last night was the first time that a football player was 
paid.  The man's name is John Brallier, and he was paid 
$10 to take the place of someone who was hurt.… 
Question: Who was the first football player to be paid? 
Sentence with maximum # matching words: Last night 
was the first time that a football player was paid. 
Correct answer sentence: The man's name is John 
Brallier, and he was paid $10 to take the place of 
someone who was hurt. 

Table 6.  An example illustrating the use of contextual 
knowledge in RC. 
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As for why questions, a candidate answer 
sentence is selected from the context window if its 
first word is one of “this”, “that”, “these”, 
“those”, “so” or “because”.  We did not utilize 
contextual constraints for what questions. 

5. Experiments 
RC experiments are run on the Remedia corpus as 
well as the ChungHwa corpus.  The Remedia 
training set has 55 stories, each with about five 
questions.  The Remedia test set has 60 stories and 
5 questions per story.  The ChungHwa corpus is 
derived from the book, “English Reading 
Comprehension in 100 days,” published by 
Chung Hwa Book Co., (H.K.) Ltd.  The 
ChungHwa training set includes 100 English 
stories and each has four questions on average.  
The ChungHwa testing set includes 50 stories and 
their questions.  We use HumSent as the prime 
evaluation metric for reading comprehension.   

The three kinds of knowledge sources are used 
incrementally in our experimental setup and 
results are labeled as follows: 

Result Technique 
Result_1 BOW 
Result_2 BOW+MD 
Result_3 BOW+MD+AP 
Result_4 BOW+MD+AP+Context 

Table 7.  Experimental setup in RC evaluations.  
Abbrievations are: bag-of-words (BOW), metadata 
(MD), Web-derived answer patterns (AP), contextual 
knowledge (Context). 

5.1 Results on Remedia 
Table 8 shows the RC results for various question 
types in the Remedia test set.  

 When Who What Where Why 
Result_1 32.0% 30.0% 31.8% 29.6% 18.6%
Result_2 40.0% 28.0% 39.0% 38.0% 20.0%
Result_3 52.6% 42.8% 40.6% 38.4% 21.0%

Result_4 55.0% 48.0% 40.6% 36.4% 27.6%

 Table 8.  HumSent accuracies for the Remedia test set. 
We observe that the HumSent accuracies vary 

substantially across different interrogatives. The 
system performs best for when questions and 
worst for why questions. The use of Web-derived 
answer patterns brought improvements to all the 
different interrogatives.  The other knowledge 
sources, namely, meta data and context, bring 

improvements for some question types but 
degraded others.  

Figure 1 shows the overall RC results of our 
system.  The relative incremental gains due to the 
use of metadata, Web-derived answer patterns and 
context are 20.7%, 10.9% and 8.2% respectively.  
We also ran pairwise t-tests to test the statistical 
significance of these improvements and results are 
shown in Table 9.  The improvements due to 
metadata matching and Web-derived answer 
patterns are statistically significant (p<0.05) but 
the improvement due to context is not. 
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Figure 1.  HumSent accuracies for Remedia. 

Pairwise 
Comparison 

Result_1 & 
Result_2 

Result_2 & 
Result_3 

Result_3 & 
Result_4 

t-test Results t(4)=2.207, 
p=0.046 

t(4)=2.168, 
p=0.048 

t(4)=1.5, 
p=0.104 

Table 9.  Tests of statistical significance in the 
incremental improvements over BOW among the use 
of metadata, Web-derived answer patterns and context.   

We also compared our results across various 
interrogatives with those previously reported in 
(Riloff and Thelen, 2000).  Their system is based 
on handcrafted rules with deterministic algorithms.  
The comparison (see Table 10) shows that our 
approach which is based on data-driven patterns 
and statistics can achieve comparable performance. 

Question Type Riloff &Thelen 2000 Result_4 
When 55% 55.0% 
Who 41% 48.0% 
What 28% 40.6% 
Where 47% 36.4% 
Why 28% 27.6% 
Overall 40% 42.0% 

Table 10.  Comparison of HumSent results with a 
heuristic based RC system (Riloff & Thelen 00).  

5.2 Results on ChungHwa 
Experimental results for the ChungHwa corpus are 
presented in Figure 2.  The HumSent accuracies 
obtained are generally higher than those with 
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Remedia.  We observe similar trends as before, i.e. 
our approach in the use of metadata, Web-derived 
answer patterns and context bring incremental 
gains to RC performance.  However, the actual 
gain levels are much reduced. 
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Figure 2.  HumSent accuracies for ChungHwa. 

5.3. Analyses of Results 
In order to understand the underlying reason for 
reduced performance gains as we migrated from 
Remedia to Chunghwa, we analyzed the question 
lengths as well as the degree of word match 
between questions and answers among the two 
corpora.  Figure 3 shows that the average length 
of questions in Chunghwa are longer than 
Remedia.  Longer questions contain more 
information which is beneficial to the BOW 
approach in finding the correct answer. 

32.6

7.5

32.5

60

13.3

54.1

0

10

20

30

40

50

60

70

≤4 5,6,7 ≥8
Question Length

Pe
rc

en
t o

f Q
ue

st
io

ns
 (%

)

Remedia ChungHwa
 

Figure 3.  Distribution of question lengths among the 
Remedia and ChungHwa corpora. 

The degree of word match between questions 
and answers among the two corpora is depicted in 
Figure 4.  We observe that ChungHwa has a larger 
proportion of questions that have a match- size (i.e. 
number of matching words between a question 
and its answer) larger than 2.  This presents an 
advantage for the BOW approach in RC.  It is also 
observed that approximately 10% of the Remedia 
questions have no correct answers (i.e. match-
size=-1) and about 25% have no matching words 
with the correct answer sentence.  This explains 

the overall discrepancies in HumSent accuracies 
between Remedia and ChungHwa. 
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Figure 4.  Distribution of match-sizes (i.e. the number 
of matching words between questions and their 
answers) in the two corpora. 

While our approach has leveraged a variety of 
knowledge sources in RC, we still observe that 
our system is unable to correctly answer 58% of 
the questions in Remedia. An example of such 
elusive questions is:  
Question: When do the French celebrate their 
freedom? 
Answer Sentence: To the French, July 14 has the 
same meaning as July 4th does to the United 
States.  

6. Conclusions 
A reading comprehension (RC) system aims to 

understand a single document (i.e. story or passage) 
in order to be able to automatically answer questions 
about it.   The task presents an information retrieval 
paradigm that differs significantly from that found in 
Web search engines.  RC resembles the question 
answering (QA) task in TREC which returns an 
answer for a given question from a collection of 
documents.  However, while a QA system can 
utilize the knowledge and information in a collection 
of documents, RC systems focuses only on a single 
document only.  Consequently there is a dire need to 
draw upon a variety of knowledge sources to aid 
deep analysis of the document for answer generation.  
This paper presents our initial effort in designing an 
approach for RC that leverages a variety of 
knowledge sources beyond the context of the 
passage, in an attempt to improve RC performance 
beyond the baseline set by the bag-of-words (BOW) 
approach.  The knowledge sources include the use of 
metadata (i.e. verbs, named entities and base noun 
phrases).  Metadata matching is applied in our 
approach in answer sentence extraction as well as 
use of contextual sentences.  We also devised an 
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automatic acquisition algorithm for Web-derived 
answer patterns.  The acquisition process utilizes 
question-answer pairs from TREC QA, the Google 
search engine and the Web.  These answer patterns 
capture important structures for answer sentence 
extraction in RC.  The use of metadata matching and 
Web-derived answer patterns improved reading 
comprehension performances for the both Remedia 
and ChungHwa corpora. We obtain improvements 
over previously reported results for Remedia, with 
an overall HumSet accuracy of 42%.  In particular, a 
relative gain of 20.7% is due to metadata matching 
and a further 10.9% is due to application of Web-
derived answer patterns. 
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Abstract

This paperuseshumanverb associations
as the basisfor an investigationof verb
properties,focusingon semanticverb re-
lations and prominentnominal features.
First, the lexical semantictaxonymy Ger-
maNet is checked on the types of clas-
sic semanticrelationsin our data; verb-
verb pairsnot coveredby GermaNetcan
help to detectmissing links in the tax-
onomy, and provide a useful basis for
definingnon-classicalrelations. Second,
astatisticalgrammaris usedfor determin-
ing the conceptualroles of the noun re-
sponses. We presentprominentsyntax-
semanticrolesandevidencefor theuseful-
nessof co-occurrenceinformationin dis-
tributionalverbdescriptions.

1 Introduction

This paperpresentsan examinationof a collection
of semanticassociatesevoked by Germanverbsin
a web experiment. We definesemanticassociates
hereasthoseconceptsspontaneouslycalledto mind
by a stimulus word. In the current investigation,
we assumethattheseevokedconceptsreflecthighly
salientlinguisticandconceptualfeaturesof thestim-
ulus word. Given this assumption,identifying the
typesof informationprovided by speakersanddis-
tinguishing and quantifying the relationshipsbe-
tweenstimulusandresponsecanserve a numberof
purposesfor NLP applications.

First, thenotionof semanticverbrelationsis crucial
for many NLP tasksandapplicationssuchasverb
clustering(Pereiraet al., 1993; Merlo andSteven-
son,2001;Lin, 1998;Schulteim Walde,2003),the-
saurusextraction(Lin, 1999;McCarthyetal.,2003),
word sensediscrimination(Scḧutze,1998),text in-
dexing (Deerwesteretal.,1990),andsummarisation
(Barzilay et al., 2002). Different applicationsin-
corporatedifferentsemanticverb relations,varying
with respectto theirdemands.To date,limited effort
hasbeenspenton specifyingtherangeof verb-verb
relations. Morris andHirst (2004)performa study
on lexical semanticrelationswhich ensuretext co-
hesion.Their relationsarenot specificto verb-verb
pairs, but include e.g. descriptive noun-adjective
pairs(suchasprofessors/brilliant), or stereotypical
relations(suchashomeless/drunk). Chklovski and
Pantel (2004) addressthe automaticacquisitionof
verb-verb pairs and their relations from the web.
They definesyntagmaticpatternsto cover strength,
enablementand temporal relations in addition to
synonymy andantonymy, but they donotperforman
exhaustive study. Wesuggestthatananalysisof hu-
manverb-verb associationsmay identify the range
of semanticrelationswhich arecrucial in NLP ap-
plications.Wepresentapreparatorystudywherethe
lexical semantictaxonymy GermaNet(Kunze,2000;
Kunze,2004)is checkedonthetypesof classicalse-
manticverb relations1 in our data; verb-verb pairs
notcoveredby GermaNetcanhelpto detectmissing
links in thetaxonomy, andprovide anempiricalba-
sisfor definingnon-classicalrelations.

1Wefollow Morris andHirst (2004)andreferto theparadig-
maticWordNetrelationsasthe”classical”relations.
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Second,in data-intensive lexical semantics,words
are commonly modelledby distributional vectors,
andthe relatednessof wordsis measuredby vector
similarity. Thefeaturesin thedistributionaldescrip-
tionscanbevariedin nature:wordsco-occurringin
adocument,in acontext window, orwith respectto a
word-word relationship,suchassyntacticstructure,
syntacticandsemanticvalency, etc. Most previous
work on distributional similarity haseitherfocused
on a specificword-word relation(suchasPereiraet
al. (1993) referring to a direct objectnoun for de-
scribingverbs),or usedany dependency relationde-
tectedby thechunker or parser(suchasLin (1999;
1998),andMcCarthyetal. (2003)).Little effort has
beenspentonvaryingthe(mostlynominal)typesof
verbfeatures.Weassumethatthenounassociatesin
our verb experimentarerelatedto conceptualroles
of the respective verbs,andinvestigatethe linguis-
tic functionsthatarerealisedby theresponsenouns
with respectto the target verb, basedon an em-
pirical grammarmodel (Schulteim Walde, 2003).
Eventhoughtheusageof thedistributional features
dependson the respective application,we present
prominentrolesandevidencefor the usefulnessof
co-occurrenceinformationin distributionalverbde-
scriptions.

2 Web Experiment

This sectionintroducesour web experiment,asthe
datasourcefor theexplorationsto follow. Theweb
experimentaskednative speakersto provide associ-
ationsto Germanverbs.

2.1 Experiment Method

Material: 330 verbswere selectedfor the experi-
ment. They weredrawn from a varietyof semantic
classesincluding verbsof self-motion(e.g. gehen
‘walk’, schwimmen‘swim’), transferof possession
(e.g. kaufen‘buy’, kriegen ‘receive’), cause(e.g.
verbrennen‘burn’, reduzieren ‘reduce’),experienc-
ing (e.g. hassen‘hate’, überraschen ‘surprise’),
communication(e.g. reden‘talk’, beneiden‘envy’),
etc.Drawing verbsfrom differentcategorieswasin-
tendedonly to ensurethat the experimentcovered
a wide variety of verb types; the inclusion of any
verbin any particularverbclasswasachievedin part
with referenceto prior verbclassificationwork (e.g.

Levin (1993))but alsoon intuitive grounds.It is not
critical for thesubsequentanalyses.Thetargetverbs
weredivided randomlyinto 6 separateexperimen-
tal lists of 55 verbseach. The lists werebalanced
for classaffiliation and frequency ranges(0, 100,
500,1000,5000),suchthateachlist containedverbs
from eachgrosslydefinedsemanticclass,andhad
equivalentoverall verbfrequency distributions.The
frequenciesof the verbswere determinedby a 35
million word newspapercorpus;the verbsshowed
corpusfrequenciesbetween1 and71,604.

Procedure: The experiment was administered
over the Internet. Whenparticipantsloadedtheex-
perimentalpage,they werefirst asked for their bi-
ographicalinformation,suchaslinguistic expertise,
ageandregional dialect. Next, the participantwas
presentedwith thewritteninstructionsfor theexper-
imentandanexampleitemwith potentialresponses.
In the actualexperiment,eachtrial consistedof a
verbpresentedin a box at thetop of thescreen.All
stimulusverbswerepresentedin the infinitive. Be-
low the verb wasa seriesof datainput lines where
participantscouldtypetheirassociations.They were
instructedto typeatmostonewordperline and,fol-
lowing Germangrammar, to distinguishnounsfrom
otherpartsof speechwith capitalisation.2 Partici-
pantshad30 sec. per verb to type asmany associ-
ationsasthey could. After this time limit, the pro-
gramautomaticallyadvancedto thenext trial.

Participants and Data: 299 native German
speakers participatedin the experiment, between
44 and 54 for eachdata set. 132 of the individ-
uals identified themselves ashaving hada linguis-
ticseducationand166ratedthemselvesaslinguistic
novices. In total, we collected81,373associations
from 16,445trials; eachtrial elicited an averageof
5.16associateresponseswith a rangeof 0-16.

2.2 Data Preparation

Eachcompleteddatasetcontainsthebackgroundin-
formationof theparticipant,followed by the list of
target verbs. Eachtarget verb is pairedwith a list
of associationsin theorderin which theparticipant
provided them. For theanalysesto follow, we pre-
processedall datasetsin the following way: For
eachtargetverb,we quantifiedover all responsesin

2Despitetheseinstructions,someparticipantsfailed to use
capitalisation,leadingto someambiguity.
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theexperiment,disregardingtheparticipant’s back-
groundandtheorderof theassociates.Table1 lists
the 10 most frequentresponsesfor the verb klagen
‘complain, moan,sue’. 64% of all responseswere
providedmorethanoncefor a targetverb,and36%
wereidiosyncratic,i.e. given only once. The verb
responseswerenotdistinguishedaccordingto poly-
semicsensesof theverbs.

klagen ‘complain,moan,sue’
Gericht ‘court’ 19
jammern ‘moan’ 18
weinen ‘cry’ 13
Anwalt ‘lawyer’ 11
Richter ‘judge’ 9
Klage ‘complaint’ 7
Leid ‘suffering’ 6
Trauer ‘mourning’ 6
Klagemauer ‘Wailing Wall’ 5
laut ‘noisy’ 5

Table1: Associationfrequenciesfor targetverb.

3 Linguistic Analyses of Experiment Data

The verb associationsareinvestigatedon threelin-
guisticdimensions:

1. In a preparatorystep, we distinguishthe re-
sponseswith respect to the major part-of-
speechtags:nouns,verbs,adjectives,adverbs.

2. For eachverb associate,we look up the se-
manticrelationbetweenthetargetandresponse
verbsusingthelexical taxonomyGermaNet.

3. For each noun associate,we investigatethe
kindsof linguistic functionsthatarerealisedby
the nounwith respectto the target verb. The
analysisis basedonanempiricalgrammar.

For expositorypurposes,thepaperis organisedinto
threeanalysissections,with discussionsfollowing
eachanalysis.

3.1 Excursus: Empirical Grammar Model

The quantitative datain the analysesto follow are
derived from anempiricalgrammarmodel(Schulte
im Walde,2003): a Germancontext-free grammar
wasdevelopedwith specificattentiontowardsverb
subcategorisation. The grammarwas lexicalised,
andtheparametersof theprobabilisticversionwere
estimatedin an unsupervisedtraining procedure,

using 35 million words of a large Germannews-
papercorpusfrom the 1990s. The trained gram-
marmodelprovidesempiricalfrequenciesfor word
forms,parts-of-speechtagsandlemmas,andquan-
titative informationon lexicalisedrulesandsyntax-
semanticshead-headco-occurrences.

3.2 Morpho-Syntactic Analysis

Themorpho-syntacticanalysisis a preparatorystep
for the analysesto follow. Each associateof the
target verb is assignedits (possibly ambiguous)
part-of-speechby our empirical grammar dictio-
nary. Originally, the dictionary distinguishedap-
prox. 50 morpho-syntacticcategories,but we disre-
gardfine-graineddistinctionssuchascase,number
andgenderfeaturesandconsideronly themajorcat-
egoriesverb(V), noun(N), adjective (ADJ) andad-
verb (ADV). Ambiguitiesbetweenthesecategories
arisee.g. in the caseof nominalisedverbs (such
asRauchen ‘smoke’, Vergnügen ‘please/pleasure’),
wherethe experimentparticipantcould have been
referringeitherto averbor a noun,or in thecaseof
pastparticiples(suchasverschlafen) andinfinitives
(such as überlegen), where the participant could
havebeenreferringeitherto averb(‘sleep’or ‘think
about’,for thetwo examplesrespectively) or anad-
jective (‘drowsy’ or ‘superior’, respectively). In to-
tal, 4%of all responsetypesareambiguousbetween
multiple part-of-speechtags.

Having assignedpart-of-speechtagsto the asso-
ciates,we candistinguishandquantify themorpho-
syntactic categories of the responses. In non-
ambiguoussituations,theuniquepart-of-speechre-
ceives the total target-responsefrequency; in am-
biguoussituations,the target-responsefrequency is
split over the possiblepart-of-speechtags. As the
resultof this first analysis,we canspecify the fre-
quency distributions of the part-of-speechtagsfor
eachverb, and also in total. Table 2 presentsthe
total numbersand specificverb examples. Partic-
ipants provided noun associatesin the clear ma-
jority of token instances,62%; verbs were given
in 25% of the responses,adjectives in 11%, ad-
verbsalmostnever (2%).3 The part-of-speechdis-
tribution for responsewords is correlatedwith tar-
get verb frequency. The rate of verb and adverb

3All of our analysesreportedin this paperarebasedon re-
sponsetokens;thetypeanalysesshow thesameoverallpictures.
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responsesis positively correlatedwith target verb
frequency, Pearson’s r(328)=.294,p � .001for verbs
andr(328)=.229,p � .001for adverbs,while therate
of nounandadjective responsesis inverselycorre-
latedwith verb frequency, Pearson’s r(328)=-.155,
p � .005 for nounsand r(328)=.114,p � .05 for ad-
jectives. Thedistribution of responsesover part-of-
speechalsovariesacrossverbclasses.For example,
aspectualverbs,suchas aufḧoren ‘stop’, received
moreverb responses,t(12)=3.11,p � .01, andfewer
noun responses,t(12)=3.84,p � .002, thancreation
verbs,suchasbacken ‘bake’, althoughtheverbsets
have comparablefrequencies,t(12)=1.1,p � .2.

V N ADJ ADV
TotalFreq 19,863 48,905 8,510 1,268
TotalProb 25% 62% 11% 2%

aufḧoren ‘stop’ 49% 39% 4% 6%
aufregen ‘be upset’ 22% 54% 21% 0%
backen ‘bake’ 7% 86% 6% 1%
bemerken ‘realise’ 52% 31% 12% 2%
dünken ‘seem’ 46% 30% 18% 1%
flüstern‘whisper’ 19% 43% 37% 0%
nehmen‘take’ 60% 31% 3% 2%
radeln‘bike’ 8% 84% 6% 2%
schreiben‘write’ 14% 81% 4% 1%

Table2: Part-of-speechtags.

3.3 Semantic Verb Relations

For eachverbassociate,we look up thesemanticre-
lation betweenthe target andresponseverbsusing
the lexical semantictaxonomyGermaNet(Kunze,
2000; Kunze, 2004), the Germancounterpartto
WordNet (Fellbaum,1998). The lexical database
is inspiredby psycholinguisticresearchon human
lexical memory. It organisesnouns,verbs,adjec-
tivesandadverbsintoclassesof synonyms(synsets),
which are connectedby lexical and conceptual
relations. The GermaNetversion from October
2001contains6,904verbsanddefinesthe paradig-
matic semanticrelationssynonymy, antonymy, hy-
pernymy/hyponymyaswell asthenon-paradigmatic
relationsentailment,cause, and also seebetween
verbsor verb synsets. (Also seeis an underspeci-
fiedrelation,whichcapturesrelationshipsotherthan
the precedingones. For example,sparen ‘save’ is
relatedto haushalten‘budget’ by also see.) Words
with severalsensesareassignedto multiple synsets.

Basedon the GermaNetrelations,we can dis-
tinguish betweenthe different kinds of verb asso-

ciationselicited from speakers. Our analysispro-
ceedsas follows. For eachpair of target and re-
sponseverbs,we look up whetherany kind of se-
manticrelationis definedbetweenany of thesynsets
theverbsbelongto. For example,if the target verb
rennen’run’ is in synsets� and � , andthe response
verb bewegen ’move’ is in synsets� and � , we de-
terminewhetherthereis any semanticrelation be-
tweenthe synsets� and � , � and � , � and � , � and

� . Two verbsbelongingto thesamesynsetaresyn-
onymous. The semanticrelationsarequantifiedby
the target-responseverb frequencies,e.g. if 12 par-
ticipantsprovided the associationbewegen for ren-
nen, thehypernymy relationis quantifiedby thefre-
quency 12. If the target and the responseverb are
both in GermaNet,but thereis no relationbetween
their synsets,then the verbsdo not bearany kind
of semanticrelation,accordingto GermaNet’s cur-
rent status. If either of them is not in GermaNet,
we cannotmake any statementaboutthe verb-verb
relationship. Table3 shows the numberof seman-
tic relationsencodedin our GermaNetversion,and
the frequenciesand probabilities of our response
tokens found among them.4 For example, there
are9,275verb-verb instanceswhereGermaNetde-
finesahypernymy-hyponymy relationbetweentheir
synsets;for 2,807of our verb-verb pairs (verb re-
sponsetokenswith respectto targetverbs)wefound
a hypernymy relationamongthe GermaNetdefini-
tions, which accountsfor 14% of all our verb re-
sponses.

The distribution of target-responserelations is
alsocorrelatedwith targetverbfrequency. Thepro-
portion of associateresponsescapturedby the re-
spective relations of synonym, antonym and hy-
ponym increasesas a function of target verb fre-
quency, r(323)=.147 for synonymy, r(328)=.341
for antonymy and r(328)=.243for hyponymy (all
p � .01); theproportionof hypernym relationsis not
correlatedwith verb frequency. The distribution of
relationsalso varies by verb class. For example,
aspectualtarget verbslike aufḧoren ‘stop’ received
significantlymoreantonymic responseslike anfan-
gen ‘begin’ or weitermachen ‘go on’ thancreation
verbssuchasbacken ’bake’, t(12)=3.44,p � .05.

4Notethatthenumberof encodedrelationsin GermaNetdif-
fersstrongly, which influencesthenumberof verb-verb tokens
thatcanpotentiallybefound.
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GermaNet Freq Prob
Synonymy 4,633 1,194 6%
Antonymy 226 252 1%
Hypernymy 9,275 2,807 14%
Hyponymy 9,275 3,016 16%
Cause 95 49 0%
Entailment 8 0 0%
Also see 1 0 0%
No relation - 10,509 54%
Unknown cases - 1,726 9%

Table3: Semanticrelations.

An interestingpieceof informationis providedby
theverb-verbpairsfor which we do not find a rela-
tionship in GermaNet.The minority of suchcases
(9%) is due to part-of-speechconfusionbasedon
capitalisationerrorsby theparticipants,cf. footnote
2; e.g. the non-capitalisednoun wärme ‘warmth’
wasclassifiedasa verbbecauseit is the imperative
of the verb wärmen ‘warm’. A remarkablenum-
berof verb-verbassociations(54%)donotshow any
kind of semanticrelationaccordingto GermaNetde-
spitebothverbsappearingin thetaxonomy. On the
one hand, this is partly due to the GermaNettax-
onomy not being finishedyet; we find verb asso-
ciationssuchasweglaufen‘run away’ for abhauen
‘walk off ’ (12 times),or untersuchen ‘examine’ for
analysieren ‘analyse’ (8 times) where we assume
(near) synonymy not yet coded in GermaNet;or
weggehen‘leave’ for ankommen‘arrive’ (6 times),
andfrieren ‘be cold’ for schwitzen‘sweat’ (2 times)
wherewe assumeantonymy not yet codedin Ger-
maNet. For thosecases,our associationdatapro-
vides a useful basisfor detectingmissinglinks in
GermaNet,which canbe usedto enhancethe tax-
onomy. However, a large proportion of the ”no
relation” associationsrepresentinstancesof verb-
verbrelationsnot targetedby GermaNet.For exam-
ple, adressieren ‘address’was associatedwith the
temporally precedingschreiben ‘write’ (15 times)
and the temporally following schicken ‘send’ (6
times);schwitzen‘sweat’wasassociatedwith acon-
sequencestinken ‘stink’ (8 times)andwith a cause
laufen ‘run’ (5 times); setzen‘seat’ wasassociated
with the implication sitzen‘sit’ (2 times),erfahren
‘get to know’ with theimplicationwissen‘know’ (8
times). Thoseexamplesrepresentinstantiationsof
non-classicalverb relationsandcouldbesubsumed
underalsoseerelationsin GermaNet,but it is obvi-

ousthatonewouldprefermorefine-graineddistinc-
tions. We arespecificallyinterestedin thosecases,
becauseweexpectthathumanassociationscoverthe
rangeof possiblesemanticverb relationsto a large
extent,andwe believe that they representanexcel-
lent basisfor defininganexhaustive set,asalterna-
tive to e.g. text-basedrelations(Morris andHirst,
2004). Again, the diversity of semanticverb rela-
tions is a crucial ingredientfor NLP taskssuchas
thesaurusextraction, summarisation,and question
answering.

Window Look-up We have arguedabove that an
investigationinto thetypesof semanticrelationsin-
stantiatedby verb-verb associationscould be rel-
evant in NLP. Thus, we are interestedin whether
paradigmaticallyrelatedverb-verbpairsco-occurin
texts. To evaluatethis point, we perform a win-
dow look-up, in orderto determinethedistancebe-
tweentwo associatedverbs. We useour complete
newspapercorpus,200 million words, and check
whetherthe responseverbsoccur in a window of
5/20/50words to the left or to the right of the rel-
evanttargetword. For paradigmaticallyrelatedverb
pairs, namely thosewhoserelation we could de-
terminewith GermaNet(37%), we find 85/95/97%
in the respective windows. For thosewhose re-
lation is unspecifiedin GermaNet(63%), we find
lowerco-occurrencerates,61/74/79%.Thefactthat
the distancesbetweenverbsand the co-occurrance
ratesdiffer with respectto the category of seman-
tic relation, e.g. paradigmaticor not, is useful
for NLP applicationssuchassummarisation,where
both the distancesbetweensalientwordsand their
semanticrelationsarecrucial. More precisecondi-
tions (e.g. different window sizes,structuralsen-
tence/paragraphdistinctions,quantificationof win-
dow matchesby their frequencies)shallbespecified
in futurework.

3.4 Syntax-Semantic Noun Functions

In a third step,we investigatethekindsof linguistic
functionsthatarerealisedby nounassociatesof the
targetverbs.Our hypothesisis thatthepropertiesof
theelicitednounconceptsprovide insight into con-
ceptualfeaturesfor distributionalverbdescriptions.

The analysis utilises the empirical grammar
model, cf. Section3.1. With respectto verb sub-
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categorisation,the grammardefinesfrequency dis-
tributionsof verbsfor 178 subcategorisationframe
types, including prepositionalphraseinformation,
and frequency distributions of verbs for nominal
argument fillers. For example, the verb backen
‘bake’ appeared240 times in our training corpus.
In 80 of theseinstancesit was parsedas intransi-
tive, and in 109 instancesit was parsedas transi-
tive subcategorising for a direct object. The most
frequentnounssubcategorisedfor asdirect objects
are Brötchen ‘rolls’, Brot ‘bread’, Kuchen ‘cake’,
Plätzchen‘cookies’,Waffel ‘waffle’.

We usethe grammarinformation to look up the
syntactic relationshipswhich exist betweena tar-
get verb and a responsenoun. For example, the
nounsKuchen ‘cake’, Brot ‘bread’, PizzaandMut-
ter ‘mother’ wereproducedin responseto thetarget
verb backen ‘bake’. The grammarlook-up tells us
thatKuchen‘cake’ andBrot ‘bread’appearnotonly
astheverb’sdirectobjects(asillustratedabove),but
alsoas intransitive subjects;Pizzaappearsonly as
a direct object, and Mutter ‘mother’ appearsonly
as transitive subject. The verb-nounrelationships
which are found in the grammarare quantifiedby
theverb-nounassociationfrequency, dividedby the
numberof differentrelationships(to accountfor the
ambiguity representedby multiple relationships).
For example,thenounKuchenwaselicited45 times
in responseto bake; thegrammarcontainsthenoun
both asdirect objectandas intransitive subjectfor
thatverb,sobothfunctionsareassignedafrequency
of 22.5. In a secondvariant of the analysis,we
alsodistributed the verb-nounassociationfrequen-
ciesovermultiplerelationshipsaccordingto theem-
pirical proportionsof therespective relationshipsin
thegrammar, e.g. of thetotal associationfrequency
of 45 for Kuchen, 15wouldbeassignedto thedirect
objectof backen, and30 to the intransitive subject
if theempiricalgrammarevidencefor therespective
functionsof backenwereonevs. two thirds.

In a following step,we accumulatethe associa-
tion frequency proportionswith respectto aspecific
relationship,e.g. for the direct objectsof backen
‘bake’ we sum over the frequency proportionsfor
Kuchen, Brot, Plätzchen, Brötchen, etc.Thefinal re-
sult is a frequency distribution over linguistic func-
tions for eachtarget verb, i.e. for eachverb we
can determinewhich linguistic functionsare acti-

vated by how many noun associates. For exam-
ple,themostprominentfunctionsfor theinchoative-
causative verb backen ‘bake’ are the transitive di-
rect object (8%), the intransitive subject(7%) and
thetransitive subject(4%).

By generalisingover all verbs,we discover that
only 11 frame-slotcombinationsare activated by
at least 1% of the nouns: subjects in the in-
transitive frame, the transitive frame (with di-
rect/indirect object, or prepositionalphrase)and
the ditransitive frame; the directobject slot in
the transitive, the ditransitive frame and the di-
rect object plus PP frame; the indirectobject
in a transitive and ditransitive frame, and the
prepositionalphraseheadedby Dat:in, dative (loca-
tive) ‘in’. Thefrequency andprobabilityproportions
areillustratedby Table4; the function is indicated
by a slot within a frame (with the relevant slot in
bold font); ‘S’ is a subjectslot, ‘AO’ an accusative
(direct) object, ‘DO’ a dative (indirect) object,and
‘PP’ a prepositionalphrase. The activation of the
functionsdiffersonly slightly with theanalysisvari-
antdistributing theassociationfrequencieswith re-
spectto grammarevidence,seeabove.

Interestingly, different verb classesare associ-
atedto frameslots to varying degrees. For exam-
ple, verbsof creationlike backen ’bake’ eliciteddi-
rect objectslot fillers significantlymoreoften than
aspectualverbs like aufḧoren ‘stop’, t(12)=2.24,
p � .05.

Function Freq Prob
S S V 1,793 4%

S V AO 1,065 2%
S V DO 330 1%
S V AO DO 344 1%
S V PP 510 1%

AO S V AO 2,298 5%
S V AO DO 882 2%
S V AO PP 706 1%

DO S V DO 302 1%
S V AO DO 597 1%

PP S V PP-Dat:in 418 1%
Unknown noun 10,663 22%
Unknown function 24,536 50%

Table4: Associatesasslot fillers.

In total, only 28% of all noun associateswere
identifiedby the statisticalgrammaras frame-slots
fillers. However, the analysisof noun functions
shows that a rangeof linguistic functionsmight be
consideredasprominent,e.g. 11 functionsareac-
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tivated by more than 1% of the associates. Our
hopeis that theseframe-rolecombinationsarecan-
didatesfor definingdistributional verbdescriptions.
As mentionedbefore,mostpreviouswork on distri-
butional similarity hasfocusedeitheron a specific
word-word relation(suchasPereiraet al. (1993)re-
ferring to a directobjectnounfor describingverbs),
or usedany syntacticrelationshipdetectedby the
chunkeror parser(suchasLin (1999;1998)andMc-
Carthyet al. (2003)). Naturally, thecontribution of
distributional featuresdependson thedistributional
objectsandthe application,but our resultssuggest
that it is worth determininga task-specificset of
prominentfeatures.

The majority of noun responseswere not found
as slot fillers. 22% of the associatesare missing
becausethey do not appearin the grammarmodel
at all. Thesecasesaredue to (i) lemmatisationin
theempiricalgrammardictionary, wherenouncom-
poundssuchasAutorennen‘car racing’ arelemma-
tisedby their lexical heads,creatinga mismatchbe-
tweenthe full compoundand its head;(ii) domain
andsizeof training corpus,which underrepresents
slangresponseslike Grufties ‘old people’, dialect
expressionssuchasAusstecherle ‘cookie-cutter’as
well as technicalexpressionssuchas Plosiv ‘plo-
sive’. The remaining50% of the nounsare repre-
sentedin thegrammarbut donotfill subcategorised-
for linguistic functions;clearly theconceptualroles
of thenounassociatesarenot restrictedto thesub-
categorisationof thetargetverbs.In partwhat is or
is notcoveredby thegrammarmodelcanbecharac-
terisedasanargument/adjunctcontrast.Thegram-
marmodeldistinguishesargumentandadjunctfunc-
tions, andonly argumentsare includedin the verb
subcategorisationand thereforefound as linguistic
functions. Adjuncts such as the instrumentPin-
sel ‘brush’ for bemalen‘paint’ (21 times), Pfanne
‘pan’ for erhitzen‘heat’ (2), or clause-internalinfor-
mation suchas Aufmerksamkeit ‘attention’ for be-
merken ‘notice’ (6) and Musik ‘music’ for feiern
‘celebrate’ (10) are not found. Theseassociates
fulfill scene-relatedroles which are not captured
by subcategorisation in the grammarmodel. In
addition, we find associateswhich captureclause-
externalscene-relatedinformationor refer to world
knowledgewhich is not expectedto befoundin the
context at all. For example,the associationTrock-

ner ‘dryer’ asthe instrumentfor trocknen‘dry’ (11
times)is not typically mentionedwith theverb;sim-
ilarly Wasser ‘water’ for auftauen ‘defrost’ (14),
Freude‘joy’ for überraschen‘surprise’(24),or Ver-
antwortung‘responsibility’ for leiten ‘guide’ (4) re-
flect world knowledgeandmaynot befound in the
immediatecontext of theverb.

Window Look-up Of course,the distinction be-
tweenarguments,adjuncts,scene-relatedrolesand
world knowledgereflectsacontinuum.As a follow-
up experiment,we perform a window look-up on
theverb-nounpairs,in orderto determinewhatpor-
tion of thenounsco-occurin thecontext of theverb
andwhatportionis missing.This shouldprovide us
with a roughideaof theconceptualroleswhich are
world knowledgeandnot found in thecontext. We
againuseour completenewspapercorpus,200mil-
lion words,andcheckwhetherthe responsenouns
are in a window of 5/20/50 words to the left or
to the right of the relevant target verb. Naturally,
mostnounassociateswhichwerefoundasslotfillers
in the functional analysisalso appearin the win-
dow (sincethey arepart of the subcategorisation):
99/99/100%.Of thosecaseswhicharenotargument
slot-fillers in the precedingfunctionalanalysis,we
find 55/69/75%in our large corpus,i.e. morethan
half of the 72% missingnountokensarein a win-
dow of 5 words from the verb, threequartersare
capturedby a large window of 50 words,onequar-
ter is still missing.We concludethat, in additionto
theconceptualrolesreferringto verbsubcategorisa-
tion roles,theassociationspoint to scene-relatedin-
formationandworld knowledge,muchof which is
not explicitly mentionedin the context of the verb.
With respectto adistributionalfeaturedescriptionof
verbs,we suggestthat a setof prominentfunctions
is relevant,but in additionit makessenseto include
window-basednouns,which referto sceneinforma-
tion ratherthanintra-sententialsyntacticfunctions.
This is an interestingfinding, sincethewindow ap-
proachhaslargely beendisregardedin recentyears,
in comparisonto usingsyntacticfunctions.

4 Summary

This paperpresenteda studyto identify, distinguish
andquantify thevarioustypesof semanticassocia-
tionsprovidedby humans,andto illustratetheir us-
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agefor NLP. For theapprox.20,000verbassociates,
we specifiedclassicalGermaNetrelationsfor 37%
of theverb-verbpairs,anddemonstratedthattheco-
occurrencedistancebetweentwo verbsvarieswith
respectto their semanticrelation. Verb-verb pairs
with no relationin GermaNetprovide an empirical
basisfor detectingmissinglinks in the taxonomy.
Non-classicalverb-verb relationssuchas temporal
order, cause,andconsequencearerepresentedin a
large proportionof the verb-verb pairs. Thesedata
representan excellentbasisfor defininganexhaus-
tive setof non-classicalrelations,a crucial ingredi-
entfor NLP applications.

For theapprox.50,000nounassociates,weinves-
tigatedthe kinds of linguistic functionsthat arere-
alisedby theverb-nounpairs. For 28%of thenoun
tokens, we found prominent frame-rolecombina-
tionswhich speakershave in mind; our hopeis that
theseconceptualrolesrepresentfeatureswhichcon-
tribute to distributional verbdescriptions.Window-
basednouns also contribute to verb descriptions
by encodingsceneinformation, rather than intra-
sententialfunctions. This finding supportsthe inte-
grationof window-basedapproachesinto function-
basedapproaches.

Futurework will establisha setof non-classical
verb-verb relations, and then apply variations of
verb feature descriptionsin order to find depen-
denciesbetweenfeaturedescriptionsand verb re-
lations. Suchdependencieswould improve the ap-
plication of distributional verb descriptionssignif-
icantly, knowing which relationsare addressedby
which kinds of features. In addition, we assume
that the (morphological,syntactic,semantic)kinds
of associatesprovided for a verb are indicatorsfor
its semanticclass. Further investigationsinto the
varieddistributionsof associatetypesacrossseman-
tic classeswill enhancetheautomaticacquisitionof
suchclasses. We plan to investigatethis issuein
moredetail.
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Abstract

In this paper, we extend an existing parser
to produce richer output annotated with
function labels. We obtain state-of-the-art
results both in function labelling and in
parsing, by automatically relabelling the
Penn Treebank trees. In particular, we ob-
tain the best published results on seman-
tic function labels. This suggests that cur-
rent statistical parsing methods are suffi-
ciently general to produce accurate shal-
low semantic annotation.

1 Introduction

With recent advances in speech recognition, parsing,
and information extraction, some domain-specific
interactive systems are now of practical use for
tasks such as question-answering, flight booking, or
restaurant reservation (Stallard, 2000). One of the
challenges ahead lies in moving from hand-crafted
programs of limited scope to robust systems inde-
pendent of a given domain. While this ambitious
goal will remain in the future for some time to come,
recent efforts to develop language processing sys-
tems producing richer semantic outputs will likely
be the cornerstone of many successful developments
in natural language understanding.

In this paper, we present a parser that outputs la-
bels indicating the syntactic or semantic function of
a constituent in the tree, such asNP-SBJ or PP-TMP

shown in bold face in the tree in Figure 1. These
labels indicate that the NP is the subject of the sen-
tence and that the PP conveys temporal information.
(Labels in parentheses will be explained later in the
paper.) Output annotated with such informative la-
bels underlies all domain-independent question an-
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to

NP

QP
��� PPP
$ 2.8 trillion

Figure 1: A sample syntactic structure with function
labels.

swering (Jijkoun et al., 2004) or shallow semantic
interpretation systems (Collins and Miller, 1998; Ge
and Mooney, 2005). We test the hypothesis that a
current statistical parser can output such richer in-
formation without any degradation of the parser’s
accuracy on the original parsing task. Briefly, our
method consists in augmenting a state-of-the-art sta-
tistical parser (Henderson, 2003), whose architec-
ture and properties make it particularly adaptive to
new tasks. We achieve state-of-the-art results both
for parsing and function labelling.

Statistical parsers trained on the Penn Treebank
(PTB) (Marcus et al., 1993) produce trees annotated
with bare phrase structure labels (Collins, 1999;
Charniak, 2000). The trees of the Penn Treebank,
however, are also decorated with function labels.
Figure 1 shows the simplified tree representation
with function labels for a sample sentence from
the Penn Treebank corpus (section 00)The Gov-
ernment’s borrowing authority dropped at midnight
Tuesday to 2.8 trillion from 2.87 trillion. Table 1
illustrates the complete list of function labels in the
Penn Treebank. Unlike phrase structure labels, func-
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Syntactic Labels Semantic Labels
DTV dative ADV adverbial
LGS logical subject BNF benefactive
PRD predicate DIR direction
PUT compl ofput EXT extent
SBJ surface subject LOC locative
VOC vocative MNR manner

Miscellaneous Labels NOM nominal
CLF it-cleft PRP purpose or reason
HLN headline TMP temporal
TTL title Topic Labels
CLR closely related TPC topicalized

Table 1: Complete set of function labels in the Penn
Treebank.

tion labels are context-dependent and encode a shal-
low level of phrasal and lexical semantics, as ob-
served first in (Blaheta and Charniak, 2000).1 To a
large extent, they overlap with semantic role labels
as defined in PropBank (Palmer et al., 2005).

Current statistical parsers do not use this richer
information because performance of the parser usu-
ally decreases considerably, since a more complex
task is being solved. (Klein and Manning, 2003),
for instance report a reduction in parsing accuracy
of an unlexicalised PCFG from 77.8% to 72.9% if
using function labels in training. (Blaheta, 2004)
also reports a decrease in performance when at-
tempting to integrate his function labelling system
with a full parser. Conversely, researchers interested
in producing richer semantic outputs have concen-
trated on two-stage systems, where the semantic la-
belling task is performed on the output of a parser,
in a pipeline architecture divided in several stages
(Gildea and Jurafsky, 2002). See also the common
task of (CoNLL, 2004 2005; Senseval, 2004).

Our approach maintains state-of-the-art results in
parsing, while also reaching state-of-the-art results
in function labelling, by suitably extending a Sim-
ple Synchrony Network (SSN) parser (Henderson,
2003) into a single integrated system. This is an
interesting result, as a task combining function la-
belling and parsing is more complex than simple
parsing. While the function of a constituent and its
structural position are often correlated, they some-

1(Blaheta and Charniak, 2000) talk of functiontags. We will
instead use the term functionlabel, to indicate function identi-
fiers, as they can decorate any node in the tree. We keep the
word tag to indicate only those labels that decorate preterminal
nodes in a tree – part-of-speech tags– as is standard use.

times diverge. For example, some nominal temporal
modifiers occupy an object position without being
objects, likeTuesdayin the tree above. Moreover,
given current limited availability of annotated tree
banks, this more complex task will have to be solved
with the same overall amount of data, aggravating
the difficulty of estimating the model’s parameters
due to sparse data.

2 Method

Successfully addressing function parsing requires
accurate parsing models and training data. Under-
standing the causes and the relevance of the ob-
served results requires appropriate evaluation mea-
sures. In this section, we describe the methodology
that will be used to assess our main hypothesis.

2.1 The Basic Parsing Architecture

Our main hypothesis says that function labels can
be successfully and automatically recovered while
parsing, without affecting negatively the perfor-
mance of the parser. It is possible that attempting
to solve the function labelling and the parsing prob-
lem at the same time would require modifying ex-
isting parsing models, since their underlying inde-
pendence assumptions might no longer hold. More-
over, many more parameters are to be estimated. It is
therefore important to choose a statistical parser that
can model our augmented labelling problem. We use
a family of statistical parsers, the Simple Synchrony
Network (SSN) parsers (Henderson, 2003), which
crucially do not make any explicit independence as-
sumptions, and learn to smooth across rare feature
combinations. They are therefore likely to adapt
without much modification to the current problem.
This architecture has shown state-of-the-art perfor-
mance and is very adaptive to properties of the in-
put.

The architecture of an SSN parser comprises two
components, one which estimates the parameters
of a stochastic model for syntactic trees, and one
which searches for the most probable syntactic tree
given the parameter estimates. As with many other
statistical parsers (Collins, 1999; Charniak, 2000),
the model of parsing is history-based. Its events
are derivation moves. The set of well-formed se-
quences of derivation moves in this parser is defined
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by a Predictive LR pushdown automaton (Nederhof,
1994), which implements a form of left-corner pars-
ing strategy.2

The probability of a phrase-structure tree is
equated to the probability of a finite (but unbounded)
sequence of derivation moves. To bound the number
of parameters, standard history-based models par-
tition the set of prefixes of well-formed sequences
of transitions into equivalence classes. While such
a partition makes the problem of searching for the
most probable parse polynomial, it introduces hard
independence assumptions: a derivation move only
depends on the equivalence class to which its history
belongs. SSN parsers, on the other hand, do not state
any explicit independence assumptions: they induce
a finite history representation of an unbounded se-
quence of moves, so that the representation of a
movei− 1 is included in the inputs to the represen-
tion of the next movei, as explained in more detail
in (Henderson, 2003). SSN parsers only impose soft
inductive biases to capture relevant properties of the
derivation, thereby exhibiting adaptivity to the in-
put. The art of designing SSN parsers consists in
selecting and introducing such biases. To this end, it
is sufficient to specify features that extract some in-
formation relevant to the next derivation move from
previous ones, or some set of nodes that are struc-
turally local to the node on top of the stack. These
features and these nodes are input to the compu-
tation of a hidden history representation of the se-
quence of previous derivation moves. Given the hid-
den representation of a derivation, a log-linear distri-
bution over possible next moves is computed. Thus,
the setD of structurally local nodes and the setf of
predefined features determine the inductive bias of
an SSN system. Unless stated otherwise, for each
of the experiments reported here, the setD that is
input to the computation of the history representa-
tion of the derivation movesd1, . . . , di−1 includes
the following nodes:topi, the node on top of the
pushdown stack before theith move; the left-corner
ancestor oftopi; the leftmost child oftopi; and the
most recent child oftopi, if any. The set of fea-
turesf includes the last move in the derivation, the
label or tag oftopi, the tag-word pair of the most re-

2The derivation moves include: projecting a constituent with
a specified label, attaching one constituent to another, and shift-
ing a tag-word pair onto the pushdown stack.

cently shifted word, the leftmost tag-word pair that
topi dominates.

2.2 The Set of Function Labels

The bracketting guidelines for the Penn Treebank II
list 20 function labels, shown in Table 1 (Bies et al.,
1995). Based on their description in the Penn Tree-
bank guidelines, we partition the set of function la-
bels into four classes, as indicated in the table. Fol-
lowing (Blaheta and Charniak, 2000), we refer to the
first class as syntactic function labels, and to the sec-
ond class as semantic function labels. In the rest
of the paper, we will ignore the other two classes,
for they do not intersect with PropBank labels, and
they do not form natural classes. Like previous work
(Blaheta and Charniak, 2000), we complete the sets
of syntactic and semantic labels by labelling con-
stituents that do not bear any function label with a
NULL label.3

2.3 Evaluation

To evaluate the performance of our function pars-
ing experiments, we will use several measures. First
of all, we apply the standard Parseval measures of
labelled recall and precision to a parser whose train-
ing data contains the Penn Treebank function labels,
to assess how well we solve the standard phrase
structure parsing problem. We call these figures
FLABEL-less figures in the tables below and we will
call the task the (simple) parsing task in the rest of
the paper. Second, we measure the accuracy of this
parser with an extension of the Parseval measures
of labelled precision and recall applied to the set of
complex labels —the phrase structure non-terminals
augmented with function labels— to evaluate how
well the parser solves this complex parsing prob-
lem. These are the FLABEL figures in the tables be-
low. We call this task the function parsing task. Fi-
nally, we also assess function labelling performance
on its own. Note that the maximal precision or recall
score of function labelling is strictly smaller than
one-hundred percent if the precision or the recall of

3Strictly speaking, this label corresponds to twoNULL la-
bels: SYN-NULL and SEM-NULL . A node bearing theSYN-
NULL label is a node that does not bear any other syntactic label.
Analogously, theSEM-NULL label completes the set of semantic
labels. Note that both theSYN-NULL label and theSEM-NULL
are necessary, since both a syntactic and a semantic label can
label a given constituent.
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ASSIGNEDLABELS

ADV BNF DIR EXT LOC MNR NOM PRP TMP SEM-NULL SUM

ADV 143 0 0 0 0 0 0 1 3 11 158
BNF 0 0 0 0 0 0 0 0 0 1 1
DIR 0 0 39 0 3 4 0 0 1 51 98
EXT 0 0 0 37 0 0 0 0 0 17 54

ACTUAL LOC 0 0 1 0 345 3 0 0 15 148 512
LABELS MNR 0 0 0 0 3 35 0 0 16 40 94

NOM 2 0 0 0 0 0 88 0 0 4 94
PRP 0 0 0 0 0 0 0 54 1 33 88
TMP 18 0 1 0 24 11 0 1 479 105 639
SEM-NULL 12 0 13 5 81 28 12 24 97 2029220564
SUM 175 0 54 42 456 81 100 80 612 2070222302

Table 2: Confusion matrix for simple baseline model, tested on the validation set (section 24 of PTB).

the parser is less than one-hundred percent. Follow-
ing (Blaheta and Charniak, 2000), incorrectly parsed
constituents will be ignored (roughly 11% of the to-
tal) in the evaluation of the precision and recall of
the function labels, but not in the evaluation of the
parser. Of the correctly parsed constituents, some
bear function labels, but the overwhelming majority
do not bear any label, or rather, in our notation, they
bear aNULL label. To avoid calculating excessively
optimistic scores, constituents bearing theNULL la-
bel are not taken into consideration for computing
overall recall and precision figures.NULL -labelled
constituents are only needed to calculate the preci-
sion and recall of other function labels. (In other
words,NULL -labelled constituents never contribute
to the numerators of our calculations.) For exam-
ple, consider the confusion matrixM in Table 2,
which reports scores for the semantic labels recov-
ered by the baseline model described below. Preci-

sion is computed as

∑
i∈{ADV ···TMP} M [i,i]∑

j∈{ADV ···TMP} M [SUM,j]
. Re-

call is computed analogously. Notice thatM [n, n],
that is the[SEM-NULL ,SEM-NULL ] cell in the matrix, is
never taken into account.

3 Learning Function Labels

In order to assess the complexity of the task of pre-
dicting function labels while parsing, we run first the
SSN on the function parsing task, without modifica-
tions to the parser. The confusion matrix for seman-
tic function labels of this simple baseline model is
illustrated in Table 2.

It is apparent that the baseline model’s largest
cause of error is confusion between the labels and

theNULL label. These misclassfications affect recall
in particular. Consider, for example, theMNR label,
where 40 out of 94 occurrences are not given a func-
tion label. We add two augmentations to the parser
to alleviate this problem.

The simple baseline parser treatsNULL labels like
other labels, and it does not distinguish subtypes of
NULL labels. Our first augmentation of the parser
is designed to discriminate among constituents with
theseNULL labels. We hypothesize that the label
NULL (ie. SYN-NULL andSEM-NULL ) is a mixture
of types, which will be more accurately learnt sepa-
rately. If the labelNULL is learnt more precisely, the
recall of the other labels will increase. TheNULL

label in the training set was automatically split into
the mutually exclusive labelsCLR, OBJ andOTHER.
Constituents were assigned theOBJ label according
to the conditions stated in (Collins, 1999).4

Another striking property of the simple baseline
function parser is that the SSN tends to projectNULL

labels more than any other label. Since SSNs de-
cide the label of a non-terminal at projection, this
behaviour indicates that the parser does not have
enough information at this point in the parse to
project the correct function label. We hypothesize
that finer-grained labelling will improve parsing per-
formance. This observation is consistent with results
reported in (Klein and Manning, 2003), who showed
that part-of-speech tags occurring in the Treebank
are not fine-grained enough to discriminate between

4Roughly, anOBJ non-terminal is an NP, SBAR or S whose
parent is an S, VP or SBAR. Any such non-terminal must not
bear either syntactic or semantic function labels, or theCLR la-
bel. In addition, the first child following the head of a PP is
marked with theOBJ label.
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preterminals. For example, the tagTO labels both
the prepositionto and the infinitival marker. Extend-
ing (Klein and Manning, 2003)’s technique to func-
tion labelling, we split some part-of-speech tags into
tags marked with semantic function labels. More
precisely, we concentrate on the function labelsDIR,
LOC, MNR, PRPor TMP, which appear to cause the
most trouble to the parser, as illustrated in Table 2.

The label attached to a non-terminal was propa-
gated down to the pre-terminal tag of its head. The
labels in parentheses in Figure 1 illustrate the effect
of this lowering of the labels. The goal of this tag-
splitting is to indicate more clearly to the parser what
kind of label to project on reading a word-tag pair in
the input. To this end, re-labelling is applied only if
the non-terminal dominates the pre-terminal imme-
diately. This constraint guarantees that only those
non-terminals that are actual projections of the pre-
terminal are affected by this tag-splitting method.
Linguistically, we are trying to capture the notion
of maximal projection.5 This augmented model has
a total of 188 non-terminals to represent labels of
constituents, instead of the 33 of the original SSN
parser. As a result of lowering the five function la-
bels, 83 new part-of-speech tags were introduced to
partition the original tagset of the Treebank. There
are 819 tag-word pairs in this model, while the orig-
inal SSN parser has a vocabulary size of 508 tag-
word pairs. These augmented tags as well as the
155 new non-terminals are included in the setf of
features input to parsing decisions as described in
section 2.1.

SSN parsers do not tag their input sentences. To
provide the augmented model with tagged input sen-
tences, we trained an SVM tagger whose features
and parameters are described in detail in (Gimenez
and Marquez, 2004). Trained on section 2-21, the
tagger reaches a performance of 95.8% on the test
set (section 23) of the PTB using our new tag set.

4 Experiments

In this section, we report the results of the exper-
iments testing hypotheses concerning our function
parser. All SSN function parsers were trained on

5This condition was relaxed in a few cases to
capture constructs such as coordinatedPPs (e.g.
[PP-LOC[PP[INat] . . .][CCand][PP[IN in] . . .] . . .] or infini-
tival clauses (e.g.[S-PRP[VP[TOto][VP[VB . . .] . . .] . . .]).

FLABEL FLABEL-less
F R P F R P

Validation Set
Base 83.4 82.8 83.9 87.7 87.1 88.2
Aug 84.6 84.0 85.2 88.1 87.5 88.7

Test Set
Aug 86.1 85.8 86.5 88.9 88.6 89.3
H03 88.6 88.3 88.9

Table 3: Percentage F-measure (F), recall (R), and
precision (P) of the SSN baseline (Base) and aug-
mented (Aug) parsers. H03 indicates the model il-
lustrated in (Henderson, 2003).

sections 2-21 from the Penn Treebank, validated on
section 24, and tested on section 23. All models are
trained on parse trees whose labels include function
labels. Both results taking function labels into ac-
count (FLABEL) and results not taking them into
account (FLABEL-less) are reported. All our mod-
els, as well as the parser described in (Henderson,
2003), are run only once.6 These results are re-
ported in Table 3.

Our hypothesis states that we can perform func-
tion labelling and parsing at the same time, without
loss in parsing performance. For this to be an inter-
esting statement, we need to show that function la-
belling is not a straightforward extension of simple
parsing. If simple parsing could be easily applied to
function parsing, we should not have a degradation
of an SSN parser model evaluated on the complex
labels, compared to the same SSN parser evaluated
only on phrase structure labels. As the results on
the validation set indicate, our baseline model with
function labels (FLABEL) is indeed lower than the
performance of the parser when function labels are
not taken into account (FLABEL-less), indicating
that the function parsing task is more difficult than
the simple parsing task.

Since the function parsing problem is more dif-
ficult than simple parsing, it is then interesting to
observe that performance of the augmented parser
increases significantly (FLABEL column) (p <
.001) without losing accuracy on the parsing task

6This explains the little difference in performance between
our results for H03 and those cited in (Henderson, 2003), where
the best of three runs on the validation set is chosen.
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(FLABEL-less column), compared to the initial
parsing performance (as indicated by the perfor-
mance of H03). Notice that, numerically, we do in
fact a little better than H03, but this difference is not
significant.7

Beside confirming that learning function labels
does not increase parsing errors, we can also confirm
that the nature of the errors remains the same. A sep-
arate comparison of labelled and unlabelled scores
of our complex function parser indicates that unla-
belled results are roughly 1% better than labelled re-
sults (F measure 89.8% on the validation set). The
original SSN parser exhibits the same differential.
This shows that, like other simple parsers, the func-
tion parser makes mostly node attachment mistakes
rather than labelling mistakes.

A separate experiment only discriminatingNULL

labels indicates that this modification is indeed use-
ful, but not as much as introducing new tags, on
which we concentrate to explain the results. There
is converging evidence indicating that the improve-
ment in performance is due to having introduced
new tag-word pairs, and not simply new words. First
of all, of the 311 new tag-word pairs only 122 in-
troduce truly new words. The remaining pairs are
constituted by words that were already in the orig-
inal vocabulary and have been retagged, or by tags
associated to unknown words.

Second, this interpretation of the results is con-
firmed by comparing different ways of enlarging the
vocabulary size input to the SSN. (Henderson, 2003)
tested the effect of larger input vocabulary on SSN
performance by changing the frequency cut-off that
selects the input tag-word pairs. A frequency cut-
off of 200 yields a vocabulary of 508 pairs, while a
cut-off of 20 yields 4242 pairs, 3734 of which com-
prise new words. This difference in input size does
not give rise to an appreciable difference in perfor-
mance. On the contrary, we observe that introduc-
ing 122 new words and 83 new tags improves results
considerably. This leads us to conclude that the per-
formance of the augmented model is not simply due
to a larger vocabulary.

We think that our tag-word pairs are effective be-
cause they are selected by a linguistically meaning-

7Significance was measured with the randomized signifi-
cance test described in (Yeh, 2000).

Syntactic Labels Semantic Labels
F R P F R P

Validation Set
Base 95.3 93.9 96.7 73.1 70.2 76.3
Aug 95.7 95.0 96.5 80.1 77.0 83.5

Test Set
Aug 96.4 95.3 97.4 86.3 82.4 90.5
BC00 95.7 95.8 95.5 79.0 77.6 80.4
B04 FT 95.9 95.3 96.4 83.4 80.3 86.7
B04 KP 98.7 98.4 99.0 78.0 73.2 83.5

Table 4: Percentage F-measure (F), recall (R), and
precision (P) function labelling, separated for syn-
tactic and semantic labels, for our models and Bla-
heta and Charniak’s (BC00) and Blaheta’s models
(B04 FT, B04 KP). The feature trees (FT) and ker-
nel perceptrons (KP) are optimised separately for the
two different sets of labels.

ful criterion and are more informative exemplars for
the parser. Instead, simply decreasing the frequency
cut-off adds mostly types of words for which the
parser already possesses enough evidence (in gen-
eral, nouns). Our method of lowering function la-
bels acts as a finer-grained classification that parti-
tions different kinds of complements based on their
lexical semantic characteristics, yielding classes that
are relevant to constituent structure. For instance,
it is well known that lexical semantic properties of
arguments of verbs are related to the verb’s argu-
ment structure, and consequently to the parse tree
that the verb occurs in. Partitioning a verb’s comple-
ments into function classes could influence attach-
ment decisions beneficially. We also think that the
parser we use is particularly able to take advantage
of these subclasses. One of the main properties of
SSN parsers is that they do not need large vocabu-
laries, because the SSN is good at generalising item-
specific properties into an internal hidden represen-
tation of word classes.

Finally, to provide a meaningful and complete
evaluation of the parser, it is necessary to examine
the level of performance on the function labels for
those constituents that are correctly parsed accord-
ing to the usual Parseval measure, i.e. for those con-
stituents for which the phrase structure labels and
the string covered by the label have been correctly
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Baseline Augmented
P R P R

ADV 81.7 90.5 87.9 81.0
DIR 72.2 39.8 77.0 48.5
EXT 88.1 68.5 86.8 63.5
LOC 75.7 67.4 78.9 74.6
MNR 43.2 37.2 74.0 55.7
NOM 88.0 93.6 88.7 93.1
PRP 67.5 61.4 74.4 65.9
TMP 78.3 75.0 89.6 83.7

Table 5: Percentage F-measure (F), recall (R), and
precision (P) function labelling, separated for indi-
vidual semantic labels, for validation set.

recovered. Clearly, our parsing results would be un-
interesting if our recall on function labels were very
low. In that case, we would have failed to learn the
function parsing task, and that would trivially yield
a good performance on the simple parsing task. Ta-
ble 4 reports the aggregated numbers for the base-
line and the augmented model, while Table 5 re-
ports separate figures for each semantic function la-
bel. These tables show that we also perform well
on the labelling task alone.8 Comparison to other
researchers (last three lines of Table 4) shows that
we achieve state-of-the-art results with a single inte-
grated model that is jointly optimised for all the dif-
ferent types of function labels and for parsing, while
previous attempts are optimised separately for the
two different sets of labels. In particular, our method
performs better on semantic labels.

5 Related Work

As far as we are aware, there is no directly compa-
rable work, as nobody has so far attempted to fully
merge function labelling or semantic role labelling
into parsing. We will therefore discuss separately
those pieces of work that have made limited use
of function labels for parsing (Klein and Manning,
2003), and those that have concentrated on recover-
ing function labels as a separate task (Blaheta and
Charniak, 2000; Blaheta, 2004). We cannot discuss
here the large recent literature on semantic role la-
belling for reasons of space, apart from work that

8See also (Musillo and Merlo, 2005) for more detail and
comparisons on the labelling task.

also recovers function labels (Jijkoun and de Rijke,
2004) and work that trains a parser on Propbank la-
bels as the first stage of a semantic role labelling
pipeline (Yi and Palmer, 2005).

(Klein and Manning, 2003) and, to a much more
limited extent, (Collins, 1999) are the only re-
searchers we are aware of who used function labels
for parsing. In both cases, the aim was actually
to improve parser performance, consequently only
few carefully chosen labels were used. (Klein and
Manning, 2003) suggest the technique of tag split-
ting for the constituent bearing the labelTMP. They
also speculate that locative labels could be fruitfully
percolated down the tree onto the preterminals. Re-
sults in Table 5 indicate more precisely that lower-
ing locative labels does indeed bring about some im-
provement, but not as much as theMNR and TMP

labels.
In work that predates the availability of Framenet

and Propbank, (Blaheta and Charniak, 2000) define
the task of function labelling for the first time and
highlight its relevance for NLP. Their method is in
two-steps. First, they parse the Penn Treebank us-
ing a state-of-the-art parser (Charniak, 2000). Then,
they assign function labels using features from the
local context, mostly limited to two levels up the
tree and only one next label. (Blaheta, 2004) ex-
tends on this method by developing specialised fea-
ture sets for the different subproblems of function la-
belling and slightly improves the results, as reported
in Table 4. (Jijkoun and de Rijke, 2004) approach
the problem of enriching the output of a parser in
several steps. The first step applies memory-based
learning to the output of a parser mapped to de-
pendency structures. This step learns function la-
bels. Only aggregated results for all function la-
bels, and not only for syntactic or semantic labels,
are provided. Although they cannot be compared di-
rectly to our results, it is interesting to notice that
they are slightly better in F-measure than Blaheta’s
(F=88.5%). (Yi and Palmer, 2005) share the moti-
vation of our work, although they apply it to a dif-
ferent task. Like the current work, they observe that
the distributions of semantic labels could potentially
interact with the distributions of syntactic labels and
redefine the boundaries of constituents, thus yield-
ing trees that reflect generalisations over both these
sources of information.
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6 Conclusions

In this paper we have presented a technique to ex-
tend an existing parser to produce richer output, an-
notated with function labels. We show that both
state-of-the-art results in function labelling and in
parsing can be achieved. Application of these re-
sults are many-fold, such as information extraction
or question answering where shallow semantic an-
notation is necessary. The technique illustrated in
this paper is of wide applicability to all other se-
mantic annotation schemes available today, such as
Propbank and Framenet, and can be easily extended.
Work to extend this technique to Propbank annota-
tion is underway. Since function labels describe de-
pendence relations between the predicative head and
its complements, whether they be arguments or ad-
juncts, this paper suggests that a left-corner parser
and its probabilistic model, which are defined en-
tirely on configurational criteria, can be used to pro-
duce a dependency output. Consequences of this ob-
servation will be explored in future work.
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Abstract

We use logical inference techniques for
recognising textual entailment. As the
performance of theorem proving turns
out to be highly dependent on not read-
ily available background knowledge, we
incorporate model building, a technique
borrowed from automated reasoning, and
show that it is a useful robust method to
approximate entailment. Finally, we use
machine learning to combine these deep
semantic analysis techniques with simple
shallow word overlap; the resulting hy-
brid model achieves high accuracy on the
RTE testset, given the state of the art. Our
results also show that the different tech-
niques that we employ perform very dif-
ferently on some of the subsets of the RTE
corpus and as a result, it is useful to use the
nature of the dataset as a feature.

1 Introduction

Recognising textual entailment (RTE) is the task to
find out whether some text T entails a hypothesis H.
This task has recently been the focus of a challenge
organised by the PASCAL network in 2004/5.1 In
Example 1550 H follows from T whereas this is not
the case in Example 731.

1All examples are from the corpus released as part of
the RTE challenge. It is downloadable fromhttp://www.
pascal-network.org/Challenges/RTE/ . The exam-
ple numbers have also been kept. Each example is marked for
entailment as TRUE if H follows from T and FALSE otherwise.
The dataset is described in Section 4.1.

Example: 1550 (TRUE)
T: In 1998, the General Assembly of the Nippon Sei Ko

Kai (Anglican Church in Japan) voted to accept female
priests.

H: The Anglican church in Japan approved the ordination
of women.

Example: 731 (FALSE)
T: The city Tenochtitlan grew rapidly and was the center

of the Aztec’s great empire.
H: Tenochtitlan quickly spread over the island, marshes,

and swamps.

The recognition of textual entailment is without
doubt one of the ultimate challenges for any NLP
system: if it is able to do so with reasonable accu-
racy, it is clearly an indication that it has some thor-
ough understanding of how language works. Indeed,
recognising entailment bears similarities to Turing’s
famous test to assess whether machines can think,
as access to different sources of knowledge and the
ability to draw inferences seem to be among the pri-
mary ingredients for an intelligent system. More-
over, many NLP tasks have strong links to entail-
ment: in summarisation, a summary should be en-
tailed by the text; paraphrases can be seen as mutual
entailment between T and H; in IE, the extracted in-
formation should also be entailed by the text.

In this paper, we discuss two methods for recog-
nising textual entailment: a shallow method relying
mainly on word overlap (Section 2), and deep se-
mantic analysis, using state-of-the-art off-the-shelf
inference tools, namely a theorem prover and a
model builder (Section 3). These tools rely on Dis-
course Representation Structures for T and H as well
as lexical and world knowledge. To our knowledge,
few approaches to entailment currently use theorem
provers and none incorporate model building (see
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Section 5 for a discussion of related work).
Both methods are domain-independent to increase

transferrability and have not been tailored to any par-
ticular test suite. In Section 4 we test their accuracy
and robustness on the RTE datasets as one of the few
currently available datasets for textual inference. We
also combine the two methods in a hybrid approach
using machine learning. We discuss particularly the
following questions:

• Can the methods presented improve signifi-
cantly over the baseline and what are the per-
formance differences between them? Does the
hybrid system using both shallow and deep se-
mantic analysis improve over the individual use
of these methods?

• How far does deep semantic analysis suffer
from a lack of lexical and world knowledge and
how can we perform logical inference in the
face of potentially large knowledge gaps?

• How does the design of the test suite affect per-
formance? Are there subsets of the test suite
that are more suited to any particular textual en-
tailment recognition method?

2 Shallow Semantic Features

We use several shallow surface features to model the
text, hypothesis and their relation to each other.

Most importantly, we expect some dependency
between surface string similarity of text and hypoth-
esis and the existence of entailment. Our string sim-
ilarity measure uses only a form of extended word
overlap between text and hypothesis, taking into ac-
count equality of words, synonymy and morpholog-
ical derivations. WordNet (Fellbaum, 1998) is used
as the knowledge source for synonymy and deriva-
tions. The exact procedure is as follows:

Both text and hypothesis are tokenised and lem-
matised. A lemmal1 in the hypothesis is said
to be related to a lemmal2 in the text iff l1 and
l2 are equal, belong to the same WordNet synset
(e.g., “murder” and “slay”), are related via WordNet
derivations (e.g. “murder” and “murderer”) or are
related via a combination of synonymy and deriva-
tions (e.g. “murder” via “murderer” to “liquidator”).
No word sense disambiguation is performed andall
synsets for a particular lemma are considered.

In addition, each lemma in the hypothesis is as-
signed its inverse document frequency, accessing the
Web as corpus via the GoogleAPI, as its weight.
This standard procedure allows us to assign more
importance to less frequent words.

The overlap measurewnoverlap between text
and hypothesis is initialised as zero. Should a lemma
in the hypothesis be related to a lemma in the text,
its weight is added townoverlap , otherwise it is
ignored. In the endwnoverlap is normalised by
dividing it by the sum of all weights of the lemmas
in the hypothesis. This ensures thatwnoverlap is
always a real number between0 and1 and also en-
sures independence of the length of the hypothesis.

Apart from wnoverlap we take into account
length (as measured by number of lemmas) of text
and hypothesis, because in most of the observed
cases for true entailments the hypothesis is shorter
than the text as it contains less information. This is
covered by three numerical features measuring the
length of the text, of the hypothesis and the relative
length of hypothesis with regard to the text.

3 Deep Semantic Analysis

3.1 Semantic Interpretation

We use a robust wide-coverage CCG-parser (Bos et
al., 2004) to generate fine-grained semantic repre-
sentations for each T/H-pair. The semantic represen-
tation language is a first-order fragment of the DRS-
language used in Discourse Representation Theory
(Kamp and Reyle, 1993), conveying argument struc-
ture with a neo-Davidsonian analysis and including
the recursive DRS structure to cover negation, dis-
junction, and implication. Consider for example:

Example: 78 (FALSE)
T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.

drs(T):

x1 x2 x3

book(x1)
book(x2)

¬
x1=x2

clinton(x3)
of(x1,x3)

¬

e4 x5

big(x5)
seller(x5)

be(e4)
agent(e4,x1)

patient(e4,x5)
loc(e4,here)

drs(H):

x1 x2 e3 x4

book(x1)
clinton(x2)
of(x1,x2)
big(x4)

seller(x4)
be(e3)

agent(e3,x1)
patient(e3,x4)
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Proper names and definite descriptions are treated
as anaphoric, and bound to previously introduced
discourse referents if possible, otherwise accommo-
dated. Some lexical items are specified as presup-
position triggers. An example is the adjective ‘new’
which has a presuppositional reading, as shown by
the existence of two different “book” entities in
drs(T). Scope is fully specified.

To check whether an entailment holds or not, we
use two kinds of automated reasoning tools: Vam-
pire, a theorem prover (Riazanov and Voronkov,
2002), and Paradox, a model builder (Claessen and
Sörensson, 2003). Both tools are developed to deal
with inference problems stated in first-order logic.
We use the standard translation from DRS to first-
order logic (Kamp and Reyle, 1993) to map our se-
mantic representation onto the format required by
the inference tools.

3.2 Theorem Proving

Given a T/H pair, a theorem prover can be used to
find answers to the following conjectures:

1. T implies H (shows entailment)
2. T+H are inconsistent (shows no entailment)

Assume that the functionDRS denotes the DRS cor-
responding to T or H, andFOL the function that
translates a DRS into first-order logic. Then, if the
theorem prover manages to find a proof for

FOL(DRS(T))→FOL(DRS(H)) (A)

we know that we are dealing with a true entailment.
In addition, to use a theorem prover to detect incon-
sistencies in a T/H pair, we give it:

¬FOL(DRS(T);DRS(H)) (B)

If the theorem prover returns a proof for (B), we
know that T and H are inconsistent and T definitely
doesn’t entail H (assuming that T and H are them-
selves consistent).

Examples The theorem prover will find that T im-
plies H for the following examples:

Example: 1005 (TRUE)
T: Jessica Litman, a law professor at Michigan’s Wayne

State University, has specialized in copyright law and
Internet law for more than 20 years.

H: Jessica Litman is a law professor.

Example: 1977 (TRUE)
T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

Example: 898 (TRUE)
T: After the war the city was briefly occupied by the Allies

and then was returned to the Dutch.
H: After the war, the city was returned to the Dutch.

Example: 1952 (TRUE)
T: Crude oil prices soared to record levels.
H: Crude oil prices rise.

These examples show how deep semantic analy-
sis deals effectively with apposition, active-passive
alternation, coordination, and can integrate lexical
knowledge.

The RTE dataset only contains a few inconsistent
T/H pairs. Even although Example 78 might look
like a case in point, it is not inconsistent: It would
be if the T in the example would have beenClinton’s
new book is not a big seller. The addition of the
adverbheremakes T+H consistent.

3.3 Background Knowledge

The theorem prover needs background knowledge
to support its proofs. Finding a proof for Example
1952 above is only possible if the theorem prover
knows that soaring is a way of rising.

How does it know this? Because in addi-
tion to the information from T and H alone, we
also supply relevant background knowledge in the
form of first-order axioms. Instead of giving just
FOL(DRS(T);DRS(H)) to the theorem prover, we sup-
ply it with (BK ∧ FOL(DRS(T);DRS(H))) where BK
is short for the relevant background knowledge.

We generate background knowledge using three
kinds of sources: generic knowledge, lexical knowl-
edge, and geographical knowledge. Axioms for
generic knowledge cover the semantics of posses-
sives, active-passive alternation, and spatial knowl-
edge. There are about 20 different axioms in the cur-
rent system and these are the only manually gener-
ated axioms. An example is

∀e∀x∀y(event(e)∧agent(e,x)∧in(e,y)→in(x,y))

which states that if an event is located in y, then so
is the agent of that event.

Lexical knowledge is created automatically from
WordNet. A hyponymy relation between two
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synsets A and B is converted into∀x(A(x)→B(x)).
Two synset sisters A and B are translated into
∀x(A(x)→ ¬B(x)). Here the predicate symbols
from the DRS are mapped to WordNet synsets using
a variant of Lesk’s WSD algorithm (Manning and
Schuetze, 1999). Examples 78 and 1952 would be
supported by knowledge similar to:

∀x(clinton(x)→person(x)) ∀x(book(x)→artifact(x))
∀x(artifact(x)→ ¬person(x)) ∀x(soar(x)→rise(x))

Finally, axioms covering geographical knowledge
about capitals, countries and US states are extracted
automatically from the CIA factbook. An example:

∀x∀y(paris(x)∧france(y)→in(x,y))

3.4 Model Building

While theorem provers are designed to prove that a
formula is a theorem (i.e., that the formula is true in
any model), they are generally not good at deciding
that a formula isnot a theorem. Model builders are
designed to show that a formula is true in at least one
model. To exploit these complementary approaches
to inference, we use both a theorem prover and a
model builder for any inference problem: the theo-
rem prover attempts to prove the input whereas the
model builder simultaneously tries to find a model
for the negation of the input. If the model builder
finds a model for

¬FOL(DRS(T))→FOL(DRS(H)) (= ¬A)

we know that there can’t be a proof for its negation
(hence no entailment). And if the model builder is
able to generate a model for

FOL(DRS(T);DRS(H)) (= ¬B)

we know that T and H are consistent (maybe entail-
ment). (In practice, this is also a good way to termi-
nate the search for proofs or models: if the theorem
prover finds a proof for¬φ, we can halt the model
builder to try and find a model forφ (because there
won’t be one), and vice versa.)

Another attractive property of a model builder is
that it outputs a model for its input formula (only of
course if the input is satisfiable). A model is here
the logical notion of a model, describing a situation
in which the input formula is true. Formally, a model
is a pair〈D,F 〉 whereD is the set of entities in the

domain, andF a function mapping predicate sym-
bols to sets of domain members. For instance, the
model returned for fol(drs(T)) in Example 78 is one
where the domain consists of three entities (domain
size = 3):

D = {d1,d2,d3} F(loc) = {}
F(book) = {d1,d2} F(seller) = {}
F(clinton) = {d3} F(be) = {}
F(of) = {(d1,d3)} F(agent) = {}
F(big) = {} F(patient) = {}

Model builders like Paradox generate finite mod-
els by iteration. They attempt to create a model for
domain size 1. If they fail, they increase the domain
size and try again, until either they find a model or
their resources run out. Thus, although there are in-
finitely many models satisfying fol(drs(T)), model
builders generally build a model with a minimal do-
main size. (For more information on model building
consult (Blackburn and Bos, 2005)).

3.5 Approximating Entailment

In an ideal world we calculate all the required back-
ground knowledge and by either finding a proof or
a countermodel, decide how T and H relate with re-
spect to entailment. However, it is extremely hard
to acquire all the required background knowledge.
This is partly due to the limitations of word sense
disambiguation, the lack of resources like WordNet,
and the lack of general knowledge in a form suitable
for automatic inference tasks.

To introduce an element of robustness into our ap-
proach, we use the models as produced by the model
builders to measure the “distance” from an entail-
ment. The intuition behind it is as follows. If H
is entailed by T, the model for T+H is not informa-
tive compared to the one for T, and hence does not
introduce new entities. Put differently, the domain
size for T+H would equal the domain size of T. In
contrast, if T does not entail H, H normally intro-
duce some new information (except when it contains
negated information), and this will be reflected in
the domain size of T+H, which then is larger than
the domain size of T. It turns out that this difference
between the domain sizes is a useful way of measur-
ing the likelihood of entailment. Large differences
are mostly not entailments, small differences mostly
are. Consider the following example:
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Example: 1049 (TRUE)
T: Four Venezuelan firefighters who were traveling to a

training course in Texas were killed when their sport
utility vehicle drifted onto the shoulder of a highway
and struck a parked truck.

H: Four firefighters were killed in a car accident.

Although this example is judged as a true entail-
ment, Vampire doesn’t find a proof because it lacks
the background knowledge that one way of causing a
car accident is to drift onto the shoulder of the high-
way and strike something. It generates a model with
domain size 11 for fol(drs(T)), and a model with do-
main size 12 for fol((drs(T);drs(H))). The absolute
difference in domain sizes is small, and therefore
likely to indicate an entailment. Apart from the ab-
solute difference we also compute the difference rel-
ative to the domain size. For the example above the
relative domain size yields1/12 = 0.083.

The domain size only tells us something about the
number of entities used in a model—not about the
number of established relations between the model’s
entities. Therefore, we also introduce the notion of
model size. The model size is defined here by count-
ing the number of all instances of two-place relations
(and three-place relations, if there are any) in the
model, and multiplying this with the domain size.
For instance, the following model

D = {d1,d2,d3}
F(cat) = {d1,d2}
F(john) = {d3}
F(of) = {(d1,d3)}
F(like) = {(d3,d1),(d3,d2)}

has a domain size of 3 and 3 instantiated two-place
relations, yielding a model size of3 ∗ 3 = 9.

3.6 Deep Semantic Features

Given our approach to deep semantic analysis,
we identified eight features relevant for recognis-
ing textual entailment. The theorem prover pro-
vides us with two features:entailed determin-
ing whether T implies H, andinconsistent
determining whether T together with H is incon-
sistent. The model builder gives us six features:
domainsize and modelsize for T+H as well
as the absolute and relative difference between the
sizes of T and T+H, both for the size of the domains
(domainsizeabsdif , domainsizereldif )
and the size of the models (modelsizeabsdif ,
modelsizereldif ).

4 Experiments

There are not many test suites available for textual
inference. We use throughout this section the dataset
made available as part of the RTE challenge.

4.1 Dataset Design and Evaluation Measures

The organisers released a development set of 567
sentence pairs and a test set of 800 sentence pairs.
In both sets, 50% of the sentence pairs were anno-
tated as TRUE and 50% as FALSE, leading to a 50%
most frequent class baseline for automatic systems.
The examples are further distinguished according to
the way they were designed via a so-calledTask
variable. For examples marked CD (Comparable
Documents), sentences with high lexical overlap in
comparable news articles were selected, whereas the
hypotheses of examples marked QA (Question An-
swering) were formed by translating questions from
e.g., TREC into statements. The other subsets are IE
(Information extraction), MT (Machine Translation)
RC (Reading Comprehension), PP (Paraphrase Ac-
quisition) and IR (Information Retrieval). The dif-
ferent examples and subsets cover a wide variety of
different aspects of entailment, from incorporation
of background knowledge to lexical to syntactic en-
tailment and combinations of all these. For a more
exhaustive description of dataset design we refer the
reader to (Dagan et al., 2005).

4.2 Experiment 1: Human Upper bound

To establish a human upper bound as well as inves-
tigate the validity of the datasets issued, one of the
authors annotated all 800 examples of the test set
for entailment, using the short RTE annotation rules.
The annotation was performed before the release of
the gold standard annotation for the test set and was
therefore independent of the organisers’ annotation.
The organisers’ and the author’s annotation yielded
a high percentage agreement of 95.25%. However,
33% of the originally created examples were already
filtered out of the corpus before release by the organ-
isers because of agreement-related problems. There-
fore we expect that human agreement on textual en-
tailment in general is rather lower.
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4.3 Decision trees for entailment recognition

We expressed each example pair as a feature vector,
using different subsets of the features described in
Section 2 and Section 3 for each experiment. We
then trained a decision tree for classification into
TRUE and FALSE entailment on the development
set, using the Weka machine learning tool (Witten
and Frank, 2000), and tested on the test set. Apart
from a classification, Weka also computes a confi-
dence value for each decision, dependent on the leaf
in the tree that the classified example falls into: if the
leaf coversx examples in the training set, of whichy
examples are classified wrongly, then the error rate
is y/x and the confidence value is1− y/x.

Our evaluation measures are accuracy (acc) as
the percentage of correct judgements as well as
confidence-weighted average score (cws), which re-
wards the system’s ability to assign a higher confi-
dence score to correct judgements than wrong ones
(Dagan et al., 2005): after then judgements are
sorted in decreasing order by their confidence value,
the following measure is computed:

cws =
1
n

n∑
i=1

#correct-up-rank-i
i

All evaluation measures are computed over the
whole test set as well as on the 7 different subsets
(CD, IE, etc.). The results are summarised in Ta-
ble 1. We also computed precision, recall and F-
measure for both classes TRUE and FALSE and will
discuss the results in the text whenever of interest.

Experiment 2: Shallow Features In this experi-
ment only the shallow features (see Section 2) were
used. The overall accuracy of 56.9% is significantly
higher than the baseline.2

Column 2 in Table 1 shows that this decent per-
formance is entirely due to excellent performance
on the CD subset. (Recall that the CD set was de-
signed explicitly with examples with high lexical
overlap in mind.) In addition, the method overes-
timates the number of true entailments, achieving a
Recall of 0.926 for the class TRUE, but a precision
of only 0.547 on the same class. In contrast, it has

2We used thez-test for the difference between two propor-
tions to measure whether the difference in accuracy between
two algorithms or an algorithm and the baseline is statistically
significant at the 5% level.

good precision (0.761) but low recall (0.236) for the
FALSE class. Thus, there is a correspondence be-
tween low word overlap and FALSE examples (see
Example 731 in the Introduction, where important
words in the hypothesis like “swamps” or “marshes”
are not matched in the text); high overlap, however,
is normally necessary but not sufficient for TRUE
entailment (see also Example 78 in Section 3).

Experiment 3: Strict entailment To test the po-
tential of entailment as discovered by theorem prov-
ing alone, we now use only theentailment and
inconsistent features. As to be expected, the
decision tree shows that, if a proof for T implies H
has been found, the example should be classified as
TRUE, otherwise as FALSE.3 The precision (0.767)
for the class TRUE is reasonably high: if a proof
is found, then an entailment is indeed very likely.
However, recall is very low (0.058) as only 30 proofs
were found on the test set (for some examples see
Section 3). This yields an F-measure of only 0.10
for the TRUE class. Due to the low recall, the over-
all accuracy of the system (0.52, see Table 1) is not
significantly higher than the baseline.

Thus, this feature behaves in the opposite way
to shallow lexical overlap and overgenerates the
FALSE class. Missing lexical and background
knowledge is the major cause for missing proofs.

Experiment 4: Approximating entailment As
discussed in Section 3.5 we now try to compensate
for missing knowledge and improve recall for TRUE
entailments by approximating entailment with the
features that are furnished by the model builder.
Thus, Experiment 4 uses all eight deep semantic
analysis features, including the features capturing
differences in domain- and modelsizes. The recall
for the TRUE class indeed jumps to 0.735. Al-
though, unavoidably, the FALSE class suffers, the
resulting overall accuracy (0.562, see Column 4 in
Table 1) is significantly higher than when using the
features provided by the theorem prover alone (as
in Experiment 3). The confidence weighted score
also rises substantially from 0.548 to 0.608. The
approximation achieved can be seen in the different
treatment of Example 1049 (see Section 3.5) in Ex-
periments 3 and 4. In Experiment 3, this example

3Theinconsistent feature was not used by the decision
tree as very few examples were covered by that feature.
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Table 1: Summary of Results for Experiments 1 to 6
Exp 1: Human 2: Shallow 3: Strict 4: Deep 5: Hybrid 6: Hybrid+Task
Task acc cws acc cws acc cws acc cws acc cws acc cws

CD 0.967 n/a 0.827 0.881 0.547 0.617 0.713 0.787 0.700 0.790 0.827 0.827
IE 0.975 n/a 0.508 0.503 0.542 0.622 0.533 0.616 0.542 0.639 0.542 0.627
MT 0.900 n/a 0.500 0.515 0.500 0.436 0.592 0.596 0.525 0.512 0.533 0.581
QA 0.961 n/a 0.531 0.557 0.461 0.422 0.515 0.419 0.569 0.520 0.577 0.531
RC 0.979 n/a 0.507 0.502 0.557 0.638 0.457 0.537 0.507 0.587 0.557 0.644
PP 0.920 n/a 0.480 0.467 0.540 0.581 0.520 0.616 0.560 0.667 0.580 0.619
IR 0.922 n/a 0.511 0.561 0.489 0.421 0.567 0.503 0.622 0.569 0.611 0.561
all 0.951 n/a 0.569 0.624 0.520 0.548 0.562 0.608 0.577 0.632 0.612 0.646

is wrongly classified as FALSE as no proof can be
found; in Experiment 4, it is correctly classified as
TRUE due to the small difference between domain-
and modelsizes for T and T+H.

There is hardly any overall difference in accuracy
between the shallow and the deep classifier. How-
ever, it seems that the shallow classifier in its current
form has very little potential outside of the CD sub-
set whereas the deep classifier shows a more promis-
ing performance for several subsets.

Experiment 5: Hybrid classification As shallow
and deep classifiers seem to perform differently on
differently designed datasets, we hypothesized that a
combination of these classifiers should bring further
improvement. Experiment 5 therefore used all shal-
low and deep features together. However, the overall
performance of this classifier (see Column 5 in Ta-
ble 1) is not significantly better than either of the
separate classifiers. Closer inspection of the results
reveals that, in comparison to the shallow classifier,
the hybrid classifier performs better or equally on all
subsets but CD. In comparison to the deep classifier
in Column 4, the hybrid classifier performs equally
well or better on all subsets apart from MT. Over-
all, this means more robust performance of the hy-
brid classifier over differently designed datasets and
therefore more independence from dataset design.

Experiment 6: Dependency on dataset design
As Eperiment 5 shows, simple combination of meth-
ods, while maybe more robust, will not necessar-
ily raise overall performance if the system does not
know when to apply which method. To test this hy-
pothesis further we integrated the subset indicator

as a feature with the values CD, IE, MT, RC, IR,
PP, QA into our hybrid system. Indeed, the resulting
overall accuracy (0.612) is significantly better than
either shallow or deep system alone. Note that us-
ing both a combination of methodologiesand the
subset indicator is necessary to improve on individ-
ual shallow and deep classifiers for this corpus. We
integrated the subset indicator also into the shallow
and deep classifier by themselves, yielding classi-
fiers Shallow+Task and Deep+Task, with no or only
very small changes in accuracy (these figures are not
included in Table 1).

5 Related Work

Our shallow analysis is similar to the IDF models
proposed by (Monz and de Rijke, 2003; Saggion et
al., 2004). We have expanded their approach by us-
ing other shallow features regarding text length.

The basic idea of our deep analysis, using a de-
tailed semantic analysis and first-order inference,
goes back to (Blackburn and Bos, 2005). It is sim-
ilar to some of the recent approaches that were pro-
posed in the context of the PASCAL RTE workshop,
i.e. using the OTTER theorem prover (Akhmatova,
2005; Fowler et al., 2005), using EPILOG (Bayer et
al., 2005), or abduction (Raina et al., 2005).

None of these systems, however, incorporate
model building as a central part of the inference
mechanism. We have shown that solely relying on
theorem proving is normally insufficient due to low
recall, and that using model builders is a promising
way to approximate entailment.

Results of other approaches to determining tex-
tual entailment indicate that it is an extremely hard
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task. The aforementioned RTE workshop revealed
that participating systems reached accuracy figures
ranging between 0.50 and 0.59 and cws scores be-
tween 0.50 and 0.69 (Dagan et al., 2005). Com-
paring this with our own results (accuracy 0.61 and
cws 0.65) shows how well our systems performs on
the same data set. This is partly due to our hy-
brid approach which is more robust across different
datasets.

6 Conclusions

Relying on theorem proving as a technique for de-
termining textual entailment yielded high precision
but low recall due to a general lack of appropriate
background knowledge. We used model building as
an innovative technique to surmount this problem to
a certain extent. Still, it will be unavoidable to incor-
porate automatic methods for knowledge acquisition
to increase the performance of our approach. Future
work will be directed to the acquisition of targeted
paraphrases that can be converted into background
knowledge in the form of axioms.

Our hybrid approach combines shallow analysis
with both theorem proving and model building and
achieves high accuracy scores on the RTE dataset
compared to other systems that we are aware of.
The results for this approach also indicate that (a)
the choice of entailment recognition methods might
have to vary according to the dataset design and/or
application and (b) that a method that wants to
achieve robust performance across different datasets
might need the integration of several different entail-
ment recognition methods as well as an indicator of
design methodology or application.

Thus, although test suites establish a controlled
way of assessing textual entailment detection sys-
tems, the importance of being able to predict textual
entailment in NLP might be better justified using
task-based evaluation. This can be achieved by in-
corporating them in QA or summarisation systems.
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Abstract

Accurate lemmatization of German nouns
mandates the use of a lexicon. Compre-
hensive lexicons, however, are expensive
to build and maintain. We present a self-
learning lemmatizer capable of automati-
cally creating a full-form lexicon by pro-
cessing German documents.

1 Introduction

Lemmatization is the process of deriving the base
form, or lemma, of a word from one of its inflected
forms. For morphologically complex languages like
German this is not a simple task that can be solved
solely through a rule-based algorithm: Performing
an accurate lemmatization for German requires a
lexicon. This can be either a lexicon containing all
inflected forms of a word together with its base form
(full-form lexicon), or just the lemma together with
a set of rules for creating its inflected forms(base-
form lexicon)(Hausser, 2000).

Creating such a lexicon by hand, however, is ex-
pensive and time-consuming. Perhaps because of
this there are currently no freely available lexical
resources for German that include full case and in-
flection information.1 Moreover, even a full-scale
commercial lexicon can fail when encountering spe-
cialized terminology.

As a consequence, most systems processing Ger-
man texts currently perform the much simpler task
of stemming, which often generates stem forms of
words that might not actually exist in the language
(so-calledoverstemming). Stemming is frequently
used for information retrieval (IR) tasks, an example
being the German stemmer contained in the full-text

1The free online dictionaryWiktionary (http://de.
wiktionary.org/) had at the time of writing (May 2005) less
than 5000 entries for German.

search engineLucene,2 which is based on the algo-
rithm described in (Caumanns, 1999). While over-
stemming is a feasible approach for text retrieval,
a text miningsystem often needs to obtain a more
precise lemma, for example, in order to perform a
gazetteer lookup to identify named entities or for de-
scription logic (DL) queries within an ontology.

The goal of our work, therefore, is to allow the
semi-automatic generation of a lexicon by mining
full-text documents. Since there are currently no
free lemmatization systems for German available,3

all components have been developed for release as
free, open-source software.

2 Lemmatization Algorithm

Our lemmatization system has two main compo-
nents, an algorithm and a lexicon. The algorithm
lemmatizes German nouns depending on morpho-
logical classes. The lexicon, which is described in
Section 3, is generated from the nouns that have
been processed by this algorithm, with some addi-
tional capabilities for self-correction.

The lemmatization algorithm considers the con-
text and grammatical features of the language to
lemmatize German words. It requires an additional
POS tagger and an NP chunker, which are used as
resources to extract the features of words and their
surrounding context. It has been developed primar-
ily for nouns but can also be extended to lemmatize
adjectives and verbs.

2.1 Inflection of German Nouns

In German there are seven declensional suffixes for
nouns: -s, -es, -e, -n, -er, and -ern (Caumanns,
1999). These suffixes are due to the morphological

2http://lucene.apache.org/
3The Morphy system (Lezius et al., 1998) is described as

“freely available,” but in fact is closed-source, binary-only, non-
changeable software. It is also no longer being maintained.
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Class Features Remove Suffix
I {Sg}∧ ∼ {Gen}

∧{Masc∨Fem∨Neut} none
II {Sg}∧{Gen}

∧{Masc∨Neut} -es or -s
III {Pl}∧ ∼ {Dat}

∧{Masc∨Fem∨Neut} -e, -n, -en, -er, or -s
IV {Pl}∧{Dat}

∧{Masc∨Fem∨Neut} -n, -en, -ern, or -s

Table 1: Lemmatization of German nouns based on
morphological classes

features such as gender, number, and case (Vilares et
al., 2004). A basic lemmatization algorithm would
reduce the suffixes by analyzing these morpholog-
ical features. The existence of these suffixes is
caused by the following: (1) genitive form of the sin-
gular, masculine, or neuter nouns have the declen-
sional suffixes-es, -en, or -s, e.g.,Kind→ Kindes;
(2) plural nouns have the declensional suffixes-en,
-ern, -n, or -s, e.g.,Frau→ Frauen; and (3) dative
forms of plural nouns have the declensional suffixes
-s, -n, -en, or -ern, like in Kind→ Kindern.

A simple lemmatization algorithm has been de-
veloped to cutoff these suffixes taking the morpho-
logical features such as number, gender, and case
into consideration. The values of these features of-
ten cannot be uniquely determined from the word
form (Evert, 2004). Therefore, we developed an al-
gorithm to classify the nouns into four different mor-
phological classes, as shown in Table 1. Lemmatiza-
tion can then be performed based on these morpho-
logical classes (Table 1, right column).

We now discuss the first step, finding the proper
class for each noun.

2.2 Lemmatization Classes

The currently available POS taggers for German do
not capture more complex morphological features
like number or case. Thus, in order to lemma-
tize German nouns it is necessary to first categorize
them into the classes defined above. Our algorithm
achieves this by analyzing the grammatical features
of a noun, based on the German grammar (Duden,
1995). Additionally, a stochastic case tagger has
been developed as an additional resource to support
the algorithm in the classification of nouns.

2.2.1 Nouns with a Determiner

Table 2 shows statistics for German noun phrases
for different corpora (the size of each corpus can be

Corpus Det Mod Det+Mod None
Only Only

Negra 25% 13% 9% 53%
Die Welt 26% 14% 9% 51%
AvFIS 22% 16% 8% 53%
Wikipedia 28% 15% 9% 48%

Table 2: Distribution of German noun phrases

found in Section 5). The percentage of nouns that
have a determiner is around 34% (25% determiner
only + 9% determiner and modifier). The morpho-
logical information that can be extracted from a de-
terminer preceding a noun is very ambiguous. For
example, the determinerdiecan be either singular or
plural in number, nominative or accusative in case,
and masculine, feminine, or neuter in gender. But
some determiners can be used to classify nouns into
morphological classes.

Table 3 describes our algorithm for nouns that
have a determiner. In the first step, we consider de-
terminers that are singular and non-genitive. There-
fore, they belong to class I and do not need to be
lemmatized. Examples aredas Haus→ Haus, dem
Mann→ Mann, eine Frau→ Frau.

Determiners in the second step are singular and
genitive and the gender can be masculine or neuter.
These nouns belong to class II and to find the lemma,
the suffix-s or -esmust be removed. Examples are
des Hauses→ Haus, des Vaters→ Vater.

Determiners in the third step can be either singu-
lar or plural. The only possible way to differentiate
this is when the noun has both a determiner and a
modifier. The plurals have modifiers ending with-en
and singulars with-e.

In the other steps, nouns cannot be directly classi-
fied. In the fourth step we apply additional heuristics
and in the last step the statistical case tagger (de-
scribed in Section 2.4) is being used.

In German, genitive is mostly used as the case
of nominal modifiers and complement of preposi-
tions (Hinrichs and Trushkina, 1996), which is used
as a heuristic to find the singular determiners in the
fourth step and in the same way another heuristic has
been applied which finds singular determiners when
they are followed by dative prepositions.

The determinerden in German can be either ac-
cusative or dative. In the dative case it is plural and
in the accusative case it is singular and masculine
in gender. Examples areden Kindern(dative plural)
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Step Determiner Class
1 das, dem, Class I

ein, einem,
. . ., ihr, ihrem

2 des, eines, Class II
meines, deines,
. . ., ihres

3 die, meine, If modifier has the suffix -e
deine, → Class I
. . ., ihre If modifier has the suffix -en

→ Class III
4 der, meiner, If determiner is not followed

deiner, by a genitive preposition
. . ., ihrer or a noun phrase → Class I

If determiner is followed by a
dative preposition → Class I

5 den, meinen, If case tagged by case tagger
deinen, is accusative → Class I
. . ., ihren If case is dative → Class IV

Table 3: Lemmatizing German nouns that appear
with a determiner

andden Salat(accusative singular). The fifth step
has determiners that have this ambiguity, which is
resolved using information given by the case tagger.

2.2.2 Nouns with a Modifier only

The morphological features of a noun that can be
extracted from a modifier are less than those based
on a determiner. According to the statistics in Table
2, around 14% of noun phrases come with a modifier
only. However, it is sometimes possible to lemma-
tize nouns by looking at the modifiers’ suffixes and
the case information as given by the case tagger. Ta-
ble 4 describes our algorithm for nouns that come
solely with a modifier.

In German, when a noun exists without a deter-
miner but with a modifier, the ending of the modi-
fier changes according to the morphological features
of the noun. For example, the noun phrasedem
kleinen Kindwithout determiner becomeskleinem
Kind. The suffix -em appears only for singular
nouns, which do not need to be lemmatized.

A modifier with the suffix-escan be genitive, ac-
cusative, or nominative. A good example for this
feature iskleines Kindand kleines Kindes. In the
first case it is nominative or accusative and in the
second case genitive. Here, we use the case infor-
mation given by the case tagger to classify the noun.

Modifiers with the suffix-enare similar to the step
with the determinerden. A modifier with suffix-en
can be either singular or plural. In singular case
it is accusative and in plural case dative; examples

Step Modifier Action
Suffix

1 -em Class I
2 -es If case is not genitive → Class I

If case is genitive → Class II
3 -en If case is accusative → Class I

If case is dative → Class IV
4 -er If case is dative or nominative

→ Class I

Table 4: Lemmatizing German nouns with a modi-
fier but without a determiner

for these cases areguten Mann(accusative, singu-
lar) andguten M̈annern(dative, plural).

Modifiers that have the suffix-er can be both gen-
itive or non-genitive. In the non-genitive case they
are singular and need not to be lemmatized. Ex-
amples for this arekleiner Katze(dative, singular),
kleiner Katze(genitive, singular), andkleiner Katzen
(genitive, plural).

2.2.3 Nouns without Modifier or Determiner

Nouns without modifier or determiner account for
51% of all NPs (Table 2). Most of these nouns can-
not be directly lemmatized using methods as they
have been applied above. The main reason for this
is the unavailability of a tagger providing number
and gender information for such nouns. Using only
the case tagger it is not possible to classify all the
nouns in this set. However, it is possible to capture
some nouns in this set by applying a heuristic:�



�
	If a noun follows the prepositionzum, zur, am,

im, ins,or ans−→ Class I.

The main idea behind this heuristic is a grammat-
ical feature of the German language. In German,
there exists a set of prepositions that are connected
with a determiner, for example,zum Bahnhof, zur
Party, andins Bett. The main feature of nouns fol-
lowing such a preposition is that they are singular
and thus do not need to be lemmatized.

2.2.4 POS-based Lemmatization

To maximize the number of nouns that can be
lemmatized a heuristic has been added to capture
nominative nouns, using the POS taggerTreeTagger
(Schmid, 1995). The main idea behind this heuristic
is to find the subject and main verb of a sentence.
In German, the subject is always nominative and by
looking at the suffix of the main verb, it is possible
to determine the number of the subject.
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This heuristic first finds the subject of the sen-
tence based on the case tagger information. Then,
based on the information from the POS tags the main
verb is identified and checked whether it is a plural
verb. The corresponding plural nouns are then lem-
matized, whereas singular nouns remain unchanged.

2.3 Optimizations

To avoid some errors in the lemmatization algorithm
and to increase the accuracy of lemmatization addi-
tional optimizations are needed. In German, many
plural forms are built by changing a vowel to an
Umlaut (Caumanns, 1999), like indas Landanddie
Länder. But this is not a static rule because there are
some cases where the noun already has an Umlaut,
like in die Aff̈are and die Aff̈aren. Here, it would
not be correct to lemmatizeAffären to *Affare. As a
solution, several possible lemma candidates are gen-
erated, for example,Länder→ *LändandLand.

Another feature of German are nouns that are
made up from adjectives. These nouns have differ-
ent suffixes when they appear with definite or indefi-
nite determiners and without determiners. An exam-
ple is the nounAbgeordnete; in singular form it can
appear in two ways,der Abgeordneteandein Abge-
ordneter. It is also tricky in the dative singular case,
where it has three forms,Abgeordnetem, Abgeord-
neter anddem/der/einem/einer Abgeordneten. Our
algorithm thus generates the possible lemma candi-
dates:Abgeordneter→ Abgeordneter, Abgeordnete.

The main reason to generate lemma candidates for
these nouns above is to store them in the lexicon.
The correct lemma can then later be identified and
the lexicon updated when the noun appears again in
a different context.

2.4 The Case Tagger

As an additional resource to the lemmatizer we de-
veloped a stochastic case tagger. It has been built
using the POS tags as features to train the model in
order to predict the case of nouns. From the stan-
dard STTS tagset for German (Schiller et al., 1995),
which has 54 POS tags, 38 tags4 have been identified
to train the model, based on an analysis of the gram-
matical structure of German sentences as defined in
the German grammar (Duden, 1995).

4These POS tags define the structure of the grammatical case
in German sentences, for example, verbs and prepositions.

2.4.1 Model

We apply a standard Hidden Markov Model
(HMM), designed for the structure of the German
language. A German sentence can be represented as
a set of variable states, which can be nominative, ac-
cusative, dative, or genitive and a set of fixed states
like finite verbs and conjunctions. For example, in
the sentenceDie Mutter gibt den kleinen Kindern
den Salat, the phrasesDie Mutter (nominative),den
kleinen Kindern(dative) andden Salat(accusative)
are the variable states and the finite verbgibt is a
fixed state. In this manner, the whole sentence can
be represented with the state sequencenominative
VVFIN (finite verb)dative accusative. From the 38
tags that have been chosen for training, 10 tags5 have
been integrated with the nouns as variable states.

2.4.2 Tagging Algorithm

As an HMM tagger, our case tagger chooses the
best sequence of tags for a given sequence of states
(Jurafsky and Martin, 2000). In this model this can
be expressed as choosing the best sequence of tags
for the variable states in the sequence. The first stage
of the algorithm selects the set of tags from the POS
tags that are used for calculation and then it orders
these tags into fixed and non-fixed states with re-
spect to the grammatical case. The second stage of
the algorithm calculates the most probable tag se-
quence using the Viterbi algorithm. The model is
smoothed to avoid zero probabilities. In the worst
case the complexity of this algorithm isO(N3) but
hereN = 4, the four grammatical cases.

3 Lexicon Generation

As discussed above, the lemmatization algorithm
cannot be used alone to lemmatize all German
nouns, as it cannot capture every noun in a text.
However, a noun that could not be lemmatized
within one text may well have enough context infor-
mation for a precise lemmatization within another.
Thus, our main idea here is to create a self-learning
lexicon that evolves with the nouns processed by the
algorithm, continuously learning the correct values
for each lexical entry.

5Like for nouns, grammatical case is a morphological fea-
ture of these POS tags, for example, pronouns and adjectives.

639



3.1 Lexicon Entries

The lexicon stores the full form of a word with its
base form and possible morphological features like
number, gender, and case. This is different from a
lexicon as it has been used for lemmatization, which
only stores the base form for each word together
with its inflection class (Lezius et al., 1998).

For example, the lexicon entries for the nounKind
are represented as:

Noun Number Gender Case Lemma
Kind Sg Neut Nom.Akk Kind
Kindes Sg Neut Gen Kind
Kinder Pl Neut Nom.Akk Kind
Kindern Pl Neut Dat Kind

3.2 Lexicon Generation

The lexicon grows by updating itself from the nouns
that have been processed by the lemmatization al-
gorithm. Additional functionality has been imple-
mented in the lexicon, to allow it to evolve by as-
signing the correct lemma to the words that are in-
flected from the same lemma and correcting some
errors that have been generated by the algorithm.

3.2.1 Evolving the Lexicon

If a word is scheduled for addition to the lexicon,
it first checks whether it already exists. If this is the
case, it compares each feature of the new word with
the one already in the lexicon. If there is any differ-
ence, for example, if the word in the lexicon shows
the numberSgand the new word has the numberPl,
it adds both features to the lexicon entry. If a new
word does not already exist in the lexicon it will just
be added as a new entry. The following example il-
lustrates this process:

Current state of the lexicon
Menschen Sg Masc Akk Mensch
Mensch Sg Masc Nom Mensch

New Entry
Menschen Pl Masc Nom Mensche.Mensch

State of the lexicon after update
Menschen Sg.Pl Masc Akk.Nom Mensch
Mensch Sg Masc Nom Mensch

The assignment of the correct lemmaMenschis
done by a procedure that will be discussed next.

3.2.2 Updating Lemmas

If a new word lemmatized by the algorithm that
has more than one lemma candidate is to be added,
the lexicon tries to assign the correct lemma for this

new word by looking at the lemmas that are already
in the lexicon. If one of the lemma candidates in
the new word matches with a lemma stored in the
lexicon, the lemma of the new word will be updated
with the new information. This process is illustrated
in the following example:

Current state of the lexicon (lemma only)
Land Land
Landes Land

New Entry
Länder Lände.Länd.Lande.Land

State of the lexicon after update
Land Land
Landes Land
Länder Land

In the same way, if a new word that has been cor-
rectly lemmatized is to be entered to the lexicon, the
lexicon tries to update the words in the lexicon that
have more than one lemma using the lemma of the
new word. If one of the lemma candidates of a word
in the lexicon matches with the lemma of the new
word, then the lemma of the word in the lexicon will
be updated with the lemma of the new word:

Current state of the lexicon (lemma only)
Länder Lände.Länd.Lande.Land
Ländern Länder.Lände.Länd.Lander.Lande.Land

New Entry
Landes Land

State of the lexicon after update
Landes Land
Länder Land
Ländern Land

3.2.3 Automatic Error Correction

The lemmatization algorithm may produce errors,
for example, a plural noun wrongly tagged as singu-
lar may not be lemmatized, resulting in a wrong en-
try. While the lexicon evolves, such errors produced
by the algorithm are corrected automatically.

As shown in the example below, the lexicon can
have wrong entries and entering a word with more
than one lemma, which is an inflectional form of a
word that has a wrong entry, will not be assigned
with the correct lemma because the procedure that
updates the lemma will assign possible lemma can-
didates to this word. If a word that has a wrong entry
in the lexicon will be entered again with the correct
lemma, the word itself and all its inflectional forms
will be updated with the correct lemma:
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Current state of the lexicon (lemma only)
Jahr Jahr
Jahre Jahre (wrong)

New Entry
Jahren Jahre.Jahr

State of the lexicon after update
Jahr Jahr
Jahre Jahre (wrong)
Jahren Jahre.Jahr (two possibilities)

New Entry
Jahre Jahr (correct lemmatization)

State of the lexicon after update
Jahr Jahr
Jahre Jahr
Jahren Jahr

4 Implementation

The lemmatization algorithm and the lexicon have
been implemented based on the GATE architecture
(Cunningham et al., 2002). GATE provides an in-
frastructure for developing and deploying software
components that process human language. For the
German POS tagger we currently use the TreeTag-
ger (Schmid, 1995). The other main resource is a
multi-lingual base NP chunker implemented within
the JAPE language.

The Negra corpus version 2 (Skut et al., 1998)
based on approximately 70 000 tokens tagged with
morphological features has been used to train the
case tagger. This corpus has been split into 50 000
training tokens and 20 000 tokens used for testing.

5 Evaluation

Evaluation was performed over four collections of
texts: (1) a set of 350 articles from “Die Welt” news-
paper containing 190 868 tokens (40 104 nouns);
(2) the electronic version of the book “AvFIS”6 con-
taining 120 212 tokens (22 039 nouns); (3) six man-
ually for lemma, case, and number annotated articles
from the GermanWikipediacontaining 6580 tokens
(1536 nouns); (4) 20 000 tokens (5023 nouns) from
the Negra corpus version 2 (Skut et al., 1998), which
contains morphological tags for case and number.

The lemmatization of German texts has been eval-
uated using both the algorithm and the lexicon sep-
arately and combined. Since the first two collec-
tions of texts are not annotated with lemmatization
information, we evaluated the lemma produced by

6Reńe Witte, Architektur von Fuzzy-Informationssystemen,
BoD, 2002,http://rene-witte.net

Corpus Nouns Algorithm Only Lexicon Only
Lemm. Acc. Lemm. Acc.

Die Welt 35531 49% 0.88 67% 0.96
AvFIS 19394 40% 0.88 70% 0.97
Wikipedia 1536 49% 0.87 54% 0.97

Table 5: Lemmatization results, algorithm and lexi-
con tested in isolation

our algorithm or lexicon by comparing it with the
one produced by the TreeTagger, which is based on
an internal dictionary. Since the TreeTagger cannot
produce the lemma for all nouns, we evaluated only
that percentage of nouns for which the TreeTagger
was able to produced a lemma, which is 88% for
both “Die Welt” and the “AvFIS” book. In order to
also evaluate our lemmatization independently from
the lemma produced by the TreeTagger, we com-
pared its results to a manually annotated set of ar-
ticles from the Wikipedia.

Finally, the case and number taggers have also
been evaluated separately using the manually anno-
tated articles from the Wikipedia and the Negra cor-
pus. For this evaluation, the lemmatization accuracy
has been calculated byaccuracy= n(correct)

n(lemmatized) .

5.1 Algorithm Evaluation

Table 5 shows the results of lemmatization using
only the lemmatization algorithm (i.e., no lexicon).

The number of nouns that our algorithm can lem-
matize is just below 50%. This is mainly due to the
large number of nouns, as shown in Table 2, that
appear without a determiner or modifier, as well as
some ambiguous cases where NPs with determiners
and modifiers cannot be lemmatized directly.7

The accuracy of lemmatization based on this ap-
proach shows the irregular morphological features
of the German language. 75% of the errors are due
to irregular morphological variations in German.
The algorithm does not change the vowels with Um-
lauts, therefore, all nouns which have a vowel with
an Umlaut in plural are not lemmatized correctly.
For example, the nounLändernis lemmatized by the
algorithm to*Länd but the correct lemma isLand.
Another peculiarity that causes errors in lemmatiza-
tion are nouns that have been formed by adjectives.
For example, a noun with a determiner likeein Ab-

7E.g., in the sentenceIch sehe die Kinder der Frauthe two
nounsKinder andFrau cannot be lemmatized by the algorithm
because in this context these nouns could be singular or plural.
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geordneterwould not be lemmatized by the algo-
rithm because it is singular and non-genitive. How-
ever, the correct lemma of this word isAbgeordnete.
German also has nouns where the plural and the sin-
gular forms are equal. This is a situation in which
the algorithm fails to generate the correct lemma.
For example, the nounArbeiterhas the same singu-
lar der Arbeiterand pluraldie Arbeiterform. The al-
gorithm lemmatizesdie Arbeiterto *Arbeit whereas
the correct lemma isArbeiter.

The remaining errors are due to mis-tagging,
mainly by the case tagger, which can result in an er-
ror in lemmatization. For example,den Kindernhas
been tagged by the case tagger as*Akk (correctDat),
so the lemmatization algorithm does not lemmatize
this noun toKind because the case is accusative and
hence assumed to be singular.

5.2 Lexicon Evaluation

The lexicon was initially generated by applying the
lemmatization algorithm on the “Die Welt” collec-
tion of texts. We then evaluated lemmatization based
solely on the lexicon (not applying the algorithm) for
these documents. Table 5 also shows the results for
this collection of texts. The growth of the lexicon is
shown in Figure 1; when we performed the evalua-
tion it contained 12 858 entries for 10 251 lemmas.

The next test for lexicon evaluation has been done
in two stages. First, the electronic book “AvFIS”
(2) has been lemmatized using only the lexicon. Af-
terwards, we applied the lemmatization algorithm
on the same book, generating new entries, and then
evaluated the extended lexicon again on this book.
Before processing the book, the lexicon was able

Corpus Contribution Results
Lex. Alg. Both Lemm. Acc.

Die Welt 27% 10% 39% 76% 0.94
AvFIS 33% 3% 37% 73% 0.96
Wikipedia 24% 19% 30% 73% 0.93

Table 6: Results using both algorithm and lexicon

to lemmatize 40% of all nouns with an accuracy of
0.98, whereas afterwards the lemmatization cover-
age increased to 70% with the accuracy dropping
slightly to 0.97.

Both tests above have been done against the
lemma generated by the TreeTagger. Additionally,
we evaluated the lexicon on our manually annotated
set of articles from the Wikipedia, which is also
shown in Table 5.

As can be seen, in all tests the accuracy of lemma-
tization based on the lexicon is higher than that
of the algorithm. The reason for this is the self-
correcting feature of the lexicon discussed above:
While the lexicon evolves it increasingly assigns the
correct lemma for each noun.

Although the lexicon performs with a high accu-
racy, the remaining errors are due to various forms
of the construction of words in German. For exam-
ple, consider the two nounsSieger(lemmaSieger)
and Sieg(lemmaSieg). As the lexicon evolves, it
assignsSiegerthe lemma*Sieg because it already
exists as a lemma in the lexicon whereas the correct
lemma isSieger. Some remaining incorrect entries
in the lexicon also result in errors. Such cases will
need to be corrected manually.

The percentage of lemmatization is obviously
high for texts which have been used to generate
the lexicon. The difference can be clearly seen in
the book example, where the number of nouns that
could be lemmatized increased significantly after
enhancing the lexicon from the same set of nouns.

5.3 Lexicon and Algorithm Evaluation

We evaluated lemmatization using both algorithm
and lexicon combined on the same set of texts (Ta-
ble 6, right side). The number of lemmatized nouns
has clearly increased in the combined method. Here,
a lemma produced by the lexicon takes precedence
over the algorithms’ one, if both were able to pro-
duce a lemma. Table 6 also shows the contribution
of each method for lemmatization in the combined
method (left side). The number of nouns lemmatized
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by the lexicon is relatively higher than the algorithm
on the first two texts because these texts were used
to initially generate the lexicon.

When both algorithm and lexicon were able to
produce a lemma, it agrees in 92% of all cases with
an accuracy of 0.98.

One special case both fail to lemmatize correctly
are foreign (e.g., Latin) words that do not fol-
low German morphological rules (e.g.,Lexika→
Lexikon). These require manual correction or the de-
velopment of specialized heuristics.

Finally, we evaluated the performance of the case
and number taggers. While a detailed discussion of
these results cannot be presented in this paper, the
case tagger reaches an accuracy of 0.92 on the train-
ing data, 0.8 on the testing data, and 0.79 on the
Wikipedia, while the number tagger has an accuracy
of 0.93 on the training data, 0.9 on the testing data,
and 0.91 on the Wikipedia corpus.

6 Conclusions and Future Work

In this paper we demonstrated a new algorithm for
the lemmatization of German nouns. An important
feature is the automatic construction of a lexicon
from the processed documents, allowing it to contin-
uously improve in both coverage and accuracy. The
lemmatization system as well as a lexicon will be
made available as free, open-source software, which
will fill an important gap for the development of
NLP systems dealing with German.8

The automatic generation and self-correction of a
lexicon is a huge time-saver. Compared to the Ger-
man Wiktionary, whose users needed a year to man-
ually curate less than 5000 entries, we were able to
compile the same amount of nouns within a mat-
ter of days.9 Human intervention can be limited
to the inspection and correction of wrong entries,
which will allow the creation of specialized lexicons
even for groups with limited resources. To increase
the coverage of our lexicon, we currently employ
a web crawler, which daily scans several German

8Dictionaries that are only accessible online, like Canoo.net
(http://www.canoo.net) or Wortschatz Lexikon (http://
wortschatz.uni-leipzig.de) we do not consider freely
available, as the underlying databases and tools cannot be down-
loaded, modified, or integrated into NLP systems.

9The Wiktionary does have more information for each entry,
however, some of these could also be automatically created in a
similar fashion.

news sources for texts, which are then processed for
lexical entries.

In the future, we plan to enhance the system to
also deal with verbs, adjectives, and adverbs, as well
as compound nouns.
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Abstract

This paper focuses on semantic role la-
beling using automatically-generated syn-
tactic information. A simple and robust
strategy for system combination is pre-
sented, which allows to partially recover
from input parsing errors and to signif-
icantly boost results of individual sys-
tems. This combination scheme is also
very flexible since the individual systems
are not required to provide any informa-
tion other than their solution. Extensive
experimental evaluation in the CoNLL-
2005 shared task framework supports our
previous claims. The proposed architec-
ture outperforms the best results reported
in that evaluation exercise.

1 Introduction

The task of Semantic Role Labeling (SRL), i.e.
the process of detecting basic event structures
such as who did what to whom, when and where,
has received considerable interest in the past few
years (Gildea and Jurafsky, 2002; Surdeanu et al.,
2003; Xue and Palmer, 2004; Pradhan et al., 2005a;
Carreras and Màrquez, 2005). It was shown that
the identification of such event frames has a signif-
icant contribution for many Natural Language Pro-
cessing (NLP) applications such as Information Ex-
traction (Surdeanu et al., 2003) and Question An-
swering (Narayanan and Harabagiu, 2004).

Most current SRL approaches can be classified
in one of two classes: approaches that take ad-

vantage of complete syntactic analysis of text, pi-
oneered by Gildea and Jurafsky (2002), and ap-
proaches that use partial syntactic analysis, cham-
pioned by previous evaluations performed within
the Conference on Computational Natural Language
Learning (CoNLL) (Carreras and Màrquez, 2004).
The wisdom extracted from this volume of work in-
dicates that full syntactic analysis has a significant
contribution to the SRL performance, when using
hand-corrected syntactic information.

On the other hand, when only automatically-
generated syntax is available, the quality of the in-
formation provided through full syntax decreases
because the state-of-the-art of full parsing is less
robust and performs worse than the tools used for
partial syntactic analysis. Under such real-world
conditions, the difference between the two SRL ap-
proaches (with full or partial syntax) is not that high.
More interestingly, the two SRL strategies perform
better for different semantic roles. For example,
models that use full syntax recognize better agent
and theme roles, whereas models based on partial
syntax are better at recognizing explicit patient roles,
which tend to be farther from the predicate and accu-
mulate more parsing errors (Màrquez et al., 2005).

The above observations motivate the work pre-
sented in this paper. We introduce a novel semantic
role labeling approach that combines several indi-
vidual SRL systems. Intuitively, our approach can
be separated in two stages: a candidate generation
phase, where the solutions provided by several indi-
vidual models are combined into a pool of candidate
arguments, and an inference phase, where the candi-
dates are filtered using a binary classifier, and possi-
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The luxury auto maker last year sold 1,214 cars in the U.S.

PPNP

VPNPNP

S

ARG0 ARGM−TMP P ARG1 ARGM−LOC

Figure 1: Sample PropBank sentence.

ble conflicts with domain knowledge constraints are
resolved to obtain the final solution.

For robustness, the inference model uses only
global attributes extracted from the solutions pro-
vided by the individual systems, e.g., the sequence
of role labels generated by each system for the cur-
rent predicate. We do not use any attributes spe-
cific to the individual models, not even the confi-
dence assigned by the individual classifiers. Besides
simplicity, the consequence of this decision is that
our approach does not impose any restrictions on the
individual SRL strategies, as long as one solution
is provided for each predicate. On the other hand,
probabilistic inference processes, which have been
successfully used for SRL (Koomen et al., 2005),
mandate that each individual candidate argument be
associated with its raw activation, or confidence, in
the given model. However, this information is not
directly available in two out of three of our individ-
ual models, which classify argument chunks and not
entire arguments.

Despite its simplicity, our approach obtains en-
couraging results: the combined system outperforms
any of the individual systems and, using exactly the
same data, it is also competitive with the best SRL
systems that participated in the latest CoNLL shared
task evaluation (Carreras and Màrquez, 2005).

2 Semantic Corpora

In this paper we report results using PropBank, an
approximately one-million-word corpus annotated
with predicate-argument structures (Kingsbury et
al., 2002). To date, PropBank addresses mainly
predicates lexicalized by verbs and a small num-
ber of predicates lexicalized by verb nominalizations
and adjectives.

The arguments of each predicate are numbered se-

quentially from ARG0 to ARG5. Generally, ARG0
stands for agent, ARG1 for theme or direct ob-
ject, and ARG2 for indirect object, benefactive or
instrument, but mnemonics tend to be verb spe-
cific. Additionally, predicates might have “adjunc-
tive arguments”, referred to as ARGMs. For example,
ARGM-LOC indicates a locative and ARGM-TMP in-
dicates a temporal. Figure 1 shows a sample sen-
tence where one predicate (“sold”) has 4 arguments.

In a departure from “traditional” SRL approaches
that train on the hand-corrected syntactic trees as-
sociated with PropBank, we do not use any syn-
tactic information from PropBank. Instead, we
develop our models using automatically-generated
syntax and named-entity (NE) labels, made avail-
able by the CoNLL shared task evaluation (Carreras
and Màrquez, 2005). From the CoNLL data, our
individual models based on full syntactic analysis
use the trees generated by the Charniak parser. The
partial-syntax model uses the chunk − i.e. basic syn-
tactic phrase − labels and clause boundaries. All in-
dividual models make use of the provided NE labels.

Following the CoNLL-2005 setting we evaluated
our system also on a fresh test set, derived from the
Brown corpus. This second evaluation allows us to
re-enforce our robustness claim.

3 Approach Overview

The proposed architecture, summarized in Figure 2,
consists of two stages: a candidate generation phase
and an inference stage.

In the candidate generation step, we merge the so-
lutions of three individual SRL models into a unique
pool of candidate arguments. The proposed models
range from complete reliance on full parsing to us-
ing only partial syntactic information. The first two
models, Model 1 and 2, are developed as sequential
taggers (using the BIO tagging scheme) on a shared
framework. The major difference between the two
models is that Model 1 uses only partial syntactic
information (basic phrases and clause boundaries),
whereas Model 2 uses complete syntactic informa-
tion. To maximize diversity, Model 3 implements
a different strategy: it models only arguments that
map into exactly one syntactic constituent. Section 4
details all three individual models.

The inference stage starts with candidate filtering,
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Figure 2: Architecture of the proposed system.

which reduces the number of candidate arguments
in the pool using a single binary classifier. Using
this classifier’s confidence values and a number of
domain-specific constraints, e.g. no two arguments
can overlap, the conflict resolution component en-
forces the consistency of the final solution using a
straightforward greedy strategy. The complete in-
ference model is detailed in Section 5.

4 Individual SRL Models

Models 1 and 2. These models approach SRL as
a sequential tagging task. In a pre-process step, the
input syntactic structures are traversed in order to
select a subset of constituents organized sequentially
(i.e. non embedding). Model 1 makes use only of
the partial tree defined by base chunks and clause
boundaries, while Model 2 explores full parse trees.

Precisely, the sequential tokens are selected as fol-
lows. First, the input sentence is splitted into dis-
joint segments by considering the clause boundaries
given by the syntactic structure. Second, for each
segment, the set of top-most non-overlapping syn-
tactic constituents completely falling inside the seg-
ment are selected as tokens. Note that this strategy
provides a set of sequential tokens covering the com-
plete sentence. Also, it is independent of the syn-
tactic annotation explored, given it provides clause
boundaries — see (Màrquez et al., 2005) for more
details.

Due to this pre-processing stage, the upper-bound
recall figures are 95.67% for Model 1 and 90.32%
for Model 2 using the datasets defined in Section 6.

The nodes selected are labeled with B-I-O tags
(depending if they are at the beginning, inside, or
outside of a predicate argument) and they are con-
verted into training examples by considering a rich
set of features, mainly borrowed from state-of-the-
art systems. These features codify properties from:
(a) the argument constituent, (b) the target predicate,

Constituent type and head: extracted using common head-
word rules. If the first element is a PP chunk, then the
head of the first NP is extracted.
First and last words and POS tags of the constituent.
POS sequence: if it is less than 5 tags long.
2/3/4-grams of the POS sequence.
Bag-of-words of nouns, adjectives, and adverbs.
TOP sequence: sequence of types of the top-most syntactic
elements in the constituent (if it is less than 5 elements long).
In the case of full parsing this corresponds to the right-hand
side of the rule expanding the constituent node.
2/3/4-grams of the TOP sequence.
Governing category as in (Gildea and Jurafsky, 2002).
NamedEnt, indicating if the constituent embeds or
strictly matches a named entity along with its type.
TMP, indicating if the constituent embeds or strictly matches
a temporal keyword (extracted from AM-TMP arguments of
the training set).
Previous and following words and POS of the constituent.
The same features characterizing focus constituents are
extracted for the two previous and following tokens, provided
they are inside the clause boundaries of the codified region.

Table 1: Constituent structure features: Models 1/2

Predicate form, lemma, and POS tag.
Chunk type and type of verb phrase in which verb is
included: single-word or multi-word.
The predicate voice. We currently distinguish five voice
types: active, passive, copulative, infinitive, and progressive.
Binary flag indicating if the verb is a start/end of a clause.
Sub-categorization rule, i.e. the phrase structure rule that
expands the predicate immediate parent.

Table 2: Predicate structure features: Models 1/2

and (c) the distance between the argument and pred-
icate. The three feature sets are listed in Tables 1, 2,
and 3, respectively.1

Regarding the learning algorithm, we used gener-
alized AdaBoost with real-valued weak classifiers,
which constructs an ensemble of decision trees of
fixed depth (Schapire and Singer, 1999). We con-
sidered a one-vs-all decomposition into binary prob-
lems to address multi-class classification. AdaBoost
binary classifiers are then used for labeling test se-
quences, from left to right, using a recurrent sliding
window approach with information about the tag as-
signed to the preceding token. This tagging module
enforces some basic constraints, e.g., BIO correct
structure, arguments cannot overlap with clause nor
chunk boundaries, discard ARG0-5 arguments not
present in PropBank frames for a certain verb, etc.

1Features extracted from partial parsing and Named Entities
are common to Model 1 and 2, while features coming from full
parse trees only apply to Model 2.
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Relative position, distance in words and chunks, and level of
embedding (in #clause-levels) with respect to the constituent.
Constituent path as described in (Gildea and Jurafsky, 2002)
and all 3/4/5-grams of path constituents beginning at the
verb predicate or ending at the constituent.
Partial parsing path as described in (Carreras et al., 2004)
and all 3/4/5-grams of path elements beginning at the
verb predicate or ending at the constituent.
Syntactic frame as described by Xue and Palmer (2004)

Table 3: Predicate–constituent features: Models 1/2

The syntactic label of the candidate constituent.
The constituent head word, suffixes of length 2, 3, and 4,
lemma, and POS tag.
The constituent content word, suffixes of length 2, 3, and
4, lemma, POS tag, and NE label. Content words, which
add informative lexicalized information different from
the head word, were detected using the heuristics
of (Surdeanu et al., 2003).
The first and last constituent words and their POS tags.
NE labels included in the candidate phrase.
Binary features to indicate the presence of temporal cue
words, i.e. words that appear often in AM-TMP phrases
in training.
For each TreeBank syntactic label we added a feature to
indicate the number of such labels included in the
candidate phrase.
The sequence of syntactic labels of the constituent
immediate children.
The phrase label, head word and POS tag of the
constituent parent, left sibling, and right sibling.

Table 4: Constituent structure features: Model 3

Model 3. The third individual SRL model makes
the strong assumption that each predicate argument
maps to one syntactic constituent. For example, in
Figure 1 ARG0 maps to a noun phrase, ARGM-LOC
maps to a prepositional phrase etcetera. This as-
sumption holds well on hand-corrected parse trees
and simplifies significantly the SRL process because
only one syntactic constituent has to be correctly
classified in order to recognize one semantic argu-
ment. On the other hand, this approach is limited
when using automatically-generated syntactic trees.
For example, only slightly over 91% of the argu-
ments can be mapped to one of the syntactic con-
stituents produced by the Charniak parser.

Using a bottom-up approach, Model 3 maps each
argument to the first syntactic constituent that has
the exact same boundaries and then climbs as high as
possible in the tree across unary production chains.
We currently ignore all arguments that do not map
to a single syntactic constituent.

The predicate word and lemma.
The predicate voice. Same definition as Models 1 and 2.
A binary feature to indicate if the predicate is frequent
(i.e., it appears more than twice in the training data) or not.
Sub-categorization rule. Same def. as Models 1 and 2.

Table 5: Predicate structure features: Model 3

The path in the syntactic tree between the argument phrase
and the predicate as a chain of syntactic labels along with
the traversal direction (up or down).
The length of the above syntactic path.
The number of clauses (S* phrases) in the path.
The number of verb phrases (VP) in the path.
The subsumption count, i.e. the difference between the
depths in the syntactic tree of the argument and predicate
constituents. This value is 0 if the two phrases share the
same parent.
The governing category, which indicates if NP
arguments are dominated by a sentence (typical for
subjects) or a verb phrase (typical for objects).
We generalize syntactic paths with more than 3
elements using two templates:
(a) Arg ↑ Ancestor ↓ Ni ↓ Pred, where Arg is the
argument label, Pred is the predicate label, Ancestor
is the label of the common ancestor, and Ni is instantiated
with all the labels between Pred and Ancestor in
the full path; and
(b) Arg ↑ Ni ↑ Ancestor ↓ Pred, where Ni is
instantiated with all the labels between Arg and
Ancestor in the full path.
The surface distance between the predicate and the
argument phrases encoded as: the number of tokens, verb
terminals (VB*), commas, and coordinations (CC) between
the argument and predicate phrases, and a binary feature to
indicate if the two constituents are adjacent.
A binary feature to indicate if the argument starts with a
predicate particle, i.e. a token seen with the RP* POS
tag and directly attached to the predicate in training.

Table 6: Predicate–constituent features: Model 3

Once the mapping process completes, Model 3
extracts a rich set of lexical, syntactic, and seman-
tic features. Tables 4, 5, and 6 present these features
organized in the same three categories as the previ-
ous Models 1 and 2 — see (Surdeanu and Turmo,
2005) for more details.

Similarly with Models 1 and 2, Model 3 trains
one-vs-all classifiers using AdaBoost for the most
common argument labels. To reduce the sample
space, Model 3 selects training examples (both posi-
tive and negative) only from: (a) the first clause that
includes the predicate, or (b) from phrases that ap-
pear to the left of the predicate in the sentence. More
than 98% of the argument constituents fall into one
of these classes.

At prediction time the classifiers are combined us-
ing a simple greedy technique that iteratively assigns
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to each predicate the argument classified with the
highest confidence. For each predicate we consider
as candidates all AM attributes, but only numbered
attributes indicated in the corresponding PropBank
frame. Additionally, this greedy strategy enforces a
limited number of domain knowledge constraints in
the generated solution: (a) arguments can not over-
lap in any form, and (b) no duplicate arguments are
allowed for ARG0-5.

5 The Inference Model

The most important component of our inference
model is candidate filtering, which decides if a can-
didate argument should be maintained in the global
solution or not. Candidate filtering is implemented
as a single binary classifier that uses only features
extracted from the solutions provided by the individ-
ual systems. For robustness, we do not use any fea-
tures that are specific to any of the individual mod-
els, nor the confidence value of their classifiers.

Table 7 lists the features extracted from each can-
didate argument by the filtering classifier. For sim-
plicity we have focused only on attributes that: (a)
are readily available in the solutions proposed by the
individual classifiers, and (b) allow the gathering of
simple and robust statistics. For example, the fil-
tering classifier might learn that a candidate is to be
trusted if: (a) two individual systems proposed it, (b)
if its label is ARG2 and it was generated by Model 1,
or (c) if it was proposed by Model 2 within a certain
argument sequence.

The candidate arguments that pass the filtering
stage are incorporated in the global solution by the
conflict resolution module, which enforces several
domain specific constraints. We have currently im-
plemented two constraints: (a) arguments can not
overlap or embed other arguments; and (b) no du-
plicate arguments are allowed for the numbered ar-
guments ARG0-5. Theoretically, the set of con-
straints can be extended with any other rules, but in
our particular case, we know that some constraints,
e.g. providing only arguments indicated in the cor-
responding PropBank frame, are already guaranteed
by the individual models. Conflicts are solved with
a straightforward greedy strategy: the pool of candi-
date arguments is inspected in descending order of
the confidence values assigned by the filtering clas-

The label of the candidate argument.
The number of systems that generated an argument with
this label and span.
The unique ids, e.g. M1 and M2, of all the systems that
generated an argument with this label and span.
The argument sequence for this predicate for all the systems
that generated an argument with this label and span. For
example, the argument sequence for the proposition
illustrated in Figure 1 is: ARG0 - ARGM-TMP - P -
ARG1 - ARGM-LOC.
The number and unique ids of all the systems that generated
an argument with the same span but different label.
The number and unique ids of all the systems that generated
an argument included in the current argument.
The number and unique ids of all the systems that generated
an argument that contains the current argument.
The number and unique ids of all the systems that generated
an argument that overlaps the current argument.

Table 7: Features used by the candidate filtering
classifier.

sifier, and candidates are appended to the global so-
lution only if they do not violate any of the domain
constraints with the arguments already selected. Our
inference system currently has a sequential architec-
ture, i.e. no feedback is sent from the conflict reso-
lution module to candidate filtering.

6 Experimental Results

We trained the individual models using the complete
CoNLL-2005 training set (PropBank/TreeBank sec-
tions 2 to 21). All models were developed using
AdaBoost with decision trees of depth 4 (i.e. each
branch may represent a conjunction of at most 4 ba-
sic features). Each classification model was trained
for up to 2,000 rounds.

We applied some simplifications to keep training
times and memory requirements inside admissible
bounds: (a) we have limited the number of nega-
tive examples in Model 3 to the first 500,000; (b)
we have trained only the most frequent argument la-
bels: top 41 for Model 1, top 35 for Model 2, and
top 24 for Model 3; and (c) we discarded all features
occurring less than 15 times in the training set.

The models were tuned on a separate develop-
ment partition (TreeBank section 24) and evaluated
on two corpora: (a) TreeBank section 23, which
consists of Wall Street Journal (WSJ) documents,
and (b) on three sections of the Brown corpus, se-
mantically annotated by the PropBank team for the
CoNLL 2005 shared task evaluation. Table 8 sum-
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WSJ PProps Precision Recall Fβ=1

Model 1 48.45% 78.76% 72.44% 75.47 ±0.8

Model 2 52.04% 79.65% 74.92% 77.21 ±0.8

Model 3 45.28% 80.32% 72.95% 76.46 ±0.6

Brown PProps Precision Recall Fβ=1

Model 1 30.85% 67.72% 58.29% 62.65 ±2.1

Model 2 36.44% 71.82% 64.03% 67.70 ±1.9

Model 3 29.48% 72.41% 59.67% 65.42 ±2.1

Table 8: Overall results of the individual models on
the WSJ and Brown test sets.

marizes the results of the three models on the WSJ
and Brown corpora. In that table we include the
percentage of perfect propositions detected by each
model (“PProps”), i.e. predicates recognized with
all their arguments, the overall precision, recall, and
Fβ=1 measure2.

The results summarized in Table 8 indicate that
all individual systems have a solid performance. Al-
though none of them would rank in the top 3 in this
year’s CoNLL evaluation (Carreras and Màrquez,
2005), their performance is comparable to the best
individual systems presented at that evaluation exer-
cise3. As expected, the models based on full parsing
(2 and 3) perform better than the model based on
partial syntax. But, interestingly, the difference is
not large (e.g., less than 2 points in Fβ=1 in the WSJ
corpus), evincing that having base syntactic chunks
and clause boundaries is enough to obtain a compet-
itive performance with a simple system.

Consistently with other systems evaluated on the
Brown corpus, all our models experience a severe
performance drop in this corpus, due to the lower
performance of the linguistic processors.

6.1 Performance of Combination Systems

We have trained the candidate filtering binary classi-
fier on one third of the training partition. Its training
data was generated using individual models trained
on the other two thirds of the training partition. The
classifier was developed using Support Vector Ma-
chines (SVM) with a polynomial kernel of degree 2.
We trained combined models for all 4 possible com-
binations of our 3 individual models.

2The significance intervals for the F1 measure have been ob-
tained using bootstrap resampling (Noreen, 1989). F1 rates out-
side of these intervals are assumed to be significantly different
from the related F1 rate (p < 0.05).

3The best performing SRL systems at CoNLL were a com-
bination of several subsystems. See section 7 for details.

Table 9 summarizes the performance of the com-
bined systems on the WSJ and Brown corpora.4

The combined systems are compared against a base-
line combination system, which merges all the argu-
ments generated by the individual systems. For con-
flict resolution, the baseline uses the greedy strategy
introduced in Section 5, but using as argument or-
dering criterion a radix sort that orders the candidate
arguments in descending order of: number of mod-
els that agreed on this argument; argument length in
tokens; and performance of the individual system5.

Table 9 indicates that our combination strategy is
always successful: the results of all combined sys-
tems improve upon their individual models and they
are better the baseline when using the same num-
ber of individual models. As expected, the highest
scoring combined system includes all three individ-
ual models. Its Fβ=1 measure is 2.35 points higher
than the best individual model (Model 2) in the WSJ
test set and 1.30 points higher in the Brown test
set. Somewhat surprisingly, the highest percentage
of perfect propositions is not obtained by the over-
all best combination, but by the system that com-
bines the two models based on full parsing (Models
2 and 3). This happens because Model 1 is the weak-
est performing of the bunch, hence its arguments,
while providing useful information to the filtering
classifier, decrease the number of perfect proposi-
tions when selected.

We consider these results encouraging given the
simplicity of our inference model and the limited
amount of training data used to train the candidate
filtering classifier. Additionally, they compare fa-
vorably with respect to the best performing systems
at CoNLL-2005 shared task (see Section 7).

6.2 Upper Limit of the Combination Strategy

To explore the potential of our approach we have
constructed a hypothetical system where our candi-
date filtering module is replaced with a perfect clas-
sifier that selects only correct arguments and dis-
cards all others. Table 10 lists the results obtained
on the WSJ and Brown corpora by this hypothetical
system using all three individual models.

4For conciseness, in Table 9 we introduced the notation
M1+2+3 to indicate the combination of Models 1, 2, and 3

5This combination produced the highest-scoring baseline
model.
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WSJ PProps Prec. Recall Fβ=1

M1+2 51.30% 81.30% 74.13% 77.55 ±0.7

M1+3 47.26% 81.21% 73.36% 77.08 ±0.8

M2+3 52.65% 81.55% 75.30% 78.30 ±0.7

M1+2+3 51.64% 84.89% 74.87% 79.56 ±0.7

baseline 51.09% 77.29% 78.67% 77.98 ±0.7

Brown PProps Prec. Recall Fβ=1

M1+2 35.95% 73.70% 62.93% 67.89 ±2.0

M1+3 28.98% 72.83% 58.84% 65.09 ±2.2

M2+3 37.06% 73.89% 63.30% 68.18 ±2.2

M1+2+3 34.20% 78.66% 61.46% 69.00 ±2.1

baseline 33.58% 67.66% 66.01% 66.82 ±1.8

Table 9: Overall results of the combination models
on the WSJ and Brown test sets.

Perfect props Precision Recall Fβ=1

WSJ 70.76% 99.12% 85.22% 91.64
Brown 51.87% 99.63% 74.32% 85.14

Table 10: Performance upper limit on the test sets.

Table 10 indicates that the upper limit of proposed
approach is relatively high: the Fβ=1 of this hy-
pothetical system is over 12 points higher than our
best combined system in the WSJ test set, and over
16 points higher in the Brown corpus. These re-
sults indicate that the potential of our combination
strategy is high, especially when compared with re-
ranking strategies, which are limited to the perfor-
mance of the best complete solution in the candidate
pool. By allowing the re-combination of arguments
from the individual candidate solutions we raise this
threshold significantly. Table 11 lists the contribu-
tion of the individual models to this upper limit on
the WSJ corpus. For conciseness, we list only the
“core” numbered arguments. “∩ of 3” indicates the
percentage of correct arguments where all 3 mod-
els agreed, “∩ of 2” indicates the percentage of cor-
rect arguments where any 2 models agreed, and the
other columns indicate the percentage of correct ar-
guments detected by a single model. Table 11 indi-
cates that, as expected, two or more individual mod-
els agreed on a large percentage of the correct argu-
ments. Nevertheless, a significant number of correct
arguments, e.g. over 22% of ARG3, come from a
single individual system. This proves that, in order
to achieve maximum performance, one has to look
beyond simple voting strategies that favor arguments
with high agreement between individual systems.

∩ of 3 ∩ of 2 M1 M2 M3
ARG0 80.45% 12.10% 3.47% 2.14% 1.84%
ARG1 69.82% 17.83% 7.45% 2.77% 2.13%
ARG2 56.04% 22.32% 12.20% 4.95% 4.49%
ARG3 56.03% 21.55% 12.93% 5.17% 4.31%
ARG4 65.85% 20.73% 6.10% 2.44% 4.88%

Table 11: Contribution of the individual systems to
the upper limit, for ARG0–ARG4 in the WSJ test set.

WSJ Brown
PProps Fβ=1 PProps Fβ=1

koomen 53.79% 79.44 ±0.8 32.34% 67.75 ±1.8

haghighi 56.52% 78.45 ±0.8 37.06% 67.71 ±2.0

pradhan 50.14% 77.37 ±0.7 36.44% 67.07 ±2.0

Table 12: Results of the best combined systems at
CoNLL-2005.

7 Related Work

The best performing systems at the CoNLL-2005
shared task included a combination of different base
subsystems to increase robustness and to gain cover-
age and independence from parse errors. Therefore,
they are closely related to the work of this paper.
Table 12 summarizes their results under exactly the
same experimental setting.

Koomen et al. (2005) used a 2 layer architecture
similar to ours. The pool of candidates is generated
by running a full syntax SRL system on alternative
input information (Collins parsing, and 5-best trees
from Charniak’s parser). The combination of can-
didates is performed in an elegant global inference
procedure as constraint satisfaction, which, formu-
lated as Integer Linear Programming, can be solved
efficiently. Interestingly, the generalized inference
layer allows to include in the objective function,
jointly with the candidate argument scores, a num-
ber of linguistically-motivated constraints to obtain
a coherent solution. Differing from the strategy pre-
sented in this paper, their inference layer does not
include learning. Also, they require confidence val-
ues from individual classifiers. This is the best per-
forming system at CoNLL-2005.

Haghighi et al. (2005) implemented a double re-
ranking model on top of the base SRL models to se-
lect the most probable solution among a set of can-
didates. The re-ranking is performed, first, on a set
of n-best solutions obtained by the base system run
on a single parse tree, and, then, on the set of best-
candidates coming from the n-best parse trees. The
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re-ranking approach allows to define global complex
features applying to complete candidate solutions to
train the rankers. The main drawback, compared to
our approach, is that re-ranking does not permit to
combine different solutions since it is forced to se-
lect a complete candidate solution. This fact implies
that the performance upper limit strongly depends
on the ability of the base model to generate the com-
plete correct solution in the set of n-best candidates.

Finally, Pradhan et al. (2005b) followed a stack-
ing approach by learning two individual systems
based on full syntax, whose outputs are used to
generate features to feed the training stage of a fi-
nal chunk-by-chunk SRL system. Although the fine
granularity of the chunking-based system allows to
recover from parsing errors, we find this combina-
tion scheme quite ad-hoc because it forces to break
argument candidates into chunks in the last stage.

8 Conclusions

This paper introduces a novel, robust combination
strategy for semantic role labeling. Our approach
is separated in two stages: a candidate generation
phase, which combines the solutions generated by
several individual models into a pool of candidate ar-
guments, followed by a simple inference model that
filters the candidate arguments using a single binary
classifier and then enforces an arbitrary number of
domain-specific constraints.

The proposed approach has several advantages.
First, because it combines the solutions provided by
the individual models, the inference model can re-
cover from errors produced in the generation phase.
Second, due to the diversity of the individual models
employed, the candidate pool contains a high per-
centage of the correct arguments. And lastly, our
approach is flexible and robust: it can incorporate
any SRL model in the candidate generation stage
because it does not require that the individual SRL
models provide any information, e.g. classification
confidence values, other than an argument solution.

Our results are better than the state of the art us-
ing automatically-generated syntactic information.
These results are encouraging considering the sim-
plicity of the proposed approach.
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Abstract 

This paper reports a preliminary study 
addressing two challenges in measuring 
the effectiveness of information extrac-
tion (IE) technology: 
• Developing a methodology for ex-

trinsic evaluation of IE; and, 
• Estimating the impact of improving 

IE technology on the ability to per-
form an application task. 

The methodology described can be em-
ployed for further controlled experi-
ments regarding information extraction. 

1 Introduction 
Intrinsic evaluations of information extraction 

(IE) have a history dating back to the Third Mes-
sage Understanding Conference1 (MUC-3) and 
continuing today in the Automatic Content Ex-
traction (ACE) evaluations.2  Extrinsic evalua-
tions of IE, measuring the utility of IE in a task, 
are lacking and needed (Jones, 2005).   

In this paper, we investigate an extrinsic 
evaluation of IE where the task is question an-
swering (QA) given extracted information.  In 
addition, we propose a novel method for explor-
ing hypothetical performance questions, e.g., if 
IE accuracy were x% closer to human accuracy, 
how would speed and accuracy in a task, e.g., 
QA, improve? 

                                                           
1 For more information on the MUC conferences, see 
http://www.itl.nist.gov/iad/894.02/related_projects/muc/.   
2 For an overview of ACE evaluations see 
http://www.itl.nist.gov/iad/894.01/tests/ace/.  

We plot QA accuracy and time-to-complete 
given eight extracted data accuracy levels rang-
ing from the output of SERIF, BBN’s state-of-
the-art IE system, to manually extracted data. 

2 Methodology 
Figure 1 gives an overview of the methodol-

ogy. The left portion of the figure shows source 
documents provided both to a system and a hu-
man to produce two extraction databases, one 
corresponding to SERIF’s automated perform-
ance and one corresponding to double-
annotated, human accuracy.  By merging por-
tions of those two sources in varying degrees 
(“blends”), one can derive several extracted da-
tabases ranging from machine quality, through 
varying percentages of improved performance, 
up to human accuracy. This method of blending 
databases provides a means of answering hypo-
thetical questions, i.e., what if the state-of-the-
art were x% closer to human accuracy, with a 
single set of answer keys. 

A person using a given extraction database 
performs a task, in our case, QA.  The measures 
of effectiveness in our study were time to com-
plete the task and percent of questions answered 
correctly.  An extrinsic measure of the value of 
improved IE technology performance is realized 
by rotating users through different extraction 
databases and questions sets.   

In our preliminary study, databases of fully 
automated IE and manual annotation (the gold 
standard) were populated with entities, relation-
ships, and co-reference links from 946 docu-
ments. The two initial databases representing 
machine extraction and human extraction re-
spectively were then blended to produce a con-
tinuum of database qualities from machine to 
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human performance. ACE Value Scores3 were 
measured for each database. Pilot studies were 
conducted to develop questions for a QA task. 
Each participant answered four sets of questions, 
each with a different extraction database repre-
senting a different level of IE accuracy. An an-
swer capture tool recorded the time to answer 
each question and additional data to confirm that 
the participant followed the study protocol. The 
answers were then evaluated for accuracy and 
the relationship between QA performance and 
IE quality was established.  
Each experiment used four databases. The first ex-
periment used databases spanning the range from 
solely machine extraction to solely human extraction. 
Based on the results of this experiment, two further 
experiments focused on smaller ranges in database 
quality to study the relationship between IE and QA 
performance.  

2.1 Source Document Selection, Annota-
tion, and Extraction 

Source documents were selected based on the 
availability of manual annotation.  We identified 
946 broadcast news and newswire articles from 
recent ACE efforts, all annotated by the LDC 
according to the ACE guidelines for the relevant 
year (2002, 2003, 2004). Entities, relations, and 
within-document co-reference were marked.  
Inter-document co-reference annotation was 
added by BBN.  The 946 news articles com-
prised 363 articles (187,720 words) from news-
wire and 583 (122,216 words) from broadcast 
news. With some corrections to deal with errors 
and changes in guidelines, the annotations were 
loaded as the human (DB-quality 100) database. 
                                                           
3 The 2004 ACE evaluation plan, available at 
http://www.nist.gov/speech/tests/ace/ace04/doc/ace04-evalplan-
v7.pdf, contains a full description of the scoring metric used in the 
evaluation.  Entity type weights were 1 and the level weights were 
NAM=1.0, NOM=0.5, and PRO=0.1. 

SERIF, BBN’s automatic IE system based on its 
predecessor, SIFT (Miller, 2000), was run on the 
946 ACE documents to create the machine (DB-
quality 0) database. SERIF is a statistically 
trained software system that automatically per-
forms entity, co-reference, and relationship in-
formation extraction. 

Intermediate IE performance was simulated 
by blending the human and automatically gener-
ated databases in various degrees using an inter-
polation algorithm developed specifically for 
this study. To create a blended database, DB-
quality n, all of the entities, relationships, and 
co-reference links common to the human and 
automatically generated databases are copied 
into a new one. Then, n% of the entity mentions 
in the human database (100), but not in the 
automatic IE system output (0), are copied; and, 
(100 – n)% of the entity mentions in the auto-
matically generated database, but not in the hu-
man database, are copied. Next, the relationships 
for which both of the constituent entity mentions 
have been copied are also copied to the blended 
database. Finally, co-reference links and entities 
for the already copied entity mentions are copied 
into the blended database. 

For the first experiment, two intermediate ex-
traction databases were created: DB-qualities 33 
and 67. For the second experiment, two addi-
tional databases were created: 16.5 and 50. The 
first intermediate databases were both created 
using the 0 and 100 databases as seeds. The 16.5 
database was created by mixing the 0 and the 33 
databases in a 50% blend. The 50 database was 
created by doing the same with the 33 and 67 
databases.  For Experiment 3, 41 and 58 data-
bases were created by mixing the 33 and 50, and 
50 and 67 databases respectively.  
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  DB Blend 

  
0 

(Machine) 16.5 33 41 50 58 67 
100 

(Human) 
  Ent Rel Ent Rel Ent Rel Ent Rel Ent Rel Ent Rel Ent Rel Ent Rel 

Recall 64 33 70 40 74 45 76 48 79 54 82 58 86 65 100 100 
Pre. 74 50 77 62 79 67 80 70 83 75 85 78 89 82 100 100 
Value 60 29 67 37 71 42 73 45 77 51 80 56 84 63 100 100 

Table 1: Precision, Recall and Value Scores for Entities and Relations for each DB Blend 
 
  0 

(Machine) 16.5 33 41 50 58 67 
100 

(Human)
Entities 17,117 18,269 18,942 19,398 19,594 19,589 19,440 18,687 
Relations 6,684 6,675 6,905 7,091 7,435 7,808 8,406 11,032 
Descriptions 18,666 18,817 19,135 19,350 19,475 19,639 19,752 20,376 

Table 2: Entity, Relation and Description Counts for each DB Blend 

 
To validate the interpolation algorithm and 

blending procedure, we applied NIST’s 2004 
ACE Scorer to the eight extraction databases. 
Polynomial approximations were fitted against 
both the entity and relation extraction curves. 
Entity performance was found to vary linearly 
with DB blend (R2 = .9853) and relation per-
formance was found to vary with the square of 
DB blend (R2 = .9961). Table 1 shows the scores 
for each blend, and Table 2 shows the counts of 
entities, relationships, and descriptions. 

2.2 Question Answering Task 

Extraction effectiveness was measured by how 
well a person could answer questions given a 
database of facts, entities, and documents. Par-
ticipants answered four sets of questions using 
four databases. They accessed the database using 
BBN’s FactBrowser (Miller, 2001) and recorded 
their answers and source citations in a separate 
tool developed for this study, AnswerPad. 

Each database represented a different data-
base quality. In some databases, facts were miss-
ing, or incorrect facts were recorded. 
Consequently, answers were more accessible in 
some databases than in others, and participants 
had to vary their question answering strategy 
depending on the database. 

Participants were given five minutes to an-
swer each question. To ensure that they had ac-
tually located the answer rather than relied on 
world knowledge, they were required to provide 
source citations for every answer. The instruc-

tions emphasized that the investigation was a 
test of the system, and not of their world knowl-
edge or web search skills. Compliance with 
these instructions was high. Users resorted to 
knowledge-based proper noun searches only one 
percent of the time. In addition, keyword search 
was disabled to force participants to rely on the 
database features. 

2.3 Participants 

Study participants were recruited through local 
web lists and at local colleges and universities.  
Participants were restricted to college students 
and recent graduates with PC (not Mac) experi-
ence, without reading disabilities, for whom 
English was their native language. No other 
screening was necessary because the design 
called for each participant to serve as his or her 
own control, and because opportunities to use 
world knowledge in answering the questions 
were minimized through the interface and pro-
cedures. 

During the first two months of the study 23 
participants were used to help develop questions, 
participant criteria, and the overall test proce-
dure. Then, experiments were conducted com-
paring the 0, 33, 67, and 100 database blends 
(Experiment 1, 20 subjects); the 0, 16.5, 33, and 
50 database blends (Experiment 2, 20 subjects), 
and the 33, 41, 50, and 58 database blends (Ex-
periment 3, 24 subjects). 
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2.4 Question Selection and Validation 

Questions were developed over two months of 
pilot studies. The goal was to find a set of ques-
tions that would be differentially supported by 
the 0, 33, 67, and 100 databases. We explored 
both “random” and “engineered” approaches. 
The random approach called for creating ques-
tions using only the documents, without refer-
ence to the kind of information extracted. Using 
a list of keywords, one person generated 86 
questions involving relationships and entities 
pertaining to politics and the military by scan-
ning the 946 ACE documents to find references 
to each keyword and devising questions based 
on the information she found.  

The alternative, engineered approach involved 
eliminating questions that were not supported by 
the types of information extracted by SERIF, 
and generating additional questions to fit the 
desired pattern of increasing support with in-
creased human annotation. This approach en-
sured that the question sets reflected the 
structural differences that are assumed to exist in 
the database, and produced psychophysical data 
that link degree of QA support to human per-
formance parameters. The IE results from four 
of the databases (0, 33, 67 and 100) were used to 
develop questions that received differential sup-
port from the different quality databases. For 
example, such a question could be answered us-
ing the automatically extracted results, but might 
be more straightforwardly answered given hu-
man annotation. 

Sixty-four questions, plus an additional ten 
practice questions, were created using the engi-
neering approach. Additional criteria that were 
followed in creating the question sets were: 1) 
Questions had to contain at least one reasonable 
entry hook into all four databases, e.g., the terms 
U.S. and America were considered too broad to 
be reasonable; and, 2) For ease of scoring, list-
type questions had to specify the number of an-
swers required. Alternative criteria were consid-
ered but rejected because they correlated with 
the aforementioned set.  The following are ex-
amples of engineered questions. 
• Identify eight current or former U.S. State 

Department workers. 
• In what two West Bank towns does Fatah 

have an office? 

• Name two countries where Osama bin 
Laden has been. 

• Were Lebanese women allowed to vote in 
municipal elections between two Shiite 
groups in the year 1998? 

Two question lists, one with 86 questions 
generated by the random procedure and one with 
64 questions generated by the engineered proce-
dure, were analyzed with respect to the degree of 
support afforded by each of the four databases as 
viewed through FactBrowser. Four a priori cri-
teria were established to assess degree of support 
– or its opposite, the degree of expected diffi-
culty – for each question in each of the four da-
tabases. Ranked from easiest to hardest, they are 
listed in Table 3. 
The question can be answered… 

1. Directly with fact or description (answer 
is highlighted in FactBrowser citation) 

2. Indirectly with fact or description (an-
swer is not highlighted) 

3. With name mentioned in question (long 
list of mentions without context) 

4. Via database crawling 
Table 3: A Priori Question Difficulty Character-

istics, listed from easiest to hardest 

Table 4 shows the question difficulty levels 
for both question types, for each of four data-
bases. Analysis of the engineered set was done 
on all 64 questions.  Analysis for randomly gen-
erated questions was done on a random sample 
of 44 of the 86 questions.  Fifteen questions did 
not meet the question criteria, leaving 29.  

The randomly generated questions showed a 
statistically significant, but small, variation in 
expected difficulty, in part due to the number of 
unanswerable questions. While the questions 
were made up with respect to information found 
in the documents, the process did not consider 
the types of extracted entities and relations. This 
problem might have been mitigated by limiting 
the search to questions involving entities and 
relations that were part of the extraction task. 

By contrast, the engineered question set 
showed a highly significant decrease in expected 
difficulty as the percentage of human annotation 
in the database increased (P < 0.0001 for chi-
square analysis). This result is not surprising, 
given that the questions were constructed with 
reference to the list of entities in the four data-
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bases. The analysis confirms that the experimen-
tal manipulation of different degrees of support 
provided by the four databases was achieved for 
this question set. 
Random Question Generation 
Difficulty 
Level        
(easiest to 
hardest) 

0% 
Human 

33% 
Human 

67% 
Human 

100% 
Human 

1 Fact-
Highlight 

7 10 13 15

2 Fact-
Indirect 

14 10 8 10

3 Mention 3 5 2 1
4 Web Crawl 5 4 6 3
Total 29 29 29 29
     
Engineered Question Generation 
Difficulty 
Level               
(from easiest 
to hardest) 

0% 
Human 

33% 
Human 

67 
Human 

100% 
Human 

1 Fact-
Highlight 

16 25 35 49

2 Fact-
Indirect 

23 20 18 14

3 Mention 7 14 11 1
4 Web Crawl 18 5 0 0
Total 64 64 64 64
Table 4: Anticipated Difficulty of Questions as a 

Function of Database Quality 

Preliminary human testing with both question 
sets suggested that the a priori difficulty indica-
tors predict human question answering perform-
ance. Experiments with the randomly generated 
questions, therefore, were unlikely to reveal 
much about the databases or about human ques-
tion answering performance. On the other hand, 
an examination of how different levels of data-
base quality affect human performance, in a psy-
chophysical experiment where structure is varied 
systematically, promised to address the question 
of how much support is needed for good per-
formance. 

Based on the question difficulties, and pilot 
study timing and performance results, the 64 
questions were grouped into four, 16-question 
balanced sets. 

2.5 Procedure 

Participants were tested individually at our site, 
in sessions lasting roughly four hours. Training 
prior to the test lasted for approximately a half 
hour. Training consisted of a walk-through of 
the interface features followed by guided prac-
tice with sample questions. The test consisted of 
four question sets, each with a different data-
base.  Participants were informed that they 
would be using a different database for each 
question set and that some might be easier to use 
than others. 

Questions were automatically presented and 
responses were captured in AnswerPad, a soft-
ware tool designed for the study. AnswerPad is 
shown in Figure 2.  

Key features of the tool include: 
• Limiting view to current question set – 

disallowing participants to view previous 
question sets 

• Automatically connecting to correct db 
• Logging time spent on each question 
• Enforcing five-minute limit per question 
• Enforcing requirement that all answers in-

clude a citation 

 
Figure 2: AnswerPad Question Presentation and 

Answer Capture Interface 

Participants were given written documenta-
tion as part of their training. The participants 
were instructed to cut-and-paste question an-
swers and document citations from source 
documents into AnswerPad. 

Extracted facts and entities, and source docu-
ments were accessed through FactBrowser. 
FactBrowser, shown in Figure 3, is web-browser 
based and is invoked via a button in AnswerPad. 
FactBrowser allows one to enter a string, which 
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is matched against the database of entity men-
tions. The list of entities that have at least one 
mention partially matching the string are re-
turned (e.g., “Laura Bush”) along with an icon 
indicating the type of the entity and the number 
of documents in which the entity appears.  
Clicking on the entity in the left panel causes the 
top right panel to display all of the descriptions, 
facts, and mentions for the entity. Selecting one 
of these displays citations in which the descrip-
tion, fact, or mention occurs. Clicking on the 
citation opens up a document view in the lower 
right corner of the screen and highlights the ex-
tracted information in the text. When a docu-
ment is displayed, all of the entities detected in 
the document are listed down the left side of the 
document viewer.  
 

 
Figure 3: Browsing Tool Interface 

The browsing tool was instrumented to record 
command invocations so that the path a partici-
pant took to answer a question could be recre-
ated, and the participant’s adherence to protocol 
could be verified. Furthermore, the find function 
(Ctrl-F) was disabled to prevent users from per-
forming ad hoc searches of the documents in-
stead of using the extracted data. 

The order of question sets and the order of da-
tabase conditions were counterbalanced across 
participants, so that, for every four participants, 
every question set and database appeared once in 
every ordinal position, and every question set 

was paired once with every database. This 
avoided carryover effects from question order. 

2.6 Data Collected 
Based on the initial results from Experiment 1, a 
70% target effectiveness threshold was identi-
fied to occur between the 33 and 67 database 
blends. To refine and verify this finding, Ex-
periment 2 examined the 0, 16.5, 33, and 50 da-
tabase blends. Experiment 3 examined the 33, 
41, 50, and 58 database blends. 

AnswerPad collected participant-provided an-
swers to questions and the corresponding cita-
tions. In addition, AnswerPad recorded the time 
spent answering the questions. A limit of five 
minutes was imposed based on pilot study re-
sults. The browsing tool logged commands in-
voked while the user searched the fact-base for 
question answers. Questions were manually 
scored based on the answers in the provided 
corpus. No partial credit was given. The maxi-
mum score, for each database condition, was 16, 
for a total maximum score of 64. 

3 Results 
Figure 4 shows the question answer scores 

and times for each of the three individual ex-
periments, and for Experiments 1 and 2 com-
bined. Database quality affects both task speed 
(downward-sloping line) and task accuracy (up-
ward-sloping line) in the expected direction. A 
logistic fit, as for a binary-response curve, was 
used to fit the relationship between blend per-
centage and accuracy in each experiment. The 
logistic fit Goodman-Theil quasi-R2 was .9973 
for Experiment 1, .9594 for Experiment 2, .8936 
for Experiment 3, and .9959 for Experiments 1 
and 2 combined. 

For the target accuracy of 70%, the 95% con-
fidence interval for the required blend is (35,56) 
around a predicted 46% blend for Experiment 1, 
and (41,56) around a predicted 49% for Experi-
ments 1 and 2 combined. 
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Experiment 2 Performance and Time vs DB Blend
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Experiment 3 Performance and Time vs DB Blend
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Experiments  1 & 2 Performance and Time vs DB Blend
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Figure 4 QA Performance (upward-sloping) and QA Time (downward-sloping) vs. Extraction Blend 
Error Bars are Plus/Minus Standard Error of Mean (SEM) Within Each Blend 

Upper and Lower Bounds Are Approximate 95% Confidence Intervals Based on the Logistic Fit 
For the Blend (X) to Produce a Given Performance (Y) 

(Read these bounds horizontally, as bounds on X, with the upper bound to the right of the lower bound.) 
 

The downward-sloping line in each graph 
displays the average time to answer a question 
as a function of the extraction blend. For this 
analysis we used strict time, the time it took the 
participant to answer the question if he or she 
answered correctly, or the full 5 minutes allowed 
for any incorrectly answered question. This ad-
dresses the situation where a person quickly an-
swers all of the questions incorrectly.  The 
average question-answer time drops 32% as one 
moves from a machine generated extraction da-
tabase to a human generated database. A 
straight-line fit to the Experiment 1 and 2 com-
bined data predicts a drop of 6.5 seconds as the 
human proportion of the database increases by 
10 percentage points. 

A one-way repeated measures analysis of 
variance (ANOVA) was performed for Experi-
ment 1 (0-33-67-100), Experiment 2 (0-16.5-33-
50), and Experiment 3 (33-41-50-58). Table 5 
summarizes the results. In Experiments 1 and 2 
the impact of database quality on QA perform-
ance and on QA time were highly significant (P 
< 0.0001), but not for the narrower range of da-
tabases in Experiment 3. Other ANOVAs 
showed that the impact of trial order and ques-
tion set on QA performance were both non-
significant (P > 0.05). 
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Experiment QA 
Performance 

Strict Time 

1 F(3,57) = 30.98, 
P < .0001  

F(3, 57) = 28.36 
P < .0001 

2 F(3,57)= 19.32, 
P < .0001  

F(3, 57) =  15.37,
P < .0001 

3 F(3,69)= 2.023, 
P = .1187 

F(3,69)= 1.053, 
P = .3747 

Table 5: ANOVA Analyses for QA Performance 
Expt. 1 used db blends of 0, 33, 67, and 100% 
Expt. 2 used db blends of 0, 16.5, 33, and 50% 
Expt. 3 used db blends of 33, 41, 50, and 58% 

In Experiment 1, Newman-Keuls contrasts 
indicate that the 0, 33, 67, and 100 databases 
differ significantly (P < .05) on their impact on 
QA quality. For Experiment 2, however, the 
16.5 and 33 database qualities were not shown to 
be different, nor were any of the database blends 
in Experiment 3. The data suggest that nearly 
half the improvement in QA quality from 0 to 
100 occurs by the 33 database blend, and more 
than half the improvement in QA quality from 0 
to 50 occurs by the 16.5 blend: a little “human” 
goes a long way. Experiment 3 suggests that 
small differences in data blends make no practi-
cal difference in the results.  Alternatively, there 
might be real differences that are small enough 
such that a larger number of participants would 
be required to detect them. Experiment 3 also 
had two participants with atypical patterns of 
QA against blend, which might account for the 
failure to detect a difference between the 33 and 
50 or 58 blends as suggested by the results from 
Experiment 2. Furthermore, larger experiments 
could reveal whether the atypical participants 
were representatives of a subpopulation, or sim-
ply outliers. Bearing the possibility of outliers in 
mind, we used the combination of Experiments 
1 and 2 for the combined logistic analysis. 

4 Conclusions 
We presented a methodology for assessing in-

formation extraction effectiveness using an ex-
trinsic study. In addition, we demonstrated how 
a novel database blending (merging) strategy 
allows interpolating extraction quality from 
automated performance up through human accu-
racy, thereby decreasing the resources required 
to conduct effectiveness evaluations. 

Experiments showed QA accuracy and speed 
increased with higher IE performance, and that 
the database blend percentage was a good proxy 
for ACE value scores.  We emphasize that the 
study was not to show that IE supports QA bet-
ter than other technologies, rather to isolate util-
ity gains due to IE performance improvements. 

QA performance was plotted against human-
machine IE blend and, for example, 70% QA 
performance was achieved with a database blend 
between 41% and 46% machine extraction.  This 
corresponded to entity and relationship value 
scores of roughly 74 and 47 respectively. 

The logistic dose-response model provided a 
good fit and allowed for computation of confi-
dence bounds for the IE associated with a par-
ticular level of performance. The constraints 
imposed by AnswerPad and FactBrowser en-
sured that world knowledge was neutralized, and 
the repeated-measures design (using participants 
as their own controls across multiple levels of 
database quality) excluded inter-participant vari-
ability from experimental error, increasing the 
ability to detect differences with relatively small 
sample sizes. 
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Abstract

In this paper, we study the impact of a
group of features extracted automatically from
machine-generated parse trees on coreference
resolution. One focus is on designing syn-
tactic features using the binding theory as the
guideline to improve pronoun resolution, al-
though linguistic phenomenon such as apposi-
tion is also modeled. These features are ap-
plied to the Arabic, Chinese and English coref-
erence resolution systems and their effective-
ness is evaluated on data from the Automatic
Content Extraction (ACE) task. The syntactic
features improve the Arabic and English sys-
tems significantly, but play a limited role in the
Chinese one. Detailed analyses are done to un-
derstand the syntactic features’ impact on the
three coreference systems.

1 Introduction

A coreference resolution system aims to group together
mentions referring to the same entity, where a mention is
an instance of reference to an object, and the collection of
mentions referring to the same object in a document form
an entity. In the following example:

(I) “John believes himself to be the best student.”

mentions are underlined. The three mentions “John”,
“himself”, “the best student” are of type name, pronoun 1,
and nominal, respectively. They form an entity since they
all refer to the same person.

Syntactic information plays an important role in corefer-
ence resolution. For example, the binding theory (Haege-
man, 1994; Beatrice and Kroch, 2000) provides a good
account of the constraints on the antecedent of English
pronouns. The theory relies on syntactic parse trees to de-
termine the governing category which defines the scope

1“Pronoun” in this paper refers to both anaphor and normal
pronoun.

of binding constraints. We will use the theory as a guide-
line to help us design features in a machine learning
framework.

Previous pronoun resolution work (Hobbs, 1976; Lappin
and Leass, 1994; Ge et al., 1998; Stuckardt, 2001) explic-
itly utilized syntactic information before. But there are
unique challenges in this study: (1) Syntactic informa-
tion is extracted from parse trees automatically generated.
This is possible because of the availability of statistical
parsers, which can be trained on human-annotated tree-
banks (Marcus et al., 1993; Xia et al., 2000; Maamouri
and Bies, 2004) for multiple languages; (2) The bind-
ing theory is used as a guideline and syntactic structures
are encoded as features in a maximum entropy corefer-
ence system; (3) The syntactic features are evaluated on
three languages: Arabic, Chinese and English (one goal
is to see if features motivated by the English language can
help coreference resolution in other languages). All con-
trastive experiments are done on publicly-available data;
(4) Our coreference system resolves coreferential rela-
tionships among all the annotated mentions, not just for
pronouns.

Using machine-generated parse trees eliminates the need
of hand-labeled trees in a coreference system. How-
ever, it is a major challenge to extract useful informa-
tion from these noisy parse trees. Our approach is encod-
ing the structures contained in a parse tree into a set of
computable features, each of which is associated with a
weight automatically determined by a machine learning
algorithm. This contrasts with the approach of extracting
rules and assigning weights to these rules by hand (Lap-
pin and Leass, 1994; Stuckardt, 2001). The advantage
of our approach is robustness: if a particular structure is
helpful, it will be assigned a high weight; if a feature is
extracted from a highly noisy parse tree and is not in-
formative in coreference resolution, it will be assigned
a small weight. By avoiding writing rules, we automati-
cally incorporate useful information into our model and at
the same time limit the potentially negative impact from
noisy parsing output.
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2 Statistical Coreference Resolution Model

Our coreference system uses a binary entity-mention
model PL(·|e, m) (henceforth “link model”) to score the
action of linking a mention m to an entity e. In our im-
plementation, the link model is computed as

PL(L = 1|e, m) ≈ max
m′∈e

P̂L(L = 1|e, m′, m), (1)

where m′ is one mention in entity e, and the basic model
building block P̂L(L = 1|e, m′, m) is an exponential or
maximum entropy model (Berger et al., 1996):

P̂L(L|e, m′, m) =
exp

{
∑

i λigi(e, m
′, m, L)

}

Z(e, m′, m)
, (2)

where Z(e, m′, m) is a normalizing factor to ensure that
P̂L(·|e, m′, m) is a probability, {gi(e, m

′, m, L)} are fea-
tures and {λi} are feature weights.

Another start model is used to score the action of creating
a new entity with the current mention m. Since starting
a new entity depends on all the partial entities created in
the history {ei}

t
i=1

, we use the following approximation:

PS(S = 1|e1, e2, · · · , et, m) ≈

1 − max
1≤i≤t

PL(L = 1|ei, m) (3)

In the maximum-entropy model (2), feature (typically bi-
nary) functions {gi(e, m

′, m, ·)} provide us with a flex-
ible framework to encode useful information into the
the system: it can be as simple as “gi(e, m

′, m, L =
1) = 1 if m′ and m have the same surface string,” or
“gj(e, m

′, m, L = 0) = 1 if e and m differ in num-
ber,” or as complex as “gl(e, m

′, m, L = 1) = 1 if m′

c-commands m and m′ is a NAME mention and m is a
pronoun mention.” These feature functions bear similar-
ity to rules used in other coreference systems (Lappin and
Leass, 1994; Mitkov, 1998; Stuckardt, 2001), except that
the feature weights {λi} are automatically trained over a
corpus with coreference information. Learning feature
weights automatically eliminates the need of manually
assigning the weights or precedence of rules, and opens
the door for us to explore rich features extracted from
parse trees, which is discussed in the next section.

3 Syntactic Features

In this section, we present a set of features extracted
from syntactic parse trees. We discuss how we approx-
imately compute linguistic concepts such as governing
category (Haegeman, 1994), apposition and dependency
relationships from noisy syntactic parse trees. While
parsing and parse trees depend on the target language,
the automatic nature of feature extraction from parse trees
makes the process language-independent.

V
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(Sub) (gov)

likes

NP1 NP2
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John

VP

himself.

VP

V

John likes

NP1 NP2

S (GC)

(Sub)

(2)

(gov)

him.

V

VP

description

NP5

Miss Smith’sbelievesJohn

S

(gov)
(Sub)

(GC)

(3)

NP1
NP2

NP6

NP3
of herself.

NP4P

PP

Figure 1: GC examples.

3.1 Features Inspired by Binding Theory

The binding theory (Haegeman, 1994) concerning pro-
nouns can be summarized with the following principles:

1. A reflexive or reciprocal pronoun (e.g., “herself” or
“each other”) must be bound in its governing cate-
gory (GC).

2. A normal pronoun must be free in its governing cat-
egory.

The first principle states that the antecedent of a reflexive
or reciprocal pronoun is within its GC, while the second
principle says that the antecedent of a normal pronoun is
outside its GC. While the two principles are simple, they
all rely on the concept of governing category, which is
defined as the minimal domain containing the pronoun in
question, its governor, and an accessible subject.

The concept GC can best be explained with a few exam-
ples in Figure 1, where the label of a head constituent
is marked within a box, and GC, accessible subject, and
governor constituents are marked in parentheses with
“GC”, “Sub” and “gov.” Noun-phrases (NP) are num-
bered for the convenience of referencing. For example,
in sub-figure (1) of Figure 1, the governor of “himself”
is “likes,” the subject is “John,” hence the GC is the en-
tire sentence spanned by the root “S.” Since “himself”
is reflexive, its antecedent must be “John” by Principle
1. The parse tree in sub-figure (2) is the same as that
in sub-figure (1), but since “him” is a normal pronoun,
its antecedent, according to Principle 2, has to be out-
side the GC, that is, “him” cannot be coreferenced with
“John.”. Sentence in sub-figure (3) is slightly more com-
plicated: the governor of “herself” is “description,” and
the accessible subject is “Miss Smith.” Thus, the govern-
ing category is NP6. The first principle implies that the
antecedent of “herself” must be “Miss Smith.”

It is clear from these examples that GC is very useful
in finding the antecedent of a pronoun. But the last ex-
ample shows that determining GC is not a trivial matter.
Not only is the correct parse tree required, but extra in-
formation is also needed to identify the head governor
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and the minimal constituent dominating the pronoun, its
governor and an accessible subject. Determining the ac-
cessible subject itself entails checking other constraints
such as number and gender agreement. The complexity
of computing governing category, compounded with the
noisy nature of machine-generated parse tree, prompts us
to compute a set of features that characterize the struc-
tural relationship between a candidate mention and a pro-
noun, as opposed to explicitly identify GC in a parse tree.
These features are designed to implicitly model the bind-
ing constraints.

Given a candidate antecedent or mention m1 and a pro-
noun mention m2 within a parsed sentence, we first test
if they have c-command relation, and then a set of count-
ing features are computed. The features are detailed as
follows:

(1) C-command ccmd(m1, m2) : A constituent X c-
commands another constituent Y in a parse tree if the first
branching node dominating X also dominates Y . The bi-
nary feature ccmd(m1, m2) is true if the minimum NP
dominating m1 c-commands the minimum NP dominat-
ing m2. In sub-figure (1) of Figure 1, NP1 c-commands
NP2 since the first branching node dominating NP1 is S
and it dominates NP2.

If ccmd(m1, m2) is true, we then define the c-command
path T (m1, m2) as the path from the minimum NP dom-
inating m2 to the first branching node that dominates the
minimum NP dominating m1. In sub-figure (1) of Fig-
ure 1, the c-command path T (“John”, “himself”) would
be “NP2-VP-S.”

(2) NP count(m1, m2): If ccmd(m1, m2) is true,
then NP count(m1, m2) counts how many NPs are
seen on the c-command path T (m1, m2), exclud-
ing two endpoints. In sub-figure (1) of Figure 1,
NP count(“John”, “himself”) = 0 since there is no NP
on T (“John”, “himself”).

(3) V P count(m1, m2): similar to NP count(m1, m2),
except that this feature counts how many verb phrases
(VP) are seen on the c-command path. In sub-figure (1)
of Figure 1, V P count(“John”, “himself”) is true since
there is one VP on T (“John”, “himself”).

(4) S count(m1, m2): This feature counts how many
clauses are seen on the c-command path when
ccmd(m1, m2) is true. In sub-figure (1) of Figure 1,
S count(“John”, “himself”) = 0 since there is no clause
label on T (“John”, “himself”).

These features are designed to capture information in the
concept of governing category when used in conjunction
with attributes (e.g., gender, number, reflexiveness) of in-
dividual pronouns. Counting the intermediate NPs, VPs
and sub-clauses implicitly characterizes the governor of
a pronoun in question; the presence or absence of a sub-
clause indicates whethere or not a coreferential relation is
across clause boundary.

3.2 Dependency Features

In addition to features inspired by the binding theory, a
set of dependency features are also computed with the
help of syntactic parse trees. This is motivated by exam-
ples such as “John is the president of ABC Corporation,”
where “John” and “the president” refer to the same per-
son and should be in the same entity. In scenarios like
this, lexical features do not help, while the knowledge
that “John” left-modifies the verb “is” and the “the presi-
dent” right-modifies the same verb would be useful.

Given two mentions m1 and m2 in a sentence, we com-
pute the following dependency features:

(1)same head(m1, m2): The feature compares the bi-
lexical dependencies 〈m1, h(m1)〉, and 〈m2, h(m2)〉,
where h(x) is the head word which x modifies. The fea-
ture is active only if h(m1) = h(m2), in which case it
returns h(m1).

(2)same POS(m1, m2): To get good coverage of de-
pendencies, we compute a feature same POS(m1, m2),
which examines the same dependency as in (1) and
returns the common head part-of-speech (POS) tag if
h(m1) = h(m2).

The head child nodes are marked with boxes in
Figure 1. For the parse tree in sub-figure (1),
same head(“John”, “him”) would return “likes” as
“John” left-modifies “likes” while “him” right-modifies
“likes,” and same POS(“John”, “him”) would return
“V” as the POS tag of “likes” is “V.”

(3) mod(m1, m2): the binary feature is true if m1

modifies m2. For parse tree (2) of Figure 1,
mod(“John”, “him”) returns false as “John” does not
modify “him” directly. A reverse order feature
mod(m2, m1) is computed too.

(4) same head2(m1, m2): this set of features examine
second-level dependency. It compares the head word of
h(m1), or h(h(m1)), with h(m2) and returns the com-
mon head if h(h(m1)) = h(m2). A reverse order feature
same head2(m2, m1) is also computed.

(5) same POS2(m1, m2): similar to (4), except that it
computes the second-level POS. A reverse order feature
same POS2(m2, m1) is computed too.

(6) same head22(m1, m2): it returns the common
second-level head if h(h(m1)) = h(h(m2)).

3.3 Apposition and Same-Parent Features

Apposition is a phenomenon where two adjacent NPs re-
fer to the same entity, as “Jimmy Carter” and “the former
president” in the following example:
(II) “Jimmy Carter, the former president of US, is visit-

ing Europe.”
Note that not all NPs separated by a comma are neces-
sarily appositive. For example, in “John called Al, Bob,
and Charlie last night,” “Al” and “Bob” share a same NP

662



parent and are separated by comma, but they are not ap-
positive.

To compute the apposition feature appos(m1, m2) for
mention-pair (m1, m2), we first determine the minimum
dominating NP of m1 and m2. The minimum dominating
NP of a mention is the lowest NP, with an optional modi-
fying phrase or clause, that spans the mention. If the two
minimum dominating NPs have the same parent NP, and
they are the only two NP children of the parent, the value
of appos(m1, m2) is true. This would exclude “Al” and
“Bob” in “John called Al, Bob, and Charlie last night”
from being computed as apposition.

We also implement a feature same parent(m1, m2)
which tests if two mentions m1 and m2 are dominated
by a common NP. The feature helps to prevent the system
from linking “his” with “colleague” in the sentence “John
called his colleague.”

All the features described in Section 3.1-3.3 are com-
puted from syntactic trees generated by a parser. While
the parser is language dependent, feature computation
boils down to encoding the structural relationship of two
mentions, which is language independent. To test the ef-
fectiveness of the syntactic features, we integrate them
into 3 coreference systems processing Arabic, Chinese
and English.

4 Experimental Results

4.1 Data and System Description

All experiments are done on true mentions of the
ACE (NIST, 2004) 2004 data. We reserve part of LDC-
released 2004 data as the development-test set (hence-
forth “devtest”) as follows: documents are sorted by their
date and time within each data source (e.g., broadcast
news (bnews) and news wire (nwire) are two different
sources) and the last 25% documents of each data source
are reserved as the devtest set. Splitting data on chrono-
logical order simulates the process of a system’s devel-
opment and deployment in the real world. The devtest
set statistics of three languages (Arabic, Chinese and
English) is summarized in Table 1, where the number
of documents, mentions and entities is shown on row 2
through 4, respectively. The rest of 2004 ACE data to-
gether with earlier ACE data is used as training.

Arabic Chinese English
#-docs 178 166 114
#-mentions 11358 8524 7008
#-entities 4428 3876 2929

Table 1: Devtest Set Statistics by Language

The official 2004 evaluation test set is used as the blind
test set on which we run our system once after the system
development is finished. We will report summary results

on this test set.

As for parser, we train three off-shelf maximum-entropy
parsers (Ratnaparkhi, 1999) using the Arabic, Chinese
and English Penn treebank (Maamouri and Bies, 2004;
Xia et al., 2000; Marcus et al., 1993). Arabic words
are segmented while the Chinese parser is a character-
based parser. The three parsers have a label F-measure
of 77%, 80%, and 86% on their respective test sets. The
three parsers are used to parse both ACE training and test
data. Features described in Section 3 are computed from
machine-generated parse trees.

Apart from features extracted from parse trees, our coref-
erence system also utilizes other features such as lex-
ical features (e.g., string matching), distance features
characterized as quantized word and sentence distances,
mention- and entity-level attribute information (e.g, ACE
distinguishes 4 types of mentions: NAM(e), NOM(inal),
PRE(modifier) and PRO(noun)) found in the 2004 ACE
data. Details of these features can be found in (Luo et
al., 2004).

4.2 Performance Metrics

The official performance metric in the ACE task is ACE-
Value (NIST, 2004). The ACE-Value is an entity-based
metric computed by subtracting a normalized cost from
1 (so it is unbounded below). The cost of a system is
a weighted sum of costs associated with entity misses,
false alarms and errors. This cost is normalized against
the cost of a nominal system that outputs no entity. A
perfect coreference system gets 100% ACE-Value while
a system outputting many false-alarm entities could get a
negative value.

The default weights in ACE-Value emphasize names, and
severely discount pronouns: the relative importance of a
pronoun is two orders of magnitude less than that of a
name. So the ACE-Value will not be able to accurately re-
flect a system’s improvement on pronouns2. For this rea-
son, we compute an unweighted entity-constrained men-
tion F-measure (Luo, 2005) and report all contrastive
experiments with this metric. The F-measure is com-
puted by first aligning system and reference entities such
that the number of common mentions is maximized
and each system entity is constrained to align with at
most one reference entity, and vice versa. For exam-
ple, suppose that a reference document contains three
entities: {[m1], [m2, m3], [m4]} while a system outputs
four entities: {[m1, m2], [m3], [m5], [m6]}, where {mi :
i = 1, 2, · · · , 6} are mentions, then the best alignment
from reference to system would be [m1] ⇔ [m1, m2],
[m2, m3] ⇔ [m3] and other entities are not aligned. The
number of common mentions of the best alignment is 2

2Another possible choice is the MUC F-measure (Vilain et
al., 1995). But the metric has a systematic bias for systems
generating fewer entities (Bagga and Baldwin, 1998) – see Luo
(2005). Another reason is that it cannot score single-mention
entity.
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(i.e., m1 and m3), thus the recall is 2

4
and precision is

2

5
. Due to the one-to-one entity alignment constraint, the

F-measure here is more stringent than the accuracy (Ge
et al., 1998; Mitkov, 1998; Kehler et al., 2004) computed
on antecedent-pronoun pairs.

4.3 Effect of Syntactic Features

We first present the contrastive experimental results on
the devtest described in sub-section 4.1.

Two coreference systems are trained for each language:
a baseline without syntactic features, and a system in-
cluding the syntactic features. The entity-constrained F-
measures with mention-type breakdown are presented in
Table 2. Rows marked with Nm contain the number of
mentions, while rows with “base” and “+synt” are F-
measures for the baseline and the system with the syn-
tactic features, respectively.

The syntactic features improve pronoun mentions across
three languages – not surprising since features inspired
by the binding theory are designed to improve pronouns.
The pronoun improvement on the Arabic (from 73.2%
to 74.6%) and English (from 69.2% to 72.0%) system is
statistically significant (at above 95% confidence level),
but change on the Chinese system is not. For Arabic,
the syntactic features improve Arabic NAM, NOM and
PRE mentions, probably because Arabic pronouns are
sometimes attached to other types of mentions. For Chi-
nese and English, the syntactic features do not practically
change the systems’ performance.

As will be shown in Section 4.5, the baseline systems
without syntactic features are already competitive, com-
pared with the results on the coreference evaluation track
(EDR-coref) of the ACE 2004 evaluation (NIS, 2004). So
it is nice to see that syntactic features further improve a
good baseline on Arabic and English.

Arabic
Mention Type

NAM NOM PRE PRO Total
Nm 2843 3438 1291 3786 11358
base 86.8 73.2 86.7 73.2 78.2
+synt 88.4 76.4 87.4 74.6 80.1

Chinese
Nm 4034 3696 - 794 8524
base 95.4 77.8 - 65.9 85.0
+synt 95.2 77.7 - 66.5 84.9

English
Nm 2069 2173 835 1931 7008
base 92.0 73.4 88.7 69.2 79.6
+synt 92.0 75.3 87.8 72.0 80.8

Table 2: F-measure(%) Breakdown by Mention Type:
NAM(e), NOM(inal), PRE(modifier) and PRO(noun).
Chinese data does not have the PRE type.

4.4 Error Analyses

From the results in Table 2, we know that the set of syn-
tactic features are working in the Arabic and English sys-
tem. But the results also raise some questions: Are there
interactions among the the syntactic features and other
features? Why do the syntactic features work well for
Arabic and English, but not Chinese? To answer these
questions, we look into each system and report our find-
ings in the following sections.

4.4.1 English System

Our system uses a group of distance features. One ob-
servation is that information provided by some syntactic
features (e.g., V P count(m1, m2) etc) may have over-
lapped with some of the distance features. To test if this
is the case, we take out the distance features from the En-
glish system, and then train two systems, one with the
syntactic features, one without. The results are shown
in Table 3, where numbers on the row “b-dist” are F-
measures after removing the distance features from the
baseline, and numbers on the row “b-dist+synt” are with
the syntactic features.

Mention Type
NAM NOM PRE PRO Total

b-dist 84.2 68.8 74.6 63.3 72.5
b-dist+synt 90.7 74.2 87.8 69.0 79.3

Table 3: Impact of Syntactic Features on English Sys-
tem After Taking out Distance Features. Numbers are
F-measures(%).

As can be seen, the impact of the syntactic features is
much larger when the distance features are absent in the
system: performance improves across all the four men-
tion types after adding the syntactic features, and the
overall F-measure jumps from 72.5% to 79.3%. The
PRE type gets the biggest improvement since features ex-
tracted from parse trees include apposition, same-parent
test, and dependency features, which are designed to help
mention pairs in close distance, just as in the case of PRE
mentions.

Comparing the numbers in Table 3 with the English base-
line of Table 2, we can also conclude that distance fea-
tures and syntactic features lead to about the same level
of performance when the other set of features is not
used. When the distance features are used, the syntac-
tic features further help to improve the performance of
the NOM and PRO mention type, albeit to a less degree
because of information overlap between the two sets of
features.

4.4.2 Chinese System

Results in Table 2 show that the syntactic features are not
so effective for Chinese as for Arabic and English. The
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first thing we look into is if there is any idiosyncrasy in
the Chinese language.

In Table 4, we list the statistics collected over the training
sets of the three languages: the second row are the total
number of mentions, the third row the number of pronoun
mentions, the fourth row the number of events where the
c-command feature ccmd(m1, m2) is used, and the last
row the average number of c-command features per pro-
noun (i.e., the fourth row divided by the third row). A
pronouns event is defined as a tuple of training instance
(e, m1, m2) where m1 is a mention in entity e, and the
second mention m2 is a pronoun.

From Table 4, it is clear that Chinese pronoun distribution
is very different: pronoun mentions account for about
8.7% of the total mentions in Chinese, while 29.0% of
Arabic mentions and 25.1% of English mentions are pro-
nouns (the same disparity can be observed in the devtest
set in Table 2). This is because Chinese is a pro-drop lan-
guage (Huang, 1984): for example, in the Chinese Penn
treebank version 4, there are 4933 overt pronouns, but
5750 pro-drops! The ubiquity of pro-drops in Chinese
results in signigicantly less pronoun training events. Con-
sequently, the pronoun-related features are not trained as
well as in English and Arabic. One way to quantify this
is by looking at the average number of c-command fea-
tures on a per-pronoun basis: as shown in the last row of
Table 4, the c-command feature is seen more than twice
often in Arabic and English as in Chinese. Since low-
count features are filtered out, the sparsity of pronoun
events prevent many compound features (e.g., conjunc-
tion of syntactic and distance features) from being trained
in the Chinese system, which explains why the syntactic
features do not help Chinese pronouns.

Arabic Chinese English
#total-mentions 31706 33851 58202
#pron-mentions 9183 2941 14635
#-ccmd-event 10236 1260 13691
#ccmd/pron 1.14 0.428 0.936

Table 4: Distribution of Pronoun Mentions and Fre-
quency of c-command Features

4.4.3 Arabic System

As stated in Table 4, 29.0% of Arabic mentions are pro-
nouns, compared to a slightly lower number (25.1%) for
English. This explains the relatively high positive impact
of the syntactic features on the Arabic coreference sys-
tem, compared to English and Chinese systems. To un-
derstand how syntactic features work in the Arabic sys-
tem, we examine two examples extracted from the de-
vtest set: (1) the first example shows the negative impact
of syntactic features because of the noisy parsing output,
and (2) the second example proves the effectiveness of
the syntactic features to find the dependency between two

mentions. In both examples, the baseline system and the
system with syntactic features give different results.

Let’s consider the following sentence:
. . . A �î �DÖÞ�A �« �Y�®Ë@ ÉJ



K�Qå� @
�
Q�.
�Jª�Kð . . .

... its-capital← Jerusalem← Israel← consider← and ...

. . . �é 	JK
YÒÊË� ú

�̄Qå��Ë @ Q¢ ��Ë@ 	àñJ


	�J
¢�Ê 	®Ë @ YK
QK
 A �ÒJ

	̄

of-the-city← the-Eastern← the-half← the-Palestininan← want← while

The English text shown above is a word-to-word trans-
lation of the Arabic text (read from right-to-left). In this
example, the parser wrongly put the nominal mention
�Y �® Ë

�
@ (Jerusalem) and the pronominal mention�é 	JK
YÖÏ @ (the-city) under the same constituent, which acti-

vates the same parent feature. The use of the feature
same parent(�Y�®Ë

�
@, �é 	JK
YÖÏ @) leads to the two mentions

being put into different entities. This is because there
are many cases in the training data where two mentions
under the same parent are indeed in different entities: a
similar English example is “John called his sister”, where
“his” and “sister” belong to two different entities. The
same parent feature is a strong indicator of not putting
them into the same entity.

	àð + ÈðA �g + ø

+ 	àñJ


�̄ A
��̄ 	P + È@ + 	àA

�
¿

�è + ø
 PA
�m.�
�' + È@ + �H@ + Ém× + È@ + I. î

	E +

. . . + Ñë + 	à
�
@ + �ém.k + H.

kAn + Al + zqAqywn + y + HAwl + wn
+ nhb + Al + mHl + At + Al + tjAry + p

+ b + Hjp + An + hm + ...
was + the + zqAqywn + present-verb-marker y + trying + plural-verb-marker wn

+ to-steal + the + office + s + the + commercial + s

+ with + excuse + that + they + ...

Table 5: An example where syntactic features help to link
the PRO mention Ñë (hm) with its antecedent, the NAM
mention 	àñ J


�̄ A
��̄ 	Q Ë @ (AlzqAqywn): top – Arabic sen-

tence; middle – corresponding romanized sentence; bot-
tom – token-to-token English translation.

Table 5 shows another example in the devtest set. The top
part presents the segmented Arabic text, the middle part
is the corresponding romanized text, and the bottom part
contains the token-to-token English translation. Note that
Arabic text reads from right to left and its corresponding
romanized text from left to right (i.e., the right-most Ara-
bic token maps to the left-most romanized token). The
parser output the correct syntactic structure: Figure 2
shows a portion of the system-generated parse tree. It can
be checked that NP1 c-commands NP2 and the group of
features inspired by the binding theory are active. These
features help to link the PRO(onominal) mention Ñ ë
(hm) with the NAM(e) mention 	àñJ


�̄ A
��̄ 	QË @ (AlzqAqywn).

Without syntactic features theses two mentions were split
into different entities.
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Al+zqAqywn An

VP

NP1

SBAR

VP

hm
NP2

S

kAn

Figure 2: A Portion of the Syntactic Tree.

4.5 ACE 2004 Results

To get a sense of the performance level of our system, we
report the results on the ACE 2004 official test set with
both the F-measure and the official ACE-Value metric.
This data is used as the blind test set which we run our
system only once.

Results are summarized in Table 6, where the second row
(i.e. “base”) contains the baseline numbers, and the third
row (i.e., “+synt”) contains the numbers from systems
with the syntactic features. Columns under “F” are F-
measure and those under “AV” are ACE-Value. The last
row Nm contains the number of mentions in the three test
sets.

Arabic Chinese English
F AV F AV F AV

base 80.1 88.0 84.7 92.7 80.6 90.9
+synt 81.5 88.9 84.7 92.8 82.0 91.6
Nm 11358 11178 10336

Table 6: Summary Results on the 2004 ACE Evaluation
Data.

The performance of three full (“+synt”) systems is re-
markably close to that on the devtest set(cf. Table 2):
For Arabic, F-measure is 80.1 on the devtest vs. 81.5
here; For Chinese, 84.9 vs. 84.7; And for English, 80.8
vs. 82.0. The syntactic features again help Arabic and
English – statistically very significant in F-measure, but
have no significant impact on Chinese. The performance
consistency across the devtest and blind test set indicates
that the systems are well trained.

The F-measures are computed on all types of mentions.
Improvement on mention-types targeted by the syntactic
features is larger than the lump-sum F-measure. For ex-
ample, the F-measure for English pronouns on this test set
is improved from 69.5% to 73.7% (not shown in Table 6
due to space limit). The main purpose of Table 6 is to get
a sense of performance level correspondence between the
F-measure and ACE-Value.

Also note that, for Arabic and English, the difference be-
tween the “base” and “+synt” systems, when measured
by ACE-Value, is much smaller. This is not surprising
since ACE-Value heavily discounts pronouns and is in-

sensitive to improvement on pronouns – the very reason
we adopt the F-measure in Section 4.3 and 4.4 when re-
porting the contrastive experiment results.

5 Related Work

Many researchers have used the syntactic information in
their coreference system before. For example, Hobbs
(1976) uses a set of rules that are applied to parse trees to
determine the antecedent of a pronoun. The rule prece-
dence is determined heuristically and no weight is used.
Lappin and Leass (1994) extracted rules from the out-
put of the English Slot Grammar (ESG) (McCord, 1993).
Rule weights are assigned manually and the system re-
solves the third person pronouns and reflexive pronouns
only. Ge et al. (1998) uses a non-parametrized statisti-
cal model to find the antecedent from a list of candidates
generated by applying the Hobbs algorithm to the English
Penn Treebank. Kehler et al. (2004) experiments mak-
ing use of predicate-argument structure extracted from a
large TDT-corpus. Compared with these work, our work
uses machine-generated parse trees from which trainable
features are extracted in a maximum-entropy coreference
system, while (Ge et al., 1998) assumes that correct parse
trees are given. Feature weights are automatically trained
in our system while (Lappin and Leass, 1994; Stuckardt,
2001) assign weights manually.

There are a large amount of published work (Morton,
2000; Soon et al., 2001; Ng and Cardie, 2002; Yang et
al., 2003; Luo et al., 2004; Kehler et al., 2004) using
machine-learning techniques in coreference resolution.
But none of these work tried to compute complex lin-
guistic concept such as governing category 3 . Our work
demonstrates how relevant linguistic knowledge can be
derived automatically from system-generated parse trees
and encoded into computable and trainable features in a
machine-learning framework.

6 Conclusions

In this paper, linguistic knowledge is used to guide us to
design features in maximum-entropy-based coreference
resolution systems. In particular, we show how to com-
pute a set of features to approximate the linguistic notions
such as governing category and apposition, and how to
compute the dependency features using syntactic parse
trees. While the features are motivated by examining En-
glish data, we see significant improvements on both En-
glish and Arabic systems. Due to the language idiosyn-
crasy (e.g., pro-drops), we do not see the syntactic fea-
tures change the Chinese system significantly.

3Ng and Cardie (2002) used a BINDING feature, but it is
not clear from their paper how the feature was computed and
what its impact was on their system.
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Abstract

We analyze models for semantic role
assignment by defining a meta-model
that abstracts over features and learning
paradigms. This meta-model is based on
the concept of role confusability, is de-
fined in information-theoretic terms, and
predicts that roles realized by less specific
grammatical functions are more difficult
to assign. We find that confusability is
strongly correlated with the performance
of classifiers based on syntactic features,
but not for classifiers including semantic
features. This indicates that syntactic fea-
tures approximate a description of gram-
matical functions, and that semantic fea-
tures provide an independent second view
on the data.

1 Introduction

Semantic roles have become a focus of research in
computational linguistics during the recent years.
The driving force behind this interest is the prospect
that semantic roles, as a shallow meaning represen-
tation, can improve many NLP applications, while
still being amenable to automatic analysis. The
benefit of semantic roles has already been demon-
strated for a number of tasks, among others for ma-
chine translation (Boas, 2002), information extrac-
tion (Surdeanu et al., 2003), and question answer-
ing (Narayanan and Harabagiu, 2004).

Robust and accurate automatic semantic role as-
signment, a prerequisite for the wide-range use of
semantic roles in NLP, has been investigated in a

number of studies and shared tasks. Typically, role
assignment has been modeled as a classification
task, with models being estimated from large cor-
pora (Gildea and Jurafsky, 2002; Moschitti, 2004;
Xue and Palmer, 2004; Surdeanu et al., 2003; Prad-
han et al., 2004; Litkowski, 2004; Carreras and
Màrquez, 2005).

Within this framework, there is a number of archi-
tectural parameters which lend themselves to opti-
mization: the machine learning framework, the fea-
ture set, pre- and postprocessing, each of which has
been investigated in the context of semantic role as-
signment. The current paper concentrates on feature
engineering, since the feature set is a pivotal com-
ponent of any kind of machine learning system, and
allows us to incorporate and test linguistic intuitions
on the role assignment task.

We approach feature engineering not by directly
optimizing system performance. Instead, we pro-
ceed by error analysis, like Pado and Boleda (2004).
Our aim is to form a global hypothesis that explains
the distribution of errors across classes. Insofar as
the model does not contain model-specific infor-
mation, following this methodology can provide a
meta-model of a model family which abstracts over
concrete features and over the learning paradigm.

The concrete global hypothesis we test is: (1) All
features of current models approximate a descrip-
tion of grammatical functions, and the complete sys-
tems approximate an assignment based on grammat-
ical functions. (2) System performance for a given
role depends on how easily it is confused with other
roles. We will give this concept of role confusability
a formal, information-theoretic definition.

The present study specifically analyzes mod-
els for semantic role assignment in the FrameNet
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paradigm (Fillmore et al., 2003). We are going to
show that our hypothesis indeed holds for a variety
of models – but only models that comprise exclu-
sively syntactic features. We conclude that syntactic
features approximate a description of grammatical
functions, but that semantic features model a dif-
ferent aspect of the role assignment mapping. To-
gether with the reasonable performance of a solely
semantics-based system, this leads us to suggest a
closer investigation of semantic features – and in
particular, a co-training approach with syntactic and
semantic features as different views on the role as-
signment data.

Plan of the paper. In Section 2, we give a
brief introduction to FrameNet, the semantic role
paradigm and corpus we are using in this study. Our
first experiment, described in Section 3, establishes
that there is a high variance in performance across
roles, and that this variance is itself stable across
models and learners. In Section 4, we state our hy-
pothesis, namely that this variance can be explained
through role confusability, and formalize the con-
cept . In Section 5, we perform detailed correlation
tests to verify our hypothesis and discuss our find-
ings. Section 6 concludes the paper.

2 FrameNet

This section presents the semantic role paradigm and
the role-annotated corpus on which the present study
is based. FrameNet1 is a lexical resource based on
Fillmore’s Frame Semantics (Fillmore, 1985). It de-
scribes frames, representations of prototypical situa-
tions. Each frame provides its set of semantic roles,
the entities or concepts pertaining to the prototypi-
cal situation. Each frame is further associated with a
set of target predicates (nouns, verbs or adjectives),
occurrences of which can introduce the frame.

FrameNet provides manually annotated examples
for each predicate, sampled from the British Na-
tional Corpus (Burnard, 1995). The size of this cor-
pus exceeds 135,000 sentences. The following sen-
tences are examples for verbs in the IMPACT frame,
which describes a situation in which typically “an
IMPACTOR makes sudden, forcible contact with the
IMPACTEE, or two IMPACTORS both ... [make]
forcible contact”:

1http://www.icsi.berkeley.edu/~framenet/

(1) [Impactee His car] was struck [Impactor by a
third vehicle].

(2) [Impactor The door] slammed [Result shut].

(3) [Impactors Their vehicles] collided [Place at
Pond Hill].

FrameNet manual annotation also comprises a layer
of grammatical functions: For example, the subject
of finite verbs is labeled Ext, and Mod is a label
used for modifiers of heads, e.g. an adjective mod-
ifying a noun. The grammatical functions used in
FrameNet are listed in Fillmore and Petruck (2003).

Note that the frame-specificity of semantic roles
in FrameNet has important consequences for seman-
tic role assignment, since there is no direct way
to generalize role assignments across frames, and
learning has to proceed frame-wise. This com-
pounds the data sparseness problem, and automatic
assignment for frames with no training data is very
difficult (Gildea and Jurafsky, 2002).

3 Experiment 1: Variance in role
assignment

Several studies have established that there is con-
siderable variance in semantic role assignment per-
formance across different semantic roles within sys-
tems (Carreras and Màrquez, 2004; Carreras and
Màrquez, 2005; Pado and Boleda Torrent, 2004).
However, these studies used either the PropBank
semantic role paradigm (Carreras and Màrquez)
or a limited of experimental conditions (Pado and
Boleda). For this reason, we perform a first experi-
ment to replicate this phenomenon in our setting.

Note that the vast majority of participant sys-
tems in recent shared tasks divides semantic role as-
signment into multiple sequential steps. The max-
imal decomposition is as follows: preprocessing,
e.g. removal of unlikely argument candidates; ar-
gument recognition, the distinction between role-
bearing and non-role-bearing instances; argument
labeling, the actual classification of role-bearing in-
stances; and postprocessing, e.g. by inference over
probable role sequences.

Following this distinction, we concentrate in this
study on the argument labeling step, i.e. distinguish-
ing between roles, rather than distinguishing roles
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from non-roles. This is justified by earlier empiri-
cal results, namely that the argument labeling step
requires more training data than argument recogni-
tion (Fleischmann and Hovy, 2003), and that it calls
for more sophisticated feature construction (Xue and
Palmer, 2004). We take this as evidence that the
quality of the argument labeling step is central to a
good semantic role assignment system.

In order to isolate the effects of argument label-
ing, we assume perfect argument recognition by us-
ing gold standard role boundaries; however, we do
not use gold standard parse trees, but rather automat-
ically computed ones, which realistically introduces
some noise (see the following paragraph).

Data and preprocessing. As experimental mate-
rial, we used the same data that was used in the
Senseval-3 semantic role assignment task: 40 frames
from FrameNet version 1.1, comprising 66,777 in-
stances. The number of roles per frame ranged from
2 to 22, and the number of role instances ranged
from 593 to 8,378. The data was randomly split into
training (90%) and test instances (10%).

The data was parsed with the Collins
model 3 (1996) parser; in addition, all tokens
were lemmatized with TreeTagger (Schmid, 1994).

Modeling. We model role assignment as a clas-
sification task, with parse tree constituents as in-
stances to be classified. We repeated the classifica-
tion with two different learners: The first learner,
TiMBL (Daelemans et al., 2003) is an implementa-
tion of nearest-neighbor classification algorithms in
the memory-based learning paradigm2. The second
learner, Malouf’s probabilistic maximum entropy
(Maxent) system (Malouf, 2002), uses the LMVM
algorithm to estimate log-linear models. We did not
perform smoothing.

Table 5 shows the features we use. Here as in the
system setup, we keep close to current existing mod-
els for semantic role assignment in order to make our
results as representative as possible. We investigate
different feature sets in order to verify our results. In
Exp. 1, we limit ourselves to two feature sets, Syn
(syntactic features) and Sem (lexical features) from
the bottom of Table 5. The feature sets were exactly
the same for both learners.

2TiMBL was set to k-NN classification, using the MVDM
distance metric and 5 neighbors.

Syn/Sem Syn
MBL 87.1 ± 12.7 82.2 ± 17.8
Maxent 87.5 ± 13.4 82.4 ± 18. 2

Table 1: Exp. 1: Overall results (F-scores and stan-
dard deviation across roles).

Syn/Sem Syn
Role FMBL FMaxent FMBL FMaxent

Frame: CHANGE_POSITION_ON_A_SCALE
ATTR 79.0 80.7 57.6 66.1
CO_VAR 55.6 64.0 22.2 31.6
DIFF 87.1 84.9 75.0 66.7
ITEM 68.6 70.3 48.0 61.3
VALUE_1 88.0 91.7 78.3 72.7
VALUE_2 93.3 90.9 89.3 85.2
Frame: KINSHIP
ALTER 87.0 89.2 87.8 87.4
EGO 96.7 98.8 96.7 95.5
Frame: PART_ORIENTATIONAL
PART 98.2 96.4 97.6 97.0
WHOLE 100 100 98.2 100
Frame: TRAVEL
AREA 31.6 52.6 25.0 45.5
GOAL 74.4 71.4 68.3 62.2
MODE 46.2 72.7 12.5 15.4
PATH 66.7 53.3 50.0 40.0
SOURCE 66.7 72.7 66.7 66.7
TIME 77.8 66.7 15.4 40.0
TRAVELER 90.9 90.6 90.9 90.6

Table 2: Exp. 1: Role-specific figures of system per-
formance for four example frames.

Results. Table 1 shows the systems’ overall F-
scores and standard deviation across roles. Table 2
illustrates the differences in performance across
roles on four frames: It lists all roles with ≥ 5 oc-
currences for each frame. PART_ORIENTATIONAL

shows very little variance, while the roles of
CHANGE_POSITION_ON_A_SCALE and especially
TRAVEL differ widely. For KINSHIP, the system
shows good performance for both roles, but the F-
scores still differ by around 9 points.

Discussion. Table 1 shows that there is consider-
able variance across roles, with a standard devia-
tion in the range of 18% for the syntax-only model.
We note that the deviation decreases to 13% for the
combined syntax-semantics model. Table 2 con-
firms that this is not purely between-frames, but
also within-frames variance. This confirms the phe-
nomenon described at the beginning of this section.
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fr frame
fe role (frame element)
fes(fr) roles of a frame
gfs(fr) gramm. functions of a frame
gfsfr (fe) gramm. functions realizing a role in

a frame

Table 3: Notation summary

4 A meta-model for role assignment:
Confusability

The experiment of the previous section has shown a
considerable variance in system performance across
roles. The aim of this section is to develop a meta-
model which can explain this variance.

The models we have explored in Exp. 1 rely
mainly on syntactic features: Even in the combined
syntax-semantics model, 24 of the 31 features de-
scribe syntactic structure. This predominance of
syntactic features can be observed in many current
models for semantic role assignment. Accordingly,
our meta-model focuses on the uniformity of the
mapping from syntactic structure to semantic roles.
We formalize the variance in this mapping by the
confusability of a semantic role. It implements the
following hypothesis:

(1) The semantic role assignment systems we study
approximate role assignment through gram-
matical functions.

(2) System performance for a given role depends on
the role’s confusability: A role is highly con-
fusable if the grammatical functions that in-
stantiate it often also instantiate other roles.

By using the ideal, manually assigned grammat-
ical functions that are available from the FrameNet
data – and which are not passed on to the learner –
our meta-model abstracts over concrete feature sets.

Our definition of confusability proceeds in two
steps. First we model the informativity of a gram-
matical function by the entropy of semantic roles
that it maps to. Then we compute the confusabil-
ity of a role as a weighted average of the entropies
of the grammatical functions that realize it.

Grammatical function entropy. Viewing a gram-
matical function as a random variable with semantic

Grammatical function entropy
GF DEG THM DEP LOC H
Mod 69 43 24 0 1.46
Comp 18 491 12 41 0.72
Ext 0 17 0 561 0.16
Head 0 0 0 273 0.0
Obj 0 0 0 3 0.0

Role Confusability
Role Mod Comp Ext Head Obj Conf

DEG 69 18 0 0 0 1.31
THM 43 491 17 0 0 0.76
DEP 24 12 0 0 0 1.22
LOC 0 41 561 273 3 0.16

Table 4: Grammatical function entropy and role con-
fusability for the frame ABUNDANCE

roles as values, we define the entropy of a grammat-
ical function gf within the frame fr as

Hfr (gf ) =
∑

fe∈fes(fr)

−p(fe|gf ) log p(fe|gf )

where p(fe|gf ) = f(gf ,fe)
f(gf ) is the conditional proba-

bility of roles fe given gf (cf. the notation in Table 3).

Role confusability. The confusability of a role
is the sum of its grammatical function entropies,
weighted by the conditional probabilities p(gf |fe) =
f(gf ,fe)
f(fe) of grammatical functions gf given fe.

cfr (fe) =
∑

gf ∈gfs(fr)

p(gf |fe)Hfr (gf )

An example. Table 4 shows the grammatical func-
tion entropies and role confusabilities for the frame
ABUNDANCE, both computed on the training data.
The upper part of Table 4 lists the entropies of
the grammatical functions Mod, Comp, Ext,
Head and Obj3 and the counts f(gf, fe) of occur-
rences of the grammatical functions together with
the roles DEGREE (DEG), THEME (THM), DEPIC-
TIVE (DEP) and LOCATION (LOC). The entropy of
Mod, with similar numbers of occurrences for three
different roles, is relatively high, while Ext occurs
almost exclusively for one role and has a much lower
entropy. The lower part of Table 4 shows the confus-
ability for the same set of roles. The confusability of

3See Fillmore and Petruck (2003) for a glossary of
FrameNet’s grammatical functions.
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DEGREE is relatively high even though it is mostly
realized by Mod because Mod has a high entropy, i.e.
it indicates multiple roles; LOCATION on the other
hand is not very confusable even though it occurs
frequently as both Ext and Head, since both gram-
matical functions indicate this role.

Related work. Our approach is similar to Pado
and Boleda (2004) in that they also use the unifor-
mity of linking as an explanation for performance
variations in semantic role assignment. However,
their analysis is located at the frame level. We ex-
amine individual roles, which allows us to derive a
simpler and more intuitive formalization of linking
uniformity. Also, our model will ultimately lead us
to a different conclusion: the uniformity of linking
is a good predictor of the performance of role as-
signment systems, but only for exclusively syntactic
models (see Section 5).

5 Experiment 2: Relating confusability
and system performance

In this section, we test the validity of our meta-
model. We assess whether confusability, defined in
Section 4, can explain the variance in role assign-
ment that we have found in Section 3, by testing the
correlation between the two variables.

Experimental setup. We use the same data set
(Senseval-3) and the same two classifiers (memory-
based and maximum entropy classification) as in
Exp. 1. To cover a wider range of models and thus
increase the validity of our analysis, we split up the
Syn feature set from Exp. 1 into the four smaller
sets described in the upper part of Table 5. We use
these sets individually, combined, and together with
the lexical features in the Sem set. This results in a
total of 20 different models (10 for each classifier),
for which we computed role-specific F-scores.

In parallel, we estimated the confusability as de-
scribed in Section 4, with FrameNet’s manually as-
signed grammatical functions as a basis, using only
the training portion of our data. We did not smooth,
but omitted roles occurring less than 5 times to
avoid sparse and thus unreliable data points. Re-
call that confusability does not vary with the feature
set, since its central asset is to abstract over concrete
model parameters and feature sets.

Feature set FMBL FMaxent

Path0 70.9 71.3
Path 73.3 72.6
Pt 78.8 79.0
Path/Pt 80.8 79.8
Path/Sibling 76.7 76.6
Pt/Sibling 78.8 79.1
Syn 82.2 82.4
Sem 80.3 80.7
Syn/Sem 87.1 87.5

Table 6: Exp. 2: Results for different feature sets

Results. The F-scores for the subdivided Syn fea-
ture set are shown in the upper part of Table 6, with
the complete Syn and Sem sets and their combina-
tion below. There is a clear relationship between
features and F-score: additional features are consis-
tently rewarded with higher performance. Interest-
ingly, phrase type information appears to be a better
role predictor than path (compare models Path and
Pt). Also, the semantic feature set alone (Sem) per-
forms at over 80% F-Score, slightly better any of the
individual syntactic feature groups.

The high F-score variance between individual
roles which we have shown for the feature sets Syn
and Syn/Sem in Exp. 1 generalizes to the other fea-
ture sets; all individual syntactic feature sets exhibit
a higher variance than Syn, and Sem shows a higher
variance than the Syn/Sem combination. This does
not come as a surprise, since the two models of
Exp. 1 use the two richest feature sets, and we would
expect less robust behavior for weaker models. An-
other point to note is that the performance of the two
learners is remarkably similar.

The high variance in the F-scores is mirrored in
the confusability figures; we obtain an average con-
fusability for our semantic roles of 1.79 with a high
standard deviation of 0.84. A scatter plot of F-scores
against confusability figures (Fig.1) suggests a linear
correlation analysis.

Analysis 1: Correlating confusability and F-
score. Since the data does not appear to be nor-
mally distributed, we apply Kendall’s nonparamet-
ric rank test. The results, which are listed in Table 7,
show an extremely significant negative correlation
between confusability and F-score: higher confus-
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Path0 These are features centered around the path from the target lemma to the constituent: the path
itself, its length, partial path up to the lowest common ancestor, the grammatical rule that
expands the target predicate’s parent, relative position of constituent to target

Path Feature set Path, plus target lemma
Pt These are features related to phrase type and part of speech: the phrase type of the constituent

and its parent, the POS of the constituent first word, last word and head as well as the POS of
an informative content word of the constituent (for PP and SBar constituents only: the head of
the head’s complement), as well as the target lemma

Sibling Phrase type and POS of the head of the left and right sibling constituent, and the Collins parser’s
judgment on the argumenthood of the constituent

Syn This set combines Path, Sibling and Pt. Additional features are: target voice; the constituent’s
preposition; a feature combining path with target voice and target POS; and two rule-based
features judging argumenthood and grammatical function of the constituent

Sem These are lexical features: Head words of the constituent and of its left and right siblings;
leftmost and rightmost word of the constituent; informative content word lemma (see set Pt for
details); and the governing verb of the target predicate

Table 5: Feature groups used in the experiments

Figure 1: Scatter plot: F-score against confusability
(Feature set Syn).

ability appears to be related to lower F-score.
However, note that the correlation is extremely

significant even for the model which only uses se-
mantic features. This is unexpected at best and
makes a strong interpretation of this correlation
doubtful: it is rather likely that there is a third vari-
able with which both F-score and confusability are
correlated. The most obvious candidate for such a
confounding variable is the size of the training set –
clearly, we expect our models to perform better with
larger training sets. In order to get a more realistic

MBL MaxEnt
Feature set z p z p
Path0 -11.72 10−15 -11.76 10−15

Path -12.29 10−15 -11.23 10−15

Pt -10.64 10−15 -11.12 10−15

Path/Pt -11.19 10−15 -10.45 10−15

Path/Sibling -12.65 10−15 -11.76 10−15

Pt/Sibling -10.58 10−15 -9.90 10−15

Syn -9.47 10−15 -9.38 10−15

Sem -6.90 10−11 -8.23 10−15

Syn/Sem -8.30 10−15 -8.29 10−15

Table 7: Exp. 2, Analysis 1: Correlation between F-
Score and confusability. z: Kendall’s tau coefficient,
p: significance level

assessment of the relationship between confusabil-
ity and F-score, we perform an additional analysis
to disconfound confusability and frequency.

Analysis 2: Disconfounding confusability and
frequency. One way of factoring out the influ-
ence of a confounding variable is to perform a par-
tial correlation analysis, which explicitly removes
the effects of a third variable when determining the
strength of a correlation between two variables. Like
a normal correlation analysis, it yields a partial cor-
relation coefficient.
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MBL MaxEnt
Features rc rf rc rf

Path0 -.29∗∗∗ -.03 -.29∗∗∗ -.03
Path -.30∗∗∗ -.02 -.27∗∗∗ -.07∗∗

Pt -.19∗∗∗ -.11∗∗ -.21∗∗∗ -.12∗∗

Path/Pt -.22∗∗∗ -.07∗ -.19∗∗∗ -.16∗∗∗

Path/Sibl -.31∗∗∗ +.01 -.28∗∗∗ -.06∗

Pt/Sibl -.20∗∗∗ -.10∗∗ -.18∗∗∗ -.16∗∗∗

Syn -.10∗ -.17∗∗∗ -.12∗ -.19∗∗∗

Sem +.01 -.27∗∗∗ -.02 -.24∗∗∗

Syn/Sem +.02 -.25∗∗∗ -.01 -.25∗∗∗

Table 8: Exp. 2, Analysis 2: Partial correlation
coefficients. rc: correlation between F-score and
confusability, controlling for training set size. rf :
correlation between F-score and training set size,
controlling for confusability. Significance levels:
∗∗∗: p<0.001; ∗∗: p<0.01; ∗: p<0.05.

We first compute partial correlation coefficients
between F-score and confusability, controlling for
training set size. The results, which indicate the
“true” relationship between performance and con-
fusability, are shown in the rc columns of Table 8.
For both learners, confusability is significantly cor-
related with F-score for all syntactic feature sets, but
not for the semantic feature set and for the combined
set Syn/Sem.

We also compute the partial correlation coeffi-
cients between F-score and training set size, control-
ling for confusability. These figures are reported in
the rf columns of Table 8 and show the “true” rela-
tionship between performance and training set size.
There is no significant correlation between training
set size and performance for simple syntax based-
models, but the correlation is highly significant for
complex syntactic models and all semantic models.

Discussion. The partial correlation analysis con-
firms that confusability is a meta-model that can ex-
plain the performance of a range of different models
for semantic role assignment, namely those models
which rely exclusively on syntactic features. Since
we used the gold standard features provided by
FrameNet and did not introduce implementation- or
feature-specific knowledge, this points to a general
limitation of syntax-based models. In contrast, se-
mantic features behave completely differently; their

contribution is not limited by a role’s confusabil-
ity. At the very least, it cannot be captured by
our current meta-model, but the absolute increase in
performance indicates that integrating semantics is
the way forward, which is surprising given that the
purely lexical features we use the present study are
usually extremely sparse.

The analysis of the partial correlation between F-
score and training set size also allows interesting
conclusions. The correlation is not significant for
small syntactic feature sets like Path, indicating that
models for such features can be learned satisfacto-
rily from relatively small training sets (but which are
also limited in expressivity). This is markedly dif-
ferent for richer feature sets. Arguably, these feature
sets are sparser and can therefore profit more from
an increased amount of training data. Again, the ef-
fect is most pronounced for the semantic feature set.

6 Conclusion

In this paper, we have formulated a meta-model for
semantic role assignment. We have used the confus-
ability of roles to predict classification performance
independently of the classification framework and
feature sets used. We have defined role confusability
in two steps: First, we have formalized the certainty
with which we can predict a semantic role from a
given grammatical function with grammatical func-
tion entropy. Then, we have defined the confusabil-
ity of a role as a weighted sum of grammatical func-
tion entropies.

We have found that role confusability is highly
significantly correlated with system performance for
models based solely on syntactic features. We con-
clude that syntactic features approximate a descrip-
tion of grammatical functions, but that semantic fea-
tures model a different aspect of the world.

Much of current research in semantic role assign-
ment is centered on the refinement of syntactic fea-
tures. Our study suggests that it may be worth-
while to explore the refinement of semantic fea-
tures as well. The most obvious choice is to in-
vestigate features related to selectional preferences.
Possible features include goodness of fit relative to
pre-computed preferences (Baldewein et al., 2004),
named entities (Pradhan et al., 2004), or broad on-
tological classes like “animate” or “artifact”. Fol-
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lowing up on this idea, a natural continuation of the
present study would be to create a meta-model that
subsumes semantic features. Such a model could
use optimal selectional restrictions as a predictor.
The next step would then be to construct a combined
meta-model that describes the behavior of systems
with both syntactic and semantic features.

Another interesting research direction that our
study suggests is the combination of syntactic and
semantic models in co-training. Co-training can
be sensibly applied only when conditional indepen-
dence holds for the two target functions and the dis-
tribution (Blum and Mitchell, 1998), i.e. when it
uses two independent views on the instance set. By
pointing out a highly significant distinction between
syntactic and semantic features with respect to role
confusability, our study provides empirical evidence
that syntactic and semantic features model different
aspects of the role assignment mapping, and that co-
training may be feasible by using syntactic and se-
mantic features as views.
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Abstract

In statistical machine translation, estimat-
ing word-to-word alignment probabilities
for the translation model can be difficult
due to the problem of sparse data: most
words in a given corpus occur at most a
handful of times. With a highly inflected
language such as Czech, this problem can
be particularly severe. In addition, much
of the morphological variation seen in Czech
words is not reflected in either the morphol-
ogy or syntax of a language like English. In
this work, we show that using morphologi-
cal analysis to modify the Czech input can
improve a Czech-English machine transla-
tion system. We investigate several differ-
ent methods of incorporating morphological
information, and show that a system that
combines these methods yields the best re-
sults. Our final system achieves a BLEU
score of .333, as compared to .270 for the
baseline word-to-word system.

1 Introduction

In a statistical machine translation task, the goal is
to find the most probable translation of some foreign
language text f into the desired language e. That is,
the system seeks to maximize P (e|f). Rather than
maximizing P (e|f) directly, the standard noisy chan-
nel approach to translation uses Bayes inversion to
split the problem into two separate parts:

argmax
e

P(e|f) = argmax
e

P(e)P(f |e) (1)

where P (e) is known as the language model and
P (f |e) is known as the translation model. The limit-
ing factor in machine translation is usually the qual-
ity of the translation model, since the monolingual
resources needed for training the language model are

generally more available than the parallel corpora
needed for training the translation model.

Due to the difficulty in obtaining large parallel cor-
pora, sparse data is a serious issue when estimating
the parameters of the translation model. This prob-
lem is compounded when one or both of the lan-
guages involved is a highly inflected language. In this
paper, we present a series of experiments suggesting
that morphological analysis can be used to reduce
data sparseness and increase similarity between lan-
guages, thus improving the quality of machine trans-
lation for highly inflected languages. Our work is on
a language pair in which the input language (Czech)
is highly inflected, and the output language (English)
is not. We discuss in Section 5 how our methods
might be generalized to pairs where both languages
are highly inflected.

The plan of this paper is as follows: In Section
2, we review previous work on using morphologi-
cal analysis for statistical machine translation. In
Section 3, we describe several methods for utilizing
morphological information in a statistical translation
model. Section 4 presents the results of our experi-
ments using these methods. Sections 5 and 6 discuss
the results of our experiments and conclude the pa-
per.

2 Previous Work

Until recently, most machine translation projects in-
volved translating between languages with relatively
little morphological structure. Nevertheless, a few
research projects have investigated the use of mor-
phology to improve translation quality. Niessen and
Ney (2000; 2004) report work on German-English
translation, where they investigate various types
of morphosyntactic restructuring, including merging
German verbs with their detached prefixes, annotat-
ing a handful of frequent ambiguous German words
with POS tags, combining idiomatic multi-word ex-
pressions into single words, and undoing question in-
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version and do-insertion in both German and En-
glish. In addition, Niessen and Ney (2004) decom-
pose German words into a hierarchical representa-
tion using lemmas and morphological tags, and use
a MaxEnt model to combine the different levels of
representation in the translation model. The results
from these papers indicate that on corpus sizes up
to 60,000 parallel sentences, the restructuring op-
erations yielded a large improvement in translation
quality, but the morphological decomposition pro-
vided only a slight additional benefit. However, since
German is not as morphologically complex as Czech,
we might expect a larger benefit from morphological
analysis in Czech.

Another project utilizing morphological analysis
for statistical machine translation is described by Lee
(2004). Lee’s system for Arabic-English translation
takes as input POS-tagged English and Arabic text,
where the Arabic words have been pre-segmented
into stems and affixes. The system performs an ini-
tial alignment of the Arabic morphemes to the En-
glish words. Based on the consistency of the English
POS tag that each Arabic morpheme aligns to, the
system determines whether to keep that morpheme
as a separate item, merge it back onto the stem,
or delete it altogether. In addition, multiple occur-
rences of the determiner Al within a single Arabic
noun phrase are deleted (i.e. only one occurrence
is allowed). Using a phrase-based translation model,
Lee found that Al-deletion was more helpful than the
rest of the morphological analysis. Also, Al-deletion
helped for training corpora up to 3.3 million sen-
tences, but the other morphological analysis helped
only on the smaller corpus sizes (up to 350,000 paral-
lel sentences). This result is consistent with anecdo-
tal evidence suggesting that morphological analysis
becomes less helpful as corpus sizes increase. How-
ever, since parallel corpora of hundreds of thousands
of sentences or more are often difficult to obtain, it
would still be worthwhile to develop a method for
improving systems trained on smaller corpora.

Previous results on Czech-English machine trans-
lation suggest that morphological analysis may be
quite productive for this highly inflected language
where there is only a small amount of closely trans-
lated material. Čmejrek et al. (2003), while not fo-
cusing on the use of morphology, give results indicat-
ing that lemmatization of the Czech input improves
BLEU score relative to baseline. These results sup-
port the earlier findings of Al-Onaizan et al. (1999),
who used subjective scoring measures. Al-Onaizan
et al. measured translation accuracy not only for
lemmatized input, but for an input form they re-
fer to as Czech’. Czech’ is intended to capture many

of the morphological distinctions of English, while
discarding those distinctions that are Czech-specific.
The Czech’ input was created by distinguishing the
Czech lemmas for singular and plural nouns, differ-
ent verb tenses, and various inflections on pronouns.
Artificial words were also added automatically in
cases where syntactic information in the Czech parse
trees indicated that articles, pronouns, or preposi-
tions might be expected in English. The transforma-
tion to Czech’ provided a small additional increase
in translation quality over basic lemmatization.

The experiments described here are similar to
those performed by Al-Onaizan et al. (1999), but
there are several important differences. First, we use
no syntactic analysis of the Czech input. Our intent
is to determine how much can be gained by a purely
morphological approach to translation. Second, we
present some experiments in which we modify the
translation model itself to take advantage of morpho-
logical information, rather than simply transforming
the input. Finally, our use of BLEU scores rather
than subjective measurements allows us to perform
more detailed evaluation. We examine the effects of
each type of morphological information separately.

3 Morphology for MT

Morphological variations in Czech are reflected in
several different ways in English. In some cases, such
as verb past tenses or noun plurals, morphological
distinctions found in Czech are also found in English.
In other instances, English may use function words
to express a meaning that occurs as a morphological
variant in Czech. For example, genitive case marking
can often be translated as of and instrumental case
as by or with. In still other instances, morphologi-
cal distinctions made in Czech are either completely
absent in English (e.g. gender on common nouns)
or are reflected in English syntax (e.g. many case
markings). Handling these correspondences between
morphology and syntax requires analysis above the
lexical level and is therefore beyond the scope of this
paper. However, morphological analysis of the Czech
input can potentially be used to improve the trans-
lation model by exploiting the other types of corre-
spondences we have mentioned.

Before we describe how this can be done, it is im-
portant to clarify the kind of morphological anal-
ysis we assume in our input. Our data comes
from the Prague Czech-English Dependency Tree-
bank (PCEDT) (Hajič, 1998; Čmejrek et al., 2004),
the Czech portion of which has been fully annotated
with morphological information. Each Czech word in
the corpus is associated with an analysis containing
the word’s lemma and a sequence of morphological
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Pro/pro/RR--4----------

někoho/někdo/PZM-4----------

by/být/Vc-X---3-------

jejı́/jeho/PSZS1FS3-------

provedenı́/provedenı́/NNNS4-----A----

mělo/mı́t/VpNS---XR-AA---

smysl/smysl/NNIS4-----A----

././Z:-------------

Figure 1: A sentence from the PCEDT corpus. Each
token is followed by its lemma and a string giving
the values of up to 15 morphological tags. Dashes
indicates tags that are not applicable for a particu-
lar token. This sentence corresponds to the English
sentence It would make sense for somebody to do it.

tags. These tags provide values along several mor-
phological dimensions, such as part of speech, gen-
der, number, tense, and negation. There are a total
of 15 dimensions along which words may be charac-
terized, although most words have a number of di-
mensions unspecified. An example sentence from the
Czech corpus is shown in Figure 1.

In what follows, we describe four different ways
that the Czech lemma and tag information can be
used to modify the parameters of the translation
model. The first three of these are similar to the work
of Al-Onaizan et al. (1999) and involve transforma-
tions to the input data only. The assumptions un-
derlying the word alignment model P (fj|ei) (where
fj and ei are individual words in an aligned sen-
tence pair) are maintained. The fourth method of
incorporating morphological information is novel and
changes the alignment model itself.

3.1 Lemmas

A very simple way to modify the input data us-
ing morphological information is by replacing each
wordform with its associated lemma (see Figure 2).
Based on previous results (Al-Onaizan et al., 1999;
Čmejrek et al., 2003), we expected that this trans-
formation would lead to an improvement in trans-
lation quality due to reduction of data sparseness.
However, since lemmatization does remove some use-
ful information from the Czech wordforms, we also
tried two alternative lemmatization schemes. First,
we tried lemmatizing only certain parts of speech,
leaving other parts of speech alone. We reasoned
that nouns, verbs, and pronouns all carry inflectional
morphology in English, so by lemmatizing only the
other parts of speech, we might retain some of the
benefits of full lemmatization without losing as much
information. We also tried lemmatizing all parts of
speech except pronouns, which are very common and

therefore should be less affected by sparse data prob-
lems.

As a second alternative to full lemmatization, we
experimented with lemmatizing only the less fre-
quent wordforms in the corpus. This allows the
translation system to use the full wordform infor-
mation from more frequent forms, where sparse data
is less of a problem.

To determine whether knowledge of lemmas was
actually necessary, we compared lemmatization with
word truncation. We truncated each wordform in the
data after a fixed number of characters, as suggested
by Och (1995).

3.2 Pseudowords

As discussed earlier, much of the information en-
coded in Czech morphology is encoded as function
words in English. One way to reintroduce some of
the information lost during Czech lemmatization is
by using some of the morphological tags to add ex-
tra “words” to the Czech input. In many cases,
these pseudowords will also increase the correspon-
dence of English function words to items in the Czech
input. In our system, each pseudoword encodes a
single morphological tag (feature/value pair), such
as PER 1 (’first person’) or TEN F (’future tense’).
Figure 2 shows a Czech input sentence after gener-
ating pseudowords for the person feature on verbs.

We expected that the class of tags most likely to
be useful as pseudowords would be the person tags,
because Czech is a pro-drop language. Using the
person tags as pseudowords should simulate the ex-
istence of pronouns for the English pronouns to align
to. We also expected that negation (which is ex-
pressed on verbs in Czech) would be a useful pseu-
doword, and that case markings might also be helpful
since they sometimes correspond to prepositions in
English, such as of, with, or to.

3.3 Modified Lemmas

In some cases, such as the past tense, Czech mor-
phology is likely to correspond not to a function
word in English, but rather to English inflectional
morphology. In order to capture this kind of phe-
nomenon, we experimented with concatenating the
Czech morphological tags onto their lemmas instead
of inserting them as separate input tokens. See Fig-
ure 2 for an example. This concatenation creates
distinctions between some lemmas, which will ide-
ally correspond to morphological distinctions made
in English. Although this transformation splits the
Czech data (relative to pure lemmatization), it still
suppresses many of the distinctions made in the full
Czech wordforms. We expected that number mark-
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Words: Pro někoho by jejı́ provedenı́ mělo smysl .

Lemmas: pro někdo být jeho provedenı́ mı́t smysl .

Lemmas+Pseudowords: pro někdo být PER 3 jeho provedenı́ mı́t PER X smysl .

Modified Lemmas: pro někdo být+PER 3 jeho provedenı́ mı́t+PER X smysl .

Figure 2: Various transformations of the Czech sentence from Figure 1. The pseudowords and modified
lemmas encode the verb person feature, with the values 3 (third person) and X (“any” person).

ing on nouns and tense marking on verbs would be
the tags best treated in this way.

3.4 Morphemes

Our final set of experiments used the same input for-
mat as the Modified Lemma experiments. However,
in this set of experiments, we changed the model used
to calculate the word-to-word alignment probabili-
ties. In the standard system, the alignment model
parameters P (fj |ei) are found using maximum like-
lihood estimation based on the expected number of
times fj aligns to ei in the parallel corpus. Our new
model assumes a compositional structure for fj , so
that fj = fj0 . . . fjK , where fj0 is the lemma of
fj , and fj1 . . . fjK are morphemes generated from
the tags associated with fj . We assume that every
word contains exactly K morphemes, and that the
kth morpheme in each word is used to encode the
value for the kth class of morphological tag, where
the classes (e.g. person or tense) are assigned an or-
dering beforehand. fjk is assigned a null value if the
value of the kth tag class is unspecified for fj .

Given this decomposition of words into mor-
phemes, and a generative model in which each mor-
pheme in fj is generated independently conditioned
on ei, we have

P(fj|ei) =
K∏

k=0

P(fjk|ei) (2)

We can now estimate P(fj |ei) using a slightly
modified version of the standard EM algorithm for
learning alignment probabilities. During the E step,
we calculate the expected alignment counts between
Czech morphemes and English words based on the
current word alignments, and revise our estimate of
P(fj|ei) using Equation 2. The M step of the algo-
rithm remains the same.

The morpheme-based model in Equation 2 is sim-
ilar to the modified lemma model in that it removes
much of the differentiation between Czech word-
forms, but leaves the differences that are most likely
to appear as inflection on English words. However,
it also performs an additional smoothing function.
The model assumes that, in the absence of other in-
formation, an English word that has aligned mostly

to Czech words with a particular morphological tag
is more likely to align to another word with this tag
than to a Czech word with a different tag. For ex-
ample, an English word aligned to mostly past tense
forms is more likely to align to another past tense
form than to a present or future tense form.

4 Experiments

In order to evaluate the effectiveness of the tech-
niques described in the previous section, we ran a
number of experiments using data from the PCEDT
corpus. The English portion of this corpus (used to
train the language model) contains the same material
as the Penn WSJ corpus, but with a different divi-
sion into training, development, and test sets. About
250 sentences each for development and test were
translated once into Czech and then back into En-
glish by five different translators. These translations
are used to calculate BLEU scores. The remainder
of the corpus (about 50,000 sentences) is used for
training. About 21,000 of the training sentences have
been translated into Czech and morphologically an-
notated for use as a parallel corpus.

Some statistics on the parallel corpus are shown
in the graph in Figure 3. This graph illustrates the
sparse data problem in Czech that our morpholog-
ical analysis is intended to address. Although the
number of infrequently occurring lemmas is about
the same in both English and Czech, the number of
infrequently occurring inflected wordforms is approx-
imately twice as high in Czech.1

For all of our experiments, we used the same lan-
guage model, trained with the CMU Statistical Lan-
guage Modelling Toolkit (Clarkson and Rosenfeld,
1997). Our translation models were trained using
GIZA++ (Och and Ney, 2003), which we modi-

1Although we did not use it for the experiments in
this paper, the PCEDT corpus does contain lemma in-
formation for the English data. There is a slight discrep-
ancy between the English and Czech data in the lemma
information for pronouns, in that English pronouns (in-
cluding accusitive, possessive, and other forms) are as-
signed themselves as lemmas, whereas Czech pronouns
are reduced to uninflected forms. Given that pronouns
generally have many tokens, this discrepancy should not
affect the data in Figure 3.
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Figure 3: The number of items (full wordforms or
lemmas) y appearing in the parallel corpus with a
token count of x.

fied as necessary for the morpheme-based experi-
ments. We used the ISI ReWrite Decoder (Marcu
and Germann, 2005) for producing translations. Be-
fore beginning our experiments, we obtained a base-
line BLEU score by training a standard word-to-word
translation model. Our baseline results indicate that
the test set for this corpus is considerably more diffi-
cult than the development set: word-to-word scores
were .311 (development) and .270 (test).

4.1 Lemmas

As Figure 3 shows, lemmatization of the Czech cor-
pus cuts the number of unique items by more than
half, and the number of items with no more than
ten occurrences by nearly half. The lemmatization
BLEU scores in Table 1 indicate that this has a large
impact on the quality of translation. As expected,
full lemmatization performed better than word-to-
word translation, with an an improvement of about
.04 in the development set BLEU score and .03 in
the test set. (In this and the following experiments,
BLEU score differences of .009 or more are signifi-
cant at the .05 level.) Experiments on the develop-
ment set showed that leaving certain parts of speech
unlemmatized did not improve results, but lemma-
tizing only low-frequency words did. A frequency
cutoff of 50 worked best on the development set (i.e.
only words with frequency less than 50 were lemma-
tized). Despite the improvement on the development
set, using this cutoff with the test set yielded only a
non-significant improvement over full lemmatization.

The results of these lemmatization experiments
support the argument that lemmatization improves
translation quality by reducing data sparseness, but
also removes potentially useful information. Our re-

Dev Test
word-to-word .311 .270
lemmatize all .355 .299
except Pro .350
except Pro, V, N .346

lemmatize n < 50 .370 .306
truncate all .353 .283

Table 1: BLEU scores for the word-to-word baseline,
lemmatization, and word truncation experiments.

sults suggest that lemmatizing only infrequent words
may, in some cases, work better than lemmatizing all
words.

As Table 1 indicates, it is possible to get some
of the benefits of lemmatization without using any
morphological knowledge at all. For both dev and
test sets, truncating words to 6 characters (the best
length on the dev set) provided a significant im-
provement over word-to-word translation, but was
also significantly worse than the best lemmatization
scores. Changing the frequency cutoff for trunca-
tion did not produce any significant differences in
the BLEU score.

4.2 Pseudowords

Results for the pseudoword experiments on the devel-
opment set are shown in the first column of Table 2.
Note that in these (and the following) experiments,
we treated all words the same way regardless of their
frequency, so the effects of adding morphological in-
formation are in comparison to the full lemmatiza-
tion scheme. In most of our experiments, we added
morphological information for only a single class of
tags at a time in order to determine the effects of
each class individually. The classes we used were
verb person (PER), verb tense (TEN), noun number
(NUM), noun case (CASE), and negation (NEG).

Most of the results of the pseudoword experiments
confirm our expectations. Adding the verb person
tags was helpful, and examination of the alignments
revealed that they did indeed align to English pro-
nouns with high probability. The noun number tags
did not help, since plurality is expressed as an affix
in English. Negation tags helped slightly, though the
improvement was not significant. This is probably
because negation tags are relatively infrequent, as
can be seen in Table 3. The addition of pseudowords
for case did not yield an improvement, probably be-
cause these pseudowords were so frequent. The ad-
ditional ambiguity caused by so many extra words
likely overwhelmed any positive effect.

A somewhat puzzling result is the behavior of the
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Tag type Pseudo Mod-Lem Morph
PER .365 .356 .356
TEN .365 .361 .364
PER,TEN .355 .362 .355
NUM .354 .367 .361
CASE .353 .340 .337
NEG .357 .356 .353

Table 2: BLEU scores indicating the results of in-
corporating the information from different classes
of morphological tags in the the experiments us-
ing pseudowords (Pseudo), modified lemmas (Mod-
Lem), and morphemes (Morph). Scores are from the
development set. Differences of .009 are significant
(p < .05).

Tag class Count Avg/sentence
PER 49700 2.35
TEN 47744 2.26
past 22544 1.07
pres 20291 0.96
fut 1707 0.08
‘any’ 3202 0.15
NUM 151646 7.17
CASE 151646 7.17
NEG 3326 0.16

Table 3: Number of occurrences of each class of tags
in the Czech training data.

verb tense tags. With the exception of future tense,
English generally does not mark tense with an aux-
iliary. Yet Table 3 shows that only a very small per-
centage of sentences have a future tense marker, so
it seems unlikely that this explains the positive ef-
fects of the tense pseudowords. In fact, we tried
adding only future tense pseudowords to the lem-
matized Czech data, and found that the results were
no better than basic lemmatization.

The other unusual behavior we see with pseu-
dowords is that when verb person and tense tags are
combined, they seem to cancel each other out, result-
ing in a score that is no better than lemmatization
alone. Examination of the alignments did not reveal
any obvious reason for this effect.

4.3 Modified Lemmas

As shown in the second column of Table 2, the num-
ber and tense tags yield an improvement under the
modified lemma transformation, while the person
tags do not. Again, this confirms our predictions
based on the morphology of English.

Our results using the case tags under this model

actually decreased performance, but this is not
surprising given that differentiating Czech lemmas
based on case marking creates as much as a 7-way
split of the data (there are seven cases in Czech),
without adding much information that would be use-
ful in English.

4.4 Morphemes

BLEU scores for the morpheme-based model are
given in the third column of Table 2. None of the
differences in scores between this model and the mod-
ified lemma model are significant, although the trend
for most of the tag classes is for this model to per-
form slightly worse. This suggests that the type of
smoothing induced by the morpheme-based model
may not be as helpful as simply attempting to cre-
ate Czech words that reflect the same morphological
distinctions as the English words. In Section 5, we
propose a generalized version of the morpheme model
that might be an improvement.

4.5 Combined Model

In the experiments described so far, we used only
a single method at a time of incorporating mor-
phological information into the translation process.
However, it is straightforward to combine the pseu-
doword method with either the modified-lemma or
morpheme-based methods by using pseudowords for
certain tags and attaching others to the Czech lem-
mas. The experiments described above allowed us to
confirm our intuitions about how each class of tags
should be treated under such a combined model. We
then created a model using the pseudoword treat-
ment of the person and negation tags, and the mod-
ified lemma treatment of number and tense. We did
not use the case tags in this model, since they did
not seem to yield an improvement in any of the three
basic morphological models.

Our combined model achieved a BLEU score of
.390 (development) and .333 (test), outperforming
the models in all of our previous experiments.

5 Discussion

The results of our experiments provide additional
support for the findings of previous researchers that
using morphological analysis can improve the quality
of statistical machine translation for highly-inflected
languages. While human judgment is probably the
best metric for evaluating translation quality, our use
of the automatically-derived BLEU score allowed us
to easily compare many different translation models
and evaluate the effects of each one individually. We
found that simple lemmatization, by significantly re-
ducing the sparse data problem, was quite effective
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despite the loss of information involved. Lemmatiz-
ing the less frequent words in the corpus seemed to
increase performance slightly, but these results were
inconclusive. Word truncation, which requires no
morphological information at all, was effective at in-
creasing scores over the word-to-word baseline, but
did not perform quite as well as lemmatization. This
result conflicts with Och’s (Och, 1995), and is likely
due to the much smaller size of our corpus. In any
case, our results suggest that lemmatization or word
truncation could yield a significant improvement in
the quality of translation from a highly-inflected to
a less-inflected language, even when limited morpho-
logical information is available.

Our primary results concern the use of full mor-
phological information. We found that certain tags
were more useful when we treated them as discrete
input words, while others provided a greater benefit
when attached directly to their lemmas. The best
choice of which method to use for each class of tags
seems to correspond closely with how that class of in-
formation is expressed in English (either using func-
tion words or inflection). In a sense, the goal of the
morphological analysis is to make the Czech input
data more English-like by suppressing unnecessary
morphological distinctions and expressing necessary
distinctions in ways that are similar to English. This
sort of procedure could be taken further by incorpo-
rating syntactic information as well, but as we stated
earlier, our goal was to determine exactly how much
benefit we could derive from a strictly morphological
approach.

In the work we have presented, the output lan-
guage (English) is low in inflection. We therefore
considered it less important to perform morphologi-
cal analysis on the English data. However, we expect
that the work described here could be generalized to
highly inflected output languages by doing morpho-
logical analysis on both the input and output lan-
guages. The most promising way to do this seems
to be by extending the morpheme-based translation
model in Equation 2 to incorporate morphemes in
both languages, so that

P(fj|ei) =

K∏

k=0

P(fjk|eik) (3)

where fjk are the morphemes in the input language,
and eik are the corresponding morphemes in the out-
put language. This extended model may also prove
a benefit to Czech-English translation; we are cur-
rently investigating this possibility.

In this work, we used a word-based translation sys-
tem due to the availability of source code that could

be modified for our morph experiments. An obvious
extension to the current work would be to move to a
phrase-based translation system. One advantage of
phrase-based models is their ability to align phrases
in one language to morphologically complex words in
the other language. However, this feature still suffers
from the same sparse data problems as a word-based
system: if a morphologically complex word only ap-
pears a handful of times in the training corpus, the
system will have difficulty determining its (phrasal
or word) alignment. We expect that morphological
analysis would still be helpful in this situation, at the
very least because it can be used to remove distinc-
tions that appear in only one language.

6 Conclusion

In this paper we used morphological analysis of
Czech to improve a Czech-English statistical machine
translation system. We have argued that this im-
provement was primarily due to a reduction of the
sparse data problem caused by the highly inflected
nature of Czech. An alternative method for reducing
sparse data is to use a larger parallel corpus; however,
it is often easier to obtain additional monolingual re-
sources, such as a morphological analyzer or tagged
corpus, than additional parallel data for a specific
language pair. For that reason, we believe that the
approach taken here is a promising one.

We have described several different ways of using
morphological information for machine translation,
and have shown how these can be combined to yield
an improved translation model. In general, we would
not expect the exact combination of techniques that
yielded our best results for Czech-English to be op-
timal for other language pairs. Rather, we have sug-
gested that these techniques should be combined in
a way that makes the input language more similar
to the output language. Although this combination
will need to be determined for each language pair, the
general approach outlined here should provide ben-
efits for any MT system involving a highly inflected
language.
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M. Čmejrek, J. Cuř́ın, and J. Havelka. 2003. Czech-
english dependency-based machine translation. In
Proceedings of EACL.
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Abstract

In this work we propose a transla-
tion model for monolingual sentence
retrieval. We propose four methods
for constructing a parallel corpus. Of
the four methods proposed, a lexi-
con learned from a bilingual Arabic-
English corpus aligned at the sentence
level performs best, significantly im-
proving results over the query likeli-
hood baseline. Further, we demon-
strate that smoothing from the local
context of the sentence improves re-
trieval over the query likelihood base-
line.

1 Introduction

Sentence retrieval is the task of retrieving a rel-
evant sentence in response to a user’s query.
Tasks such as question answering, novelty de-
tection and summarization often incorporate a
sentence retrieval module. In previous work we
examined sentence retrieval for question answer-
ing (Murdock and Croft, 2004). This involves
the comparison of two well-formed sentences,
one a question, one a statement. In this work we
compare well-formed sentences to queries, which
can be typical keyword queries of 1 to 3 terms,
or a set of sentences or sentence fragments. The
TREC Novelty Track provides this type of data
in the form of topic titles and descriptions, and
sentence-level relevance judgments for a small
subset of the collection.

We present a translation model specifically

for monolingual data, and show that it signif-
icantly improves sentence retrieval over query-
likelihood. Translation models train on a paral-
lel corpus and in previous work we used a cor-
pus of question/answer pairs. No such corpus
is available for the novelty data, so in this pa-
per we present four ways to construct a parallel
corpus, to estimate a translation model.

Many systems treat sentence retrieval as a
type of document or passage retrieval. In our
data a sentence is an average of 18 words, most
of which occur once. A document is an average
of 700 words, many of which are multiples of
the same term. It is much less likely for a word
and its synonym terms to appear in the same
sentence than in the same document.

Passages may be any length, either fixed or
variable, but are somewhat arbitrarily desig-
nated. Many systems that have a passage re-
trieval module, on closer inspection have de-
fined the passage to be a sentence. What is
needed is a sentence retrieval mechanism that
retains the benefits of passage retrieval, where
a passage is longer than a sentence. We pro-
pose that smoothing from the local context of
the sentence improves retrieval over the query
likelihood baseline, and the larger the context,
the greater the improvement.

We describe our translation model in sec-
tion 2, along with our smoothing approach. In
section 3 we discuss previous work in sentence
retrieval for the Novelty task, and translation
models for information retrieval tasks. Sec-
tion 4 presents four ways to estimate a trans-
lation model, in the absence of a parallel cor-
pus, and presents our experimental results. We
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discuss the results in section 5, and present our
conclusions and future work in section 6.

2 Methodology

Our data was provided by NIST, as part of
the TREC Novelty Track1. The documents for
the TREC Novelty Track in 2002 were taken
from the TREC volumes 4 and 5, and consist
of news articles from the Financial Times, the
Foreign Broadcast Information Service, and the
Los Angeles Times from non-overlapping years.
In 2003 and 2004, the documents were taken
from the Aquaint Corpus, which is distributed
by the Linguistic Data Consortium2 and con-
sists of newswire text in English from the Xin-
hua News Service, the New York Times, and the
Associated Press from overlapping years.

We retrieved the top 1000 documents for
each topic from the TREC and Aquaint col-
lections, and sentence segmented the docu-
ments using MXTerminator (Reynar and Rat-
naparkhi, 1997), which is a freely available sen-
tence boundary detector. Each topic was in-
dexed separately and had an average of 30,000
sentences. It was impractical to do sentence-
level relevance assessments for the complete set
of 150,000 documents, so we used the relevance
assessments provided as part of the Novelty
task, recognizing that the results are a lower
bound on performance, because the relevance
assessments do not cover the collection. The
relevance assessments cover 25 known relevant
documents for each topic.

We evaluated precision at N documents be-
cause many systems using sentence retrieval em-
phasize the results at the top of the ranked list,
and are less concerned with the overall quality
of the list.

2.1 Translation Models

We incorporated a machine translation model
in two steps: estimation and ranking. In the
estimation step, the probability that a term in
the sentence “translates” to a term in the query
is estimated using the implementation of IBM

1http://trec.nist.gov
2http://www.ldc.upenn.edu

Model 1 (Brown et al., 1990) in GIZA++ (Al-
Onaizan et al., 1999) out-of-the-box without
alteration. In the ranking step we incorpo-
rate the translation probabilities into the query-
likelihood framework.

In Berger and Lafferty (1999), the IBM Model
1 is incorporated thus:

P (qi|S) =

m
∑

j=1

P (qi|sj)P (sj |S) (1)

where P (qi|sj) is the probability that term sj in
the sentence translates to term qi in the query.
If the translation probabilities are modified such
that P (qi|sj) = 1 if qi = sj and 0 otherwise,
this is Berger and Lafferty’s “Model 0”, and it
is exactly the query-likelihood model (described
in section 2.2).

A major difference between machine transla-
tion and sentence retrieval is that machine trans-
lation assumes there is little, if any, overlap in
the vocabularies of the two languages. In sen-
tence retrieval we depend heavily on the overlap
between the two vocabularies. With the Berger
and Lafferty formulation in equation 1, the prob-
ability of a word translating to itself is estimated
as a fraction of the probability of the word trans-
lating to all other words. Because the probabil-
ities must sum to one, if there are any other
translations for a given word, its self-translation
probability will be less than 1.0. To accommo-
date this monolingual condition, we make the
following improvement.

Let ti = 1 if there exists a term in the sentence
sj such that qi = sj , and 0 otherwise:

∑

1≤j≤n

p(qi|sj)p(sj |S) =⇒

tip(qi|S) + (1 − ti)
∑

1≤j≤n,sj 6=qi

p(qi|sj)p(sj |S)

(2)

The translation probabilities still sum to one.
We determined empirically that this adjustment
improved the results over IBM model 1, and over
Berger and Lafferty model 0.
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2.2 Document Smoothing

Query likelihood is a generative model that as-
sumes that the sentence is a sample of a multino-
mial distribution of terms. Sentences are ranked
according to the probability they generate the
query. We estimate this probability by interpo-
lating the term distribution in the sentence with
the term distribution in the collection:

P (Q|S) = P (S)

|Q|
∏

i=1

(

λP (qi|S) + (1 − λ)P (qi|C)

)

(3)

where Q is the query, S is the sentence, P (S) is
the (uniform) prior probability of the sentence,
P (qi|S) is the probability that term qi in the
query appears in the sentence, and P (qi|C) is
the probability that qi appears in the collection.

In the experiments with document smoothing,
we estimate the probability of a sentence gener-
ating the query:

P (Q|S) =

P (S)

|Q|
∏

i=1

(

αP (qi|S) + βP (qi|DS) + γP (qi|C)

)

(4)

where α+β +γ = 1.0 and P (qi|DS) is the prob-
ability that the term qi in the query appears
in the document the sentence came from. In
our case, since the sentences for each topic are
indexed separately, the collection statistics are
in reference to the documents in the individual
topic index.

3 Previous Work

The TREC Novelty Track ran for three years,
from 2002 to 2004. Overviews of the track
can be found in (Harman, 2002), (Soboroff and
Harman, 2003) and (Soboroff, 2004). A num-
ber of systems use traditional information re-
trieval techniques for sentence retrieval, using
various techniques to compensate for the sparse
term distributions in sentences. The Univer-
sity of Massachusetts (Larkey et al., 2002) and
Carnegie Mellon University (Collins-Thompson

et al., 2002) both ranked sentences by the co-
sine similarity of the sentence vector to the
query vector of tf.idf-weighted terms. Amster-
dam University (Monz et al., 2002) used tfc.nfx
term weighting which is a variant of tf.idf term
weighting that normalizes the lengths of the doc-
ument vectors. Meiji University (Ohgaya et al.,
2003) expanded the query with concept groups,
and then ranked the sentences by the cosine sim-
ilarity between the expanded topic vector and
the sentence vector.

Berger and Lafferty (1999) proposed the use of
translation models for (mono-lingual) document
retrieval. They used IBM Model 1 (Brown et
al., 1990), to rank documents according to their
translation probability, given the query. They
make no adjustment for the fact that the query
and the document are in the same language, and
instead rely on the translation model to learn
the appropriate weights for word pairs. The
models are trained on parallel data artificially
constructed from the mutual information distri-
bution of terms in the document. The results
presented either were not tested for statistical
significance, or they were not statistically signif-
icant, because no significance results were given.

Berger et al. (2000) used IBM Model 1 to rank
answers to questions in call-center data. In their
data, there were no answers that were not in
response to at least one of the questions, and all
questions had at least one answer. Furthermore,
there are multiples of the same question. The
task is to match questions and answers, given
that every question has at least one match in the
data. The translation models performed better
for this task than the tf.idf baseline.

4 Experiments and Results

In this section we describe four methods for es-
timating a translation model in the absence of
a parallel corpus. We describe experimental re-
sults for each of the translation models, as well
as for document smoothing.

4.1 Mutual Information and TREC

As in Berger and Lafferty (1999), a set of
documents was selected at random from the
TREC collection, and for each document we
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Query MT MT
Likelihood (MI) (TREC)

Prec@5 0.1176 0.1149 0.1392*
Prec@10 0.1115 0.1047 0.1095
Prec@15 0.1023 0.0928* 0.0977
Prec@20 0.0973 0.0882* 0.0936
Prec@30 0.0890 0.0865 0.0874
Prec@100 0.0733 0.0680* 0.0705

R-Prec 0.0672 0.0642* 0.0671
Ave Prec 0.0257 0.0258 0.0264

Table 1: Comparing translation model-based re-
trieval with description queries. “TREC” and
“MI” are two ways to estimate a translation
model. Results with an asterisk are significant
at the .05 level with a two-tailed t-test.

constructed a distribution according to each
term’s mutual information with the document,
and randomly generated five queries of 8 words
according to this distribution. We were retriev-
ing sentences rather than documents, so each
sentence in the document was ranked according
to its probability of having generated the query,
and then the query was aligned with the top 5
sentences. We call this approach “MI”.

The second approach uses the TREC topic
titles and descriptions aligned with the top 5
retrieved sentences from documents known to
be relevant to those topics, excluding topics that
were included in the Novelty data. We call this
approach “TREC”.

Table 1 shows the results of incorporating
translations for topic descriptions. Results in
the tables with an asterisk are significant at the
.05 level using a two-tailed t-test. The results
for sentence retrieval are lower than those typ-
ically obtained for document retrieval. Manual
inspection of the results indicates that the ac-
tual precision is much higher, and resembles the
results for document retrieval. The lower results
are an artifact of the way the relevance assess-
ments were obtained. The sentence-level judge-
ments from the TREC Novelty Track are only
for 25 documents per topic.

The Novelty data from 2003-2004 consists of
event and opinion queries. We observed that

Event Opinion
Query MT Query MT
Lklhd (TREC) Lklhd (TREC)

Prec@5 0.1149 0.1307 0.1234 0.1574
Prec@10 0.1089 0.1079 0.1170 0.1128
Prec@15 0.1036 0.1030 0.0993 0.0865
Prec@20 0.0985 0.0980 0.0947 0.0840
Prec@30 0.0901 0.0894 0.0865 0.0830
Prec@100 0.0729 0.0719 0.0743 0.0674

R-Prec 0.0658 0.0694 0.0701 0.0622
Ave Prec 0.0275 0.0289 0.0219 0.0211

Table 2: Comparing translation-based retrieval
for description queries, using the relevance judg-
ments provided by NIST. The translation model
was trained from TREC topics.

a number of the topic descriptions for event
topics had a high degree of vocabulary overlap
with the sentences in our data. This was not
true of the opinion queries. The results of us-
ing a translation-based retrieval on description
queries are given in table 2, broken down by
the sentiment of the query. The Novelty queries
from 2002 were included in the “event” set.

Not all of the sentences judged relevant to
opinion topics express opinions. To assess
opinion-relevance we evaluated the top 10 sen-
tences, and marked sentences that expressed
opinions. In our data approximately 10% of
sentences in the top 10 express opinions. Ta-
ble 3 shows the result of using a translation
model trained on TREC data for description
queries, broken down by sentiment, with the
baselines evaluated for this particular set of rel-
evance judgments. For opinion questions, the
column labeled “topical” indicates topical rele-
vance. The column labeled “opinion” indicates
topical relevance that also expresses an opinion.

If we consider a sentence relevant to an opin-
ion question only if it expresses an opinion, we
see improvement in the results at the top of the
ranked list for those queries, using a transla-
tion model trained on TREC data. Of the 150
topics, only 50 were opinion topics, so although
the magnitude of the improvement in opinion
queries is large the results are not statistically
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Topical Rel Express Opin
Query MT Query MT
Lklhd (TREC) Lklhd (TREC)

Prec@5 .7289 .7111 .3300 .3900
Prec@10 .7089 .6867 .3125 .3775
Prec@15 .5363 .4919 .2350 .2717
Prec@20 .4300 .4033 .1875 .2188
Prec@30 .3170 .2970 .1408 .1617
Prec@100 .1236 .1131* .0587 .0580

R-Prec .4834 .4653 .2947 .3597*
Ave Prec .4996 .4696 .2563 .3177

Table 3: Comparison of translation retrieval on
opinion queries, using truth data we created to
evaluate opinion questions. Translation models
were trained with TREC data. Results with an
asterisk are significant at the .05 level using a
two-tailed t-test.

significant with respect to the baseline.

4.2 Lexicons

External lexicons are often useful for transla-
tion and query expansion. The most obvious
approach was to incorporate a thesaurus into
the training process in GIZA as a dictionary,
which affects the statistics in the first iteration
of EM. This is intended to improve the qual-
ity of the alignments over subsequent iterations.
We incorporated the thesauri into the training
process of the data generated from the artificial
mutual information distribution. The dictionar-
ies had almost no effect on the results.

4.2.1 WordNet

We created a parallel corpus of synonym-term
pairs from WordNet, and added this data to the
artificial mutual information data to train the
translation model. The results of using this ap-
proach to retrieve sentences using title queries
are in figure 1, labeled “MI WN”. Using Word-
Net alone, without the mutual information data,
is labeled “WN Only”. The results are statisti-
cally significant using a Wilcoxon sign test at the
.05 level for precision at .10, .20 and .60. Query
likelihood retrieval is the baseline. The results
for description queries are not shown, and were
not significantly different from the baseline.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10

"baseline"
"MI_WN"

"WN_Only"

Figure 1: Comparing interpolated recall-
precision for title queries using WordNet. The
results are statistically significant using a
Wilcoxon sign test at the .05 level, for precision
at .10, .20 and .60.

4.2.2 Arabic-English corpus

Xu et al. (2002) derive an Arabic thesaurus
from a parallel corpus. We derived an En-
glish thesaurus using the same approach, from a
pair of English-Arabic/Arabic-English lexicons,
learned from a parallel corpus. We assumed that
if two English terms translate to the same Ara-
bic term, the English terms are synonyms whose
probability is given by

P (e2|e1) =
∑

a∈A

P (e2|a)P (a|e1) (5)

Figure 2 shows the interpolated recall-
precision of these results, for description queries.
The English terms were not stemmed, and so
the baseline query-likelihood results are also not
stemmed. The results are statistically signifi-
cant using a Wilcoxon sign test at the .05 level,
for all retrieval levels. Not shown is the average
precision, which is also significantly better for
the Arabic-English lexicon than for the query-
likelihood. The results for title queries are not
shown, but are similar to those for descriptions.
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Figure 2: Comparing interpolated recall-
precision for description queries using a pair of
Arabic-English, English-Arabic lexicons. The
results are statistically significant using a
Wilcoxon sign test at the .05 level, for precision
all recall levels.

4.3 Document Smoothing

Smucker and Allan (2005) demonstrated
that under certain conditions, Jelinek-Mercer
smoothing is equivalent to Dirichlet smoothing,
and that the advantage of Dirichlet smoothing
is derived from the fact that it smoothes long
documents less than shorter documents. In our
data there is much less variance in the length
of a sentence than in the length of a document,
thus we do not expect to see as great a benefit
in performance from Dirichlet smoothing as has
been reported in Zhai and Lafferty (2001). In
fact we tried Absolute Discounting, Dirichlet,
Jelinek-Mercer and Laplace smoothing and
found them to produce equivalent results.

The vast majority of sentences in our data
are not stand-alone units, and the topic of the
sentence is also the topic of surrounding sen-
tences. We took a context of the surround-
ing 5 sentences, and the surrounding 11 sen-
tences (about 1/3 of the whole document). The
sentences were smoothed from the surrounding
context, backing-off to the whole document, us-

Query 5 Sents 11 Sents
Lklhd

Prec@5 0.1203 0.1527* 0.1541*
Prec@10 0.1122 0.1446* 0.1419*
Prec@15 0.1018 0.1329* 0.1405*
Prec@20 0.0973 0.1311* 0.1345*
Prec@30 0.0890 0.1191* 0.1286*
Prec@100 0.0732 0.0935* 0.1006*

R-Prec 0.0672 0.0881* 0.0933*
Ave Prec 0.0257 0.0410* 0.0485*

Table 4: Comparison of smoothing context on
description queries, retrieving sentences from
the top 1000 documents. Results with an aster-
isk are significant at the .05 level using a two-
tailed t-test.

ing Jelinek-Mercer smoothing. Table 4 shows a
comparison of the amount of context. Smooth-
ing from the local context is clearly better than
the baseline result.

We investigated the effect of smoothing from
the entire document. Table 5 shows the results.
Both topic titles and descriptions get signifi-
cantly better results with document smoothing.

4.4 Novelty Relevance Task

In the TREC Novelty Track, participants are
given a set of 25 documents most of which are
relevant for each topic. If we believe that a doc-
ument is relevant because it has relevant sen-
tences in it, then a “good” sentence would come
from a “good” document. This would suggest
that smoothing from the document the sentence
came from would improve retrieval. We found
that for title queries document smoothing im-
proved precision in the top 5 documents by
12.5%, which is statistically significant using a
two-tailed t-test at the .05 level. Precision in
the top 10 - 100 documents also improved re-
sults by an average of 5%, but the result is not
statistically significant. For description queries,
smoothing from the document had no effect.

For title queries, translation models improve
the average precision, and R-Precision. For both
title and description queries, the number of rel-
evant documents that are retrieved is also im-
proved with translation models.
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Title Description
Query Doc Query Doc
Lklhd Smth Lklhd Smth

Prec@5 .0765 .2268* .1203 .2362*
Prec@10 .0805 .2262* .1122 .2128*
Prec@15 .0814 .2192* .1018 .2000*
Prec@20 .0765 .2124* .0973 .1893*
Prec@30 .0765 .2007* .0890 .1743*
Prec@100 .0675 .1638* .0732 .1335*

R-Prec .0646 .1379* .0672 .1226*
Ave Prec .0243 .0796* .0257 .0749*

Table 5: Comparison of document smoothing to
query likelihood retrieving sentences from the
top 1000 documents. Results with an asterisk
are significant at the .05 level using a two-tailed
t-test.

5 Discussion

The results for sentence retrieval are low, in
comparison to results we would expect for doc-
ument retrieval. We might think that although
we show improvements, nothing is working well.
In reality, the relevance assessments provided by
NIST as part of the Novelty Track only cover
25 documents per topic. Evaluating the top 10
sentences by hand shows that the systems give a
performance comparable to document retrieval
systems, and the low numbers are the result of
a lack of coverage in the assessments. Unfor-
tunately, there is no collection of documents of
significant size, where the relevance assessments
at the sentence level cover the collection. Con-
structing such a corpus would be a major un-
dertaking, outside of the scope of this paper.

The best performing method of constructing
a parallel corpus used a bilingual lexicon derived
from a sentence-aligned Arabic-English parallel
corpus. This suggests that data in which sen-
tences are actually translations of one another,
as opposed to sentences aligned with key terms
from the document, yield a higher quality lexi-
con. The model trained on the parallel corpus of
TREC topics and relevant sentences performed
better than the MI corpus, but not as well as the
Arabic-English corpus. The TREC corpus con-
sisted of approximately 15,000 sentence pairs,

whereas the Arabic-English corpus was trained
on more than a million sentence pairs. This may
account in part for the higher quality results. In
addition, the TREC corpus was created by re-
trieving the top 5 sentences from each relevant
document. Even when the document is known
to be relevant, the retrieval process is noisy. Fur-
thermore, although there were 15,000 sentence
pairs, there were only 450 unique queries, limit-
ing the size of the source vocabulary.

Opinion topics have much less vocabulary
overlap with relevant sentences than do event
topics. Translation models would be expected
to perform better when retrieving sentences that
contain synonym or related terms. For sentences
that have exact matches in the query, query like-
lihood will perform better.

We find that smoothing from the local con-
text of the sentence performs significantly bet-
ter than the baseline retrieval. The sentences are
all about the same length, so there is no perfor-
mance advantage to using Dirichlet smoothing,
whose smoothing parameter is a function of the
document length. The smoothing parameters
gave very little weight to the collection. As sen-
tences have few terms, relative to documents,
matching a term in the query is a good indica-
tion of relevance.

6 Conclusions and Future Work

We have shown that translation models improve
retrieval for title and opinion queries, and that
a translation model derived from a high-quality
bilingual lexicon significantly improves retrieval
for title and description queries. Smoothing
from the local context of a sentence dramati-
cally improves retrieval, with smoothing from
the document that contains the sentence per-
forming the best.

We evaluated sentences based on lexical sim-
ilarity, but structural similarity is also an im-
portant measure, which we plan to investigate
in the future. The translation model we used
was the most basic model. We used this model
because it had been shown effective in docu-
ment retrieval, and was easily incorporated in
the query-likelihood framework, but we intend

690



to explore more sophisticated translation mod-
els, and better alignment mechanisms. Prelimi-
nary results suggest that sentence retrieval can
be used to improve document retrieval, but we
plan a more extensive investigation of evaluat-
ing document similarity and relevance based on
sentence-level similarity.
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Abstract

We consider the problem of training logis-
tic regression models for binary classifi-
cation in information extraction and infor-
mation retrieval tasks. Fitting probabilis-
tic models for use with such tasks should
take into account the demands of the task-
specific utility function, in this case the
well-known F-measure, which combines
recall and precision into a global measure
of utility. We develop a training proce-
dure based on empirical risk minimiza-
tion / utility maximization and evaluate it
on a simple extraction task.

1 Introduction

Log-linear models have been used in many areas of
Natural Language Processing (NLP) and Information
Retrieval (IR). Scenarios in which log-linear models
have been applied often involve simple binary clas-
sification decisions or probability assignments, as
in the following three examples:Ratnaparkhi et al.
(1994) consider a restricted form of the prepositional
phrase attachment problem where attachment deci-
sions are binary;Ittycheriah et al.(2003) reduce en-
tity mention tracking to the problem of modeling
the probability of two mentions being linked; and
Greiff and Ponte(2000) develop models of proba-
bilistic information retrieval that involve binary de-
cisions of relevance. What is common to all three
approaches is the application of log-linear models to
binary classification tasks.1 As Ratnaparkhi(1998,

1These kinds of log-linear models are also known among the
NLP community as “maximum entropy models” (Berger et al.,

p. 27f.) points out, log-linear models of binary re-
sponse variables are equivalent to, and in fact mere
notational variants of, logistic regression models.

In this paper we focus on binary classification
tasks, and in particular on the loss or utility associ-
ated with classification decisions. The three prob-
lems mentioned before – prepositional phrase at-
tachment, entity mention linkage, and relevance of
a document to a query – differ in one crucial aspect:
The first is evaluated in terms of accuracy or, equiva-
lently, symmetric zero–one loss; but the second and
third are treated as information extraction/retrieval
problems and evaluated in terms of recall and preci-
sion. Recall and precision are combined into a single
overall utility function, the well-knownF-measure.
It may be desirable to estimate the parameters of a
logistic regression model by maximizingF-measure
during training. This is analogous, and in a cer-
tain sense equivalent, to empirical risk minimiza-
tion, which has been used successfully in related
areas, such as speech recognition (Rahim and Lee,
1997), language modeling (Paciorek and Rosenfeld,
2000), and machine translation (Och, 2003).

The novel contribution of this paper is a training
procedure for (approximately) maximizing the ex-
pectedF-measure of a probabilistic classifier based
on a logistic regression model. We formulate a
vector-valued utility function which has a well-
defined expected value;F-measure is then a rational
function of this expectation and can be maximized
numerically under certain conventional regularizing
assumptions.

1996; Ratnaparkhi, 1998). This is an unfortunate choice of
terminology, because the term “maximum entropy” does not
uniquely determine a family of models unless the constraints
subject to which entropy is being maximized are specified.
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We begin with a review of logistic regression
(Section 2) and then discuss the use ofF-measure
for evaluation (Section 3). We reformulateF-
measure as a function of an expected utility (Sec-
tion 4) which is maximized during training (Sec-
tion 5). We discuss the differences between our pa-
rameter estimation technique and maximum likeli-
hood training on a toy example (Section 6) as well
as on a real extraction task (Section 7). We conclude
with a discussion of further applications and gener-
alizations (Section 8).

2 Review of Logistic Regression

Bernoulli regression models are conditional proba-
bility models of a binary response variableY given
a vector~X of k explanatory variables(X1, . . . ,Xk).
We will use the convention2 thatY takes on a value
y∈ {−1,+1}.

Logistic regression models (Cox, 1958) are per-
haps best viewed as instances of generalized linear
models (Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1989) where the the response variable
follows a Bernoulli distribution and the link func-
tion is the logit function. Let us summarize this first,
before expanding the relevant definitions:

Y ∼ Bernoulli(p)
logit(p) = θ0 +x1 θ1 +x2 θ2 + · · ·+xk θk

What this means is that there is an unobserved quan-
tity p, the success probability of the Bernoulli distri-
bution, which we interpret as the probability thatY
will take on the value+1:

Pr(Y = +1|~X = (x1,x2, . . . ,xk),~θ) = p

The logit (log odds) function is defined as follows:

logit(p) = ln

(
p

1− p

)
The logit function is used to transform a probabil-
ity, constrained to fall within the interval(0,1), into
a real number ranging over(−∞,+∞). The inverse
function of the logit is the cumulative distribution

2The natural choice may seem to be forY to range over the
set{0,1}, but the convention adopted here is more common for
classification problems and has certain advantages which will
become clear soon.

function of the standard logistic distribution (also
known as thesigmoidor logistic function), which
we callg:

g(z) =
1

1+exp(−z)

This allows us to write

p = g(θ0 +x1 θ1 +x2 θ2 + · · ·+xk θk).

We also adopt the usual convention that~x =
(1,x1,x2, . . . ,xk), which is ak+ 1-dimensional vec-
tor whose first component is always 1 and whose
remainingk components are the values of thek ex-
planatory variables. So the Bernoulli probability can
be expressed as

p = g

(
k

∑
j=0

x j θ j

)
= g

(
~x ·~θ

)
.

The conditional probability model then takes the
following abbreviated form, which will be used
throughout the rest of this paper:

Pr(+1|~x,~θ) =
1

1+exp(−~x ·~θ)
(1)

A classifier can be constructed from this probabil-
ity model using theMAP decision rule. This means
predicting the label+1 if Pr(+1 |~x,~θ) exceeds 1/2,
which amounts to the following:

ymap(~x) = argmax
y

Pr(y|~x,~θ) = sgn
(
~x ·~θ

)
This illustrates the well-known result that aMAP

classifier derived from a logistic regression model
is equivalent to a (single-layer) perceptron (Rosen-
blatt, 1958) or linear threshold unit.

3 F-Measure

Suppose the parameter vectorθ of a logistic regres-
sion model is known. The performance of the re-
sulting classifier can then be evaluated in terms of
therecall (or sensitivity) andprecisionof the classi-
fier on an evaluation dataset. Recall (R) and preci-
sion (P) are defined in terms of the number of true
positives (A), misses (B), and false alarms (C) of the
classifier (cf.Table 1):

R=
A

A+B
P =

A
A+C
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predicted

+1 −1 to
ta

l

tr
ue

+1 A B npos

−1 C D nneg

total mpos mneg n

Table 1: Schema for a 2×2 contingency table

The Fα measure – familiar from Information Re-
trieval – combines recall and precision into a single
utility criterion by taking theirα-weighted harmonic
mean:

Fα(R,P) =
(

α
1
R

+(1−α)
1
P

)−1

The Fα measure can be expressed in terms of the
triple (A,B,C) as follows:

Fα(A,B,C) =
A

A+α B+(1−α)C
(2)

In order to defineA, B, andC formally, we use the
notationJπK to denote a variant of the Kronecker
delta defined like this, whereπ is a Boolean expres-
sion:

JπK =

{
1 if π

0 if ¬π

Given an evaluation dataset(~x1,y1), . . . ,(~xn,yn) the
counts of hits (true positives), misses, and false
alarms are, respectively:

A =
n

∑
i=1

q
ymap(~xi) = +1

y
Jyi = +1K

B =
n

∑
i=1

q
ymap(~xi) =−1

y
Jyi = +1K

C =
n

∑
i=1

q
ymap(~xi) = +1

y
Jyi =−1K

Note thatF-measure is seemingly a global measure
of utility that applies to an evaluation dataset as a
whole: while theF-measure of a classifier evaluated
on a single supervised instance is well defined, the
overallF-measure on a larger dataset is not a func-
tion of the F-measure evaluated on each instance
in the dataset. This is in contrast to ordinary loss/
utility, whose grand total (or average) on a dataset
can be computed by direct summation.

4 Relation to Expected Utility

We reformulateF-measure as a scalar-valued ratio-
nal function composed with a vector-valued utility
function. This allows us to define notions of ex-
pected and average utility, setting up the discussion
of parameter estimation in terms of empirical risk
minimization (or rather, utility maximization).

Define the following vector-valued utility func-
tion u, whereu(ỹ | y) is the utility of choosing the
label ỹ if the true label isy:

u(+1|+1) = (1,0,0)
u(−1|+1) = (0,1,0)
u(+1|−1) = (0,0,1)
u(−1|−1) = (0,0,0)

This function indicates whether a classification deci-
sion is a hit, miss, or false alarm. Correct rejections
are not counted.

Expected values are, of course, well-defined for
vector-valued functions. For example, the expected
utility is

E[u] = ∑
(~x,y)

u(ymap(~x) |y) Pr(~x,y).

In empirical risk minimization we approximate the
expected utility of a classifier by its average utility
US on a given datasetS= (~x1,y1), . . . ,(~xn,yn):

E[u]≈US =
1
n

n

∑
i=1

u(ymap(~xi) |yi)

=
1
n

n

∑
i=1

u(+1|yi)
q
ymap(~xi) = +1

y

+u(−1|yi)
q
ymap(~xi) =−1

y

Now it is easy to see thatUS is the following vector:

US =
1
n



n

∑
i=1

q
ymap(~xi) = +1

y
Jyi = +1K

n

∑
i=1

q
ymap(~xi) =−1

y
Jyi = +1K

n

∑
i=1

q
ymap(~xi) = +1

y
Jyi =−1K


(3)

SoUS = n−1(A,B,C) whereA, B, andC are as de-
fined before. This means that we can interpret the
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F-measure of a classifier as a simple rational func-
tion of its empirical average utility (the scaling fac-
tor 1/n in (3) can in fact be omitted). This allows
us to approach the parameter estimation task as an
empirical risk minimization or utility maximization
problem.

5 Discriminative Parameter Estimation

In the preceding two sections we assumed that the
parameter vector~θ was known. Now we turn to
the problem of estimating~θ by maximizing theF-
measure formulated in terms of expected utility. We
make the dependence on~θ explicit in the formula-
tion of the optimization task:

~θ ? = argmax
~θ

Fα(A(~θ),B(~θ),C(~θ)),

where(A(~θ),B(~θ),C(~θ)) =US(~θ) as defined in(3).
We encounter the usual problem: the basic quan-
tities involved are integers (counts of hits, misses,
and false alarms), and the optimization objective is
a piecewise-constant functions of the parameter vec-
tor~θ , due to the fact that~θ occurs exclusively inside
Kronecker deltas. For example:

q
ymap(~x) = +1

y
=

r
Pr(+1|~x,~θ) > 0.5

z

In general, we can set
r

Pr(+1|~x,~θ) > 0.5
z
≈ Pr(+1|~x,~θ), (4)

and in the case of logistic regression this arises as a
special case of approximating the limit

r
Pr(+1|~x,~θ) > 0.5

z
= lim

γ→∞
g(γ ~x ·~θ)

with a fixed value ofγ = 1. The choice ofγ does
not matter much. The important point is that we are
now dealing with approximate quantities which de-
pend continuously on~θ . In particularA(~θ)≈ Ã(~θ),
where

Ã(~θ) =
n

∑
i=1

yi=+1

g(γ ~xi ·~θ). (5)

Since the marginal total of positive instancesnpos

(cf. Table 1) does not depend on~θ , we use the identi-
tiesB̃(~θ) = npos− Ã(~θ) andm̃pos(~θ) = Ã(~θ)+C̃(~θ)

to rewrite the optimization objective as̃Fα :

F̃α(~θ) =
Ã(~θ)

α npos+(1−α)m̃pos(~θ)
, (6)

whereÃ(~θ) is given by(5) andm̃pos(~θ) is

m̃pos(~θ) =
n

∑
i=1

g(γ ~xi ·~θ).

Maximization of F̃ as defined in(6) can be car-
ried out numerically using multidimensional opti-
mization techniques like conjugate gradient search
(Fletcher and Reeves, 1964) or quasi-Newton meth-
ods such as theBFGS algorithm (Broyden, 1967;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). This
requires the evaluation of partial derivatives. Thejth
partial derivative ofF̃ is as follows:

∂ F̃(~θ)
∂θ j

= h
∂ Ã(~θ)

∂θ j
−h2 Ã(~θ)(1−α)

∂m̃pos(~θ)
∂θ j

h =
1

α npos+(1−α)m̃pos(~θ)

∂ Ã(~θ)
∂θ j

=
n

∑
i=1

yi=+1

g′(γ ~xi ·~θ)γ xi j

∂m̃pos(~θ)
∂θ j

=
n

∑
i=1

g′(γ ~xi ·~θ)γ xi j

g′(z) = g(z)(1−g(z))

One can compute the value ofF̃(~θ) and its gradient
∇F̃(~θ) simultaneously at a given point~θ in O(nk)
time and O(k) space. Pseudo-code for such an al-
gorithm appears inFigure 1. In practice, the inner
loops on lines 8–9 and 14–18 can be made more ef-
ficient by using a sparse representation of the row
vectorsx[i]. A concrete implementation of this al-
gorithm can then be used as a callback to a multi-
dimensional optimization routine. We use theBFGS

minimizer provided by theGNU Scientific Library
(Galassi et al., 2003). Important caveat: the func-
tion F̃ is generally not concave. We deal with this
problem by taking the maximum across several runs
of the optimization algorithm starting from random
initial values. The next section illustrates this point
further.
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x y
0 +1
1 −1
2 +1
3 +1

Table 2: Toy dataset

6 Comparison with Maximum Likelihood

A comparison with the method of maximum like-
lihood illustrates two important properties of dis-
criminative parameter estimation. Consider the toy
dataset inTable 2consisting of four supervised in-
stances with a single explanatory variable. Thus the
logistic regression model has two parameters and
takes the following form:

Prtoy(+1|x,θ0,θ1) =
1

1+exp(−θ0−xθ1)

The log-likelihood functionL is simply

L(θ0,θ1) = logPrtoy(+1|0,θ0,θ1)
+ logPrtoy(−1|1,θ0,θ1)
+ logPrtoy(+1|2,θ0,θ1)
+ logPrtoy(+1|3,θ0,θ1).

A surface plot ofL is shown in Figure 2. Ob-
serve thatL is concave; its global maximum occurs
near(θ0,θ1) ≈ (0.35,0.57), and its value is always
strictly negative because the toy dataset is not lin-
early separable. The classifier resulting from maxi-
mum likelihood training predicts the label+1 for all
training instances and thus achieves a recall of 3/3
and precision 3/4 on its training data. TheFα=0.5

measure is 6/7.
Contrast the shape of the log-likelihood function

L with the functionF̃α . Surface plots of̃Fα=0.5 and
F̃α=0.25 appear inFigure 3. The figures clearly illus-
trate the first important (but undesirable) property of
F̃ , namely the lack of concavity. They also illustrate
a desirable property, namely the ability to take into
account certain properties of the loss function dur-
ing training. TheF̃α=0.5 surface in the left panel of
Figure 3achieves its maximum in the right corner
for (θ0,θ1)→ (+∞,+∞). If we choose(θ0,θ1) =
(20,15) the classifier labels every instance of the
training data with+1.

fdf(θ):
1: m← 0
2: A← 0
3: for j ← 0 to k do
4: dm[ j]← 0
5: dA[ j]← 0
6: for i← 1 to n do
7: p← 0
8: for j ← 0 to k do
9: p← p+x[i][ j]×θ [ j]

10: p← 1/(1+exp(−d))
11: m←m+ p
12: if y[i] = +1 then
13: A← A+ p
14: for j ← 0 to k do
15: t← p× (1− p)×x[i][ j]
16: dm[ j]← dm[ j]+ t
17: if y[i] = +1 then
18: dA[ j]← dA[ j]+ t
19: h← 1/(α×npos+(1−α)×m)
20: F ← h×A
21: t← F× (1−α)
22: for j ← 0 to k do
23: dF[ j]← h× (dA[ j]− t×dm[ j])
24: return (F,dF)

Figure 1: Algorithm for computing̃F and∇F̃

L(θ0, θ1)
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-80
-60
-40
-20

 0

Figure 2: Surface plot ofL on the toy dataset

Observe the difference between theF̃α=0.5 surface
and theF̃α=0.25 surface in the right hand panel of
Figure 3: F̃α=0.25 achieves its maximum in the back
corner for(θ0,θ1)→ (−∞,+∞). If we set(θ0,θ1) =
(−20,15) the resulting classifier labels the first two
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F0.5(θ0, θ1)
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F0.25(θ0, θ1)

-25 -20 -15 -10 -5  0  5  10  15
θ0

-20
-15

-10
-5

 0
 5

 10
 15

 20

θ1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure 3: Surface plot of̃Fα=0.5 (left) andF̃α=0.25 (right) on the toy dataset

instances (x = 0 andx = 1) as−1 and the last two
instances (x = 2 andx = 3) as+1.

The classifier trained according to theF̃α=0.5 cri-
terion achieves anFα=0.5 measure of 6/7 ≈ 0.86,
compared with 4/5 = 0.80 for the classifier trained
according to theF̃α=0.25 criterion. Conversely, that
classifier achieves anFα=0.25 measure of 8/9≈ 0.89
compared with 4/5 = 0.80 for the classifier trained
according to thẽFα=0.5 criterion. This demonstrates
that the training procedure can effectively take infor-
mation from the utility function into account, pro-
ducing a classifier that performs well under a given
evaluation criterion. This is the result of optimizing
a task-specific utility function during training, not
simply a matter of adjusting the decision threshold
of a trained classifier.

7 Evaluation on an Extraction Problem

We evaluated our discriminative training procedure
on a real extraction problem arising in broadcast
news summarization. The overall task is to summa-
rize the stories in an audio news broadcast (or in the
audio portion of an A/V broadcast). We assume that
story boundaries have been identified and that each
story has been broken up into sentence-like units. A
simple way of summarizing a story is then to classify
each sentence as either belonging into a summary or
not, so that a relevant subset of sentences can be ex-
tracted to form the basis of a summary. What makes
the classification task hard, and therefore interesting,
is the fact that reliable features are hard to come by.
Existing approaches such asMaskey and Hirschberg

2005do well only when combining diverse features
such as lexical cues, acoustic properties, structural/
positional features, etc.

The task has another property which renders it
problematic, and which prompted us to develop
the discriminative training procedure described in
this paper. Summarization, by definition, aims for
brevity. This means that in any dataset the number
of positive instances will be much smaller than the
number of negative instances. Given enough data,
balance could be restored by discarding negative in-
stances. This, however, was not an option in our
case: a moderate amount of manually labeled data
had been produced and about one third would have
had to be discarded to achieve a balance in the dis-
tribution of class labels. This would have eliminated
precious supervised training data, which we were
not prepared to do.

The training and test data were prepared by
Maskey and Hirschberg(2005), who performed the
feature engineering, imputation of missing values,
and the training–test split. We used the data un-
changed in order to allow for a comparison between
approaches. The dataset is made up of 30 fea-
tures, divided into one binary response variable, and
one binary explanatory variable plus 28 integer- and
real-valued explanatory variables. The training por-
tion consists of 3 535 instances, the test portion of
408 instances.

We fitted logistic regression models in three dif-
ferent ways: by maximum likelihoodML , by F̃α=0.5

maximization, and byF̃α=0.75 maximization. Each
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Method R P Fα=0.5 Fα=0.75

ML 24/99 24/33 0.3636 0.2909

ML† 85/99 85/229 0.5183 0.6464

F̃α=0.5 85/99 85/211 0.5484 0.6693

F̃α=0.75 95/99 95/330 0.4429 0.6061

Table 3: Evaluation results

classifier was evaluated on the test dataset and its re-
call (R), precision (P), Fα=0.5 measure, andFα=0.75

measure recorded. The results appear inTable 3.
The row labeledML† is special: the classifier used

here is the logistic regression model fitted by maxi-
mum likelihood; what is different is that the thresh-
old for positive predictions was adjustedpost hocto
match the number of true positives of the first dis-
criminatively trained classifier. This has the same
effect as manually adjusting the threshold parameter
θ0 based on partial knowledge of the test data (via
the performance of another classifier) and is thus
not permissible. It is interesting to note, however,
that theML trained classifier performs worse than
the F̃α=0.5 trained classifier even when one param-
eter is adjusted by an oracle with knowledge of the
test data and the performance of the other classifier.

Fitting a model based oñFα=0.75, which gives in-
creased weight to recall compared withF̃α=0.5, led
to higher recall as expected. However, we also ex-
pected that theFα=0.75 score of theF̃α=0.75 trained
classifier would be higher than theFα=0.75 score of
theF̃α=0.5 trained classifier. This is not the case, and
could be due to the optimization getting stuck in a
local maximum, or it may have been an unreason-
able expectation to begin with.

8 Conclusions

We have presented a novel estimation procedure
for probabilistic classifiers which we call, by a
slight abuse of terminology,maximum expected F-
measuretraining. We made use of the fact that ex-
pected utility computations can be carried out in a
vector space, and that an ordering of vectors can be
imposed for purposes of maximization which can
employ auxiliary functions like theF-measure(2).
This technique is quite general and well suited for
working with other quantities that can be expressed

in terms of hits, misses, false alarms, correct rejec-
tions, etc. In particular, it could be used to find a
point estimate which provides a certain tradeoff be-
tween specificity and sensitivity, or operating point.
A more general method would try to optimize sev-
eral such operating points simultaneously, an issue
which we will leave for future research.

The classifiers discussed in this paper are logistic
regression models. However, this choice is not cru-
cial. The approximation(4) is reasonable for binary
decisions in general, and one can use it in conjunc-
tion with any well-behaved conditional Bernoulli
model or related classifier. For Support Vector Ma-
chines, approximateF-measure maximization was
introduced byMusicant et al.(2003).

MaximizingF-measure during training seems es-
pecially well suited for dealing with skewed classes.
This can happen by accident, because of the nature
of the problem as in our summarization example
above, or by design: for example, one can expect
skewed binary classes as the result of the one-vs-all
reduction of multi-class classification to binary clas-
sification; and in multi-stage classification one may
want to alternate between classifiers with high recall
and classifiers with high precision.

Finally, the ability to incorporate non-standard
tradeoffs between precision and recall at training
time is useful in many information extraction and
retrieval applications. Human end-users often create
asymmetries between precision and recall, for good
reasons: they may prefer to err on the side of caution
(e.g., it is less of a problem to let an unwanted spam
email reach a user than it is to hold back a legitimate
message), or they may be better at some tasks than
others (e.g., search engine users are good at filtering
out irrelevant documents returned by a query, but are
not equipped to crawl the web in order to look for
relevant information that was not retrieved). In the
absence of methods that work well for a wide range
of operating points, we need training procedures that
can be made sensitive to rare cases depending on the
particular demands of the application.
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Abstract

We present Evita, an application for rec-
ognizing events in natural language texts.
Although developed as part of a suite of
tools aimed at providing question answer-
ing systems with information about both
temporal and intensional relations among
events, it can be used independently as
an event extraction tool. It is unique in
that it is not limited to any pre-established
list of relation types (events), nor is it re-
stricted to a specific domain. Evita per-
forms the identification and tagging of
event expressions based on fairly simple
strategies, informed by both linguistic-
and statistically-based data. It achieves a
performance ratio of 80.12% F-measure.1

1 Introduction

Event recognition is, after entity recognition, one of
the major tasks within Information Extraction. It is
currently being succesfully applied in different ar-
eas, like bioinformatics and text classification. Rec-
ognizing events in these fields is generally carried
out by means of pre-defined sets of relations, possi-
bly structured into an ontology, which makes such
tasks domain dependent, but feasible. Event recog-
nition is also at the core of Question Answering,

1This work was supported by a grant from the Advanced
Research and Development Activity in Information Technology
(ARDA), a U.S. Government entity which sponsors and pro-
motes research of import to the Intelligence Community which
includes but is not limited to the CIA, DIA, NSA, NIMA, and
NRO.

since input questions touch on events and situations
in the world (states, actions, properties, etc.), as they
are reported in the text. In this field as well, the use
of pre-defined sets of relation patterns has proved
fairly reliable, particularly in the case of factoid type
queries (Brill et al., 2002; Ravichandran and Hovy,
2002; Hovy et al., 2002; Soubbotin and Soubbotin,
2002).

Nonetheless, such an approach is not sensitive to
certain contextual elements that may be fundamental
for returning the appropriate answer. This is for in-
stance the case in reporting or attempting contexts.
Given the passage in (1a), a pattern-generated an-
swer to question (1b) would be (1c). Similarly, dis-
regarding the reporting context in example (2) could
erroneously lead to concluding that no one from the
White House was involved in the Watergate affair.

(1) a. Of the 14 known ways to reach the summit, only
the East Ridge route has never been successfully
climbed since George Mallory and Andrew ”Sandy”
Irvine first attempted to climb Everest in 1924.

b. When did George Mallory and Andrew Irvine first
climb Everest?

c. #In 1924.

(2) a. Nixon claimed that White House counsel John Dean
had conducted an investigation into the Watergate
matter and found that no-one from the White House
was involved.

b. What members of the White House were involved in
the Watergate matter?

c. #Nobody.

Intensional contexts like those above are gener-
ated by predicates referring to events of attempting,
intending, commanding, and reporting, among oth-
ers. When present in text, they function as modal
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qualifiers of the truth of a given proposition, as in
example (2), or they indicate the factuality nature
of the event expressed by the proposition (whether
it happened or not), as in (1) (Saurı́ and Verhagen,
2005).

The need for a more sophisticated approach that
sheds some awareness on the specificity of certain
linguistic contexts is in line with the results ob-
tained in previous TREC Question Answering com-
petitions (Voorhees, 2002, 2003). There, a system
that attempted a minimal understanding of both the
question and the answer candidates, by translating
them into their logical forms and using an infer-
ence engine, achieved a notably higher score than
any surface-based system (Moldavan et al., 2002;
Harabagiu et al., 2003).

Non-factoid questions introduce an even higher
level of difficulty. Unlike factoid questions, there
is no simple or unique answer, but more or less sat-
isfactory ones instead. In many cases, they involve
dealing with several events, or identifying and rea-
soning about certain relations among events which
are only partially stated in the source documents
(such as temporal and causal ones), all of which
makes the pattern-based approach less suitable for
the task (Small et al., 2003, Soricut and Brill, 2004).
Temporal information in particular plays a signifi-
cant role in the context of question answering sys-
tems (Pustejovsky et al., forthcoming). The ques-
tion in (3), for instance, requires identifying a set
of events related to the referred killing of peasants
in Mexico, and subsequently ordering them along a
temporal axis.

(3) What happened in Chiapas, Mexico, after the killing of

45 peasants in Acteal?

Reasoning about events in intensional contexts,
or with event-ordering relations such as temporality
and causality, is a requisite for any open-domain QA
system aiming at both factoid and non-factoid ques-
tions. As a first step, this involves the identification
of all relevant events reported in the source docu-
ments, so that later processing stages can locate in-
tensional context boundaries and temporal relations
among these events.

In this article, we present Evita, a tool for recog-
nizing events in natural language texts. It has been

developed as part of a suite of tools aimed at provid-
ing QA systems with information about both tem-
poral and intensional relations between events; we
anticipate, however, that it will be useful for other
NLP tasks as well, such as narrative understanding,
summarization, and the creation of factual databases
from textual sources.

In the next section, we provide the linguistic foun-
dations and technical details of our event recognizer
tool. Section 3 gives the results and discusses them
in the context of the task. We conclude in section 4,
with an overview of Evita’s main achievements and
a brief discussion of future directions.

2 Evita, An Event Recognition Tool

Evita (’Events In Text Analyzer’) is an event recog-
nition system developed under the ARDA-funded
TARSQI research framework. TARSQI is devoted
to two complementary lines of work: (1) estab-
lishing a specification language, TimeML, aimed
at capturing the richness of temporal and event re-
lated information in language (Pustejovsky et al.,
2003a, forthcoming), and (2) the construction of a
set of tools that perform tasks of identifying, tag-
ging, and reasoning about eventive and temporal in-
formation in natural language texts (Pustejovsky and
Gaizauskas, forthcoming, Mani, 2005; Mani and
Schiffman, forthcoming; Verhagen, 2004; Verhagen
et al., 2005; Verhagen and Knippen, forthcoming).
Within TARSQI’s framework, Evita’s role is locat-
ing and tagging all event-referring expressions in the
input text that can be temporally ordered.

Evita combines linguistic- and statistically-based
techniques to better address all subtasks of event
recognition. For example, the module devoted to
recognizing temporal information that is expressed
through the morphology of certain event expressions
(such as tense and aspect) uses grammatical infor-
mation (see section 2.4), whereas disambiguating
nouns that can have both eventive and non-eventive
interpretations is carried out by a statistical module
(section 2.3).

The functionality of Evita breaks down into two
parts: event identification and analysis of the event-
based grammatical features that are relevant for tem-
poral reasoning purposes. Both tasks rely on a pre-
processing step which performs part-of-speech tag-
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ging and chunking, and on a module for cluster-
ing together chunks that refer to the same event.
In the following subsection we provide the linguis-
tic assumptions informing Evita. Then, subsections
2.2 to 2.5 provide a detailed description of Evita’s
different subcomponents: preprocessing, clustering
of chunks, event identification, and analysis of the
grammatical features associated to events.

2.1 Linguistic settings

TimeML identifies as events those event-denoting
expressions that participate in the narrative of a
given document and which can be temporally or-
dered. This includes all dynamic situations (punc-
tual or durative) that happen or occur in the text, but
also states in which something obtains or holds true,
if they are temporally located in the text. As a result,
generics and most state-denoting expressions are fil-
tered out (see Saurı́ et al. (2004) for a more exhaus-
tive definition of the criteria for event candidacy in
TimeML).

Event-denoting expressions are found in a wide
range of syntactic expressions, such as finite clauses
(that no-one from the White House was involved),
nonfinite clauses (to climb Everest), noun phrases
headed by nominalizations (the young industry’s
rapid growth, several anti-war demonstrations)
or event-referring nouns (the controversial war),
and adjective phrases (fully prepared).

In addition to identifying the textual extent of
events, Evita also analyzes certain grammatical fea-
tures associated with them. These include:

� The polarity (positive or negative) of the ex-
pression tells whether the referred event has
happened or not;

� Modality (as marked by modal auxiliaries may,
can, might, could, should, etc., or adverbials
like probably, likely, etc.) qualifies the denoted
event with modal information (irrealis, neces-
sity, possibility), and therefore has implications
for the suitability of statements as answers to
questions, in a parallel way to other intensional
contexts exemplified in (1-2);

� Tense and aspect provide crucial information
for the temporal ordering of the events;

� Similarly, the non-finite morphology of certain
verbal expressions (infinitival, present partici-

ple, or past participle) has been shown as useful
in predicting temporal relations between events
(Lapata and Lascarides, 2004). We also con-
sider as possible values here the categories of
noun and adjective.

� Event class distinguishes among states (e.g., be
the director of), general occurrences (walk),
reporting (tell), intensional (attempt), and per-
ception (observe) events. This classification
is relevant for characterizing the nature of the
event as irrealis, factual, possible, reported,
etc. (recall examples (1-2) above).

Despite the fact that modality, tense, aspect, and
non-finite morphology are typically verbal features,
some nouns and adjectives can also have this sort
of information associated with them; in particular,
when they are part of the predicative complement of
a copular verb (e.g., may be ready, had been a col-
laborator). A TimeML mark-up of these cases will
tag only the complement as an event, disregarding
the copular verb. Therefore, the modality, tense, as-
pect, and non-finite morphology information associ-
ated with the verb is incorporated as part of the event
identified as the nominal or adjectival complement.

Except for event class, the characterization of all
the features above relies strictly on surface linguistic
cues. Notice that this surface-based approach does
not provide for the actual temporal interpretation of
the events in the given context. The tense of a ver-
bal phrase, for example, does not always map in a
straightforward way with the time being referred to
in the world; e.g., simple present is sometimes used
to express future time or habituality. We handle the
task of mapping event features onto their semantics
during a later processing stage, not addressed in this
paper, but see Mani and Schiffman (forthcoming).

TimeML does not identify event participants, but
the event tag and its attributes have been designed
to interface with Named Entity taggers in a straight-
forward manner. In fact, the issue of argument link-
ing to the events in TimeML is already being ad-
dressed in the effort to create a unified annotation
with PropBank and NomBank (Pustejovsky et al.
2005). A complete overview of the linguistic foun-
dations of TimeML can be obtained in Pustejovsky
et al. (forthcoming).
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2.2 Preprocessing

For the task of event recognition, Evita needs ac-
cess to part of speech tags and to the result of some
form of syntactic parsing. Section 2.1 above de-
tailed some of the different syntactic structures that
are used to refer to events. However, using a shal-
low parser is enough to retrieve event referring ex-
pressions, since they are generally conveyed by three
possible part of speech categories: verbs (go, see,
say), nouns (departure, glimpse, war), and adjec-
tives (upset, pregnant, dead).

Part of speech tags and phrase chunks are also
valuable for the identification of certain grammatical
features such as tense, non-finite morphology, or po-
larity. Finally, lexical stems are necessary for those
tasks involving lexical look-up. We obtain all such
grammatical information by first preprocessing the
input file using the Alembic Workbench tagger, lem-
matizer, and chunker (Day et al., 1997). Evita’s in-
put must be XML-compliant, but need not conform
to the TimeML DTD.

2.3 Event Recognition

Event identification in Evita is based on the notion
of event as defined in the previous section. Only lex-
ical items tagged by the preprocessing stage as either
verbs, nouns, or adjectives are considered event can-
didates.

Different strategies are used for identifying events
in these three categories. Event identification in
verbal chunks is based on lexical look-up, accom-
panied by minimal contextual parsing in order to
exclude weak stative predicates, such as ‘be’, and
some generics (e.g., verbs with bare plural subjects).
For every verbal chunk in the text, Evita first ap-
plies a pattern-based selection step that distinguishes
among different kinds of information: the chunk
head, which is generally the most-right element of
verbal nature in the chunk, thus disregarding par-
ticles of different sort and punctuation marks; the
modal auxiliary sequence, if any (e.g., may have to);
the sequence of do, have, or be auxiliaries, mark-
ing for aspect, tense and voice; and finally, any item
expressing the polarity of the event. The last three
pieces of information will be used later, when iden-
tifying the event grammatical features (section 2.4).

Based on basic lexical inventories, the chunk may

then be rejected if the head belongs to a certain class.
For instance, copular verbs are generally disregarded
for event tagging, although they enter into a a pro-
cess of chunk clustering, together with their predica-
tive complement (see section 2.5).

The identification of nominal and adjectival
events is also initiated by the step of information se-
lection. For each noun and adjective chunk, their
head and polarity markers, if any, are distinguished.

Identifying events expressed by nouns involves
two parts: a phase of lexical lookup, and a disam-
biguation process. The lexical lookup aims at an ini-
tial filtering of candidates to nominal events. First,
Evita checks whether the head of the noun chunk is
an event in WordNet. We identified about 25 sub-
trees from WordNet where all synsets denote nom-
inal events. One of these, the largest, is the tree
underneath the synset that contains the word event.
Other subtrees were selected by analyzing events in
SemCor and TimeBank1.22 and mapping them to
WordNet synsets. One example is the synset with
the noun phenomenon. In some cases, exceptions
are defined. For example, a noun in a subset sub-
sumed by the phenomenon synset is not an event
if it is also subsumed by the synset with the noun
cloud (in other words, many phenomena are events
but clouds are not).

If the result of lexical lookup is inconclusive (that
is, if a nominal occurs in WN as both and event and
a non-event), then a disambiguation step is applied.
This process is based on rules learned by a Bayesian
classifier trained on SemCor.

Finally, identifying events from adjectives takes
a conservative approach of tagging as events only
those adjectives that were annotated as such in Time-
Bank1.2, whenever they appear as the head of a
predicative complement. Thus, in addition to the
use of corpus-based data, the subtask relies again on
a minimal contextual parsing capable of identifying
the complements of copular predicates.

2TimeBank1.2 is our gold standard corpus of around
200 news report documents from various sources, anno-
tated with TimeML temporal and event information. A
previous version, TimeBank1.1, can be downloaded from
http://www.timeml.org/. For additional information
see Pustejovsky et al. (2003b).
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2.4 Identification of Grammatical Features

Identifying the grammatical features of events fol-
lows different procedures, depending on the part
of speech of the event-denoting expression, and
whether the feature is explicitely realized by the
morphology of such expressions.

In event-denoting expressions that contain a ver-
bal chunk, tense, aspect, and non-finite morphology
values are directly derivable from the morphology of
this constituent, which in English is quite straight-
forward. Thus, the identification of these features is
done by first extracting the verbal constituents from
the verbal chunk (disregarding adverbials, punctua-
tion marks, etc.), and then applying a set of over 140
simple linguistic rules, which define different possi-
ble verbal phrases and map them to their correspond-
ing tense, aspect, and non-finite morphology values.
Figure 1 illustrates the rule for verbal phrases of fu-
ture tense, progressive aspect, which bear the modal
form have to (as in, e.g., Participants will have to
be working on the same topics):

[form in futureForm],
[form==’have’],
[form==’to’, pos==’TO’],
[form==’be’], [pos==’VBG’],
==>
[tense=’FUTURE’,
aspect=’PROGRESSIVE’,

nf morph=’NONE’]

Figure 1: Grammatical Rule

For event-denoting expressions containing no
verbal chunk, tense and aspect is established as
null (’NONE’ value), and non-finite morphology is
’noun’ or ’adjective’, depending on the part-of-
speech of their head.

Modality and polarity are the two remaining
morphology-based features identified here. Evita
extracts the values of these two attributes using ba-
sic pattern-matching techniques over the approapri-
ate verbal, nominal, or adjectival chunk.

On the other hand, the identification of event class
cannot rely on linguistic cues such as the morphol-
ogy of the expression. Instead, it requires a combi-
nation of lexical resource-based look-up and word
sense disambiguation. At present, this task has been
attempted only in a very preliminary way, by tagging
events with the class that was most frequently as-

signed to them in TimeBank1.2. Despite the limita-
tions of such a treatment, the accuracy ratio is fairly
good (refer to section 3).

2.5 Clustering of Chunks

In some cases, the chunker applied at the prepro-
cessing stage identifies two independent constituents
that contribute information about the same event.
This may be due to a chunker error, but it is also sys-
tematically the case in verbal phrases containing the
have to modal form or the be going to future form
(Figure 2).

<VG>
<VX><lex pos="VBD">had</lex></VX>
</VG>
<VG-INF>
<INF><lex pos="TO">to</lex>
<lex pos="VB">say</lex>
</INF>

</VG-INF>

Figure 2: have to VP

It may be also necessary in verbal phrases with
other modal auxiliaries, or with auxiliary forms of
the have, do, or be forms, in which the auxiliary part
is split off the main verb because of the presence of
an adverbial phrase or similar (Figure 3).

<VG>
<VX><lex pos="VBZ">has</lex></VX>
</VG>
<lex pos=",">,</lex>
<lex pos="IN">of</lex>
<NG>
<HEAD><lex pos="NN">course</lex></HEAD>
</NG>
<lex pos=",">,</lex>
<VG>
<VX><lex pos="VBD">tried</lex></VX>

</VG>

Figure 3: have V en VP

Constructions with copular verbs are another kind
of context which requires clustering of chunks, in
order to group together the verbal chunk corre-
sponding to the copular predicate and the non-verbal
chunk that functions as its predicative complement.
In all these cases, additional syntactic parsing is
needed for the tasks of event recognition and gram-
matical feature identification, in order to cluster to-
gether the two independent chunks.
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The task of clustering chunks into bigger ones is
activated by specific triggers (e.g., a chunk headed
by an auxiliary form, or a chunk headed by the cop-
ular verb be) and carried out locally in the context of
that trigger. For each trigger, there is a set of gram-
matical patterns describing the possible structures it
can be a constituent of. The form have, for instance,
may be followed by an infinitival phrase to V, con-
stituting part of the modal form have to in the big-
ger verbal group have to V, as in Figure 2 above, or
it may also be followed by a past participle-headed
chunk, with which it forms a bigger verbal phrase
have V-en expressing perfective aspect (Figure 3).

The grammatical patterns established for each
trigger are written using the standard syntax of reg-
ular expressions, allowing for a greater expressive-
ness in the description of sequences of chunks (op-
tionality of elements, inclusion of adverbial phrases
and punctuation marks, variability in length, etc.).
These patterns are then compiled into finite state au-
tomata that work with grammatical objects instead
of string characters. Such an approach is based on
well-established techniques using finite-state meth-
ods (see for instance Koskenniemi, 1992; Appelt et
al. 1993; Karttunen et al., 1996; Grefenstette, 1996,
among others).

Evita sequentially feeds each of the FSAs for the
current trigger with the right-side part of the trigger
context (up to the first sentence boundary), which is
represented as a sequence of grammatical objects. If
one of the FSAs accepts this sequence or a subpart
of it, then the clustering operation is applied on the
chunks within the accepted (sub)sequence.

3 Results

Evaluation of Evita has been carried out by com-
paring its performance against TimeBank1.2. The
current performance of Evita is at 74.03% precision,
87.31% recall, for a resulting F-measure of 80.12%
(with �=0.5). These results are comparable to the
interannotation agreement scores for the task of tag-
ging verbal and nominal events, by graduate lin-
guistics students with only basic training (Table 1).3

By basic training we understand that they had read

3These figures are also in terms of F-measure. See Hripcsak
and Rothschild (2005) for the use of such metric in order to
quantify interannotator reliability.

the guidelines, had been given some additional ad-
vice, and subsequently annotated over 10 documents
before annotating those used in the interannotation
evaluation. They did not, however, have any meet-
ings amongst themselves in order to discuss issues
or to agree on a common strategy.

Category F-measure
Nouns 64%
Verbs 80%

Table 1: Interannotation Agreement

On the other hand, the Accuracy ratio (i.e., the
percentage of values Evita marked according to the
gold standard) on the identification of event gram-
matical features is as shown:

Feature Accuracy
polarity 98.26%
aspect 97.87%
modality 97.02%
tense 92.05%
nf morph 89.95%
class 86.26%

Table 2: Accuracy of Grammatical Features

Accuracy for polarity, aspect, and modality is op-
timal: over 97% in all three cases. In fact, we were
expecting a lower accuracy for polarity, since Evita
relies only on the polarity elements present in the
chunk containg the event, but does not take into ac-
count non-local forms of expressing polarity in En-
glish, such as negative polarity on the subject of a
sentence (as in Nobody saw him or in No victims
were found).

The slightly lower ratio for tense and nf morph is
in most of the cases due to problems from the POS
tagger used in the preprocessing step, since tense
and non-finite morphology values are mainly based
on its result. Some common POS tagging mistakes
deriving on tense and nf morph errors are, for in-
stance, identifying a present form as the base form
of the verb, a simple past form as a past participle
form, or vice versa. Errors in the nf morph value are
also due to the difficulty in distinguishing sometimes
between present participle and noun (for ing-forms),
or between past participle and adjective.
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The lowest score is for event class, which never-
theless is in the 80s%. This is the only feature that
cannot be obtained based on surface cues. Evita’s
treatment of this feature is still very basic, and we
envision that it can be easily enhanced by exploring
standard word sense disambiguation techniques.

4 Discussion and Conclusions

We have presented Evita, a tool for recognizing and
tagging events in natural language text. To our
knowledge, this is a unique tool within the commu-
nity, in that it is not based on any pre-established
list of event patterns, nor is it restricted to a specific
domain. In addition, Evita identifies the grammat-
ical information that is associated with the event-
referring expression, such as tense, aspect, polarity,
and modality. The characterization of these features
is based on explicit linguistic cues. Unlike other
work on event recognition, Evita does not attempt
to identify event participants, but relies on the use of
entity taggers for the linking of arguments to events.

Evita combines linguistic- and statistically-based
knowledge to better address each particular subtask
of the event recognition problem. Linguistic knowl-
edge has been used for the parsing of very local and
controlled contexts, such as verbal phrases, and the
extraction of morphologically explicit information.
On the other hand, statistical knowledge has con-
tributed to the process of disambiguation of nomi-
nal events, following the current trend in the Word
Sense Disambiguation field.

Our tool is grounded on simple and well-known
technologies; namely, a standard preprocessing
stage, finite state techniques, and Bayesian-based
techniques for word sense disambiguation. In ad-
dition, it is conceived from a highly modular per-
spective. Thus, an effort has been put on separating
linguistic knowledge from the processing thread. In
this way we guarantee a low-cost maintainance of
the system, and simplify the task of enriching the
grammatical knowledge (which can be carried out
even by naive programmers such as linguists) when
additional data is obtained from corpus exploitation.

Evita is a component within a larger suite of tools.
It is one of the steps within a processing sequence
which aims at providing basic semantic information
(such as temporal relations or intensional context

boundaries) to applications like Question Answer-
ing or Narrative Understanding, for which text un-
derstanding is shown to be fundamental, in addition
to shallow-based techniques. Nonetheless, Evita can
also be used independently for purposes other than
those above.

Additional tools within the TimeML research
framework are (a) GUTime, a recognizer of tempo-
ral expressions which extends Tempex for TimeML
(Mani, 2005), (b) a tool devoted to the temporal or-
dering and anchoring of events (Mani and Schiff-
man, forthcoming), and (c) Slinket, an application
in charge of identifying subordination contexts that
introduce intensional events like those exemplified
in (1-2) (Verhagen et al., 2005). Together with these,
Evita provides capabilities for a more adequate treat-
ment of temporal and intensional information in tex-
tual sources, thereby contributing towards incorpo-
rating greater inferential capabilities to applications
within QA and related fields, a requisite that has
been shown necessary in the Introduction section.

Further work on Evita will be focused on two
main areas: (1) improving the sense disambiguation
of candidates to event nominals by experimenting
with additional learning techniques, and (2) improv-
ing event classification. The accuracy ratio for this
latter task is already fairly acceptable (86.26%), but
it still needs to be enhanced in order to guarantee an
optimal detection of subordinating intensional con-
texts (recall examples 1-2). Both lines of work will
involve the exploration and use of word sense dis-
ambiguation techniques.

References

Appelt, Douglas E., Jerry R. Hobbs, John Bear, David
Israel and Mabry Tyson 1993. ’FASTUS: A Finite-
state Processor for Information Extraction from Real-
world Text’. Proceedings IJCAI-93.

Brill, Eric, Susan Dumais and Michele Banko. 2002.
’An Analysis of the AskMSR Question Answering
System’. Proceedings of EMNLP 2002.

Day, David,, John Aberdeen, Lynette Hirschman, Robyn
Kozierok, Patricia Robinson and Marc Vilain. 1997.
’Mixed-Initiative Development of Language Process-
ing Systems’. Fifth Conference on Applied Natural
Language Processing Systems: 88–95.

Grefenstette, Gregory. 1996. ’Light Parsing as Finite-
State Filtering’. Workshop on Extended Finite State
Models of Language, ECAI’96.

706



Harabagiu, S., D. Moldovan, C. Clark, M. Bowden, J.
Williams and J. Bensley. 2003. ’Answer Mining
by Combining Extraction Techniques with Abductive
Reasoning’. Proceedings of the Text Retrieval Confer-
ence, TREC 2003: 375-382.

Hovy, Eduard, Ulf Hermjakob and Deepak Ravichan-
dran. 2002. A Question/Answer Typology with Sur-
face Text Patterns. Proceedings of the Second Inter-
national Conference on Human Language Technology
Research, HLT 2002: 247-251.

Hripcsak, George and Adam S. Rothschild. 2005.
’Agreement, the F-measure, and reliability in informa-
tion retrieval’. Journal of the American Medical Infor-
matics Association, 12: 296-298.

Karttunen, L., J-P. Chanod, G. Grefenstette and A.
Schiller. 1996. ’Regular Expressions for Language
Engineering’. Natural Language Engineering, 2(4).

Koskenniemi, Kimmo, Pasi Tapanainen and Atro Vouti-
lainen. ’Compiling and Using Finite-State Syntactic
Rules’. Proceedings of COLING-92: 156-162.

Lapata, Maria and Alex Lascarides 2004. Inferring
Sentence-Internal Temporal Relations. Proceedings of
HLT-NAACL 2004.

Mani, Inderjeet. 2005. Time Expression Tagger and
Normalizer. http://complingone.georgetown.edu/ lin-
guist/GU TIME DOWNLOAD.HTML

Mani, Inderjeet and Barry Schiffman. Forthcom-
ing. ’Temporally Anchoring and Ordering Events in
News’. James Pustejovsky and Robert Gaizauskas
(eds.) Event Recognition in Natural Language. John
Benjamins.

Moldovan, D., S. Harabagiu, R. Girju, P. Morarescu, F.
Lacatusu, A. Novischi, A. Badulescu and O. Bolohan.
2002. ’LCC Tools for Question Answering’. Proceed-
ings of the Text REtrieval Conference, TREC 2002.

Pustejovsky, J., J. Castaño, R. Ingria, R. Saurı́, R.
Gaizauskas, A. Setzer, and G. Katz. 2003a. TimeML:
Robust Specification of Event and Temporal Expres-
sions in Text. IWCS-5 Fifth International Workshop
on Computational Semantics.

Pustejovsky, James and Rob Gaizauskas (editors) (forth-
coming) Reasoning about Time and Events. John
Benjamins Publishers.

Pustejovsky, J., P. Hanks, R. Saurı́, A. See, R.
Gaizauskas, A. Setzer, D. Radev, B. Sundheim, D.
Day, L. Ferro and M. Lazo. 2003b. The TIME-
BANK Corpus. Proceedings of Corpus Linguistics
2003: 647-656.

Pustejovsky, J., B. Knippen, J. Littman, R. Saurı́ (forth-
coming) Temporal and Event Information in Natural
language Text. Language Resources and Evaluation.

Pustejovsky, James, Martha Palmer and Adam Meyers.
2005. Workshop on Frontiers in Corpus Annotation
II. Pie in the Sky. ACL 2005.

Pustejovsky, J., R. Saurı́, J. Castaño, D. R. Radev, R.
Gaizauskas, A. Setzer, B. Sundheim and G. Katz.
2004. Representing Temporal and Event Knowledge
for QA Systems. Mark T. Maybury (ed.) New Direc-
tions in Question Answering. MIT Press, Cambridge.

Ravichandran, Deepak and Eduard Hovy. 2002. ’Learn-
ing Surface Text Patterns for a Question Answering
System’. Proceedings of the ACL 2002.

Saurı́, Roser, Jessica Littman, Robert Knippen, Rob
Gaizauskas, Andrea Setzer and James Puste-
jovsky. 2004. TimeML Annotation Guidelines.
http://www.timeml.org.

Saurı́, Roser and Marc Verhagen. 2005. Temporal Infor-
mation in Intensional Contexts. Bunt, H., J. Geertzen
and E. Thijse (eds.) Proceedings of the Sixth In-
ternational Workshop on Computational Semantics.
Tilburg, Tilburg University: 404-406.

Small, Sharon, Liu Ting, Nobuyuki Shimuzu and Tomek
Strzalkowski. 2003. HITIQA, An interactive question
answering system: A preliminary report. Proceedings
of the ACL 2003 Workshop on Multilingual Summa-
rization and Question Answering.

Soricut, Radu and Eric Brill. 2004. Automatic Ques-
tion Answering: Beyond the Factoid. HLT-NAACL
2004, Human Language Technology Conference of the
North American Chapter of the Association for Com-
putational Linguistics: 57-64.

Soubbotin, Martin M. and Sergei M. Soubbotin. 2002.
’Use of Patterns for Detection of Answer Strings: A
Systematic Approach’. Proceedings of TREC-11.

Verhagen, Marc. 2004. Times Between the Lines. Ph.D.
thesis. Brandeis University. Waltham, MA, USA.

Verhagen, Marc and Robert Knippen. Forthcoming.
TANGO: A Graphical Annotation Environment for
Ordering Relations. James Pustejovsky and Robert
Gaizauskas (eds.) Time and Event Recognition in Nat-
ural Language. John Benjamin Publications.

Verhagen, Marc, Inderjeet Mani, Roser Saurı́, Robert
Knippen, Jess Littman and James Pustejovsky. 2005.
’Automating Temporal Annotation with TARSQI’.
Demo Session. Proceedings of the ACL 2005.

Voorhees, Ellen M. 2002. ’Overview of the TREC
2002 Question Answering Track’. Proceedings of the
Eleventh Text REtrieval Conference, TREC 2002.

Voorhees, Ellen M. 2003. ’Overview of the TREC 2003
Question Answering Track’. Proceedings of 2003
Text REtrieval Conference, TREC 2003.

707



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 708–715, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Using Sketches to Estimate Associations

Ping Li
Department of Statistics

Stanford University
Stanford, California 94305

pingli@stat.stanford.edu

Kenneth W. Church
Microsoft Research
One Microsoft Way

Redmond, Washington 98052
church@microsoft.com

Abstract

We should not have to look at the en-
tire corpus (e.g., the Web) to know if two
words are associated or not.1 A powerful
sampling technique calledSketcheswas
originally introduced to remove duplicate
Web pages. We generalize sketches to
estimate contingency tables and associa-
tions, using a maximum likelihood esti-
mator to find the most likely contingency
table given the sample, the margins (doc-
ument frequencies) and the size of the
collection. Not unsurprisingly, computa-
tional work and statistical accuracy (vari-
ance or errors) depend on sampling rate,
as will be shown both theoretically and
empirically. Sampling methods become
more and more important with larger and
larger collections. At Web scale, sampling
rates as low as10−4 may suffice.

1 Introduction

Word associations (co-occurrences) have a wide
range of applications including: Speech Recogni-
tion, Optical Character Recognition and Information
Retrieval (IR) (Church and Hanks, 1991; Dunning,
1993; Manning and Schutze, 1999). It is easy to
compute association scores for a small corpus, but
more challenging to compute lots of scores for lots
of data (e.g. the Web), with billions of web pages
(D) and millions of word types (V ). For a small
corpus, one could compute pair-wise associations by
multiplying the (0/1) term-by-document matrix with
its transpose (Deerwester et al., 1999). But this is
probably infeasible at Web scale.

1This work was conducted at Microsoft while the first author
was an intern. The authors thank Chris Meek, David Hecker-
man, Robert Moore, Jonathan Goldstein, Trevor Hastie, David
Siegmund, Art Own, Robert Tibshirani and Andrew Ng.

Approximations are often good enough. We
should not have to look at every document to de-
termine that two words are strongly associated. A
number of sampling-based randomized algorithms
have been implemented at Web scale (Broder, 1997;
Charikar, 2002; Ravichandran et al., 2005).2

A conventional random sample is constructed by
selectingDs documents from a corpus ofD doc-
uments. The (corpus) sampling rate isDs

D
. Of

course, word distributions have long tails. There
are a few high frequency words and many low fre-
quency words. It would be convenient if the sam-
pling rate could vary from word to word, unlike con-
ventional sampling where the sampling rate is fixed
across the vocabulary. In particular, in our experi-
ments, we will impose a floor to make sure that the
sample contains at least20 documents for each term.
(When working at Web scale, one might raise the
floor somewhat to perhaps104.)

Sampling is obviously helpful at the top of the
frequency range, but not necessarily at the bottom
(especially if frequencies fall below the floor). The
question is: how about “ordinary” words? To answer
this question, we randomly picked 15 pages from
a Learners’ dictionary (Hornby, 1989), and selected
the first entry on each page. According to Google,
there are10 million pages/word (median value, ag-
gregated over the 15 words), no where near the floor.

Sampling can make it possible to work in mem-
ory, avoiding disk. At Web scale (D ≈ 10 billion
pages), inverted indexes are large (1500 GBs/billion
pages)3, probably too large for memory. But a sam-
ple is more manageable; the inverted index for a
10−4 sample of the entire web could fit in memory
on a single PC (1.5 GB).

2http://labs.google.com/setsproduces fascinating sets, al-
though we don’t know how it works. Given the seeds, “Amer-
ica” and “China,”http://labs.google.com/setsreturns: “Amer-
ica, China, Japan, India, Italy, Spain, Brazil, Persia, Europe,
Australia, France, Asia, Canada.”

3This estimate is extrapolated from Brin and Page (1998),
who report an inverted index of 37.2 GBs for 24 million pages.
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Table 1: The number of intermediate results after the
first join can be reduced from 504,000 to 120,000,
by starting with “Schwarzenegger & Austria” rather
than the baseline (“Schwarzenegger & Terminator”).
The standard practice of starting with the two least
frequent terms is a good rule of thumb, but one can
do better, given (estimates of) joint frequencies.

Query Hits (Google)
Austria 88,200,000
Governor 37,300,000
Schwarzenegger 4,030,000
Terminator 3,480,000
Governor & Schwarzenegger 1,220,000
Governor & Austria 708,000
Schwarzenegger & Terminator 504,000
Terminator & Austria 171,000
Governor & Terminator 132,000
Schwarzenegger & Austria 120,000

1.1 An Application: The Governator

Google returns the topk hits, plus an estimate of
how many hits there are. Table 1 shows the number
of hits for four words and their pair-wise combina-
tions. Accurate estimates of associations would have
applications in Database query planning (Garcia-
Molina et al., 2002). Query optimizers construct a
plan to minimize a cost function (e.g., intermediate
writes). The optimizer could do better if it could
estimate a table like Table 1. But efficiency is im-
portant. We certainly don’t want to spend more time
optimizing the plan than executing it.

Suppose the optimizer wanted to construct a plan
for the query: “Governor Schwarzenegger Termi-
nator Austria.” The standard solution starts with
the two least frequent terms: “Schwarzenegger” and
“Terminator.” That plan generates 504,000 interme-
diate writes after the first join. An improvement
starts with “Schwarzenegger” with “Austria,” reduc-
ing the 504,000 down to 120,000.

In addition to counting hits, Table 1 could also
help find the topk pages. When joining the first pair
of terms, we’d like to know how far down the rank-
ing we should go. Accurate estimates of associations
would help the optimizer make such decisions.

It is desirable that estimates be consistent, as well
as accurate. Google, for example, reports 6 million
hits for “America, China, Britain,” and 23 million for
“America, China, Britain, Japan.” Joint frequencies
decrease monotonically:s ⊂ S =⇒ hits(s) ≥ hits(S).

f = a + c

f = a + b

D = a+b+c+d

a

c

y ~y

~x

x

d y

xb

(a)

x

~x

y ~y
a b

c d y
x

s s s s

s s
ss

n  = a + b

sD = a +b + c +d

n  = a + c
s s

ss

(b)
Figure 1: (a): A contingency table for wordx and
wordy. Cell a is the number of documents that con-
tain bothx andy, b is the number that containx but
not y, c is the number that containy but notx, and
d is the number that contain neitherx nor y. The
margins,fx = a + b andfy = a + c are known as
document frequencies in IR.D is the total number
of documents in the collection. (b): A sample con-
tingency table, with “s” indicating thesample space.

1.2 Sampling and Estimation

Two-way associations are often represented as two-
way contingency tables (Figure 1(a)). Our task is to
construct a sample contingency table (Figure 1(b)),
and estimate 1(a) from 1(b). We will use a max-
imum likelihood estimator (MLE) to find the most
likely contingency table, given the sample and vari-
ous other constraints. We will propose a sampling
procedure that bridges two popular choices: (A)
sampling over documents and (B) sampling over
postings. The estimation task is straightforward and
well-understood for (A). As we consider more flexi-
ble sampling procedures such as (B), the estimation
task becomes more challenging.

Flexible sampling procedures are desirable. Many
studies focus on rare words (Dunning, 1993; Moore,
2004); butterflies are more interesting than moths.
The sampling rate can be adjusted on a word-by-
word basis with (B), but not with (A). The sampling
rate determines the trade-off between computational
work and statistical accuracy.

We assume a standard inverted index. For each
wordx, there are a set of postings,X. X contains a
set of document IDs, one for each document contain-
ing x. The size of postings,fx = |X|, corresponds
to the margins of the contingency tables in Figure
1(a), also known as document frequencies in IR.

The postings lists are approximated bysketches,
skX, first introduced by Broder (1997) for remov-
ing duplicate web pages. Assuming that document
IDs are random (e.g., achieved by a random permu-
tation), we can computeskX, a random sample of
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X, by simply selecting the first few elements ofX.
In Section 3, we will propose using sketches

to construct sample contingency tables. With this
novel construction, the contingency table (and sum-
mary statistics based on the table) can be estimated
using conventional statistical methods such as MLE.

2 Broder’s Sketch Algorithm

One could randomly sample two postings and inter-
sect the samples to estimate associations. The sketch
technique introduced by Broder (1997) is a signifi-
cant improvement, as demonstrated in Figure 2.

Assume that each document in the corpus of size
D is assigned a unique random ID between1 andD.
The postings for wordx is a sorted list offx doc IDs.
The sketch,skX, is the first (smallest)sx doc IDs in
X. Broder used MINs(Z) to denote thes smallest
elements in the set,Z. Thus,skX = MINsx(X).
Similarly, Y denotes the postings for wordy, and
skY denotes its sketch, MINsy(Y ). Broder assumed
sx = sy = s.

Broder defined resemblance (R) and sample re-
semblance (Rs) to be:

R =
a

a + b + c
, Rs =

|MIN s(skX ∪ skY ) ∩ skX ∩ skY |

|MIN s(skX ∪ skY )|
.

Broder (1997) proved thatRs is an unbiased esti-
mator ofR. One could useRs to estimatea but he
didn’t do that, and it is not recommended.4

Sketches were designed to improve the coverage
of a, as illustrated by Monte Carlo simulation in Fig-
ure 2. The figure plots, E

(

as

a

)

, percentage of inter-
sections, as a function of (postings) sampling rate,
s
f

, wherefx = fy = f , sx = sy = s. The solid lines

(sketches), E
(

as

a

)

≈ s
f

, are above the dashed curve

(random sampling), E
(

as

a

)

= s2

f2 . The difference is
particularly important at low sampling rates.

3 Generalizing Sketches:R → Tables

Sketches were first proposed for estimating resem-
blance (R). This section generalizes the method to
construct sample contingency tables, from which we
can estimate associations:R, LLR, cosine, etc.

4There are at least three problems with estimatinga from
Rs. First, the estimate is biased. Secondly, this estimate uses
just s of the 2 × s samples; larger samples→ smaller errors.
Thirdly, we would rather not impose the restriction:sx = sy.
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Figure 2: Sketches (solid curves) dominate random
sampling (dashed curve).a=0.22, 0.38, 0.65, 0.80,
0.85f , f=0.2D, D=105. There is only one dashed
curve across all values ofa. There are different but
indistinguishable solid curves depending ona.

Recall that the doc IDs span the integers from1
to D with no gaps. When we compare two sketches,
skX andskY , we have effectively looked atDs =
min{skX(sx), skY(sy)} documents, whereskX(j) is
the jth smallest element inskX. The following
construction generates the sample contingency ta-
ble, as, bs, cs, ds (as in Figure 1(b)). The example
shown in Figure 3 may help explain the procedure.

Ds = min{skX(sx), skY(sy)}, as = |skX ∩ skY |,

nx = sx − |{j : skX(j) > Ds}|,

ny = sy − |{j : skY(j) > Ds}|,

bs = nx − as, cs = ny − as, ds = Ds − as − bs − cs.

Given the sample contingency table, we are now
ready to estimate the contingency table. It is suffi-
cient to estimatea, since the rest of the table can be
determined fromfx, fy andD. For practical appli-
cations, we recommend the convenient closed-form
approximation (8) in Section 5.1.

4 Margin-Free (MF) Baseline

Before considering the proposed MLE method, we
introduce a baseline estimator that will not work as
well because it does not take advantage of the mar-
gins. The baseline is themultivariate hypergeomet-
ric model, usually simplified as amultinomialby as-
suming “sample-with-replacement.”

The sample expectations are (Siegrist, 1997),

E(as) =
Ds

D
a, E(bs) =

Ds

D
b,

E(cs) =
Ds

D
c, E(ds) =

Ds

D
d. (1)
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Y:  2   4   5   8   15    19   21     24   27   28   31 

f

X:  3   4   7   9   10   15   18      19   24   25   28

= 11 = 5 = 18f a Dx y = 11 s
= 5= 7= 7sy= 7sx

b c= 5= 2as s s= 3

n nx y

ds = 8

(a)

    

 

9     10     11    12    13    14    15   16  

1      2      3      4      5      6      7      8   

17   18     19    20    . . . . . .             D = 36 

(b)
Figure 3: (a): The two sketches,skX and skY
(larger shaded box), are used to construct a sam-
ple contingency table:as, bs, cs, ds. skX consists
of the firstsx = 7 doc IDs inX, the postings for
word x. Similarly, skY consists of the firstsy = 7
doc IDs inY , the postings for wordy. There are 11
doc IDs in bothX and Y , anda = 5 doc IDs in
the intersection:{4, 15, 19, 24, 28}. (a) shows that
Ds = min(18, 21) = 18. Doc IDs 19 and 21 are
excluded because we cannot determine if they are in
the intersection or not, without looking outside the
box. As it turns out, 19 is in the intersection and
21 is not. (b) enumerates theDs = 18 documents,
showing which documents containx (small circles)
and which containy (small squares). Both proce-
dures, (a) and (b), produce the same sample contin-
gency table:as = 2, bs = 5, cs = 3 andds = 8.

The margin-free estimator and its variance are

âMF =
D

Ds

as, Var(âMF ) =
D

Ds

1
1
a

+ 1
D−a

D − Ds

D − 1
. (2)

For the multinomial simplification, we have

âMF,r =
D

Ds

as, Var(âMF,r) =
D

Ds

1
1
a

+ 1
D−a

. (3)

where “r” indicates “sample-with-replacement.”
The term D−Ds

D−1 ≈ D−Ds

D
is often called the

“finite-sample correction factor” (Siegrist, 1997).

5 The Proposed MLE Method

The task is to estimate the contingency table from
the samples, the margins andD. We would like to
use a maximum likelihood estimator for the most
probablea, which maximizes the (full) likelihood
(probability mass function, PMF)P (as, bs, cs, ds; a).
Unfortunately, we do not know the exact expres-
sion for P (as, bs, cs, ds; a), but we do know the con-
ditional probability P (as, bs, cs, ds|Ds; a). Since the
doc IDs are uniformly random, sampling the first
Ds contiguous documents is statistically equivalent

to randomly samplingDs documents from the cor-
pus. Based on this key observation and Figure 3,
conditional on Ds, P (as, bs, cs, ds|Ds; a) is the PMF
of a two-way sample contingency table.

We factor the full likelihood into:

P (as, bs, cs, ds; a) = P (as, bs, cs, ds|Ds; a) × P (Ds; a).

P (Ds; a) is difficult. However, since we do not ex-
pect a strong dependency ofDs on a, we maxi-
mize the partial likelihood instead, and assume that
is good enough. An example of partial likelihood is
the Cox proportional hazards model in survival anal-
ysis (Venables and Ripley, 2002, Section 13.3) .

Our partial likelihood is

P (as, bs, cs, ds|Ds; a) =

`

a

as

´`

fx−a

bs

´`

fy−a

cs

´`

D−fx−fy+a

ds

´

`

D

Ds

´

∝

as−1
Y

i=0

(a − i) ×

bs−1
Y

i=0

(fx − a − i) ×

cs−1
Y

i=0

(fy − a − i)

×

ds−1
Y

i=0

(D − fx − fy + a − i), (4)

where
(

n
m

)

= n!
m!(n−m)! . “∝” is “proportional to.”

We now derive an MLE for (4), a result that was
not previously known, to the best of our knowledge.
Let âMLE maximizeslog P (as, bs, cs, ds|Ds; a):

as−1
X

i=0

log(a − i) +

bs−1
X

i=0

log (fx − a − i)

+

cs−1
X

i=0

log (fy − a − i) +

ds−1
X

i=0

log (D − fx − fy + a − i) ,

whose first derivative,∂ log P (as,bs,cs,ds|Ds;a)
∂a

, is

as−1
X

i=0

1

a − i
−

bs−1
X

i=0

1

fx − a − i
−

cs−1
X

i=0

1

fy − a − i

+

ds−1
X

i=0

1

D − fx − fy + a − i
. (5)

Since the second derivative,∂2 log P (as,bs,cs,ds|Ds;a)
∂a2 ,

is negative, the log likelihood function is concave,
hence has a unique maximum. One could numeri-
cally solve (5) for∂ log P (as,bs,cs,ds|Ds;a)

∂a
= 0. How-

ever, we derive the exact solution using the follow-
ing updating formula from (4):
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P (as, bs, cs, ds|Ds; a) = P (as, bs, cs, ds|Ds; a − 1)×

fx − a + 1 − bs

fx − a + 1

fy − a + 1 − cs

fy − a + 1

D − fx − fy + a

D − fx − fy + a − ds

a

a − as

= P (as, bs, cs, ds|Ds; a − 1) × g(a). (6)

Since our MLE is unique, it suffices to finda from
g(a) = 1, which is a cubic function ina.

5.1 A Convenient Practical Approximation

Rather than solving the cubic equation for the ex-
act MLE, the following approximation may be more
convenient. Assume we samplenx = as + bs from
X and obtainas co-occurrences without knowledge
of the samples fromY . Further assuming “sample-
with-replacement,”as is then binomially distributed,
as ∼ Binom(nx, a

fx
). Similarly, assumeas ∼

Binom(ny,
a
fy

). Under these assumptions, the PMF
of as is a product of two binomial PMFs:

 

fx

nx

!

„

a

fx

«as
„

fx − a

fx

«bs

 

fy

ny

!

„

a

fy

«as
„

fy − a

fy

«cs

∝ a2as (fx − a)bs (fy − a)cs . (7)

Setting the first derivative of the logarithm of (7) to
be zero, we obtain2as

a
− bs

fx−a
− cs

fy−a
= 0, which is

quadratic ina and has a solution:

âMLE,a =
fx (2as + cs) + fy (2as + bs)

2 (2as + bs + cs)

−

q

(fx (2as + cs) − fy (2as + bs))
2 + 4fxfybscs

2 (2as + bs + cs)
. (8)

Section 6 shows that̂aMLE,a is very close tôaMLE.

5.2 Theoretical Evaluation: Bias and Variance

How good are the estimates? A popular metric
is mean square error (MSE):MSE(â) = E(â − a)2 =

Var(â) +Bias2 (â). If â is unbiased,MSE(â) =Var(â) =

SE2 (â), where SE is the standard error. Here all ex-
pectations are conditional onDs.

Large sample theory (Lehmann and Casella,
1998, Chapter 6) says that, under “sample-with-
replacement,”̂aMLE is asymptotically unbiased and
converges to Normal with meana and variance 1

I(a) ,
where I(a), the Fisher Information, is

I(a) = −E

„

∂2

∂a2
log P (as, bs, cs, ds|Ds; a, r)

«

. (9)

Under “sample-with-replacement,” we have

P (as, bs, cs, ds|Ds; a, r) ∝
“ a

D

”as

×

„

fx − a

D

«bs

×

„

fy − a

D

«cs

×

„

D − fx − fy + a

D

«ds

, (10)

Therefore, the Fisher Information, I(a), is

E(as)

a2
+

E(bs)

(fx − a)2
+

E(cs)

(fy − a)2
+

E(ds)

(D − fx − fy + a)2
.

(11)

We plug (1) from the margin-free model into (11)
as an approximation, to obtain

Var(âMLE) ≈

D
Ds

− 1
1
a

+ 1
fx−a

+ 1
fy−a

+ 1
D−fx−fy+a

, (12)

which is 1
I(a) multiplied by D−Ds

D
, the “finite-

sample correction factor,” to consider “sample-
without-replacement.”

We can see that Var(âMLE) is less than
Var(âMF ) in (2). In addition,âMLE is asymptoti-
cally unbiased whilêaMF is no longer unbiased un-
der margin constraints. Therefore, we expectâMLE

has smaller MSE than̂aMF . In other words, the pro-
posed MLE method is more accurate than the MF
baseline, in terms of variance, bias and mean square
error. If we know the margins, we ought to use them.

5.3 Unconditional Bias and Variance
âMLE is also unconditionally unbiased:

E(âMLE − a) = E(E (âMLE − a|Ds)) ≈ E(0) = 0. (13)

The unconditional variance is useful because often
we would like to estimate the errors before knowing
Ds (e.g., for choosing sample sizes).

To compute the unconditional variance ofâMLE,

we should replaceD
Ds

with E
(

D
Ds

)

in (12). We

resort to an approximation forE
“

D
Ds

”

. Note that
skX(sx) is the order statistics of a discrete random
variable (Siegrist, 1997) with expectation

E
`

skX(sx)

´

=
sx(D + 1)

fx + 1
≈

sx

fx

D. (14)

By Jensen’s inequality, we know that

E

„

Ds

D

«

≤ min

 

E
`

skX(sx)

´

D
,

E
`

skY(sy)

´

D

!

= min

„

sx

fx

,
sy

fy

«

(15)

E

„

D

Ds

«

≥
1

E
`

Ds

D

´ ≥ max

„

fx

sx

,
fy

sy

«

. (16)
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Table 2: Gold standard joint frequencies,a. Docu-
ment frequencies are shown in parentheses. These
words are frequent, suitable for evaluating our algo-
rithms at very low sampling rates.

THIS HAVE HELP PROGRAM
THIS (27633) — 13517 7221 3682
HAVE (17396) 13517 — 5781 3029
HELP (10791) 7221 5781 — 1949
PROGRAM (5327) 3682 3029 1949 —

Replacing the inequalities with equalities underes-
timates the variance, but only slightly.

5.4 Smoothing

Although not a major emphasis here, our evalua-
tions will show thatâMLE+S, a smoothed version
of the proposed MLE method, is effective, espe-
cially at low sampling rates.̂aMLE+S uses “add-
one” smoothing. Given that such a simple method
is as effective as it is, it would be worth considering
more sophisticated methods such as Good-Turing.

5.5 How Many Samples Are Sufficient?

The answer depends on the trade-off between com-
putation and estimation errors. One simple rule is
to sample “2%.” (12) implies that the standard er-
ror is proportional to

p

D/Ds − 1. Figure 4(a) plots
p

D/Ds − 1 as a function of sampling rate,Ds/D, in-
dicating a “elbow” about2%. However,2% is too
large for high frequency words.

A more reasonable metric is the “coefficient of
variation,” cv = SE(â)

a
. At Web scale (10 billion

pages), we expect that a very small sampling rate
such as10−4 or 10−5 will suffice to achieve a rea-
sonable cv (e.g., 0.5). See Figure 4(b).

6 Evaluation

Two sets of experiments were run on a collection of
D = 216 web pages, provided by MSN. The first ex-
periment considered 4 English words shown in Ta-
ble 2, and the second experiment considers 968 En-
glish words with meandf = 2135 and mediandf =
1135. They form 468,028 word pairs, with mean co-
occurrences = 188 and median = 74.

6.1 Small Dataset Monte Carlo Experiment

Figure 5 evaluates the various estimate methods by
MSE over a wide range of sampling rates. Doc IDs
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Figure 4: How large should the sampling rate be?
(a): We can sample up to the “elbow point” (2%),
but after that there are diminishing returns. (b): An
analysis based on cv =SE

a
= 0.5 suggests that we can

get away with much lower sampling rates. The three
curves plot the critical value for the sampling rate,
Ds

D
, as a function of corpus size,D. At Web scale,

D ≈ 1010, sampling rates above10−3 to 10−5 sat-
isfy cv < 0.5, at least for these settings offx, fy

anda. The settings were chosen to simulate “ordi-
nary” words. The three curves correspond to three
choices offx: D/100, D/1000, and D/10, 000.
fy = fx/10, a = fy/20. SE is based on (12).

were randomly permuted105 times. For each per-
mutation we constructed sketches from the inverted
index at a series of sampling rates. The figure shows
that the proposed method,̂aMLE, is considerably
better (by20% − 40%) than the margin-free base-
line, âMF . Smoothing is effective at low sampling
rates. The recommended approximation,âMLE,a, is
remarkably close to the exact solution.

Figure 6 shows agreement between the theoreti-
cal and empirical unconditional variances. Smooth-
ing reduces variances, at low sampling rates. We
used the empiricalE

“

D
DS

”

to compute the theoreti-

cal variances. The approximation,max
(

fx

sx
,

fy

sy

)

, is

> 0.95E
“

D
DS

”

at sampling rates> 0.01.
Figure 7 verifies that the proposed MLE is unbi-

ased, unlike the margin-free baselines.

6.2 Large Dataset Experiment

The large experiment considers 968 English words
(468,028 pairs) over a range of sampling rates. A
floor of 20 was imposed on sample sizes.

As reported in Figure 8, the large experiment con-
firms once again that proposed method,âMLE , is
considerably better than the margin-free baseline (by
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Figure 5: The proposed method,âMLE outperforms
the margin-free baseline,̂aMF , in terms of MSE0.5

a
.

The recommended approximation,âMLE,a, is close
to âMLE. Smoothing,̂aMLE+S, is effective at low
sampling rates. All methods are better than assum-
ing independence (IND).

15% − 30%). The recommended approximation,
âMLE,a, is close toâMLE. Smoothing,âMLE+S

helps at low sampling rates.

6.3 Rank Retrieval: Top k Associated Pairs

We computed a gold standard similarity cosine rank-
ing of the 468,028 pairs using a 100% sample:cos =

a√
fxfy

. We then compared the gold standard to rank-

ings based on smaller samples. Figure 9(a) com-
pares the two lists in terms of agreement in the topk.
For3 ≤ k ≤ 200, with a sampling rate of 0.005, the
agreement is consistently 70% or higher. Increasing
sampling rate, increases agreement.

The same comparisons are evaluated in terms of
precision and recall in Figure 9(b), by fixing the top
1% of the gold standard list but varying the top per-
centages of the sample list. Again, increasing sam-
pling rate, increases agreement.
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Figure 6: The theoretical and empirical variances
show remarkable agreement, in terms ofSE(â)
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Smoothing reduces variances at low sampling rates.
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tically unbiased, unlikêaMF . Smoothing increases
bias slightly.

7 Conclusion

We proposed a novel sketch-based procedure for
constructing sample contingency tables. The
method bridges two popular choices: (A) sam-
pling over documents and (B) sampling over post-
ings. Well-understood maximum likelihood estima-
tion (MLE) techniques can be applied to sketches
(or to traditional samples) to estimate word associa-
tions. We derived an exact cubic solution,âMLE, as
well as a quadratic approximation,âMLE,a. The ap-
proximation is recommended because it is close to
the exact solution, and easy to compute.

The proposed MLE methods were compared em-
pirically and theoretically to a margin-free (MF)
baseline, finding large improvements. When we
know the margins, we ought to use them.

Sample-based methods (MLE & MF) are often
better than sample-free methods. Associations are
often estimated without samples. It is popular to
assume independence: (Garcia-Molina et al., 2002,
Chapter 16.4), i.e.,̂a ≈ fxfy

D
. Independence led to

large errors in our experiments.
Not unsurprisingly, there is a trade-off between

computational work (space and time) and statistical
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Figure 8: We report the (normalized) mean absolute
errors (divided by the mean co-occurrences, 188).
All curves are averaged over three permutations.
The proposed MLE and the recommended approxi-
mation are very close and both are significantly bet-
ter than the margin-free (MF) baseline. Smoothing,
âMLE+S, helps at low sampling rates. All estima-
tors do better than assuming independence.

accuracy (variance or errors); reducing the sampling
rate saves work, but costs accuracy. We derived
formulas for variance, showing precisely how accu-
racy depends on sampling rate. Sampling methods
become more and more important with larger and
larger collections. At Web scale, sampling rates as
low as10−4 may suffice for “ordinary” words.

We have recently generalized the sampling algo-
rithm and estimation method to multi-way associa-
tions; see (Li and Church, 2005).
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Abstract

We demonstrate the value of using con-
text in a new-information detection sys-
tem that achieved the highest precision
scores at the Text Retrieval Conference’s
Novelty Track in 2004. In order to de-
termine whether information within a sen-
tence has been seen in material read pre-
viously, our system integrates information
about the context of the sentence with
novel words and named entities within the
sentence, and uses a specialized learning
algorithm to tune the system parameters.

1 Introduction

New-information detection addresses two important
problems in a society awash in more digital infor-
mation than people can exploit. A novelty detection
system could help people who are tracking an event
in the news, where numerous sources present simi-
lar material. It could also provide a way to organize
summaries by focusing on the most recent informa-
tion, much like an automated bulletin service.

We envision that many types of users would find
such a system valuable. Certainly analysts, busi-
ness people, and anyone interested in current events,
would benefit from being able to track news stories
automatically, without repetition. Different news or-
ganizations report on the same event, often working
hard to make their reports look different from one
another, whether or not they have new material to
report. Our system would help readers to zero in

on new information. In addition, a focus on new
information provides a way of organizing a general
summary.

Our approach is unique in representing and main-
taining the focus in discourse. The idea stems from
the fact that novelty often comes in bursts, which
is not surprising since the articles are composed of
some number of smaller, coherent segments. Each
segment is started by some kind of introductory pas-
sage, and that is where we expect to find the novel
words. Novel words are identified by comparing
the current sentence’s words against a table of all
words seen in the inputs to that point. They let us
know whether the entire segment is likely to con-
tain more novel material. Subsequent passages are
likely to continue the novel discussion whether or
not they contain novel words. They may contain
pronomial references or other anaphoric references
to the novel entity. Our long-term goal is to inte-
grate the approach described in this paper into our
larger new-information detector, a system that per-
forms a more complicated syntactic analysis of the
input texts and employs machine learning to classify
passages as new or old.

Meanwhile, we tested our focus-based approach
at the Novelty Track at the Text Retrieval Confer-
ence (TREC) in 2004. The Novelty Tracks in 2003
and in 2004 were divided into four tasks; Task 1
and Task 3 incorporate retrieval, requiring submis-
sions to locate the relevant sentences before filter-
ing them for novelty. Tasks 2 and 4 are novelty de-
tection alone, using the relevant sentences selected
by humans as input. Since our interest is in nov-
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elty detection, we chose to concentrate on Task 21

Our TREC submission was also designed to test a
specialized learning mechanism we implemented to
target either high precision or high recall.

In all, the problem of novelty detection is decep-
tively difficult. We were struck by the difficulty that
all groups in the Novelty Track in 2002 and 2003
had in obtaining high precision scores. Submissions
that classify a very large proportion of the input
sentences as novel reached the highest F-measure
scores by getting high recall scores, but failed to
achieve any substantial compression of material for
users. Given that our goal is to generate an up-
date summary, we focused on improving precision
and increasing compression, removing as many false
positives as possible.

The next section discusses the Novelty Track and
the approaches others have tried; Section 3 details
our system, and Section 4 presents the experiments.

2 Novelty Track

Much of the work in new-information detection has
been done for the TREC Novelty Track. The task
is related to first story detection, which is defined
on whole documents rather than on passages within
documents. In Task 1 of the Novelty Track, a system
is given about 25 documents on a topic and asked to
find all sentences relevant to the topic. In Task 2,
the inputs are the set of relevant sentences, so that
the program does not see the entire documents. The
program must scan the sentences in order and output
all that contain new information, that is information
not seen in the previous input sentences.

2.1 Related Work

At the recent TREC, Dublin City University did well
by comparing the words in a sentence against the
accumulated words in all previous sentences (Blott
et al., 2004). Their runs varied the way in which
the words were weighted with frequency and inverse
document frequency. Like our system, theirs follows
from the intuition that words that are new to a dis-
cussion are evidence of novelty. But our system dis-

1Task 4 was similar to Task 2, in that both have the human
annotations as input. For Task 2, participants only get the anno-
tations, but in Task 4, they also receive the novel sentences from
the first five documents as input. We felt that we would learn as
much from the one task as from both.

tinguishes between several kinds of words, includ-
ing common nouns, named persons, named organi-
zation, etc. Our system also incorporates a mecha-
nism for looking at the context of the sentence.

Both the Dublin system and ours are preceded by
the University of Iowa’s approach at TREC 2003. It
based novelty decisions on a straightforward count
of new named entities and noun phrases in a sen-
tence (Eichmann et al., 2003). In 2004, the Iowa sys-
tem (Eichmann et al., 2004) tried several embellish-
ments, one using synonyms in addition to the words
for novelty comparisons, and one using word-sense
disambiguation. These two runs were above average
in F-measure and about average in precision.

The University of Massachusetts system (Abdul-
Jaleel et al., 2004) mixed a vector-space model with
cosine similarity and a count of previously unseen
named entities. Their system resembled one of two
baseline methods that we submitted without our fo-
cus feature. Their submission used a similarity
threshold that was tuned experimentally, while ours
was learned automatically. In earlier work with the
TREC 2002 data, UMass (Allan et al., 2003) com-
pared a number of sentence-based models ranging
in complexity from a count of new words and cosine
distance, to a variety of sophisticated models based
on KL divergence with different smoothing strate-
gies and a “core mixture model” that considered the
distribution of the words in the sentence with the
distributions in a topic model and a general English
model.

A number of groups have experimented with
matrix-based methods. In 2003, a group from the
University of Maryland and the Center for Com-
puting Sciences (Conroy et al., 2003) used three
techniques that used QR decomposition and sin-
gular value decomposition. The University of
Maryland, Baltimore County, worked with cluster-
ing algorithms and singular value decomposition
in sentence-sentence similarity matrices (Kallurkar
et al., 2003). In 2004, Conroy (Conroy, 2004)
tested Maximal Marginal Relevance (Goldstein et
al., 2000) as well as QR decomposition.

The information retrieval group at Tsinghua Uni-
versity used a pooling technique, grouping similar
sentences into clusters in order to capture sentences
that partially match two or more other sentences(Ru
et al., 2004). They said they had found difficulties
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with sentence-by-sentence comparisons.

2.2 Precision

At all three Novelty Track evaluations, from 2002 to
2004, it is clear that high precision is much harder
to obtain than high recall. Trivial baselines – such
as accept all sentences as novel – have proved to be
difficult to beat by very much. This one-line algo-
rithm automatically obtains 100% recall and preci-
sion equal to the proportion of novel sentences in
the input. In 2003, when 66% of the relevant sen-
tences were novel, the mean precision score was
0.6352 and the median was 0.7. In 2004, 41% of the
relevant sentences were novel, and the average pre-
cision dropped to 0.46. The median precision was
also 0.46. Meanwhile, average recall scores across
all submissions actually rose to 0.861 in 2004, com-
pared with 0.795 in 2003. In terms of a real world
system, this means that as the number of target sen-
tences shrank, the number of sentences in the aver-
age program output rose. Likewise, a trivial system
could guarantee no errors by returning nothing, but
this would have no value.

2.3 Sentences

Normally, in Information Retrieval tasks, stricter
thresholds result in higher precision, and looser
thresholds, higher recall. In that way, a system can
target its results to a user’s needs. But in new-
information detection, this rule of thumb fails at
some point as thresholds become stricter. Recall
does fall, but precision does not rise. In other words,
there seems to be a ceiling for precision.

Several participants noted that their simpler
strategies produced the best results. For example,
in 2003, the Chinese Academy of Sciences (Sun et
al., 2003), noted that word overlap was surprisingly
strong as a similarity measure. As we have seen
above, the Iowa approach of counting nouns was in-
corporated by a few others for 2004, including us.
This strategy compares words in a sentence against
all previous seen words and thus, avoids comput-
ing pairwise similarity between all sentences. Al-

2One group appeared to have submitted a large number of ir-
relevant sentences in its submission, since it obtained relatively
high recall scores, but very low precision scores, causing the
average to drop below 0.66. The average precision of all other
groups is about 0.7.

most all participants performed such pairwise com-
parisons of systems.

A sentence-by-sentence comparison is clearly not
the optimal operation for establishing novelty. Sen-
tences with a large amount of overlap can express
very different thoughts. In the extreme, a single
word change can reverse the meaning of two sen-
tences: accept and reject. This phenomenon led the
Tsinghua University group to remark, “many sen-
tences with an overlap of nearly 1 are real novel
ones.” (Ru et al., 2004).

On the other hand, it’s not hard to find cases where
realizations of equivalent statements take many dif-
ferent surface forms – with different choices of
words and different syntactic structures. The data in
the Novelty Task is drawn from three news services
and clustered into fairly cohesive sets. The news
writers consciously try to avoid echoing each other,
and over time, echoing themselves. Sentences such
as these have low word overlap, but are not novel.
For this reason, we turned to a strategy of classifying
each sentence Si against the cumulative background
of all the words in all preceding sentences S1...i−1.

3 System

The system described in this paper was built with the
Novelty Track in mind. The goal was to look at ways
to consider longer spans of text than a sentence, and
to avoid sentence by sentence comparisons.

In the Novelty track, the relevant sentences are
presented in natural order, i.e. by the date of the
document they came from, and then by their loca-
tion in the document. The key characteristics of our
program include:

• For each relevant sentence, our program cal-
culates a sum of novel terms, which are terms
that have not been previously seen. The terms
are weighted according to their category, like
person, location, common noun or verb. The
weights are learned automatically.

• For the entire set, the program maintains a fo-
cus variable, which indicates whether the pre-
vious sentence is novel or old. Thresholds de-
termine whether to continue or shift the focus.
These are also learned automatically.
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All input documents are fed in parallel into a
named-entity recognizer, which marks persons, or-
ganizations, locations, part-of-speech tags for com-
mon nouns, and into a finite-state parser, which is
used only to identify sentences beginning with sub-
ject pronouns. The output from the two preprocess-
ing modules are merged and sent to the classifier.

The classifier reads a configuration file that con-
tains a set of weights that were learned on the 2003
Novelty Track data to apply to different classes of
words that have not been previously seen.

For each sentence, the system adds up the amount
of novelty from the weighted terms in a sentence and
compares that to a learned threshold; it classifies the
sentence as novel if it exceeds the threshold. It also
stores the classification in a focus variable. If the
novelty threshold is not met, the system performs a
series of tests described below, and possibly classi-
fies some sentences with few content words as novel,
depending on the status of the focus variable. Our
algorithm enumerates all cases of changes in focus,
and tests these in the order that allows the system
to make the decision it can be most confident about
first. Thus, when we find a named entity new to the
discussion, we can be pretty sure that we have found
a novel sentence. We can classify that sentence as
new without regard to what preceded it. But, when
we find a sentence devoid of high-content words,
like “She said the idea sounded good,” the system
uses the classification of the previous sentence. If
the antecedents to she or idea are novel, then this
sentence must also be novel. The series of learned
thresholds are imposed in a cascade to maximize the
number of correct decisions over the training cases,
in hopes the values will also cover unseen cases.

Thus, the classifier puts each sentence through the
tests below, using the learned thresholds and weights
described in Section 3.1. If any test succeeds, the
system goes on to the next sentence.

1. If there is a sufficient concentration of novel
words, classify the sentence as novel A suffi-
cient concentration occurs when the sum of the
weights of the novel content words (including
named entities) exceeds a threshold, Tnovel. If
the previous focus was old, this indicates the
focus has shifted to a novel segment.

2. If there is a lack of novel words, classify the

sentence as old This is computed by compar-
ing the sum of the weights of the already-seen
content words to a separate threshold, Told. If
the previous focus was novel, this means the
focus has shifted to an old segment.

3. For any remaining sentences, the classification
is based on context:

(a) If the sentence does not have a sufficient
number of content words, use the classifi-
cation in the focus variable. This adds the
sums of both new and old content words
and compares that to a threshold, Tkeep.

(b) If the first noun phrase is a third person
personal pronoun, use the classification in
the focus variable. Pronouns are known
to signal that the same focus continues
(Grosz and Sidner, 1986).

(c) If the sentence has not met any of the
above tests but has a minimum number of
content words, shift the focus. If all tests
above fail and there are a minimum num-
ber of content words, with a sum of Tshift

shift the focus.

4. Default This rarely occurs but the default is to
continue the focus, whether novel or old.

We examined the 2003 Novelty Track data and
found that more than half the novel sentences ap-
pear in sequences of consecutive sentences (See Ta-
ble 1). This circumstance creates an opportunity to
make principled classifications on some sentences
that have few, if any, clearly novel words, but con-
tinue a new segment. The use of a focus variable
handles these cases.

3.1 Learning

In all, the system uses 11 real-valued parameters,
weights and thresholds, and we wanted to learn op-
timal values for these. In particular, we wanted to be
able to target either high recall or high precision, As
we noted above, precision was much more difficult,
and for a summarization task, much more important.

To learn the optimal values for the parameters, we
opted to use an ad hoc algorithm. The main advan-
tage in doing so was when considering instance i,
the program can reference the classifications made
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Length of Run Count
1 1338
2 421
3 132
4 72
5 43
6 22
7 11
8 2
9 3
10 3
11 2
12 2
15 2
17 1

Table 1: Novelty often comes in bursts. This table
shows that 1,338 of the novel sentences in the 2003
evaluation were singletons, and not a part of a run of
novel sentences. Meanwhile, 1,526 of the sentences
were part of runs of 2, 3 or 4 sentences.

for instance i − 1, i − 2, and possibly all the way
back to instance 1, because the classification for in-
stance i partly depends on the classification of pre-
vious instances. Not only do many standard super-
vised learning methods assume conditional indepen-
dence, but they also do not provide access to the on-
line classifications during learning. We constructed
a randomized hill-climbing. The learner is struc-
tured like a neural net, but the weight adjustments
are chosen at random as they are in genetic algo-
rithms (See Figure 1). The evaluation, or fitness
function, is the Novelty Track score itself, and the
training data was the 2003 Novelty Track data.

Changes to the hypothesis are selected at random
and evaluated. If the change does not hurt results, it
is accepted. Otherwise the program backtracks and
chooses another weight to update. We required the
new configuration to produce a score greater than or
equal to the previous one before we accepted it. The
choice of which weight to update is made at ran-
dom, in an effort to avoid local minima in the search
space, but with an important restriction: the previous
n choices are kept in a history list, which is checked
to avoid re-use. This list is updated at each iteration.
The configurations usually converge well within 100
iterations.

1. Initialize weights, history
Weights take random values

2. Run the system using current weight set
3. If current score >= previous best

Update previous best
4. Otherwise

Undo move
5. Update history
6. Choose next weight to change
7. Go to step 2

Figure 1: The learning algorithm uses a randomized
hill climbing approach with backtracking

3.2 Bias Adjustment

In training on the 2003 data, the biggest problem
was to find a way to deal with the large percentage
of novel sentences. About 65% of the instances are
positive, so that a random system achieves a rela-
tively high F-measure by increasing the number of
sentences it calls novel – until recall reaches 1.0.
Another strategy would be to choose only the sen-
tences in the first document, achieving a high pre-
cision – more than 90% of the relevant sentences in
the first document for each topic were called novel.

In the Novelty Track the F-measure was set to
give equal weight to precision and recall, but we
wanted to be able to coax the learner to give greater
weight to either precision or by adjusting the F-
measure computation:

F =
1

β
prec

+ (1−β)
recall

β is a number between 0 and 1. The closer it gets
to 1, the more the formula favors precision.

We chose whether to emphasize precision or re-
call by altering the value of β. At the most extreme,
we set β at 0.9 for the largest emphasis on precision.
When emphasizing recall, we left β at 0.5.

The design was motivated by the need to explore
the problem more fully and inform the algorithm for
deciding novelty as much as to find optimal param-
eters for the values. Thus, we wanted to be able
to record all the steps the learner made through the
search space, and to save the intermediate states. At
times, the learner would settle into a configuration
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that produced a trivial solution, and we could choose
one of the intermediate configurations that produced
a more reasonable score.

3.3 Vector-Space Module

In addition to the system which integrates novel
word features with focus tracking, we also imple-
mented a vector-space approach as a baseline – the
Cosine run. We tested the vector-space system alone
to contrast it with the focus system, but we also
tested a version which integrated the vector-space
system with the focus system.

Our vector-space module assigns all non-stop-
words a value of 1, and uses the cosine distance met-
ric to compute similarity.

Cos(u, v) =
u · v

‖u‖ · ‖v‖

and

Novel(si)











True if Cos(si, sj) < T,

for j = 1 . . . i − 1
False otherwise

As each sentence is scanned, its similarity is com-
puted with all previous sentences and the maximum
similarity is compared to a threshold T . If that max-
imum exceeds T , it is considered novel. We chose
the value of T after trials on the 2003 Novelty Track
data. It was set at 0.385, resulting in a balanced sys-
tem that matched the results of one of the strongest
performers at the TREC evaluations that year.

On the 2003 data, when we set T at .9, we found
that we had a precision of .71 and a recall of 0.98,
indicating that about 6% of the sentences were quite
similar to some preceding sentence (See Figure 2).
After that, each point of precision was very costly in
terms of recall. Our experience was mirrored by the
participants at TREC 2003 and again at TREC 2004.

We considered this vector-space model to be our
baseline. We also tried it in combination with the
Recall run explained above. Because both the Re-
call and Cosine runs produced a relatively large out-
put and because they used different methods, we
thought the intersection would result in higher pre-
cision, though with some loss of recall.

In practice, the range of recall was much greater
than precision. Judging from the experiences of the
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Figure 2: The precision and recall scores of a
vector-space model with cosine similarity at differ-
ent thresholds, on the TREC 2003 data. Making the
test for novelty stricter fails to improve precision but
has a drastic effect on recall.

participants at TREC and our own exploratory ex-
periments, it was difficult to push precision above
0.80 with the TREC 2003 data, and above 0.50 with
the TREC 2004 data.

4 Experiments

4.1 Results from TREC 2004

Our results are encouraging, especially since the
configurations that were oriented toward higher pre-
cision, indeed, achieved the best precision scores
in the evaluation, with our best precision run about
20% higher in precision than the best of all the runs
by other groups (See Figure 3.) Meanwhile, our
recall-oriented run was one of eight runs that were in
a virtual tie for achieving the top f-measure. These
eight runs were within 0.01 of one another in the
measure.

Our five submitted runs were:

Prec1 aimed at moderately high precision, with rea-
sonable recall.

Prec2 aimed at high precision, with little attention
to recall.

Recall weighted precision and recall equally.

Cosine a baseline of a standard vector-space model
with a cosine similarity metric.
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Figure 3: The graph shows all 54 submission in
Task 2 for the Novelty Track, with our five submis-
sions labeled. Our precision-oriented runs were well
ahead of all others in precision, while our recall-
oriented run was in a large group that reached about
0.5 precision with relatively high recall.

Combo a composite submission using the intersec-
tion of Recall and Cosine.

Table 2 shows the numbers of our performance of
our five submissions. Prec1 had an F-score close
to the average of 0.577 for all systems, while Prec2
was 50% ahead of random selection in accuracy.
Both our Combo system and our baseline Cosine
were above average in F-measure. Our emphasis on
precision is justified in a number of ways, although
the official yardstick was the F-measure.

An analysis of the system’s behavior under the
different parameters showed that the precision-
oriented runs, in particular Prec1, valued verbs and
common nouns more than named entities in decid-
ing novelty. The precision-oriented runs also bene-
fited more from the focus variable, with their scores
about 5% higher in terms of F-measure than they
were without it. The pronoun test, however, was
rarely used, firing less than 1% of the time.

We note that we are developing novelty detection
for summarization, where compression of the report
is valuable. Table 2 shows the lengths of our re-
turns. It is impossible to compare these precisely
with other systems, because the averages given by
NIST are averages of the scores for each of the 50
sets, and we do not have the breakdown of the num-

bers by set for any submissions but our own. How-
ever, we can estimate the size of the other output by
considering average precision and recall as if they
were computed over the total number of sentences in
all 50 sets. This computation shows an average out-
put for all participants of about 6,500 sentences and
a median of 6,981 – out of a total of 8,343 sentences.
However, this total includes some amount of header
material, not only the headline, but the document ID
and other identifiers, the date and some shorthand
messages from the wire services to its clients. In
addition, a number of the sets had near perfect du-
plicate articles. This is in sharp contrast with typi-
cal summaries. At the 2004 Document Understand-
ing Conference, the typical input cluster contained
more than 4,000 words, and the task required that
this be reduced to 100 words. We contend there is
little value in a system that does no more than weed
out very few sentences, even though they might have
achieved high F-measures.

Second, our experience, and the results of other
groups, shows that high precision is harder than high
recall. In all three years of the Novelty Track, pre-
cision scores tended to hover in a narrow band just
above what one would get by mechanically labeling
all sentences as novel.

5 Conclusion

The success of our use of context in the TREC
Novelty Track led us to incorporate the idea into a
larger system. This system identifies clauses within
sentences that express new information and tries to
identify semantic equivalents. It is being developed
as part of a multi-document summarizer that pro-
duces topical updates for users.

In addition, the work here suggests three direc-
tions for future work:

• Adapt the features used here to some of the
newer probabilistic formalisms, like condi-
tional random fields.

• Try full segmentation of the input documents
rather than treat the sentences as a sequence.

• Try to identify all nominal references to canon-
ical forms.

With this experimental system, we obtained the
the top precision scores in the Novelty Track, and
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Run-Id Precision Recall F-meas Output length

Prec1 0.57 0.58 0.562 3276
Prec2 0.61 0.45 0.506 2372
Recall 0.51 0.82 0.611 5603
Cosine 0.49 0.81 0.599 5537
Combo 0.53 0.73 0.598 4578

Choose All 0.41 1.000 0.581 8343
Average All Runs 0.46 0.86 0.577 6500

Table 2: Comparison of results of our five runs, compared to a random selection of sentences, and the overall
average F-scores by all 55 submissions.

we obtained the program settings to do this auto-
matically. High precision is very difficult to obtain,
and every point in precision costs too much in recall.
Further exploration is needed to determine whether
linguistic knowledge will help, and whether state-
of-the-art tools are powerful enough to improve per-
formance.

Beyond new-information detection, the idea of
tracking context with a surface means like the focus
variable is worth exploring in other tasks, including
summarization and question-answering.
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Abstract

We present a novel approach to relation
extraction, based on the observation that
the information required to assert a rela-
tionship between two named entities in
the same sentence is typically captured
by the shortest path between the two en-
tities in the dependency graph. Exper-
iments on extracting top-level relations
from the ACE (Automated Content Ex-
traction) newspaper corpus show that the
new shortest path dependency kernel out-
performs a recent approach based on de-
pendency tree kernels.

1 Introduction

One of the key tasks in natural language process-
ing is that of Information Extraction (IE), which is
traditionally divided into three subproblems: coref-
erence resolution, named entity recognition, and
relation extraction. Consequently, IE corpora are
typically annotated with information corresponding
to these subtasks (MUC (Grishman, 1995), ACE
(NIST, 2000)), facilitating the development of sys-
tems that target only one or a subset of the three
problems. In this paper we focus exclusively on ex-
tracting relations between predefined types of en-
tities in the ACE corpus. Reliably extracting re-
lations between entities in natural-language docu-
ments is still a difficult, unsolved problem, whose
inherent difficulty is compounded by the emergence
of new application domains, with new types of nar-
rative that challenge systems developed for previous

well-studied domains. The accuracy level of cur-
rent syntactic and semantic parsers on natural lan-
guage text from different domains limit the extent
to which syntactic and semantic information can be
used in real IE systems. Nevertheless, various lines
of work on relation extraction have shown experi-
mentally that the use of automatically derived syn-
tactic information can lead to significant improve-
ments in extraction accuracy. The amount of syntac-
tic knowledge used in IE systems varies from part-
of-speech only (Ray and Craven, 2001) to chunking
(Ray and Craven, 2001) to shallow parse trees (Ze-
lenko et al., 2003) to dependency trees derived from
full parse trees (Culotta and Sorensen, 2004). Even
though exhaustive experiments comparing the per-
formance of a relation extraction system based on
these four levels of syntactic information are yet to
be conducted, a reasonable assumption is that the ex-
traction accuracy increases with the amount of syn-
tactic information used. The performance however
depends not only on the amount of syntactic infor-
mation, but also on the details of the exact models
using this information. Training a machine learn-
ing system in a setting where the information used
for representing the examples is only partially rele-
vant to the actual task often leads to overfitting. It is
therefore important to design the IE system so that
the input data is stripped of unnecessary features as
much as possible. In the case of the tree kernels
from (Zelenko et al., 2003; Culotta and Sorensen,
2004), the authors reduce each relation example to
the smallest subtree in the parse or dependency tree
that includes both entities. We will show in this
paper that increased extraction performance can be

724



obtained by designing a kernel method that uses an
even smaller part of the dependency structure – the
shortest path between the two entities in the undi-
rected version of the dependency graph.

2 Dependency Graphs

Let e1 ande2 be two entities mentioned in the same
sentence such that they are observed to be in a re-
lationshipR, i.e R(e1, e2) = 1. For example,R
can specify that entitye1 is LOCATED (AT) entity
e2. Figure 1 shows two sample sentences from ACE,
with entity mentions in bold. Correspondingly, the
first column in Table 1 lists the four relations of type
LOCATED that need to be extracted by the IE sys-
tem. We assume that a relation is to be extracted
only between entities mentioned in the same sen-
tence, and that the presence or absence of a relation
is independent of the text preceding or following the
sentence. This means that only information derived
from the sentence including the two entities will be
relevant for relation extraction. Furthermore, with
each sentence we associate its dependency graph,
with words figured as nodes and word-word depen-
dencies figured as directed edges, as shown in Fig-
ure 1. A subset of these word-word dependencies
capture the predicate-argument relations present in
the sentence. Arguments are connected to their tar-
get predicates either directly through an arc point-
ing to the predicate (’troops→ raided’), or indirectly
through a preposition or infinitive particle (’warning
← to← stop’). Other types of word-word dependen-
cies account for modifier-head relationships present
in adjective-noun compounds (’several→ stations’),
noun-noun compounds (’pumping→ stations’), or
adverb-verb constructions (’recently→ raided’). In
Figure 1 we show the full dependency graphs for two
sentences from the ACE newspaper corpus.

Word-word dependencies are typically catego-
rized in two classes as follows:

• [Local Dependencies] These correspond to lo-
cal predicate-argument (or head-modifier) con-
structions such as ’troops→ raided’, or ’pump-
ing→ stations’ in Figure 1.

• [Non-local Dependencies] Long-distance de-
pendencies arise due to various linguistic con-
structions such as coordination, extraction,

raising and control. In Figure 1, among non-
local dependencies are ’troops→ warning’, or
’ministers→ preaching’.

A Context Free Grammar (CFG) parser can be
used to extract local dependencies, which for each
sentence form a dependency tree. Mildly context
sensitive formalisms such as Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000) model word-
word dependencies more directly and can be used to
extract both local and long-distance dependencies,
giving rise to a directed acyclic graph, as illustrated
in Figure 1.

3 The Shortest Path Hypothesis

If e1 ande2 are two entities mentioned in the same
sentence such that they are observed to be in a rela-
tionshipR, our hypothesis stipulates that the con-
tribution of the sentence dependency graph to es-
tablishing the relationshipR(e1, e2) is almost exclu-
sively concentrated in the shortest path betweene1

ande2 in the undirected version of the dependency
graph.

If entities e1 and e2 are arguments of the same
predicate, then the shortest path between them will
pass through the predicate, which may be con-
nected directly to the two entities, or indirectly
through prepositions. Ife1 ande2 belong to different
predicate-argument structures that share a common
argument, then the shortest path will pass through
this argument. This is the case with the shortest path
between ’stations’ and ’workers’ in Figure 1, pass-
ing through ’protesters’, which is an argument com-
mon to both predicates ’holding’ and ’seized’. In
Table 1 we show the paths corresponding to the four
relation instances encoded in the ACE corpus for the
two sentences from Figure 1. All these paths sup-
port the LOCATED relationship. For the first path, it
is reasonable to infer that if a PERSON entity (e.g.
’protesters’) is doing some action (e.g. ’seized’) to
a FACILITY entity (e.g. ’station’), then the PERSON

entity is LOCATED at that FACILITY entity. The sec-
ond path captures the fact that the same PERSON

entity (e.g. ’protesters’) is doing two actions (e.g.
’holding’ and ’seized’) , one action to a PERSONen-
tity (e.g. ’workers’), and the other action to a FACIL -
ITY entity (e.g. ’station’). A reasonable inference in
this case is that the ’workers’ are LOCATED at the
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S1 =

=S2

Protesters stations workers

Troops churches ministers

seized   several   pumping , holding   127   Shell hostage .

recently   have   raided , warning to   stop   preaching .

Figure 1: Sentences as dependency graphs.

Relation Instance Shortest Path in Undirected Dependency Graph

S1: protesters AT stations protesters −→ seized←− stations
S1: workers AT stations workers −→ holding←− protesters−→ seized←− stations
S2: troops AT churches troops −→ raided←− churches
S2: ministers AT churches ministers −→ warning←− troops−→ raided←− churches

Table 1: Shortest Path representation of relations.

’station’.
In Figure 2 we show three more examples of the

LOCATED (AT) relationship as dependency paths
created from one or two predicate-argument struc-
tures. The second example is an interesting case,
as it illustrates how annotation decisions are accom-
modated in our approach. Using a reasoning similar
with that from the previous paragraph, it is reason-
able to infer that ’troops’ are LOCATED in ’vans’,
and that ’vans’ are LOCATED in ’city’. However,
because ’vans’ is not an ACE markable, it cannot
participate in an annotated relationship. Therefore,
’troops’ is annotated as being LOCATED in ’city’,
which makes sense due to the transitivity of the rela-
tion LOCATED. In our approach, this leads to short-
est paths that pass through two or more predicate-
argument structures.

The last relation example is a case where there ex-
ist multiple shortest paths in the dependency graph
between the same two entities – there are actually
two different paths, with each path replicated into
three similar paths due to coordination. Our current
approach considers only one of the shortest paths,

nevertheless it seems reasonable to investigate using
all of them as multiple sources of evidence for rela-
tion extraction.

There may be cases wheree1 and e2 belong
to predicate-argument structures that have no argu-
ment in common. However, because the depen-
dency graph is always connected, we are guaran-
teed to find a shortest path between the two enti-
ties. In general, we shall find a shortest sequence of
predicate-argument structures with target predicates
P1, P2, ..., Pn such thate1 is an argument ofP1, e2 is
an argument ofPn, and any two consecutive predi-
catesPi andPi+1 share a common argument (where
by “argument” we mean both arguments and com-
plements).

4 Learning with Dependency Paths

The shortest path between two entities in a depen-
dency graph offers a very condensed representation
of the information needed to assess their relation-
ship. A dependency path is represented as a se-
quence of words interspersed with arrows that in-
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(1) He had no regrets forhis actions inBrcko.

his→ actions← in← Brcko

(2) U.S. troops today acted for the first time to capture an
alleged Bosnian war criminal, rushing from unmarked vans
parked in the northern Serb-dominatedcity of Bijeljina.

troops→ rushing← from← vans→ parked← in← city

(3) Jelisic created an atmosphere of terror at thecamp by
killing, abusing and threatening thedetainees.

detainees→ killing ← Jelisic→ created← at← camp

detainees→ abusing← Jelisic→ created← at← camp

detainees→ threatning← Jelisic→ created← at← camp

detainees→ killing → by→ created← at← camp

detainees→ abusing→ by→ created← at← camp

detainees→ threatening→ by→ created← at← camp

Figure 2: Relation examples.

dicate the orientation of each dependency, as illus-
trated in Table 1. These paths however are com-
pletely lexicalized and consequently their perfor-
mance will be limited by data sparsity. We can al-
leviate this by categorizing words into classes with
varying degrees of generality, and then allowing
paths to use both words and their classes. Examples
of word classes are part-of-speech (POS) tags and
generalizations over POS tags such as Noun, Active
Verb or Passive Verb. The entity type is also used for
the two ends of the dependency path. Other poten-
tially useful classes might be created by associating
with each noun or verb a set of hypernyms corre-
sponding to their synsets in WordNet.

The set of features can then be defined as a
Cartesian product over these word classes, as illus-
trated in Figure 3 for the dependency path between
’protesters’ and ’station’ in sentenceS1. In this rep-
resentation, sparse or contiguous subsequences of
nodes along the lexicalized dependency path (i.e.
path fragments) are included as features simply by
replacing the rest of the nodes with their correspond-
ing generalizations.

The total number of features generated by this de-
pendency path is4×1×3×1×4, and some of them
are listed in Table 2.







protesters
NNS
Noun

PERSON







× [→]×

[

seized
VBD
Verb

]

× [←]×







stations
NNS
Noun

FACILITY







Figure 3: Feature generation from dependency path.

protesters → seized ← stations
Noun → Verb ← Noun

PERSON → seized ← FACILITY

PERSON → Verb ← FACILITY

... (48 features)

Table 2: Sample Features.

For verbs and nouns (and their respective word
classes) occurring along a dependency path we also
use an additional suffix ’(-)’ to indicate a negative
polarity item. In the case of verbs, this suffix is used
when the verb (or an attached auxiliary) is modi-
fied by a negative polarity adverb such as ’not’ or
’never’. Nouns get the negative suffix whenever
they are modified by negative determiners such as
’no’, ’neither’ or ’nor’. For example, the phrase “He
never went toParis” is associated with the depen-
dency path ’He → went(-)← to← Paris’.

Explicitly creating for each relation example a
vector with a position for each dependency path fea-
ture is infeasible, due to the high dimensionality of
the feature space. Here we can exploitdual learn-
ing algorithms that process examples only via com-
puting their dot-products, such as the Support Vec-
tor Machines (SVMs) (Vapnik, 1998; Cristianini
and Shawe-Taylor, 2000). These dot-products be-
tween feature vectors can be efficiently computed
through akernelfunction, without iterating over all
the corresponding features. Given the kernel func-
tion, the SVM learner tries to find a hyperplane that
separates positive from negative examples and at the
same time maximizes the separation (margin) be-
tween them. This type of max-margin separator has
been shown both theoretically and empirically to re-
sist overfitting and to provide good generalization
performance on unseen examples.

Computing the dot-product (i.e. kernel) between
two relation examples amounts to calculating the
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number of common features of the type illustrated
in Table 2. Ifx = x1x2...xm andy = y1y2...yn are
two relation examples, wherexi denotes the set of
word classes corresponding to positioni (as in Fig-
ure 3), then the number of common features between
x andy is computed as in Equation 1.

K(x, y) =

{

0, m 6= n
∏n

i=1 c(xi, yi), m = n
(1)

wherec(xi, yi) = |xi∩yi| is the number of common
word classes betweenxi andyi.

This is a simple kernel, whose computation takes
O(n) time. If the two paths have different lengths,
they correspond to different ways of expressing a re-
lationship – for instance, they may pass through a
different number of predicate argument structures.
Consequently, the kernel is defined to be 0 in this
case. Otherwise, it is the product of the number of
common word classes at each position in the two
paths. As an example, let us consider two instances
of the LOCATED relationship:

1. ’his actions inBrcko’, and

2. ’his arrival in Beijing’.

Their corresponding dependency paths are:

1. ’his → actions← in ← Brcko’, and

2. ’his → arrival← in ← Beijing’.

Their representation as a sequence of sets of word
classes is given by:

1. x = [x1 x2 x3 x4 x5 x6 x7], where x1 =
{his, PRP, PERSON}, x2 = {→}, x3 = {actions,
NNS, Noun}, x4 = {←}, x5 = {in, IN}, x6 =
{←}, x7 = {Brcko, NNP, Noun, LOCATION}

2. y = [y1 y2 y3 y4 y5 y6 y7], wherey1 = {his,
PRP, PERSON}, y2 = {→}, y3 = {arrival, NN,
Noun}, y4 = {←}, y5 = {in, IN}, y6 = {←}, y7

= {Beijing, NNP, Noun, LOCATION}

Based on the formula from Equation 1, the kernel is
computed asK(x, y) = 3×1×1×1×2×1×3 = 18.

We use this relation kernel in conjunction with
SVMs in order to find decision hyperplanes that best
separate positive examples from negative examples.

We modified the LibSVM1 package for SVM learn-
ing by plugging in the kernel described above, and
used its default one-against-one implementation for
multiclass classification.

5 Experimental Evaluation

We applied the shortest path dependency kernel to
the problem of extracting top-level relations from
the ACE corpus (NIST, 2000), the version used
for the September 2002 evaluation. The training
part of this dataset consists of 422 documents, with
a separate set of 97 documents allocated for test-
ing. This version of the ACE corpus contains three
types of annotations: coreference, named entities
and relations. Entities can be of the type PERSON,
ORGANIZATION, FACILITY , LOCATION, and GEO-
POLITICAL ENTITY . There are 5 general, top-level
relations: ROLE, PART, LOCATED, NEAR, and SO-
CIAL . The ROLE relation links people to an organi-
zation to which they belong, own, founded, or pro-
vide some service. The PART relation indicates sub-
set relationships, such as a state to a nation, or a sub-
sidiary to its parent company. The AT relation indi-
cates the location of a person or organization at some
location. The NEAR relation indicates the proxim-
ity of one location to another. The SOCIAL rela-
tion links two people in personal, familial or profes-
sional relationships. Each top-level relation type is
further subdivided into more fine-grained subtypes,
resulting in a total of 24 relation types. For exam-
ple, the LOCATED relation includes subtypes such
as LOCATED-AT, BASED-IN, and RESIDENCE. In
total, there are 7,646 intra-sentential relations, of
which 6,156 are in the training data and 1,490 in the
test data.

We assume that the entities and their labels are
known. All preprocessing steps – sentence segmen-
tation, tokenization, and POS tagging – were per-
formed using the OpenNLP2 package.

5.1 Extracting dependencies using a CCG
parser

CCG (Steedman, 2000) is a type-driven theory of
grammar where most language-specific aspects of
the grammar are specified into lexicon. To each lex-

1URL:http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
2URL: http://opennlp.sourceforge.net
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ical item corresponds a set of syntactic categories
specifying its valency and the directionality of its
arguments. For example, the words from the sen-
tence “protesters seized several stations” are mapped
in the lexicon to the following categories:

protesters : NP

seized : (S\NP )/NP

several : NP/NP

stations : NP

The transitive verb ’seized’ expects two arguments:
a noun phrase to the right (the object) and another
noun phrase to the left (the subject). Similarly, the
adjective ’several’ expects a noun phrase to its right.
Depending on whether its valency is greater than
zero or not, a syntactic category is called afunctor
or anargument. In the example above, ’seized’ and
’several’ are functors, while ’protesters’ and ’sta-
tions’ are arguments.

Syntactic categories are combined using a small
set of typed combinatory rules such as functional ap-
plication, composition and type raising. In Table 3
we show a sample derivation based on three func-
tional applications.

protesters seized several stations

NP (S\NP )/NP NP/NP NP

NP (S\NP )/NP NP

NP S\NP

S

Table 3: Sample derivation.

In order to obtain CCG derivations for all sen-
tences in the ACE corpus, we used the CCG
parser introduced in (Hockenmaier and Steedman,
2002)3. This parser also outputs a list of dependen-
cies, with each dependency represented as a 4-tuple
〈f, a, wf , wa〉, wheref is the syntactic category of
the functor,a is the argument number,wf is the head
word of the functor, andwa is the head word of the
argument. For example, the three functional appli-
cations from Table 3 result in the functor-argument
dependencies enumerated below in Table 4.

3URL:http://www.ircs.upenn.edu/˜juliahr/Parser/

f a wf wa

NP/NP 1 ’several’ ’stations’
(S\NP )/NP 2 ’seized’ ’stations’
(S\NP )/NP 1 ’seized’ ’protesters’

Table 4: Sample dependencies.

Because predicates (e.g. ’seized’) and adjuncts
(e.g. ’several’) are always represented as func-
tors, while complements (e.g. ’protesters’ and ’sta-
tions’) are always represented as arguments, it is
straightforward to transform a functor-argument de-
pendency into a head-modifier dependency. The
head-modifier dependencies corresponding to the
three functor-argument dependencies in Table 4 are:
’protesters→ seized’, ’stations→ seized’, and ’sev-
eral→ stations’.

Special syntactic categories are assigned in CCG
to lexical items that project unbounded dependen-
cies, such as the relative pronouns ’who’, ’which’
and ’that’. Coupled with a head-passing mechanism,
these categories allow the extraction of long-range
dependencies. Together with the local word-word
dependencies, they create a directed acyclic depen-
dency graph for each parsed sentence, as shown in
Figure 1.

5.2 Extracting dependencies using a CFG
parser

Local dependencies can be extracted from a CFG
parse tree using simple heuristic rules for finding
the head child for each type of constituent. Alter-
natively, head-modifier dependencies can be directly
output by a parser whose model is based on lexical
dependencies. In our experiments, we used the full
parse output from Collins’ parser (Collins, 1997), in
which every non-terminal node is already annotated
with head information. Because local dependencies
assemble into a tree for each sentence, there is only
one (shortest) path between any two entities in a de-
pendency tree.

5.3 Experimental Results

A recent approach to extracting relations is de-
scribed in (Culotta and Sorensen, 2004). The au-
thors use a generalized version of the tree kernel
from (Zelenko et al., 2003) to compute a kernel over
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relation examples, where a relation example consists
of the smallest dependency tree containing the two
entities of the relation. Precision and recall values
are reported for the task of extracting the 5 top-level
relations in the ACE corpus under two different sce-
narios:

– [S1] This is the classic setting: one multi-class
SVM is learned to discriminate among the 5 top-
level classes, plus one more class for the no-relation
cases.

– [S2] Because of the highly skewed data distribu-
tion, the recall of the SVM approach in the first sce-
nario is very low. In (Culotta and Sorensen, 2004)
the authors propose doing relation extraction in two
steps: first, one binary SVM is trained forrela-
tion detection, which means that all positive rela-
tion instances are combined into one class. Then the
thresholded output of this binary classifier is used as
training data for a second multi-class SVM, which is
trained forrelation classification. The same kernel
is used in both stages.

We present in Table 5 the performance of our
shortest path (SP) dependency kernel on the task of
relation extraction from ACE, where the dependen-
cies are extracted using either a CCG parser (SP-
CCG), or a CFG parser (SP-CFG). We also show
the results presented in (Culotta and Sorensen, 2004)
for their best performing kernel K4 (a sum between
a bag-of-words kernel and their dependency kernel)
under both scenarios.

Method Precision Recall F-measure

(S1) SP-CCG 67.5 37.2 48.0
(S1) SP-CFG 71.1 39.2 50.5
(S1) K4 70.3 26.3 38.0

(S2) SP-CCG 63.7 41.4 50.2
(S2) SP-CFG 65.5 43.8 52.5
(S2) K4 67.1 35.0 45.8

Table 5: Extraction Performance on ACE.

The shortest-path dependency kernels outperform
the dependency kernel from (Culotta and Sorensen,
2004) in both scenarios, with a more significant dif-
ference for SP-CFG. An error analysis revealed that
Collins’ parser was better at capturing local depen-
dencies, hence the increased accuracy of SP-CFG.
Another advantage of our shortest-path dependency

kernels is that their training and testing are very fast
– this is due to representing the sentence as a chain
of dependencies on which a fast kernel can be com-
puted. All the four SP kernels from Table 5 take
between 2 and 3 hours to train and test on a 2.6GHz
Pentium IV machine.

To avoid numerical problems, we constrained the
dependency paths to pass through at most 10 words
(as observed in the training data) by setting the ker-
nel to 0 for longer paths. We also tried the alterna-
tive solution of normalizing the kernel, however this
led to a slight decrease in accuracy. Having longer
paths give larger kernel scores in the unnormalized
version does not pose a problem because, by defi-
nition, paths of different lengths correspond to dis-
joint sets of features. Consequently, the SVM algo-
rithm will induce lower weights for features occur-
ring in longer paths, resulting in a linear separator
that works irrespective of the size of the dependency
paths.

6 Related Work

In (Zelenko et al., 2003), the authors do relation
extraction using a tree kernel defined over shallow
parse tree representations of sentences. The same
tree kernel is slightly generalized in (Culotta and
Sorensen, 2004) and used in conjunction with de-
pendency trees. In both approaches, a relation in-
stance is defined to be the smallest subtree in the
parse or dependency tree that includes both entities.
In this paper we argued that the information relevant
to relation extraction is almost entirely concentrated
in the shortest path in the dependency tree, leading to
an even smaller representation. Another difference
between the tree kernels above and our new kernel
is that the tree kernels used for relation extraction
areopaquei.e. the semantics of the dimensions in
the corresponding Hilbert space is not obvious. For
the shortest-path kernels, the semantics is known by
definition: each path feature corresponds to a dimen-
sion in the Hilbert space. This transparency allows
us to easily restrict the types of patterns counted by
the kernel to types that we deem relevant for relation
extraction. The tree kernels are also more time con-
suming, especially in the sparse setting, where they
count sparse subsequences of children common to
nodes in the two trees. In (Zelenko et al., 2003), the
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tree kernel is computed inO(mn) time, wherem
andn are the number of nodes in the two trees. This
changes toO(mn3) in the sparse setting.

Our shortest-path intuition bears some similar-
ity with the underlying assumption of the relational
pathfinding algorithm from (Richards and Mooney,
1992) : “in most relational domains, important con-
cepts will be represented by a small number of fixed
paths among the constants defining a positive in-
stance – for example, the grandparent relation is de-
fined by a single fixed path consisting of two parent
relations.” We can see this happening also in the task
of relation extraction from ACE, where “important
concepts” are the 5 types of relations, and the “con-
stants” defining a positive instance are the 5 types of
entities.

7 Future Work

Local and non-local (deep) dependencies are equally
important for finding relations. In this paper we tried
extracting both types of dependencies using a CCG
parser, however another approach is to recover deep
dependencies from syntactic parses, as in (Camp-
bell, 2004; Levy and Manning, 2004). This may
have the advantage of preserving the quality of lo-
cal dependencies while completing the representa-
tion with non-local dependencies.

Currently, the method assumes that the named en-
tities are known. A natural extension is to automati-
cally extract both the entities and their relationships.
Recent research (Roth and Yih, 2004) indicates that
integrating entity recognition with relation extrac-
tion in a global model that captures the mutual influ-
ences between the two tasks can lead to significant
improvements in accuracy.

8 Conclusion

We have presented a new kernel for relation extrac-
tion based on the shortest-path between the two rela-
tion entities in the dependency graph. Comparative
experiments on extracting top-level relations from
the ACE corpus show significant improvements over
a recent dependency tree kernel.
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Abstract

We addressthe problemof multi-way re-
lation classification,appliedto identifica-
tion of the interactionsbetweenproteins
in biosciencetext. A major impediment
to suchwork is the acquisitionof appro-
priately labeledtraining data;for our ex-
perimentswe have identified a database
that serves as a proxy for training data.
We usetwo graphicalmodelsanda neu-
ral net for the classificationof the inter-
actions, achieving an accuracy of 64%
for a 10-way distinctionbetweenrelation
types. We alsoprovide evidencethat the
exploitation of the sentencessurrounding
acitationto apapercanyield higheraccu-
racy thanothersentences.

1 Intr oduction

Identifying the interactionsbetweenproteinsis one
of the most important challengesin modern ge-
nomics,with applicationsthroughoutcell biology,
including expressionanalysis,signaling,andratio-
nal drug design. Most biomedical researchand
new discoveriesareavailableelectronicallybut only
in free text format, so automaticmechanismsare
neededto convert text into more structuredforms.
The goal of this paper is to addressthis difficult
andimportanttask,theextractionof theinteractions
betweenproteinsfrom free text. We usegraphical
modelsanda neuralnet thatwerefound to achieve
highaccuracy in therelatedtaskof extractingthere-

lation typesmight hold betweenthe entities“treat-
ment”and“disease”(RosarioandHearst,2004).

Labelingtrainingandtestdatais time-consuming
andsubjective. Herewe reporton resultsusingan
existingcurateddatabase,theHIV-1 HumanProtein
InteractionDatabase1, to trainandtesttheclassifica-
tion system.Theaccuraciesobtainedby theclassi-
ficationmodelsproposedarequitehigh,confirming
the validity of the approach.We alsofind support
for thehypothesisthatthesentencessurroundingci-
tationsareuseful for extractionof key information
from technicalarticles(Nakov et al., 2004).

In the remainderof this paperwe discussrelated
work, describethe dataset,andshow the resultsof
thealgorithmondocumentsandsentences.

2 Relatedwork

Therehasbeenlittle work in generalNLP on trying
to identifydifferentrelationsbetweenentities.Many
papersthat claim to be doing relationshiprecogni-
tion in actualityaddressthe taskof role extraction:
(usuallytwo) entitiesareidentifiedandtherelation-
ship is implied by the co-occurrenceof theseenti-
tiesor by somelinguisticexpression(Agichteinand
Gravano,2000;Zelenko et al., 2002).

TheACE competition2 hasa relationrecognition
subtask,but assumesa particular type of relation
holdsbetweenparticularentity types(e.g.,if thetwo
entitiesin questionarean EMP andan ORG, then
anemploymentrelationholdsbetweenthem;which
typeof employmentrelationdependson thetypeof
entity, e.g.,staff personvspartner).

1www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/index.html
2http://www.itl.nist.gov/iaui/894.01/tests/ace/
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In the BioNLP literature there have recently
beena numberof attemptsto automaticallyextract
protein-proteininteractionsfrom PubMedabstracts.
Someapproachessimply reportthatarelationexists
betweentwo proteinsbut do not determinewhich
relationholds(Bunescuet al., 2005;Marcotteet al.,
2001;Ramaniet al., 2005),while mostothersstart
with a list of interactionverbsandlabel only those
sentencesthatcontainthesetriggerwords(Blaschke
and Valencia,2002; Blaschke et al., 1999; Rind-
fleschet al., 1999;Thomaset al., 2000;Sekimizuet
al., 1998;Ahmedet al., 2005;Phuonget al., 2003;
Pustejovsky et al., 2002). However, asMarcotteet
al. (2001)note, “... searchesfor abstractscontain-
ing relevantkeywords,suchasinteract*,poorlydis-
criminatetrue hits from abstractsusing the words
in alternatesensesandmissabstractsusingdifferent
languageto describetheinteractions.”

Mostof theexistingmethodsalsosuffer from low
recall becausethey usehand-built specializedtem-
platesor patterns(Ono et al., 2001; Corney et al.,
2004).Somesystemsuselink grammarsin conjunc-
tion with triggerverbsinsteadof templates(Ahmed
et al., 2005;Phuonget al., 2003).Every papereval-
uatesonadifferenttestset,andsoit is quitedifficult
to comparesystems.

In this paper, we use state-of-the-artmachine
learningmethodsto determinethe interactiontypes
andto extract theproteinsinvolved. We do not use
triggerwords,templates,or dictionaries.

3 Data

We use the information from a domain-specific
databaseto gatherlabeleddatafor thetaskof classi-
fying the interactionsbetweenproteinsin text. The
manually-curatedHIV-1 HumanProteinInteraction
Databaseprovidesa summaryof documentedinter-
actionsbetweenHIV-1 proteinsand host cell pro-
teins,otherHIV-1 proteins,or proteinsfrom disease
organismsassociatedwith HIV or AIDS. Weusethis
databasealsobecauseit containsinformationabout
the typeof interactions,asopposedto otherprotein
interactiondatabases(BIND, MINT, DIP, for exam-
ple3) that list the proteinpairs interacting,without

3DIP lists only the proteinpairs,BIND hasonly somein-
formation aboutthe methodusedto provide evidencefor the
interaction,andMIND doeshave interactiontype information
but thevastmajority of theentries(99.9%of the47,000pairs)

Interaction #Triples Interaction #Triples
Interactswith 1115 Complexeswith 45
Activates 778 Modulates 43
Stimulates 659 Enhances 41
Binds 647 Stabilizes 34
Upregulates 316 Myristoylatedby 34
Importedby 276 Recruits 32
Inhibits 194 Ubiquitinatedby 29
Downregulates 124 Synergizeswith 28
Regulates 86 Co-localizeswith 27
Phosphorylates 81 Suppresses 24
Degrades 73 Competeswith 23
Induces 52 Requires 22
Inactivates 51

Table 1: Numberof triples for the most common
interactionsof the HIV-1 database,after removing
the distinctionin directionalityandthe triples with
morethanoneinteraction.

specifyingthetypeof interactions.
In thisdatabase,thedefinitionsof theinteractions

dependon theproteinsinvolvedandthearticlesde-
scribingthe interactions;thusthereareseveraldef-
initions for eachinteractiontype. For the interac-
tion bind and the proteinsANT and Vpr, we find
(amongothers)the definition “Inter action of HIV-
1 Vpr with humanadeninenucleotidetranslocator
(ANT) is presumedbasedon a specificbinding in-
teractionbetweenVpr andrat ANT.”

Thedatabasecontains65typesof interactionsand
809proteinsfor which thereis interactioninforma-
tion, for a totalof 2224pairsof interactingproteins.
For eachdocumentedprotein-proteininteractionthe
databaseincludesinformationabout:

� A pair of proteins(PP),
� Theinteractiontype(s)betweenthem(I), and
� PubMedidentificationnumbersof the journal

article(s)describingtheinteraction(s)(A).

A proteinpair
���

canhave multiple interactions
(for example,AIP1 bindsto HIV-1 p6andalsois in-
corporatedinto it) for anaverageof 1.9 interactions
per

���
anda maximumof 23 interactionsfor the

pairCDK9 andtat p14.
We referto thecombinationof a proteinpair

���

and an article � as a “triple.” Our goal is to au-
tomatically associateto eachtriple an interaction

have beenassignedthesametypeof interaction(aggregation).
Thesedatabasesareall manuallycurated.
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type. For theexampleabove, thetriple “AIP1 HIV-
1-p6 14519844” is assignedthe interactionbinds
(14519844beingthe PubMednumberof the paper
providing evidencefor this interaction)4.

Journalarticlescan containevidencefor multi-
ple interactions:thereare984journalarticlesin the
databaseandon averageeacharticle is reportedto
containevidencefor 5.9 triples (with a maximum
numberof 90 triples).

In somecasesthe databasereportsmultiple dif-
ferent interactionsfor a given triple. There are
5369uniquetriplesin thedatabaseandof these414
(7.7%)havemultiple interactions.Weexcludethese
triplesfrom ouranalysis;however, wedoincludear-
ticles and

���
s with multiple interactions.In other

words,we tacklecasessuchas the exampleabove
of thepair AIP1, HIV-1-p6 (thatcanbothbind and
incorporate) aslongastheevidencefor thedifferent
interactionsis givenby two differentarticles.

Someof the interactionsdiffer only in the direc-
tionality (e.g., regulatesand regulatedby, inhibits
and inhibited by, etc.); we collapsedthesepairsof
relatedinteractionsinto one5. Table 1 shows the
list of the25 interactionsof theHIV-1 databasefor
which therearemorethan10 triples.

For theseinteractionsandfor a randomsubsetof
theproteinpairs

���
(around45%of thetotal pairs

in thedatabase),we downloadedthecorresponding
full-text papers. From these,we extractedall and
only thosesentencesthatcontainbothproteinsfrom
theindicatedproteinpair. Weassignedeachof these
sentencesthe correspondinginteraction � from the
database(“papers”).

Nakov et al. (2004)arguethat thesentencessur-
roundingcitationsto relatedwork, or citances, area
usefulresourcefor bioNLP. Building on that work,
we usecitancesas an additionalform of evidence
to determineprotein-proteininteractiontypes.For a
given databaseentry containingPubMedarticle � ,

4To be precise,thereare for this ��� (as thereare often)
multiple articles(threein this case)describingthe interaction
binds, thus we have the following three triples to which we
associatebinds: “AIP1 HIV-1-p6 14519844,” “AIP1 HIV-1-p6
14505570”and“AIP1 HIV-1-p614505569.”

5We collapsedthesepairsbecausethe directionalityof the
interactionswasnot alwaysreliable in the database.This im-
pliesthatfor someinteractions,we arenot ableto infer thedif-
ferent roles of the two proteins;we consideredonly the pair
“prot1 prot2” or “prot2 prot1,” not both. However, our algo-
rithm candetectwhich proteinsareinvolvedin theinteractions.

proteinpair
���

, andinteractiontype � , we down-
loadedasubsetof thepapersthatcite � . Fromthese
citing papers,we extractedall andonly thosesen-
tencesthatmention � explicitly; we furtherfiltered
theseto includeall andonly thesentencesthatcon-
tain

���
. We labeledeachof thesesentenceswith

interactiontype � (“citances”).
Thereareoftenmany differentnamesfor thesame

protein. We useLocusLink6 protein identification
numbersandsynonym namesfor eachprotein,and
extractthesentencesthatcontainanexactmatchfor
(somesynonym of) eachprotein. By beingconser-
vativewith proteinnamematching,andby notdoing
co-referenceanalysis,we missmany candidatesen-
tences;however thismethodis very precise.

On average,for “papers,” we extracted0.5 sen-
tencesper triple (maximum of 79) and 50.6 sen-
tencesper interaction(maximumof 119); for “ci-
tances”weextracted0.4sentencespertriple (with a
maximumof 105)and49.2sentencesperinteraction
(162 maximum). We requireda minimum number
(40) of sentencesfor eachinteractiontype for both
“papers”and“citances”;the10interactionsof Table
2 met this requirement.We usedthesesentencesto
train andtestthemodelsdescribedbelow7.

Sinceall the sentencesextractedfrom onetriple
areassignedthe sameinteraction,we ensuredthat
sentencesfrom thesametriple did notappearin both
thetestingandthetrainingsets.Roughly75%of the
datawereusedfor trainingandtherestfor testing.

As mentionedabove the goal is to automatically
associateto eachtriple aninteractiontype.Thetask
tackledhereis actuallyslightly moredifficult: given
somesentencesextractedfrom article � , assignto
� aninteractiontype � andextract theproteins

���

involved. In other words, for the purposeof clas-
sification,we act as if we do not have information
abouttheproteinsthat interact.However, giventhe
way the sentenceextractionwasdone,all the sen-
tencesextractedfrom � containthe

���
.

6LocusLink was recently integrated into En-
trez Gene, a unified query environment for genes
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene).

7We also looked at larger chunksof text, in particular, we
extractedthe sentencecontainingthe ��� alongwith the pre-
vious and the following sentences,and the threeconsecutive
sentencesthat containedthe ��� (the proteinscould appearin
any of the sentences).However, the resultsobtainedby using
theselargerchunkswereconsistentlyworse.
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Interaction Papers Citances
Degrades 60 63
Synergizes with 86 101
Stimulates 103 64
Binds 98 324
Inactivates 68 92
Interacts with 62 100
Requires 96 297
Upregulates 119 98
Inhibits 78 84
Suppresses 51 99
Total 821 1322

Table2: Numberof interactionsentencesextracted.
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Figure1: Dynamicgraphicalmodel(DM) for pro-
tein interactionclassification(androleextraction).

A hand-assessmentof the individual sentences
shows thatnot every sentencethatmentionsthetar-
getproteins

���
actuallydescribestheinteraction�

(seeSection5.4). Thustheevaluationon thetestset
is doneat the documentlevel (to determineif the
algorithmcanpredict the interactionthat a curator
would assignto a documentas a whole given the
proteinpair).

Notethatweassumeherethatthepapersthatpro-
vide theevidencefor theinteractionsaregiven– an
assumptionnotusuallytruein practice.

4 Models

For assigninginteractions,we usedtwo generative
graphicalmodelsanda discriminative model. Fig-
ure 1 shows the generative dynamicmodel, based
on previous work on role and relation extraction
(RosarioandHearst,2004)wherethetaskwasto ex-
tract the entitiesTREATMENT andDISEASEand
the relationshipsbetweenthem. The nodeslabeled
“Role” representtheentities(in thiscasethechoices
arePROTEIN andNULL); the childrenof the role
nodesare the words (which act as features),thus
thereareasmany rolestatesastherearewordsin the
sentence;this modelconsistsof a Markov sequence
of stateswhereeachstategeneratesoneor multiple

observations. This modelmakes the additionalas-
sumptionthat thereis an interactionpresentin the
sentence(representedby thenode“Inter.”) thatgen-
eratesthe role sequenceandthe observations. (We
assumeherethatthereis asingleinteractionfor each
sentence.) The “Role” nodescan be observed or
hidden.Theresultsreportedherewereobtainedus-
ing only the wordsasfeatures(i.e., in the dynamic
model of Figure 1 there is only one featurenode
perrole) andwith the“Role” nodeshidden(i.e.,we
had no information regarding which proteinswere
involved). Inferenceis performedwith the junction
treealgorithm8.

Weusedasecondtypeof graphicalmodel,asim-
pleNaiveBayes,in which thenoderepresentingthe
interactiongeneratestheobservablefeatures(all the
wordsin thesentence).We did not includerole in-
formationin this model.

We defined joint probability distributions over
thesemodels,estimatedusingmaximumlikelihood
on the trainingsetwith a simpleabsolutediscount-
ing smoothingmethod.We performed10-foldcross
validation on the training set and we chose the
smoothingparametersfor which we obtainedthe
bestclassificationaccuracies(averagedover theten
runs)on the training data;the resultsreportedhere
wereobtainedusing theseparameterson the held-
out testsets9.

In addition to thesetwo generative models,we
alsouseda discriminative model,a neuralnetwork.
We usedtheMatlabpackageto train a feed-forward
network with conjugategradientdescent.The net-
work hasonehiddenlayer, with ahyperbolictangent
function, andan output layer representingthe rela-
tionships.A logistic sigmoidfunctionis usedin the
output layer. The network was trainedfor several
choicesof numbersof hiddenunits; we chosethe
best-performingnetworks basedon training seter-
ror. We thentestedthesenetworkson held-outtest-
ing data.Thefeatureswerewords,thesameasthose
usedfor thegraphicalmodels.

8UsingKevin Murphy’sBNT package:
http://www.cs.ubc.ca/˜murphyk/Software/BNT/bnt.html.

9Wedid nothaveenoughdatato requirethatthesentencesin
thetrainingandtestsetsof thecrossvalidationprocedure orig-
inatefrom disjoint triples(they do originatefrom disjoint triple
in thefinal heldoutdata).Thismayresultin a lessthanoptimal
choiceof the parametersfor theaggregatemeasuresdescribed
below.
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All Papers Citances
Mj Cf Mj Cf Mj Cf

DM 60.5 59.7 57.8 55.6 53.4 54.5
NB 58.1 61.3 57.8 55.6 55.7 54.5
NN 63.7 – 44.4 – 55.8 –
Key 20.1 – 24.4 – 20.4 –
KeyB 25.8 – 40.0 – 26.1 –
Base. 21.8 11.1 26.1

Table 3: Accuraciesfor classificationof the 10
protein-proteininteractionsof Table 2. DM: dy-
namic model, NB: Naive Bayes,NN: neural net-
work. Baselines: Key: trigger word approach,
KeyB: trigger word with backoff, Base: the accu-
racy of choosingthemostfrequentinteraction.

The taskis the following: given a triple consist-
ing of a

���
and an article, extract the sentences

from the article that containboth proteins. Then,
predict for the entiredocumentoneof the interac-
tions of Table 2 given the sentencesextractedfor
that triple. This is a 10-way classificationproblem,
which is significantlymorecomplex thanmuchof
therelatedwork in which thetaskis to make thebi-
naryprediction(seeSection2).

5 Results

The evaluation was done on a document-by-
documentbasis.Duringtesting,wechoosetheinter-
actionusingthe following aggregatemeasuresthat
usetheconstraintthatall sentencescomingfrom the
sametriple areassignedthesameinteraction.

� Mj : For eachtriple, for eachsentenceof the
triple, find the interactionthat maximizesthe
posteriorprobability of the interactiongiven
the features; then assignto all sentencesof
this triple themostfrequentinteractionamong
thosepredictedfor theindividual sentences.

� Cf: Retainall theconditionalprobabilities(do
not choosean interactionper sentence),then,
for eachtriple, choosetheinteractionthatmax-
imizesthesumover all thetriple’ssentences.

Table 3 reportsthe results in terms of classifi-
cation accuraciesaveragedacrossall interactions,
for the cases“all” (sentencesfrom “papers” and

“citances” together),only “papers” and only “ci-
tances”. The accuraciesare quite high; the dy-
namic model achieves around60% for “all,” 58%
for “papers” and 54% for “citances.” The neural
net achieves the best resultsfor “all” with around
64%accuracy. Fromtheseresultswe canmake the
following observations: all modelsgreatly outper-
form thebaselines;theperformancesof thedynamic
modelDM, theNaiveBayesNB andtheNN arevery
similar; for “papers”the bestresultswereobtained
with the graphicalmodels;for “all” and“citances”
the neuralnet did best. The useof “citances” al-
lowedthegatheringof additionaldata(andtherefore
a larger training set) that lead to higheraccuracies
(see“papers”versus“all”).

In theconfusionmatrix in Table5 we canseethe
accuraciesfor theindividual interactionsfor thedy-
namicmodelDM, using“all” and“Mj. ” For three
interactionsthismodelachievesperfectaccuracy.

5.1 Hiding the protein names

In order to ensurethat the algorithmwasnot over-
fitting on the proteinnames,we ran an experiment
in which we replacedthe proteinnamesin all sen-
tenceswith thetoken“PROT NAME.” For example,
thesentence:“SelectiveCXCR4antagonismbyTat”
became:“SelectivePROT NAME2 antagonismby
PROT NAME1.”

Table5.1 shows the resultsof runningthe mod-
els on this data. For “papers”and“citances” there
is always a decreasein the classificationaccuracy
when we remove the protein names,showing that
the protein namesdo help the classification. The
differencesin accuracy in the two casesusing“ci-
tances”aremuchsmallerthanthedifferencesusing
“papers”at leastfor thegraphicalmodels.Thissug-
geststhatcitationsentencesmaybemorerobustfor
somelanguageprocessingtasksandthatthemodels
thatuse“citances”learnbetterthelinguisticcontext
of theinteractions.Notehow in this casethegraph-
ical modelsalwaysoutperformtheneuralnetwork.

5.2 Usinga “trigger word” approach

As mentionedabove, much of the relatedwork in
this field makesuseof “trigger words” or “interac-
tion words” (seeSection2). In order to (roughly)
compareourwork andto build amorerealisticbase-
line, we createda list of 70 keywordsthatarerepre-
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Prediction Acc.
Truth D SyW St B Ina IW R Up Inh Su (%)
Degrades (D) 5 0 0 0 0 0 0 0 0 0 100.0
Synergizes with (SyW) 0 1 0 0 0 1 0 3 3 0 12.5
Stimulates (St) 0 0 4 0 0 0 6 0 1 0 36.4
Binds (B) 0 0 0 18 0 4 1 1 3 0 66.7
Inactivates (Ina) 0 0 0 0 9 0 0 0 0 0 100.0
Interacts with (IW) 0 0 4 3 0 5 1 0 1 2 31.2
Requires (R) 0 0 0 0 0 3 3 0 1 1 37.5
Upregulates (Up) 0 0 0 2 1 0 0 12 2 0 70.6
Inhibits (Inh) 0 0 0 3 0 0 1 1 12 0 70.6
Suppresses (Su) 0 0 0 0 0 0 0 0 0 6 100.0

Table4: Confusionmatrix for thedynamicmodelDM for “all,” “Mj. ” Theoverall accuracy is 60.5%.The
numbersindicatethenumberof articles � (eachpaperhasseveralrelevantsentences).

All Papers Citances
Mj Cf Diff Mj Cf Diff Mj Cf Diff

DM 60.5 60.5 0.7% 44.4 40.0 -25.6% 52.3 53.4 -2.0%
NB 59.7 59.7 0.1% 46.7 51.1 -11.7% 53.4 53.4 -3.1%
NN 51.6 -18.9% 44.4 0% 50.0 -10.4%

Table5: Accuraciesfor theclassificationof the10 protein-proteininteractionsof Table2 with theprotein
namesremoved. ColumnsmarkedDiff show thedifferencein accuracy (in percentages)with respectto the
original caseof Table3, averagedover all evaluationmethods.

sentative of the 10 interactions. For example, for
the interactiondegrade someof the keywords are
“degradation,” “degrade,” for inhibit wehave“inhib-
ited,” “inhibitor,” “inhibitory” andothers. We then
checked whether a sentencecontainedsuch key-
words. If it did, we assignedto the sentencethe
correspondinginteraction.If it containedmorethan
onekeyword correspondingto multiple interactions
consistingof the genericinteract with plus a more
specificone,we assignedthemorespecificinterac-
tion; if thetwo predictedinteractionsdid not include
interact with but two morespecificinteractions,we
did not assignan interaction, since we wouldn’t
know how to choosebetweenthem. Similarly, we
assignedno interactionif thereweremorethantwo
predictedinteractionsor no keywordspresentin the
sentence.Theresultsareshown in therows labeled
“Key” and“KeyB” in Table3. Case“KeyB” is the
“Key” methodwith back-off: when no interaction
waspredicted,we assignedto thesentencethemost
frequentinteractionin the trainingdata. As before,
we calculatedthe accuracy when we force all the
sentencesfrom one triple to be assignto the most
frequentinteractionamongthosepredictedfor the
individual sentences.

KeyB is more accuratethan Key and although

theKeyB accuraciesarehigherthantheotherbase-
lines, they are significantly lower than thoseob-
tainedwith the trainedmodels.The low accuracies
of thetrigger-word basedmethodsshow thatthere-
lation classificationtask is nontrivial, in the sense
that not all the sentencescontainthe mostobvious
word for theinteractions,andsuggeststhat thetrig-
gerwordapproachis insufficient.

5.3 Protein extraction

The dynamicmodelof Figure 1 hasthe appealing
property of simultaneouslyperforming interaction
recognitionandproteinnametagging(alsoknown
asrole extraction): the taskconsistsof identifying
all the proteinspresentin the sentence,given a se-
quenceof words. We assesseda slightly different
task: theidentificationof all (andonly) theproteins
presentin thesentencethatare involvedin theinter-
action.

The F-measure10 achievedby this modelfor this
taskis 0.79for “all,” 0.67for “papers”and0.79for
“citances”; again, the modelparameterswerecho-
senwith crossvalidationonthetrainingset,and“ci-

10TheF-measureis a weightedcombinationof precisionand
recall.Here,precisionandrecallaregivenequalweight,thatis,
F-measure= 
���
�������
�����������
���������������� .
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tances”hadsuperiorperformance.Notethatwe did
not usea dictionary: the systemlearnedto recog-
nize theproteinnamesusingonly the trainingdata.
Moreover, our role evaluationis quite strict: every
tokenis assessedandwe do not assignpartialcredit
for constituentsfor which only someof the words
are correctly labeled. We also did not usethe in-
formationthat all the sentencesextractedfrom one
triple containthesameproteins.

Given thesestrongresults(both F-measureand
classificationaccuracies),we believe that the dy-
namicmodelof Figure1 is a goodmodel for per-
forming bothnametaggingandinteractionclassifi-
cationsimultaneously, or eitherof thesetaskalone.

5.4 Sentence-level evaluation

In additionto assigninginteractionsto proteinpairs,
we are interestedin sentence-level semantics,that
is, in determiningthe interactionsthat areactually
expressedin thesentence.To testwhethertheinfor-
mationassignedto theentiredocumentby theHIV-
1 databaserecordcanbe usedto infer information
at the sentencelevel, an annotatorwith biological
expertisehand-annotatedthesentencesfrom theex-
periments. The annotatorwas instructedto assign
to eachsentenceoneof the interactionsof Table2,
“not interacting,” or “other” (if the interactionbe-
tweenthetwo proteinswasnotoneof Table2).

Of the 2114 sentencesthat were hand-labeled,
68.3%of themdisagreedwith theHIV-1databasela-
bel,28.4%agreedwith thedatabaselabel,and3.3%
werefoundto containmultiple interactionsbetween
the proteins. Among the 68.3% of the sentences
for which the labelsdid not agree,17.4%had the
vagueinteract with relation, 7.4% did not contain
any interactionand43.5%hadaninteractiondiffer-
ent from that specifiedby the triple11. In Table 6
we reportthemismatchbetweenthe two setsof la-
bels.Thetotal accuracy of 38.9%12 providesa use-
ful baselinefor usinga databasefor the labelingat
the sentencelevel. It may be the casethat certain
interactionstendto bebiologically relatedandthus

11For 28%of thetriples,noneof thesentencesextractedfrom
the targetpaperwerefoundby theannotatorto containthe in-
teractiongiven by the database.We readfour of thesepapers
andfoundsentencescontainingthatinteraction,but our system
hadfailedto extractthem.

12Theaccuracy without thevagueinteractwith is 49.4%.

All Papers Citan.
DM 48.9 28.9 47.9
NB 47.1 33.3 53.4
NN 52.9 36.7 63.2
Key 30.5 18.9 38.3

KeyB 46.2 36.3 52.6
Base 36.3 34.4 37.6

Table7: Classificationaccuracieswhenthemodels
aretrainedandtestedon thehandlabeledsentences.

tendto co-occur(upregulateandstimulateor inacti-
vateandinhibit, for example).

We investigateda few of the casesin which the
labelswere“suspiciously”different, for examplea
casein which thedatabaseinteractionwasstimulate
but the annotatorfound the sameproteinsto be re-
latedby inhibit aswell. It turnedout thattheauthors
of thearticleassignedstimulatefoundlittle evidence
for this interaction(in favor of inhibit), suggesting
anerrorin thedatabase.In anothercasethedatabase
interactionwasrequirebut theauthorsof thearticle,
while supportingthis, foundthatundercertaincon-
ditions(whena proteinis too abundant)theinterac-
tion changesto oneof inhibit. Thuswe wereable
to find controversialfactsaboutproteininteractions
justby looking at theconfusionmatrix of Table6.

We trainedthe modelsusing thesehand-labeled
sentencesin order to determinethe interactionex-
pressedfor each sentence(as opposedto for each
document). This is a difficult task; for somesen-
tencesit took the annotatorseveral minutesto un-
derstandthemanddecidewhich interactionapplied.
Table 7 shows the results on running the classi-
fication modelson the six interactionsfor which
therewere more than 40 examplesin the training
sets. Again, the sentencesfrom “papers”areespe-
cially difficult to classify;thebestresultfor “papers”
is 36.7%accuracy versus63.2%accuracy for “ci-
tances.” In this casethe differencein performance
of “papers”and“citances”is largerthanfor thepre-
vioustaskof document-level relationclassification.

6 Conclusions

We tackledanimportantanddifficult task,theclas-
sificationof differentinteractiontypesbetweenpro-
teins in text. A solution to this problem would
have animpacton a varietyof importantchallenges
in modernbiology. We useda protein-interaction
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Annotator
Database D SyW St B Ina R Up Inh Su IW Ot No
Degrades (D) 44 0 2 5 6 5 2 0 23 9 11 6
Synergizes with (SyW) 0 78 3 14 0 13 8 0 0 26 31 11
Stimulates (St) 0 5 23 12 0 8 7 5 1 26 60 18
Binds (B) 0 6 9 118 0 25 8 10 1 129 77 22
Inactivates (Ina) 0 0 4 25 0 2 4 33 6 14 27 11
Requires (R) 0 5 29 20 0 63 8 54 0 85 80 33
Upregulates (Up) 0 4 24 0 0 0 124 2 0 21 32 4
Inhibits (Inh) 0 8 4 8 2 2 2 43 9 24 37 19
Suppresses (Su) 3 0 0 1 5 0 0 42 34 33 24 4
Interacts with (IW) 0 1 5 28 1 12 6 1 1 49 27 28
Accuracy 93.6 72.9 22.3 51.1 0 48.5 73.4 22.7 45.3 11.8

Table6: Confusionmatrix comparingthe hand-assignedinteractionsandthoseextractedfrom the HIV-1
database.Ot: sentencesfor which theannotatorfoundan interactiondifferentfrom thosein Table2. No:
sentencesfor which the annotatorfound no interaction. The bottomrow shows the accuracy of usingthe
databaseto labeltheindividual sentences.

databaseto automaticallygatherlabeleddatafor this
task, and implementedgraphicalmodels that can
simultaneouslyperform protein nametaggingand
relation identification,achieving high accuracy on
both problems. We also found evidencesupport-
ing thehypothesisthatcitationsentencesareagood
sourceof trainingdata,mostlikelybecausethey pro-
videaconciseandprecisewayof summarizingfacts
in thebioscienceliterature.
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Abstract

We introduce BLANC, a family of dy-
namic, trainable evaluation metrics for ma-
chine translation. Flexible, parametrized
models can be learned from past data and
automatically optimized to correlate well
with human judgments for different cri-
teria (e.g. adequacy, fluency) using dif-
ferent correlation measures. Towards this
end, we discuss ACS (all common skip-
ngrams), a practical algorithm with train-
able parameters that estimates reference-
candidate translation overlap by comput-
ing a weighted sum of all common skip-
ngrams in polynomial time. We show that
the BLEU and ROUGE metric families are
special cases of BLANC, and we compare
correlations with human judgments across
these three metric families. We analyze the
algorithmic complexity of ACS and argue
that it is more powerful in modeling both
local meaning and sentence-level structure,
while offering the same practicality as the
established algorithms it generalizes.

1 Introduction

Although recent MT evaluation methods show
promising correlations to human judgments in terms
of adequacy and fluency, there is still considerable
room for improvement (Culy and Riehemann, 2003).
Most of these studies have been performed at a sys-
tem level and have not investigated metric robust-
ness at a lower granularity. Moreover, even though

the emphasis on adequacy vs. fluency is application-
dependent, automatic evaluation metrics do not dis-
tinguish between the need to optimize correlation
with regard to one or the other.

Machine translation automatic evaluation metrics
face two important challenges: the lack of powerful
features to capture both sentence level structure and
local meaning, and the difficulty of designing good
functions for combining these features into meaning-
ful quality estimation algorithms.

In this paper, we introduce BLANC1, an automatic
MT evaluation metric family that is a generaliza-
tion of popular and successful metric families cur-
rently used in the MT community (BLEU, ROUGE, F-
measure etc.). We describe an efficient, polynomial-
time algorithm for BLANC, and show how it can be
optimized to target adequacy, fluency or any other
criterion. We compare our metric’s performance
with traditional and recent automatic evaluation met-
rics. We also describe the parameter conditions under
which BLANC can emulate them.

Throughout the remainder of this paper, we dis-
tinguish between two components of automatic MT
evaluation: thestatistics computed on candidate
and reference translations and thefunction used in
defining evaluation metrics and generating transla-
tion scores. Commonly used statistics include bag-
of-words overlap, edit distance, longest common sub-
sequence, ngram overlap, and skip-bigram overlap.
Preferred functions are various combinations of pre-
cision and recall (Soricut and Brill, 2004), including

1Since existing evaluation metrics (e.g. BLEU, ROUGE) are
special cases of our metric family, it is only natural to nameit
Broad Learning and Adaptation for Numeric Criteria (BLANC) –
white light contains light of all frequencies
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weighted precision and F-measures (Van-Rijsbergen,
1979).

BLANC implements a practical algorithm with
learnable parameters for automatic MT evaluation
which estimates the reference-candidate translation
overlap by computing a weighted sum of common
subsequences (also known as skip-ngrams). Com-
mon skip-ngrams are sequences of words in their
sentence order that are found both in the reference
and candidate translations. By generalizing and sep-
arating the overlap statistics from the function used
to combine them, and by identifying the latter as a
learnable component, BLANC subsumes the ngram
based evaluation metrics as special cases and can
better reflect the need of end applications for ade-
quacy/fluency tradeoffs .

1.1 Related Work

Initial work in evaluating translation quality focused
on edit distance-based metrics (Su et al., 1992; Akiba
et al., 2001). In the MT context, edit distance (Lev-
enshtein, 1965) represents the amount of word inser-
tions, deletions and substitutions necessary to trans-
form a candidate translation into a reference trans-
lation. Another evaluation metric based on edit dis-
tance is theWord Error Rate(Niessen et al., 2000)
which computes the normalized edit distance. BLEU

is a weighted precision evaluation metric introduced
by IBM (Papineni et al., 2001). BLEU and its exten-
sions/variants (e.g. NIST (Doddington, 2002)) have
become de-facto standards in the MT community and
are consistently being used for system optimization
and tuning. These methods rely on local features
and do not explicitly capture sentence-level features,
although implicitly longer n-gram matches are re-
warded in BLEU. The General Text Matcher (GTM)
(Turian et al., 2003) is another MT evaluation method
that rewards longer ngrams instead of assigning them
equal weight.

(Lin and Och, 2004) recently proposed a set of
metrics (ROUGE) for MT evaluation. ROUGE-L is a
longest common subsequence (LCS) based automatic
evaluation metric for MT. The intuition behind it is
that long common subsequences reflect a large over-
lap between a candidate translation and a reference
translation. ROUGE-W is also based on LCS, but
assigns higher weights to sequences that have fewer
gaps. However, these metrics still do not distinguish

among translations with the same LCS but different
number of shorter sized subsequences, also indica-
tive of overlap. ROUGE-S attempts to correct this
problem by combining the precision/recall of skip-
bigramsof the reference and candidate translations.
However, by using skip-ngrams with n¿=2, we might
be able to capture more information encoded in the
higher level sentence structure. With BLANC, we
propose a way to exploit local contiguity in a man-
ner similar to BLEU and also higher level structure
similar to ROUGE type metrics.

2 Approach

We have designed an algorithm that can perform a
full overlap search over variable-size, non-contiguous
word sequences (skip-ngrams) efficiently. At first
glance, in order to perform this search, one has to
first exhaustively generate all skip-ngrams in the can-
didate and reference segments and then assess the
overlap. This approach is highly prohibitive since the
number of possible sequences is exponential in the
number of words in the sentence. Our algorithm –
ACS (all common skip-ngrams) – directly constructs
the set of overlapping skip-ngrams through incremen-
tal composition of word-level matches. With ACS,
we can reduce computation complexity to a fifth de-
gree polynomial in the number of words.

Through the ACS algorithm, BLANC is not limited
only to counting skip-ngram overlap: the contribu-
tion of different skip-ngrams to the overall score is
based on a set of features. ACS computes the over-
lap between two segments of text and also allows
local and global features to be computed during the
overlap search. These local and global features are
subsequently used to train evaluation models within
the BLANC family. We introduce below several sim-
ple skip-ngram-based features and show that special-
case parameter settings for these features emulate the
computation of existing ngram-based metrics. In or-
der to define the relative significance of a particular
skip-ngram found by the ACS algorithm, we employ
an exponential model for feature integration.

2.1 Weighted Skip-Ngrams

We defineskip-ngramsas sequences ofn words taken
in sentence order allowing for arbitrary gaps. In algo-
rithms literature skip-ngrams are equivalent tosubse-
quences. As special cases, skip-ngrams with n=2 are
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referred to as skip-bigrams and skip-ngrams with no
gaps between the words are simplyngrams. A sen-
tenceS of size |S| hasC(|S|, n) = |S|!

(|S|−n)!n! skip-
ngrams.

For example, the sentence “To be or not to be” has
C(6, 2) = 15 corresponding skip-bigrams including
“be or”, “ to to”, and three occurrences of “to be”.
It also hasC(6, 4) = 15 corresponding skip-4grams
(n = 4) including “to be to be” and “to or not to”.

Consider the following sample reference and can-
didate translations:

R0: machine translated text is evaluated automatically
K1: machine translated stories are chosen automatically
K2: machine and human together can forge a friendship that

cannot be translated into words automatically
K3: machine code is being translated automatically

The skip-ngram “machine translated automati-
cally” appears in both the referenceR0 and all candi-
date translations. Arguably, a skip-bigram that con-
tains few gaps is likely to capture local structure
or meaning. At the same time, skip-ngrams spread
across a sentence are also very useful since they may
capture part of the high level sentence structure.

We define aweighting feature function for skip-
ngrams that estimates how likely they are to capture
local meaning and sentence structure. The weighting
functionϕ for a skip-ngramw1 ..wn is defined as:

ϕ(w1..wn) = e−α·G(w1..wn) (1)

whereα ≥ 0 is a decay parameter and G(w1..wn)
measures the overall gap of the skip-ngramw1..wn in
a specific sentence. This overall skip-ngram weight
can be decomposed into the weights of its constituent
skip-bigrams:

ϕ(w1..wn) = e−α·G(w1,..,wn) (2)

= e−α·
P

n−1

i=1
G(wi,wi+1)

=
n−1∏

i=1

ϕ(wi wi+1) (3)

In equation 3,ϕ(wi wi+1) is the number of words
betweenwi andwi+1 in the sentence. In the example
above, the skip-ngram “machine translated automat-
ically” has weighte−3α for sentenceK1 and weight
e−12α = 1 for sentenceK2.

In our initial experiments the gapG has been ex-
pressed as a linear function, but different families of

functions can be explored and their corresponding pa-
rameters learned. The parameterα dictates the be-
havior of the weighting function. Whenα = 0 ϕ
equalse0 = 1, rendering gap sizes irrelevant. In this
case, skip-ngrams are given the same weight as con-
tiguous ngrams. Whenα is very large,ϕ approaches
0 if there are any gaps in the skip-ngram and is1 if
there are no gaps. This setting has the effect of con-
sidering only contiguous ngrams and discarding all
skip-ngrams with gaps.

In the above example, although the skip-ngram
“machine translated automatically” has the same cu-
mulative gap in both inK1 andK3, the occurrence in
K1 has is a gap distribution that more closely reflects
that of the reference skip-ngram inR0. To model gap
distribution differences between two occurrences of a
skip-ngram, we define a piece-wise distance function
δXY between two sentencesx andy. For two succes-
sive words in the skip-ngram, the distance function is
defined as:

δXY (w1w2) = e−β·|GX(w1,w2)−GY (w1,w2)| (4)

whereβ ≥ 0 is a decay parameter. Intuitively, the
β parameter is used to reward better aligned skip-
ngrams. Similar to theϕ function, the overallδXY

distance between two occurrences of a skip-ngram
with n > 1 is:

δXY (w1..wn) =

n−1∏

i=1

δXY (wiwi+1) (5)

Note that equation 5 takes into account pairs of skip-
ngrams skip in different places by summing over
piecewise differences. Finally, using an exponen-
tial model, we assign an overall score to the matched
skip-ngram. The skip-ngram scoring functionSxy al-
lows independent features to be incorporated into the
overall score:

Sxy(wi..wk) = ϕ(wi..wk) · δxy(wi..wk)

·eλ1f1(wi..wk) · ... · eλhfh(wi..wk) (6)

where featuresf1..fh can be functions based on the
syntax, semantics, lexical or morphological aspects
of the skip-ngram. Note that different models for
combining skip-ngram features can be used in con-
junction with ACS.

742



2.2 Multiple References

In BLANC we incorporate multiple references in a
manner similar to the ROUGE metric family. We
compute the precision and recall of each size skip-
ngrams for individual references. Based on these we
combine the maximum precision and maximum re-
call of the candidate translation obtained using all
reference translations and use them to compute an ag-
gregate F-measure.

The F-measure parameterβF is modeled by
BLANC. In our experiments we optimizedβF indi-
vidually for fluency and adequacy.

2.3 The ACS Algorithm

We present a practical algorithm for extractingAll
Common Skip-ngrams(ACS) of any size that appear
in the candidate and reference translations. For clar-
ity purposes, we present the ACS algorithm as it
relates to the MT problem: find all common skip-
ngrams (ACS) of any size in two sentencesX andY :

wSKIP ← Acs(δ, ϕ,X, Y ) (7)

= {wSKIP1..wSKIPmin(|X|,|Y |)} (8)

wherewSkipn is the set of all skip-ngrams of sizen
and is defined as:

wSKIPn = {“w1..wn” | wi ∈ X,wi ∈ Y,∀i ∈ [1..n]

andwi ≺ wj ,∀i < j ∈ [1..n]}

Given two sentencesX andY we observe amatch
(w, x, y) if word w is found in sentenceX at indexx
and in sentenceY at indexy:

(w, x, y) ≡ {0 ≤ x ≤ |X|, 0 ≤ y ≤ |Y |,

w ∈ V, andX[x] = Y [y] = w} (9)

whereV is the vocabulary with a finite set of words.
In the following subsections, we present the fol-

lowing steps in the ACS algorithm:

1. identify all matches– find matches and generate
corresponding nodes in the dependency graph

2. generate dependencies– construct edges ac-
cording to pairwise match dependencies

3. propagate common subsequences– count
all common skip-ngrams using corresponding
weights and distances

In the following sections we use the following exam-
ple to illustrate the intermediate steps of ACS.

X. “to be or not to be”
Y. “to exist or not be”

2.3.1 Step 1: Identify All Matches

In this step we identify all word matches(w, x, y)
in sentencesX andY . Using the example above, the
intermediate inputs and outputs of this step are:
Input: X. “to be or not to be”

Y. “to exist or not be”
Output: (to,1,1); (to,5,1); (or,3,3); (be,2,5); . . .

For each match we create a corresponding nodeN
in a dependency graph. With each node we associate
the actual word matched and its corresponding index
positions in both sentences.

2.3.2 Step 2: Generate Dependencies

A dependencyN1 → N2 occurs when the two
corresponding matches(w1, x1, y1) and(w2, x2, y2)
can form a valid common skip-bigram: i.e. when
x1 < x2 andy1 < y2. Note that the matches can
cover identical words, but their indices cannot be the
same (x1 6= x2 and y1 6= y2) since a skip-bigram
requires two different word matches.

In order to facilitate the generation of all common
subsequences, the graph is populated with the
appropriate dependency edges:

for each node N in DAG
for each node M6=N in DAG

if N(x)≤M(x) and N(y)≤M(y)
create edge E: N→M

computeδXY (E)
computeϕ(E)

This step incorporates the concepts of skip-ngram
weight and distance into the graph. With each edge
E : N1 → N2 we associate step-wise weight and dis-
tance information for the corresponding skip-bigram
formed by matches(w1, x1, y1) and(w2, x2, y2).

Note that rather than counting all skip-ngrams,
which would be exponential in the worst case sce-
nario, we only construct a structure of match depen-
dencies (i.e. skip-bigrams). As in dynamic program-
ming, in order to avoid exponential complexity, we
compute individual skip-ngram scores only once.

2.3.3 Step 3: Propagate Common Subsequences

In this last step, the ACS algorithmcountsall com-
mon skip-ngrams using corresponding weights and
distances. In the general case, this step is equiva-
lent measuring the overlap of the two sentencesX
andY . As a special case, if no features are used, the
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ACS algorithm is equivalent to counting the number
of common skip-ngrams regardless of gap sizes.

// depth first search (DFS)
for each node N in DAG

compute node N’s depth

// initialize skip-ngram counts
for each node N in DAG

vN [1] ← 1
for i=2 to LCS(X,Y)

vN [i] = 0

// compute ngram counts
for d=1 to MAXDEPTH

for each node N of depth d in DAG
for each edge E: N→M

for i=2 to d
vM [i] += Sxy(δ(E), ϕ(E), vN [i-1])

After algorithm ACS is run, the number of skip-
ngrams (weighted skip-ngram score) of sizek is sim-
ply the sum of the number of skip-ngrams of sizek
ending in each nodeN ’s corresponding match:

wSKIPk =
∑

Ni∈DAG

vNi
[k] (10)

2.3.4 ACS Complexity and Feasibility

In the worst case scenario, both sentencesX andY
are composed of exactly the same repeated word:X
= “w w w w ..” and Y = “w w w w ..”. We letm = |X|
andn = |Y |. In this case, the number of matches is
M = n · m. Therefore, Step 1 has worst case time
and space complexity ofO(m · n). However, em-
pirical data suggest that there are far fewer matches
than in the worst-case scenario and the actual space
requirements are drastically reduced. Even in the
worst-case scenario, if we assume the average sen-
tences is fewer than100 words, the number of nodes
in the DAG would only be10, 000. Step 2 of the al-
gorithm consists of creating edges in the dependency
graph. In the worst case scenario, the number of di-
rected edges isO(M2) and furthermore if the sen-
tences are uniformly composed of the same repeated
word as seen above, the worst-case time and space
complexity ism(m+1)/2 ·n(n+1)/2 = O(m2n2).
In Step 3 of the algorithm, the DFS complexity for
computing of node depths isO(M) and the complex-
ity of LCS(X,Y ) is O(m · n). The dominant step

is the propagation of common subsequences (skip-
ngram counts). Letl be the size of theLCS. The up-
per bound on the size of the longest common subse-
quence ismin(|X|, |Y |) = min(m,n). In the worst
case scenario, for each node we propagatel count val-
ues (the size of vectorv) to all other nodes in the
DAG. Therefore, the time complexity for Step 3 is
O(M2 · l) = O(m2n2l) (fifth degree polynomial).

3 BLANC as a Generalization of BLEU and
ROUGE

Due to its parametric nature, the All Common Sub-
sequences algorithm can emulate the ngram compu-
tation of several popular MT evaluation metrics. The
weighting functionϕ allows skip-ngrams with differ-
ent gap sizes to be assigned different weights. Param-
eterα controls the shape of the weighting function.

In one extreme scenario, if we allowα to take
very large values, the net effect is that all contiguous
ngrams of any size will have corresponding weights
of e0 = 1 while all other skip-ngrams will have
weights that are zero. In this case, the distance
function will only apply to contiguous ngrams which
have the same size and no gaps. Therefore, the dis-
tance function will also be1. The overall result is
that the ACS algorithm collects contiguous common
ngram counts for all ngram sizes. This is equivalent
to computing the ngram overlap between two sen-
tences, which is equivalent to the ngram computa-
tion performed BLEU metric. In addition to comput-
ing ngram overlap, BLEU incorporates a thresholding
(clipping) on ngram counts based on reference trans-
lations, as well as a brevity penalty which makes sure
the machine-produced translations are not too short.
In BLANC, this is replaced by standard F-measure,
which research (Turian et al., 2003) has shown it can
be used successfully in MT evaluation.

Another scenario consists of setting theα and β
parameters to0. In this case, all skip-ngrams are as-
signed the same weight value of1 and skip-ngram
matches are also assigned the same distance value of
1 regardless of gap sizes and differences in gap sizes.
This renders all skip-ngrams equivalent and the ACS

algorithm is reduced to counting theskip-ngram over-
lap between two sentences. Using these counts, pre-
cision and recall-based metrics such as the F-measure
can be computed. If we let theα andβ parameters to
be zero, disregard redundant matches, and compute
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Figure 1:Empirical and theoretical behavior of ACS on 2003 machine translation evaluation data (semilog scale).

the ACSonly for skip-ngrams of size2, the ACSalgo-
rithm is equivalent to the ROUGE-S metric (Lin and
Och, 2004). This case represents a specific parameter
setting in the ACS skip-ngram computation.

The longest common subsequence statistic has also
been successfully used for automatic machine trans-
lation evaluation in the ROUGE-L (Lin and Och,
2004) algorithm. In BLANC, if we set bothα and
β parameters to zero, the net result is a set of skip-
bigram (common subsequence) overlap counts for all
skip-bigram sizes. Although dynamic programming
or suffix trees can be used to compute the LCS much
faster, under this parameter setting the ACSalgorithm
can also produce the longest common subsequence:

LCS(X,Y )← argmax
k

ACS(wSKIPk) > 0

where Acs(wSKIPk) is the number of common
skip-ngrams (common subsequences) produced by
the ACS algorithm.

ROUGE-W (Lin and Och, 2004) relies on a
weighted version of the longest common subse-
quence, under which longer contiguous subsequences
are assigned a higher weight than subsequences that
incorporate gaps. ROUGE-W uses the polynomial
function xa in the weighted LCS computation. This
setting can also be simulated by BLANC by adjusting

the parametersα to reward tighter skip-ngrams andβ
to assign a very high score to similar size gaps. In-
tuitively, α is used to reward skip-ngrams that have
smaller gaps, whileβ is used to reward better aligned
skip-ngram overlap.

4 Scalability & Data Exploration

In Figure 1 we show theoretical and empirical prac-
tical behavior for the ACS algorithm on the 2003
TIDES machine translation evaluation data for Ara-
bic and Chinese. Sentence length distribution is
somewhat similar for the two languages – only a very
small amount of text segments have more than 50
tokens. We show the ACS graph size in the worst
case scenario, and the empirical average number of
matches for both languages as a function of sentence
length. We also show (on a log scale) the upper bound
on time/space complexity in terms of total number
of feature computations. Even though the worst-
case scenario is tractable (polynomial), the empirical
amount of computation is considerably smaller in the
form of polynomials of lower degree. In Figure 1,
sentence length is the average between reference and
candidate lengths.

Finally, we also show the total number of fea-
ture computations involved in performing a full over-
lap search and computing a numeric score for the
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reference-candidate translation pair. We have exper-
imented with the ACS algorithm using a worst-case
scenario where all words are exactly the same for a
fifty words reference translation and candidate trans-
lation. In practice when considering real sentences
the number of matches is very small. In this setting,
the algorithm takes less than two seconds on a low-
end desktop system when working on the worst case
scenario, and less then a second for all candidate-
reference pairs in the TIDES 2003 dataset. This re-
sult renders the ACS algorithm very practical for au-
tomatic MT evaluation.

5 Experiments & Results

In the dynamic metric BLANC, we have implemented
the ACS algorithm using several parameters includ-
ing the aggregate gap sizeα, the displacement feature
β, a parameter for regulating skip-ngram size contri-
bution, and the F-measureβF parameter.

Until recently, most experiments that evaluate au-
tomatic metrics correlation to human judgments have
been performed at a system level. In such experi-
ments, human judgments are aggregated across sen-
tences for each MT system and compared to aggre-
gate scores for automatic metrics. While high scor-
ing metrics in this setting are useful for understand-
ing relative system performance, not all of them are
robust enough for evaluating the quality of machine
translation output at a lower granularity. Sentence-
level translation quality estimation is very useful
when MT is used as a component in a pipeline of text-
processing applications (e.g. question answering).
The fact that current automatic MT evaluation met-
rics including BLANC do not correlate well with hu-
man judgments at the sentence level, does not mean
we should ignore this need and focus only on system
level evaluation. On the contrary, further research is
required to improve these metrics. Due to its train-
able nature, and by allowing additional features to be
incorporated into its model, BLANC has the potential
to address this issue.

For comparison purposes with previous literature,
we have also performed experiments at system level
for Arabic. The datasets used consist of the MT trans-
lation outputs from all systems available through the
Tides 2003 evaluation (663 sentences) for training
and Tides 2004 evaluation (1353 sentences) for test-
ing.

We compare (Table 1) the performance of BLANC

on Arabic translation output with the performance
of more established evaluation metrics: BLEU and
NIST, and also with more recent metrics: ROUGE-
L and ROUGE-S (using an unlimited size skip win-
dow), which have been shown to correlate well with
human judgments at system level – as confirmed by
our results. We have performed experiments in which
case information is preserved as well as experiments
that ignore case information. Since the results are
very similar, we only show here experiments under
the former condition. In order to maintain consis-
tency, when using any metric we apply the same pre-
processing provided by the MTEval script. When
computing the correlation between metrics and hu-
man judgments, we only keep strictly positive scores.
While this is not fully equivalent to BLEU smooth-
ing, it partially mitigates the same problem of zero
count ngrams for short sentences. In future work we
plan to implement smoothing for all metrics, includ-
ing BLANC.

We train BLANC separately for adequacy and flu-
ency, as well as for system level and segment level
correlation with human judgments. The BLANC pa-
rameters are currently trained using a simple hill-
climbing procedure and using several starting points
in order to decrease the chance of reaching a local
maximum.

BLANC proves to be robust across criteria and
granularity levels. As expected, different parameter
values of BLANC optimize different criteria (e.g. ad-
equacy and fluency). We have observed that train-
ing BLANC for adequacy results in more bias to-
wards recall (βF =3) compared to training it for flu-
ency (βF =2). This confirms our intuition that a dy-
namic, parametric metric is justified for automatic
evaluation.

6 Conclusions & Future Work

In previous sections we have defined simple distance
functions. More complex functions can also be incor-
porated in ACS. Skip-ngrams in the candidate sen-
tence might be rewarded if they contain fewer gaps in
the candidate sentence and penalized if they contain
more. Different distance functions could also be used
in ACS, including functions based on surface-form
features and part-of-speech features.

Most of the established MT evaluation methods are
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Tides 2003 Arabic
System Level Segment Level

Method Adequacy Fluency Adequacy Fluency

BLEU 0.950 0.934 0.382 0.286
NIST 0.962 0.939 0.439 0.304
ROUGE-L 0.974 0.926 0.440 0.328
ROUGE-S 0.949 0.935 0.360 0.328
BLANC 0.988 0.979 0.492 0.391

Tides 2004 Arabic
System Level Segment Level

Method Adequacy Fluency Adequacy Fluency

BLEU 0.978 0.994 0.446 0.337
NIST 0.987 0.952 0.529 0.358
ROUGE-L 0.981 0.985 0.538 0.412
ROUGE-S 0.937 0.980 0.367 0.408
BLANC 0.982 0.994 0.565 0.438

Table 1:Pearson correlation of several metrics with human judgments at system level and segment level for fluency and adequacy.

static functions according to which automatic evalu-
ation scores are computed. In this paper, we have
laid the foundation for a more flexible, parametric ap-
proach that can be trained using existing MT data and
that can be optimized for highest agreement with hu-
man assessors, for different criteria.

We have introducedACS, a practical algorithm
with learnable parameters for automatic MT evalu-
ation and showed that ngram computation of popu-
lar evaluation methods can be emulated through dif-
ferent parameters byACS. We have computed time
and space bounds for theACS algorithm and argued
that while it is more powerful in modeling local and
sentence structure, it offers the same practicality as
established algorithms.

In our experiments, we trained and tested BLANC

on data from consecutive years, and therefore tai-
lored the metric for two different operating points
in MT system performance. In this paper we show
that BLANC correlates well with human performance
when trained on previous year data for both sentence
and system level.

In the future, we plan to investigate the stability
and performance of BLANC and also apply it to auto-
matic summarization evaluation. We plan to optimize
the BLANC parameters for different criteria in addi-
tion to incorporating syntactic and semantic features
(e.g. ngrams, word classes, part-of-speech).

In previous sections we have defined simple dis-
tance functions. More complex functions can also
be incorporated in ACS. Skip-ngrams in the candi-
date sentence might be rewarded if they contain fewer
gaps in the candidate sentence and penalized if they
contain more. Different distance functions could also
be used in ACS, including functions based on surface-
form features and part-of-speech features.

Looking beyond the BLANC metric, this paper
makes the case for the need to shift to trained, dy-
namic evaluation metrics which can adapt to individ-

ual optimization criteria and correlation functions.
We plan to make available an implementation of

BLANC athttp://www.cs.cmu.edu/ llita/blanc.
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Abstract

Many learning tasks have subtasks for which
much training data exists. Therefore, we want
to transfer learning from the old, general-
purpose subtask to a more specific new task,
for which there is often less data. While work
in transfer learning often considers how the
old task should affect learning on the new
task, in this paper we show that it helps to
take into account how the new task affects the
old. Specifically, we perform joint decoding of
separately-trained sequence models, preserv-
ing uncertainty between the tasks and allowing
information from the new task to affect predic-
tions on the old task. On two standard text data
sets, we show that joint decoding outperforms
cascaded decoding.

1 Introduction
Many tasks in natural language processing are solved by
chaining errorful subtasks. Within information extrac-
tion, for example, part-of-speech tagging and shallow
parsing are often performed before the main extraction
task. Commonly these subtasks have their own standard
sets of labeled training data: for example, many large
data sets exist for learning to extract person names from
newswire text; whereas the available training data for new
applications, such as extracting appointment information
from email, tends to be much smaller. Thus, we need to
transfer regularities learned from a well-studied subtask,
such as finding person names in newswire text, to a new,
related task, such as finding names of speakers in email
seminar announcements.

In previous NLP systems, transfer is often accom-
plished by training a model for the subtask, and using its
prediction as a feature for the new task. For example, re-
cent CoNLL shared tasks (Tjong Kim Sang & De Meul-
der, 2003; Carreras & Marquez, 2004), which are stan-
dard data sets for such common NLP tasks as clause iden-

tification and named-entity recognition, include predic-
tions from a part-of-phrase tagger and a shallow parser as
features. But including only the single most likely sub-
task prediction fails to exploit useful dependencies be-
tween the tasks. First, if the subtask prediction is wrong,
the model for the new task may not be able to recover. Of-
ten, errors propagate upward through the chain of tasks,
causing errors in the final output. This problem can be
ameliorated by preserving uncertainty in the subtask pre-
dictions, because even if the best subtask prediction is
wrong, the distribution over predictions can still be some-
what accurate.

Second, information from the main task can inform the
subtask. This is especially important for learning trans-
fer, because the new domain often has different charac-
teristics than the old domain, which is often a standard
benchmark data set. For example, named-entity recog-
nizers are usually trained on newswire text, which is more
structured and grammatical than email, so we expect an
off-the-shelf named-entity recognizer to perform some-
what worse on email. An email task, however, often has
domain-specific features, such as PREVIOUS WORD IS
Speaker:), which were unavailable or uninformative to
the subtask on the old training set, but are very informa-
tive to the subtask in the new domain. While previous
work in transfer learning has considered how the old task
can help the new task, in this paper we show how the new
task can help itself by improving predictions on the old.

In this paper we address the issue of transfer by train-
ing a cascade of models independently on the various
training sets, but at test time combining them into a single
model in which decoding is performed jointly. For the in-
dividual models, we use linear-chain conditional random
fields (CRFs), because the great freedom that they allow
in feature engineering facilitates the learning of richer in-
teractions between the subtasks. We train a linear chain
CRF on each subtask, using the prediction of the previous
subtask as a feature. At test time, we combine the learned
weights from the original CRFs into a single grid-shaped
factorial CRF, which makes predictions for all the tasks
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at once. Viterbi decoding in this combined model im-
plicitly considers all possible predictions for the subtask
when making decisions in the main task.

We evaluate joint decoding for learning transfer on a
standard email data set and a standard entity recognition
task. On the email data set, we show a significant gain
in performance, including new state-of-the-art results. Of
particular interest for transfer learning, we also show that
using joint decoding, we achieve equivalent results to cas-
caded decoding with 25% less training data.

2 Linear-chain CRFs
Conditional random fields (CRFs) (Lafferty et al., 2001)
are undirected graphical models that are conditionally
trained. In this section, we describe CRFs for the linear-
chain case. Linear-chain CRFs can be roughly under-
stood as conditionally-trained finite state machines. A
linear-chain CRF defines a distribution over state se-
quences s = {s1, s2, . . . , sT } given an input sequence
x = {x1, x2, . . . , xT } by making a first-order Markov
assumption on states. These Markov assumptions imply
that the distribution over sequences factorizes in terms of
pairwise functions Φt(st−1, st,x) as:

p(s|x) =
∏

t Φt(st−1, st,x)
Z(x)

, (1)

The partition function Z(x) is defined to ensure that the
distribution is normalized:

Z(x) =
∑
s′

∏
t

Φt(s′t−1, s
′
t,x). (2)

The potential functions Φt(st−1, st,x) can be interpreted
as the cost of making a transition from state st−1 to state
st at time t, similar to a transition probability in an HMM.

Computing the partition function Z(x) requires sum-
ming over all of the exponentially many possible state
sequences s′. By exploiting Markov assumptions, how-
ever, Z(x) (as well as the node marginals p(st|x) and the
Viterbi labeling) can be calculated efficiently by variants
of the standard dynamic programming algorithms used
for HMMs.

We assume the potentials factorize according to a set
of features {fk}, which are given and fixed, so that

Φ(st−1, st,x) = exp

(∑
k

λkfk(st−1, st,x, t)

)
. (3)

The model parameters are a set of real weights Λ = {λk},
one for each feature.

Feature functions can be arbitrary. For example, one
feature function could be a binary test fk(st−1, st,x, t)
that has value 1 if and only if st−1 has the label SPEAK-
ERNAME, st has the label OTHER, and the word xt be-
gins with a capital letter. The chief practical advantage

of conditional models, in fact, is that we can include ar-
bitrary highly-dependent features without needing to es-
timate their distribution, as would be required to learn a
generative model.

Given fully-labeled training instances {(sj ,xj)}M
j=1,

CRF training is usually performed by maximizing the pe-
nalized log likelihood

`(Λ) =
∑

j

∑
t

∑
k

λkfk(sj,t−1, sj,t,x, t)

−
∑

j

log Z(xj)−
∑

k

λ2
k

2σ2
(4)

where the final term is a zero-mean Gaussian prior placed
on parameters to avoid overfitting. Although this maxi-
mization cannot be done in closed form, it can be op-
timized numerically. Particularly effective are gradient-
based methods that use approximate second-order infor-
mation, such as conjugate gradient and limited-memory
BFGS (Byrd et al., 1994). For more information on
current training methods for CRFs, see Sha and Pereira
(2003).

3 Dynamic CRFs
Dynamic conditional random fields (Sutton et al., 2004)
extend linear-chain CRFs in the same way that dynamic
Bayes nets (Dean & Kanazawa, 1989) extend HMMs.
Rather than having a single monolithic state variable,
DCRFs factorize the state at each time step by an undi-
rected model.

Formally, DCRFs are the class of conditionally-trained
undirected models that repeat structure and parameters
over a sequence. If we denote by Φc(yc,t,xt) the repe-
tition of clique c at time step t, then a DCRF defines the
probability of a label sequence s given the input x as:

p(s|x) =
∏

t Φc(yc,t,xt)
Z(x)

, (5)

where as before, the clique templates are parameterized
in terms of input features as

Φc(yc,t,xt) = exp

{∑
k

λkfk(yc,t,xt)

}
. (6)

Exact inference in DCRFs can be performed by
forward-backward in the cross product state space, if the
cross-product space is not so large as to be infeasible.
Otherwise, approximate methods must be used; in our
experience, loopy belief propagation is often effective
in grid-shaped DCRFs. Even if inference is performed
monolithically, however, a factorized state representation
is still useful because it requires much fewer parame-
ters than a fully-parameterized linear chain in the cross-
product state space.
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Sutton et al. (2004) introduced the factorial CRF
(FCRF), in which the factorized state structure is a grid
(Figure 1). FCRFs were originally applied to jointly
performing interdependent language processing tasks, in
particular part-of-speech tagging and noun-phrase chunk-
ing. The previous work on FCRFs used joint training,
which requires a single training set that is jointly labeled
for all tasks in the cascade. For many tasks such data
is not readily available, for example, labeling syntac-
tic parse trees for every new Web extraction task would
be prohibitively expensive. In this paper, we train the
subtasks separately, which allows us the freedom to use
large, standard data sets for well-studied subtasks such as
named-entity recognition.

4 Alternatives for Learning Transfer

In this section, we enumerate several classes of methods
for learning transfer, based on the amount and type of
interaction they allow between the tasks. The principal
differences between methods are whether the individual
tasks are performed separately in a cascade or jointly;
whether a single prediction from the lower task is used,
or several; and what kind of confidence information is
shared between the subtasks.

The main types of transfer learning methods are:

1. Cascaded training and testing. This is the traditional
approach in NLP, in which the single best prediction
from the old task is used in the new task at training
and test time. In this paper, we show that allowing
richer interactions between the subtasks can benefit
performance.

2. Joint training and testing. In this family of ap-
proaches, a single model is trained to perform all the
subtasks at once. For example, in Caruana’s work
on multitask learning (Caruana, 1997), a neural net-
work is trained to jointly perform multiple classifica-
tion tasks, with hidden nodes that form a shared rep-
resentation among the tasks. Jointly trained meth-
ods allow potentially the richest interaction between
tasks, but can be expensive in both computation time
required for training and in human effort required to
label the joint training data.

Exact inference in a jointly-trained model, such
as forward-backward in an FCRF, implicitly con-
siders all possible subtask predictions with confi-
dence given by the model’s probability of the pre-
diction. However, for computational efficiency, we
can use inference methods such as particle filtering
and sparse message-passing (Pal et al., 2005), which
communicate only a limited number of predictions
between sections of the model.

Main Task

Subtask A

Subtask B

Input

Figure 1: Graphical model for the jointly-decoded CRF.
All of the pairwise cliques also have links to the observed
input, although we omit these edges in the diagram for
clarity.

3. Joint testing with cascaded training. Although a
joint model over all the subtasks can have better per-
formance, it is often much more expensive to train.
One approach for reducing training time is cascaded
training, which provides both computational effi-
ciency and the ability to reuse large, standard train-
ing sets for the subtasks. At test time, though, the
separately-trained models are combined into a sin-
gle model, so that joint decoding can propagate in-
formation between the tasks.

Even with cascaded training, it is possible to pre-
serve some uncertainty in the subtask’s predictions.
Instead of using only a single subtask prediction
for training the main task, the subtask can pass up-
wards a lattice of likely predictions, each of which
is weighted by the model’s confidence. This has the
advantage of making the training procedure more
similar to the joint testing procedure, in which all
possible subtask predictions are considered.

In the next two sections, we describe and evaluate
joint testing with cascaded training for transfer learning
in linear-chain CRFs. At training time, only the best
subtask prediction is used, without any confidence infor-
mation. Even though this is perhaps the simplest joint-
testing/cascaded-training method, we show that it still
leads to a significant gain in accuracy.

5 Composition of CRFs

In this section we briefly describe how we combine
individually-trained linear-chain CRFs using composi-
tion. For a series of N cascaded tasks, we train indi-
vidual CRFs separately on each task, using the prediction
of the previous CRF as a feature. We index the CRFs
by i, so that the state of CRF i at time t is denoted si

t.
Thus, the feature functions for CRF i are of the form
f i

k(si
t−1, s

i
t, s

i−1
t ,x, t)—that is, they depend not only on

the observed input x and the transition (si
t−1 → si

t) but
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wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,

last names, honorifics, etc.
wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
Tt = T
qk(x, t + δ) for all k and δ ∈ [−4, 4]

Table 1: Input features qk(x, t) for the seminars data. In
the above wt is the word at position t, Tt is the POS tag
at position t, w ranges over all words in the training data,
and T ranges over all Penn Treebank part-of-speech tags.
The “appears to be” features are based on hand-designed
regular expressions that can span several tokens.

also on the state si−1
t of the previous transducer.

We also add all conjunctions of the input features and
the previous transducer’s state, for example, a feature that
is 1 if the current state is SPEAKERNAME, the previ-
ous transducer predicted PERSONNAME, and the previ-
ous word is Host:.

To perform joint decoding at test time, we form the
composition of the individual CRFs, viewed as finite-
state transducers. That is, we define a new linear-chain
CRF whose state space is the cross product of the states
of the individual CRFs, and whose transition costs are the
sum of the transition costs of the individual CRFs.

Formally, let S1, S2, . . . SN be the state sets and
Λ1,Λ2, . . . ΛN the weights of the individual CRFs. Then
the state set of the combined CRF is S = S1×S2× . . .×
SN . We will denote weight k in an individual CRF i by
λi

k and a single feature by f i
k(si

t−1, s
i
t, s

i−1
t ,x, t). Then

for s ∈ S, the combined model is given by:

p(s|x) =

∏
t exp

{∑N
i=1

∑
k λi

kf i
k(si

t−1, s
i
t, s

i−1
t ,x, t)

}
Z(x)

.

(7)
The graphical model for the combined model is the fac-
torial CRF in Figure 1.

6 Experiments
6.1 Email Seminar Announcements
We evaluate joint decoding on a collection of 485 e-mail
messages announcing seminars at Carnegie Mellon Uni-
versity, gathered by Freitag (1998). The messages are
annotated with the seminar’s starting time, ending time,
location, and speaker. This data set has been the sub-
ject of much previous work using a wide variety of learn-
ing methods. Despite all this work, however, the best
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Figure 2: Learning curves for the seminars data set on
the speaker field, averaged over 10-fold cross validation.
Joint training performs equivalently to cascaded decoding
with 25% more data.

reported systems have precision and recall on speaker
names of only about 70%—too low to use in a practical
system. This task is so challenging because the messages
are written by many different people, who each have dif-
ferent ways of presenting the announcement information.

Because the task includes finding locations and per-
son names, the output of a named-entity tagger is a use-
ful feature. It is not a perfectly indicative feature, how-
ever, because many other kinds of person names appear in
seminar announcements—for example, names of faculty
hosts, departmental secretaries, and sponsors of lecture
series. For example, the token Host: indicates strongly
both that what follows is a person name, but that person
is not the seminars’ speaker.

Even so, named-entity predictions do improve per-
formance on this task. We use the predictions from a
CRF named-entity tagger that we trained on the standard
CoNLL 2003 English data set. The CoNLL 2003 data
set consists of newswire articles from Reuters labeled as
either people, locations, organizations, or miscellaneous
entities. It is much larger than the seminar announce-
ments data set. While the named-entity data contains
203,621 tokens for training, the seminar announcements
data set contains only slightly over 60,000 training to-
kens.

Previous work on the seminars data has used a one-
field-per-document evaluation. That is, for each field, the
CRF selects a single field value from its Viterbi path, and
this extraction is counted as correct if it exactly matches
any of the true field mentions in the document. We com-
pute precision and recall following this convention, and
report their harmonic mean F1. As in the previous work,
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System stime etime location speaker overall
WHISK (Soderland, 1999) 92.6 86.1 66.6 18.3 65.9
SRV (Freitag, 1998) 98.5 77.9 72.7 56.3 76.4
HMM (Frietag & McCallum, 1999) 98.5 62.1 78.6 76.6 78.9
RAPIER (Califf & Mooney, 1999) 95.9 94.6 73.4 53.1 79.3
SNOW-IE (Roth & Wen-tau Yih, 2001) 99.6 96.3 75.2 73.8 86.2
(LP)2 (Ciravegna, 2001) 99.0 95.5 75.0 77.6 86.8
CRF (no transfer) This paper 99.1 97.3 81.0 73.7 87.8
CRF (cascaded) This paper 99.2 96.0 84.3 74.2 88.4
CRF (joint) This paper 99.1 96.0 85.3 76.3 89.2

Table 2: Comparison of F1 performance on the seminars data. Joint decoding performs significantly better than
cascaded decoding. The overall column is the mean of the other four. (This table was adapted from Peshkin and
Pfeffer (2003).)

we use 10-fold cross validation with a 50/50 training/test
split. We use a spherical Gaussian prior on parameters
with variance σ2 = 0.5.

We evaluate whether joint decoding with cascaded
training performs better than cascaded training and de-
coding. Table 2 compares cascaded and joint decoding
for CRFs with other previous results from the literature.1

The features we use are listed in Table 1. Although previ-
ous work has used very different feature sets, we include
a no-transfer CRF baseline to assess the impact of transfer
from the CoNLL data set. All the CRF runs used exactly
the same features.

On the most challenging fields, location and speaker,
cascaded transfer is more accurate than no transfer at all,
and joint decoding is more accurate than cascaded decod-
ing. In particular, for speaker, we see an error reduction
of 8% by using joint decoding over cascaded. The differ-
ence in F1 between cascaded and joint decoding is statis-
tically significant for speaker (paired t-test; p = 0.017)
but only marginally significant for location (p = 0.067).
Our results are competitive with previous work; for ex-
ample, on location, the CRF is more accurate than any of
the existing systems.

Examining the trained models, we can observe both
errors made by the general-purpose named entity tagger,
and how they can be corrected by considering the sem-
inars labels. In newswire text, long runs of capitalized
words are rare, often indicating the name of an entity. In
email announcements, runs of capitalized words are com-
mon in formatted text blocks like:

Location: Baker Hall
Host: Michael Erdmann

In this type of situation, the named entity tagger often
mistakes Host: for the name of an entity, especially be-
cause the word preceding Host is also capitalized. On one
of the cross-validated testing sets, of 80 occurrences of

1We omit one relevant paper (Peshkin & Pfeffer, 2003) be-
cause its evaluation method differs from all the other previous
work.

wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt is punctuation
wt appears in list of first names, last names, honorifics, etc.
qk(x, t + δ) for all k and δ ∈ [−2, 2]
Conjunction qk(x, t) and qk′(x, t) for all features k, k′

Conjunction qk(x, t) and qk′(x, t + 1) for all features k, k′

Table 3: Input features qk(x, t) for the ACE named-entity
data. In the above wt is the word at position t, and w
ranges over all words in the training data.

the word Host:, the named-entity tagger labels 52 as some
kind of entity. When joint decoding is used, however,
only 20 occurrences are labeled as entities. Recall that
the joint model uses exactly the same weights as the cas-
caded model; the only difference is that the joint model
takes into account information about the seminar labels
when choosing named-entity labels. This is an example
of how domain-specific information from the main task
can improve performance on a more standard, general-
purpose subtask.

Figure 2 shows the difference in performance between
joint and cascaded decoding as a function of training set
size. Cascaded decoding with the full training set of 242
emails performs equivalently to joint decoding on only
181 training instances, a 25% reduction in the training
set.

In summary, even with a simple cascaded training
method on a well-studied data set, joint decoding per-
forms better for transfer than cascaded decoding.

6.2 Entity Recognition
In this section we give results on joint decoding for trans-
fer between two newswire data sets with similar but over-
lapping label sets. The Automatic Content Extraction
(ACE) data set is another standard entity recognition data
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Transfer Type

none cascaded joint

Person name 81.0 86.9 87.3

Person nominal 34.9 36.1 42.4

Organization name 53.9 62.6 61.1

Organization nominal 33.7 35.3 40.8

GPE name 78.5 84.0 84.0

GPE nominal 51.2 54.1 59.2

Table 4: Comparison of F1 performance between joint
and cascaded training on the ACE entity recognition task.
GPE means geopolitical entities, such as countries. Joint
decoding helps most on the harder nominal (common
noun) references. These results were obtained using a
small subset of the training set.

set, containing 422 stories from newspaper, newswire,
and broadcast news. Unlike the CoNLL entity recog-
nition data set, in which only proper names of entities
are annotated, the ACE data includes annotation both for
named entities like United States, and also nominal men-
tions of entities like the nation. Thus, although the input
text has similar distribution in the CoNLL NER and ACE
data set, the label distributions are very different.

Current state-of-the-art systems for the ACE task (Flo-
rian et al., 2004) use the predictions of other named-entity
recognizers as features, that is, they use cascaded trans-
fer. In this experiment, we test whether the transfer be-
tween these datasets can be further improved using joint
decoding. We train a CRF entity recognizer on the ACE
dataset, with the output of a named-entity entity recog-
nizer trained on the CoNLL 2003 English data set. The
CoNLL recognizer is the same CRF as was used in the
previous experiment. In these results, we use a subset of
10% of the ACE training data. Table 3 lists the features
we use. Table 4 compares the results on some represen-
tative entity types. Again, cascaded decoding for transfer
is better than no transfer at al, and joint decoding is better
than cascaded decoding. Interestingly, joint decoding has
most impact on the harder nominal references, showing
marked improvement over the cascaded approach.

7 Related Work

Researchers have begun to accumulate experimental ev-
idence that joint training and decoding yields better per-
formance than the cascaded approach. As mentioned ear-
lier, the original work on dynamic CRFs (Sutton et al.,
2004) demonstrated improvement due to joint training in
the domains of part-of-speech tagging and noun-phrase

chunking. Also, Carreras and Marquez (Carreras &
Màrquez, 2004) have obtained increased performance in
clause finding by training a cascade of perceptrons to
minimize a single global error function. Finally, Miller et
al. (Miller et al., 2000) have combined entity recognition,
parsing, and relation extraction into a jointly-trained sin-
gle statistical parsing model that achieves improved per-
formance on all the subtasks.

Part of the contribution of the current work is to sug-
gest that joint decoding can be effective even when joint
training is not possible because jointly-labeled data is un-
available. For example, Miller et al. report that they orig-
inally attempted to annotate newswire articles for all of
parsing, relations, and named entities, but they stopped
because the annotation was simply too expensive. In-
stead they hand-labeled relations only, assigning parse
trees to the training set using a standard statistical parser,
which is potentially less flexible than the cascaded train-
ing, because the model for main task is trained explicitly
to match the noisy subtask predictions, rather than being
free to correct them.

In the speech community, it is common to com-
pose separately trained weighted finite-state transducers
(Mohri et al., 2002) for joint decoding. Our method ex-
tends this work to conditional models. Ordinarily, higher-
level transducers depend only on the output of the previ-
ous transducer: a transducer for the lexicon, for exam-
ple, consumes only phonemes, not the original speech
signal. In text, however, such an approach is not sensi-
ble, because there is simply not enough information in
the named-entity labels, for example, to do extraction if
the original words are discarded. In a conditional model,
weights in higher-level transducers are free to depend on
arbitrary features of the original input without any addi-
tional complexity in the finite-state structure.

Finally, stacked sequential learning (Cohen & Car-
valho, 2005) is another potential method for combining
the results of the subtask transducers. In this general
meta-learning method for sequential classification, first
a base classifier predicts the label at each time step, and
then a higher-level classifier makes the final prediction,
including as features a window of predictions from the
base classifier. For transfer learning, this would corre-
spond to having an independent base model for each sub-
task (e.g., independent CRFs for named-entity and sem-
inars), and then having a higher-level CRF that includes
as a feature the predictions from the base models.

8 Conclusion
In this paper we have shown that joint decoding improves
transfer between interdependent NLP tasks, even when
the old task is named-entity recognition, for which highly
accurate systems exist. The rich features afforded by a
conditional model allow the new task to influence the pre-
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dictions of the old task, an effect that is only possible with
joint decoding.

It is now common for researchers to publicly release
trained models for standard tasks such as part-of-speech
tagging, named-entity recognition, and parsing. This pa-
per has implications for how such standard tools are pack-
aged. Our results suggest that off-the-shelf NLP tools
will need not only to provide a single-best prediction, but
also to be engineered so that they can easily communicate
distributions over predictions to models for higher-level
tasks.
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Abstract

This paper presents a phrase-based statis-
tical machine translation method, based
on non-contiguous phrases, i.e. phrases
with gaps. A method for producing such
phrases from a word-aligned corpora is
proposed. A statistical translation model
is also presented that deals such phrases,
as well as a training method based on the
maximization of translation accuracy, as
measured with the NIST evaluation met-
ric. Translations are produced by means of
a beam-search decoder. Experimental re-
sults are presented, that demonstrate how
the proposed method allows to better gen-
eralize from the training data.

1 Introduction

Possibly the most remarkable evolution of recent
years in statistical machine translation is the step
from word-based models to phrase-based models
(Och et al., 1999; Marcu and Wong, 2002; Yamada
and Knight, 2002; Tillmann and Xia, 2003). While
in traditional word-based statistical models (Brown
et al., 1993) the atomic unit that translation operates
on is the word, phrase-based methods acknowledge
the significant role played in language by multi-
word expressions, thus incorporating in a statistical
framework the insight behind Example-Based Ma-
chine Translation (Somers, 1999).

However, Phrase-based models proposed so far
only deal with multi-word units that are sequences

of contiguous words on both the source and the tar-
get side. We propose here a model designed to deal
with multi-word expressions that need not be con-
tiguous in either or both the source and the target
side.

The rest of this paper is organised as follows. Sec-
tion 2 provides motivations, definition and extrac-
tion procedure for non-contiguous phrases. The log-
linear conditional translation model we adopted is
the object of Section 3; the method used to train
its parameters is described in Section 4. Section 5
briefly describes the decoder. The experiments we
conducted to asses the effectiveness of using non-
contiguous phrases are presented in Section 6.

2 Non-contiguous phrases

Why should it be a good thing to use phrases
composed of possibly non-contiguous sequences of
words? In doing so we expect to improve trans-
lation quality by better accounting for additional
linguistic phenomena as well as by extending the
effect of contextual semantic disambiguation and
example-based translation inherent in phrase-based
MT. An example of a phenomenon best described
using non-contiguous units is provided by English
phrasal verbs. Consider the sentence “Maryswitches
her table lampoff”. Word-based statistical mod-
els would be at odds when selecting the appropri-
ate translation of the verb. If French were the target
language, for instance, corpus evidence would come
from both examples in which “switch” is translated
as “allumer” (to switch on) and as “éteindre” (to
switch off). If many-to-one word alignments are not
allowed from English to French, as it is usually the
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2 31

Pierre

Pierre

ne mange pas

does not eat

Figure 1: An example of a complex alignment asso-
ciated with different syntax for negation in English
and French.

case, then the best thing a word-based model could
do in this case would be to align “off” to the empty
word and hope to select the correct translation from
“switch” only, basically a 50-50 bet. While han-
dling inseparable phrasal verbs such as “to run out”
correctly, previously proposed phrase-based models
would be helpless in this case. A comparable behav-
ior is displayed by German separable verbs. More-
over, non-contiguous linguistic units are not limited
to verbs. Negation is formed, in French, by inserting
the words “ne” and “pas” before and after a verb re-
spectively. So, the sentence “Pierre ne mange pas”
and its English translation display a complex word-
level alignment (Figure 1) current models cannot ac-
count for.

Flexible idioms, allowing for the insertion of lin-
guistic material, are other phenomena best modeled
with non-contiguous units.

2.1 Definition and library construction

We define abi-phraseas a pair comprising asource
phraseand atarget phrase: b = 〈s̃, t̃〉. Each of the
source and target phrases is a sequence of words and
gaps (indicated by the symbol�); each gap acts as
a placeholder for exactly one unspecified word. For
example,w̃ = w1w2�w3�� w4 is a phrase of length
7, made up of two contiguous wordsw1 andw2, a
first gap, a third wordw3, two consecutive gaps and
a final wordw4. To avoid redundancy, phrases may
not begin or end with a gap. If a phrase does not
contain any gaps, we say it iscontiguous; otherwise
it is non-contiguous. Likewise, a bi-phrase is said to
becontiguousif both its phrases are contiguous.

The translation of a source sentences is produced
by combining together bi-phrases so as to cover the
source sentence, and produce a well-formed target-
language sentence (i.e. without gaps). A complete
translation fors can be described as an ordered se-

quence of bi-phrasesb1...bK . When piecing together
the final translation, the target-language portiont̃1
of the first bi-phraseb1 is first layed down, then each
subsequent̃tk is positioned on the first “free” posi-
tion in the target language sentence, i.e. either the
leftmost gap, or the right end of the sequence. Fig-
ure 2 illustrates this process with an example.

To produce translations, our approach therefore
relies on a collection of bi-phrases, what we call a
bi-phrase library. Such a library is constructed from
a corpus of existing translations, aligned at the word
level.

Two strategies come to mind to produce non-
contiguous bi-phrases for these libraries. The first is
to align the words using a “standard” word aligne-
ment technique, such as theRefined Methodde-
scribed in (Och and Ney, 2003) (the intersection of
two IBM Viterbi alignments, forward and reverse,
enriched with alignments from the union) and then
generate bi-phrases by combining together individ-
ual alignments that co-occur in the same pair of sen-
tences. This is the strategy that is usually adopted in
other phrase-based MT approaches (Zens and Ney,
2003; Och and Ney, 2004). Here, the difference is
that we are not restricted to combinations that pro-
duce strictly contiguous bi-phrases.

The second strategy is to rely on a word-
alignment method that naturally produces many-to-
many alignments between non-contiguous words,
such as the method described in (Goutte et al.,
2004). By means of a matrix factorization, this
method produces a parallel partition of the two texts,
seen as sets of word tokens. Each token therefore
belongs to one, and only one, subset within this par-
tition, and corresponding subsets in the source and
target make up what are calledcepts. For example,
in Figure 1, these cepts are represented by the circles
numbered 1, 2 and 3; each cept thus connects word
tokens in the source and the target, regardless of po-
sition or contiguity. These cepts naturally constitute
bi-phrases, and can be used directly to produce a bi-
phrase library.

Obviously, the two strategies can be combined,
and it is always possible to produce increasingly
large and complex bi-phrases by combining together
co-occurring bi-phrases, contiguous or not. One
problem with this approach, however, is that the re-
sulting libraries can become very large. With con-
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danser le tango
to tango

I do not want to tango anymore

I do not want anymore

doI want

Je ne veux plus danser le tango

Je

I

ne plus

veux
wantdo

not anymore

I

source =

bi−phrase 1 =

bi−phrase 2 =

bi−phrase 3 =

bi−phrase 4 =

target =

Figure 2: Combining bi-phrases to produce a translation.

tiguous phrases, the number of bi-phrases that can
be extracted from a single pair of sentences typically
grows quadratically with the size of the sentences;
with non-contiguous phrases, however, this growth
is exponential. As it turns out, the number of avail-
able bi-phrases for the translation of a sentence has
a direct impact on the time required to compute the
translation; we will therefore typically rely on vari-
ous filtering techniques, aimed at keeping only those
bi-phrases that are more likely to be useful. For ex-
ample, we may retain only the most frequently ob-
served bi-phrases, or impose limits on the number of
cepts, the size of gaps, etc.

3 The Model

In statistical machine translation, we are given a
source language inputsJ1 = s1...sJ , and seek the
target-language sentencetI1 = t1...tI that is its most
likely translation:

t̂I1 = argmaxtI1Pr(tI1|sJ1 ) (1)

Our approach is based on a direct approximation
of the posterior probabilityPr(tI1|sJ1 ), using a log-
linear model:

Pr(tI1|sJ1 ) =
1
ZsJ1

exp

(
M∑
m=1

λmhm(tI1, s
J
1 )

)

In such a model, the contribution of eachfeature
function hm is determined by the corresponding
model parameterλm; ZsJ1 denotes a normalization
constant. This type of model is now quite widely

used for machine translation (Tillmann and Xia,
2003; Zens and Ney, 2003)1.

Additional variables can be introduced in such a
model, so as to account for hidden characteristics,
and the feature functions can be extended accord-
ingly. For example, our model must take into ac-
count the actual set of bi-phrases that was used to
produce this translation:

Pr(tI1, b
K
1 |sJ1 ) =

1
ZsJ1

exp

(
M∑
m=1

λmhm(tI1, s
J
1 , b

K
1 )

)

Our model currently relies on seven feature func-
tions, which we describe here.

• The bi-phrase feature functionhbp: it rep-
resents the probability of producingtI1 using
some set of bi-phrases, under the assump-
tion that each source phrase produces a target
phrase independently of the others:

hbp(tI1, s
J
1 , b

K
1 ) =

K∑
k=1

log Pr(t̃k|s̃k) (2)

Individual bi-phrase probabilitiesPr(t̃k|s̃k)
are estimated based on occurrence counts in the
word-aligned training corpus.

• The compositional bi-phrasefeature function
hcomp: this is introduced to compensate for

1Recent work from Chiang (Chiang, 2005) addresses simi-
lar concerns to those motivating our work by introducing a Syn-
chronous CFG for bi-phrases. If on one hand SCFGs allow to
better control the order of the material inserted in the gaps, on
the other gap size does not seem to be taken into account, and
phrase dovetailing such as the one involving “do�want” and
“not ���anymore” in Fig. 2 is disallowed.
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hbp’s strong tendency to overestimate the prob-
ability of rare bi-phrases; it is computed as in
equation (2), except that bi-phrase probabilities
are computed based on individual word transla-
tion probabilities, somewhat as in IBM model
1 (Brown et al., 1993):

Pr(t̃|s̃) =
1
|s̃||t̃|

∏
t∈t̃

∑
s∈s̃

Pr(t|s)

• The target languagefeature functionhtl: this
is based on aN -gram language model of the
target language. As such, it ignores the source
language sentence and the decomposition of
the target into bi-phrases, to focus on the actual
sequence of target-language words produced
by the combination of bi-phrases:

htl(tI1, s
J
1 , b

K
1 ) =

I∑
i=1

log Pr(ti|ti−1
i−N+1)

• The word-count and bi-phrase countfeature
functionshwc andhbc: these control the length
of the translation and the number of bi-phrases
used to produce it:

hwc(tI1, s
J
1 , b

K
1 ) = I hbc(tI1, s

J
1 , b

K
1 ) = K

• The reordering feature function
hreord(tI1, s

J
1 , b

K
1 ): it measures the amount of

reordering between bi-phrases of the source
and target sentences.

• the gap countfeature functionhgc: It takes as
value the total number of gaps (source and tar-
get) within the bi-phrases ofbK1 , thus allowing
the model some control over the nature of the
bi-phrases it uses, in terms of the discontigui-
ties they contain.

4 Parameter Estimation

The values of theλ parameters of the log-linear
model can be set so as to optimize a given crite-
rion. For instance, one can maximize the likely-
hood of some set of training sentences. Instead, and
as suggested by Och (2003), we chose to maximize
directly the quality of the translations produced by
the system, as measured with a machine translation
evaluation metric.

Say we have a set of source-language sentences
S. For a given value ofλ, we can compute the set of
corresponding target-language translationsT . Given
a set ofreference(“gold-standard”) translationsR
for S and a functionE(T,R) which measures the
“error” in T relative toR, then we can formulate the
parameter estimation problem as2:

λ̂ = argminλE(T,R)

As pointed out by Och, one notable difficulty with
this approach is that, because the computation ofT
is based on an argmax operation (see eq. 1), it is not
continuous with regard toλ, and standard gradient-
descent methods cannot be used to solve the opti-
mization. Och proposes two workarounds to this
problem: the first one relies on a direct optimiza-
tion method derived from Powell’s algorithm; the
second introduces a smoothed (continuous) version
of the error functionE(T,R) and then relies on a
gradient-based optimization method.

We have opted for this last approach. Och shows
how to implement it when the error function can be
computed as the sum of errors on individual sen-
tences. Unfortunately, this is not the case for such
widely used MT evaluation metrics as BLEU (Pa-
pineni et al., 2002) and NIST (Doddington, 2002).
We show here how it can be done for NIST; a simi-
lar derivation is possible for BLEU.

The NIST evaluation metric computes a weighted
n-gram precision betweenT andR, multiplied by
a factorB(S, T,R) that penalizes short translations.
It can be formulated as:

B(S, T,R)×
N∑
n=1

∑
s∈S In(ts, rs)∑
s∈S Cn(ts)

(3)

whereN is the largestn-gram considered (usually
N = 4), In(ts, rs) is a weighted count of common
n-grams between the target (ts) and reference (rs)
translations of sentences, andCn(ts) is the total
number ofn-grams ints.

To derive a version of this formula that is a con-
tinuous function ofλ, we will need multiple trans-
lationsts,1, ..., ts,K for each source sentences. The
general idea is to weight each of these translations

2For the sake of simplicity, we consider a single reference
translation per source sentence, but the argument can easily be
extended to multiple references.
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by a factorw(λ, s, k), proportional to the score
mλ(ts,k|s) that ts,k is assigned by the log-linear
model for a givenλ:

w(λ, s, k) =

[
mλ(ts,k|s)∑
k′mλ(ts,k′ |s)

]α

where α is the smoothing factor. Thus, in
the smoothed version of the NIST function, the
term In(ts, rs) in equation (3) is replaced by∑
k w(λ, s, k)In(ts,k, rs), and the termCn(ts) is

replaced by
∑
k w(λ, s, k)Cn(ts,k). As for the

brevity penalty factorB(S, T,R), it depends on
the total length of translationT , i.e.

∑
s |ts|. In

the smoothed version, this term is replaced by∑
s

∑
k w(λ, s, k)|ts,k|. Note that, whenα → ∞,

thenw(λ, s, k) → 0 for all translations ofs, except
the one for which the model gives the highest score,
and so the smooth and normal NIST functions pro-
duce the same value. In practice, we determine some
“good” value forα by trial and error (5 works fine).

We thus obtain a scoring function for which we
can compute a derivative relative toλ, and which can
be optimized using gradient-based methods. In prac-
tice, we use theOPT++ implementation of a quasi-
Newton optimization (Meza, 1994). As observed by
Och, the smoothed error function is not convex, and
therefore this sort of minimum-error rate training is
quite sensitive to the initialization values for theλ
parameters. Our approach is to use a random set of
initializations for the parameters, perform the opti-
mization for each initialization, and select the model
which gives the overall best performance.

Globally, parameter estimation proceeds along
these steps:

1. Initialize the training set: using random pa-
rameter valuesλ0, for each source sentence of
some given set of sentencesS, we compute
multiple translations. (In practice, we use the
M -best translations produced by our decoder;
see Section 5).

2. Optimize the parameters: using the method de-
scribed above, we findλ that produces the best
smoothed NIST score on the training set.

3. Iterate: we then re-translate the sentences ofS
with this newλ, combine the resulting multiple

translations with those already in the training
set, and go back to step 2.

Steps 2 and 3 can be repeated until the smooothed
NIST score does not increase anymore3.

5 Decoder

We implemented a version of the beam-search stack
decoder described in (Koehn, 2003), extended to
cope with non-contiguous phrases. Each transla-
tion is the result of a sequence ofdecisions, each of
which involves the selection of a bi-phrase and of a
target position. The final result is obtained by com-
bining decisions, as in Figure 2.Hypotheses, cor-
responding to partial translations, are organised in a
sequence of priority stacks, one for each number of
source words covered. Hypotheses are extended by
filling the first available uncovered position in the
target sentence; each extended hypotheses is then
inserted in the stack corresponding to the updated
number of covered source words. Each hypothesis is
assigned a score which is obtained as a combination
of the actual feature function values and of admissi-
ble heuristics, adapted to deal with gaps in phrases,
estimating the future cost for completing a transla-
tion. Each stack undergoes both threshold and his-
togram pruning. Whenever two hypotheses are in-
distinguishable as far as the potential for further ex-
tension is concerned, they are merged and only the
highest-scoring is further extended. Complete trans-
lations are eventually recovered in the “last” priority
stack, i.e. the one corresponding to the total num-
ber of source words: the best translation is the one
with the highest score, and that does not have any
remaining gaps in the target.

6 Evaluation

We have conducted a number of experiments to eval-
uate the potential of our approach. We were par-
ticularly interested in assessing the impact of non-
contiguous bi-phrases on translation quality, as well
as comparing the different bi-phrase library contruc-
tion strategies evoked in Section 2.1.

3It can be seen that, as the set of possible translations for
S stabilizes, we eventually reach a point where the procedure
converges to a maximum. In practice, however, we can usually
stop much earlier.
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6.1 Experimental Setting

All our experiments focused exclusively on French
to English translation, and were conducted using the
Aligned Hansards of the 36th Parliament of Canada,
provided by the Natural Language Group of the USC
Information Sciences Institute, and edited by Ulrich
Germann. From this data, we extracted three dis-
tinct subcorpora, which we refer to as thebi-phrase-
building set, the training setand thetest set. These
were extracted from the so-calledtraining, test-1
andtest-2portions of the Aligned Hansard, respec-
tively. Because of efficiency issues, we limited our-
selves to source-language sentences of 30 words or
less. More details on the evaluation data is presented
in Table 14.

6.2 Bi-phrase Libraries

From the bi-phrase-building set, we built a number
of libraries. A first family of libraries was based on
a word alignment “A”, produced using theRefined
methoddescribed in (Och and Ney, 2003) (com-
bination of two IBM-Viterbi alignments): we call
these theA libraries. A second family of libraries
was built using alignments “B” produced with the
method in (Goutte et al., 2004): these are theB li-
braries. The most notable difference between these
two alignments is thatB contains “native” non-
contiguous bi-phrases, whileA doesn’t.

Some libraries were built by simply extracting the
cepts from the alignments of the bi-phrase-building
corpus: these are theA1 andB1 libraries, and vari-
ants. Other libraries were obtained by combining
cepts that co-occur within the same pair of sen-
tences, to produce “composite” bi-phrases. For in-
stance, theA2 libraries contain combinations of 1
or 2 cepts from alignmentA; B3 contains combina-
tions of 1, 2 or 3 cepts, etc.

Some libraries were built using a “gap-size” filter.
For instance libraryA2-g3 contains those bi-phrases
obtained by combining 1 or 2 cepts from alignment
A, and in which neither the source nor the target
phrase contains more than 3 gaps. In particular, li-
brary B1-g0 does not contain any non-contiguous
bi-phrases.

4Preliminary experiments on different data sets allowed us
to establish that 800 sentences constituted an acceptable size
for estimating model parameters. With such a corpus, the esti-
mation procedure converges after just 2 or 3 iterations.

Finally, all libraries were subjected to the same
two filtering procedures: the first excludes all bi-
phrases that occur only once in the training corpus;
the second, for any given source-language phrase,
retains only the 20 most frequent target-language
equivalents. While the first of these filters typically
eliminates a large number of entries, the second only
affects the most frequent source phrases, as most
phrases have less than 20 translations.

6.3 Experiments

The parameters of the model were optimized inde-
pendantly for each bi-phrase library. In all cases,
we performed only 2 iterations of the training proce-
dure, then measured the performance of the system
on the test set in terms of the NIST and BLEU scores
against one reference translation. As a point of com-
parison, we also trained an IBM-4 translation model
with theGIZA++ toolkit (Och and Ney, 2000), using
the combinedbi-phrase buildingand training sets,
and translated the test set using theReWritedecoder
(Germann et al., 2001)5.

Table 2 describes the various libraries that were
used for our experiments, and the results obtained
for each.

System/library bi-phrases NIST BLEU
ReWrite 6.6838 0.3324
A1 238 K 6.6695 0.3310
A2-g0 642 K 6.7675 0.3363
A2-g3 4.1 M 6.7068 0.3283
B1-g0 193 K 6.7898 0.3369
B1 267 K 6.9172 0.3407
B2-g0 499 K 6.7290 0.3391
B2-g3 3.3 M 6.9707 0.3552
B1-g1 206 K 6.8979 0.3441
B1-g2 213 K 6.9406 0.3454
B1-g3 218 K 6.9546 0.3518
B1-g4 222 K 6.9527 0.3423

Table 2: Bi-phrase libraries and results

The top part of the table presents the results for
theA libraries. As can be seen, libraryA1 achieves
approximately the same score as the baseline sys-
tem; this is expected, since this library is essentially

5Both theReWriteand our own system relied on a trigram
language model trained on the English half of the bi-phrase
building set.
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Subset sentences source words target words
bi-phrase-building set 931,000 17.2M 15.2M
training set 800 11,667 10,601
test set 500 6726 6041

Table 1: Data sets.

made up of one-to-one alignments computed using
IBM-4 translation models. Adding contiguous bi-
phrases obtained by combining pairs of alignments
does gain us some mileage (+0.1 NIST)6. Again, this
is consistent with results observed with other sys-
tems (Tillmann and Xia, 2003). However, the addi-
tion of non-contiguous bi-phrases (A2-g3) does not
seem to help.

The middle part of Table 2 presents analogous re-
sults for the correspondingB libraries, plus theB1-
g0 library, which contains only those cepts from the
B alignment that are contiguous. Interestingly, in
the experiments reported in (Goutte et al., 2004),
alignment methodB did not compare favorably toA
under the widely usedAlignment Error Rate(AER)
metric. Yet, theB1-g0 library performs better than
the analogousA1 library on the translation task.
This suggests that AER may not be an appropriate
metric to measure the potential of an alignment for
phrase-based translation.

Adding non-contiguous bi-phrases allows another
small gain. Again, this is interesting, as it sug-
gests that “native” non-contiguous bi-phrases are in-
deed useful for the translation task, i.e. those non-
contiguous bi-phrases obtained directly as cepts in
theB alignment.

Surprisingly, however, combining cepts from the
B alignment to produce contiguous bi-phrases (B2-
G0) does not turn out to be fruitful. Why this
is so is not obvious and, certainly, more experi-
ments would be required to establish whether this
tendency continues with larger combinations (B3-
g0,B4-g0...). Composite non-contiguous bi-phrases
produced with theB alignments (B2-g3) seem
to bring improvements with regard to “basic” bi-
phrases (B1), but it is not clear whether these are
significant.

6While the differences in scores in these and other experi-
ments are relatively small, we believe them to be significant, as
they have been confirmed systematically in other experiments
and, in our experience, by visual inspection of the translations.

Visual examination of theB1 library reveals
that many non-contiguous bi-phrases contain long-
spanning phrases (i.e. phrases containing long se-
quences of gaps). To verify whether or not these
were really useful, we tested a series ofB1 libraries
with different gap-size filters. It must be noted that,
because of the final histogram filtering we apply on
libraries (retain only the 20 most frequent transla-
tions of any source phrase), libraryB1-g1 is not
a strict subset ofB1-g2. Therefore, filtering on
gap-size usually represents a tradeoff between more
frequent long-spanning bi-phrases and less frequent
short-spanning ones.

The results of these experiments appear in the
lower part of Table 2. While the differences in score
are small, it seems that concentrating on bi-phrases
with 3 gaps or less affords the best compromise.
For small libraries such as those under consideration
here, this sort of filtering may not be very important.
However, for higher-order libraries (B2, B3, etc.) it
becomes crucial, because it allows to control the ex-
ponential growth of the libraries.

7 Conclusions

In this paper, we have proposed a phrase-based sta-
tistical machine translation method based on non-
contiguous phrases. We have also presented a esti-
mation procedure for the parameters of a log-linear
translation model, that maximizes a smooth version
of the NIST scoring function, and therefore lends
itself to standard gradient-based optimization tech-
niques.

From our experiments with these new methods,
we essentially draw two conclusions. The first and
most obvious is that non-contiguous bi-phrases can
indeed be fruitful in phrase-based statistical machine
translation. While we are not yet able to character-
ize which bi-phrases are most helpful, some of those
that we are currently capable of extracting are well
suited to cover some short-distance phenomena.
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The second conclusion is that alignment quality is
crucial in producing good translations with phrase-
based methods. While this may sound obvious, our
experiments shed some light on two specific aspects
of this question. The first is that the alignment
method that produces the most useful bi-phrases
need not be the one with the bestalignment error
rate (AER). The second is that, depending on the
alignments one starts with, constructing increasingly
large bi-phrases does not necessarily lead to better
translations. Some of our best results were obtained
with relatively small libraries (just over 200,000 en-
tries) of short bi-phrases. In other words, it’s not
how many bi-phrases you have, it’s how good they
are. This is the line of research that we intend to
pursue in the near future.
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Abstract

Confidence measures for machine transla-
tion is a method for labeling each word in
an automatically generated translation as
correct or incorrect. In this paper, we will
present a new approach to confidence es-
timation which has the advantage that it
does not rely on system output such asN -
best lists or word graphs as many other
confidence measures do. It is, thus, appli-
cable to any kind of machine translation
system.
Experimental evaluation has been per-
formed on translation of technical manu-
als in three different language pairs. Re-
sults will be presented for different ma-
chine translation systems to show that the
new approach is independent of the under-
lying machine translation system which
generated the translations. To the best
of our knowledge, the performance of the
new confidence measure is better than that
of any existing confidence measure.

1 Introduction

The work presented in this paper deals with con-
fidence estimation for machine translation (MT).
Since sentences produced by a machine translation
system are often incorrect but may contain correct
parts, a method for identifying those correct parts
and finding possible errors is desirable. For this pur-
pose, each word in the generated target sentence is
assigned a value expressing the confidence that it is
correct.

Confidence measures have been extensively stud-
ied for speech recognition, but are not well known
in other areas. Only recently have researchers
started to investigate confidence measures for ma-
chine translation (Blatz et al., 2004; Gandrabur and
Foster, 2003; Quirk, 2004; Ueffing et al., 2003).

We apply word confidence measures in MT as fol-
lows: For a given translation generated by a machine
translation system, we determine a confidence value
for each word and compare it to a threshold. All
words whose confidence is above this threshold are
tagged as correct and all others are tagged as incor-
rect translations. The threshold is optimized on a
distinct development set beforehand.

Possible applications for confidence measures in-
clude

• post-editing, where words with low confidence
could be marked as potential errors,

• improving translation prediction accuracy in
trans-type-style interactive machine transla-
tion (Gandrabur and Foster, 2003; Ueffing and
Ney, 2005),

• combining output from different machine
translation systems: hypotheses with low confi-
dence can be discarded before selecting one of
the system translations (Akiba et al., 2004), or
the word confidence scores can be used for gen-
erating new hypotheses from the output of dif-
ferent systems (Jayaraman and Lavie, 2005), or
the sentence confidence value can be employed
for re-ranking (Blatz et al., 2003).

In this paper, we will present several approaches
to word-level confidence estimation and develop a
new phrase-based confidence measure which is in-
dependent of the machine translation system which
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generated the translation. The paper is organized as
follows: In section 2, we will briefly review the sta-
tistical approach to machine translation. The phrase-
based translation system, which serves as basis for
the new confidence measure, will be presented in
section 2.2. Section 3 will give an overview of re-
lated work on confidence estimation for statistical
machine translation (SMT). In section 4, we will
describe methods for confidence estimation which
make use of SMT system output such as word
graphs andN -best lists. In section 5, we will present
the new phrase-based confidence measure. Section 6
contains a short description of an IBM-1 based con-
fidence measure to which we will compare the other
measures. Experimental evaluation and comparison
of the different confidence measures will be shown
in section 7, and section 8 will conclude the paper.

2 Statistical machine translation

2.1 General

In statistical machine translation, the translation is
modeled as a decision process: Given a source string
fJ1 = f1 . . . fj . . . fJ , we seek the target stringeI1 =
e1 . . . ei . . . eI with maximal posterior probability:

êÎ1 = argmax
I,eI1

{
Pr(eI1 | fJ1 )

}
(1)

= argmax
I,eI1

{
Pr(fJ1 | eI1) · Pr(eI1)

}

Through this decomposition of the probability, we
obtain two knowledge sources: the translation
modelPr(fJ1 | eI1) and the language modelPr(eI1).
Both of them can be modeled independently of each
other. The translation model is responsible for link-
ing the source stringfJ1 and the target stringeI1,
i.e. it captures the semantics of the sentence. The
target language model captures the well-formedness
or the syntax in the target language. Nowadays,
most of the state-of-the-art SMT systems are based
on bilingual phrases (Bertoldi et al., 2004; Koehn
et al., 2003; Och and Ney, 2004; Tillmann, 2003;
Vogel et al., 2004; Zens and Ney, 2004). Note that
those phrases are sequences of words in the two lan-
guages and not necessarily phrases in the linguistic
sense. A more detailed description of a phrase-based
approach to statistical machine translation will be
given in section 2.2.

2.2 Review of phrase-based translation system

For the confidence measures which will be intro-
duced in section 5, we use a state-of-the-art phrase-
based approach as described in (Zens and Ney,
2004). The key elements of this translation approach
are bilingual phrases, i.e. pairs of source and target
language phrases where a phrase is simply a con-
tiguous sequence of words. These bilingual phrases
are extracted from a word-aligned bilingual training
corpus.

We will present the equations for a mono-
tone search here in order to keep the equa-
tions simple. Let(jK0 , i

K
0 ) be a segmentation of

the source sentence into phrases, with the cor-
responding (bilingual) phrase pairs(f̃k, ẽk) =
(f jkjk−1+1, e

ik
ik−1+1), k = 1, . . . ,K. The phrase-

based approach to SMT is then expressed by the fol-
lowing equation:

êÎ1 = argmax
jK0 ,iK0 ,I,e

I
1

{ I∏

i=1

[
c1 · p(ei | ei−1

i−2)λ1

]
(2)

·
K∏

k=1

[
c2 · p(f̃k | ẽk)λ2 · p(ẽk | f̃k)λ3

·
jk∏

j=jk−1+1

p(fj | ẽk)λ4 ·
ik∏

i=ik−1+1

p(ei | f̃k)λ5

]}
,

wherep(f̃k | ẽk) andp(ẽk | f̃k) are the phrase lexicon
models in both translation directions. The phrase
translation probabilities are computed as a log-linear
interpolation of the relative frequencies and the
IBM-1 probability. The single word based lexicon
models are denoted asp(fj | ẽk) andp(ei | f̃k), re-
spectively.p(fj | ẽk) is defined as the IBM-1 model
probability of fj over the whole phrasẽek, and
p(ei | f̃k) is the inverse model, respectively.
c1 is the so-called word penalty, andc2 is the

phrase penalty, assigning constant costs to each tar-
get language word/phrase. The language model
is a trigram model with modified Kneser-Ney dis-
counting and interpolation (Stolcke, 2002). The
search determines the target sentence and segmen-
tation which maximize the objective function.

As equation 2 shows, the sub-models are com-
bined via weighted log-linear interpolation. The
model scaling factorsλ1, . . . , λ5 and the word and
phrase penalties are optimized with respect to some
evaluation criterion (Och, 2003), e.g. BLEU score.
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3 Confidence measures for SMT

3.1 Related work

In this paper, we will present a new approach to
word-level confidence estimation which makes ex-
plicit use of a phrase-based translation model. Most
of the word-level confidence measures which have
been presented in the literature so far are either
based on relatively simple translation models such
as IBM-1 (Blatz et al., 2003) or make use of infor-
mation provided by the SMT system such asN -best
lists or word graphs (Blatz et al., 2003; Gandrabur
and Foster, 2003; Ueffing et al., 2003). In contrast
to this, our method is based on a state-of-the-art
statistical machine translation model, but neverthe-
less is independent of the machine translation sys-
tem which generates the translation hypotheses.

The word-level confidence measures which
showed the best performance in comparative experi-
ments (Blatz et al., 2003) are word posterior prob-
abilities and the IBM-1 based measure. Our new
confidence measure will be compared to those ap-
proaches in section 7.3.

3.2 Word posterior probabilities

The confidence of a target word can be expressed by
its posterior probability, i.e. the probability of the
word to occur in the target sentence, given the source
sentence. Consider a target worde occurring in the
sentence in positioni1. The posterior probability of
this event can be determined by summing over all
possible target sentenceseI1 containing the worde in
positioni:

pi(e, fJ1 ) =
∑

I,eI1: ei=e

p(eI1, f
J
1 ) (3)

This value has to be normalized in order to ob-
tain a probability distribution over all possible target
words:

pi(e | fJ1 ) =
pi(e, fJ1 )∑

e′
pi(e′, fJ1 )

(4)

1This is a rather strict assumption, because the position of a
word in the target sentence can differ largely due to reorderings
in the translation process. We present this variant here to keep
the notation simple. Improved methods will be shown in the
following sections.

4 System based confidence measures

In this section, we will present confidence measures
which are based onN -best lists or word graphs gen-
erated by the SMT system. Those are representa-
tions of the space of the most likely translations of
the source sentence.

The summation given in equation 3 is performed
over all sentences which are contained in theN -best
list or word graph. For a more detailed description,
see (Ueffing et al., 2003).

4.1 Word graph based approach

The word posterior probabilitypi(e | fJ1 ) can be
calculated over a word graph using the forward-
backward algorithm.

Letn′, n be nodes in a word graph, and(n′, n) the
directed edge connecting them. The edge is anno-
tated with a target word which we denote bye(n′, n)
and the probability which this word contributes to
the overall sentence probability, denoted byp(n′, n).

The forward probabilityΦi(n′, n) of an edge is
the probability of reaching this edge from the source
of the graph, where the worde(n′, n) is thei-th word
on the path. It can be obtained by summing the prob-
abilities of all incoming paths of lengthi− 1, which
allows for recursive calculation. This leads to the
following formula:

Φi(n′, n) = p(n′, n) ·
∑

n′′
Φi−1(n′′, n′) .

The backward probability expresses the probabil-
ity of completing a sentence from the current edge,
i.e. of reaching the sink of the graph. It can be de-
termined recursively in descending order ofi as fol-
lows:

Ψi(n′, n) = p(n′, n) ·
∑

n∗
Ψi+1(n, n∗) .

Using the forward-backward algorithm, the word
posterior probability of worde in position i is de-
termined by combining the forward and backward
probabilities of all edges which are annotated with
e. This yields

pi(e, fJ1 ) =
∑

(n′,n) : e(n′,n)=e

Φi(n′, n) ·Ψi(n′, n)
p(n′, n)

. (5)

Note that (for computational reasons) the term
p(n′, n) is included both in the forward and in the
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backward probability so that we have to divide the
product by this term.

To obtain a posterior probability, a normalization,
as shown in equation 4, has to be performed. The
normalization termα :=

∑
e′
pi(e′, fJ1 ) corresponds

to the probability mass contained in the word graph
and can be calculated by summing the backward
probabilities of all outgoing edges leaving the source
s of the graph:

α =
∑

(s,n)

Ψ1(s, n) .

As stated above, the position of worde in the tar-
get sentence can vary due to reorderings in the trans-
lation process. Therefore, we would like to relax
the condition thate has to occur exactly in position
i. This can be achieved by introducing a window
of size t over the neighboring target positions and
computing the sum of the word posterior probabili-
ties over all positionsi − t, . . . , i, . . . , i + t. In our
experiments we found that a window over±3 posi-
tions yields the best performance.

4.2 N -best list based approach

N -best lists are an alternative representation of the
space of translation hypotheses. They have the ad-
vantage that the Levenshtein alignment between a
hypothesis and all sentences contained in the list can
be performed easily. This makes it possible to con-
sider not only target sentences, which contain the
word e exactly in a positioni (as given in equa-
tion 3), but to allow for some variation.

Let L(eI1, ẽ
Ĩ
1) be the Levenshtein alignment be-

tween sentenceseI1 andẽĨ1. Then,Li(eI1, ẽĨ1) denotes
the Levenshtein alignment of wordei, i.e. the word
in sentencẽeĨ1 whichei is Levenshtein-aligned to.

The word posterior probability is then calculated
by summing over all target sentences containing
word e in a position which is Levenshtein-aligned
to i:

pi(e|fJ1 , I, eI1) =
pi(e, fJ1 , I, e

I
1)∑

e′
pi(e′, fJ1 , I, eI1)

,

where

pi(e, fJ1 , I, e
I
1) =

∑

Ĩ,ẽĨ1: Li(eI1,ẽĨ1)=e

p(ẽĨ1, f
J
1 ) . (6)

The confidence of worde then depends on the source
sentencefJ1 as well as the target sentenceeI1, be-
cause the whole target sentence is relevant for the
Levenshtein alignment.

5 Phrase-based confidence measures

In contrast to the approaches presented in section 4,
the phrase-based confidence measures do not not use
the context information at the sentence level, but
only at the phrase level. We want to determine a
sort of marginal probabilityQ(e, fJ1 ). Therefore,
we extract all source phrasesf j+sj which occur in
the given source sentence. For such source phrases,
we find the possible translationsei+ti in the bilin-
gual phrase lexicon. The confidence of target word
e is then calculated by summing over all phrase pairs
(f j+sj , ei+ti ) where the target partei+ti contains the
worde.

Let p(ei+ti ) be the language model score of the
target phrase together with the word penaltyc1, i.e.

p(ei+ti ) =
i+t∏

i′=i
c1 · p(ei′ | ei′−1

i′−2)λ1 .

Analogously, definep(f j+sj , ei+ti ) as the score of the
phrase pair which consists of the phrase penalty and
the phrase and word lexicon model scores (cf. sec-
tion 2.2). Following equation 2, the (unnormalized)
confidence is then determined as:

Q(e, fJ1 ) =
J∑

j=1

min{smax,J−j}∑

s=0

(7)

∑

ei+ti : e ∈ ei+ti

p(ei+ti ) · p(f j+sj , ei+ti ) ,

wheres ≤ smax andt are source and target phrase
lengths, smax being the maximal source phrase
length.

In equation 7, the language model only deter-
mines the probability of the words within the tar-
get part of the phrase, and not across the phrase
boundaries, because we consider only the single tar-
get phrases without context. Therefore, we assumed
that the language model would not have much influ-
ence on the confidence estimation and also investi-
gated a model without a language model. The same
holds for word and phrase penalty: In the translation
process they are useful for adjusting the length of the
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generated target hypothesis and for assigning more
weight to longer phrases. Since this does not make
much sense in our setting, we also investigated con-
fidence estimation without word and phrase penalty.

Note that the value calculated in equation 7 is
not normalized. In order to obtain a word posterior
probability, we divide this value by the sum over the
(unnormalized) confidence of all target words:

pphr(e | fJ1 ) =
Q(e, fJ1 )∑

e′
Q(e′, fJ1 )

. (8)

Unlike the word posterior probabilities presented
in the previous section, this value is completely in-
dependent of the target sentence position in which
the worde occurs.

As stated in section 2.2, the scaling factors of the
different sub-models and the penalties in the trans-
lation system are optimized with respect to some
evaluation criterion. But since the values which are
optimal for translation are not necessarily optimal
for confidence estimation, we perform optimization
here as well: We train the probability models on the
training corpus, estimate the word confidences on
the development corpus, and optimize the scaling
factors with respect to the classification error rate
described in section 7.2. The optimization is per-
formed with the Downhill Simplex algorithm (Press
et al., 2002).

6 IBM-1 based approach

Another type of confidence measure which does not
rely on system output and is thus applicable to any
kind of machine translation system is the IBM-1
model based confidence measure which was intro-
duced in (Blatz et al., 2003). We modified this con-
fidence measure because we found that the average
lexicon probability used there is dominated by the
maximum. Therefore, we determine themaximal
translation probability of the target worde over the
source sentence words:

pIBM−1(e|fJ1 ) = max
j=0,...,J

p(e|fj) , (9)

wheref0 is the “empty” source word (Brown et al.,
1993). The probabilitiesp(e|fj) are word-based lex-
icon probabilities.

Investigations on the use of the IBM-1 model
for word confidence measures showed promising re-
sults (Blatz et al., 2003; Blatz et al., 2004). Thus,

we apply this method here in order to compare it to
the other types of confidence measures.

7 Experiments

7.1 Experimental setting

The experiments were performed on three different
language pairs. All corpora were compiled in the EU
project TransType2; they consist of technical manu-
als. The corpus statistics are given in table 1. The
SMT systems that the confidence estimation was
performed for were trained on these corpora. The
same holds for the probability models that were used
to estimate the word confidences.

We used several (S)MT systems for testing the
confidence measures. A detailed analysis will be
given for two of them; the so-called alignment tem-
plate system (Och and Ney, 2004), (denoted as AT
in the tables) and the phrase-based translation sys-
tem described in section 2.2 (denoted as PBT in the
tables). They are both state-of-the-art SMT systems.
We produced single best translations, word graphs
andN -best lists on all three language pairs using
these systems. The translation quality in terms of
WER, PER (position independent word error rate),
BLEU and NIST score is given in tables 2 and 3.
We see that the best results are obtained on Spanish
to English translation, followed by French to English
and German to English.

Two more translation systems were used for com-
parative experiments: One is a statistical MT system
which is based on a finite state architecture (FSA).
For a description of this system, see (Kanthak et al.,
2005). Additionally, we used translations generated
by Systran2. Table 3 presents the translation error
rates and scores for all systems on the German→
English test corpus. These hypotheses were used
to investigate whether the phrase-based confidence
measures perform well independently of the transla-
tion system.

All three SMT systems (AT, PBT and FSA) show
very similar performance on the German→ English
test corpus. The fact that Systran generates transla-
tions of much lower quality is due to the fact that the
technical manuals are very specific in terminology,
and the SMT systems have been trained on similar
corpora.

2http://babelfish.altavista.com/tr, June 2005
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Table 1: Statistics of the training, development and test corpora.
French English Spanish English German English

TRAIN Sentences 53 046 55 761 49 376
Running Words 680 796 628 329 752 606 665 399 537 464 589 531

Vocabulary 15 632 13 816 11 050 7 956 23 845 13 223

DEV Sentences 994 1 012 964
Running Words 11 674 10 903 15 957 14 278 10 462 10 642

OOVs 184 141 54 27 147 29

TEST Sentences 984 1 125 996
Running Words 11 709 11 177 10 106 8 370 11 704 12 298

OOVs 204 201 69 49 485 141

Table 2: Translation quality of systems AT and PBT
on the test corpora described in table 1.

AT PBT
S→E F→E S→E F→E

WER[%] 29.6 54.8 26.1 54.9
PER[%] 20.1 43.7 17.5 43.4
BLEU[%] 63.4 31.5 66.9 31.3
NIST 8.80 6.64 8.98 6.62

Table 3: Translation quality of all MT systems on
the German→ English test corpus.

AT PBT FSA Systran
WER[%] 62.7 61.6 63.2 79.2
PER[%] 49.8 49.6 50.4 66.4
BLEU[%] 26.6 25.7 26.5 12.0
NIST 5.92 5.72 5.79 4.09

To determine the true class of each word in a gen-
erated translation hypothesis, we use the word er-
ror rate (WER). That is, a target word is considered
correct if it is aligned to itself in the Levenshtein
alignment between hypothesis and reference trans-
lation(s). We also investigated PER based classifi-
cation, but since the tendencies of the results were
similar, we omit them here.

7.2 Evaluation metrics

After computing the confidence measure, each gen-
erated word is tagged as eithercorrector false, de-
pending on whether its confidence exceeds the tag-
ging threshold that has been optimized on the devel-

opment set beforehand. The performance of the con-
fidence measure is evaluated using theClassification
Error Rate (CER). This is defined as the number of
incorrect tags divided by the total number of gener-
ated words in the translated sentence. The baseline
CER is determined by assigning the most frequent
class to all translations. In the case that the most fre-
quent class is “correct” (meaning at least half of the
words in the generated translation are correct w.r.t.
to WER), this is the number of substitutions and in-
sertions, divided by the number of generated words.
The CER strongly depends on the tagging threshold.
Therefore, the tagging threshold is adjusted before-
hand (to minimize CER) on a development corpus
distinctto the test set.

7.3 Experimental results

Table 4 shows the performance of all different con-
fidence measures on the hypotheses generated by
the alignment template system and the phrase-based
system. For the baseline CER, we determined the
90%- and 99%-confidence intervals using the boot-
strap estimation method described in (Bisani and
Ney, 2004)3. We see that, in all settings but one, the
word graph and theN -best list based method out-
perform the IBM-1 based confidence measure. On
French→ English, the improvement over the base-
line is significant at the 1%-level for these methods,
whereas on Spanish→ English this is only the case
at 10%. The performance of theN -best list based
approach is better than that of the word graph based

3The tool is freely available from http://www-i6.informatik.
rwth-aachen.de/web/Software/index.html
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confidence measures for the alignment template sys-
tem. This is probably due to the fact that the former
can take the Levenshtein alignment into account and
thus estimate the word confidence more reliably.

The phrase-based confidence measures show a
performance which is clearly better than that of the
other methods. We obtain a relative improvement of
up to 7.8% over the best existing method on these
language pairs. The improvement over the baseline
is significant even at the 1%-level in all cases.

When analyzing the impact of the different sub-
models in the phrase-based approach, we found that
the language model does not have much impact on
the confidence estimation. There are only slight
variations in the CER if the model is omitted. The
word and phrase penalty on the other hand seem to
be important (with one exception in the first setting).

The evaluation of the system-independent confi-
dence measures (i.e. those based on IBM-1 and
the new phrase-based method we presented) for four
different translation systems is shown in table 5. We
see that, for all of them, the phrase-based approach
outperforms the IBM-1 based method significantly.
The largest gain in terms of CER is achieved for the
Systran translations: 23.8% relative over the IBM-1
based measure.

8 Conclusion and outlook

We presented a new approach to word-level con-
fidence estimation for machine translation which
makes use of bilingual phrases. By using models
from a state-of-the-art phrase-based statistical ma-
chine translation system, the word confidences are
estimated only on the basis of single best system
output. Unlike other confidence measures, this does
not rely on information from the machine translation
system which generated the translation.

Experimental evaluation on three different lan-
guage pairs and on output from structurally differ-
ent translation systems showed that the new confi-
dence measures perform better than existing confi-
dence measures in all cases. The application on out-
put from different MT systems yielded a significant
reduction of the error rate over the existing mea-
sures. This proves that the method is well-suited for
word confidence estimation on statistical as well as
non-statistical MT systems.

The task investigated in this work was a text trans-
lation task in the domain of technical manuals. We
are currently investigating the use of word-level con-
fidence measures on data from the European parlia-
ment. It will be interesting to see whether a similar
performance can be achieved on this large vocabu-
lary speech translation task.
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Abstract

In word sense disambiguation, a system attempts to
determine the sense of a word from contextual fea-
tures. Major barriers to building a high-performing
word sense disambiguation system include the dif-
ficulty of labeling data for this task and of pre-
dicting fine-grained sense distinctions. These is-
sues stem partly from the fact that the task is be-
ing treated in isolation from possible uses of au-
tomatically disambiguated data. In this paper, we
consider the related task of word translation, where
we wish to determine the correct translation of a
word from context. We can use parallel language
corpora as a large supply of partially labeled data
for this task. We present algorithms for solving the
word translation problem and demonstrate a signif-
icant improvement over a baseline system. We then
show that the word-translation system can be used
to improve performance on a simplified machine-
translation task and can effectively and accurately
prune the set of candidate translations for a word.

1 Introduction
The problem of distinguishing between multiple
possible senses of a word is an important subtask in
many NLP applications. However, despite its con-
ceptual simplicity, and its obvious formulation as a
standard classification problem, achieving high lev-
els of performance on this task has been a remark-
ably elusive goal.

In its standard formulation, the disambiguation
task is specified via an ontology defining the dif-
ferent senses of ambiguous words. In the Sense-
val competition, for example, WordNet (Fellbaum,
1998) is used to define this ontology. However, on-
tologies such as WordNet are not ideally suited to
the task of word-sense disambiguation. In many
cases, WordNet is overly “specific”, defining senses
which are very similar and hard to distinguish. For
example, there are seven definitions of “respect”
as a noun (including closely related senses such as
“an attitude of admiration or esteem” and “a feel-
ing of friendship and esteem”); there are even more
when the verb definitions are included as well. Such

closely related senses pose a challenge both for auto-
matic disambiguation and hand labeling. Moreover,
the use of a very fine-grained set of senses, most of
which are quite rare in practice, makes it very diffi-
cult to obtain sufficient amounts of training data.

These issues are clearly reflected in the perfor-
mance of current word-sense disambiguation sys-
tems. When given a large amount of training data
for a particular word with reasonably clear sense
distinctions, existing systems perform fairly well.
However, for the “all-words” task, where all am-
biguous words from a test corpus must be disam-
biguated, it has so far proved difficult to perform sig-
nificantly better than the baseline heuristic of choos-
ing the most common sense for each word.1

In this paper, we address a different formulation
of the word-sense disambiguation task. Rather than
considering this task on its own, we consider a task
of disambiguating words for the purpose of some
larger goal. Perhaps the most direct and compelling
application of a word-sense disambiguator is to ma-
chine translation. If we knew the correct seman-
tic meaning of each word in the source language,
we could more accurately determine the appropriate
words in the target language. Importantly, for this
application, subtle shades of meaning will often be
irrelevant in choosing the most appropriate words in
the target language, as closely related senses of a
single word in one language are often encoded by a
single word in another. In the context of this larger
goal, we can focus only on sense distinctions that a
human would consider when choosing the transla-
tion of a word in the source language.

We therefore consider the task of word-sense dis-
ambiguation for the purpose of machine translation.
Rather than predicting the sense of a particular word
a, we predict the possible translations ofa into the

1See, for example, results ofSenseval-3, available at
http://www.senseval.org/senseval3
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target language. We both train and evaluate the sys-
tem on this task. This formulation of the word-sense
disambiguation task, which we refer to asword
translation, has multiple advantages. First, a very
large amount of “partially-labeled” data is available
for this task in the form of bilingual corpora (which
exist for a wide range of languages). Second, the
“labeling” of these corpora (that is, translation from
one language to another), is a task at which humans
are quite proficient and which does not generally re-
quire the labeler (translator) to make difficult dis-
tinctions between fine shades of meaning.

In the remainder of this paper, we first discuss
how training data for this task can be acquired au-
tomatically from bilingual corpora. We apply a
standard learning algorithm for word-sense disam-
biguation to the word translation task, with several
modifications which proved useful for this task.We
present the results of our algorithm on word trans-
lation, showing that it significantly improves perfor-
mance on this task. We also consider two simple
methods for incorporating word translation into ma-
chine translation. First, we can use the output of
our model to help a translation model choose better
words; since general translation is a very noisy pro-
cess, we present results on a simplified translation
task. Second, we show that the output of our model
can be used to prune candidate word sets for trans-
lation; this could be used to significantly speed up
current translation systems.

2 Machine Translation
In machine translation, we wish to translate a sen-
tences in our source language intot in our target
language. The standard approach to statistical ma-
chine translation uses thesource-channel model ,

argmax
t
P (t|s) = argmax

t
P (t)P (s|t),

whereP (t) is thelanguage model for the target lan-
guage, andP (s|t) is analignment model from the
target language to the source language. Together
they define a generative model for the source/target
pair (s, t): first t is generated according to the lan-
guage modelP (t); then s is generated fromt ac-
cording toP (s|t).2

Typically, strong independence assumptions are
then made about the distributionP (s|t). For ex-
ample, in the IBM Models (Brown et al., 1993),
each wordti independently generates 0, 1, or more

2Note that we refer tot as the target sentence, even though in
the source-channel model,t is the source sentence which goes
through the channel modelP (s|t) to produce the observed sen-
tences.

words in the source language. Thus, the words gen-
erated byti are independent of the words generated
by tj for eachj 6= i. This means that correla-
tions between words in the source sentence are not
captured byP (s|t), and so the context we will use
in our word translation models to predictti given
si is not available to a system making these inde-
pendence assumptions. In this type of system, se-
mantic and syntactic relationships between words
are only modeled in the target language; most or
all of the semantic and syntactic information con-
tained in the source sentence is ignored. The lan-
guage modelP (t) does introduce some context-
dependencies, but the standard n-gram model used
in machine translation is too weak to provide a rea-
sonable solution to the strong independence assump-
tions made by the alignment model.

3 Task Formulation
We define the word translation task as finding, for
an individual worda in the source languageS, the
correct translation, either a word or phrase, in the
target languageT . Clearly, there are cases where
a is part of a multi-word phrase that needs to be
translated as a unit. Our approach could be extended
by preprocessing the data inS to find phrases, and
then executing the entire algorithm treating phrases
as atomic units. We do not explore this extension in
this paper, instead focusing on the word-to-phrase
translation problem.

As we discussed, a key advantage of the word
translation vs. word sense disambiguation is the
availability of large amounts of training data. This
data is in the form of bilingual corpora, such as
the European Parliament proceedings3. Such doc-
uments provide many training instances, where a
word in one language is translated into another.
However, the data is only partially labeled in that
we are not given a word-to-word alignment between
the two languages, and thus we do not know what
every word in the source languageS translates to in
the target languageT . While sentence-to-sentence
alignment is a fairly easy task, word-to-word align-
ment is considerably more difficult. To obtain word-
to-word alignments, we used GIZA++4, an imple-
mentation of the IBM Models (specifically, we used
the output of IBM Model 4). We did not perform
stemming on either language, so as to preserve suf-
fix information for our word translation system and
the machine translation language model.

Let DS be the set of sentences in the source lan-

3Available athttp://www.isi.edu/ koehn/
4Available athttp://www.isi.edu/ och/GIZA++.html

772



French (frequency) Translation
montée(51) going up
lève(10), lever(17) standing up
hausse(58), augmenter(37),increase(number)

augmentation(150)
interviens(53) to rise to speak
naissance(21), source(10) to be created, arise
soulevé(10) raising an issue

Table 1: Aligned translations for “rise” occurring at
least 10 times in the corpus

guage andDT the set of target language sentences.
The alignment algorithm can be run in either di-

rection. When run in theS → T direction, the al-
gorithm aligns each word int to at most one word
in s. Consider some source sentences that contains
the worda, and letUa,s→t = b1, . . . , bk be the set
of words that align toa in the aligned sentencet. In
general, we can considerUa = {Ua,s→t}s∈Da to be
the candidate set of translations fora in T , where
Da is the set of source language sentences contain-
ing a. However, this definition is quite noisy: a word
bi might have been aligned witha arbitrarily; or,bi

might be a word that itself corresponds to a multi-
word translation inS. Thus, we also align the sen-
tences in theT → S direction, and require that each
bi in the phrase aligns either witha or with nothing.
As this process is still fairly noisy, we only consider
a word or phraseb ∈ Ua to be a candidate translation
for a if it occurs some minimum number of times in
the data.

For example, Table 1 shows a possible candidate
set for the English word “rise”, with French as the
target language. Note that this set can contain not
only target words corresponding to different mean-
ings of “rise” (the rows in the table) but also words
which correspond to different grammatical forms in
the target language corresponding to different parts
of speech, verb tenses, etc. So, disambiguation in
this case is both over senses and grammatical forms.

The final result of our processing of the corpus is,
for each source worda, a set of target words/phrases
Ua; and a set of sentencesDa where, in each sen-
tence,a is aligned to someb ∈ Ua. For any sen-
tences ∈ Da, aligned to some target sentencet,
let ua,s ∈ Ua be the word or phrase int aligned
with a. We can now treat this set of sentences as
a fully-labeled corpus, which can be split into a set
used for learning the word-translation model and a
test set used for evaluating its performance.

We note, however, that there is a limitation to us-
ing accuracy on the test set for evaluating the perfor-
mance of the algorithm. A source worda in a given
context may have two equally good, interchangeable
translations into the target language. Our evaluation

metric only rewards the algorithm for selecting the
target word/phrase that happened to be used in the
actual translation. Thus, accuracies measured us-
ing this metric may be artificially low. This is a
common problem with evaluating machine transla-
tion systems.

Another issue is that we take as ground truth the
alignments produced by GIZA++. This has two im-
plications: first, our training data may be noisy since
some alignments may be incorrect; and second, our
test data may not be completely accurate. As men-
tioned above, we only consider possible translations
which occur some minimum number of times; this
removes many of the mistakes made by GIZA++.
Even if the test set is not 100% reliable, though, im-
provement over baseline performance is indicative
of the potential of a method.

4 Word Translation Algorithms
The word translation task and the word-sense dis-
ambiguation task have the same form: each worda
is associated with a set of possible labelsUa; given
a sentences containing worda, we must determine
which of the possible labels inUa to assign toa in
the contexts. The only difference in the two tasks is
the setUa: for word translation it is the set of pos-
sible translations ofa, while for word sense disam-
biguation it is the set of possible senses ofa in some
ontology. Thus, we may use any word sense disam-
biguation algorithm as a word translation algorithm
by appropriately defining the senses (assuming that
the WSD algorithm does not assume that a particular
ontology is used to choose the senses).

Our main focus in this paper is to show that ma-
chine learning techniques are effective for the word
translation task, and to demonstrate that we can use
the output of our word translation system to im-
prove performance on two machine-translation re-
lated tasks. We will therefore restrict our atten-
tion to a relatively simple model, logistic regres-
sion (Minka, 2000). There are several motivations
for using this discriminative, probabilistic model.
First, it is known both theoretically and empirically
(e.g., (Ng and Jordan, 2002)) that discriminative
models achieve higher accuracies than generative
models if enough data is available. For the tradi-
tional word-sense disambiguation task, data must be
hand-labeled, and is therefore often too scarce to al-
low for discriminative training. In our setting, how-
ever, training data is acquired automatically from
bilingual corpora, which are widely available and
quite large. Thus, discriminative training is a viable
option for the word translation problem. A second
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consideration is that, to effectively incorporate our
system into a statistical machine translation system,
we would like to produce not just a single prediction,
but a list of confidence-rated possibilities. The op-
timization procedure of logistic regression attempts
to produce a distribution over possible translations
which accurately represents the confidence of the
model for each translation. By contrast, a classical
Naive Bayes model often assigns very low proba-
bilities to all but the most likely translation. Other
word-sense disambiguation models may not produce
confidence measures at all.

Features. Our word translation model for a word
a in a sentences = w1, . . . , wk is based on features
constructed from the word and its context within the
sentence. Our basic logistic regression model uses
the following features, which correspond to the fea-
ture space for a standard Naive Bayes model:

• the part of speech ofa (generated using the
Brill tagger)5;

• a binary “occurs” variable for each word which
is 1 if that word is in a fixed context centered
at a (cr words to the right andcl words to the
left), and 0 otherwise.

We also consider an extension to this model, where
instead of the fixed context features above, we use:

• for each directiond ∈ {l, r} and each possi-
ble context sizecd ∈ {1, ..., Cd}, an “occurs”
variable for each word.

This is a true generalization of the previous con-
text features, since it contains features for all pos-
sible context sizes, not just one particular fixed size.
This feature set is equivalent to having one feature
for each word in each context position, except that
it will have a different prior over parameters under
standardL2 regularization. This feature set allows
our model to distinguish between very local (often
syntactic) features and somewhat longer range fea-
tures whose exact position is not as important.

Let φa,s be the set of features for worda to be
translated, with sentence contexts (the description
of the model does not depend on the particular fea-
ture set selected).

Model. The logistic regression model encodes the
conditional distribution(P (ua,s = b | a, s) : b ∈
Ua). Such a model is parameterized by a set of vec-
torsθ

a
b , one for each worda and each possible target

b ∈ Ua, where each vector contains a weightθa
b,j for

each featureφa,s
j . We can now define our conditional

distribution:
5Available athttp://www.cs.jhu.edu/ brill/

Pθ
a(b | a, s) =

1

Za,s

eθ
a
b φa,s

with partition functionZa,s =
∑

b′∈Ua
exp(θa

b′φ
a,s).

Training. We train the logistic regression model to
maximize the conditional likelihood of the observed
labels given the features in our training set. Thus,
our goal in training the model fora is to maximize

∏

s∈Da

Pθ
a(ua,s | a, s).

We maximize this objective by maximizing its log-
arithm (the log-conditional-likelihood) using conju-
gate gradient ascent (Shewchuk, 1994).

One important consideration when training using
maximum likelihood is regularization of the param-
eters. In the case of logistic regression, the most
common type of regularization isL2 regularization;
we then maximize

∏

b,j

exp

(

−
(θa

b,j)
2

2σ2

)

∏

s∈Da

Pθ
a(ua,s | a, s).

This penalizes the likelihood for the distance of each
parameterθa

b,j from 0; it corresponds to a Gaussian
prior on each parameter with varianceσ2.

5 Word Translation Results
For our word translation experiments we used the
European Parliament proceedings corpus, which
contains approximately 27 million words in each of
English and French (as well as a number of other
languages). We tested on a set of 1859 ambigu-
ous words — specifically, all ambiguous words con-
tained in the first document of the corpus. For each
of these words, we found all instances of the word in
the corpus and split these instances into training and
test sets.

We tested four different models. The first, Base-
line, always chooses the most common translation
for the word; the second, Baseline with Part of
Speech, uses tagger-generated parts of speech to
choose the most common translation for the ob-
served word/part-of-speech pair. The third model,
Simple Logistic, is the logistic regression model
with the simpler feature set, a context window of a
fixed size. We selected the window size by eval-
uating accuracy for a variety of window sizes on
20 of the 1859 ambiguous words using a random
train-test split. The window size which performed
best on average extended one word to the left and
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Model Macro Micro
Baseline 0.511 0.526
Baseline with Part of Speech 0.519 0.532
Simple Logistic 0.581 0.605
Logistic 0.596 0.620

Table 2: Average Word Translation Accuracy

two words to the right (larger windows generally re-
sulted in overfitting). The fourth model, Logistic, is
the logistic regression model with overlapping con-
text windows; the maximum window size for this
model was four words to the left and four words to
the right. We selected the standard deviationσ2 for
the logistic models by trying different values on the
same small subset of the ambiguous words. For the
Simple Logistic model, the best value wasσ2 = 1;
for the Logistic model, it was0.35.

Table 2 shows results of these four models. The
first column is macro-averaged over the 1859 words,
that is, the accuracy for each word counts equally
towards the average. The second column shows the
micro-averaged accuracy, where each test example
counts equally. We will focus on the micro-averaged
results, since they correspond to overall accuracy.

The less accurate of our two models, Simple Lo-
gistic, improves around 8% over the simple baseline
and 7% over the part-of-speech baseline on aver-
age. Our more complex logistic model, which is able
to handle larger context sizes without significantly
overfitting, improves accuracy by another 1.5%.

There was a great deal of variance from word
to word in the performance of our models relative
to baseline. For a few words, we achieved very
large increases in accuracy. For instance, the noun
“agenda” showed a 31.2% increase over both base-
lines. Similarly, the word “rise” (either a noun
or a verb) had part-of-speech baseline accuracy of
27.9%. Our model increased the accuracy to 57.0%.

It is worth repeating that accuracies on this task
are artificially low since in many cases a single word
can be translated to many different words with the
same meaning. At the same time, accuracies are ar-
tificially inflated by the fact that we only consider
examples where we can find an aligned word in
the French corpus, so translations where a word is
dropped or translated as part of a compound word
are not counted.

One disadvantage of the EuroParl corpus is that it
is not “balanced” in terms of semantic content. It is
not clear how this affects our results.

6 Blank-Filling Task
One of the most difficult parts of machine translation
is decoding — finding the most likely translation ac-
cording to some probability model. The difficulty
arises from the enormous number of possible trans-
lated sentences. Existing decoders generally use ei-
ther highly pruned search or greedy heuristic search.
In either case, the quality of a translation can vary
greatly from sentence to sentence. This variation
is much higher than the improvement in “seman-
tic” accuracy our model is attempting to achieve.
Moreover, currently available decoders do not pro-
vide a natural way to incorporate the results of a
word translation system. For example, Carpuat and
Wu (2005) obtain negative results for two methods
of incorporating the output of a word-sense disam-
biguation system into a machine translation system.

Thus, we instead used our word translation model
for a simplified translation problem. We prepared a
dataset as follows: for each occurrence of an am-
biguous words in an English sentence in the first
document of the Europarl corpus, we tried to de-
termine what the correct translation for that word
was in the corresponding French sentence. If we
found one and exactly one possible translation for
that word in the French sentence, we replaced that
word with a “blank”, and linked the English word
to that blank. The final result was a set of655 sen-
tences with a total of3018 blanks.

For example, the following English-French sen-
tence pair contains the two ambiguous wordsad-
dress andissue and one possible translation for each,
examiner andquestion:

• Therefore, the commission shouldaddress the
issue once and for all.

• Par conséquent, la commission devra enfinex-
aminer cettequestion particulière.

We replace the translations of the ambiguous words
with blanks; we would like a decoder to replace the
blanks with the correct translations:

• Par conséquent, la commission devra enfin [ad-
dress] cette [issue] particulière.

An advantage of this task is that, for a given distri-
butionP (t|s), we can easily write a decoder which
exhaustively searches the entire solution space for
the best answer (provided that there are not too many
blanks and thatP (t|s) is sufficiently “local” with re-
spect tot). Thus, we can be sure that it is the prob-
ability model, and not the decoder, which is deter-
mining the quality of the output. Also, we have re-
moved most or all syntactic variability from the task,
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Model λlm λga λda λwt Acc
Language Model only 1 0 0 0 0.749
Source-Channel 1 1 0 0 0.821
LM + GA + DA 1 0.6∗ 0.6∗ 0 0.833
LM + GA + DA + WT 1 0.6∗ 0∗ 1.2∗ 0.846

Table 3: Blank-filling results. Weights marked with
* have been optimized.

allowing us to better gauge whether we are choosing
semantically correct translations.

Let (ai, bi) be the pairs of words corresponding to
the blanks in sentencet. Then the alignment model
decomposes as a product of terms over these pairs,
e.g. P (s|t) ∝

∏

(ai,bi) P (ai|bi). Analogously, we
extend the word translation model asPwt(t|s) ∝
∏

(ai,bi) Pwt(bi|s, ai).

The source-channel model can be used directly
to solve the blank filling task; the language model
makes use of the French words surrounding each
blank, while the alignment model guesses the ap-
propriate translation based on the aligned English
word. As we have mentioned, this model does not
take full advantage of the context in the English sen-
tence. Thus, we hope that incorporating the word
translation model into the decoder will improve per-
formance on this task.

Conversely, simply using the word translation
model alone for the blank-filling task would not take
advantage of the available French context. There
are four probability distributions we might consider
using: the language modelPlm(t); the “genera-
tive” alignment modelPga(s|t), which we calcu-
late using the training samples from the previous
section; the analogous “discriminative” alignment
model Pda(t|s), which corresponds to the Base-
line system we compared to on the word translation
task; and our overlapping context logistic model,
Pwt(t|s), which also goes in the “discriminative” di-
rection, but uses the context features in the source
language for determining the distribution over each
word’s possible translations.

We combine these models by simply taking a log-
linear combination:

log P (t|s) ∝ λlm log Plm(t) + λga log Pga(s|t)
+ λda log Pda(t|s) + λwt log Pwt(t|s).

The case ofλlm = λga = 1 andλda = λwt = 0 re-
duces to the source-channel model; other settings in-
corporate discriminative models to varying degrees.

We evaluated this combined translation model on
the blank-filling task for various settings of the mix-
ture coefficientsλ. For our language model we used
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Figure 1: Accuracy on blank-filling task withλlm = 1 and
λdisc = 0 as a function ofλgen andλwt.

the CMU-Cambridge toolkit.6 The word translation
model for each ambiguous word was trained on all
documents except the first.

Table 3 shows results for several sets of weights.
A * denotes entries which we optimized (see be-
low); other entries were fixed. For example, the third
model was obtained by fixing the coefficient of the
language model to 1 and the word-translation to 0,
and optimizing the weights for the generative and
discriminative alignment models.

The language model alone is able to achieve rea-
sonable results; adding the alignment models im-
proves performance further. By adding the word-
translation model, we are able to improve perfor-
mance by approximately 2.5% over the source-
channel model, a relative error reduction of 14%,
and 1.3% over the optimized model using the
language model and generative and discriminative
alignment models, a relative error reduction of 7.8%.

We chose optimal coefficients for the combined
probability models by exhaustively trying all possi-
ble settings of the weights, at a resolution of 0.1,
evaluating accuracy for each one on the test set. Fig-
ure 1 shows the performance on the blank-filling
task as a function of the weights of the generative
alignment model and the word-translation model
(the optimum value of the discriminative alignment
model P (t|s) is always 0 when we include the
word-translation model). As we can see, the per-
formance of this model is robust with respect to
the exact value of the coefficients. The “obvious”
setting of 1.0 for the generative model and 1.0 for
the word translation model performs nearly as well

6Available athttp://mi.eng.cam.ac.uk/ prc14/toolkit.html.
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as the optimized setting. In the optimal region,
the word-translation model receives twice as much
weight as the generative alignment model, indicat-
ing that word-translation model is more informative
than the generative alignment model. Incorporating
the discriminative alignment model into the source-
channel model also improves performance, but not
nearly as much as using the word-translation model.

An alternate way to optimize weights over trans-
lation features is described in Och and Ney (2002).
They consider a number of translation features, in-
cluding the language model and generative and dis-
criminative alignment models.

7 Search Space Pruning
As we have mentioned, one of the main difficulties
in translation is that there are an enormous number
of possible translations to consider. Decoding al-
gorithms must therefore use some kind of search-
space pruning in order to be efficient. A key part
of pruning the search space is deciding on the set
of words to consider in possible translations (Ger-
mann et al., 2001). One standard method is to con-
sider only target words which have high probabil-
ity according to the discriminative alignment model.
But we have already shown that the word translation
model achieves much better performance on word
translation than this baseline model; thus, we would
expect the word translation model to improve accu-
racy when used to pick sets of candidate translations.

Given a probability distribution over possible
translations of a word,P (b|a, s), there are several
ways to choose a reduced set of possible transla-
tions. Two commonly used methods are to only
consider the topn scoring words from this distribu-
tion (best-n); and to only consider wordsb such that
P (b|a, s) is above some fixed threshold (cut-off ).

We use the same data set as for the blank-filling
task. We evaluate the accuracy of a pruning strategy
by evaluating whether the correct translation is in
the candidate set selected by the pruning strategy.
To compare results for different pruning strategies,
we plot performance as a function of average size
of the candidate translation set. Figure 2 shows the
accuracy vs. average candidate set size for the word-
translation model, discriminative alignment model,
and generative alignment model.

The generative alignment model has the worst
performance of the three. This is not surprising as it
does not take into account the prior probability of the
target wordP (b). More interestingly, we see that the
word-translation model outperforms the discrimina-
tive translation model by a significant amount. For
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instance, to achieve 95% recall (that is, for 95% of
the ambiguous words, we retain the correct transla-
tion), we only need candidate sets of average size4.2
for the cut-off strategy using the word-translation
model, whereas for the same strategy on the discrim-
inative alignment model we require an average set
size of6.7 words.

As the size of the solution space grows exponen-
tially with the size of the candidate sets, the word-
translation model could potentially greatly reduce
the search space while maintaining good accuracy.

It would be interesting to use similar techniques to
learn null fertility (i.e., when a worda has no trans-
lation in the target sentencet).

8 Related Work
Berger et al. (1996) apply maximum entropy meth-
ods (equivalent to logistic regression) to, among
other tasks, the word-translation task. However, no
quantitative results are presented. In this paper we
demonstrate that the method can improve perfor-
mance on a large data set and show how it might
be used to improve machine translation.

Diab and Resnik (2002) suggest using large bilin-
gual corpora to improve performance on word sense
disambiguation. The main idea is that knowing a
French word may help determine the meaning of the
corresponding English word. They apply this intu-
ition to the Senseval word disambiguation task by
running off-the-shelf translators to produce transla-
tions which they then use for disambiguation.

Ng et al. (2003) address word sense disambigua-
tion by manually annotating WordNet senses with
their translation in the target language (Chinese),
and then automatically extracting labeled examples
for word sense disambiguation by applying the IBM
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Models to a bilingual corpus. They achieve compa-
rable results to training on hand-labeled examples.

Koehn and Knight (2003) focus on the task of
noun-phrase translation. They improve performance
on the noun-phrase translation task, and show that
they can use this to improve full translations. A key
difference is that, in predicting noun-phrase trans-
lations, they do not consider the context of nouns.
They present results which indicate that humans can
accurately translate noun phrases without looking
at the surrounding context. However, as we have
demonstrated in this paper, context can be very use-
ful for a (sub-human-level) machine translator.

A similar argument applies to phrase-based trans-
lation methods (e.g., Koehn et al. (2003)). While
phrase-based systems do take into account context
within phrases, they are not able to use context
across phrase boundaries. This is especially impor-
tant when ambiguous words do not occur as part of
a phrase — verbs in particular often appear alone.

9 Conclusions
In this paper, we focus on the word-translation prob-
lem. By viewing word-sense disambiguation in the
context of a larger task, we were able to obtain large
amounts of training data and directly evaluate the
usefulness of our system for a real-world task. Our
results improve over a baseline which is difficult to
outperform in the word sense disambiguation task.

The word translation model could be improved in
a variety of ways, drawing upon the large body of
work on word-sense disambiguation. In particular,
there are many types of context features which could
be used to improve word translation performance,
but which are not available to standard machine-
translation systems. Also, the model could be ex-
tended to handle phrases.

To evaluate word translation in the context of a
machine translation task, we introduce the novel
blank-filling task, which decouples the impact of
word translation from a variety of other factors, such
as syntactic correctness. For this task, increased
word-translation accuracy leads to improved ma-
chine translation. We also show that the word trans-
lation model is effective at choosing sets of candi-
date translations, suggesting that a word translation
component would be immediately useful to current
machine translations systems.

There are several ways in which the results of
word translation could be integrated into a full trans-
lation system. Most naturally, the word translation
model can be used directly to modify the score of
different translations. Alternatively, a decoder can

produce several candidate translations, which can be
reranked using the word translation model. Unfortu-
nately, we were unable to try these approaches, due
to the lack of an appropriate publicly available de-
coder. Carpuat and Wu (2005) recently observed
that simpler integration approaches, such as forcing
the machine translation system to use the word trans-
lation model’s first choice, do not improve transla-
tion results. Together, these results suggest that one
should incorporate the results of word translation in
a “soft” way, allowing the word translation, align-
ment, and language models to work together to pro-
duce coherent translations. Given an appropriate de-
coder, trying such a unified approach is straightfor-
ward, and would provide insight about the value of
word translation.
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Abstract

Hierarchical organization is a well known prop-
erty of language, and yet the notion of hierarchi-
cal structure has been largely absent from the best
performing machine translation systems in recent
community-wide evaluations. In this paper, we dis-
cuss a new hierarchical phrase-based statistical ma-
chine translation system (Chiang, 2005), present-
ing recent extensions to the original proposal, new
evaluation results in a community-wide evaluation,
and a novel technique for fine-grained comparative
analysis of MT systems.

1 Introduction

Hierarchical organization is a well known prop-
erty of language, and yet the notion of hierarchi-
cal structure has, for the last several years, been
absent from the best performing machine transla-
tion systems in community-wide evaluations. Statis-
tical phrase-based models (e.g. (Och and Ney, 2004;
Koehn et al., 2003; Marcu and Wong, 2002)) charac-
terize a source sentence f as a flat partition of non-
overlapping subsequences, or “phrases”, f̄1 · · · f̄J ,
and the process of translation involves selecting tar-
get phrases ēi corresponding to the f̄ j and modify-
ing their sequential order. The need for some way
to model aspects of syntactic behavior, such as the
tendency of constituents to move together as a unit,
is widely recognized—the role of syntactic units is
well attested in recent systematic studies of trans-
lation (Fox, 2002; Hwa et al., 2002; Koehn and
Knight, 2003), and their absence in phrase-based
models is quite evident when looking at MT system
output. Nonetheless, attempts to incorporate richer
linguistic features have generally met with little suc-
cess (Och et al., 2004a).

Chiang (2005) introduces Hiero, a hierarchical
phrase-based model for statistical machine transla-
tion. Hiero extends the standard, non-hierarchical
notion of “phrases” to include nonterminal sym-
bols, which permits it to capture both word-level and
phrase-level reorderings within the same framework.
The model has the formal structure of a synchronous
CFG, but it does not make any commitment to a
linguistically relevant analysis, and it does not re-
quire syntactically annotated training data. Chiang
(2005) reported significant performance improve-
ments in Chinese-English translation as compared
with Pharaoh, a state-of-the-art phrase-based system
(Koehn, 2004).

In Section 2, we review the essential elements
of Hiero. In Section 3 we describe extensions to
this system, including new features involving named
entities and numbers and support for a fourfold
scale-up in training set size. Section 4 presents new
evaluation results for Chinese-English as well as
Arabic-English translation, obtained in the context
of the 2005 NIST MT Eval exercise. In Section 5, we
introduce a novel technique for fine-grained com-
parative analysis of MT systems, which we em-
ploy in analyzing differences between Hiero’s and
Pharaoh’s translations.

2 Hiero

Hiero is a stochastic synchronous CFG, whose pro-
ductions are extracted automatically from unanno-
tated parallel texts, and whose rule probabilities
form a log-linear model learned by minimum-error-
rate training; together with a modified CKY beam-
search decoder (similar to that of Wu (1996)). We
describe these components in brief below.
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S→ 〈S 1 X 2 ,S 1 X 2 〉

S→ 〈X 1 ,X 1 〉

X→ 〈yu X 1 you X 2 , have X 2 with X 1 〉

X→ 〈X 1 de X 2 , the X 2 that X 1 〉

X→ 〈X 1 zhiyi, one of X 1 〉

X→ 〈Aozhou,Australia〉

X→ 〈shi, is〉

X→ 〈shaoshu guojia, few countries〉

X→ 〈bangjiao, diplomatic relations〉

X→ 〈Bei Han,North Korea〉

Figure 1: Example synchronous CFG

2.1 Grammar

A synchronous CFG or syntax-directed transduction
grammar (Lewis and Stearns, 1968) consists of pairs
of CFG rules with aligned nonterminal symbols. We
denote this alignment by coindexation with boxed
numbers (Figure 1). A derivation starts with a pair
of aligned start symbols, and proceeds by rewrit-
ing pairs of aligned nonterminal symbols using the
paired rules (Figure 2).

Training begins with phrase pairs, obtained as by
Och, Koehn, and others: GIZA++ (Och and Ney,
2000) is used to obtain one-to-many word align-
ments in both directions, which are combined into a
single set of refined alignments using the “final-and”
method of Koehn et al. (2003); then those pairs of
substrings that are exclusively aligned to each other
are extracted as phrase pairs.

Then, synchronous CFG rules are constructed
out of the initial phrase pairs by subtraction: ev-
ery phrase pair 〈 f̄ , ē〉 becomes a rule X → 〈 f̄ , ē〉,
and a phrase pair 〈 f̄ , ē〉 can be subtracted from a
rule X → 〈γ1 f̄γ2, α1ēα2〉 to form a new rule X →
〈γ1X i γ2, α1X i α2〉, where i is an index not already
used. Various filters are also applied to reduce the
number of extracted rules. Since one of these filters
restricts the number of nonterminal symbols to two,
our extracted grammar is equivalent to an inversion
transduction grammar (Wu, 1997).

2.2 Model
The model is a log-linear model (Och and Ney,
2002) over synchronous CFG derivations. The
weight of a derivation is PLM(e)λLM , the weighted
language model probability, multiplied by the prod-
uct of the weights of the rules used in the derivation.
The weight of each rule is, in turn:

(1) w(X → 〈γ, α〉) =
∏

i

φi(X → 〈γ, α〉)λi

where the φi are features defined on rules. The ba-
sic model uses the following features, analogous to
Pharaoh’s default feature set:

• P(γ | α) and P(α | γ)

• the lexical weights Pw(γ | α) and Pw(α | γ)
(Koehn et al., 2003);1

• a phrase penalty exp(1);

• a word penalty exp(l), where l is the number of
terminals in α.

The exceptions to the above are the two “glue”
rules, which are the rules with left-hand side S in
Figure 1. The second has weight one, and the first
has weight w(S → 〈S 1 X 2 ,S 1 X 2 〉) = exp(−λg),
the idea being that parameter λg controls the model’s
preference for hierarchical phrases over serial com-
bination of phrases.

Phrase translation probabilities are estimated by
relative-frequency estimation. Since the extraction
process does not generate a unique derivation for
each training sentence pair, a distribution over pos-
sible derivations is hypothesized, which gives uni-
form weight to all initial phrases extracted from a
sentence pair and uniform weight to all rules formed
out of an initial phrase. This distribution is then used
to estimate the phrase translation probabilities.

The lexical-weighting features are estimated us-
ing a method similar to that of Koehn et al. (2003).
The language model is a trigram model with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1998), trained using the SRI-LM toolkit (Stolcke,
2002).

1This feature uses word alignment information, which is dis-
carded in the final grammar. If a rule occurs in training with
more than one possible word alignment, Koehn et al. take the
maximum lexical weight; Hiero uses a weighted average.
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〈S 1 ,S 1 〉 ⇒ 〈S 2 X 3 ,S 2 X 3 〉

⇒ 〈S 4 X 5 X 3 ,S 4 X 5 X 3 〉

⇒ 〈X 6 X 5 X 3 ,X 6 X 5 X 3 〉

⇒ 〈Aozhou X 5 X 3 ,Australia X 5 X 3 〉

⇒ 〈Aozhou shi X 3 ,Australia is X 3 〉

⇒ 〈Aozhou shi X 7 zhiyi,Australia is one of X 7 〉

⇒ 〈Aozhou shi X 8 de X 9 zhiyi,Australia is one of the X 9 that X 8 〉

⇒ 〈Aozhou shi yu X 1 you X 2 de X 9 zhiyi,Australia is one of the X 9 that have X 2 with X 1 〉

Figure 2: Example partial derivation of a synchronous CFG.

The feature weights are learned by maximizing
the BLEU score (Papineni et al., 2002) on held-out
data, using minimum-error-rate training (Och, 2003)
as implemented by Koehn. The implementation was
slightly modified to ensure that the BLEU scoring
matches NIST’s definition and that hypotheses in
the n-best lists are merged when they have the same
translation and the same feature vector.

3 Extensions

In this section we describe our extensions to the base
Hiero system that improve its performance signif-
icantly. First, we describe the addition of two new
features to the Chinese model, in a manner similar
to that of Och et al. (2004b); then we describe how
we scaled the system up to a much larger training
set.

3.1 New features

The LDC Chinese-English named entity lists (900k
entries) are a potentially valuable resource, but
previous experiments have suggested that simply
adding them to the training data does not help
(Vogel et al., 2003). Instead, we placed them in
a supplementary phrase-translation table, giving
greater weight to phrases that occurred less fre-
quently in the primary training data. For each en-
try 〈 f , {e1, . . . , en}〉, we counted the number of times
c( f ) that f appeared in the primary training data,
and assigned the entry the weight 1

c( f )+1 , which
was then distributed evenly among the supplemen-
tary phrase pairs {〈 f , ei〉}. We then created a new
model feature for named entities. When one of these

supplementary phrase pairs was used in transla-
tion, its feature value for the named-entity feature
was the weight defined above, and its value in the
other phrase-translation and lexical-weighting fea-
tures was zero. Since these scores belonged to a sep-
arate feature from the primary translation probabili-
ties, they could be reweighted independently during
minimum-error-rate training.

Similarly, to process Chinese numbers and dates,
we wrote a rule-based Chinese number/date transla-
tor, and created a new model feature for it. Again,
the weight given to this module was optimized
during minimum-error-rate training. In some cases
we wrote the rules to provide multiple uniformly-
weighted English translations for a Chinese phrase
(for example, kå (bari) could become “the 8th” or
“on the 8th”), allowing the language model to decide
between the options.

3.2 Scaling up training
Chiang (2005) reports on experiments in Chinese-
English translation using a model trained on
7.2M+9.2M words of parallel data.2 For the NIST
MT Eval 2005 large training condition, consider-
ably more data than this is allowable. We chose
to use only newswire data, plus data from Sino-
rama, a Taiwanese news magazine.3 This amounts
to almost 30M+30M words. Scaling to this set re-
quired reducing the initial limit on phrase lengths,
previously fixed at 10, to avoid explosive growth of

2Here and below, the notation “X + Y words” denotes X
words of foreign text and Y words of English text.

3From Sinorama, only data from 1991 and later were used,
as articles prior to that were translated quite loosely.
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the extracted grammar. However, since longer initial
phrases can be beneficial for translation accuracy,
we adopted a variable length limit: 10 for the FBIS
corpus and other mainland newswire sources, and 7
for the HK News corpus and Sinorama. (During de-
coding, limits of up to 15 were sometimes used; in
principle these limits should all be the same, but in
practice it is preferable to tune them separately.)

For Arabic-English translation, we used the ba-
sic Hiero model, without special features for named
entities or numbers/dates. We again used only the
newswire portions of the allowable training data; we
also excluded the Ummah data, as the translations
were found to be quite loose. Since this amounted
to only about 1.5M+1.5M words, we used a higher
initial phrase limit of 15 during both training and de-
coding.

4 Evaluation

Figure 1 shows the performance of several systems
on NIST MT Eval 2003 Chinese test data: Pharaoh
(2004 version), trained only on the FBIS data; Hi-
ero, with various combinations of the new features
and the larger training data.4 This table also shows
Hiero’s performance on the NIST 2005 MT evalua-
tion task.5 The metric here is case-sensitive BLEU.6

Figure 2 shows the performance of two systems
on Arabic in the NIST 2005 MT Evaluation task:
DC, a phrase-based decoder for a model trained by
Pharaoh, and Hiero.

5 Analysis

Over the last few years, several automatic metrics
for machine translation evaluation have been intro-
duced, largely to reduce the human cost of itera-
tive system evaluation during the development cy-
cle (Lin and Och, 2004; Melamed et al., 2003; Pap-
ineni et al., 2002). All are predicated on the concept

4The third line, corresponding to the model without new fea-
tures trained on the larger data, may be slightly depressed be-
cause the feature weights from the fourth line were used instead
of doing minimum-error-rate training specially for this model.

5Full results are available at http://www.nist.gov/
speech/tests/summaries/2005/mt05.htm. For this test, a
phrase length limit of 15 was used during decoding.

6For this task, the translation output was uppercased using
the SRI-LM toolkit: essentially, it was decoded again using
an HMM whose states and transitions are a trigram language
model of cased English, and whose emission probabilities are
reversed, i.e., probability of cased word given lowercased word.

System Features Train MT03 MT05
Pharaoh standard FBIS 0.268
Hiero standard FBIS 0.288
Hiero standard full 0.329
Hiero +nums, names full 0.339 0.300

Table 1: Chinese results. (BLEU-4; MT03 case-
insensitive, MT05 case-sensitive)

System Train MT05
DC full 0.399
Hiero full 0.450

Table 2: Arabic results. (BLEU-4; MT03 case-
insensitive, MT05 scores case-sensitive.

of n-gram matching between the sentence hypothe-
sized by the translation system and one or more ref-
erence translations—that is, human translations for
the test sentence. Although the motivations and for-
mulae underlying these metrics are all different, ul-
timately they all produce a single number represent-
ing the “goodness” of the MT system output over a
set of reference documents. This facility is valuable
in determining whether a given system modification
has a positive impact on overall translation perfor-
mance. However, the metrics are all holistic. They
provide no insight into the specific competencies or
weaknesses of one system relative to another.

Ideally, we would like to use automatic methods
to provide immediate diagnostic information about
the translation output—what the system does well,
and what it does poorly. At the most general level,
we want to know how our system performs on the
two most basic problems in translation—word trans-
lation and reordering. Unigram precision and recall
statistics tell us something about the performance of
an MT system’s internal translation dictionaries, but
nothing about reordering. It is thought that higher or-
der n-grams correlate with the reordering accuracy
of MT systems, but this is again a holistic metric.

What we would really like to know is how well the
system is able to capture systematic reordering pat-
terns in the input, which ones it is successful with,
and which ones it has difficulty with. Word n-grams
are little help here: they are too many, too sparse, and
it is difficult to discern general patterns from them.
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5.1 A New Analysis Method

In developing a new analysis method, we are moti-
vated in part by recent studies suggesting that word
reorderings follow general patterns with respect to
syntax, although there remains a high degree of flex-
ibility (Fox, 2002; Hwa et al., 2002). This suggests
that in a comparative analysis of two MT systems, it
may be useful to look for syntactic patterns that one
system captures well in the target language and the
other does not, using a syntax based metric.

We propose to summarize reordering patterns us-
ing part-of-speech sequences. Unfortunately, recent
work has shown that applying statistical parsers to
ungrammatical MT output is unreliable at best, with
the parser often assigning unreasonable probabili-
ties and incongruent structure (Yamada and Knight,
2002; Och et al., 2004a). Anticipating that this
would be equally problematic for part-of-speech
tagging, we make the conservative choice to apply
annotation only to the reference corpus. Word n-
gram correspondences with a reference translation
are used to infer the part-of-speech tags for words in
the system output.

First, we tagged the reference corpus with parts
of speech. We used MXPOST (Ratnaparkhi, 1996),
and in order to discover more general patterns, we
map the tag set down after tagging, e.g. NN, NNP,
NNPS and NNS all map to NN. Second, we com-
puted the frequency freq(ti . . . t j) of every possible
tag sequence ti . . . t j in the reference corpus. Third,
we computed the correspondence between each hy-
pothesis sentence and each of its corresponding ref-
erence sentences using an approximation to max-
imum matching (Melamed et al., 2003). This al-
gorithm provides a list of runs or contiguous se-
quences of words ei . . . e j in the reference that are
also present in the hypothesis. (Note that runs are
order-sensitive.) Fourth, for each recalled n-gram
ei . . . e j, we looked up the associated tag sequence
ti . . . t j and incremented a counter recalled(ti . . . t j).
Finally, we computed the recall of tag patterns,
R(ti . . . t j) = recalled(ti . . . t j)/freq(ti . . . t j), for all
patterns in the corpus.

By examining examples of these tag sequences in
the reference corpus and their hypothesized trans-
lations, we expect to gain some insight into the
comparative strengths and weaknesses of the MT

systems’ reordering models. (An interactive plat-
form for this analysis is demonstrated by Lopez and
Resnik (2005).)

5.2 Chinese

We performed tag sequence analysis on the Hiero
and Pharaoh systems trained on the FBIS data only.
Table 3 shows those n-grams for which Hiero and
Pharaoh’s recall differed significantly (p < 0.01).
The numbers shown are the ratio of Hiero’s recall
to Pharaoh’s. Note that the n-grams on which Hi-
ero had better recall are dominated by fragments of
prepositional phrases (in the Penn Treebank tagset,
prepositions are tagged IN or TO).

Our hypothesis is that Hiero produces English PPs
better because many of them are translated from
Chinese phrases which have an NP modifying an NP
to its right, often connected with the particle � (de).
These are often translated into English as PPs, which
modify the NP to the left. A correct translation, then,
would have to reorder the two NPs. Notice in the ta-
ble that Hiero recalls proportionally more n-grams
as n increases, corroborating the intuition that Hiero
should be better at longer-distance reorderings.

Investigating this hypothesis qualitatively, we in-
spected the first five occurrences of the n-grams of
the first type on the list (JJ NN IN DT NN). Of
these, we omit one example because both systems
recalled the n-gram correctly, and one because they
differed only in lexical choice (Hiero matched the
5-gram with one reference sentence, Pharaoh with
zero). The other three examples are shown below (H
= Hiero, P = Pharaoh):

(2) T�ý
UN

�h
security

���
council

�
of

�*
five

8û
permanent

��
member

ýý
countries-all

R1. five permanent members of the UN Secu-
rity Council

H. the five permanent members of the un se-
curity council

P. the united nations security council perma-
nent members of the five countries
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10.00 JJ NN IN DT NN
7.00 IN NN TO
5.50 IN DT NN NN PU NN
5.50 IN DT NN NN PU NN NN
4.50 NN JJ NN PU
4.50 NN IN DT JJ
4.00 VB CD IN DT
3.67 IN DT NN NN PU
3.50 NN IN DT NN NN
3.30 NN IN DT NN

3.14 DT NN IN DT NN
3.00 IN DT NN PU
2.50 NN TO NN
2.03 DT JJ NN IN
1.95 IN NN PU
1.77 IN NN CD
1.74 DT NN IN NN
1.70 JJ NN IN
1.55 VB IN DT
1.46 NN IN NN

1.46 DT NN PU
1.44 IN DT JJ
1.42 NN IN DT
1.41 IN DT NN
1.37 PU CC
1.34 IN CD
1.32 JJ NN PU
1.30 IN NN
1.29 NN IN
1.18 NN PU

1.09 CD
1.07 VB
1.06 NN NN
1.06 IN
1.05 NN
0.61 RB CD
0.21 TO VB PR
0.18 PU RB CD
0.12 NN CD TO NN
0.12 CD TO NN

Table 3: Chinese-English POS n-grams on which Hiero and Pharaoh had significantly different recall, ar-
ranged by recall ratio. Ratio > 1 indicates tag sequences that Hiero matched more frequently.

(3) 
ÉK
Iraq

q:
crisis

�
of

�
most

°
new

ÑU
development

R1. the latest development on the Iraqi crisis
H. the latest development on the Iraqi crisis
P. on the iraqi crisis, the latest development

(4) Êt
this-year



upper

Jt
half-year

R1. the first half of this year
H. the first half of this year
P. the first half of

All three of these examples involve an NP modify-
ing an NP to its right; two with the particle � (de)
and one without. In all three cases Hiero reorders the
NPs correctly; Pharaoh preserves the Chinese word
order in two cases, but in the third, for reasons not
understood, drops the modifying NP.

The n-grams on which Hiero did worse than
Pharaoh mostly involved numbers; here a pattern is
not as easily discernible, but there are several cases
where Hiero makes errors in translating numbers
(neither system in this comparison used the dedi-
cated number translator). For the n-gram TO VB PR,
it seems Hiero has a tendency to delete possessive
pronouns (PR, abbreviated from PRP$).

5.3 Arabic

Initial inspection of the n-grams on which Hiero
showed significantly higher recall in the Arabic-
English task suggested that here, too, better trans-
lation of nominal phrases may be at play. We in-
vestigated this conjecture further by examining sev-
eral n-gram sets with the highest recall ratios. Some
of them on closer inspection turned out to conflate

different structural patterns, and provided little in-
terpretable information. However, the 8 sentences
in the n-gram list IN DT JJ JJ showed a degree of
structural consistency. The list contained 6 instances
where Hiero performed better in translating a com-
plex NP or PP, one instance in which DC performed
better in translating a complex PP, and one case in
which they both performed equally poorly. Below
we show two examples of phrases on which Hiero
performed better, and the one example on which its
hierarchical approach produced undesirable results
(H = Hiero, D = DC).

(5) Al
the

wjwd
presence

Al
the

EskrY
military

Al
the

AmYrkY
American

fY
in

Al
the

mnTqp
region

R1. the American military presence in the re-
gion

H. the american military presence in the re-
gion

D. the military presence in the region

(6) AltY
which

tSnEhA
manufactures-them

Al
the

$rkp
company

Al
the

kwrYp
Korean

Al
the

jnwbYp
Southern

R1. which are manufactured by the South Ko-
rean company

H. which are manufactured by the south ko-
rean company

D. which are manufactured by the company ,
the south korean
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8.00 WR DT NN
8.00 PR NN IN DT
7.00 DT PU
6.00 DT NN NN PO
5.00 IN DT JJ JJ
4.67 DT NN IN VB
2.89 NN NN NN VB
2.73 PR VB IN
2.56 NN PU WD VB
2.45 JJ CC JJ NN

2.38 DT JJ JJ NN
2.08 CC JJ NN
2.01 PR VB
2.00 TO DT NN NN
1.80 NN PU WD
1.80 NN IN DT JJ NN
1.77 NN IN DT JJ
1.76 JJ JJ NN
1.74 VB CD
1.68 NN NN VB

1.46 JJ NN NN
1.43 JJ JJ
1.35 IN DT JJ
1.24 VB IN
1.21 NN VB
1.20 NN IN DT
1.17 PR
1.10 JJ NN
1.08 NN NN
1.07 IN DT

1.02 NN
0.47 NN CD PU CD NN NN
0.47 NN CD PU CD NN NN NN
0.47 NN CD PU CD NN NN NN PU
0.45 NN CD PU CD NN
0.29 NN CD NN
0.27 NN CD NN CD
0.09 NN CD NN PU

Table 4: Arabic-English POS n-grams on which Hiero and DC had significantly different recall, arranged by
recall ratio. Ratio > 1 indicates tag sequences that Hiero matched more frequently.

(7) swq
market

Al
the

EqArAt
real-estate

fY
in

Akbr
largest

mdYnp
city

SnAEYp
industrial

SYnYp
Chinese

$AnghAY
Shanghai

R2. The real estate market in the largest Chi-
nese industrial city , Shanghai

H. chinese real estate market in the largest in-
dustrial city shanghai

D. real estate market in the largest chinese in-
dustrial city shanghai

In the last example we see that Hiero mistakenly
identified the adjective “Chinese” as modifying the
highest head of the first NP in the apposition.

The style of Arabic newswire tends strongly to-
wards the verb-initial word order in the main clause.
Based on our inspection of the n-gram collection NN
VB, we were also able to note that Hiero performed
noticeably better in reordering the subject and main
verb to produce idiomatic English translations. Al-
though in this set the differences in the recall for the
NN VB bigram were influenced by many different
translation issues, reordering the subject and main
verbs was the only structural pattern that recurred
consistently throughout the set, appearing in 8 of the
29 relevant sentences.

(8) wqAl
and-said

Al
the

bYAn
statement

An
that

R1. The statement said

H. the statement said that

D. said a statement that

(9) AEln
announced

ms&wl
official

fY
in

Al
the

Amm
nations

Al
the

mtHdp
united

An
that

R1. A United Nations official announced that
H. the united nations official announced that
D. an official in the united nations that

Looking at the bottom of the list, we find more
examples of how Hiero’s reordering behavior some-
times backfires. These n-grams seem primarily to be
parts of bylines, where Hiero has a tendency to refor-
mat the date, whereas DC keeps the original format,
matching more often.

(10) mAnYlA
Manila

26
26

YnAYr
January

R3. Manila 26 January
H. manila , january 26
P. manila 26 january

6 Conclusions

The work reported in this paper extends the origi-
nal treatment of Hiero (Chiang, 2005) by evaluat-
ing an improved version in a community-wide exer-
cise for Chinese-English and Arabic-English trans-
lation, and by introducing a novel analysis tech-
nique for comparing MT systems’ output. The eval-
uation results provide strong evidence that the ap-
proach gains performance from its hierarchical ex-
tensions to phrase-based translation. The analysis
of part-of-speech tag sequences provides a way to
perform finer-grained comparison of system output,
pinpointing phenomena for which the systems differ
significantly.
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Abstract
In this paper, we look at comparing high-
accuracy context-free parsers with high-
accuracy finite-state (shallow) parsers on
several shallow parsing tasks. We
show that previously reported compar-
isons greatly under-estimated the perfor-
mance of context-free parsers for these
tasks. We also demonstrate that context-
free parsers can train effectively on rel-
atively little training data, and are more
robust to domain shift for shallow pars-
ing tasks than has been previously re-
ported. Finally, we establish that combin-
ing the output of context-free and finite-
state parsers gives much higher results
than the previous-best published results,
on several common tasks. While the
efficiency benefit of finite-state models
is inarguable, the results presented here
show that the corresponding cost in accu-
racy is higher than previously thought.

1 Introduction
Finite-state parsing (also called chunking or shallow
parsing) has typically been motivated as a fast first-
pass for – or approximation to – more expensive
context-free parsing (Abney, 1991; Ramshaw and
Marcus, 1995; Abney, 1996). For many very-large-
scale natural language processing tasks (e.g. open-
domain question answering from the web), context-
free parsing may be too expensive, whereas finite-
state parsing is many orders of magnitude faster and
can also provide very useful syntactic annotations
for large amounts of text. For this reason, finite-state
parsing (hereafter referred to as shallow parsing) has
received increasing attention in recent years.

In addition to the clear efficiency benefit of
shallow parsing, Li and Roth (2001) have further

claimed both an accuracy and a robustness benefit
versus context-free parsing. The output of a context-
free parser, such as that of Collins (1997) or Char-
niak (2000), can be transformed into a sequence of
shallow constituents for comparison with the output
of a shallow parser. Li and Roth demonstrated that
their shallow parser, trained to label shallow con-
stituents along the lines of the well-known CoNLL-
2000 task (Sang and Buchholz, 2000), outperformed
the Collins parser in correctly identifying these con-
stituents in the Penn Wall Street Journal (WSJ) Tree-
bank (Marcus et al., 1993). They argued that their
superior performance was due to optimizing directly
for the local sequence labeling objective, rather than
for obtaining a hierarchical analysis over the entire
string. They further showed that their shallow parser
trained on the Penn WSJ Treebank did a far better
job of annotating out-of-domain sentences (e.g. con-
versational speech) than the Collins parser.

This paper re-examines the comparison of shal-
low parsers with context-free parsers, beginning
with a critical examination of how their outputs
are compared. We demonstrate that changes to the
conversion routine, which take into account differ-
ences between the original treebank trees and the
trees output by context-free parsers, eliminate the
previously-reported accuracy differences. Second,
we show that a convention that is widely accepted
for evaluation of context-free parses – ignoring
punctuation when setting the span of a constituent –
results in improved shallow parsing performance by
certain context-free parsers across a variety of shal-
low parsing tasks. We also demonstrate that context-
free parsers perform competitively when applied to
out-of-domain data. Finally, we show that large im-
provements can be obtained in several shallow pars-
ing tasks by using simple strategies to incorporate
context-free parser output into shallow parsing mod-
els. Our results demonstrate that a rich context-free
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parsing model is, time permitting, worth applying,
even if only shallow parsing output is needed. In
addition, our best results, which greatly improve on
the previous-best published results on several tasks,
shed light on how much accuracy is sacrificed in
shallow parsing to get finite-state efficiency.

2 Evaluating Heterogeneous Parser Output

Two commonly reported shallow parsing tasks are
Noun-Phrase (NP) Chunking (Ramshaw and Mar-
cus, 1995) and the CoNLL-2000 Chunking task
(Sang and Buchholz, 2000), which extends the NP-
Chunking task to recognition of 11 phrase types1

annotated in the Penn Treebank. Reference shal-
low parses for this latter task were derived from
treebank trees via a conversion script known as
chunklink 2. We follow Li and Roth (2001) in
usingchunklink to also convert trees output by a
context-free parser into a flat representation of shal-
low constituents. Figure 1(a) shows a Penn Tree-
bank tree and Figure 1(c) its corresponding shallow
parse constituents, according to the CoNLL-2000
guidelines. Note that consecutive verb phrase (VP)
nodes result in a single VP shallow constituent.

Just as the original treebank trees are converted
for training shallow parsers, they are also typ-
ically modified for training context-free parsers.
This modification includes removal of empty nodes
(nodes tagged with “-NONE-” in the treebank), and
removal of function tags on non-terminals; e.g., NP-
SBJ (subject NP) and NP-TMP (temporal NP) are
both mapped to NP. The output of the context-free
parser is, of course, in the same format as the train-
ing input, so empty nodes and function tags are not
present. This type of modified tree is what is shown
in Figure 1(b); note that the original treebank tree,
shown in Figure 1(a), had an empty subject NP in
the embedded clause which has been removed for
the modified tree.

To compare the output of their shallow parser with
the output of the well-known Collins (1997) parser,
Li and Roth applied thechunklink conversion
script to extract the shallow constituents from the
output of the Collins parser on WSJ section 00. Un-

1These include: ADJP, ADVP, CONJP, INTJ, LST, NP, PP,
PRT, SBAR, UCP and VP. Anything not in one of these base
phrases is designated as “outside”.

2Downloaded from http://ilk.kub.nl/∼sabine/chunklink/.

(a) S

�
��

H
HH

NP-SBJ-1

They

VP
�� HH

are VP

�� HH
starting S

���
HHH

NP-SBJ

-NONE-

*-1

VP

�
��

H
HH

to VP

��� HHH

buy NP

�� HH
growth stocks

(b) S

���
HHH

NP

They

VP

���
HHH

are VP

���
HHH

starting S

VP

��� HHH

to VP

�
��

H
HH

buy NP

�� HH
growth stocks

(c) [NP They] [VP are starting to buy] [NP growth stocks]

Figure 1: (a) Penn WSJ treebank tree, (b) modified treebank
tree, and (c) CoNLL-2000 style shallow bracketing, all of the
same string.

fortunately, the script was built to be applied to the
original treebank trees, complete with empty nodes,
which are not present in the output of the Collins
parser, or any well-known context-free parser. The
chunklink script searches for empty nodes in the
parse tree to perform some of its operations. In par-
ticular, any S node that contains an empty subject
NP and a VP is reduced to just a VP node, and
then combined with any immediately-preceding VP
nodes to create a single VP constituent. If the S
node does not contain an empty subject NP, as in
Figure 1(b), thechunklink script creates two VP
constituents: [VP are starting] [VP to buy], which
in this case results in a bracketing error. However,
it is a simple matter to insert an empty subject NP
into unary S→VP productions so that these nodes
are processed correctly by the script.

Various conventions have become standard in
evaluating parser output over the past decade. Per-
haps the most widely accepted convention is that
of ignoring punctuation for the purposes of assign-
ing constituent span, under the perspective that, fun-
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Phrase Evaluation Scenario
System Type (a) (b) (c)
“Modified” All 98.37 99.72 99.72
Truth VP 92.14 98.70 98.70
Li and Roth All 94.64 - -
(2001) VP 95.28 - -
Collins (1997) All 92.16 93.42 94.28

VP 88.15 94.31 94.42
Charniak All 93.88 95.15 95.32
(2000) VP 88.92 95.11 95.19

Table 1:F-measure shallow bracketing accuracy under three
different evaluation scenarios: (a) baseline, used in Li and Roth
(2001), with originalchunklink script converting treebank
trees and context-free parser output; (b) same as (a), except that
empty subject NPs are inserted into every unary S→VP produc-
tion; and (c) same as (b), except that punctuation is ignored for
setting constituent span. Results for Li and Roth are reported
from their paper. The Collins parser is provided with part-of-
speech tags output by the Brill tagger (Brill, 1995).

damentally, constituents are groupings of words.
Interestingly, this convention was not followed in
the CoNLL-2000 task (Sang and Buchholz, 2000),
which as we will see has a variable effect on context-
free parsers, presumably depending on the degree to
which punctuation is moved in training.

2.1 Evaluation Analysis
To determine the effects of the conversion routine
and different evaluation conventions, we compare
the performance of several different models on one
of the tasks presented in Li and Roth (2001). For
this task, which we label theLi & Roth task, sec-
tions 2-21 of the Penn WSJ Treebank are used as
training data, section 24 is held out, and section 00
is for evaluation.

For all trials in this paper, we report F-measure
labeled bracketing accuracy, which is the harmonic
mean of the labeled precision (P ) and labeled recall
(R), as they are defined in the widely used PARSE-
VAL metrics; i.e. the F-measure accuracy is2PR

P+R .
Table 1 shows baseline results for the Li and

Roth3 shallow parser, two well-known, high-
accuracy context-free parsers, and the reference
(true) parses after being modified as described

3We were unable to obtain the exact model used in Li and
Roth (2001), and so we use their reported results here. Note
that they used reference part-of-speech (POS) tags for their re-
sults on this task. All other results reported in this paper, unless
otherwise noted, were obtained using Brill-tagger POS tags.

above (by removing empty nodes and function
tags). Evaluation scenario (a) in Table 1 corre-
sponds to what was used in Li and Roth (2001) fol-
lowing CoNLL-2000 guidelines, with the original
chunklink script used to transform the context-
free parser output into shallow constituents. We
can see from the performance of the modified truth
in this scenario that there are serious problems
with this conversion, due to the way in which
it handles unary S→VP productions. If we de-
terministically insert empty subject NP nodes for
all such unary productions prior to the use of the
chunklink script, which we do in evaluation sce-
nario (b) of Table 1, this repairs the bulk of the
errors. Some small number of errors remain, due
largely to the fact that if the S node has been an-
notated with a function tag (e.g. S-PRP, S-PRD, S-
CLR), then chunklink will not perform its re-
duction operation on that node. However, for our
purposes, this insertion repair sufficiently corrects
the error to perform meaningful comparisons. Fi-
nally, evaluation scenario (c) follows the context-
free parsing evaluation convention of ignoring punc-
tuation when assigning constituent span. This af-
fects some parsers more than others, depending on
how the parser treats punctuation internally; for
example, Bikel (2004) documents that the Collins
parser raises punctuation nodes within the parse
tree. Since ignoring punctuation cannot hurt perfor-
mance, only improve it, even the smallest of these
differences are statistically significant.

Note that after inserting empty nodes and ignor-
ing punctuation, the accuracy advantage of Li and
Roth over Collins is reduced to a dead heat. Of
the two parsers we evaluated, the Charniak (2000)
parser gave the best performance, which is consis-
tent with its higher reported performance on the
context-free parsing task versus other context-free
parsers. Collins (2000) reported a reranking model
that improved his parser output to roughly the same
level of accuracy as Charniak (2000), and Charniak
and Johnson (2005) report an improvement using
reranking over Charniak (2000). For the purposes
of this paper, we needed an available parser that
was (a) trainable on different subsets of the data to
be applied to various tasks; and (b) capable of pro-
ducingn-best candidates, for potential combination
with a shallow parser. Both the Bikel (2004) imple-
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System NP-Chunking CoNLL-2000 Li & Roth task
SPRep averaged perceptron 94.21 93.54 95.12
Kudo and Matsumoto (2001) 94.22 93.91 -
Sha and Pereira (2003) CRF 94.38 - -

Voted perceptron 94.09 - -
Zhang et al. (2002) - 94.17 -
Li and Roth (2001) - 93.02 94.64

Table 2:Baseline results on three shallow parsing tasks: the NP-Chunking task (Ramshaw and Marcus, 1995); the CoNLL-2000
Chunking task (Sang and Buchholz, 2000); and the Li & Roth task (Li and Roth, 2001), which is the same as CoNLL-2000 but
with more training data and a different test section. The results reported in this table include the best published results on each of
these tasks.

mentation of the Collins parser and then-best ver-
sion of the Charniak (2000) parser, documented in
Charniak and Johnson (2005), fit the requirements.
Since we observed higher accuracy from the Char-
niak parser, from this point forward we report just
Charniak parser results4.

2.2 Shallow Parser
In addition to the trainablen-best context-free parser
from Charniak (2000), we needed a trainable shal-
low parser to apply to the variety of tasks we were
interested in investigating. To this end, we repli-
cated the NP-chunker described in Sha and Pereira
(2003) and trained it as either an NP-chunker or with
the tagset extended to classify all 11 phrase types
included in the CoNLL-2000 task (Sang and Buch-
holz, 2000). Our shallow parser uses exactly the fea-
ture set delineated by Sha and Pereira, and performs
the decoding process using a Viterbi search with a
second-order Markov assumption as they described.
These features include unigram and bigram words
up to two positions to either side of the current word;
unigram, bigram, and trigram part-of-speech (POS)
tags up to two positions to either side of the current
word; and unigram, bigram, and trigram shallow
constituent tags. We use the averaged perceptron al-
gorithm, as presented in Collins (2002), to train the
parser. See (Sha and Pereira, 2003) for more details
on this approach.

To demonstrate the competitiveness of our base-
line shallow parser, which we label theSPRep av-
eraged perceptron, Table 2 shows results on three
different shallow parsing tasks. The NP-Chunking

4The parser is available for research purposes at
ftp://ftp.cs.brown.edu/pub/nlparser/ and can be run inn-
best mode. The one-best performance of the parser is the same
as what was presented in Charniak (2000).

task, originally introduced in Ramshaw and Marcus
(1995) and also described in (Collins, 2002; Sha and
Pereira, 2003), brackets just base NP constituents5.
The CoNLL-2000 task, introduced as a shared task
at the CoNLL workshop in 2000 (Sang and Buch-
holz, 2000), extends the NP-Chunking task to label
11 different base phrase constituents. For both of
these tasks, the training set was sections 15-18 of
the Penn WSJ Treebank and the test set was section
20. We follow Collins (2002) and Sha and Pereira
(2003) in using section 21 as a heldout set. The third
task, introduced by Li and Roth (2001), performs the
same labeling as in the CoNLL-2000 task, but with
more training data and different testing sets: training
was WSJ sections 2-21 and test was section 00. We
used section 24 as a heldout set; this section is often
used as heldout for training context-free parsers.

Training and testing data for the CoNLL-2000
task is available online6. For the heldout sets for
each of these tasks, as well as for all data sets
needed for the Li & Roth task, reference shallow
parses were generated using thechunklink script
on the original treebank trees. All data was tagged
with the Brill POS tagger (Brill, 1995) after the
chunklink conversion. We verified that using
this method on the original treebank trees in sections
15-18 and 20 generated data that is identical to the
CoNLL-2000 data sets online. Replacing the POS
tags in the input text with Brill POS tags before the

5We follow Sha and Pereira (2003) in deriving the NP con-
stituents from the CoNLL-2000 data sets, by replacing all non-
NP shallow tags with the “outside” (“O”) tag. They mention
that the resulting shallow parse tags are somewhat different than
those used by Ramshaw and Marcus (1995), but that they found
no significant accuracy differences in training on either set.

6Downloaded from the CoNLL-2000 Shared Task website
http://www.cnts.ua.ac.be/conll2000/chunking/.
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chunklink conversion results in slightly different
shallow parses.

From Table 2 we can see that our shallow parser
is competitive on all three tasks7. Sha and Pereira
(2003) noted that the difference between their per-
ceptron and CRF results was not significant, and
our performance falls between the two, thus repli-
cating their result within noise. Our performance
falls 0.6 percentage points below the best published
result on the CoNLL-2000 task, and 0.5 percentage
points above the performance by Li and Roth (2001)
on their task. Overall, ours is a competitive approach
for shallow parsing.

3 Experimental Results
3.1 Comparing Finite-State and

Context-Free Parsers
The first two rows of Table 3 present a comparison
between the SPRep shallow parser and the Charniak
(2000) context-free parser detailed in Charniak and
Johnson (2005). We can see that the performance
of the two models is virtually indistinguishable for
all three of these tasks, with or without ignoring of
punctuation. As mentioned earlier, we used the ver-
sion of this parser with improvedn-best extraction,
as documented in Charniak and Johnson (2005), al-
though without the reranking of the candidates that
they also report in that paper. For these trials, we
used just the one-best output of that model, which is
the same as in Charniak (2000).

Note that the standard training set for context-free
parsing (sections 2-21) is only used for the Li &
Roth task; for the other two tasks, both the SPRep
and the Charniak parsers were trained on sections
15-18, with section 21 as heldout. This demonstrates
that the context-free parser, even when trained on a
small fraction of the total treebank, is able to learn a
competitive model for this task.

3.2 Combining Finite-State and
Context-Free Parsers

It is likely true that a context-free parser which has
been optimized for global parse accuracy will, on
occasion, lose some shallow parse accuracy to sat-
isfy global structure constraints that do not constrain

7Sha and Pereira (2003) reported the Kudo and Matsumoto
(2001) performance on the NP-Chunking task to be 94.39 and
to be the best reported result on this task. In the cited paper,
however, the result is as reported in our table.

a shallow parser. However, it is also likely true
that these longer distance constraints will on occa-
sion enable the context-free parser to better identify
the shallow constituent structure. In other words,
despite having very similar performance, our shal-
low parser and the Charniak context-free parser are
likely making complementary predictions about the
shallow structure that can be exploited for further
improvements. In this section, we explore two sim-
ple methods for combining the system outputs.

The first combination of the system outputs,
which we callunweighted intersection, is the sim-
plest kind of ‘rovered’ system, which restricts the
set of shallow parse candidates to the intersection
of the sets output by each system, but does not
combine the scores. Since the Viterbi search of
the SPRep model provides a score for all possi-
ble shallow parses, the intersection of the two sets
is simply the set of shallow-parse sequences in the
50-best candidates output by the Charniak parser.
We then use the SPRep perceptron-model scores to
choose from among just these candidates. We con-
verted the 50-best lists returned by the Charniak
parser intok-best lists of shallow parses by using
chunklink to convert each candidate context-free
parse into a shallow parse. Many of the context-free
parses map to the same shallow parse, so the size of
this list is typically much less than 50, with an aver-
age of around 7. Each of the unique shallow-parse
candidates is given a score by the SPRep percep-
tron, and the best-scoring candidate is selected. Ef-
fectively, we used the Charniak parser’sk-best shal-
low parses to limit the search space for our shallow
parser.

The second combination of the system outputs,
which we callweighted intersection, extends the un-
weighted intersection by including the scores from
the Charniak parser, which are log probabilities.
The score for a shallow parse output by the Char-
niak parser is the log of the sum of the probabili-
ties of all context-free parses mapping to that shal-
low parse. We normalize across all candidates for
a given string, hence these are conditional log prob-
abilities. We multiply these conditional log proba-
bilities by a scaling factorα before adding them to
the SPRep perceptron score for a particular candi-
date. Again, the best-scoring candidate using this
composite score is selected from among the shallow
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NP-Chunking CoNLL-2000 Li & Roth task
Punctuation Punctuation Punctuation

System Leave Ignore Leave Ignore Leave Ignore

SPRep averaged perceptron94.21 94.25 93.54 93.70 95.12 95.27
Charniak (2000) 94.17 94.20 93.77 93.92 95.15 95.32

Unweighted intersection 95.13 95.16 94.52 94.64 95.77 95.92
Weighted intersection 95.57 95.58 95.03 95.16 96.20 96.33

Table 3: F-measure shallow bracketing accuracy on three shallow parsing tasks, for the SPRep perceptron shallow parser, the
Charniak (2000) context-free parser, and for systems combining the SPRep and Charniak system outputs.

parse candidates output by the Charniak parser. We
used the heldout data to empirically estimate an op-
timal scaling factor for the Charniak scores, which
is 15 for all trials reported here. This factor com-
pensates for differences in the dynamic range of the
scores of the two parsers.

Both of these intersections are done at test-time,
i.e. the models are trained independently. To remain
consistent with task-specific training and testing sec-
tion conventions, the individual models were always
trained on the appropriate sections for the given task,
i.e. WSJ sections 15-18 for NP-Chunking and the
CoNLL-2000 tasks, and sections 2-21 for the Li &
Roth task.

Results from these methods of combination are
shown in the bottom two rows of Table 3. Even
the simple unweighted intersection gives quite large
improvements over each of the independent systems
for all three tasks. All of these improvements are
significant atp < 0.001 using the Matched Pair
Sentence Segment test (Gillick and Cox, 1989). The
weighted intersection gives further improvements
over the unweighted intersection for all tasks, and
this improvement is also significant atp < 0.001,
using the same test.

3.3 Robustness to Domain Shift

Our final shallow parsing task was also proposed in
Li and Roth (2001). The purpose of this task was
to examine the degradation in performance when
parsers, trained on one relatively clean domain such
as WSJ, are tested on another, mismatched domain
such as Switchboard. The systems that are reported
in this section are trained on sections 2-21 of the
WSJ Treebank, with section 24 as heldout, and
tested on section 4 of the Switchboard Treebank.
Note that the systems used here are exactly the ones
presented for the original Li & Roth task, in Sec-

Punctuation
System Leave Ignore
Li & Roth (reference tags) 88.47 -
SPRep avg perceptron
Reference tags 91.37 91.86
Brill tags 87.94 88.42

Charniak (2000) 87.94 88.44
Unweighted intersection 88.66 89.16
Weighted intersection 89.22 89.69

Table 4:Shallow bracketing accuracy of several different sys-
tems, trained on sections 2-21 of WSJ Treebank and applied
to section 4 of the Switchboard Treebank. Li and Roth (2001)
results are as reported in their paper, with reference POS tags
rather than Brill-tagger POS tags.

tions 3.1 and 3.2; only the test set has changed, train-
ing and heldout sets remain exactly the same, as do
the mixing parameters for the weighted intersection.
In the trials reported in Li and Roth (2001), both of
the evaluated systems were provided with reference
POS tags from the Switchboard Treebank. In the
current results, we show our SPRep averaged per-
ceptron system provided both with reference POS
tags for comparison with the Li and Roth results,
and provided with Brill-tagger POS tags for com-
parison with other systems. Table 4 shows our re-
sults for this task. Whereas Li and Roth reported
a more marked degradation in performance when
using a context-free parser as compared to a shal-
low parser, we again show virtually indistinguish-
able performance between our SPRep shallow parser
and the Charniak context-free parser. Again, using a
weighted combined model gave us large improve-
ments over each independent model, even in this
mismatched domain.

3.4 Rerankedn-best List

Just prior to the publication of this paper, we were
able to obtain the trained reranker from Charniak
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WSJ Sect. 00 SWBD Sect. 4
Punctuation Punctuation

System Leave Ignore Leave Ignore
SPRep 95.12 95.27 87.94 88.43
C & J one-best 95.15 95.32 87.94 88.44
(2005) reranked 95.81 96.04 88.64 89.17
Weighted intersection 96.32 96.47 89.32 89.80

Table 5:F-measure shallow bracketing accuracy when trained
on WSJ sections 2-21 and applied to either WSJ section 00 or
SWBD section 4. Systems include our shallow parser (SPRep);
the Charniak and Johnson (2005) system (C & J), both initial
one-best and reranked-best; and the weighted intersection be-
tween the reranked 50-best list and the SPRep system.

and Johnson (2005), which allows a comparison of
the shallow parsing gains that they obtain from that
system with those documented here. The reranker is
a discriminatively trained Maximum Entropy model
with an F-measure parsing accuracy objective. It
uses a large number of features, and is applied to the
50-best output from the generative Charniak parsing
model. The reranking model was trained on sections
2-21, with section 24 used as heldout. This allows us
to compare its shallow parsing accuracy with other
systems on the tasks that use this training setup: the
Li & Roth task (testing on WSJ section 00) and the
domain shift task (testing on Switchboard section
4). Table 5 shows two new trials making use of this
reranking model.

The Charniak and Johnson (2005) system out-
put (denotedC & J in the table) before rerank-
ing (denotedone-best) is identical to the Charniak
(2000) results that have been reported in the other
tables. After reranking (denotedreranked), the per-
formance improves by roughly 0.7 percentage points
for both tasks, nearly reaching the performance
that we obtained with weighted intersection of the
SPRep model and then-best list before reranking.
Weighted intersection between the reranked list and
the shallow parser as described earlier, with a newly
estimated scaling factor (α=30), provides a roughly
0.5 percentage point increase over the result ob-
tained by the reranker. The difference between the
Charniak output before and after reranking is statis-
tically significant atp < 0.001, as is the difference
between the reranked output and the weighted inter-
section, using the same test reported earlier.

3.5 Discussion
While it may be seen to be overkill to apply a
context-free parser for these shallow parsing tasks,

we feel that these results are very interesting for
a couple of reasons. First, they go some way to-
ward correcting the misperception that context-free
parsers are less applicable in real-world scenarios
than finite-state sequence models. Finite-state mod-
els are undeniably more efficient; however, it is
important to have a clear idea of how much ac-
curacy is being sacrificed to reach that efficiency.
Any given application will need to examine the ef-
ficiency/accuracy trade-off with different objectives
for optimality. For those willing to trade efficiency
for accuracy, it is worthwhile knowing that it is pos-
sible to do much better on these tasks than what has
been reported in the past.

4 Conclusion and Future Work

In summary, we have demonstrated in this paper that
there is no accuracy or robustness benefit to shal-
low parsing with finite-state models over using high-
accuracy context-free models. Even more, there is a
large benefit to be had in combining the output of
high-accuracy context-free parsers with the output
of shallow parsers. We have demonstrated a large
improvement over the previous-best reported re-
sults on several tasks, including the well-known NP-
Chunking and CoNLL-2000 shallow parsing tasks.

Part of the misperception of the relative benefits
of finite-state and context-free models is due to dif-
ficulty evaluating across these differing annotation
styles. Mapping from context-free parser output
to the shallow constituents defined in the CoNLL-
2000 task depends on many construction-specific
operations that have unfairly penalized context-free
parsers in previous comparisons.

While the results of combining system outputs
show one benefit of combining systems, as presented
in this paper, they hardly exhaust the possibilities
of exploiting the differences between these models.
Making use of the scores for the shallow parses out-
put by the Charniak parser is a demonstrably ef-
fective way to improve performance. Yet there are
other possible features explicit in the context-free
parse candidates, such as head-to-head dependen-
cies, which might be exploited to further improve
performance. We intend to explore including fea-
tures from the context-free parser output in our per-
ceptron model to improve shallow parsing accuracy.

Another possibility is to look at improving
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context-free parsing accuracy. Within a multi-pass
parsing strategy, the high-accuracy shallow parses
that result from system combination could be used
to restrict the search within yet another pass of a
context-free parser. That parser could then search
for the best global analysis from within just the
space of parses consistent with the provided shallow
parse. Also, features of the sort used in our shallow
parser could be included in a reranker, such as that
in Charniak and Johnson (2005), with a context-free
parsing accuracy objective.

A third possibility is to optimize the definition of
the shallow-parse phrase types themselves, for use
in other applications. The composition of the set of
phrase types put forth by Sang and Buchholz (2000)
may not be optimal for certain applications. One
such application is discourse parsing, which relies
on accurate detection of clausal boundaries. Shal-
low parsing could provide reliable information on
the location of these boundaries, but the current set
of phrase types may be too general for such use. For
example, consider infinitival verb phrases, which of-
ten indicate the start of a clause whereas other types
of verb phrases do not. Unfortunately, with only one
VP category in the CoNLL-2000 set of phrase types,
this distinction is lost. Expanding the defined set of
phrase types could benefit many applications.

Future work will also include continued explo-
ration of possible features that can be of use for ei-
ther shallow parsing models or context-free parsing
models. In addition, we intend to investigate ways
in which to encode approximations to context-free
parser derived features that can be used within finite-
state models, thus perhaps preserving finite-state ef-
ficiency while capturing at least some of the accu-
racy gain that was observed in this paper.
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Abstract

We present two methods for incorporat-
ing detailed features in a Spanish parser,
building on a baseline model that is a lex-
icalized PCFG. The first method exploits
Spanish morphology, and achieves an F1
constituency score of 83.6%. This is an
improvement over 81.2% accuracy for the
baseline, which makes little or no use of
morphological information. The second
model uses a reranking approach to add
arbitrary global features of parse trees to
the morphological model. The reranking
model reaches 85.1% F1 accuracy on the
Spanish parsing task. The resulting model
for Spanish parsing combines an approach
that specifically targets morphological in-
formation with an approach that makes
use of general structural features.

1 Introduction

Initial methods for statistical parsing were mainly
developed through experimentation on English data
sets. Subsequent research has focused on apply-
ing these methods to other languages. There has
been widespread evidence that new languages ex-
hibit linguistic phenomena that pose considerable
challenges to techniques originally developed for
English; because of this, an important area of cur-
rent research concerns how to model these phenom-
ena more accurately within statistical approaches. In
this paper, we investigate this question within the
context of parsing Spanish. We describe two meth-
ods for incorporating detailed features in a Spanish
parser, building on a baseline model that is a lexical-
ized PCFG originally developed for English.

Our first model uses morphology to improve
the performance of the baseline model. English
is a morphologically-impoverished language, while

most of the world’s languages exhibit far richer mor-
phologies. Spanish is one of these languages. For
instance, the forms of Spanish nouns, determiners,
and adjectives reflect both number and gender; pro-
nouns reflect gender, number, person, and case. Fur-
thermore, morphological constraints may be mani-
fested at the syntactic level: certain constituents of a
noun phrase are constrained to agree in number and
gender, and a verb is constrained to agree in num-
ber and person with its subject. Hence, morphol-
ogy gives us important structural cues about how the
words in a Spanish sentence relate to one another.
The mechanism we employ for incorporating mor-
phology into the PCFG model (the Model 1 parser
in (Collins, 1999)) is the modification of its part-of-
speech (POS) tagset; in this paper, we explain how
this mechanism allows the parser to better capture
morphological constraints.

All of the experiments in this paper are carried
out using a freely-available Spanish treebank pro-
duced by the 3LB project (Navarro et al., 2003).
This resource contains around 3,500 hand-annotated
trees encoding ample morphological information.
We could not use all of this information and ade-
quately train the resulting parameters due to lim-
ited training data. Hence, we used development
data to test the performance of several models, each
incorporating a subset of morphological informa-
tion. The highest-accuracy model on the devel-
opment set uses the mode and number of verbs,
as well as the number of adjectives, determiners,
nouns, and pronouns. On test data, it reaches
F1 accuracy of 83.6%/83.9%/79.4% for labeled
constituents, unlabeled dependencies, and labeled
dependencies, respectively. The baseline model,
which makes almost no use of morphology, achieves
81.2%/82.5%/77.0% in these same measures.

We use the morphological model from the afore-
mentioned experiments as a base parser in a second
set of experiments. Here we investigate the efficacy
of a reranking approach for parsing Spanish by using
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arbitrary structural features. Previous work in sta-
tistical parsing (Collins and Koo, 2005) has shown
that applying reranking techniques to then-best out-
put of a base parser can improve parsing perfor-
mance. Applying an exponentiated gradient rerank-
ing algorithm (Bartlett et al., 2004) to then-best out-
put of our morphologically-informed Spanish pars-
ing model gives us similar improvements. Using the
reranking model combined with the morphological
model raises performance to 85.1%/84.7%/80.2%
F1 accuracy for labeled constituents, unlabeled de-
pendencies, and labeled dependencies.

2 Related Work

The statistical parsing of English has surpassed 90%
accuracy in the precision and recall of labeled con-
stituents (e.g., (Collins, 1999; Charniak and John-
son, 2005)). A recent proliferation of treebanks in
various languages has fueled research in the pars-
ing of other languages. For instance, work has
been done in Chinese using the Penn Chinese Tree-
bank (Levy and Manning, 2003; Chiang and Bikel,
2002), in Czech using the Prague Dependency Tree-
bank (Collins et al., 1999), in French using the
French Treebank (Arun and Keller, 2005), in Ger-
man using the Negra Treebank (Dubey, 2005; Dubey
and Keller, 2003), and in Spanish using the UAM
Spanish Treebank (Moreno et al., 2000). The best-
reported F1 constituency scores from this work for
each language are 79.9% (Chinese (Chiang and
Bikel, 2002)), 81.0% (French (Arun and Keller,
2005), 76.2% (German (Dubey, 2005)), and 73.8%
(Spanish (Moreno et al., 2000)). The authors in
(Collins et al., 1999) describe an approach that gives
80% accuracy in recovering unlabeled dependencies
in Czech.1

The project that is arguably most akin to the work
presented in this paper is that on Spanish parsing
(Moreno et al., 2000). However, a direct compari-
son of scores is complicated by the fact that we have
used a different corpus as well as larger training and
test sets (2,800- vs. 1,500-sentence training sets, and
700- vs. 40-sentence test sets).

1Note that cross-linguistic comparison of results is compli-
cated: in addition to differences in corpus annotation schemes
and sizes, there may be significant differences in linguistic char-
acteristics.

Category Attributes
Adjective gender, number, participle

Determiner gender, number, person, possessor
Noun gender, number
Verb gender, number, person, mode, tense

Preposition gender, number, form
Pronoun gender, number, person, case, possessor

Table 1: A list of the morphological features from which we
created our models. For brevity, we only list attributes with at
least two values. See (Civit, 2000) for a comprehensive list of
the morphological attributes included in the Spanish treebank.

3 Models

This section details our two approaches for adding
features to a baseline parsing model. First, we de-
scribe how morphological information can be added
to a parsing model by modifying the POS tagset.
Second, we describe an approach that reranks the
n-best output of the morphologically-rich parser, us-
ing arbitrary, general features of the parse trees as
additional information.

3.1 Adding Morphological Information

The mechanism we employ for incorporating mor-
phological information is the modification of the
POS tagset of a lexicalized PCFG2 — the Model 1
parser described in (Collins, 1999) (hereafter
Model 1). Each POS tagset can be thought of as a
particular morphological model or a subset of mor-
phological attributes. Table 1 shows the complete set
of morphological features we considered for Span-
ish. There are 22 morphological features in total in
this table; different POS sets can be created by de-
ciding whether or not to include each of these 22
features; hence, there are222 different morpholog-
ical models we could have created. For instance,
one particular model might capture the modal infor-
mation of verbs. In this model, there would be six
POS tags for verbs (one for each of indicative, sub-
junctive, imperative, infinitive, gerund, and partici-
ple) instead of just one. A model that captured both
the number and mode of verbs would have 18 verbal
POS tags, assuming three values (singular, plural,
and neutral) for the number feature.

The Effect of the Tagset on Model 1 Modifying
the POS tagset allows Model 1 to better distinguish

2Hand-crafted head rules are used to lexicalize the trees.
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S(corrió,v)

NP(gatos,n) VP(corrió,v)

Figure 1: An ungrammatical dependency: the plural noungatos
is unlikely to modify the singular verbcorrió.

events that are unlikely from those that are likely, on
the basis of morphological evidence. An example
will help to illustrate this point.

Model 1 relies on statistics conditioned on lexi-
cal headwords for practically all parameters in the
model. This sensitivity to headwords is achieved by
propagating lexical heads and POS tags to the non-
terminals in the parse tree. Thus, any statistic based
on headwords may also be sensitive to the associated
POS tag. For instance, consider the subtree in Fig-
ure 1. Note that this structure is ungrammatical be-
cause the subject,gatos(cats), is plural, but the verb,
corrió (ran), is singular. In Model 1, the probability
of generating the noun phrase (NP) with headword
gatosand headtag noun (n) is defined as follows:3

P (gatos,n, NP | corrió, v , S, VP) =
P1(n, NP | corrió, v , S, VP)×

P2(gatos| n, NP, corrió, v , S, VP)

The parser smooths parameter values using backed-
off statistics, and in particular smooths statistics
based on headwords with coarser statistics based on
POS tags alone. This allows the parser to effectively
use POS tags as a way of separating different lexi-
cal items into subsets or classes depending on their
syntactic behavior. In our example, each term is es-
timated as follows:

P1(n, NP | corrió, v , S, VP) =
λ1,1P̂1,1(n, NP | corrió, v , S, VP) +
λ1,2P̂1,2(n, NP | v , S, VP) +
λ1,3P̂1,3(n, NP | S, VP)

and

P2(gatos| n, NP, corrió, v , S, VP) =
λ2,1P̂2,1(gatos| n, NP, corrió, v , S, VP) +
λ2,2P̂2,2(gatos| n, NP, v , S, VP) +
λ2,3P̂2,3(gatos| n)

3Note that the parsing model includes other features such as
distance which we omit from the parameter definition for the
sake of brevity.

Here theP̂i,j terms are maximum likelihood es-
timates derived directly from counts in the train-
ing data. Theλi,j parameters are defined so that
λ1,1+λ1,2+λ1,3 = λ2,1+λ2,2+λ2,3 = 1. They con-
trol the relative contribution of each level of back-off
to the final estimate.

Note that thus far our example has not included
any morphological information in the POS tags. Be-
cause of this, we will see that there is a danger of
the estimatesP1 andP2 both being high, in spite
of the dependency being ungrammatical.P1 will be
high because all three estimatesP̂1,1, P̂1,2 andP̂1,3

will most likely be high. Next, considerP2. Of the
three estimateŝP2,1, P̂2,2, andP̂2,3, only P̂2,1 retains
the information that the noun is plural and the verb
is singular. ThusP2 will be sensitive to the morpho-
logical clash betweengatosandcorrió only if λ2,1 is
high, reflecting a high level of confidence in the es-
timate ofP̂2,3. This will only happen if the context
〈corrió, v , S, VP〉 is seen frequently enough forλ2,1

to take a high value. This is unlikely, given that this
context is quite specific. In summary, the impover-
ished model can only capture morphological restric-
tions through lexically-specific estimates based on
extremely sparse statistics.

Now consider a model that incorporates morpho-
logical information — in particular, number infor-
mation — in the noun and verb POS tags.gatoswill
have the POSpn , signifying a plural noun;corrió
will have the POSsv , signifying a singular verb.
All estimates in the previous equations will reflect
these POS changes. For example,P1 will now be
estimated as follows:

P1(pn , NP | corrió, sv , S, VP) =
λ1,1P̂1,1(pn , NP | corrió, sv , S, VP) +
λ1,2P̂1,2(pn , NP | sv , S, VP) +
λ1,3P̂1,3(pn , NP | S, VP)

Note that the two estimateŝP1,1 and P̂1,2 include
an (unlikely) dependency between the POS tagspn
andsv . Both of these estimates will be0, assum-
ing that a plural noun is never seen as the subject of
a singular verb. At the very least, the context〈sv ,
S, VP〉 will be frequent enough for̂P1,2 to be a re-
liable estimate. The value forλ1,2 will therefore be
high, leading to a low estimate forP1, thus correctly
assigning low probability to the ungrammatical de-
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pendency. In summary, the morphologically-rich
model can make use of non-lexical statistics such as
P̂1,2(pn , NP | sv , S, VP) which contain dependen-
cies between POS tags and which will most likely
be estimated reliably by the model.

3.2 The Reranking Model

In the reranking model, we use ann-best version of
the morphologically-rich parser to generate a num-
ber of candidate parse trees for each sentence in
training and test data. These parse trees are then
represented through a combination of the log prob-
ability under the initial model, together with a large
number of global features. A reranking model uses
the information from these features to derive a new
ranking of then-best parses, with the hope of im-
proving upon the baseline model. Previous ap-
proaches (e.g., (Collins and Koo, 2005)) have used
a linear model to combine the log probability un-
der a base parser with arbitrary features derived from
parse trees. There are a variety of methods for train-
ing the parameters of the model. In this work, we
use the algorithm described in (Bartlett et al., 2004),
which applies the large-margin training criterion of
support vector machines (Cortes and Vapnik, 1995)
to the reranking problem.

The motivation for the reranking model is that a
wide variety of features, which can essentially be
sensitive to arbitrary context in the parse trees, can
be incorporated into the model. In our work, we in-
cluded all features described in (Collins and Koo,
2005). As far as we are aware, this is the first time
that a reranking model has been applied to parsing
a language other than English. One goal was to in-
vestigate whether the improvements seen on English
parsing can be carried across to another language.
We have found that features in (Collins and Koo,
2005), initially developed for English parsing, also
give appreciable gains in accuracy when applied to
Spanish.

4 Data

The Spanish 3LB treebank is a freely-available re-
source with about 3,500 sentence/tree pairs that we
have used to train our models. The average sen-
tence length is 28 tokens. The data is taken from
38 complete articles and short texts. Roughly 27%

Non-Terminal Significance
aq adjective
cc conjunction

COORD coordinated phrase
ESPEC determiner
GRUP base noun phrase

GV verb phrase
MORF impersonal pronoun

p pronoun
PREP base prepositional phrase

RELATIU relative pronoun phrase
s adjectival phrase

SN noun phrase
SP prepositional phrase

SADV adverbial phrase
S sentence

sps preposition
v verb

Table 2: The non-terminals and preterminals from the Spanish
3LB corpus used in this paper.

of the texts are news articles, 27% scientific articles,
14% narrative, 11% commentary, 11% sports arti-
cles, 6% essays, and 5% articles from weekly maga-
zines. The trees contain information about both con-
stituency structure and syntactic functions.

4.1 Preprocessing

It is well-known that tree representation influences
parsing performance (Johnson, 1998). Prior to train-
ing our models, we made some systematic modifica-
tions to the corpus trees in an effort to make it eas-
ier for Model 1 to represent the linguistic phenom-
ena present in the trees. For the convenience of the
reader, Table 2 gives a key to the non-terminal labels
in the 3LB treebank that are used in this section and
the remainder of the paper.

Relative and Subordinate Clauses Cases of rela-
tive and subordinate clauses appearing in the corpus
trees have the basic structure of the example in Fig-
ure 2a. Figure 2b shows the modifications we im-
pose on such structures. The modified structure has
the advantage that theSBARselects theCPnode as
its head, making the relative pronounquethe head-
word for the root of the subtree. This change allows,
for example, better modeling of verbs that select for
particular complementizers. In addition, the new
subtree rooted at theS node now looks like a top-
level sentence, making sentence types more uniform
in structure and easier to model statistically. Addi-
tionally, the new structure differentiates phrases em-
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RELATIU−CP

a

p

quien

SP−CP

sps

PREP−CP

consideraban

v

GV

todos

SN

GRUP

p

CP

SBAR−S

S

todos

PREP

sps

a

SN

GRUP

p consideraban

v

GV

S

SP

RELATIU

p

quien

(a)

(b)

Figure 2: Figure (a) is the original structure from the 3LB tree-
bank for the phrasea quien todos considerabanor whom ev-
eryone considered. We transform structures like (a) into (b) by
insertingSBARandCPnodes, and by marking all non-terminals
below theCPwith a -CP tag.

bedded in the complementizers ofSBARs from those
used in other contexts, allowing relative pronouns
like quien in Figure 2 to surface as lexical head-
words when embedded in larger phrases beneath the
CPnode.4

Coordination In the treebank, coordinated con-
stituents and their coordinating conjunction are
placed as sister nodes in a flat structure. We enhance
the structure of such subtrees, as in Figure 3. Our
structure helps to rule out unlikely phrases such as
cats and dogs and; the model trained with the orig-
inal treebank structures will assign non-zero proba-
bility to ill-formed structures such as these.

5 Experiments

Our models were trained using a training set con-
sisting of 80% of the data (2,801 sentence/tree pairs,
75,372 words) available to us in the 3LB treebank.
We reserved the remaining 20% (692 sentences,
19,343 words) to use as unseen data in a test set.
We selected these subsets with two criteria in mind:
first, respecting the boundaries of the texts by plac-
ing articles in their entirety into either one subset or
the other; and second, maintaining, in each subset,
the same proportion of genres found in the original
set of trees. During development, we used a cross-

4This is achieved through our head rules.

(a)

(b)

civilesparlamentarios y

parlamentarios

COORD

y civiles

s

s−CC1

s s−CC2

s

aq

s

COORD ss

aq cc aq

aq

cc

Figure 3: In the 3LB corpus, phrases involving coordination,
are represented with a flat structure as in (a). For coordination
involving a non-terminalX (X = s in the example), we insert
new nodesX-CC1 andX-CC2 to form the structure in (b).

validation approach on the training set to test differ-
ent models. We divided the 2,800 training data trees
into 14 different development data sets, where each
of these data sets consisted of 2,600 training sen-
tences and 200 development sentences. We took the
average over the results of the 14 splits to gauge the
effectiveness of the model being tested.

To evaluate our models, we considered the recov-
ery of labeled and unlabeled dependencies as well as
labeled constituents. Unlabeled dependencies cap-
ture how the words in a sentence depend on one an-
other. Formally, they are tuples{headchild index,
modifier index}, where the indices indicate position
in the sentence. Labeled dependencies include the
labels of the modifier, headchild, and parent non-
terminals as well. The root of the tree has a special
dependency:{head index} in the unlabeled case and
{TOP, headchild index, root non-terminal} in the la-
beled case. The labeled constituents in a tree are all
of the non-terminals and, for each, the positions of
the words it spans. We use the standard definitions
of precision, recall, and F-measure.5

5When extracting dependencies, we replaced all non-
punctuation POS labels with a generic labelTAG to avoid con-
flating tagging errors with dependency errors. We also included
the structural changes that we imposed during preprocessing.
Results for constituent precision and recall were computed af-
ter we restored the trees to the original treebank structure.
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Labeled Dep Unlabeled Dep Labeled Const
<=70 words <=40 Words

Model Prec/Rec Gain Prec/Rec Gain Prec Rec Prec Rec
1 Baseline 76.0 — 82.1 — 81.6 80.4 82.6 81.4
2 n(P,N,V) 78.4 2.4 83.6 1.5 83.1 82.5 84.1 83.4
3 n(A,D,N,P,V) 78.2 2.2 83.5 1.4 83.3 82.4 84.2 83.3
4 n(V) 77.8 1.8 82.9 0.8 82.3 81.6 83.1 82.2
5 m(V) 78.4 2.4 83.1 1.0 82.8 82.0 83.8 82.9
6 t(V) 77.6 1.6 82.7 0.6 82.4 81.4 83.2 82.3
7 p(V) 78.1 2.1 83.3 1.2 82.9 82.0 83.8 82.8
8 g(V) 76.3 0.3 82.2 0.1 81.6 80.6 82.7 81.7
9 n(A,D,N,V,P)+m(V) 79.0 3.0 84.0 1.9 83.9 83.2 84.7 84.1
10 n(P,N,V)+m(V) 78.9 2.9 83.7/83.8 1.6/1.7 83.6 82.8 84.6 83.7
11 n(A,D,N,V,P)+m(V)+p(V) 78.7 2.7 83.6 1.5 83.6 82.9 84.4 83.8
12 n(A,D,N,V,P)+p(V) 78.4 2.4 83.5/83.6 1.4/1.5 83.3 82.6 84.2 83.5
13 n(A,D,N,V,P)+g(A,D,N,V,P) 78.1 2.1 83.2 1.1 83.1 82.5 83.9 83.4

Table 3: Results after training morphological models during development. When precision and recall differ in labeled or unlabeled
dependencies, both scores are shown. Row 1 shows results on a baseline model containing almost no morphological information.
The subsequent rows represent a subset of the models with which we experimented: n(P,N,V) uses number for pronouns, nouns,
and verbs; n(A,D,N,P,V) uses number for adjectives, determiners, nouns, pronouns, and verbs; n(V) uses number for verbs; m(V)
uses mode for verbs; t(V) uses tense for verbs; p(V) uses person for verbs; g(V) uses gender for verbs; the models in rows 9–12
are combinations of these models, and in row 13, n(A,D,N,V,P) combines with g(A,D,N,V,P), which uses gender for adjectives,
determiners, nouns, verbs, and pronouns. The results of the best-performing model are in bold.

Labeled Dep Unlabeled Dep Labeled Const
<=70 words <=40 Words

Model Prec/Rec Prec/Rec Prec Rec Prec Rec
1 Baseline 77.0 82.5 81.7 80.8 83.1 82.0
2 n(A,D,N,V,P)+m(V) 79.4 83.9 83.9 83.4 85.1 84.4
3 RERANK 80.2 84.7 85.2 85.0 86.3 85.9

Table 4: Results after running the morphological and reranking models on test data. Row 1 is our baseline model. Row 2 is the
morphological model that scored highest during development. Row 3 gives the accuracy of the reranking approach, when applied
to n-best output from the model in Row 2.

5.1 The Effects of Morphology

In our first experiments, we trained over 50 mod-
els, incorporating different morphological informa-
tion into each in the way described in Section 3.1.
Prior to running the parsers, we trained the POS tag-
ger described in (Collins, 2002). The output from
the tagger was used to assign a POS label for un-
known words. We only attempted to parse sentences
under 70 words in length.

Table 3 describes some of the models we tried
during development and gives results for each. Our
baseline model, which we used to evaluate the ef-
fects of using morphology, was Model 1 (Collins,
1999) with a simple POS tagset containing almost
no morphological information. The morphologi-
cal models we show are meant to be representative
of both the highest-scoring models and the perfor-
mance of various morphological features. For in-
stance, we found that, in general, gender had only a

slight impact on the performance of the parser. Note
that gender is not a morphological attribute of Span-
ish verbs, and that the inclusion of verbal features,
particularly number, mode, and person, generated
the strongest-performing models in our experiments.

Table 4 shows the results of running two mod-
els on the test set: the baseline model and the best-
performing morphological model from the develop-
ment stage. This model uses the number and mode
of verbs, as well as the number of adjectives, deter-
miners, nouns, and pronouns.

The results in Tables 3 and 4 show that adding
some amount of morphological information to a
parsing model is beneficial. We found, however, that
adding more information does not always lead to im-
proved performance (see, for example, rows 11 and
13 in Table 3). Presumably this is because the tagset
grows too large.

Table 5 takes a closer look at the performance
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of the best-performing morphological model in the
recovery of particular labeled dependencies. The
breakdown shows the top 15 dependencies in the
gold-standard trees across the entire training set.
Collectively, these dependencies represent around
72% of the dependencies seen in this data.

We see an extraordinary gain in the recovery of
some of these dependencies when we add morpho-
logical information. Among these are the two in-
volving postmodifiers to verbs. When examining the
output of the morphological model, we found that
much of this gain is due to the fact that there are two
non-terminal labels used in the treebank that specify
modal information of verbs they dominate (infiniti-
vals and gerunds): with insufficient morphological
information, the baseline parser was unable to dis-
tinguish regular verb phrases from these more spe-
cific verb phrases.

Some dependencies are particularly difficult for
the parser, such as that in whichSBARmodifies
a noun ({GRUP TAG SBARR}). We found that
around 20% of cases of this type in the training set
involve structures likeel proceso de negociones que
(in English the process of negotiation that). This
type of structure is inherently difficult to disam-
biguate. In Spanish, such structures may be more
common than in English, since phrases involving
nominal modifiers to nouns, likenegotiation pro-
cess, are always formed asnoun+ de+ noun.

5.2 Experiments with Reranking

In the reranking experiments, we follow the proce-
dure described in (Collins and Koo, 2005) for cre-
ation of a training set withn-best parses for each
sentence. This method involves jack-knifing the
data: the training set of 2,800 sentences was parsed
in 200-sentence chunks by ann-best morphologi-
cal parser trained on the remaining 2,600 sentences.
This ensured that each sentence in the training data
hadn-best output from a baseline model that was
not trained on that sentence. We used the optimal
morphological model (n(A,D,N,V,P)+m(V)) to gen-
erate then-best lists, and we used the feature set de-
scribed in (Collins and Koo, 2005). The test results
are given in Table 4.6

6Note that we also created development sets for develop-
ment of the reranking approach, and for cross-validation of the
single parameterC in approach of (Bartlett et al., 2004).

Dependency Count Model Prec/Rec
Determiner modifier 9680 BL 95.0/95.4
SN GRUP ESPECL (15.5%) M 95.4/95.7
Complement ofSP 9052 BL 92.4/92.9
SP PREP SNR (14.5%) M 93.2/93.9
SPmodifier to noun 4500 BL 83.9/78.1
GRUP TAG SPR (7.2%) M 82.9/79.9
Subject 3106 BL 77.7/86.1
S GV SNL (5.0%) M 83.1/87.5
Sentential head 2758 BL 75.0/75.0
TOP S (4.4%) M 79.7/79.7
S modifier underSBAR 2728 BL 83.3/82.1
SBAR CP SR (4.4%) M 86.0/84.7
SPmodifier to verb 2685 BL 62.4/78.8
S GV SPR (4.3%) M 72.6/82.5
SNmodifier to verb 2677 BL 71.6/75.6
S GV SNR (4.3%) M 81.0/83.0
Adjective postmodifier 2522 BL 76.3/83.6
GRUP TAG sR (4.0%) M 76.4/83.5
Adjective premodifier 980 BL 79.2/80.0
GRUP TAG sL (1.6%) M 80.1/79.3
SBARmodifier to noun 928 BL 62.2/60.6
GRUP TAG SBARR (1.4%) M 61.3/60.8
Coordination 895 BL 65.2/72.7
S-CC2 S coord L (1.4%) M 66.7/74.2
Coordination 870 BL 52.4/56.1
S-CC1 S-CC2 S L (1.4%) M 60.3/63.6
Impersonal pronoun 804 BL 93.3/96.4
S GV MORFL (1.3%) M 92.0/95.6
SNmodifier to noun 736 BL 47.3/39.5
GRUP TAG SNR (1.2%) M 51.7/50.8

Table 5: Labeled dependency accuracy for the top 15 depen-
dencies (representing around 72% of all dependencies) in the
gold-standard trees across all training data. The first column
shows the type and subtype, where the subtype is specified as
the 4-tuple{parent non-terminal, head non-terminal, modifier
non-terminal, direction}; the second column shows the count
for that subtype and the percent of the total that it represents
(where the total is 62,372) . The model BL is the baseline, and
M is the morphological model n(A,D,N,V,P)+m(V).

5.3 Statistical Significance

We tested the significance of the labeled precision
and recall results in Table 4 using the sign test.
When applying the sign test, for each sentence in
the test data we calculate the sentence-level F1 con-
stituent score for the two parses being compared.
This indicates whether one model performs better
on that sentence than the other model, or whether
the two models perform equally well, information
used by the sign test. All differences were found to
be statistically significant at the levelp = 0.01.7

7When comparing the baseline model to the morphological
model on the 692 test sentences, F1 scores improved on 314
sentences, and became worse on 164 sentences. When com-
paring the baseline model to the reranked model, 358/157 sen-
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6 Conclusions and Future Work

We have developed a statistical parsing model for
Spanish that performs at 85.1% F1 constituency ac-
curacy. We find that an approach that explicitly
represents some of the particular features of Span-
ish (i.e., its morphology) does indeed help in pars-
ing. Moreover, this approach is compatible with
the reranking approach, which uses general fea-
tures that were first developed for use in an En-
glish parser. In fact, our best parsing model com-
bines both the language-specific morphological fea-
tures and the non-specific reranking features. The
morphological features are local, being restricted to
dependencies between words in the parse tree; the
reranking features are more global, relying on larger
portions of parse structures. Thus, we see our final
model as combining the strengths of two comple-
mentary approaches.

We are curious to know the extent to which a
close analysis of the dependency errors made by the
baseline parser can be corrected by the development
of features tailored to addressing these problems.
Some preliminary investigation of this suggests that
we see much higher gains when using generic fea-
tures than these more specific ones, but we leave a
thorough investigation of this to future work. An-
other avenue for future investigation is to try using a
more sophisticated baseline model such as Collins’
Model 2, which incorporates both subcategorization
and complement/adjunct information. Finally, we
would like to use the Spanish parser in an applica-
tion such as machine translation.
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Abstract

This paper investigates some computa-
tional problems associated with proba-
bilistic translation models that have re-
cently been adopted in the literature on
machine translation. These models can be
viewed as pairs of probabilistic context-
free grammars working in a ‘synchronous’
way. Two hardness results for the class
NP are reported, along with an exponen-
tial time lower-bound for certain classes
of algorithms that are currently used in the
literature.

1 Introduction

State of the art architectures for machine transla-
tion are all based on mathematical models called
translation models. Generally speaking, a transla-
tion model accounts for all the elementary opera-
tions that rule the process of translation between the
words and the different word orderings of the source
and target languages. Translation models are usu-
ally enriched with statistical parameters, to drive the
search toward the most likely translation(s). Special-
ized algorithms are provided for the automatic esti-
mation of these parameters from corpora of trans-
lation pairs. Besides the task of natural language
translation, statistical translation models are also ex-
ploited in other applications, such as word align-
ment, multilingual document retrieval and automatic
dictionary construction.

The most successful translation models that are
found in the literature exploit finite-state machinery.

The approach started with the so-called IBM mod-
els (Brown et al., 1988), implementing a set of ele-
mentary operations, such as movement, duplication
and translation, that independently act on individ-
ual words in the source sentence. These word-to-
word models have been later enriched with the in-
troduction of larger units such as phrases; see for
instance (Och et al., 1999; Och and Ney, 2002).
Still, the generative capacity of these models lies
within the realm of finite-state machinery (Kumar
and Byrne, 2003), so they are unable to handle
nested structures and do not provide the expressivity
required to process language pairs with very differ-
ent word orderings.

Recently, more sophisticated translation models
have been proposed, borrowing from the theory of
compilers and making use of synchronous rewrit-
ing. In synchronous rewriting, two formal gram-
mars are exploited, one describing the source lan-
guage and the other describing the target language.
Furthermore, the productions of the two gram-
mars are paired and, in the rewriting process, such
pairs are always applied synchronously. Formalisms
based on synchronous rewriting have been empow-
ered with the use of statistical parameters, and spe-
cialized estimation and translation (decoding) algo-
rithms were newly developed. Among the several
proposals, we mention here the models presented
in (Wu, 1997; Wu and Wong, 1998), (Alshawi et al.,
2000), (Yamada and Knight, 2001), (Gildea, 2003)
and (Melamed, 2003).

In this paper we consider synchronous models
based on context-free grammars and probabilistic
extensions thereof. This is the most common choice
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in statistical translation models that exceed the gen-
erative power of finite-state machinery. We focus
on two associated computational problems that have
been defined in the literature. One is the member-
ship problem, which involves testing whether an in-
put string pair can be generated by the model. The
other is the translation problem (also called the de-
coding problem) which involves the search for a
suitable translation of an input string/structure. It
has been often informally stated in the literature
that the use of structured models results in efficient,
polynomial time algorithms for the above problems.
We show here that sometimes this is not the case.
The contribution of this paper can be stated as fol-
lows:

• we show that the membership problem is NP-
hard, unless a constant bound is imposed on the
length of the productions (Section 3);

• we show an exponential time lower bound for
the membership problem, in case chart parsing
is adopted (Section 3);

• we show that translating an input string into
the best parse tree in the target language is NP-
hard, even in case productions are bounded in
length (Section 4).

Investigation of the computational complexity of
translation models has started in (Knight, 1999) for
word-to-word models. This paper can be seen as the
continuation of that line of research.

2 Synchronous context-free grammars

Several definitions for synchronous context-free
grammars have been proposed in the literature; see
for instance (Chiang, 2004; Chiang, 2005). Our
definition is based on syntax-directed translation
schemata (SDTS; Aho and Ullman, 1972), with the
difference that we do not impose the restriction that
two paired context-free productions have the same
left-hand side. As it will be discussed in Section 4,
this results in an enriched generative capacity when
probabilistic extensions are considered. We assume
the reader is familiar with the definition of context-
free grammar (CFG) and with the associated notion
of derivation.

Let VN and VT be sets of nonterminal and termi-
nal symbols, respectively. In what follows we need
to represent bijections between all the occurrences
of nonterminals in two strings over VN ∪ VT . This
can be done by annotating nonterminals with indices
from an infinite set. We define I(VN ) = {A(t) |
A ∈ VN , t ∈ N} and VI = I(VN ) ∪ VT . We
write index(γ), γ ∈ V ∗

I , to denote the set of all in-
dices (the integers t) that appear in symbols in γ.
Two strings γ, γ′ ∈ V ∗

I are synchronous if each in-
dex in index(γ) occurs only once in γ, each index
in index(γ′) occurs only once in γ′, and index(γ) =
index(γ′). Therefore synchronous strings have the
general form

u10A
(t1)
11 u11A

(t2)
12 u12 · · · u1r−1A

(tr)
1r u1r,

u20A
(tπ(1))

21 u21A
(tπ(2))

22 u22 · · · u2r−1A
(tπ(r))

2r u2r,

where r ≥ 0, u1i, u2i ∈ V ∗
T , A

(ti)
1i , A

(tπ(i))

2i ∈
I(VN ), ti 6= tj for i 6= j and π is some permuta-
tion defined on set {1, . . . , r}.

Definition 1 A synchronous context-free gram-
mar (SCFG) is a tuple G = (VN , VT , P, S), where
VN , VT are finite, disjoint sets of nonterminal and
terminal symbols, respectively, S ∈ VN is the start
symbol and P is a finite set of synchronous produc-
tions, each of the form [A1 → α1, A2 → α2], with
A1, A2 ∈ VN and α1, α2 ∈ V ∗

I synchronous strings.

The size of a SCFG G is defined as |G| =∑
[A1→α1, A2→α2]∈P |A1α1A2α2|. Based on an ex-

ample from (Yamada and Knight, 2001), we provide
a sample SCFG fragment translating from English to
Japanese, specified by means of the following syn-
chronous productions:

s1 : [VB → PRP(1) VB1(2) VB2(3),

VB → PRP(1) VB2(3) VB1(1)]
s2 : [VB2 → VB(1) TO(2),

VB2 → TO(2) VB(1) ga]
s3 : [TO → TO(1) NN(2), TO → NN(2) TO(1)]
s4 : [PRP → he, PRP → kare ha]
s5 : [VB1 → adores, VB1 → daisuki desu]
s6 : [VB → listening, VB → kiku no]
s7 : [TO → to, TO → wo]
s8 : [NN → music, NN → ongaku]

Note that in production s2 above, the nonterminals
VB and TO generated from nonterminal VB2 in
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the English component are inverted in the Japanese
component, where some additional lexical material
is also added.

In a SCFG, the ‘derives’ relation is defined on
synchronous strings in terms of simultaneous rewrit-
ing of two nonterminals with the same index. Some
additional notation will help us defining this rela-
tion precisely. A reindexing is a one-to-one func-
tion on N. We extend a reindexing f to VI by letting
f(A(t)) = A(f(t)) for A(t) ∈ I(VN ) and f(a) = a
for a ∈ VT . We also extend f to strings in V ∗

I by
letting f(ε) = ε and f(Xγ) = f(X)f(γ), for each
X ∈ VI and γ ∈ V ∗

I . We say that strings γ1, γ2 ∈
V ∗

I are independent if index(γ1) ∩ index(γ2) = ∅.

Definition 2 Let G = (VN , VT , P, S) be a SCFG
and let γ1, γ2 be synchronous strings in V ∗

I . The
derives relation [γ1, γ2] ⇒G [δ1, δ2] holds
whenever there exist an index t in index(γ1), a syn-
chronous production [A1 → α1, A2 → α2] in P
and some reindexing f such that

(i) f(α1α2) and γ1γ2 are independent; and

(ii) γi = γ′iA
(t)
i γ′′i , δi = γ′if(αi)γ′′i , for i = 1, 2.

We also write [γ1, γ2] ⇒s
G [δ1, δ2] to explicitly

indicate that the derives relation holds through some
synchronous production s ∈ P .

Since δ1 and δ2 in Definition 2 are synchronous
strings, we can define the reflexive and transitive
closure of ⇒G, written ⇒∗

G. This relation is used
to represent derivations in G. In case we have
[γ1i−1, γ2i−1] ⇒si

G [γ1i, γ2i] for 1 ≤ i ≤ n,
n ≥ 1, we also write [γ10, γ20] ⇒σ

G [γ1n, γ2n],
where σ = s1s2 · · · sn. We always assume some
canonical form for derivations (as for instance left-
most derivation on the left component). Similarly to
the case of context-free grammars, each derivation
in G can be associated with a pair of parse trees, that
is, one parse tree for each dimension.

Back to our example, we report a fragment of a
derivation of the string pair [he adores listening to
music, kare ha ongaku wo kiku no ga daisuki desu]:

[VB(1), VB(1)]
⇒s1

G [PRP(2) VB1(3) VB2(4),

PRP(2) VB2(4) VB1(3)]
⇒s4

G [he VB1(3) VB2(4),

kare ha VB2(4) VB1(3)]
⇒s5

G [he adores VB2(4),

kare ha VB2(4) daisuki desu]
⇒s2

G [he adores VB(5) TO(6),

kare ha TO(6) VB(5) ga daisuki desu].

The translation generated by a SCFG G is a bi-
nary relation over V ∗

T defined as

T (G) = {[w1, w2] | [S(1), S(1)] ⇒∗
G [w1, w2],

w1, w2 ∈ V ∗
T }.

The set of strings that are translations of a given
string w1 is defined as:

T (G, w1) = {w2 | [w1, w2] ∈ T (G)}.

A probabilistic SCFG (PSCFG) is a pair (G, pG)
where G = (VN , VT , P, S) is a SCFG and pG is a
function from P to real numbers in [0, 1] such that,
for each A1, A2 ∈ VN , we have:∑

α1,α2

pG([A1 → α1, A2 → α2] = 1.

If for n ≥ 1 and si ∈ P , 1 ≤ i ≤ n, string
σ = s1s2 · · · sn is a canonical derivation of the form
[S(1), S(1)] ⇒σ

G [w1, w2], we write pG(σ) =∏n
i=1 pG(si). If D([w1, w2]) is the set of all canon-

ical derivations in G for pair [w1, w2], we write
pG([w1, w2]) =

∑
σ∈D([w1,w2]) pG(σ).

3 The membership problem

We consider here the membership problem for
SCFG, defined as follows: for input instance a
SCFG G and a pair [w1, w2], decide whether
[w1, w2] is in T (G). This problem has been con-
sidered for instance in (Wu, 1997) for his inver-
sion transduction grammars and has applications in
the support of several tasks of automatic annotation
of parallel corpora, as for instance segmentation,
bracketing, phrasal and word alignment. We show
that the membership problem for SCFGs is NP-
hard. The result could be derived from the findings
in (Melamed et al., 2004) that synchronous rewriting
systems as SCFGs are related to the class of so called
linear context-free rewriting systems (LCFRSs) and
from the result that the membership problem for
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LCFRSs is NP-hard (Satta, 1992; Kaji and others,
1994). However, we provide here a direct proof, to
simplify the presentation.

Theorem 1 The membership problem for SCFGs is
NP-hard.

Proof. We reduce from the three-satisfiability
problem (3SAT, Garey and Johnson, 1979). Let
〈U,C〉 be an instance of the 3SAT problem, where
U = {u1, . . . , up} is a set of variables and C =
{c1, . . . , cn} is a set of clauses. Each clause is a set
of three literals from {u1, u1, . . . , up, up}.

The general idea of the proof is to use a string
pair [w1w2 · · ·wp, wc], where wc is a string repre-
sentation of C and each wi is a string controlling the
truth assignment for the variable ui. We then con-
struct a SCFG G such that each wi can be derived
in two possible ways only, using some specialized
productions of G, encoding the truth assignment of
variable ui. In this way the derivation of the whole
string w1 · · ·wp in the left dimension corresponds to
a guess of a truth assignment for U . Accordingly, on
the right dimension only those symbols of wc will
be derived that represent clauses that hold true un-
der the guessed assignment.

We need some additional notation. Below we
treat C as an alphabet of atomic symbols. We use
a function d such that, for every i with 1 ≤ i ≤
p, cd(i,1), cd(i,2), . . . , cd(i,si) is the sequence of all
clauses that include literal ui, in the left to right
order in which they appear within c1c2 · · · cn, and
cd(i,si+1), cd(i,si+2), . . . , cd(i,ti) is the sequence of all
clauses that include literal ui, again as they appear
within c1c2 · · · cn from left to right. Note that we
must have

∑p
i=1 ti = 3n. We also use a function

e such that, for every 1 ≤ i ≤ p and 1 ≤ j ≤ ti,
e(i, j) = j +

∑i−1
k=1 tk (assume

∑0
k=1 tk = 0).

Consider the alphabet {ai, bi | 1 ≤ i ≤ p}. For
every i, 1 ≤ i ≤ p, let wi denote a sequence of
exactly ti + 1 alternating symbols ai and bi, i.e.,
wi ∈ (aibi)+ ∪ (aibi)∗ai. For every 1 ≤ i ≤ p,
let x(i, 1) = aibi and let x(i, h) = ai (resp. bi)
if h is even (resp. odd), 2 ≤ h ≤ ti. Let
also x(i, h) = ai (resp. bi) if h is odd (resp.
even), 1 ≤ h ≤ ti − 1, and let x(i, ti) = aibi

(resp. biai) if ti is odd (resp. even). There-
fore we can write wi = x(i, 1)x(i, 2) · · ·x(i, t1) =
x(i, 1)x(i, 2) · · ·x(i, t1).

Finally, we need a permutation π defined on the
set {1, . . . , 3n} as follows. Fix i and j with 1 ≤ i ≤
p and 1 ≤ j ≤ ti, and let h be the number of oc-
currences of the clause cd(i,j) found in the sequence
cd(1,1), cd(1,2), . . ., cd(1,t1), cd(2,1), . . ., cd(i,j). Note
that we must have 1 ≤ h ≤ 3. Then we set
π(e(i, j)) = 3 · [d(i, j)− 1] + h.

We can now define the target instance
〈G, [w,w′]〉 of our reduction. Let [w,w′] =
[w1w2 · · ·wp, c1c2 · · · cn]. Let also G = (VN , VT ,
P, S), with VN = {S} ∪ {Ai | 1 ≤ i ≤ 3n} and
VT = C ∪ {ai, bi | 1 ≤ i ≤ p}. The productions
below define set P :

(i) for every 1 ≤ i ≤ p:

(a) for 1 ≤ h ≤ si:
[Ae(h,i) → x(i, h), Ae(h,i) → ce(i,h)],
[Ae(h,i) → x(i, h), Ae(h,i) → ε],
[Ae(h,i) → x(i, h), Ae(h,i) → ε];

(b) for si + 1 ≤ h ≤ ti:
[Ae(h,i) → x(i, h), Ae(h,i) → ε],
[Ae(h,i) → x(i, h), Ae(h,i) → ce(i,h)],
[Ae(h,i) → x(i, h), Ae(h,i) → ε];

(ii) [S → A
(e(1,1))
e(1,1) A

(e(1,2))
e(1,2) · · ·

A
(e(1,t1))
e(1,t1) A

(e(2,1))
e(2,1) · · ·A(e(p,tp))

e(p,tp) ,

S → A
(π(e(1,1)))
π(e(1,1)) A

(π(e(1,2)))
π(e(1,2)) · · ·

A
(π(e(1,t1)))
π(e(1,t1)) A

(π(e(2,1)))
π(e(2,1)) · · ·A(π(e(p,tp)))

π(e(p,tp)) ].

It is easy to see that |G|, |w| and |w′| are polyno-
mially related to |U | and |C|. From a derivation of
[w,w′] ∈ T (G), we can exhibit a truth assignment
that satisfies C simply by reading off the derivation
of the left string w1w2 · · ·wp. Conversely, starting
from a truth assignment that satisfies C we can prove
w ∈ L(G) by means of (finite) induction on |U |: this
part requires a careful inspection of all items in the
definition of G.

From Theorem 1 we may conclude that algo-
rithms for the membership problem for SCFGs are
very unlikely to run in polynomial time. In the
literature, several algorithms for this problem have
been proposed using tabular methods (chart pars-
ing). In the worst case, all these algorithms run in
time Θ(|G| · nk(G)), with G an SCFG and n the

806



length of the input string pair. We know that, un-
less P = NP, k(G) cannot be a constant. We now
prove a lower bound on k(G), providing thereby an
exponential time lower bound result for our problem
under the assumption of the tabular paradigm.

Tabular methods for the membership problem are
based on the following representation. Given a syn-
chronous production

s : [A1 → B
(1)
11 · · ·B(r)

1r ,

A2 → B
(π(1))
21 · · ·B(π(r))

2r ], (1)

the already recognized constituent pairs B1i, B2π(i)

are gather together in several steps, keeping a record
of the spanned substrings of the input. To pro-
vide a concrete example, if we gather all the B1i’s
on the left dimension from left to right, the partial
analysis we obtain after the first step can be repre-
sented as a state 〈s(1), (i11, j11), (i21, j21)〉, mean-
ing that B11 and B2π(1) span substrings w1[i11, j11]
and w2[i21, j21], respectively.1 At the second
step we have a state 〈s(2), (i11, j12), (i21, j21),
(i22, j22)〉, meaning that B11B12 together span
w1[i11, j12], B2π(1) spans w2[i21, j21] and B2π(2)

spans w2[i22, j22]. We can see that, for some worst
case permutations, the left-to-right strategy demands
for increasingly more pairs of indices, so that the ex-
ponent in the time complexity linearly grows with r.

How much better can we do, if we exploit some
strategy other than the left-to-right above? More
precisely, we ask how many unconnected spannings
a state may require for some worst case permutation
π, under the choice of the best possible parsing strat-
egy for π itself.

Theorem 2 In the worst case, standard tabular
methods for the SCFG membership problem require
an amount of time Ω(|G|nc·

√
r), with r the length of

the longest production in G and c a constant.

Proof. For any r ≥ 8 we let q = b
√

r/2c ≥
b
√

8/2c = 2, and define a permutation πr on
{1, . . . , r}. We view the domain of πr as composed
of 2q blocks with q adjacent integers each, possi-
bly followed by r − 2q2 additional “padding” in-
tegers, and its codomain as composed of q blocks

1For a string w = a1 · · · an, we write w[i, j] to denote the
substring ai+1 · · · aj .

with 2q adjacent integers each, again possibly fol-
lowed by r − 2q2 “padding” integers. Permutation
πr transposes all blocks by sending the j-th element
of the i-th block in the domain into the i-th element
of the j-th block in the codomain, while mapping
each padding integer identically into itself. For-
mally, for all positive integers i ≤ 2q and j ≤ q,
πr(q · (i − 1) + j) = 2q · (j − 1) + i, and for all
integers i with 2q2 < i ≤ r, πr(i) = i.

We count below how many spans are instanti-
ated by a state that has gathered p constituent pairs,
1 ≤ p ≤ r, in parsing production (1) under any pos-
sible strategy. When a constituent pair B1i, B2πr(i)

is gathered, we say integer i in the domain of πr and
integer πr(i) in the codomain have been pebbled. In
this way each span (i, j) in a state corresponds to
some run i, i + 1, . . . j of pebbled integers, with ei-
ther i = 1 or i− 1 unpebbled, and with either j = r
or j + 1 unpebbled. We call each such run a seg-
ment, and show that every parsing strategy demands
at least q = b

√
r/2c segments either in the domain

or in the codomain of πr.
We say that a block in the domain of πr is empty,

full, or mixed if, respectively, none, all, or some but
not all of its elements have been pebbled. Assume
that, for a given parsing strategy, the last block that
becomes mixed does so when we place the i-th peb-
ble, and the first block that becomes full does so
when we place the j-th pebble. Obviously i 6= j:
the first pebble placed in a previously empty block
can not make it full since every block contains at
least 2 elements.

If i < j, after placing the i-th pebble and before
placing the j-th pebble every block in the domain of
πr is mixed. Each of these 2q blocks then contains
at least one pebbled element which is adjacent to an
unpebbled one and must therefore be either the first
or the last element of a segment. The domain of πr

then contains at least 2q/2 = q segments.
If j < i, after placing the j-th pebble and be-

fore placing the i-th pebble at least one block in the
domain of πr (e.g., the h-th block) is full, and at
least one (e.g., the k-th) is empty. Then, in each
of the q blocks in the codomain of πr, the h-th el-
ement is pebbled while the k-th is not. Therefore
the h-th elements of any two consecutive blocks in
the codomain of πr must belong to two distinct seg-
ments, since at least one intermediate element is not
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pebbled. The codomain of πr then contains at least
q segments.

4 The translation problem

In this section we consider some formulations of the
translation problem for PSCFG that have been pro-
posed in the literature. The most general definition
of the translation problem for PSCFG is this: for
an input PSCFG Gp = (G, pG) and an input string
w, produce a representation of all possible parse
trees, along with their probabilities, that are assigned
by G to a string in the set T (G, w) under some trans-
lation of w.

Variant of this definition can be found where the
input is a single parse tree for w (Yamada and
Knight, 2001), or where the output is a single parse
tree, chosen according to some specific criteria (Wu
and Wong, 1998). To formally study these problems,
in what follows we focus on single parse trees asso-
ciated with derivations in Gp. For a derivation σ of
the form [S(1), S(1)] ⇒σ

G [w1, w2], we write tσ,l and
tσ,r to denote the left and the right parse trees, re-
spectively, associated with σ. The probability that
tσ,r is obtained as a translation of tσ,l through Gp is
thus pG([tσ,l, tσ,r]) = pG(σ). Let t be some parse
tree; we write y(t) to denote the string in the yield
of t. For a string w ∈ V ∗

T and a parse tree t, we
also consider the probability that t is obtained from
w through Gp, defined as:

pG([w, t]) =
∑

y(t′)=w

pG([t′, t]). (2)

We can now precisely define the variants of the
translation problem we are interested in. Given
as input a PSCFG Gp = (G, pG) and two strings
w1, w2 ∈ V ∗

T , output the pair of parse trees

argmax
y(t1) = w1,
y(t2) = w2

pG([t1, t2]). (3)

If the synchronous productions in the underlying
SCFG G have length bounded by some constant,
then the above problem can be solved in polynomial
time using extensions of the Viterbi search strategy
to parse forests. This has been shown for instance
in (Wu and Wong, 1998; Yamada and Knight, 2001;
Melamed, 2004).

A second interesting problem is defined as fol-
lows. Given as input a PSCFG Gp = (G, pG) and a
string w ∈ V ∗

T , output the parse tree

argmax
t

pG([w, t]). (4)

Even in case we impose some constant bound on
the length of the synchronous productions in G, the
above problem is NP-hard, as we show in what fol-
lows.

We assume the reader is familiar with the defini-
tion of probabilistic context-free grammar (PCFG)
and with the associated notion of derivation prob-
ability (Wetherell, 1980). We denote a PCFG as
a pair (G, pG), with G = (VN , VT , P, S) the un-
derlying context-free grammar and pG the associ-
ated function providing the probability distributions
for the productions in P , conditioned on their left-
hand side. A probabilistic regular grammar (PRG)
is a PCFG with underlying productions of the form
A → aB or A → ε, with A,B nonterminal symbols
and a a terminal symbol.

We consider below a decision problem associated
with PRG, called the consensus problem, defined as
follows: Given as input a PRG (G, pG) and a ra-
tional number d ∈ [0, 1], decide whether there ex-
ists a string w in the language generated by G such
that pG(w) ≥ d. It has been shown in (Casacuberta
and de la Higuera, 2000) that, for a PRG G whose
productions have all probabilities expressed by ra-
tional numbers, the above problem is NP-complete.
(Essentially the same result is also reported in (Lyn-
gso and Pedersen, 2002), stated in terms of hidden
Markov models.) We reduce the consensus problem
for PRG to a decision version of the problem in (4),
called the best translated derivation problem and
defined as follows. Given as input a PCFG Gp =
(G, pG), a string w ∈ V ∗

T and a rational number
d ∈ [0, 1], decide whether maxt pG([w, t]) ≥ d.

Theorem 3 The best translated derivation problem
for the class PSCFG is NP-hard.

Proof. We provide a reduction from the consensus
problem for the class PRG with rational production
probabilities. The main idea is described in what fol-
lows. Given the input PRG Gp, we construct a target
PSCFG G′

p that translates string $ into $, with $ a
special symbol. Given as input the string $, G′

p sim-
ulates all possible derivations of Gp through its own
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derivations. This is done by encoding the nontermi-
nals appearing in a derivation ρ of Gp within the left
component of some derivation σ of G′

p, and by en-
coding the terminal string generated by ρ within the
right component of σ. The probability of ρ is also
preserved by σ.

Let Gp = (G, pG), d be an instance of the con-
sensus problem as above, with G = (VN , VT , P, S).
We specify a PSCFG G′

p = (G′, pG′) with G′ =
(V ′

N , {$}, P ′, S) and V ′
N = VN ∪ VT . Set P ′ is con-

structed as follows:

(i) for every (S → aA) ∈ P , s : [S → A(1), S →
a(1)] is added to P ′, with pG′(s) = pG(S →
aA);

(ii) for every (S → ε) ∈ P , s : [S → $, S → $] is
added to P ′, with pG′(s) = pG(S → ε);

(iii) for every a ∈ VT and (A → bB) ∈ P , s :
[A → B(1), a → b(1)] is added to P ′, with
pG′(s) = pG(A → bB)

(iv) for every a ∈ VT and (A → ε) ∈ P ,
s : [A → $, a → $] is added to P ′, with
pG′(s) = pG(A → ε).

Note that the construction of G′
p can be carried out

in quadratic time in the size of Gp. It is not diffi-
cult to see that there exists a derivation of the form
S ⇒G a1A1 ⇒G a1a2A2 · · · ⇒G a1a2 · · · anAn

if and only if there exist a derivation in G′ asso-
ciated with unary trees t1 and t2, such that string
SA1A2 · · ·An is read from the spine of t1 and string
Sa1a2 · · · an is read from the spine of t2. Further-
more, the two derivations are composed of ‘corre-
sponding’ productions with the same probabilities.
We conclude that there exists a string w in L(G)
with pG(w) > d if and only if there exists a unary
tree t with string Sw$ read from the spine such that
pG′([$, t]) > d.

We discuss below an interesting consequence of
Theorem 3. The SDTS formalism discussed in Sec-
tion 1 has been extended to the probabilistic case
in (Maryanski and Thomason, 1979), called stochas-
tic SDTS (SSDTS). As a corollary to the proof of
Theorem 3, we obtain that one can define, through
some PSCFG Gp and some fixed string w, a proba-
bility distribution pG([w, t]) on parse trees that can-
not be obtained through any SSDTS. Without pro-

viding the details of the definition of SSDTS, we
give here only an outline of the proof. We also as-
sume that the reader is familiar with probabilistic
finite automata and with their distributional equiv-
alence with PRG.

Consider the PSCFG G′
p = (G′, pG′) defined in

the proof of Theorem 3, and assume there exists
some SSDTS G′′

p = (G′′, pG′′) such that, for every
tree t, we have pG′′([$, t]) = pG′([$, t]). Since in a
derivation of an SDTS the generated trees are always
isomorphic, up to some reordering of sibling nodes,
we obtain that the productions of G′′ must have the
form [S → a(1), S → a(1)], [a → b(1), a → b(1)]
and [a → $, a → $]. From these productions we
can construct a probabilistic deterministic finite au-
tomaton generating the same language as the PRG
Gp, and with the same distribution. But this is im-
possible since there are string distributions defined
by some PRG that cannot be obtained through prob-
abilistic deterministic finite automata; see for in-
stance (Vidal et al., 2005).

We conclude by remarking that in (Casacuberta
and de la Higuera, 2000) it is shown that finding
the best output string for a given input string is NP-
hard for stochastic SDTS with a single nonterminal
in each production’s right-hand side. Our result in
Theorem 3, stated for PSCFG, is stronger, since it in-
vestigates individual parse trees rather than strings.

5 Concluding remarks

The presented results are based on worst case analy-
sis: further experimental evaluation needs to be car-
ried out on multilingual corpora in order to asses the
practical impact of these findings.
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Abstract

We present a very efficient statistical in-
cremental parserfor LTAG-spinal, a vari-
ant of LTAG. The parser supports the
full adjoining operation, dynamic predi-
catecoordination, andnon-projective de-
pendencies, with a formalismof provably
stronger generative capacity ascompared
to CFG.Usinggold standardPOStagsas
input, onsection 23of thePTB, theparser
achievesanf-scoreof 89.3%for syntactic
dependency definedon LTAG derivation
trees,whicharedeeperthan thedependen-
ciesextracted from PTB alone with head
rules(for example, in Magerman’s style).

1 Introduction

Lexicalized Tree Adjoining Grammar(LTAG) is a
formalismmotivedby both linguistic andcomputa-
tional perspectives(for arelatively recent review, see
(Joshi and Schabes, 1997)). Becauseof the intro-
duction of theadjoining operation,theTAG formal-
ism is provably stronger than Context FreeGram-
mar(CFG)both in theweakandthestrong genera-
tive power. The TAG formalism provideslinguisti-
cally attractive analysis of natural language(Frank,
2002). Recentpsycholinguistic experiments(Sturt
andLombardo,2005) demonstratethat theadjoining
operationof LTAG is required for eager incremental
processing.

Vijay-Shanker and Joshi (1985) introduced the
first TAG parser in a CYK-lik e algorithm. Because
of the adjoining operation, the time complexity of
LTAG parsing is aslarge as �������
	 , compared with
�����
��	 of CFG parsing, where � is the length of
the sentence to be parsed. Many LTAG parsers
wereproposed, suchasthehead-drivenEarley style
parser (Lavelli andSatta,1991) andthehead-corner

parser (vanNoord,1994). Thehigh timecomplexity
prevents LTAG parsing from real-timeapplications.

In this paper, wework onLTAG-spinal (Shenand
Joshi, 2005), an interesting subset of LTAG, which
preservesalmostall of the strong generative power
of LTAG, and it is both weakly andstrongly more
powerful than CFG 1. We will present a statistical
incrementalparsing for LTAG-spinal. As far aswe
know, this parser is the first comprehensive attempt
of efficientstatistical parsing with aformalgrammar
with provably strongergenerative power thanCFG,
supporting the full adjoining operation, dynamic
predicatecoordination, aswell asnon-projectivede-
pendencies2.

2 LTAG-spinal and the Treebank

Wefirst briefly describetheLTAG-spinal formalism
andtheLTAG-spinal treebankto beusedin this pa-
per. More details are reported in (ShenandJoshi,
2005).

In LTAG-spinal, we have two different kinds of
elementary trees, initial trees and auxiliary trees,
which are the sameas in LTAG. However, as the
nameimplies, an initial tree in LTAG-spinal only
contains the spine from the root to the anchor, and
anauxiliary treeonly containsthespineandthefoot
nodedirectly connectedto a nodeon thespine.

Threetypesof operationsareused to connectthe
elementary treesinto a derivation tree, which are
attachment, adjunction and conjunction. We show
LTAG-spinal elementary treesand operations with
anexamplein Figure1.

In Figure1,eacharcis associatedwith acharacter
whichrepresentsthetypeof operation. WeuseT for
attach, A for adjoin, andC for conjoin.

1Further formal resultsare describedin (Shenand Joshi,
2005). Thereis alsosomerelationshipof LTAG-spinalto the
spinalform context-freetreegrammar, asin (FujiyoshiandKa-
sai,2000)

2In (Riezleret al., 2002), the MaxEnt model was usedto
reranktheK-bestparsesgeneratedby a rule-basedLFG parser.
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Figure1: An examplein LTAG-spinal. A=adjoin, T=attach, C=conjoin.

Attachment in LTAG-spinal is similar to sister
adjunction (Chiang, 2000) in TreeInsertion Gram-
mar(TIG) (SchabesandWaters,1995). It represents
a combination of substitution andsister adjunction.
Theattachment operation is designedto encode the
ambiguity of anargument andanadjunct.

Adjunction inserts part of the spine andthe foot
nodeof anauxiliary treeinto to thespine of another
tree. The adjunction operation can effectively do
wrapping, which distinguishesitself from sister ad-
junction. It is notdifficult to seethatadjunctiononly
happenson thespineof a tree.This property will be
exploited in theincrementalparser.

Conjunction is similar to what was originally
proposedin (Sarkar andJoshi, 1996). However, in
LTAG-spinal, theconjunction operation is mucheas-
ier to handle, since we only conjoin spinalelemen-
tary treesandwedo not needto enumeratecontrac-
tion sets for conjunction. In our formalization,con-
junction canbetreated asaspecial adjunction, how-
ever, this is beyond thescope of this paper.

We use the LTAG-spinal treebank described in
(Shenand Joshi, 2005), which was extracted from
thePennTreebank (PTB)(Marcuset al., 1994) with
Propbank (Palmeret al., 2005)annotations.

2.1 Relation to Traditional LTAG

LTAG-spinal preserves most of the strong genera-
tive power of LTAG. It can be shown that LTAG-
spinal with adjoining restrictions (Joshi and Sch-
abes, 1997) hasstrongergenerativecapacityascom-
paredto CFG.For example, thereexists an LTAG-
spinal grammarthat generates �
���������������������! "$#

, which is not a context-freelanguage.
A spinal elementary tree is smaller thana tradi-

tion LTAG elementary tree which contains all the
substitution nodes of the arguments. In the LTAG-
spinal formalism, both arguments andadjuncts are
expected to be directly attachedor adjoinedonto a
spine. In this sense, LTAG-spinal roughly satisfies
the fundamental TAG hypothesis: Every syntactic
dependency is expressed locally within a single el-
ementary tree (Frank, 2002). The only difference
is that, in LTAG-spinal, syntactic dependenciesare
represented via director local connections.

To better understand the meaning of this dif-
ference, we relate it to Frank’s (2002) model for
how theLTAG elementary trees areconstructed. In
Frank’s model,all theelementary treesarebuilt via
Marge and Move operations, starting with a local
lexical array. Theresulting LTAG elementary trees
arethencombined with adjunction andsubstitution
to build a derivationtree.

Thus,in asense, theLTAG-spinal grammaropens
a door to a parallel mechanism of building the el-
ementary treesand the derivation tree. The spinal
templates in LTAG-spinal only contain the path of
projection from theanchor to thetop node. A spinal
templateplustherootnodesof thesubtreesattached
to this templatecanbeviewedasatraditional LTAG
elementary tree. More specifically, it encodesa set
of possible elementary trees if we distinguish sub-
stitution from sister adjunction. Thus, the LTAG-
spinal parsing modelto beproposedin Section3 can
be viewed as a parserat the meta-grammar(Can-
dito, 1998;Kinyon andProlo,2002) level for tradi-
tional LTAG. Derivation treeconstruction andfull -
size elementary tree filtering are processedin par-
allel. Researchesin statistical CFGparsing (Ratna-
parkhi, 1997; Collins, 1999) andpsycholinguistics
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(Shieber andJohnson, 1993) showed that this strat-
egy is desirablefor NLP.

Furthermore, the way that we split a traditional
LTAG elementary tree along the spine is similar
to the methodwith which Evansand Weir (1997)
compiled the XTAG English Grammarinto finite
stateautomata. In their work, this methodwasde-
signed to employ shared structure in a rule-based
parser. But herewe extendthis techniqueto statisti-
cal LTAG parsing.

2.2 Relation to Propbank

In buildingtheLTAG-spinal Treebank, thePropbank
information is usedin the treebank extraction. As
reportedin (ShenandJoshi, 2005), treetransforma-
tion on PTB areemployedto make it morecompat-
ible with the Propbank annotations. It was shown
that8 simplepatternsof thepathfrom apredicateto
anargumentaccount for 95.5%of thetotal pred-arg
pairs. Thus,our high-quality parsing output will be
very useful for semanticrole labeling.

Arguments in Propbank arenot obligatory com-
plements. Therefore, we cannot treat the Propbank
argumentsasthe arguments in LTAG. Theambigu-
ity of argumentandadjunct is reflectedin the sim-
ilarity of substitution andsister adjunction. This is
oneof thereasons thatwe do not distinguishsubsti-
tution andsister adjunction in LTAG-spinal.

3 Incremental Parsing

We areespecially interestedin incrementalparsing
for the following two reasons. Firstly, the left to
right strategy usedin incrementalparsing givesrise
to adrasticboost in speed. Furthermore,thereis also
a strong connection betweenincrementalparsing
and psycholinguistics, and this connection is also
observed in the LTAG formalism (Ferreira, 2000;
SturtandLombardo,2005).

In recent years, therehave beenmany interesting
works on incremental or semi-incremental parsing.
By semi-incremental we meanthe parsers that al-
low several rounds of left to right scans instead of
one. Both left-cornerstrategy (Ratnaparkhi, 1997;
Roark,2001;Prolo,2003; Henderson,2003; Collins
and Roark, 2004) and head-corner strategy (Hen-
derson, 2000; YamadaandMatsumoto, 2003) were
employed in incrementalparsing. The head-corner

approach is more natural to the LTAG formalism
(Evansand Weir, 1997). In our approach,we use
a stackof derivation treelets to representthe partial
parsing result. Furthermore, the LTAG formalism
allows us to handle non-projectivity dependencies,
which cannot be generated by a CFG or a Depen-
dency parser.

In fact,theideaof incrementalparsing with LTAG
is closely relatedto thework onSupertagging (Joshi
andSrinivas, 1994). A supertagerfirst assigns the
correct LTAG elementary tree to eachword. Then
a Lightweight Dependency Analyzer(LDA) (Srini-
vas,1997) composesthewholederivation treewith
theseelementary trees.We useincrementalparsing
to incorporate supertager andLDA dynamically.

The model of incrementalLTAG parsing is also
similar to StructuredLanguageModeling (SLM) in
(ChelbaandJelinek, 2000). In SLM, the left con-
text of history is represented with a stackof binary
trees. At eachstep,onecomputesthe likelihood of
thecurrent word, its tagandtheoperationsover the
new context trees.

3.1 Treatment of Coordination

Predicate coordination appears in about1/6 of the
sentencesin PTB, therefore proper treatmentof co-
ordination, especially predicatecoordination, is im-
portant to parsing of PTB.

Somerecent results in psycholinguistic experi-
ments(Sturt and Lombardo,2005) showed a high
degree of eagerness in building coordination struc-
tureswhich is absent in a bottom-up approach; A
bottom-up parser waits for the second conjunct to
be completed before combining the two conjuncts
as for examplein VP coordination, and thencom-
bine the coordinatedVP with the subject of the left
conjunct. Psycholinguistic results suggest that the
right conjunct hasto have access to the subject NP
of the left conjunct. This can be achieved by first
building the entire S on the left andthenadjoining
theright VP conjunct to theVP nodeof theleft con-
junct (SturtandLombardo, 2005).

We follow the strategy suggestedby the psy-
cholinguistic experiments, treating conjoining as a
special adjoining operation.
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3.2 The Parsing Algorithm

Thereare four different types of operations in our
parser. Threeof them are described in Section2.
Thefourth operation is generation, which is usedto
generateapossible spine for agivenwordaccording
to thecontext andthelexicon.

Our left to right parsing algorithm is a variant of
the shift-reduce algorithm with beam-search. We
useastack of disconnectedderivation treeletsto rep-
resent the left context. When the parser readsa
word, it first generates a list of possible spinal el-
ementary treesfor this word, For eachelementary
tree, we first push it into the stack. Then we re-
cursively pop the top two treelets from the stack
andpushthe combined tree into the stackuntil we
choosenot to combinethetop two treelets with one
of the three combination operations (we can also
choosenot to popanything at thebeginning). Then
we shift to the next word. This model is calledthe
Flex Model in this paper.

A potential problem with the Flex Model is that
a single LTAG derivation treecanbe generatedby
several shift-reduce derivation steps, whichonly dif-
fer in the order of operations. For example, we
have threetrees % , & and ' . In LTAG derivation,
% adjoins to & , and & adjoins to ' . Then we
have two different shift-reduce derivations, which
are �(%*)+�(&,)-'.	/	 and �/�(%*)0&�	1)-'2	 .

Now we introduce the Eager Model, an eager
evaluation strategy. Any two elementarytreeswhich
are directly connectedin the LTAG derivation tree
arecombined immediately when they canbe com-
bined in somecontext. Furthermore,they cannot be
combined afterwards, if they miss the first chance.
In the previous example, the parserwill generate
�/�(%,)3&�	4)5'2	 , while �(%6) �(&7)8'.	/	 is ruled
out. Thenfor eachLTAG derivationtree,thereexists
a uniqueleft-to-right derivation.

The EagerModel is motived by the treatment of
coordination in (Sturt andLombardo, 2005), aswe
discussedin the previous section. For example, we
have thefollowing two sentences.
1. Quimbyknows Tomlikes Philly steak.
2. Quimbyknows Tomlikes Philly steakandJerry
likespizza.
Suppose we are parsing these two sentences, and
for eachcasethe current word is likes, the fourth

word. Now we have just the samelocal contexts
for both cases. According to the EagerModel, the
parser takes the sameaction according to the con-
text, whichis to combinetheknows treeandthelikes
tree. For sentence2, the second likes tree will be
conjoinedwith thefirst likes treelater. This is com-
patible with thepsycholinguistic preference.

In thefollowing section, wewill explain thepars-
ing mechanismfor the EagerModel with an exam-
ple. TheFlex Model is similar exceptthat theorder
of operations is flexible to someextent.

3.3 An Example

Figure2 shows theleft to right parsing of thephrase
a parser which seems new and interesting to me with
theEagerModel.

In Figure2, eacharc is associated with a number
anda character. Thenumberrepresents theorder of
operation, and the characterstands for the type of
operation asin Figure1. Furthermore we useG to
representGenerate.

In step1 and2, two disconnected spines aregen-
erated for a andparser. Thespine for a is attached
to thespine for parser on theNP node in step3.

In step6, the spinefor new, the first conjunct of
the predicate coordination, is generated. Then the
auxiliary treefor seems is adjoined to the spinefor
new at the nodeVP. the latter is further combined
with which, andis attachedto thetreefor parser.

In step13, the conjoin operation is usedto com-
bine the treelet anchoredon new andthe treelet an-
choredon interesting. Alignments between the two
spinesarebuilt, through which argumentsharing is
implementedin animplicit andunderspecified way.

In step15, for the spine for to, the visible nodes
of theconjoinedtreelet includenodes on someaux-
iliary treesadjoinedontheleft of thespines, like the
rootVP nodefor seems. In thisway, anon-projective
structure is generated,which is just thesameasthe
wrapping adjoining in LTAG.

3.4 Machine Learning Algorithm

Many machine learning algorithms have beensuc-
cessfully applied to parsing, incremental parsing,
or shallow parsing (Ratnaparkhi, 1997; Punyakanok
andRoth,2001; Lafferty et al., 2001; Taskaret al.,
2003), whichcanbeapplied to our incrementalpars-
ing algorithm.
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Figure2: Incrementalparsing with EagerModel. A=adjoin, T=attach, C=conjoin, G=generate

In thispaper, weusetheperceptron-likealgorithm
proposedin (Collins, 2002) which doesnot suffer
from the label bias problem, and is fast in train-
ing. Wealsoemploy thevotedperceptron algorithm
(Freundand Schapire, 1999) and the early update
techniqueasin (Collins andRoark,2004).

3.5 Features

Features are defined in the format of (operation,
main spine, child spine, spine node, context), where
the spine node is the nodeon the main spine onto
which the child spine is attached or adjoined. For
generate, child spine andspine node areundefined,
andfor conjoin spinenodeis undefined. context de-
scribes the constituent label or lexical item associ-
atedwith acertain node. Thecontext of anoperation
includesthe top two treelets involved in the opera-
tion aswell asthe two closest wordson both sides
of thecurrentword.

9 Context for generate :
- The(-2, 2) window in theflat sentence.
- Thevisible 3 spineson thetopmosttreelet.9 Context for attach andadjoin :
- The(0, 2) window in theflat sentence.
- The most recent spine previously attached
or adjoined to the samelocation on the main
spine.
- Theleftmost child spineattachedto thechild
spines.
- The spines that arevisible before the opera-
tion andbecomeinvisible aftertheoperation.9 Context for conjoin :
- The(0, 2) window in theflat sentence.

3Thedetailsarepresentedin (Shen,2005).

- Theleftmost child spine attachedto themain
spine, which is thefirst adjunct.
- The two leftmostchildren spines attachedto
thechild spine,which is thecurrent adjunct.

We have about1.4M featuresextracted from the
gold-standard parses,andabout 600K features dy-
namically extractedfrom thegeneratedparses in 10
roundsof training with theEagerModel.

4 Experiments and Analysis

We usetheLTAG-spinal treebankreportedin (Shen
and Joshi, 2005). The LTAG-spinal parsefor the
39434 sentencesextracted from WSJ section 2-21
areused asthe training data. Section 24 is usedas
thedevelopmentdata. Section23 areusedfor test4.

We usesyntactic dependency for evaluation. It
is worthmentioning that,for predicatecoordination,
we definethe dependency on the parent of the co-
ordination structure andeachof the conjunct pred-
icate. For example, in Figure 1, we have depen-
dency relation on (parser, new) and(parser, interest-
ing). Comparedwith other dependency parserson
PTB, the dependency definedon LTAG-spinal re-
vealsdeeper relations becauseof the treatment of
traditional adjoining andpredicatecoordination de-
scribedabove.

In the community of parsing, labeled recall and
labeled precision onphrasestructuresareoften used
for evaluation.However, in ourexperimentswecan-
not evaluate our parser with respect to the phrase
structures in PTB. As shown in (Shenand Joshi,
2005), various irrecoverable tree transformations

4TheLTAG-spinaltreebankcontains2401out of 2416sen-
tencesin section23.
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Figure3: f-scoreof syntacticdependency on thede-
velopment datawith theEagerModel

wereusedto extract the LTAG-spinal treebank ac-
cording thePropbank annotationonPTB. Therefore,
we usesyntactic dependency for evaluation.

4.1 Eager vs. Flex

We first train our incrementalparser with Eager
Model andFlex Model respectively. In thetraining,
beamwidth is setto 10. Lexical featuresarelimited
to wordsappearing for at least 5 timesin thetraining
data.Figure3 andFigure4 show thelearningcurves
onthetrainingandthedevelopmentdata. TheX axis
representsthe numberof iterations of training, and
theY axisrepresentsthef-scoreof dependency with
respectedto theLTAG derivation tree.

Since early update is used, the f-score on the
training datais very low at the beginning. In both
cases, the voted weights provide an f-score which
is more than 3% higher. The voted results con-
verge faster and are more stable. The result with
Flex Model is 0.6%higher thantheonewith Eager
Model,but theparsingtimeis muchlonger with Flex
Model aswewill showlater.

Weusethevotedweightsobtainedafter 10rounds
of iteration for the evaluation on the test data. We
achieveanf-scoreof 88.7% ondependency with the
EagerModel, and89.3% with theFlex Model. The
Flex Model achievesbetter performancebecauseit
allows the decision of operation to be delayed until
thereis enough context information.

4.2 K-Best Parsing

Thenext experiment is on K-bestparsing. As a first
attempt, wejustusethesamealgorithmasin thepre-
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Figure4: f-scoreof syntacticdependency on thede-
velopment datawith theFlex Model

Table 1: F-score of the oracle parse in the 10-
bestparses on the development datawith the Eager
Model

algorithm f-score%
top (eager) 87.3

oracle (eager) 88.5
top (eager+combinedparses) 87.4

oracle (eager+combinedparses) 91.0

vious section, except that we study theoracleparse,
or the bestparse, amongthe top 10 parses. The f-
scoreontheoracle in top10 in thedevelopmentdata
is 88.5%,while the f-score of the top candidate is
87.3%,asshown in Table1. However, we arenot
satisfied with thescoreon oracle, which is not good
enough for post-processing, i.e. parsereranking.

We notice that from a single partial derivation we
can generate a large set of different partial deriva-
tions, just by combining the elementary treeof the
next word. It is easyto seethatthese similar deriva-
tions may useup the search beamquickly, which
is not good for parse search. Many of the new
derivationsshare thesamedependency structure.So
we revised our learning procedure by combining
derivationswith the samedependency structurebe-
fore eachshift operation. We repeated the K-best
parsing experimentsby usingCombined Parses as
described above, andachieved significant improve-
menton theoracle,asshown in Table1.

Figure5 shows thef-scoreof theoracle onK-best
parsing usingcombinedparses on the testdata. For
eachK-bestoracle test, we setthebeam width to K

816



0.9
0.905
0.91

0.915
0.92

0.925
0.93

0.935
0.94

0.945
0.95

0 20 40 60 80 100

f-
sc

or
e:

k-best

eager + combined 
flex + combined 

Figure5: f-score of theoracle on the test data

Table2: Speedof parsingon the test dataset. Here
cp? = whether the method of CombinedParsesis
used; sen/sec = sentenceper second; top = top can-
didate givenby theparser; oracle = oracle of theK-
bestparseswhereK equalsthewidth of thebeam.

model cp? beam sen/sec f-score%
single best top

flex no 10 0.37 89.3
eager no 10 0.79 88.7

K-best oracle
eager yes 10 0.62 92.2
eager yes 20 0.31 92.9
eager yes 30 0.22 93.2
eager yes 50 0.13 93.7
eager yes 100 0.07 94.2

in parsing. Thef-score of oracle in 100-bestparsing
is 94.2% with theEagerModel + CombinedParses.

4.3 Speed of Parsing

Efficiency is important to the application of incre-
mentalparsing. This set of experimentsis related
to the speedof our parser on single best and K-
bestparsing with boththeEagerModelandtheFlex
Model. All the experimentsare performed on a
Linux nodewith two 1.13GHzPIII CPUsand2GB
RAM. Theparseris codedin Java.

Table2 shows that theEagerModel is morethan
two times faster than the Flex Model, as we ex-
pected. Thetime spent on K-bestparsing is propor-
tional to thebeamwidth.

5 Discussion and Future Work

The parserproposedin this paper is an incremen-
tal parser, so the accuracy on dependency is lower
than that for chart parsers, for example like those
reportedin (Collins,1999; Charniak, 2000). 5 How-
ever, it should be notedthat the dependenciescom-
puted by our parser aredeeper thanthosecalculated
by parsersworking directly on PTB. This is dueto
thetreatment of adjunction andcoordination.

Ontheother hand, theLTAG-spinal treebankused
in this paper shows a high degree of compatibilit y
with the Propbank, as shown in (Shenand Joshi,
2005), so the LTAG derivations given by the parser
arevery useful for predicate-argumentrecognition.
We plan to improve the parsing performanceby
reranking andextend our work to semanticparsing
(Mooney, 2004).

Another interesting topic is whetherthis parser
can be applied to languageswhich have various
long-distancescrambling, asin German.It appears
that by carefully modifying the definition of visi-
ble spines,we canrepresentscrambling structures,
which at present canonly be representedby Multi-
Component TAG (Becker et al., 1991).

6 Conclusions

In this paper, we present an efficient incremental
parser for LTAG-spinal, a variant of LTAG which
is both linguistically andpsycholinguistically moti-
vated. As far aswe know, the statistical incremen-
tal parser proposedin this paperis thefirst compre-
hensive attempt of efficient statistical parsing with
a formal grammarwith provably stronger genera-
tive power thanCFG,supporting the adjoining op-
eration, dynamic predicatecoordination, aswell as
non-projective dependencies.

We have trained and tested our parser on the
LTAG-spinal treebank, extracted from the Penn
Treebank with Propbank annotation, Using gold
standard POStagsas part of the input, the parser
achieves an f-score of 89.3% for syntactic de-
pendency on section 23 of PTB. Because of the
treatmentof adjunction andpredicatecoordination,
Thesedependencies, which are definedon LTAG-
spinal derivation trees,are deeper than the depen-
denciesextractedfrom PTBalonewith headrules.

5We planto work on a chartparserfor LTAG-spinal.
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Abstract 

In the REAP system, users are automati-
cally provided with texts to read targeted to 
their individual reading levels. To find ap-
propriate texts, the user’s vocabulary 
knowledge must be assessed. We describe 
an approach to automatically generating 
questions for vocabulary assessment. Tra-
ditionally, these assessments have been 
hand-written. Using data from WordNet, 
we generate 6 types of vocabulary ques-
tions. They can have several forms, includ-
ing wordbank and multiple-choice. We 
present experimental results that suggest 
that these automatically-generated ques-
tions give a measure of vocabulary skill 
that correlates well with subject perform-
ance on independently developed human-
written questions. In addition, strong corre-
lations with standardized vocabulary tests 
point to the validity of our approach to 
automatic assessment of word knowledge.  

1 Introduction 

The REAP system automatically provides users 
with individualized authentic texts to read. These 
texts, usually retrieved from the Web, are chosen 
to satisfy several criteria. First, they are selected to 
match the reading level of the student (Collins-
Thompson and Callan, 2004). They must also have 
vocabulary terms known to the student. To meet 
this goal, it is necessary to construct an accurate 
model of the student’s vocabulary knowledge 
(Brown and Eskenazi, 2004). Using this model, the 

system can locate documents that include a given 
percentage (e.g., 95%) of words that are known to 
the student. The remaining percentage (e.g. 5%) 
consists of new words that the student needs to 
learn. This percentage is controlled so that there is 
not so much stretch in the document that the stu-
dent cannot focus their attention on understanding 
the new words and the meaning of the text. After 
reading the text, the student’s understanding of 
new words is assessed. The student’s responses are 
used to update the student model, to support re-
trieval of furture documents that take into account 
the changes in student word knowledge.  

In this paper, we describe our work on automatic 
generation of vocabulary assessment questions. We 
also report results from a study that was designed 
to assess the validity of the generated questions. In 
addition to the importance of these assessments in 
the REAP system, tests of word knowledge are 
central to research on reading and language and are 
of practical importance for student placement and 
in enabling teachers to track improvements in word 
knowledge throughout the school year. Because 
tests such as these are traditionally hand-written, 
development is time-consuming and often relies on 
methods that are informal and subjective. The re-
search described here addresses these issues 
through development of automated, explicit meth-
ods for generation of vocabulary tests. In addition, 
these tools are designed to capture the graded and 
complex nature of word knowledge, allowing for 
more fine-grained assessment of word learning.  

2 Measuring Vocabulary Knowledge 

Word knowledge is not all-or-none. Rather, there 
are different aspects, such as knowledge of the 
spoken form, the written form, grammatical behav-
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ior, collocation behavior, word frequency, stylistic 
register constraints, conceptual meaning, and the 
associations a word has with other related words 
(Nation, 1990). In this paper, we focus on knowl-
edge of conceptual word meaning. Because word 
meaning itself is complex, our focus is not simply 
on all-or-none estimates of vocabulary knowledge, 
but also on graded and incomplete knowledge of 
meanings that readers possess for different words 
and at different stages of acquisition.  

Several models have been proposed to account 
for these multiple levels of word knowledge. For 
example, Dale posited four stages of knowledge of 
word meaning (Dale and O’Rourke, 1965). In 
stage 1, the subject has never seen the word. In 
stage 2, she has seen the word but is unable to ver-
balize its meaning. In stage 3, the subject recog-
nizes the word in a given context and has partial 
word knowledge. In stage 4, the subject has full 
word knowledge, and can explain the word mean-
ing so that its usage is clear in multiple contexts.  

Stahl (1986) proposed a similar model of word 
knowledge, the levels of which overlap with Dale’s 
last two stages. According to this model, the first 
level is characterized by association processing, or 
the passive association of the new word meaning 
with other, familiar concepts. The second level, 
comprehension processing, involves active com-
prehension of the word in a particular context. The 
third level, generation processing, requires usage 
of a word in a novel context reflecting a deep (and 
multidimensional) understanding of its meaning.  

Taking Stahl’s framework as a working model, 
we constructed multiple types of vocabulary ques-
tions designed to assess different “stages” or “lev-
els” of word knowledge. 

3 Question Generation 

In this section, we describe the process used to 
generate vocabulary questions. After introducing 
the WordNet resource we discuss the six question 
types and the forms in which they appear. The use 
of distractors is covered in section 3.3. 

3.1 WordNet 

WordNet is a lexical resource in which English 
nouns, verbs, adjectives, and adverbs are grouped 
into synonym sets. A word may appear in a num-
ber of these synonym sets, or synsets, each corre-
sponding to a single lexical concept and a single 

sense of the word (Fellbaum ed., 1998). The word 
“bat” has ten distinct senses and thus appears in ten 
synsets in WordNet. Five of these senses corre-
spond to noun senses, and the other five corre-
spond to verb senses. The synset for the verb sense 
of the word which refers to batting one’s eyelashes 
contains the words “bat” and “flutter”, while the 
synset for the noun sense of the word which refers 
to the flying mammal contains the words “bat” and 
“chiropteran”. Each sense or synset is accompa-
nied by a definition and, often, example sentences 
or phrases. A synset can also be linked to other 
synsets with various relations, including synonym, 
antonym, hypernym, hyponym, and other syntactic 
and semantic relations (Fellbaum ed., 1998). For a 
particular word sense, we programmatically access 
WordNet to find definitions, example phrases, etc. 

3.2 Question Types 

Given Stahl’s three levels of word mastery and the 
information available in WordNet, we generated 6 
types of questions: definition, synonym, antonym, 
hypernym, hyponym, and cloze questions.  

In order to retrieve data from WordNet, we must 
choose the correct sense of the word. The system 
can work with input of varying specificity. The 
most specific case is when we have all the data: the 
word itself and a number indicating the sense of 
the word with respect to WordNet’s synsets. When 
the target words are known beforehand and the 
word list is short enough, the intended sense can be 
hand-annotated. More often, however, the input is 
comprised of just the target word and its part of 
speech (POS). It is much easier to annotate POS 
than it is to annotate the sense. In addition, POS 
tagging can be done automatically in many cases. 
In the REAP system, where the user has just read a 
specific text, the words of the document were al-
ready automatically POS annotated. When there is 
only one sense of the word per part of speech, we 
can simply select the correct sense of the word in 
WordNet. Otherwise, we select the most frequently 
used sense of the word with the correct POS, using 
WordNet’s frequency data. If we have only the 
word, we select the most frequent sense, ignoring 
part of speech. Future work will use word sense 
disambiguation techniques to automatically deter-
mine the correct word sense given a document that 
includes the target word, as in REAP (Brown and 
Eskenazi, 2004). 
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Once the system has determined the word sense, 
it can retrieve data from WordNet for each of the 6 
question types. The definition question requires a 
definition of the word, available in WordNet’s 
gloss for the chosen sense. The system chooses the 
first definition which does not include the target 
word. This question should provide evidence for 
the first of Stahl’s three levels, association process-
ing, although this was not explicitly evaluated. 

The synonym question has the testee match the 
target word to a synonym. The system can extract 
this synonym from WordNet using two methods. 
One method is to select words that belong to the 
same synset as the target word and are thus syno-
nyms. In addition, the synonym relation in Word-
Net may connect this synset to another synset, and 
all the words in the latter are acceptable synonyms. 
The system prefers words in the synset to those in 
synonym synsets. It also restricts synonyms to sin-
gle words and to words which are not morphologi-
cal variants of the target word. When more than 
one word satisfies all criteria, the most frequently 
used synonym is chosen, since this should make 
the question easier. This question could be consid-
ered either association processing or comprehen-
sion processing. If the testee has seen this synonym 
(e.g. as a hint), this question type would require 
association processing as a word is simply being 
associated with another already-presented word. 
Otherwise, this may require comprehension proc-
essing – understanding beyond memorization. 

The antonym question requires matching a word 
with an antonymous word. WordNet provides two 
kinds of relations that can be used to procure anto-
nyms: direct and indirect antonyms. Direct anto-
nyms are antonyms of the target word, whereas 
indirect antonyms are direct antonyms of a syno-
nym of the target. The words “fast” and “slow” are 
direct antonyms of one another. The word “quick” 
does not have a direct antonym, but it does have an 
indirect antonym, “slow”, via “fast”, its synonym. 
When more than one antonym is available, the 
most frequently used is chosen. Unless the testee 
has already seen the antonym, this type of question 
is normally considered to provide evidence for 
Stahl’s second level, comprehension processing. 

The hypernym and hyponym questions are simi-
lar in structure. Hypernym is the generic term used 
to describe a whole class of specific instances. The 
word “organism” is a hypernym of “person”. Hy-
ponyms are members of a class. The words 

“adult”, “expert” and “worker” are hyponyms of 
“person”. For the questions the testee matches the 
target word to either a hypernym or hyponym. For 
more than one possibility, the most frequently used 
term is chosen. Unless the testee has previously 
seen the hypernym or hyponym, these questions 
are normally regarded as providing evidence for 
Stahl’s second level. 

Cloze is the final question type. It requires the 
use of the target word in a specific context, either a 
complete sentence or a phrase. The example sen-
tence or phrase is retrieved from the gloss for a 
specific word sense in WordNet. There is often 
more than one example phrase. The system prefers 
longer phrases, a feature designed to increase the 
probability of retrieving complete sentences. Pas-
sages using the target word are preferred, although 
examples for any of the words in the synset are 
appropriate. The present word is replaced by a 
blank in the cloze question phrase. Some consider 
a cloze question to be more difficult than any of 
the other question types, but it is still expected to 
provide evidence for Stahl’s second level. 

Although our question types provide evidence 
for the highest level of schemes such as Dale’s 
four stages, they do not provide evidence for 
Stahl’s highest level, generation processing, where 
the testee must, for instance, write a sentence using 
the word in a personalized context. We expect 
questions that provide evidence of this level to re-
quire free-form or near-free-form responses, which 
we do not yet allow. We expect the six question 
types to be of increasing difficulty, with definition 
or synonym being the easiest and cloze the hardest. 

3.3 Question Forms 

Each of the 6 types of questions can be generated 
in several forms, the primary ones being wordbank 
and multiple-choice. In wordbank, the testee sees a 
list of answer choices, followed by a set of ques-
tions or statements (see Figure 1). For the defini-
tion version, each of the items below the wordbank 
is a definition. The testee must select the word 
which best corresponds to the definition. For the 
synonym and antonym questions, the testee selects 
the word which is the most similar or the most op-
posite in meaning to the synonym or antonym. For 
the hypernym and hyponym question types, the 
testee is asked to complete phrases such as “___ is 
a kind of person” (with target “adult”) or “person 
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is a kind of ___” (with target “organism”). In the 
cloze question, the testee fills in the blank with the 
appropriate word. There is traditionally one ques-
tion for each target word in the wordbank. These 
questions require no information beyond the target 
words and their definitions, synonyms, hypernyms, 
etc. 
 
Wordbank: 

verbose   infallible   obdurate   opaque 
 
Choose the word from the wordbank that best completes each 
phrase below: 
 
1. ___ windows of the jail 
2. the Catholic Church considers the Pope ___ 
3. ___ and ineffective instructional methods 
4. the child's misery would move even the most ___ heart 
 

Fig. 1.  Example Wordbank Question 
 

The second generated form is multiple-choice, 
with one question per target word. The testee sees 
the main question, the stem, followed by several 
answer choices, of which only one is correct (see 
Figure 2). Depending on the question type, the tar-
get word may appear in either the stem or the an-
swer choices. For the definition question type, the 
stem holds the definition of the target word and 
one of the answer choices is the target word. For 
the word “verbose”, the stem would be “using or 
containing too many words” and the choices “an-
cillary”, “churlish”, “verbose”, and “convivial”. 
The cloze question is of a similar form, with the 
stem containing the example sentence or phrase 
with a blank where the target word should be used. 
For “verbose”, we have the stem “___ and ineffec-
tive instructional methods” and choices “verbose”, 
“incipient”, “invidious”, and “titular”. For the 
synonym, antonym, hypernym, and hyponym ques-
tions, the target word appears in the stem instead of 
the answer choices. The synonym question for the 
word “verbose” would have the stem “Select the 
word that is most similar in meaning to the word 
verbose” with choices “inflammable”, “piping”, 
matrilineal”, and “long-winded”. The antonym 
question would have the stem “Select the word that 
is most opposite in meaning to the word verbose” 
and the choices “discernable”, “concise”, “unbro-
ken”, and “soused”. Figure 2 shows a formatted 
example of an automatically generated multiple-
choice cloze question for the word “obdurate”. 

 

Choose the word that best completes the phrase below: 
 
the child's misery would move even the most ___ heart 
 

A) torpid 
B) invidious 
C) stolid 
D) obdurate 
 

Fig. 2.  Example Multiple-Choice Cloze Question 
 

Two issues to consider when creating multiple-
choice format questions are the wording or appear-
ance of the questions and the criteria for selection 
of distractors. We followed the guidelines for good 
multiple-choice questions described by researchers 
such as Graesser and Wisher (2001). In accord 
with these guidelines, our questions had 4 choices, 
although the number of choices is a variable sup-
plied to the question generation software. We also 
considered the most appropriate wording for these 
questions, leading us to choose stems such as “Se-
lect the word that is most similar in meaning to the 
word plausible” for the synonym question rather 
than “Choose the word that means the same as the 
word plausible.” The latter would be problematic 
when the correct answer is a near-synonym rather 
than a word with precisely the same meaning.  

Concerning distractor choice, the question gen-
eration system chooses distractors of the same part 
of speech and similar frequency to the correct an-
swer, as recommended by Coniam (1997). For the 
synonym, antonym, hypernym, and hyponym ques-
tions, the correct answer is the highest frequency 
word of all the words chosen from WordNet that 
satisfy all the criteria. Thus, the distractors are of 
the same POS and similar frequency to the syno-
nym, antonym, or whatever word is the correct 
answer, as opposed to the target word. The system 
chooses distractors from Kilgarriff’s (1995) word 
frequency database, based on the British National 
Corpus (BNC) (Burnage, 1991). The system 
chooses 20 words from this database that are of the 
same POS and are equal or similar in frequency to 
the correct answer, and randomly chooses the dis-
tractors from these words. Since the distractors 
may be different for each run of the question gen-
eration software, slightly different versions of the 
same basic question may appear. The words of the 
BNC and the word frequency database have been 
POS tagged using the CLAWS tagger (Leech, 
1994). This tagger uses detailed POS tags, ena-
bling us to choose distractors that are, for instance, 
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verbs in the past tense, when the correct answer is 
such as verb, instead of selecting verbs of un-
known tense. In the definition and cloze questions, 
the correct answer is the target word itself, so dis-
tractors are chosen based on this word. The system 
also restricts distractors to be in the list of target 
words so that the testee cannot simply choose the 
word that appears in the stems of other questions. 

An alternate multiple-choice question format is 
used when the testee has just read a document us-
ing the target word, as in the REAP system (Brown 
and Eskenazi, 2004). In this case, the system also 
attempts to finds words which may be semantically 
related to the correct answer, as in (Nagy, 1985). 
This is done by choosing distractors that satisfy the 
standard criteria and were present in the document. 
This should increase the chance that the distractors 
are semantically related and eliminate the chance 
that a testee will simply select as the correct an-
swer the word that appeared in the document they 
just read, without understanding the word meaning.  

4 Question Assessment 

The validity of the automatically generated vo-
cabulary questions was examined in reference to 
human-generated questions for 75 low-frequency 
English words. We compared student performance 
(accuracy and response time) on the computer and 
human-generated questions. We focused on the 
automatically generated multiple-choice questions, 
with distractors based on frequency and POS. We 
did not examine using more complicated strategies 
for picking distractors or assume there was an as-
sociated text. Four of the six computer-generated 
question types were assessed: the definition, syno-
nym, antonym, and cloze questions. Hypernym and 
hyponym questions were excluded, since we were 
unable to generate a large number of these ques-
tions for adjectives, which constitute a large por-
tion of the word list. Subject scores on the 
computer and human-generated assessments were  
compared with scores on standardized measures of 
reading and vocabulary skill, as described below. 

4.1 Question Coverage 

Potential experimental stimuli comprised 156 low-
frequency and rare English words that have been 
used in previous studies of vocabulary skill in na-
tive English-speaking adults. We first examined 

the percentage of words for which we could gener-
ate various question types. We were unable to gen-
erate any questions for 16 of these words, or ~9% 
of the list, since they were not in WordNet. Table 1 
shows the percentage of words for which each of 
the four question types was generated. All four 
questions were able to be generated for only 75 
(about half) of the words. Therefore, the experi-
mental word list included only these 75 items. 
Given the rarity of the words, we predicted that the 
percentage of words for which we could generate 
questions would be lower than average. However, 
we expected that the percentage of words for 
which we could generate synonym and antonym 
questions to be higher than average, due to the 
heavy focus on adjectives in this list. 
 
Question type Percentage of Questions 

Generated  
Definition Question 91% 
Synonym Question 80% 
Antonym Question 60% 
Cloze Question 60% 
Table 1. Question Coverage for the 156-Word List 

4.2 Experiment Design 

Behavioral measures of vocabulary knowledge 
were acquired for the 75 target words using the 
four computer-generated question types described 
above, as well as five human-generated question 
types. The human-generated questions were devel-
oped by a group of three learning researchers, 
without knowledge of the computer-generated 
question types. Researchers were asked merely to 
develop a set of question types that could be used 
to assess different levels, or different aspects, of 
word knowledge. Examples of each question type 
(including distractors) were hand-written for each 
of the 75 words. 

Two of the five human-generated assessments, 
the synonym and cloze questions, were similar in 
form to the corresponding computer-generated 
question types in that they had the same type of 
stem and answer. The other three human-generated 
questions included an inference task, a sentence 
completion task, and a question based on the Os-
good semantic differential (Osgood, 1970). In the 
inference task, participants were asked to select a 
context where the target word could be meaning-
fully applied. For example, the correct response to 
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the question “Which of the following is most likely 
to be lenitive?” was “a glass of iced tea,” and dis-
tractors were “a shot of tequila,” “a bowl of rice,” 
and “a cup of chowder.” In the sentence comple-
tion task, the participant was presented with a sen-
tence fragment containing the target word and was 
asked to choose the most probable completion. For 
example, the stem could be “The music was so 
lenitive…,” with the correct answer “…it was 
tempting to lie back and go to sleep,” and with dis-
tractors such as “…it took some concentration to 
appreciate the complexity.” The fifth question type 
was based on the Osgood semantic differential, a 
factor-analytic model of word-level semantic di-
mensions (Osgood, 1970). Numerous studies using 
the Osgood paradigm have shown that variability 
in the semantic “structure” of word meanings can 
largely be accounted for in terms of three dimen-
sions, valence (good–bad), potency (strong–weak), 
and activity (active–passive). In our version of the 
Osgood task, subjects were asked to classify a 
word such as “lenitive” along one of these dimen-
sions (e.g., more good or more bad).  

In addition to the human-generated questions, 
we administered a battery of standardized tests, 
including the Nelson-Denny Reading Test, the Ra-
ven’s Matrices Test, and the Lexical Knowledge 
Battery. The Nelson-Denny Reading Test is a stan-
dardized test of vocabulary and reading compre-
hension (Brown, 1981). The Raven’s Matrices Test 
is a test of non-verbal reasoning (Raven, 1960). 
The Lexical Knowledge Battery has multiple sub-
sections that test orthographic and phonological 
skills (Perfetti and Hart, 2001).  

Twenty-one native-English speaking adults par-
ticipated in two experiment sessions. Session 1 
lasted for about one hour and included the battery 
of vocabulary and reading-related assessments de-
scribed above. Session 2 lasted between two and 
three hours and comprised 10 tasks, including the 
five human and four computer-generated ques-
tions. The experiment began with a confidence-
rating task, in which participants indicated with a 
key press how well they knew the meaning of each 
target word (on a 1–5 scale). This task was not 
speeded. For the remaining tasks, subjects were 
asked to respond “as quickly as possible without 
making errors.” Test items for a given question 
type were answered together. The order of the 
tasks (question types) and the order of the 75 items 
within each task were randomized across subjects.  

4.3 Experiment Results 

We report on four aspects of this study: participant 
performance on questions, correlations between 
question types, correlations with confidence rat-
ings, and correlations with external assessments. 

Mean accuracy scores for each question type 
varied from .5286 to .6452. Performance on indi-
vidual words and across subjects (averaging across 
words) varied widely. The easiest question types 
(those with the highest average accuracy), were the 
computer-generated definition task and the human-
generated semantic differential task, both having 
mean accuracy scores of .6452. The hardest was 
the computer-generated cloze task, with a mean 
score of .5286. The accuracy on computer-
generated synonym and antonym questions fall 
between these two limits, with slightly greater ac-
curacy on the synonym type. This implies a gen-
eral ordering of difficulty from definition to cloze, 
as expected. The accuracies on the other human-
generated questions also fall into this range.  

We also computed correlations between the dif-
ferent question types. Mean accuracies were highly 
and statistically significantly correlated across the 
nine question types (r>.7, p<.01 for all correla-
tions). The correlation between participant accu-
racy on the computer-generated synonym and the 
human-generated synonym questions was particu-
larly high (r=.906), as was the correlation between 
the human and computer cloze questions (r= .860). 
The pattern of correlations for the response-time 
(RT) data was more complicated and is discussed 
elsewhere (Frishkoff et al, In Prep). Importantly, 
RTs for the human versus computer versions of 
both the synonym and cloze questions were 
strongly correlated (r>.7, p<.01), just as for the 
accuracy results. The accuracy correlations imply 
that the computer-generated questions are giving a 
measure of vocabulary skill for specific words that 
correlates well with that of the human-generated 
questions.  

An item analysis (test item discrimination) was 
also performed. For each word, scores on a particu-
lar question type were compared with the compos-
ite test score for that word. This analysis revealed 
relatively low correlations (.12 < r < .25) between 
the individual question types and the test as a 
whole (without that question type). Since the ques-
tion types were designed to test different aspects of 
vocabulary knowledge, this result is encouraging.  
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In addition, the average total-score correlations 
for the four computer-generated questions (r=.18) 
and for the five human-generated questions (r=.19) 
were not significantly different. This is positive, 
since it suggests that the human and computer-
generated vocabulary test are accounting for simi-
lar patterns of variance across the different ques-
tion types. 

The average correlation between accuracy on 
the question types and confidence ratings for a par-
ticular word was .265. This correlation was unex-
pectedly low. This may be because participants 
thought they knew these words, but were confused 
by their rarity, or because confidence simply does 
not correlate well with accuracy. Further work is 
needed to determine whether confidence ratings 
can be accurate predictors of vocabulary knowl-
edge. 

Finally, we examined correlations between par-
ticipant performance on the nine question types 
and the external assessments. The correlations be-
tween the accuracy on each of the nine question 
types and the Nelson-Denny vocabulary subtest 
were fairly high (.61 < r < .85, p=.01 for all com-
parisons). Thus, both the computer and human-
generated questions show good correspondence 
with an external assessment of vocabulary skill. 
Correlations between the accuracy on the question 
types and the Nelson-Denny reading comprehen-
sion test were mixed, showing a higher correlation 
with vocabulary than reading comprehension. Cor-
relations between the accuracy on the nine ques-
tion types and the Raven’s Matrices test of 
nonverbal reasoning were positive, but low and not 
statistically significant. This provides strong evi-
dence that the computer-generated vocabulary 
questions tap vocabulary knowledge specifically, 
rather than intelligence in general. 

5 Related Work 

Cloze tests are one area of related work. They were 
originally intended to measure text readability 
(Taylor, 1953) since native speakers should be able 
to reproduce certain removed words in a readable 
text. Other researchers have used it to assess read-
ing comprehension (Ruddell, 1964), with students 
filling in the blanks, given a high quality text. The 
main issue in automating the creation of cloze tests 
is determining which words to remove from the 
text. Coniam (1997) examined a several options for 

determining the words to remove and produced 
relatively good-quality cloze tests by removing 
words with the same POS or similar frequency.  

Wolfe (1976) automatically generated reading 
comprehension questions. This involved various 
techniques for rewriting sentences into questions, 
testing syntactic understanding of individual sen-
tences. Of the 50 questions Wolfe was able to gen-
erate for a single text, 34 were found to be 
satisfactory. More recently, Kunichika (2003) car-
ried out work in automatically generating reading 
comprehension questions that included both syn-
tactic and semantic questions, and was able to gen-
erate several different types of questions, including 
asking about the content of a sentence, using dic-
tionaries of synonyms and antonyms to generate 
questions such as “Is Jane busy?” from sentences 
like “Jane is free.”, and testing semantic under-
standing across sentence boundaries. Approx. 93% 
of the generated questions were found to be satis-
factory. 

Aist (2001) automatically generated factoids to 
assist students reading. The factoids gave a syno-
nym, an antonym, or a hypernym for the word, 
which were automatically extracted from Word-
Net. He also automated the creation of a single 
type of vocabulary question, with the target word 
in the stem and the correct answer a synonym, hy-
pernym, or sibling from WordNet. It is unclear 
what type of vocabulary knowledge this question 
would tap, given the different possible answers. 

6 Conclusions 

Extending our experiments to the question types 
that we have not yet assessed is an important next 
step. In addition, we want to assess questions indi-
vidually, evaluating their use of distractors. Fi-
nally, we need to assess questions generated on 
word lists with different characteristics. 

There are also a number of ongoing extensions 
to this project. One is the creation of new question 
types to test other aspects of word knowledge. An-
other is using other resources such as text collec-
tions to enable us to generate more questions per 
word, especially for the cloze questions. In addi-
tion, we are looking at ways to predict word 
knowledge using confidence ratings and morpho-
logical and semantic cohorts in situations where 
we cannot perform a standard assessment or cannot 
test all the vocabulary words we would like to. 
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In this paper, we have described our work in 
automatically generating questions for vocabulary 
assessment. We have described the six types of 
computer-generated questions and the forms in 
which they appear. Finally, we have presented evi-
dence that the computer-generated questions give a 
measure of vocabulary skill for individual words 
that correlates well with human-written questions 
and standardized assessments of vocabulary skill. 
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Abstract
Experimental research in psycholinguis-
tics has demonstrated a parallelism effect
in coordination: speakers are faster at pro-
cessing the second conjunct of a coordi-
nate structure if it has the same internal
structure as the first conjunct. We show
that this phenomenon can be explained by
the prevalence of parallel structures in cor-
pus data. We demonstrate that parallelism
is not limited to coordination, but also ap-
plies to arbitrary syntactic configurations,
and even to documents. This indicates that
the parallelism effect is an instance of a
general syntactic priming mechanism in
human language processing.

1 Introduction

Experimental work in psycholinguistics has pro-
vided evidence for the so-called parallelism prefer-
ence effect: speakers processes coordinated struc-
tures more quickly when the two conjuncts have
the same internal syntactic structure. The processing
advantage for parallel structures has been demon-
strated for a range coordinate constructions, includ-
ing NP coordination (Frazier et al., 2000), sentence
coordination (Frazier et al., 1984), and gapping and
ellipsis (Carlson, 2002; Mauner et al., 1995).

The parallelism preference in NP coordination
can be illustrated using Frazier et al.’s (2000) Exper-
iment 3, which recorded subjects’ eye-movements
while they read sentences like (1):

(1) a. Terry wrote a long novel and a short poem
during her sabbatical.

b. Terry wrote a novel and a short poem dur-
ing her sabbatical

Total reading times for the underlined region were
faster in (1-a), where short poem is coordinated with

a syntactically parallel noun phrase (a long novel),
compared to (1-b), where it is coordinated with a
syntactically non-parallel phrase.

These results raise an important question that the
present paper tries to answer through corpus-based
modeling studies: what is the mechanism underlying
the parallelism preference? One hypothesis is that
the effect is caused by low-level processes such as
syntactic priming, i.e., the tendency to repeat syntac-
tic structures (e.g., Bock, 1986). Priming is a very
general mechanism that can affect a wide range of
linguistic units, including words, constituents, and
semantic concepts. If the parallelism effect is an in-
stance of syntactic priming, then we expect it to ap-
ply to a wide range of syntactic construction, and
both within and between sentences. Previous work
has demonstrated priming effects in corpora (Gries,
2005; Szmrecsanyi, 2005); however, these results
are limited to instances of priming that involve a
choice between two structural alternatives (e.g., da-
tive alternation). In order to study the parallelism ef-
fect, we need to model priming as general syntac-
tic repetition (independent of the structural choices
available). This is what the present paper attempts.

Frazier and Clifton (2001) propose an alternative
account of the parallelism effect in terms of a copy-
ing mechanism. Unlike priming, this mechanism is
highly specialized and only applies to coordinate
structures: if the second conjunct is encountered,
then instead of building new structure, the language
processor simply copies the structure of the first con-
junct; this explains why a speed-up is observed if
the second conjunct is parallel to the first one. If
the copying account is correct, then we would ex-
pect parallelism effects to be restricted to coordinate
structures and would not apply in other contexts.

In the present paper, we present corpus evidence
that allows us to distinguish between these two com-
peting explanations. Our investigation will proceed
as follows: we first establish that there is evidence
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for a parallelism effect in corpus data (Section 3).
This is a crucial prerequisite for our wider inves-
tigation: previous work has only dealt with paral-
lelism in comprehension, hence we need to establish
that parallelism is also present in production data,
such as corpus data. We then investigate whether
the parallelism effect is restricted to coordination, or
whether it also applies also arbitrary syntactic con-
figurations. We also test if parallelism can be found
for larger segments of text, including, in the limit,
the whole document (Section 4). Then we investi-
gate parallelism in dialog, testing the psycholinguis-
tic prediction that parallelism in dialog occurs be-
tween speakers (Section 5). In the next section, we
discuss a number of methodological issues and ex-
plain the way we measure parallelism in corpus data.

2 Adaptation

Psycholinguistic studies have shown that priming
affects both speech production (Bock, 1986) and
comprehension (Branigan et al., 2005). The impor-
tance of comprehension priming has also been noted
by the speech recognition community (Kuhn and
de Mori, 1990), who use so-called caching language
models to improve the performance of speech com-
prehension software. The concept of caching lan-
guage models is quite simple: a cache of recently
seen words is maintained, and the probability of
words in the cache is higher than those outside the
cache.

While the performance of caching language mod-
els is judged by their success in improving speech
recognition accuracy, it is also possible to use an
abstract measure to diagnose their efficacy more
closely. Church (2000) introduces such a diagnostic
for lexical priming: adaptation probabilities. Adap-
tation probabilities provide a method to separate the
general problem of priming from a particular imple-
mentation (i.e., caching models). They measure the
amount of priming that occurs for a given construc-
tion, and therefore provide an upper limit for the per-
formance of models such as caching models.

Adaptation is based upon three concepts. First is
the prior, which serves as a baseline. The prior mea-
sures the probability of a word appearing, ignoring
the presence or absence of a prime. Second is the
positive adaptation, which is the probability of a
word appearing given that it has been primed. Third
is the negative adaptation, the probability of a word

appearing given it has not been primed.
In Church’s case, the prior and adaptation prob-

abilities are estimated as follows. If a corpus is di-
vided into individual documents, then each docu-
ment is then split in half. We refer to the halves as the
prime set (or prime half) and the target set (or target
half).1 We measure how frequently a document half
contains a particular word. For each word w, there
are four combinations of the prime and target halves
containing the word. This gives us four frequencies
to measure, which are summarized in the following
table:

fwp,t fwp̄,t

fwp,t̄ fwp̄,t̄

These frequencies represent:

fwp,t = # of times w occurs in prime set
and target set

fwp̄,t = # of times w occurs in target set
but not prime set

fwp,t̄ = # of times w occurs in prime set
but not target set

fwp̄,t̄ = # of times w does not occur in either
target set or prime set

In addition, let N represent the sum of these four
frequencies. From the frequencies, we may formally
define the prior, positive adaptation and negative
adaptation:

Prior Pprior(w) =
fwp,t + fw p̄,t

N
(1)

Positive Adaptation P+(w) =
fwp,t

fwp,t + fwp,t̄

(2)

Negative Adaptation P−(w) =
fw p̄,t

fw p̄,t+ fw p̄,̄t

(3)

In the case of lexical priming, Church observes that
P+ � Pprior > P−. In fact, even in cases when Pprior

quite small, P+ may be higher than 0.8. Intuitively,
a positive adaptation which is higher than the prior
entails that a word is likely to reappear in the target
set given that it has already appeared in the prime
set. We intend to show that adaptation probabilities
provide evidence that syntactic constructions behave

1Our terminology differs from that of Church, who uses ‘his-
tory’ to describe the first half, and ‘test’ to describe the second.
Our terms avoid the ambiguity of the phrase ‘test set’ and coin-
cide with the common usage in the psycholinguistic literature.

828



similarity to lexical priming, showing positive adap-
tation P+ greater than the prior. As P− must become
smaller than Pprior whenever P+ is larger than Pprior,
we only report the positive adaptation P+ and the
prior Pprior.

While Church’s technique was developed with
speech recognition in mind, we will show that
it is useful for investigating psycholinguistic phe-
nomenon. However, the connection between cogni-
tive phenomenon and engineering approaches go in
both directions: it is possible that syntactic parsers
could be improved using a model of syntactic prim-
ing, just as speech recognition has been improved
using models of lexical priming.

3 Experiment 1: Parallelism in
Coordination

In this section, we investigate the use of Church’s
adaptation metrics to measure the effect of syntac-
tic parallelism in coordinated constructions. For the
sake of comparison, we restrict our study to several
constructions used in Frazier et al. (2000). All of
these constructions occur in NPs with two coordi-
nate sisters, i.e., constructions such as NP1 CC NP2,
where CC represents a coordinator such as and.

3.1 Method

The application of the adaptation metric is straight-
forward: we pick NP1 as the prime set and NP2 as
the target set. Instead of measuring the frequency of
lexical elements, we measure the frequency of the
following syntactic constructions:

SBAR An NP with a relative clause, i.e.,
NP → NP SBAR.

PP An NP with a PP modifier, i.e., NP → NP PP.

NN An NP with a single noun, i.e., NP → NN.

DT NN An NP with a determiner and a noun, i.e.,
NP → DT NN.

DT JJ NN An NP with a determiner, an adjective
and a noun, i.e., NP → DT JJ NN.

Parameter estimation is accomplished by iterating
through the corpus for applications of the rule NP
→ NP CC NP. From each rule application, we create
a list of prime-target pairs. We then estimate adap-
tation probabilities for each construction, by count-
ing the number of prime-target pairs in which the

PP SBAR N DT N DT ADJ N
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Figure 1: Adaptation within coordinate structures in
the Brown corpus

PP SBAR N DT N DT ADJ N
0

0.5

1

Pr
ob

ab
ili

ty

Prior
Adaptation

Figure 2: Adaptation within coordinate structures in
the WSJ corpus

construction does or does not occur. This is done
similarly to the document half case described above.
There are four frequencies of interest, but now they
refer to the frequency that a particular construction
(rather than a word) either occurs or does not occur
in the prime and target set.

To ensure results were general across genres, we
used all three parts of the English Penn Treebank:
the Wall Street Journal (WSJ), the balanced Brown
corpus of written text (Brown) and the Switchboard
corpus of spontaneous dialog. In each case, we use
the entire corpus.

Therefore, in total, we report 30 probabilities: the
prior and positive adaptation for each of the five con-
structions in each of the three corpora. The primary
objective is to observe the difference between the
prior and positive adaptation for a given construction
in a particular corpus. Therefore, we also perform a
χ2 test to determine if the difference between these
two probabilities are statistically significant.
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Figure 3: Adaptation within coordinate structures in
the Switchboard corpus

3.2 Results

The results are shown in Figure 1 for the Brown cor-
pus, Figure 2 for the WSJ and Figure 3 for Switch-
board. Each figure shows the prior and positive
adaptation for all five constructions: relative clauses
(SBAR) a PP modifier (PP), a single common noun
(N), a determiner and noun (DT N), and a determiner
adjective and noun (DT ADJ N). Only in the case of
a single common noun in the WSJ and Switchboard
corpora is the prior probability higher than the posi-
tive adaptation. In all other cases, the probability of
the given construction is more likely to occur in NP2

given that it has occurred in NP1. According to the
χ2 tests, all differences between priors and positive
adaptations were significant at the 0.01 level. The
size of the data sets means that even small differ-
ences in probability are statistically significant. All
differences reported in the remainder of this paper
are statistically significant; we omit the details of in-
dividual χ2 tests.

3.3 Discussion

The main conclusion we draw is that the parallelism
effect in corpora mirrors the ones found experimen-
tally by Frazier et al. (2000), if we assume higher
probabilities are correlated with easier human pro-
cessing. This conclusion is important, as the experi-
ments of Frazier et al. (2000) only provided evidence
for parallelism in comprehension data. Corpus data,
however, are production data, which means that the
our findings are first ones to demonstrate parallelism
effects in production.

The question of the relationship between compre-
hension and production data is an interesting one.
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Figure 4: Adaptation within sentences in the Brown
corpus
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Figure 5: Adaptation within sentences in the WSJ
corpus

We can expect that production data, such as corpus
data, are generated by speakers through a process
that involves self-monitoring. Written texts (such as
the WSJ and Brown) involve proofreading and edit-
ing, i.e., explicit comprehension processes. Even the
data in a spontaneous speech corpus such as Swtich-
board can be expected to involve a certain amount
of self-monitoring (speakers listen to themselves and
correct themselves if necessary). It follows that it is
not entirely unexpected that similar effects can be
found in both comprehension and production data.

4 Experiment 2: Parallelism in Documents

The results in the previous section showed that
the parallelism effect, which so far had only been
demonstrated in comprehension studies, is also at-
tested in corpora, i.e., in production data. In the
present experiment, we will investigate the mech-
anisms underlying the parallelism effect. As dis-
cussed in Section 1, there are two possible explana-
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Figure 6: Adaptation between sentences in the
Brown corpus

PP SBAR N DT N DT ADJ N
0

0.5

1

Pr
ob

ab
ili

ty

Prior
Adaptation

Figure 7: Adaptation between sentences in the WSJ
corpus

tion for the effect: one in terms of a construction-
specific copying mechanism, and one in terms of
a generalized syntactic priming mechanism. In the
first case, we predict that the parallelism effect is re-
stricted to coordinate structures, while in the second
case, we expect that parallelism (a) is independent of
coordination, and (b) occurs in the wider discourse,
i.e., not only within sentences but also between sen-
tences.

4.1 Method

The method used was the same as in Experiment 1
(see Section 3.1), with the exception that the prime
set and the target set are no longer restricted to
being the first and second conjunct in a coordi-
nate structure. We investigated three levels of gran-
ularity: within sentences, between sentences, and
within documents. Within-sentence parallelism oc-
curs when the prime NP and the target NP oc-
cur within the same sentence, but stand in an ar-
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Figure 8: Adaptation within documents in the Brown
corpus (all items exhibit weak yet statistically signif-
icant positive adaptation)
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Figure 9: Adaptation within documents in the WSJ
corpus

bitrary structural relationship. Coordinate NPs were
excluded from this analysis, so as to make sure that
any within-sentence parallelism is not confounded
coordination parallelism as established in Experi-
ment 1. Between-sentence parallelism was measured
by regarding as the target the sentence immediately
following the prime sentence. In order to investi-
gate within-document parallelism, we split the doc-
uments into equal-sized halves; then the adaptation
probability was computed by regarding the first half
as the prime and the second half as the target (this
method is the same as Church’s method for measur-
ing lexical adaptation).

The analyses were conducted using the Wall
Street Journal and the Brown portion of the Penn
Treebank. The document boundary was taken to be
the file boundary in these corpora. The Switchboard
corpus is a dialog corpus, and therefore needs to
be treated differently: turns between speakers rather

831



than sentences should be level of analysis. We will
investigate this separately in Experiment 3 below.

4.2 Results

The results for the within-sentence analysis are
graphed in Figures 4 and 5 for the Brown and WSJ
corpus, respectively. We find that there is a paral-
lelism effect in both corpora, for all the NP types
investigated. Figures 6–9 show that the same is true
also for the between-sentence and within-document
analysis: parallelism effects are obtained for all NP
types and for both corpora, even it the parallel struc-
tures occur in different sentences or in different doc-
ument halves. (The within-document probabilities
for the Brown corpus (in Figure 8) are close to one
in most cases; the differences between the prior and
adaptation are nevertheless significant.)

In general, note that the parallelism effects un-
covered in this experiment are smaller than the
effect demonstrated in Experiment 1: The differ-
ences between the prior probabilities and the adap-
tation probabilities (while significant) are markedly
smaller than those uncovered for parallelism in co-
ordinate structure.2

4.3 Discussion

This experiment demonstrated that the parallelism
effect is not restricted to coordinate structures.
Rather, we found that it holds across the board: for
NPs that occur in the same sentence (and are not part
of a coordinate structure), for NPs that occur in ad-
jacent sentences, and for NPs that occur in differ-
ent document halves. The between-sentence effect
has been demonstrated in a more restricted from by
Gries (2005) and Szmrecsanyi (2005), who investi-
gate priming in corpora for cases of structural choice
(e.g., between a dative object and a PP object for
verbs like give). The present results extend this find-
ing to arbitrary NPs, both within and between sen-
tences.

The fact that parallelism is a pervasive phe-
nomenon, rather than being limited to coordinate
structures, strongly suggests that it is an instance of
a general syntactic priming mechanism, which has
been an established feature of accounts of the human
sentence production system for a while (e.g., Bock,

2The differences between the priors and adaptation proba-
bilities are also much smaller than noted by Church (2000). The
probabilities of the rules we investigate have a higher marginal
probability than the lexical items of interest to Church.

1986). This runs counter to the claims made by Fra-
zier et al. (2000) and Frazier and Clifton (2001), who
have argued that parallelism only occurs in coordi-
nate structures, and should be accounted for using a
specialized copying mechanism. (It is important to
bear in mind, however, that Frazier et al. only make
explicit claims about comprehension, not about pro-
duction.)

However, we also found that parallelism effects
are clearly strongest in coordinate structures (com-
pare the differences between prior and adaptation
in Figures 1–3 with those in Figures 4–9). This
could explain why Frazier et al.’s (2000) experi-
ments failed to find a significant parallelism effect
in non-coordinated structures: the effect is simply
too week to detect (especially using the self-paced
reading paradigm they employed).

5 Experiment 3: Parallelism in
Spontaneous Dialog

Experiment 1 showed that parallelism effects can be
found not only in written corpora, but also in the
Switchboard corpus of spontaneous dialog. We did
not include Switchboard in our analysis in Experi-
ment 2, as this corpus has a different structure from
the two text corpora we investigated: it is organized
in terms of turns between two speakers. Here, we
exploit this property and conduct a further experi-
ment in which we compare parallelism effects be-
tween speakers and within speakers.

The phenomenon of structural repetition between
speakers has been discussed in the experimental
psycholinguistic literature (see Pickering and Gar-
rod 2004 for a review). According to Pickering
and Garrod (2004), the act of engaging in a dia-
log facilitates the use of similar representations at
all linguistic levels, and these representations are
shared between speech production and comprehen-
sion processes. Thus structural adaptation should be
observed in a dialog setting, both within and be-
tween speakers. An alternative view is that produc-
tion and comprehension processes are distinct. Bock
and Loebell (1990) suggest that syntactic priming
in speech production is due to facilitation of the
retrieval and assembly procedures that occur dur-
ing the formulation of utterances. Bock and Loebell
point out that this production-based procedural view
predicts a lack of priming between comprehension
and production or vice versa, on the assumption that
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Figure 10: Adaptation between speakers in the
Switchboard corpus

production and parsing use distinct mechanisms. In
our terms, it predicts that between-speaker positive
adaptation should not be found, because it can only
result from priming from comprehension to produc-
tion, or vice versa. Conversely, the prodedural view
outlined by Bock and Loebell predicts that positive
adaptation should be found within a given speaker’s
dialog turns, because such adaptation can indeed be
the result of the facilitation of production routines
within a given speaker.

5.1 Method

We created two sets of prime and target data to
test within-speaker and between-speaker adaptation.
The prime and target sets were defined in terms of
pairs of utterances. To test between-speaker adapta-
tion, we took each adjacent pair of utterances spo-
ken by speaker A and speaker B, in each dialog, and
these were treated as prime and target sets respec-
tively. In the within-speaker analysis, the prime and
target sets were taken from the dialog turns of only
one speaker—we took each adjacent pair of dialog
turns uttered by a given speaker, excluding the in-
tervening utterance of the other speaker. The earlier
utterance of the pair was treated as the prime, and
the later utterance as the target. The remainder of
the method was the same as in Experiments 1 and 2
(see Section 3.1).

5.2 Results

The results for the between-speaker and within-
speaker adaptation are shown in Figure 10 and Fig-
ure 11 for same five phrase types as in the previous
experiments.
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Figure 11: Adaptation within speakers in the Switch-
board corpus

A positive adaptation effect can be seen in the
between-speaker data. For each phrase type, the
adaptation probability is greater than the prior. In the
within-speaker data, by comparison, the magnitude
of the adaptation advantage is greatly decreased, in
comparison with Figure 10. Indeed, for most phrase
types, the adaptation probability is lower than the
prior, i.e., we have a case of negative adaptation.

5.3 Discussion

The results of the two analyses confirm that adap-
tation can indeed be found between speakers in di-
alog, supporting the results of experimental work
reviewed by Pickering and Garrod (2004). The re-
sults do not support the notion that priming is due
to the facilitation of production processes within a
given speaker, an account which would have pre-
dicted adaptation within speakers, but not between
speakers.

The lack of clear positive adaptation effects in
the within-speaker data is harder to explain—all
current theories of priming would predict some ef-
fect here. One possibility is that such effects may
have been obscured by decay processes: doing a
within-speaker analysis entails skipping an interven-
ing turn, in which priming effects were lost. We in-
tend to address these concerns using more elaborate
experimental designs in future work.

6 Conclusions

In this paper, we have demonstrated a robust, perva-
sive effect of parallelism for noun phrases. We found
the tendency for structural repetition in two different
corpora of written English, and also in a dialog cor-
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pus. The effect occurs in a wide range of contexts:
within coordinate structures (Experiment 1), within
sentences for NPs in an arbitrary structural config-
uration, between sentences, and within documents
(Experiment 2). This strongly indicates that the par-
allelism effect is an instance of a general processing
mechanism, such as syntactic priming (Bock, 1986),
rather than specific to coordination, as suggested
by (Frazier and Clifton, 2001). However, we also
found that the parallelism effect is strongest in co-
ordinate structures, which could explain why com-
prehension experiments so far failed to demonstrate
the effect for other structural configurations (Frazier
et al., 2000). We leave it to future work to explain
why adaptation is much stronger in co-ordination:
is co-ordination special because of extra constrains
(i.e., some kind of expected contrast/comparison be-
tween co-ordinate sisters) or because of fewer con-
straints (i.e., both co-ordinate sisters have a similar
grammatical role in the sentence)?

Another result (Experiment 3) is that the paral-
lelism effect occurs between speakers in dialog. This
finding is compatible with Pickering and Garrod’s
(2004) interactive alignment model, and strengthens
the argument for parallelism as an instance of a gen-
eral priming mechanism.

Previous experimental work has found parallelism
effects, but only in comprehension data. The present
work demonstrates that parallelism effects also oc-
cur in production data, which raises an interesting
question of the relationship between the two data
types. It has been hypothesized that the human lan-
guage processing system is tuned to mirror the prob-
ability distributions in its environment, including the
probabilities of syntactic structures (Mitchell et al.,
1996). If this tuning hypothesis is correct, then the
parallelism effect in comprehension data can be ex-
plained as an adaptation of the human parser to the
prevalence of parallel structures in its environment
(as approximated by corpus data) that we demon-
strated in this paper.

Note that the results in this paper not only have an
impact on theoretical issues regarding human sen-
tence processing, but also on engineering problems
in natural language processing, e.g., in probabilistic
parsing. To avoid sparse data problems, probabilistic
parsing models make strong independence assump-
tions; in particular, they generally assume that sen-
tences are independent of each other. This is partly

due to the fact it is difficult to parameterize the many
possible dependencies which may occur between
adjacent sentences. However, in this paper, we show
that structure re-use is one possible way in which
the independence assumption is broken. A simple
and principled approach to handling structure re-use
would be to use adaptation probabilities for prob-
abilistic grammar rules, analogous to cache proba-
bilities used in caching language models (Kuhn and
de Mori, 1990). We are currently conducting further
experiments to investigate of the effect of syntactic
priming on probabilistic parsing.
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Abstract

Recent work has shown that very large
corpora can act as training data for NLP
algorithms even without explicit labels. In
this paper we show how the use of sur-
face features and paraphrases in queries
against search engines can be used to infer
labels for structural ambiguity resolution
tasks. Using unsupervised algorithms, we
achieve 84% precision on PP-attachment
and 80% on noun compound coordination.

1 Introduction

Resolution of structural ambiguity problems such
as noun compound bracketing, prepositional phrase
(PP) attachment, and noun phrase coordination re-
quires using information about lexical items and
their cooccurrences. This in turn leads to the data
sparseness problem, since algorithms that rely on
making decisions based on individual lexical items
must have statistics about every word that may be
encountered. Past approaches have dealt with the
data sparseness problem by attempting to generalize
from semantic classes, either manually built or auto-
matically derived.

More recently, Banko and Brill (2001) have ad-
vocated for the creative use of very large text col-
lections as an alternative to sophisticated algorithms
and hand-built resources. They demonstrate the idea
on a lexical disambiguation problem for which la-
beled examples are available “for free”. The prob-
lem is to choose which of 2-3 commonly confused

words (e.g.,{principle, principal}) are appropriate
for a given context. The labeled data comes “for
free” by assuming that in most edited written text,
the words are used correctly, so training can be done
directly from the text. Banko and Brill (2001) show
that even using a very simple algorithm, the results
continue to improve log-linearly with more training
data, even out to a billion words. A potential limita-
tion of this approach is the question of how applica-
ble it is for NLP problems more generally – how can
we treat a large corpus as a labeled collection for a
wide range of NLP tasks?

In a related strand of work, Lapata and Keller
(2004) show that computingn-gram statistics over
very large corpora yields results that are competi-
tive with if not better than the best supervised and
knowledge-based approaches on a wide range of
NLP tasks. For example, they show that for the
problem of noun compound bracketing, the perfor-
mance of ann-gram based model computed using
search engine statistics was not significantly differ-
ent from the best supervised algorithm whose pa-
rameters were tuned and which used a taxonomy.
They find however that these approaches generally
fail to outperform supervised state-of-the-art models
that are trained on smaller corpora, and so conclude
that web-basedn-gram statistics should be the base-
line to beat.

We feel the potential of these ideas is not yet fully
realized. We are interested in finding ways to further
exploit the availability of enormous web corpora as
implicit training data. This is especially important
for structural ambiguity problems in which the de-
cisions must be made on the basis of the behavior
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of individual lexical items. The trick is to figure out
how to use information that is latent in the web as a
corpus, and web search engines as query interfaces
to that corpus.

In this paper we describe two techniques –sur-
face featuresandparaphrases– that push the ideas
of Banko and Brill (2001) and Lapata and Keller
(2004) farther, enabling the use of statistics gathered
from very large corpora in an unsupervised man-
ner. In recent work (Nakov and Hearst, 2005) we
showed that a variation of the techniques, when ap-
plied to the problem of noun compound bracketing,
produces higher accuracy than Lapata and Keller
(2004) and the best supervised results. In this pa-
per we adapt the techniques to the structural disam-
biguation problems of prepositional phrase attach-
ment and noun compound coordination.

2 Prepositional Phrase Attachment

A long-standing challenge for syntactic parsers is
the attachment decision for prepositional phrases. In
a configuration where a verb takes a noun comple-
ment that is followed by a PP, the problem arises of
whether the PP attaches to the noun or to the verb.
Consider the following contrastive pair of sentences:

(1) Peter spent millions of dollars. (noun)
(2) Peter spent time with his family.(verb)

In the first example, the PPmillions of dollarsat-
taches to the nounmillions, while in the second the
PPwith his familyattaches to the verbspent.

Past work on PP-attachment has often cast these
associations as the quadruple(v, n1, p, n2), wherev
is the verb,n1 is the head of the direct object,p is the
preposition (the head of the PP) andn2 is the head
of the NP inside the PP. For example, the quadruple
for (2) is (spent, time, with, family).

2.1 Related Work

Early work on PP-attachment ambiguity resolu-
tion relied on syntactic (e.g., “minimal attachment”
and “right association”) and pragmatic considera-
tions. Most recent work can be divided into su-
pervised and unsupervised approaches. Supervised
approaches tend to make use of semantic classes
or thesauri in order to deal with data sparseness
problems. Brill and Resnik (1994) used the su-
pervised transformation-based learning method and

lexical and conceptual classes derived from Word-
Net, achieving 82% precision on 500 randomly se-
lected examples. Ratnaparkhi et al. (1994) cre-
ated a benchmark dataset of 27,937 quadruples
(v, n1, p, n2), extracted from the Wall Street Jour-
nal. They found the human performance on this
task to be 88%1. Using this dataset, they trained a
maximum entropy model and a binary hierarchy of
word classes derived by mutual information, achiev-
ing 81.6% precision. Collins and Brooks (1995)
used a supervised back-off model to achieve 84.5%
precision on the Ratnaparkhi test set. Stetina and
Makoto (1997) use a supervised method with a deci-
sion tree and WordNet classes to achieve 88.1% pre-
cision on the same test set. Toutanova et al. (2004)
use a supervised method that makes use of morpho-
logical and syntactic analysis and WordNet synsets,
yielding 87.5% accuracy.

In the unsupervised approaches, the attachment
decision depends largely on co-occurrence statistics
drawn from text collections. The pioneering work
in this area was that of Hindle and Rooth (1993).
Using a partially parsed corpus, they calculate and
compare lexical associations over subsets of the tu-
ple (v, n1, p), ignoringn2, and achieve 80% preci-
sion at 80% recall.

More recently, Ratnaparkhi (1998) developed an
unsupervised method that collects statistics from
text annotated with part-of-speech tags and mor-
phological base forms. An extraction heuristic is
used to identify unambiguous attachment decisions,
for example, the algorithm can assume a noun at-
tachment if there is no verb withink words to the
left of the preposition in a given sentence, among
other conditions. This extraction heuristic uncov-
ered 910K unique tuples of the form(v, p, n2) and
(n, p, n2), although the results are very noisy, sug-
gesting the correct attachment only about 69% of the
time. The tuples are used as training data for clas-
sifiers, the best of which achieves 81.9% precision
on the Ratnaparkhi test set. Pantel and Lin (2000)
describe an unsupervised method that uses a collo-
cation database, a thesaurus, a dependency parser,
and a large corpus (125M words), achieving 84.3%
precision on the Ratnaparkhi test set. Using sim-

1When presented with a whole sentence, average humans
score 93%.
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ple combinations of web-based n-grams, Lapata and
Keller (2005) achieve lower results, in the low 70’s.

Using a different collection consisting of German
PP-attachment decisions, Volk (2000) uses the web
to obtain n-gram counts. He comparedPr(p|n1) to
Pr(p|v), wherePr(p|x) = #(x, p)/#(x). Herex
can ben1 or v. The bigram frequencies#(x, p)
were obtained using the Altavista NEAR operator.
The method was able to make a decision on 58%
of the examples with a precision of 75% (baseline
63%). Volk (2001) then improved on these results
by comparingPr(p, n2|n1) to Pr(p, n2|v). Using
inflected forms, he achieved P=75% and R=85%.

Calvo and Gelbukh (2003) experimented with a
variation of this, using exact phrases instead of the
NEAR operator. For example, to disambiguateVeo
al gato con un telescopio, they compared frequen-
cies for phrases such as “ver con telescopio” and
“gato con telescopio”. They tested this idea on 181
randomly chosen Spanish disambiguation examples,
labelling 89.5% recall with a precision of 91.97%.

2.2 Models and Features

2.2.1 n-gram Models

We computed two co-occurrence models;

(i) Pr(p|n1) vs. Pr(p|v)

(ii ) Pr(p, n2|n1) vs. Pr(p, n2|v).

Each of these was computed two different ways:
usingPr (probabilities) and# (frequencies). We es-
timate then-gram counts using exact phrase queries
(with inflections, derived from WordNet 2.0) using
the MSN Search Engine. We also allow for deter-
miners, where appropriate, e.g., between the prepo-
sition and the noun when querying for#(p, n2). We
add up the frequencies for all possible variations.
Web frequencies were reliable enough and did not
need smoothing for (i), but for (ii ), smoothing using
the technique described in Hindle and Rooth (1993)
led to better recall. We also tried back-off from (ii )
to (i), as well as back-off plus smoothing, but did not
find improvements over smoothing alone. We found
n-gram counts to be unreliable when pronouns ap-
pear in the test set rather than nouns, and disabled
them in these cases. Such examples can still be han-
dled by paraphrases or surface features (see below).

2.2.2 Web-Derived Surface Features

Authors sometimes (consciously or not) disam-
biguate the words they write by using surface-level
markers to suggest the correct meaning. We have
found that exploiting these markers, when they oc-
cur, can prove to be very helpful for making dis-
ambiguation decisions. The enormous size of web
search engine indexes facilitates finding such mark-
ers frequently enough to make them useful.

For example,John opened the door with a keyis
a difficult verb attachment example because doors,
keys, and opening are all semantically related. To
determine if this should be a verb or a noun attach-
ment, we search for cues that indicate which of these
terms tend to associate most closely. If we see paren-
theses used as follows:

“open the door (with a key)”
this suggests a verb attachment, since the parenthe-
ses signal that “with a key” acts as its own unit.
Similarly, hyphens, colons, capitalization, and other
punctuation can help signal disambiguation deci-
sions. ForJean ate spaghetti with sauce, if we see

“eat: spaghetti with sauce”
this suggests a noun attachment.

Table 1 illustrates a wide variety of surface fea-
tures, along with the attachment decisions they are
assumed to suggest (events of frequency 1 have been
ignored). The surface features for PP-attachment
have low recall: most of the examples have no sur-
face features extracted.

We gather the statistics needed by issuing queries
to web search engines. Unfortunately, search en-
gines usually ignore punctuation characters, thus
preventing querying directly for terms containing
hyphens, brackets, etc. We collect these numbers
indirectly by issuing queries with exact phrases and
then post-processing the top 1,000 resulting sum-
maries2, looking for the surface features of interest.
We use Google for both the surface feature and para-
phrase extractions (described below).

2.2.3 Paraphrases

The second way we extend the use of web counts
is by paraphrasing the relation of interest and see-
ing if it can be found in its alternative form, which

2We often obtain more than 1,000 summaries per example
because we usually issue multiple queries per surface pattern,
by varying inflections and inclusion of determiners.
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suggests the correct attachment decision. We use
the following patterns along with their associated at-
tachment predictions:

(1) v n2 n1 (noun)
(2) v p n2 n1 (verb)
(3) p n2 * v n1 (verb)
(4) n1 p n2 v (noun)
(5) v pronounp n2 (verb)
(6) ben1 p n2 (noun)

The idea behind Pattern (1) is to determine
if “ n1 p n2” can be expressed as a noun com-
pound; if this happens sufficiently often, we can
predict a noun attachment. For example,meet/v
demands/n1 from/p customers/n2 becomesmeet/v
the customers/n2 demands/n1.

Note that the pattern could wrongly target ditran-
sitive verbs: e.g., it could turngave/v an apple/n1

to/p him/n2 into gave/v him/n2 an apple/n1. To pre-
vent this, we do not allow a determiner beforen1,
but we do require one beforen2. In addition, we
disallow the pattern if the preposition isto and we
require bothn1 andn2 to be nouns (as opposed to
numbers, percents, pronouns, determiners etc.).

Pattern (2) predicts a verb attachment. It presup-
poses that “p n2” is an indirect object of the verbv
and tries to switch it with the direct objectn1, e.g.,
had/v a program/n1 in/p place/n2 would be trans-
formed intohad/v in/p place/n2 a program/n1. We
requiren1 to be preceded by a determiner (to prevent
“n2 n1” forming a noun compound).

Pattern (3) looks for appositions, where the PP has
moved in front of the verb, e.g.,to/p him/n2 I gave/v
an apple/n1. The symbol * indicates a wildcard po-
sition where we allow up to three intervening words.

Pattern (4) looks for appositions, where the PP has
moved in front of the verb together withn1. It would
transformshaken/v confidence/n1 in/p markets/n2

into confidence/n1 in/p markets/n2 shaken/v.
Pattern (5) is motivated by the observation that

if n1 is a pronoun, this suggests a verb attach-
ment (Hindle and Rooth, 1993). (A separate feature
checks ifn1 is a pronoun.) The pattern substitutes
n1 with a dative pronoun (we allowhim andher),
e.g., it will convertput/v a client/n1 at/p odds/n2

into put/v him at/p odds/n2.
Pattern (6) is motivated by the observation that the

verb to beis typically used with a noun attachment.
(A separate feature checks ifv is a form of the verb

to be.) The pattern substitutesv with is andare, e.g.
it will turn eat/v spaghetti/n1 with/p sauce/n2 into is
spaghetti/n1 with/p sauce/n2.

These patterns all allow for determiners where ap-
propriate, unless explicitly stated otherwise. For a
given example, a prediction is made if at least one
instance of the pattern has been found.

2.3 Evaluation

For the evaluation, we used the test part (3,097 ex-
amples) of the benchmark dataset by Ratnaparkhi et
al. (1994). We used all 3,097 test examples in order
to make our results directly comparable.

Unfortunately, there are numerous errors in the
test set3. There are 149 examples in which a bare
determiner is labeled asn1 or n2 rather than the ac-
tual head noun. Supervised algorithms can compen-
sate for this problem by learning from the training
set that “the” can act as a noun in this collection, but
unsupervised algorithms cannot.

In addition, there are also around 230 examples
in which the nouns contain special symbols like: %,
slash, &, ’, which are lost when querying against a
search engine. This poses a problem for our algo-
rithm but is not a problem with the test set itself.

The results are shown in Table 2. Following Rat-
naparkhi (1998), we predict a noun attachment if the
preposition isof (a very reliable heuristic). The table
shows the performance for each feature in isolation
(excluding examples whose preposition isof). The
surface features are represented by a single score in
Table 2: for a given example, we sum up separately
the number of noun- and verb-attachment pattern
matches, and assign the attachment with the larger
number of matches.

We combine the bold rows of Table 2 in a majority
vote (assigning noun attachment to allof instances),
obtaining P=85.01%, R=91.77%. To get 100% re-
call, we assign all undecided cases toverb (since
the majority of the remaining non-of instances at-
tach to the verb, yielding P=83.63%, R=100%. We
show 0.95-level confidence intervals for the preci-
sion, computed by a general method based on con-
stant chi-square boundaries (Fleiss, 1981).

A test for statistical significance reveals that our
results are as strong as those of the leading unsuper-

3Ratnaparkhi (1998) notes that the test set contains errors,
but does not correct them.
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Example Predicts P(%) R(%)
open Door with a key noun 100.00 0.13
(open) door with a key noun 66.67 0.28
open (door with a key) noun 71.43 0.97
open - door with a key noun 69.70 1.52
open / door with a key noun 60.00 0.46
open, door with a key noun 65.77 5.11
open: door with a key noun 64.71 1.57
open; door with a key noun 60.00 0.23
open. door with a key noun 64.13 4.24
open? door with a key noun 83.33 0.55
open! door with a key noun 66.67 0.14
open door With a Key verb 0.00 0.00
(open door) with a key verb 50.00 0.09
open door (with a key) verb 73.58 2.44
open door - with a key verb 68.18 2.03
open door / with a key verb 100.00 0.14
open door, with a key verb 58.44 7.09
open door: with a key verb 70.59 0.78
open door; with a key verb 75.00 0.18
open door. with a key verb 60.77 5.99
open door! with a key verb 100.00 0.18

Table 1: PP-attachment surface features.Preci-
sion and recall shown are across all examples, not
just the door example shown.

vised approach on this collection (Pantel and Lin,
2000). Unlike that work, we do not require a collo-
cation database, a thesaurus, a dependency parser,
nor a large domain-dependent text corpus, which
makes our approach easier to implement and to ex-
tend to other languages.

3 Coordination

Coordinating conjunctions (and, or, but, etc.) pose
major challenges to parsers and their proper han-
dling is essential for the understanding of the sen-
tence. Consider the following “cooked” example:

The Department of Chronic Diseasesand Health
Promotion leadsand strengthens global efforts to
preventand control chronic diseasesor disabilities
and to promote healthandquality of life.

Conjunctions can link two words, two con-
stituents (e.g., NPs), two clauses or even two sen-
tences. Thus, the first challenge is to identify the
boundaries of the conjuncts of each coordination.
The next problem comes from the interaction of
the coordinations with other constituents that attach
to its conjuncts (most often prepositional phrases).
In the example above we need to decide between
[health and [quality of life]] and[[health and qual-

Model P(%) R(%)
Baseline (noun attach) 41.82 100.00
#(x, p) 58.91 83.97
Pr(p|x) 66.81 83.97
Pr(p|x) smoothed 66.81 83.97
#(x, p, n2) 65.78 81.02
Pr(p, n2|x) 68.34 81.62
Pr(p, n2|x) smoothed 68.46 83.97
(1) “v n2 n1” 59.29 22.06
(2) “p n2 v n1” 57.79 71.58
(3) “n1 * p n2 v” 65.78 20.73
(4) “v p n2 n1” 81.05 8.75
(5) “v pronounp n2” 75.30 30.40
(6) “ben1 p n2” 63.65 30.54
n1 is pronoun 98.48 3.04
v is to be 79.23 9.53
Surface features (summed) 73.13 9.26
Maj. vote, of→ noun 85.01±1.21 91.77
Maj. vote, of→ noun, N/A→ verb 83.63±1.30 100.00

Table 2:PP-attachment results, in percentages.

ity] of life] . From a semantic point of view, we
need to determine whether theor in chronic dis-
eases or disabilitiesreally meansor or is used as an
and(Agarwal and Boggess, 1992). Finally, we need
to choose between anon-elidedand anelidedread-
ing: [[chronic diseases] or disabilities]vs. [chronic
[diseases or disabilities]].

Below we focus on a special case of the latter
problem: noun compound (NC) coordination. Con-
sider the NCcar and truck production. Its real
meaning iscar production and truck production.
However, due to the principle of economy of ex-
pression, the first instance ofproductionhas been
compressed out by means of ellipsis. By contrast,
in president and chief executive, presidentis simply
linked tochief executive. There is also an all-way co-
ordination, where the conjunct is part of the whole,
as inSecurities and Exchange Commission.

More formally, we consider configurations of the
kind n1 c n2 h, wheren1 andn2 are nouns,c is a
coordination (and or or) andh is the head noun4.
The task is to decide whether there is an ellipsis or
not, independently of the local context. Syntacti-
cally, this can be expressed by the following brack-
etings: [[n1 c n2] h] versus [n1 c [n2 h]]. (Collins’
parser (Collins, 1997) always predicts a flat NP for
such configurations.) In order to make the task more

4The configurations of the kindn h1 c h2 (e.g.,company/n
cars/h1 and/c trucks/h2) can be handled in a similar way.
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realistic (from a parser’s perspective), we ignore the
option of all-way coordination and try to predict the
bracketing in Penn Treebank (Marcus et al., 1994)
for configurations of this kind. The Penn Treebank
brackets NCs with ellipsis as, e.g.,
(NP car/NN and/CC truck/NN production/NN).

and without ellipsis as
(NP (NP president/NN) and/CC (NP chief/NN exec-
utive/NN))
The NPs with ellipsis are flat, while the others con-
tain internal NPs. The all-way coordinations can ap-
pear bracketed either way and make the task harder.

3.1 Related Work

Coordination ambiguity is under-explored, despite
being one of the three major sources of structural
ambiguity (together with prepositional phrase at-
tachment and noun compound bracketing), and be-
longing to the class of ambiguities for which the
number of analyses is the number of binary trees
over the corresponding nodes (Church and Patil,
1982), and despite the fact that conjunctions are
among the most frequent words.

Rus et al. (2002) present a deterministic rule-
based approach for bracketingin contextof coor-
dinated NCs of the kindn1 c n2 h, as a necessary
step towards logical form derivation. Their algo-
rithm uses POS tagging, syntactic parses, semantic
senses of the nouns (manually annotated), lookups
in a semantic network (WordNet) and the type of the
coordination conjunction to make a 3-way classifi-
cation: ellipsis, no ellipsis and all-way coordination.
Using a back-off sequence of 3 different heuristics,
they achieve 83.52% precision (baseline 61.52%) on
a set of 298 examples. When 3 additional context-
dependent heuristics and 224 additional examples
with local contexts are added, the precision jumps
to 87.42% (baseline 52.35%), with 71.05% recall.

Resnik (1999) disambiguates two kinds of pat-
terns: n1 and n2 n3 and n1 n2 and n3 n4

(e.g., [food/n1 [handling/n2 and/c storage/n3]
procedures/n4] ). While there are two options for
the former (all-way coordinations are not allowed),
there are 5 valid bracketings for the latter. Follow-
ing Kurohashi and Nagao (1992), Resnik makes de-
cisions based on similarity of form (i.e., number
agreement: P=53%, R=90.6%), similarity of mean-
ing (P=66%, R=71.2%) and conceptual association

Example Predicts P(%) R(%)
(buy) and sell orders NO ellipsis 33.33 1.40
buy (and sell orders) NO ellipsis 70.00 4.67
buy: and sell orders NO ellipsis 0.00 0.00
buy; and sell orders NO ellipsis 66.67 2.80
buy. and sell orders NO ellipsis 68.57 8.18
buy[...] and sell orders NO ellipsis 49.00 46.73
buy- and sell orders ellipsis 77.27 5.14
buy and sell / orders ellipsis 50.54 21.73
(buy and sell) orders ellipsis 92.31 3.04
buy and sell (orders) ellipsis 90.91 2.57
buy and sell, orders ellipsis 92.86 13.08
buy and sell: orders ellipsis 93.75 3.74
buy and sell; orders ellipsis 100.00 1.87
buy and sell. orders ellipsis 93.33 7.01
buy and sell[...] orders ellipsis 85.19 18.93

Table 3:Coordination surface features.Precision
and recall shown are across all examples, not just the
buy and sell ordersshown.

(P=75.0%, R=69.3%). Using a decision tree to com-
bine the three information sources, he achieves 80%
precision (baseline 66%) at 100% recall for the 3-
noun coordinations. For the 4-noun coordinations
the precision is 81.6% (baseline 44.9%), 85.4% re-
call.

Chantree et al. (2005) cover a large set of ambi-
guities, not limited to nouns. They allow the head
word to be a noun, a verb or an adjective, and the
modifier to be an adjective, a preposition, an ad-
verb, etc. They extract distributional information
from the British National Corpus and distributional
similarities between words, similarly to (Resnik,
1999). In two different experiments they achieve
P=88.2%, R=38.5% and P=80.8%, R=53.8% (base-
line P=75%).

Goldberg (1999) resolves theattachment of am-
biguous coordinate phrasesof the kindn1 p n2 c
n3, e.g.,box/n1 of/p chocolates/n2 and/c roses/n3.
Using an adaptation of the algorithm proposed by
Ratnaparkhi (1998) for PP-attachment, she achieves
P=72% (baseline P=64%), R=100.00%.

Agarwal and Boggess (1992) focus on theidenti-
fication of the conjuncts of coordinate conjunctions.
Using POS and case labels in a deterministic algo-
rithm, they achieve P=81.6%. Kurohashi and Na-
gao (1992) work on the same problem for Japanese.
Their algorithm looks for similar word sequences
among with sentence simplification, and achieves a
precision of 81.3%.
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3.2 Models and Features

3.2.1 n-gram Models

We use the followingn-gram models:
(i) #(n1, h) vs. #(n2, h)
(ii ) #(n1, h) vs. #(n1, c, n2)
Model (i) compares how likely it is thatn1 mod-

ifies h, as opposed ton2 modifying h. Model (ii )
checks which association is stronger: betweenn1

andh, or betweenn1 andn2. Regardless of whether
the coordination isor or and, we query for both and
we add up the corresponding counts.

3.2.2 Web-Derived Surface Features

The set of surface features is similar to the one we
used for PP-attachment. These are brackets, slash,
comma, colon, semicolon, dot, question mark, ex-
clamation mark, and any character. There are two
additional ellipsis-predicting features: a dash after
n1 and a slash aftern2, see Table 3.

3.2.3 Paraphrases

We use the following paraphrase patterns:
(1) n2 c n1 h (ellipsis)
(2) n2 h c n1 (NO ellipsis)
(3) n1 h c n2 h (ellipsis)
(4) n2 h c n1 h (ellipsis)

If matched frequently enough, each of these pat-
terns predicts the coordination decision indicated in
parentheses. If found only infrequently or not found
at all, the opposite decision is made. Pattern (1)
switches the places ofn1 andn2 in the coordinated
NC. For example,bar and pie graphcan easily be-
comepie and bar graph, which favors ellipsis. Pat-
tern (2) movesn2 andh together to the left of the
coordination conjunction, and placesn1 to the right.
If this happens frequently enough, there is no ellip-
sis. Pattern (3) inserts the elided headh aftern1 with
the hope that if there is ellipsis, we will find the full
phrase elsewhere in the data. Pattern (4) combines
pattern (1) and pattern (3); it not only insertsh after
n1 but also switches the places ofn1 andn2.

As shown in Table 4, we included four of the
heuristics by Rus et al. (2002). Heuristic 1 predicts
no coordination whenn1 andn2 are the same, e.g.,
milk and milk products. Heuristics 2 and 3 perform a
lookup in WordNet and we did not use them. Heuris-
tics 4, 5 and 6 exploit the local context, namely the

Model P(%) R(%)
Baseline: ellipsis 56.54 100.00
(n1, h) vs. (n2, h) 80.33 28.50
(n1, h) vs. (n1, c, n2) 61.14 45.09
(n2, c, n1, h) 88.33 14.02
(n2, h, c, n1) 76.60 21.96
(n1, h, c, n2, h) 75.00 6.54
(n2, h, c, n1, h) 78.67 17.52
Heuristic 1 75.00 0.93
Heuristic 4 64.29 6.54
Heuristic 5 61.54 12.15
Heuristic 6 87.09 7.24
Number agreement 72.22 46.26
Surface sum 82.80 21.73
Majority vote 83.82 80.84
Majority vote, N/A→ no ellipsis 80.61 100.00

Table 4:Coordination results, in percentages.

adjectives modifyingn1 and/orn2. Heuristic 4 pre-
dicts no ellipsis if bothn1 andn2 are modified by
adjectives. Heuristic 5 predicts ellipsis if the coor-
dination isor and n1 is modified by an adjective,
but n2 is not. Heuristic 6 predicts no ellipsis ifn1

is not modified by an adjective, butn2 is. We used
versions of heuristics 4, 5 and 6 that check for deter-
miners rather than adjectives.

Finally, we included the number agreement fea-
ture (Resnik, 1993): (a) ifn1 andn2 match in num-
ber, butn1 andh do not, predict ellipsis; (b) ifn1

andn2 do not match in number, butn1 andh do,
predict no ellipsis; (c) otherwise leave undecided.

3.3 Evaluation

We evaluated the algorithms on a collection of 428
examples extracted from the Penn Treebank. On ex-
traction, determiners and non-noun modifiers were
allowed, but the program was only presented with
the quadruple (n1, c, n2, h). As Table 4 shows, our
overall performance of 80.61 is on par with other ap-
proaches, whose best scores fall into the low 80’s for
precision. (Direct comparison is not possible, as the
tasks and datasets all differ.)

As Table 4 shows,n-gram model (i) performs
well, butn-gram model (ii ) performs poorly, proba-
bly because the(n1, c, n2) contains three words, as
opposed to two for the alternative(n1, h), and thus
a priori is less likely to be observed.

The surface features are less effective for resolv-
ing coordinations. As Table 3 shows, they are very
good predictors of ellipsis, but are less reliable when
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predicting NO ellipsis. We combine the bold rows
of Table 4 in a majority vote, obtaining P=83.82%,
R=80.84%. We assign all undecided cases to no el-
lipsis, yielding P=80.61%, R=100%.

4 Conclusions and Future Work

We have shown that simple unsupervised algorithms
that make use of bigrams, surface features and para-
phrases extracted from a very large corpus are ef-
fective for several structural ambiguity resolutions
tasks, yielding results competitive with the best un-
supervised results, and close to supervised results.
The method does not require labeled training data,
nor lexicons nor ontologies. We think this is a
promising direction for a wide range of NLP tasks.
In future work we intend to explore better-motivated
evidence combination algorithms and to apply the
approach to other NLP problems.
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Abstract

We here propose a new method which sets
apart domain-specific terminology from
common non-specific noun phrases. It
is based on the observation that termino-
logical multi-word groups reveal a con-
siderably lesser degree of distributional
variation than non-specific noun phrases.
We define a measure for the observable
amount of paradigmatic modifiability of
terms and, subsequently, test it on bigram,
trigram and quadgram noun phrases ex-
tracted from a 104-million-word biomedi-
cal text corpus. Using a community-wide
curated biomedical terminology system as
an evaluation gold standard, we show that
our algorithm significantly outperforms
a variety of standard term identification
measures. We also provide empirical ev-
idence that our methodolgy is essentially
domain- and corpus-size-independent.

1 Introduction

As we witness the ever-increasing proliferation of
volumes of medical and biological documents, the
available dictionaries and terminological systems
cannot keep up with this pace of growth and, hence,
become more and more incomplete. What’s worse,
the constant stream of new terms is increasingly get-
ting unmanageable because human curators are in
the loop. The costly, often error-prone and time-
consuming nature of manually identifying new ter-
minology from the most recent literature calls for

advanced procedures which can automatically assist
database curators in the task of assembling, updat-
ing and maintaining domain-specific controlled vo-
cabularies. Whereas the recognition of single-word
terms usually does not pose any particular chal-
lenges, the vast majority of biomedical or any other
domain-specific terms typically consists of multi-
word units.1 Unfortunately these are much more
difficult to recognize and extract than their singleton
counterparts. Moreover, although the need to assem-
ble and extend technical and scientific terminologies
is currently most pressing in the biomedical domain,
virtually any (sub-)field of human research/expertise
in which we deal with terminologically structured
knowledge calls for high-performance terminology
identification and extraction methods. We want to
target exactly this challenge.

2 Related Work

The automatic extraction of complex multi-word
terms from domain-specific corpora is already an
active field of research (cf., e.g., for the biomedi-
cal domain Rindflesch et al. (1999), Collier et al.
(2002), Bodenreider et al. (2002), or Nenadić et
al. (2003)). Typically, in all of these approaches
term candidates are collected from texts by vari-
ous forms of linguistic filtering (part-of-speech tag-
ging, phrase chunking, etc.), through which candi-
dates obeying various linguistic patterns are iden-
tified (e.g., noun-noun, adjective-noun-noun com-
binations). These candidates are then submitted to
frequency- or statistically-based evidence measures

1Nakagawa and Mori (2002) claim that more than 85% of
domain-specific terms are multi-word units.
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(such as the C-value (Frantzi et al., 2000)), which
compute scores indicating to what degree a candi-
date qualifies as a term. Term mining, as a whole,
is a complex process involving several other com-
ponents (orthographic and morphological normal-
ization, acronym detection, conflation of term vari-
ants, term context, term clustering; cf. Nenadić et al.
(2003)). Still, the measure which assigns a termhood
value to a term candidate is the essential building
block of any term identification system.

For multi-word automatic term recognition
(ATR), the C-value approach (Frantzi et al., 2000;
Nenadić et al., 2004), which aims at improving the
extraction of nested terms, has been one of the most
widely used techniques in recent years. Other po-
tential association measures are mutual information
(Damerau, 1993) and the whole battery of statisti-
cal and information-theoretic measures (t-test, log-
likelihood, entropy) which are typically employed
for the extraction of general-language collocations
(Manning and Schütze, 1999; Evert and Krenn,
2001). While these measures have their statistical
merits in terminology identification, it is interesting
to note that they only make little use of linguistic
properties inherent to complex terms.2

More linguistically oriented work on ATR by
Daille (1996) or on term variation by Jacquemin
(1999) builds on the deep syntactic analysis of term
candidates. This includes morphological and head-
modifier dependency analysis and thus presupposes
accurate, high-quality parsing which, for sublan-
guages at least, can only be achieved by a highly
domain-dependent type of grammar. As sublan-
guages from different domains usually reveal a high
degree of syntactic variability among each other
(e.g., in terms of POS distribution, syntactic pat-
terns), this property makes it difficult to port gram-
matical specifications to different domains.

Therefore, one may wonder whether there are
cross-domain linguistic properties which might be
beneficial to ATR and still could be accounted for
by only shallow syntactic analysis. In this paper,
we propose the limited paradigmatic modifiability of
terms as a criterion which meets these requirements
and will elaborate on it in detail in Subsection 3.3.

2A notable exception is the C-value method which incorpo-
rates a term’s likelihood of being nested in other multi-word
units.

3 Methods and Experiments

3.1 Text Corpus

We collected a biomedical training corpus of ap-
proximately 513,000 MEDLINE abstracts using the
following query composed of MESH terms from
the biomedical domain: transcription factors, blood
cells and human.3 We then annotated the result-
ing 104-million-word corpus with the GENIA part-
of-speech tagger4 and identified noun phrases (NPs)
with the YAMCHA chunker (Kudo and Matsumoto,
2001). We restrict our study to NP recognition
(i.e., determining the extension of a noun phrase but
refraining from assigning any internal constituent
structure to that phrase), because the vast majority of
technical or scientific terms surface as noun phrases
(Justeson and Katz, 1995). We filtered out a num-
ber of stop words (determiners, pronouns, measure
symbols, etc.) and also ignored noun phrases with
coordination markers (“and”, “or”, etc.).5

n-gram cut-off NP term candidates
length tokens types

no cut-off 5,920,018 1,055,820
bigrams

c ≥ 10 4,185,427 67,308
no cut-off 3,110,786 1,655,440

trigrams
c ≥ 8 1,053,651 31,017
no cut-off 1,686,745 1,356,547

quadgrams
c ≥ 6 222,255 10,838

Table 1: Frequency distribution for noun phrase term candi-
date tokens and types for the MEDLINE text corpus

In order to obtain the term candidate sets (see Ta-
ble 1), we counted the frequency of occurrence of
noun phrases in our training corpus and categorized
them according to their length. For this study, we re-
stricted ourselves to noun phrases of length 2 (word
bigrams), length 3 (word trigrams) and length 4
(word quadgrams). Morphological normalization of
term candidates has shown to be beneficial for ATR
(Nenadić et al., 2004). We thus normalized the nom-

3MEDLINE (http://www.ncbi.nlm.nih.gov) is the
largest biomedical bibliographic database. For information re-
trieval purposes, all of its abstracts are indexed with a controlled
indexing vocabulary, the Medical Subject Headings (MESH,
2004).

4http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/postagger/

5Of course, terms can also be contained within coordinative
structures (e.g., “B and T cell”). However, analyzing their in-
herent ambiguity is a complex syntactic operation, with a com-
paratively marginal benefit for ATR (Nenadić et al., 2004).

844



inal head of each noun phrase (typically the right-
most noun in English) via the full-form UMLS SPE-
CIALIST LEXICON (UMLS, 2004), a large repository
of both general-language and domain-specific (med-
ical) vocabulary. To eliminate noisy low-frequency
data (cf. also Evert and Krenn (2001)), we defined
different frequency cut-off thresholds, c, for the bi-
gram, trigram and quadgram candidate sets and only
considered candidates above these thresholds.

3.2 Evaluating Term Extraction Quality

Typically, terminology extraction studies evaluate
the goodness of their algorithms by having their
ranked output examined by domain experts who
identify the true positives among the ranked can-
didates. There are several problems with such an
approach. First, very often only one such expert
is consulted and, hence, inter-annotator agreement
cannot be determined (as, e.g., in the studies of
Frantzi et al. (2000) or Collier et al. (2002)). Fur-
thermore, what constitutes a relevant term for a par-
ticular domain may be rather difficult to decide –
even for domain experts – when judges are just ex-
posed to a list of candidates without any further con-
text information. Thus, rather than relying on ad
hoc human judgment in identifying true positives in
a candidate set, as an alternative we may take al-
ready existing terminolgical resources into account.
They have evolved over many years and usually re-
flect community-wide consensus achieved by expert
committees. With these considerations in mind, the
biomedical domain is an ideal test bed for evaluat-
ing the goodness of ATR algorithms because it hosts
one of the most extensive and most carefully curated
terminological resources, viz. the UMLS METATHE-
SAURUS (UMLS, 2004). We will then take the mere
existence of a term in the UMLS as the decision cri-
terion whether or not a candidate term is also recog-
nized as a biomedical term.

Accordingly, for the purpose of evaluating the
quality of different measures in recognizing multi-
word terms from the biomedical literature, we as-
sign every word bigram, trigram, and quadgram in
our candidate sets (see Table 1) the status of being
a term (i.e., a true positive), if it is found in the
2004 edition of the UMLS METATHESAURUS.6 For

6We exclude UMLS vocabularies not relevant for molecular
biology, such as nursing and health care billing codes.

example, the word trigram “long terminal repeat”
is listed as a term in one of the UMLS vocabular-
ies, viz. MESH (2004), whereas “t cell response”
is not. Thus, among the 67,308 word bigram candi-
date types, 14,650 (21.8%) were identified as true
terms; among the 31,017 word trigram candidate
types, their number amounts to 3,590 (11.6%), while
among the 10,838 word quadgram types, 873 (8.1%)
were identified as true terms.7

3.3 Paradigmatic Modifiability of Terms
For most standard association measures utilized for
terminology extraction, the frequency of occurrence
of the term candidates either plays a major role
(e.g., C-value), or has at least a significant impact
on the assignment of the degree of termhood (e.g.,
t-test). However, frequency of occurrence in a train-
ing corpus may be misleading regarding the deci-
sion whether or not a multi-word expression is a
term. For example, taking the two trigram multi-
word expressions from the previous subsection, the
non-term “t cell response” appears 2410 times in
our 104-million-word MEDLINE corpus, whereas
the term “long terminal repeat” (long repeating se-
quences of DNA) only appears 434 times (see also
Tables 2 and 3 below).

The linguistic property around which we built our
measure of termhood is the limited paradigmatic
modifiability of multi-word terminological units. A
multi-word expression such as “long terminal re-
peat” contains three token slots in which slot 1 is
filled by “long”, slot 2 by “terminal” and slot 3 by
“repeat”. The limited paradigmatic modifiability of
such a trigram is now defined by the probability with
which one or more such slots cannot be filled by
other tokens. We estimate the likelihood of preclud-
ing the appearance of alternative tokens in particular
slot positions by employing the standard combina-
tory formula without repetitions. For an n-gram (of
size n) to select k slots (i.e., in an unordered selec-
tion) we thus define:

C(n, k) =
n!

k!(n− k)!
(1)

7As can be seen, not only does the number of candidate
types drop with increasing n-gram length but also the propor-
tion of true terms. In fact, their proportion drops more sharply
than can actually be seen from the above data because the vari-
ous cut-off thresholds have a leveling effect.
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For example, for n = 3 (word trigram) and k = 1
and k = 2 slots, there are three possible selections
for each k for “long terminal repeat” and for “t cell
response” (see Tables 2 and 3). k is actually a place-
holder for any possible token (and its frequency)
which fills this position in the training corpus.

n-gram freq P -Mod (k=1,2)
long terminal repeat 434 0.03

k slots possible selections sel freq modsel

k = 1 k1 terminal repeat 460 0.940
long k2 repeat 448 0.970
long terminal k3 436 0.995

mod1 =0.91
k = 2 k1 k2 repeat 1831 0.23

k1 terminal k3 1062 0.41
long k2 k3 1371 0.32

mod2 =0.03

Table 2: P -Mod and k-modifiabilities for k = 1 and k = 2

for the trigram term “long terminal repeat”

n-gram freq P -Mod (k=1,2)
t cell response 2410 0.00005

k slots possible selections sel freq modsel

k = 1 k1 cell response 3248 0.74
t k2 response 2665 0.90
t cell k3 27424 0.09

mod1 =0.06
k = 2 k1 k2 response 40143 0.06

k1 cell k3 120056 0.02
t k2 k3 34925 0.07

mod2 =0.00008

Table 3: P -Mod and k-modifiabilities for k = 1 and k = 2

for the trigram non-term “t cell response”

Now, for a particular k (1 ≤ k ≤ n; n = length of
n-gram), the frequency of each possible selection,
sel, is determined. The paradigmatic modifiability
for a particular selection sel is then defined by the
n-gram’s frequency scaled against the frequency of
sel. As can be seen in Tables 2 and 3, a lower fre-
quency induces a more limited paradigmatic modifi-
ability for a particular sel (which is, of course, ex-
pressed as a higher probability value; see the column
labeled modsel in both tables). Thus, with s being
the number of distinct possible selections for a par-
ticular k, the k-modifiability, modk, of an n-gram
can be defined as follows (f stands for frequency):

modk(n-gram) :=
s∏

i=1

f(n-gram)

f(seli, n-gram)
(2)

The paradigmatic modifiability, P -Mod, of an n-
gram is the product of all its k-modifiabilities:8

P -Mod(n-gram) :=
n∏

k=1

modk(n-gram) (3)

Comparing the trigram P -Mod values for k =
1, 2 in Tables 2 and 3, it can be seen that the term
“long terminal repeat” gets a much higher weight
than the non-term “t cell response”, although their
mere frequency values suggest the opposite. This is
also reflected in the respective list rank (see Subsec-
tion 4.1 for details) assigned to both trigrams by the
t-test and by our P -Mod measure. While “t cell re-
sponse” has rank 24 on the t-test output list (which
directly reflects its high frequency), P -Mod assigns
rank 1249 to it. Conversely, “long terminal repeat”
is ranked on position 242 by the t-test, whereas it
occupies rank 24 for P -Mod. In fact, even lower-
frequency multi-word units gain a prominent rank-
ing, if they exhibit limited paradigmatic modifiabil-
ity. For example, the trigram term “porphyria cu-
tanea tarda” is ranked on position 28 by P -Mod,
although its frequency is only 48 (which results in
rank 3291 on the t-test output list). Despite its lower
frequency, this term is judged as being relevant for
the molecular biology domain.9 It should be noted
that the termhood values (and the corresponding list
ranks) computed by P -Mod also include k = 3 and,
hence, take into account a reasonable amount of fre-
quency load. As can be seen from the previous rank-
ing examples, still this factor does not override the
paradigmatic modifiability factors of the lower ks.

On the other hand, P -Mod will also demote true
terms in their ranking, if their paradigmatic modifi-
ability is less limited. This is particularly the case if
one or more of the tokens of a particular term often
occur in the same slot of other equal-length n-grams.
For example, the trigram term “bone marrow cell”
occurs 1757 times in our corpus and is thus ranked
quite high (position 31) by the t-test. P -Mod, how-
ever, ranks this term on position 550 because the to-

8Setting the upper limit of k to n (e.g., n = 3 for trigrams)
actually has the pleasant side effect of including frequency in
our modifiability measure. In this case, the only possible selec-
tion k1k2k3 as the denominator of Formula (2) is equivalent to
summing up the frequencies of all trigram term candidates.

9It denotes a group of related disorders, all of which arise
from a deficient activity of the heme synthetic enzyme uropor-
phyrinogen decarboxylase (URO-D) in the liver.
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ken “cell” also occurs in many other trigrams and
thus leads to a less limited paradigmatic modifiabil-
ity. Still, the underlying assumption of our approach
is that such a case is more an exception than the rule
and that terms are linguistically more ‘frozen’ than
non-terms, which is exactly the intuition behind our
measure of limited paradigmatic modifiability.

3.4 Methods of Evaluation

As already described in Subsection 3.2, standard
procedures for evaluating the quality of termhood
measures usually involve identifying the true posi-
tives among a (usually) arbitrarily set number of the
m highest ranked candidates returned by a particu-
lar measure, a procedure usually carried out by a do-
main expert. Because this is labor-intensive (besides
being unreliable), m is usually small, ranging from
50 to several hundreds.10 By contrast, we choose
a large and already consensual terminology to iden-
tify the true terms in our candidate sets. Thus, we
are able to dynamically examine various m-highest
ranked samples, which, in turn, allows for the plot-
ting of standard precision and recall graphs for the
entire candidate set. We thus provide a more reli-
able evaluation setting for ATR measures than what
is common practice in the literature.

We compare our P -Mod algorithm against the
t-test measure,11 which, of all standard measures,
yields the best results in general-language collo-
cation extraction studies (Evert and Krenn, 2001),
and also against the widely used C-value, which
aims at enhancing the common frequency of occur-
rence measure by making it sensitive to nested terms
(Frantzi et al., 2000). Our baseline is defined by the
proportion of true positives (i.e., the proportion of
terms) in our bi-, tri- and quadgram candidate sets.
This is equivalent to the likelihood of finding a true
positive by blindly picking from one of the different
sets (see Subsection 3.2).

10Studies on collocation extraction (e.g., by Evert and Krenn
(2001)) also point out the inadequacy of such evaluation meth-
ods. In essence, they usually lead to very superficial judgments
about the measures under scrutiny.

11Manning and Schütze (1999) describe how this measure
can be used for the extraction of multi-word expressions.

4 Results and Discussion

4.1 Precision/Recall for Terminology Extraction
For each of the different candidate sets, we incre-
mentally examined portions of the ranked output
lists returned by each of the three measures we con-
sidered. The precision values for the various por-
tions were computed such that for each percent point
of the list, the number of true positives found (i.e.,
the number of terms) was scaled against the overall
number of candidate items returned. This yields the
(descending) precision curves in Figures 1, 2 and 3
and some associated values in Table 4.

Portion of Precision scores of measures
ranked list
considered P -Mod t-test C-value

1% 0.82 0.62 0.62
Bigrams 10% 0.53 0.42 0.41

20% 0.42 0.35 0.34
30% 0.37 0.32 0.31

baseline 0.22 0.22 0.22
1% 0.62 0.55 0.54

Trigrams 10% 0.37 0.29 0.28
20% 0.29 0.23 0.23
30% 0.24 0.20 0.19

baseline 0.12 0.12 0.12
1% 0.43 0.50 0.50

Quadgrams 10% 0.26 0.24 0.23
20% 0.20 0.16 0.16
30% 0.18 0.14 0.14

baseline 0.08 0.08 0.08

Table 4: Precision scores for biomedical term extraction at
selected portions of the ranked list

First, we observe that, for the various n-gram
candidate sets examined, all measures outperform
the baselines by far, and, thus, all are potentially
useful measures for grading termhood. Still, the
P -Mod criterion substantially outperforms all other
measures at almost all points for all n-grams exam-
ined. Considering 1% of the bigram list (i.e., the first
673 candidates) precision for P -Mod is 20 points
higher than for the t-test and the C-value. At 1%
of the trigram list (i.e., the first 310 candidates),
P -Mod’s lead is 7 points. Considering 1% of the
quadgrams (i.e., the first 108 candidates), the t-test
actually leads by 7 points. At 10% of the quadgram
list, however, the P -Mod precision score has over-
taken the other ones. With increasing portions of all
ranked lists considered, the precision curves start to
converge toward the baseline, but P -Mod maintains
a steady advantage.
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Figure 1: Precision/Recall for bigram biomedical term extrac-
tion
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Figure 2: Precision/Recall for trigram biomedical term ex-
traction
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Figure 3: Precision/Recall for quadgram biomedical term ex-
traction

The (ascending) recall curves in Figures 1, 2 and
3 and their corresponding values in Table 5 indicate
which proportion of all true positives (i.e., the pro-
portion of all terms in a candidate set) is identified by
a particular measure at a certain point of the ranked
list. For term extraction, recall is an even better indi-
cator of a particular measure’s performance because
finding a bigger proportion of the true terms at an
early stage is simply more economical.

Recall Portion of Ranked List
scores of
measures P -Mod t-test C-value

0.5 29% 35% 37%
0.6 39% 45% 47%

Bigrams 0.7 51% 56% 59%
0.8 65% 69% 72%
0.9 82% 83% 85%
0.5 19% 28% 30%

Trigrams 0.6 27% 38% 40%
0.7 36% 50% 53%
0.8 50% 63% 66%
0.9 68% 77% 84%
0.5 20% 28% 30%
0.6 26% 38% 40%

Quadgrams 0.7 34% 49% 53%
0.8 45% 62% 65%
0.9 61% 79% 82%

Table 5: Portions of the ranked list to consider for selected
recall scores for biomedical term extraction

Again, our linguistically motivated terminology
extraction algorithm outperforms its competitors,
and with respect to tri- and quadgrams, its gain is
even more pronounced than for precision. In order to
get a 0.5 recall for bigram terms, P -Mod only needs
to winnow 29% of the ranked list, whereas the t-test
and C-value need to winnow 35% and 37%, respec-
tively. For trigrams and quadgrams, P -Mod only
needs to examine 19% and 20% of the list, whereas
the other two measures have to scan almost 10 ad-
ditional percentage points. In order to obtain a 0.6,
0.7, 0.8 and 0.9 recall, the differences between the
measures narrow for bigram terms, but they widen
substantially for tri- and quadgram terms. To obtain
a 0.6 recall for trigram terms, P -Mod only needs to
winnow 27% of its output list while the t-test and
C-value must consider 38% and 40%, respectively.
For a level of 0.7 recall, P -Mod only needs to an-
alyze 36%, while the t-test already searches 50% of
the ranked list. For 0.8 recall, this relation is 50%
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(P -Mod) to 63% (t-test), and at recall point 0.9,
68% (P -Mod) to 77% (t-test). For quadgram term
identification, the results for P -Mod are equally su-
perior to those for the other measures, and at recall
points 0.8 and 0.9 even more pronounced than for
trigram terms.

We also tested the significance of differences for
these results, both comparing P -Mod vs. t-test and
P -Mod vs. C-value. Because in all cases the ranked
lists were taken from the same set of candidates (viz.
the set of bigram, trigram, and quadgram candidate
types), and hence constitute dependent samples, we
applied the McNemar test (Sachs, 1984) for statis-
tical testing. We selected 100 measure points in the
ranked lists, one after each increment of one percent,
and then used the two-tailed test for a confidence in-
terval of 95%. Table 6 lists the number of significant
differences for these measure points at intervals of
10 for the bi-, tri-, and quadgram results. For the bi-
gram differences between P -Mod and C-value, all
of them are significant, and between P -Mod and
t-test, all are significantly different up to measure
point 70.12 Looking at the tri- and quadgrams, al-
though the number of significant differences is less
than for bigrams, the vast majority of measure points
is still significantly different and thus underlines the
superior performance of the P -Mod measure.

# of # of significant differences comparing
measure P -Mod with

points t-test C-val t-test C-val t-test C-val
10 10 10 9 9 3 3
20 20 20 19 19 13 13
30 30 30 29 29 24 24
40 40 40 39 39 33 33
50 50 50 49 49 43 43
60 60 60 59 59 53 53
70 70 70 69 69 63 63
80 75 80 79 79 73 73
90 84 90 89 89 82 83

100 93 100 90 98 82 91
bigrams trigrams quadgrams

Table 6: Significance testing of differences for bi-, tri- and
quadgrams using the two-tailed McNemar test at 95% confi-
dence interval

12As can be seen in Figures 1, 2 and 3, the curves start to
merge at the higher measure points and, thus, the number of
significant differences decreases.

4.2 Domain Independence and Corpus Size
One might suspect that the results reported above
could be attributed to the corpus size. Indeed, the
text collection we employed in this study is rather
large (104 million words). Other text genres and do-
mains (e.g., clinical narratives, various engineering
domains) or even more specialized biological sub-
domains (e.g., plant biology) do not offer such a
plethora of free-text material as the molecular biol-
ogy domain. To test the effect a drastically shrunken
corpus size might have, we assessed the terminology
extraction methods for trigrams on a much smaller-
sized subset of our original corpus, viz. on 10 million
words. These results are depicted in Figure 4.
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Figure 4: Precision/Recall for trigram biomedical term ex-
traction on the 10-million-word corpus (cutoff c ≥ 4, with
6,760 term candidate types)

The P -Mod extraction criterion still clearly out-
performs the other ones on that 10-million-word cor-
pus, both in terms of precision and recall. We also
examined whether the differences were statistically
significant and applied the two-tailed McNemar test
on 100 selected measure points. Comparing P -Mod

with t-test, most significant differences could be ob-
served between measure points 20 and 80, with al-
most 80% to 90% of the points being significantly
different. These significant differences were even
more pronounced when comparing the results be-
tween P -Mod and C-value.

5 Conclusions

We here proposed a new terminology extraction
method and showed that it significantly outperforms
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two of the standard approaches in distinguishing
terms from non-terms in the biomedical literature.
While mining scientific literature for new termino-
logical units and assembling those in controlled vo-
cabularies is a task involving several components,
one essential building block is to measure the de-
gree of termhood of a candidate. In this respect, our
study has shown that a criterion which incorporates
a vital linguistic property of terms, viz. their lim-
ited paradigmatic modifiability, is much more pow-
erful than linguistically more uninformed measures.
This is in line with our previous work on general-
language collocation extraction (Wermter and Hahn,
2004), in which we showed that a linguistically mo-
tivated criterion based on the limited syntagmatic
modifiability of collocations outperforms alternative
standard association measures as well.

We also collected evidence that the superiority of
the P -Mod method relative to other term extraction
approaches holds independent of the underlying cor-
pus size (given a reasonable offset). This is a crucial
finding because other domains might lack large vol-
umes of free-text material but still provide sufficient
corpus sizes for valid term extraction. Finally, since
we only require shallow syntactic analysis (in terms
of NP chunking), our approach might be well suited
to be easily portable to other domains. Hence, we
may conclude that, although our methodology has
been tested on the biomedical domain only, there are
essentially no inherent domain-specific restrictions.
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Abstract

The lack of annotated data is an ob-
stacle to the development of many
natural language processing applica-
tions; the problem is especially severe
when the data is non-English. Pre-
vious studies suggested the possibility
of acquiring resources for non-English
languages by bootstrapping from high
quality English NLP tools and paral-
lel corpora; however, the success of
these approaches seems limited for dis-
similar language pairs. In this paper,
we propose a novel approach of com-
bining a bootstrapped resource with a
small amount of manually annotated
data. We compare the proposed ap-
proach with other bootstrapping meth-
ods in the context of training a Chinese
Part-of-Speech tagger. Experimental
results show that our proposed ap-
proach achieves a significant improve-
ment over EM and self-training and
systems that are only trained on man-
ual annotations.

1 Introduction

Natural language applications that use super-
vised learning methods require annotated train-
ing data, but annotated data is scarce for many

∗We thank Stephen Clark, Roger Levy, Carol Nichols,
and the three anonymous reviewers for their helpful com-
ments.

non-English languages. It has been suggested
that annotated data for these languages might
be automatically created by leveraging paral-
lel corpora and high-accuracy English systems
(Yarowsky and Ngai, 2001; Diab and Resnik,
2002). The studies are centered around the
assumption that linguistic analyses for English
(e.g., Part-of-Speech tags, Word sense disam-
biguation, grammatical dependency relation-
ships) are also valid analyses in the translation
of the English. For example, in the English
noun phrase the red apples, red modifies ap-
ples; the same modifier relationship also exists in
its French translations les pommes rouges, even
though the word orders differ. To the extent
that the assumption is true, annotated data in
the non-English language can be created by pro-
jecting English analyses across a word aligned
parallel corpus. The resulting projected data
can then serve as (albeit noisy) training exam-
ples to develop applications in the non-English
language.

The projection approach faces both a theo-
retical and a practical challenge. Theoretically,
it is well-known that two languages often do
not express the same meaning in the same way
(Dorr, 1994). Practically, the projection frame-
work is sensitive to component errors. In partic-
ular, poor word alignments significantly degrade
the accuracy of the projected annotations. Pre-
vious research on resource projection attempts
to address these problems by redistributing the
parameter values (Yarowsky and Ngai, 2001) or
by applying transformation rules (Hwa et al.,
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2002). Their experimental results suggest that
while these techniques can overcome some er-
rors, they are not sufficient for projected data
that are very noisy.

In this work, we tackle the same problems by
relaxing the zero manual annotation constraint.
The main question we address is: how can we
make the most out of a small set of manually la-
beled data (on the non-English side). Following
the work of Yarowsky and Ngai (2001) we focus
on the task of training a Part-of-Speech (POS)
tagger, but we conduct our experiments with
the more dissimilar language pair of English-
Chinese instead of English-French. Through
empirical studies, we show that when the word
alignment quality is sufficiently poor, the er-
ror correction techniques proposed by Yarowsky
and Ngai are unable to remove enough mistakes
in the projected data. We propose an alternative
approach that is inspired by backoff language
modeling techniques in which the parameters of
two tagging models (one trained on manually la-
beled data; the other trained on projected data)
are combined to achieve a more accurate final
model.

2 Background

The idea of trying to squeeze more out of an-
notated training examples has been explored in
a number of ways in the past. Most popular
is the family of bootstrapping algorithms, in
which a model is seeded with a small amount of
labeled data and iteratively improved as more
unlabeled data are folded into the training set,
typically, through unsupervised learning. An-
other approach is active learning (Cohn et al.,
1996), in which the model is also iteratively im-
proved but the training examples are chosen by
the learning model, and the learning process is
supervised. Finally, the work that is the closest
to ours in spirit is the idea of joint estimation
(Smith and Smith, 2004).

Of the bootstrapping methods, perhaps the
most well-known is the Expectation Maximiza-
tion (EM) algorithm. This approach has been
explored in the context of many NLP applica-
tions; one example is text classification (Nigam

et al., 1999). Another bootstrapping approach
reminiscent of EM is self-training. Yarowsky
(1995) used this method for word sense disam-
biguation. In self-training, annotated examples
are used as seeds to train an initial classifier
with any supervised learning method. This ini-
tial classifier is then used to automatically an-
notate data from a large pool of unlabeled ex-
amples. Of these newly labeled data, the ones
labeled with the highest confidence are used as
examples to train a new classifier. Yarowsky
showed that repeated application of this pro-
cess resulted in a series of word sense classi-
fiers with improved accuracy and coverage. Also
related is the co-training algorithm (Blum and
Mitchell, 1998) in which the bootstrapping pro-
cess requires multiple learners that have differ-
ent views of the problem. The key to co-training
is that the views should be conditionally inde-
pendent given the label. The strong indepen-
dence requirement on the views is difficult to
satisfy. For practical applications, different fea-
tures sets or models (that are not conditionally
independent) have been used as an approxima-
tion for different views. Co-training has been ap-
plied to a number of NLP applications, includ-
ing POS-tagging (Clark et al., 2003), parsing
(Sarkar, 2001), word sense disambiguation (Mi-
halcea, 2004), and base noun phrase detection
(Pierce and Cardie, 2001). Due to the relaxation
of the view independence assumption, most em-
pirical studies suggest a marginal improvement.
The common thread between EM, self-training,
and co-training is that they all bootstrap off
of unannotated data. In this work, we explore
an alternative to “pure” unannotated data; our
data have been automatically annotated with
projected labels from English. Although the
projected labels are error-prone, they provide us
with more information than automatically pre-
dicted labels used in bootstrapping methods.

With a somewhat different goal in mind, ac-
tive learning addresses the problem of choosing
the most informative data for annotators to la-
bel so that the model would achieve the greatest
improvement. Active learning also has been ap-
plied to many NLP applications, including POS
tagging (Engelson and Dagan, 1996) and pars-
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ing (Baldridge and Osborne, 2003). The draw-
back of an active learning approach is that it
assumes that a staff of annotators is waiting on
call, ready to label the examples chosen by the
system at every iteration. In practice, it is more
likely that one could only afford to staff anno-
tators for a limited period of time. Although
active learning is not a focus in this paper, we
owe some ideas to active learning in choosing a
small initial set of training examples; we discuss
these ideas in section 3.2.

More recently, Smith and Smith (2004) pro-
posed to merge an English parser, a word align-
ment model, and a Korean PCFG parser trained
from a small number of Korean parse trees un-
der a unified log linear model. Their results sug-
gest that a joint model produces somewhat more
accurate Korean parses than a PCFG Korean
parser trained on a small amount of annotated
Korean parse trees alone. Their motivation is
similar to the starting point of our work: that a
word aligned parallel corpus and a small amount
of annotated data in the foreign language side
offer information that might be exploited. Our
approach differs from theirs in that we do not
optimize the three models jointly. One concern
is that joint optimization might not result in op-
timal parameter settings for the individual com-
ponents. Because our focus is primarily on ac-
quiring non-English language resources, we only
use the parallel corpus as a means of projecting
resources from English.

3 Our Approach

This work explores developing a Chinese POS
tagger without a large manually annotated cor-
pus. Our approach is to train two separate
models from two different data sources: a large
corpus of automatically tagged data (projected
from English) and a small corpus of manually
tagged data; the two models are then combined
into one via the Whitten-Bell backoff language
model.

3.1 Projected Data

One method of acquiring a large corpus of au-
tomatically POS tagged Chinese data is by
projection (Yarowsky and Ngai, 2001). This

approach requires a sentence-aligned English-
Chinese corpus, a high-quality English tagger,
and a method of aligning English and Chinese
words that share the same meaning. Given the
parallel corpus, we tagged the English words
with a publicly available maximum entropy tag-
ger (Ratnaparkhi, 1996), and we used an im-
plementation of the IBM translation model (Al-
Onaizan et al., 1999) to align the words. The
Chinese words in the parallel corpus would then
receive the same POS tags as the English words
to which they are aligned. Next, the basic pro-
jection algorithm is modified to accommodate
two complicating factors. First, word align-
ments are not always one-to-one. To compen-
sate, we assign a default tag to unaligned Chi-
nese words; in the case of one-Chinese-to-many-
English, the Chinese word would receive the tag
of the final English word. Second, English and
Chinese do not share the same tag set. Fol-
lowing Yarowsky and Ngai (2001), we define 12
equivalence classes over the 47 Penn-English-
Treebank POS tags. We refer to them as Core
Tags. With the help of 15 hand-coded rules and
a Naive Bayes model trained on a small amount
of manually annotated data, the Core Tags can
be expanded to the granularity of the 33 Penn-
Chinese-Treebank POS tags (which we refer to
as Full Tags).

3.2 Manually Annotated Data

Since the amount of manual annotation is lim-
ited, we must decide what type of data to anno-
tate. In the spirit of active learning, we aim to
select sentences that may bring about the great-
est improvements in the accuracy of our model.
Because it is well known that handling unknown
words is a serious problem for POS taggers, our
strategy for selecting sentences for manual anno-
tation is to maximize the word coverage of the
in ital model. That is, we wish to find a small
set of sentences that would lead to the greatest
reduction of currently unknown words Finding
these sentences is a NP-hard problem because
the 0/1 knapsack problem could be reduced to
this problem in polynomial-time (Gurari, 1989).
Thus, we developed an approximation algorithm
for finding sentences with the maximum word
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M : number of tokens will be annotated.
S={s1, s2, . . . , sn}: the unannotated corpus.
Ssel : set of selected sentences in S.
Sunsel : set of unselected sentences in S.
|Ssel| : number of tokens in Ssel.
TY PE(Ssel) : number of types in Ssel.
MWC:

randomly choose Ssel ⊂ S
such that|Ssel| ≤M .

For each sentence si in Ssel
find a sentence rj in Sunsel
which maximizes swap score(si, rj).

if swap score(si, rj) > 0
{

Ssel = (Ssel − si) ∪ rj ;
Sunsel = (Sunsel − rj) ∪ si;

}

swap score(si, rj)
{
Ssel new = (Ssel − si) ∪ rj ;
if ( |Ssel new| > M ) return -1;
else return TY PE(Ssel new)− TY PE(Ssel);

}

Figure 1: The pseudo-code for MWC algorithm.
The input is M and S and the output is Ssel

coverage of unknown words (MWC). This algo-
rithm is described in Figure 1,

3.3 Basic POS Tagging Model

It is well known that a POS tagger can be
trained with an HMM (Weischedel et al., 1993).
Given a trained model, the most likely tag se-
quence T̂ = {t1, t2, . . . tn} is computed for the
input word sentence: Ŵ = {w1, w2, . . . wn}:

T̂ = arg max
T

P (T |W ) = arg max
T

P (T |W )P (T )

The transition probability P (T ) is approxi-
mated by a trigram model:

P (T ) ≈ p(t1)p(t2|t1)
n∏
i=3

p(ti|ti−1, ti−2),

and the observation probability P (W |T ) is com-
puted by

P (W |T ) ≈
n∏
i=1

p(wi|ti).

3.4 Combined Models

From the two data sources, two separate trigram
taggers have been trained (Tanno from manually
annotated data and Tproj from projected data).
This section considers ways of combining them
into a single tagger. The key insight that drives
our approach is based on reducing the effect of
unknown words. We see the two data sources as
complementary in that the large projected data
source has better word coverage while the man-
ually labeled one is good at providing tag-to-tag
transitions. Based on this principle, one way of
merging these two taggers into a single HMM
(denoted as Tinterp) is to use interpolation:

pinterp(w|t) = λ× panno(w|t)
+(1− λ)× pproj(w|t)

pinterp(ti|ti−1, ti−2) = panno(ti|ti−1, ti−2)

where λ is a tunable weighting parameter1 of
the merged tagger. This approach may be prob-
lematic because it forces the model to always
include some fraction of poor parameter values.
Therefore, we propose to estimate the observa-
tion probabilities using backoff. The parameters
of Tback are estimated as follows:

pback(w|t) =

{
α(t)× panno(w|t) if panno(w|t) > 0
β(t) × pproj(w|t) if panno(w|t) = 0

pback(ti|ti−1, ti−2) = panno(ti|ti−1, ti−2)

where α(t) is a discounting coefficient and β
is set to satisfy that

∑
all words P (w|t) = 1.

The discounting coefficient is computed using
the Witten-Bell discounting method:

α(t) =
Canno(t)

Canno(t) + Sanno(t)
,

where Canno(t) is the count of tokens whose
tag is t in the manually annotated corpus and

1In our experiments, the value of λ is set to 0.8 based
on held-out data.
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Sanno(t) is the seen types of words with tag t.
In other words, we trust the parameter estimates
from the model trained on manual annotation by
default unless it is based on unreliable statistics.

4 Experiments

We conducted a suite of experiments to inves-
tigate the effect of allowing a small amount of
manually annotated data in conjunction with
using annotations projected from English. We
first establish a baseline of training on projected
data alone in Section 4.1. It is an adaptation of
the approach described by Yarowsky and Ngai
(2001). Next, we consider the case of using
manually annotated data alone in Section 4.2.
We show that there is an increase in accuracy
when the MWC active learning strategy is used.
In Section 4.3, we show that with an appro-
priate merging strategy, a tagger trained from
both data sources achieves higher accuracy. Fi-
nally, in Section 4.4, we evaluate our approach
against other semi-supervised methods to ver-
ify that the projected annotations, though noisy,
contain useful information.

We use an English-Chinese Federal Broadcast
Information Service (FBIS) corpus as the data
source for the projected annotation. We sim-
ulated the manual annotation process by using
the POS tags provided by the Chinese Treebank
version 4 (CHTB). We used about a thousand
sentences from CHTB as held-out data. The re-
maining sentences are split into ten-fold cross
validation sets. Each test set contains 1400 sen-
tences. Training data are selected (using MWC)
from the remaining 12600 sentences. The re-
ported results are the average of the ten trials.
One tagger is considered to be better than an-
other if, according to the paired t-test, we are
at least 95% confident that their difference in
accuracy is non-zero. Performance is measured
in terms of the percentage of correctly tagged
tokens in the test data. For comparability with
Tproj (which assumes no availability of manu-
ally annotated data), most experimental results
are reported with respect to the reduced Core
Tag gold standard; evaluation against the full
33 CHTB tag gold standard is reported in Sec-

tion 4.4.

4.1 Tagger Trained from Projected
Data

To determine the quality of Tproj for Chinese,
we replicate the POS-tagging experiment in
Yarowsky and Ngai (2001). Trained on all pro-
jected data, the tagger has an accuracy of 58.2%
on test sentences. The low accuracy rate sug-
gests that the projected data is indeed very
noisy. To reduce the noise in the projected data,
Yarowsky and Ngai developed a re-estimation
technique based on the observation that words
in French, English and Czech have a strong ten-
dency to exhibit only a single core POS tag
and very rarely have more than two. Apply-
ing the same re-estimation technique that favors
this bias to the projected Chinese data raises
the final tagger accuracy to 59.1%. That re-
estimation did not help English-Chinese projec-
tion suggests that the dissimilarity between the
two languages is an important factor. A related
reason for the lower accuracy rate is due to poor
word alignments in the English-Chinese corpus.
As a further noise reduction step, we automat-
ically filter out sentence pairs that were poorly
aligned (i.e., the sentence pairs had too many
unaligned words or too many one-to-many align-
ments). This results in a corpus of about 9000
FBIS sentences. A tagger trained on the filtered
data has an improved accuracy of 64.5%. We
take this to be Tproj used in later experiments.

4.2 Taggers Trained from Manually
Labeled Data

This experiment verifies that the Maximum
Word Coverage (MWC) selection scheme pre-
sented in Section 3.2 is helpful in selecting data
for training Tanno. We compare it against ran-
dom selection. Figure 2 plots the taggers’ per-
formances on test sentences as the number of
manually annotated tokens increase from 100 to
30,000. We see that the taggers trained on data
selected by MWC outperform those trained on
randomly selected data. Thus, in the main ex-
periments, we always use MWC to select the set
of manually tagged data for training Tanno.
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Figure 2: A comparison between MWC and ran-
dom selection.

4.3 Evaluation of the Combined
Taggers
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Figure 3: A comparison of the proposed backoff
approach against alternative methods of com-
bining Tproj and Tanno

To investigate how Tanno and Tproj might be
merged to form a higher quality tagger, we con-
duct an experiment to evaluate the different
alternatives described in section 3.4: Tinterp,
and Tback. They are compared against three
baselines: Tanno, Tproj , and Tconcat, a tagger
trained from the concatenation of the two data
sources. To determine the effect of manual an-
notation, we vary the size of the training set for
Tanno from 100 tokens (fewer than 10 sentences)
to 30,000 tokens (about 1000 sentences). The

learning curves are plotted in Figure 3. The re-
sult suggests that Tback successfully incorporates
information from both the manually annotated
data and the projected data. The improvement
over training on manually annotated data alone
(Tanno) is especially high when fewer than 10,000
manually annotated tokens are available. As ex-
pected, Tinterp, and Tconcat perform worse than
Tanno because they are not as effective at dis-
counting the erroneous projected annotations.

4.4 Comparisons with Other
Semi-Supervised Approaches

This experiment evaluates the proposed back-
off approach against two other semi-supervised
approaches: self-training (denoted as Tself ) and
EM (denoted as Tem). Both start with a fully su-
pervised model (Tanno) and iteratively improve
it by seeing more unannotated data.2 As dis-
cussed earlier, a major difference between our
proposed approach and the bootstrapping meth-
ods is that our approach makes use of anno-
tations projected from English while the boot-
strapping methods rely on unannotated data
alone. To investigate the effect of leveraging
from English resources, we use the Chinese por-
tion of the FBIS parallel corpus (the same 9000
sentences as the training corpus of Tproj but
without the projected tags) as the unannotated
data source for the bootstrapping methods.

Figure 4 compares the four learning curves.
We have evaluated them both in terms of the
Core Tag gold standard and in terms of Full
Tag gold standard. Although all three ap-
proaches produce taggers with higher accuracies
than that of Tanno, our backoff approach outper-
forms both self-training and EM. The difference
is especially prominent when manual annota-
tion is severely limited. When more manual an-
notations are made available, the gap narrows;
however, the differences are still statistically sig-
nificant at 30,000 manually annotated tokens.
These results suggest that projected data have
more useful information than unannotated data.

2In our implementation of self-training, the top 10%
of the unannoated sentences with the highest confidence
scores is selected. The confidence score is computed as:

logP (T |W )

length of the sentence
.
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Figure 4: A comparison of Backoff against self-training and EM. (a) Evaluation against the Core
Tag gold standard. (b) Evaluation against the Full Tag gold standard.

5 Discussion

While the experimental results support our intu-
ition that Tback is effective in making use of both
data sources, there are still two questions worth
addressing. First, there may be other ways of
estimating the parameters of a merged HMM
from the parameters of Tanno and Tproj . For ex-
ample, a natural way of merging the two taggers
into a single HMM (denoted as Tmerge) is to use
the values of the observation probabilities from
Tproj and the values of the transition probabili-
ties from Tanno:

pmerge(w|t) = pproj(w|t),
pmerge(ti|ti−1, ti−2) = panno(ti|ti−1, ti−2).

Another is the reverse of Tmerge:

prev merge(w|t) = panno(w|t)
prev merge(ti|ti−1, ti−2) = pproj(ti|ti−1, ti−2)

Tmerge is problematic because it ignores all man-
ual word-tag annotations; however, Trev merge’s
learning curve is nearly identical to that of Tanno
(graph not shown). Its models do not take ad-
vantage of the broader word coverage of the
projected data, so it does not perform as well

as Tback. Trev merge outperforms Tmerge when
trained from more than 2000 manually anno-
tated tokens. We make two observations from
this finding. One is that the differences between
pproj(ti|ti−1, ti−2) and panno(ti|ti−1, ti−2) are not
large. Another is that the success of the merged
HMM tagger hinges on the goodness of the ob-
servation probabilities, p(w|t). This is in accord
with our motivation in improving the reliability
of p(w|t) through backoff.

Second, while our experimental results sug-
gest that Tback outperforms self-training and
EM, these approaches are not incompatible with
one another. Because Tback is partially esti-
mated from the noisy corpus of projected an-
notations, it might be further improved by
applying a bootstrapping algorithm over the
noisy corpus (with the projected tags removed).
To test our hypothesis, we initialized the self-
training algorithm with a backoff tagger that
used 3000 manually annotated tokens. This led
to a slight but statistically significant improve-
ment, from 74.3% to 74.9%.

6 Conclusion and Future Work

In summary, we have shown that backoff is an ef-
fective technique for combining manually anno-
tated data with a large but noisy set of automat-
ically annotated data (from projection). Our ap-

857



proach is the most useful when a small amount
of annotated tokens is available. In our exper-
iments, the best results were achieved when we
used 3000 manually annotated tokens (approxi-
mately 100 sentences).

The current study points us to several direc-
tions for future work. One is to explore ways of
applying the proposed approach to other learn-
ing models. Another is to compare against other
methods of combining evidences from multiple
learners. Finally, we will investigate whether
the proposed approach can be adapted to more
complex tasks in which the output is not a class
label but a structure (e.g. parsing).
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Abstract

This paper considers the problem of auto-
matically inducing role-semantic annota-
tions in the FrameNet paradigm for new
languages. We introduce a general frame-
work for semantic projection which ex-
ploits parallel texts, is relatively inexpen-
sive and can potentially reduce the amount
of effort involved in creating semantic re-
sources. We propose projection models
that exploit lexical and syntactic informa-
tion. Experimental results on an English-
German parallel corpus demonstrate the
advantages of this approach.

1 Introduction

Shallow semantic parsing, the task of automatically
identifying the semantic roles conveyed by senten-
tial constituents, has recently attracted much atten-
tion, partly because of its increasing importance for
potential applications. For instance, information ex-
traction (Surdeanu et al., 2003), question answer-
ing (Narayanan and Harabagiu, 2004) and machine
translation (Boas, 2002) could stand to benefit from
broad coverage semantic processing.

The FrameNet project (Fillmore et al., 2003)
has played a central role in this endeavour by
providing a large lexical resource based on se-
mantic roles. In FrameNet, meaning is represented
by frames, schematic representations of situations.
Semantic roles are frame-specific, and are called
frame elements. The database associates frames with
lemmas (verbs, nouns, adjectives) that can evoke
them (called frame-evoking elements or FEEs), lists
the possible syntactic realisations of their seman-
tic roles, and provides annotated examples from the
British National Corpus (Burnard, 1995). The avail-
ability of rich annotations for the surface realisation
of semantic roles has triggered interest in semantic
parsing and enabled the development of data-driven
models (e.g., Gildea and Jurafsky, 2002).

Frame: DEPARTING

THEME The officer left the house.
The plane leaves at seven.
His departure was delayed.

SOURCE We departed from New York.
He retreated from his opponent.
The woman left the house.Fr

am
e

E
le

m
en

ts
FE

E
s abandon.v, desert.v, depart.v, departure.n,

emerge.v, emigrate.v, emigration.n, escape.v,
escape.n, leave.v, quit.v, retreat.v, retreat.n,
split.v, withdraw.v, withdrawal.n

Table 1: Example of FrameNet frame

Table 1 illustrates an example from the FrameNet
database, the DEPARTING frame. It has two roles, a
THEME which is the moving object and a SOURCE
expressing the initial position of the THEME. The
frame elements are realised by different syntactic ex-
pressions. For instance, the THEME is typically an
NP, whereas the SOURCE is often expressed by a
prepositional phrase (see the expressions in boldface
in Table 1). The DEPARTING frame can be evoked
by abandon, desert, depart, and several other verbs
as well as nouns (see the list of FEEs in Table 1).

Although recent advances in semantic parsing1

have greatly benefited from the availability of the
English FrameNet, unfortunately such resources are
largely absent for other languages. The English
FrameNet (Version 1.1) contains 513 frames cov-
ering 7,125 lexical items and has been under de-
velopment for approximately six years. Although
FrameNets are currently under construction for Ger-
man, Spanish, and Japanese, these resources are still
in their infancy and of limited value for modelling
purposes. Methods for acquiring FrameNets from
corpora automatically would greatly reduce the hu-
man effort involved and facilitate their development
for new languages.

In this paper, we propose a method which em-
ploys parallel corpora for acquiring frame elements

1Approaches to modelling semantic parsing are too numer-
ous to list; see Carreras and Màrquez (2005) for an overview.
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and their syntactic realisations (see the upper half of
Table 1) for new languages. Our method leverages
the existing English FrameNet to overcome the re-
source shortage in other languages by exploiting the
translational and structural equivalences present in
aligned data. The idea underlying our approach can
be summarised as follows: (1) given a pair of sen-
tences E (English) and L (new language) that are
translations of each other, annotate E with seman-
tic roles; and then (2) project these roles onto L. In
this manner, we induce semantic structure on the L
side of the parallel text, which can then serve as data
for training a statistical semantic parser for L that is
independent of the parallel corpus.

We first assess if the main assumption of semantic
projection is warranted (Section 3), namely whether
frames and semantic roles exhibit a high degree of
parallelism across languages. Then we propose two
broad classes of projection models that utilise lexi-
cal and syntactic information (Section 4), and show
experimentally that roles can be projected from En-
glish onto German with high accuracy (Section 5).
We conclude the paper by discussing the implica-
tions of our results and future work (Section 6).

2 Related work

A number of recent studies exploit parallel cor-
pora for cross-linguistic knowledge induction. In
this paradigm, annotations for resource-rich lan-
guages like English are projected onto another lan-
guage through aligned parallel texts. Yarowsky et
al. (2001) propose several projection algorithms for
deriving monolingual tools (ranging from part-of-
speech taggers, to chunkers and morphological anal-
ysers) without additional annotation cost. Hwa et
al. (2002) assess the degree of syntactic parallelism
in dependency relations between English and Chi-
nese. Their results show that, although assuming di-
rect correspondence is often too restrictive, syntactic
projection yields good enough annotations to train
a dependency parser. Smith and Smith (2004) ex-
plore syntactic projection further by proposing an
English-Korean bilingual parser integrated with a
word translation model.

Previous work has primarily focused on the pro-
jection of morphological and grammatico-syntactic
information. Inducing semantic resources from low
density languages still poses a significant challenge
to data-driven methods. The challenge is recognised
by Fung and Chen (2004) who construct a Chinese
FrameNet by mapping English FrameNet entries to

concepts listed in HowNet2, an on-line ontology for
Chinese, however without exploiting parallel texts.

The present work extends previous approaches on
annotation projection by inducing FrameNet seman-
tic roles from parallel corpora. Analogously to Hwa
et al. (2002), we investigate whether there are indeed
semantic correspondences between two languages,
since there is little hope for projecting meaningful
annotations in nonparallel semantic structures. Sim-
ilarly to Fung and Chen (2004) we automatically in-
duce semantic role annotations for a target language.
In contrast to them, we resort to parallel corpora as a
source of semantic equivalence. Thus, we avoid the
need for a target concept dictionary in addition to the
English FrameNet. We propose a general framework
for semantic projection that can incorporate different
knowledge sources. To our knowledge, the frame-
work and its application to semantic role projection
are novel.

3 Creation of a Gold Standard Corpus

Sample Selection. To evaluate the output of our
projection algorithms, we created a gold standard
corpus of English-German sentence pairs with man-
ual FrameNet frame and role annotations. The sen-
tences were sampled from Europarl (Koehn, 2002),
a corpus of professionally translated proceedings of
the European Parliament. Europarl is available in
11 languages with up to 20 million words per lan-
guage aligned at the document and sentence level.

Recall that frame projection is only meaningful if
the same frame is appropriate for both sentences in
a projection pair. This constrains sample selection
for two reasons: first, FrameNet is as yet incom-
plete with respect to its coverage. So, a randomly
selected sentence pair may evoke novel frames or
novel senses of already existing frames (e.g., the
“greeting” sense of hail which is currently not listed
in FrameNet). Second, due to translational variance,
there is no a priori guarantee that words which are
mutual translations evoke the same frame. For ex-
ample, the English verb finish is often translated
in German by the adverb abschließend, which ar-
guably cannot have a role set identical to finish. Re-
lying solely on the English FrameNet database for
sampling would yield many sentence pairs which
are either inappropriate for the present study (be-
cause they do not evoke the same frames) or simply
problematic for annotation since they are outside the

2See http://www.keenage.com/zhiwang/e_zhiwang.
html.
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present coverage of the database.
For the above reasons, our sample selection pro-

cedure was informed by two existing resources,
the English FrameNet and SALSA, a FrameNet-
compatible database for German currently under de-
velopment (Erk et al., 2003). We first used the pub-
licly available GIZA++ (Och and Ney, 2003) soft-
ware to induce English-German word alignments.
Next, we gathered all German-English sentences
in the corpus that had at least one pair of aligned
words (we,wg), which were listed in FrameNet and
SALSA, respectively, and had at least one frame
in common. These sentences exemplify 83 frame
types, 696 lemma pairs, and 265 unique English and
178 unique German lemmas. Sentence pairs were
grouped into three bands according to their frame
frequency (High, Medium, Low). We randomly se-
lected 380 pairs from each band. The total sample
consisted of ,140 sentence pairs.

This procedure produces a realistic corpus sample
for the role projection task; similar samples can be
drawn for new language pairs using either existing
bilingual dictionaries (Fung and Chen, 2004) or au-
tomatically constructed semantic lexicons (Padó and
Lapata, 2005).

Annotation. Two annotators, with native-level
proficiency in German and English, manually la-
belled the parallel corpus with semantic information.
Their task was to identify the frame for a given pred-
icate in a sentence, and assign the corresponding
roles. They were provided with detailed guidelines
that explained the task using multiple examples.
During annotation, they had access to parsed ver-
sions of the sentences in question (see Section 5 for
details), and to the English FrameNet and SALSA.

The annotation proceeded in three phases: a train-
ing phase (40 sentences), a calibration phase (100
sentences), and a production mode phase (1000 sen-
tences). In the calibration phase, sentences were
doubly annotated to assess inter-annotator agree-
ment. In production mode, sentences were split into
two distinct sets, each of which was annotated by a
single coder. We ensured that no annotator saw both
parts of any sentence pair to guarantee independent
annotation of the bilingual data. Each coder anno-
tated approximately the same amount of data in En-
glish and German.

Table 2 shows the results of our inter-annotator
agreement study. In addition to the widely used
Kappa statistic, we computed a number of different
agreement measures: the ratio of frames common

Measure English German All
Frame Match 0.90 0.87 0.88
Role Match 0.95 0.95 0.95
Span Match 0.85 0.83 0.84
Kappa 0.86 0.90 0.87

Table 2: Monolingual inter-annotation agreement on
the calibration set

Measure Precision Recall F-score
Frame Match 0.72 0.72 0.72
Role Match 0.91 0.92 0.91

Table 3: Cross-lingual semantic parallelism between
English and German

between two sentences (Frame Match), the ratio of
common roles (Role Match), and the ratio of roles
with identical spans (Span Match). As can be seen,
annotators tend to agree in frame assignment; dis-
agreements are mainly due to fuzzy distinctions be-
tween frames (e.g., between AWARENESS and CER-
TAINTY). As can be seen from Table 2, annotators
agree in what roles to assign (Role Match is 0.95 for
both English and German); agreeing on their exact
spans is a harder problem.

Semantic Parallelism. Since we obtained par-
allel FrameNet annotations for English and German,
we were able to investigate the degree of semantic
parallelism between the two languages. More specif-
ically, we treated the German annotation as gold
standard against which we compared the English an-
notations. To facilitate comparisons with the output
of our automatic projection methods (see Section 4),
we measured parallelism using precision and recall.
Frames and frame roles were counted as matching if
they were annotated in a sentence, regardless of their
spans. The results are shown in Table 3.

The cross-lingual data exhibit more than twice the
amount of frame differences than monolingual data
(compare Tables 2 and 3). This indicates that frame
disambiguation methods must be employed in auto-
matic role projection to ensure that two aligned to-
kens evoke the same frame. However, frame disam-
biguation is outside the scope of the present paper.

On the positive side, role agreement is rela-
tively high (0.91 F-score). This indicates that in
cases where frames match across languages, seman-
tic roles could be accurately transferred (provided
that these languages diverge little in their argument
structure). This observation offers support for the
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projection approach put forward in this paper. Note,
however, that a practical projection system could at-
tain this level of performance only if it could employ
an oracle to recover annotators’ decisions about the
span of roles. We can obtain a more realistic upper
bound for an automatic system from the monolin-
gual Role Span agreement figure (F-score 0.84). The
latter represents a ceiling for the agreement we can
expect from sentences annotated by different anno-
tators.

4 Projection of Semantic Information

In this section, we formalise the semantic projection
task and give the details of our modelling approach.
All models discussed here project semantic annota-
tions from a source language to a target language.
As explained earlier, our present study is only con-
cerned with the projection of roles between match-
ing frames.

4.1 Problem Formulation
We assume that we are provided with source and tar-
get sentences represented as sets of entities es ∈ Es
and et ∈ Et . These entities can be words, con-
stituents, phrases, or other groupings. In addition,
we are given the semantic annotation of the source
sentences from which we can directly read off the
source semantic role assignment as : R→ 2Es , where
R is the set of semantic roles. The goal of the pro-
jection is to specify the target semantic role assign-
ments at : R→ 2Et , which are unknown.3

Clearly, effecting the projection requires estab-
lishing some form of match between the source and
target entities. We therefore formalise projection as
a function which maps the source role assignment
and a set of matches M ⊆ Es×Et onto a new target
role assignment:

pro j : (As×M)→ (R→ 2Et ) (1)

By way of currying, we can state the new target role
assignment as a function which directly computes a
set of target entities, given the source role assign-
ment, a set of entity matches, and a role:

at : (As×M×R)→ 2Et (2)

According to this formalisation, the crucial part of
semantic projection is to identify a correct and ex-
haustive set of entity matches. Obviously, this raises

3Without loss of generality, we limit ourselves to one frame
per sentence, as does FrameNet.

r ∈ R Semantic role
ts ∈ Ts, tt ∈ Tt Source, target tokens
al ∈ Al : Ts→ 2Tt Word alignment
as ∈ As : R→ 2Ts Source role assignment
at : (As×Al×R)→ 2Tt Projected target role as-

signment

Table 4: Notation and signature summary for word-
based projection

the question of what linguistic information is appro-
priate for establishing M. Unfortunately, any attempt
to compute a match based on categorical data de-
rived from linguistic analyses (e.g., parts of speech,
phrase types or grammatical relations), needs to em-
pirically derive cross-linguistic similarities between
categories, a task which must be repeated for every
new language pair, and requires additional data.

Rather than postulating an ad hoc similarity func-
tion, we use word alignments to derive informa-
tion about semantic roles in the target language. Our
first model family (Section 4.2) relies exclusively
on this knowledge source. Although potentially use-
ful as a proxy for semantic equivalence, automati-
cally induced alignments are often noisy, thus lead-
ing to errors in annotation projection (Yarowsky et
al., 2001). For example, function words commonly
diverge across languages and are systematically mis-
aligned; furthermore, alignments are restricted to
single words rather than word combinations. This
observation motivates a second model family with a
bias towards linguistically meaningful entities (Sec-
tion 4.3). Such entities can be constituents derived
from the output of a parser or non-recursive syntac-
tic structures (i.e., chunks).

In this paper we compare simple word align-
ment models against more resource intensive models
that utilise constituent-based information and exam-
ine whether syntactic knowledge significantly con-
tributes to semantic projection.

4.2 Word-based Projection Model
The first model family uses source and target word
tokens as entities for projection. In this framework,
projection models can be defined by deriving the set
of matches M directly from word alignments. The
resulting signatures are shown in Table 4.

Our first projection model assigns to each role
r with source span s(r) the set of all target tokens
which are aligned to a token in the source span:

aw(as,al,r) =
[

ts∈as(r)

al(ts) (3)
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John and Mary left

Johann und Maria gingen

Departing

Departing

Figure 1: Word alignment-based semantic projection
of Role THEME (shadowed), Frame DEPARTING

The main shortcoming of this model is that it cannot
capture an important linguistic property of semantic
roles, namely that they almost always cover contigu-
ous stretches of text. We can repair non-contiguous
projections by applying a “convex complementing”
heuristic to the output of (3), which fills all holes
in a sequence of tokens, without explicit recourse to
syntactic information. We define the convex comple-
menting heuristic as:

acw(as,al,r) = {tt | min(i(at1))≤ i(tt)
≤max(i(at1))}

(4)

where i returns the index of a token t.
The two models just described are illustrated in

Figure 1. The frame DEPARTING is introduced by
left and gingen in English and German, respectively.
For simplicity, we only show the edges correspond-
ing to the THEME role. In English, the THEME is re-
alised by the words John and Mary. The dotted lines
show the available word alignments. The projection
of the THEME role according to (3) consists only
of the tokens {Johann, Maria} (shown by the plain
black lines); the convex complementing heuristic in
model (4) adds the token und, resulting in the (cor-
rect) convex set {Johann, und, Maria}.

4.3 Constituent-based Projection Model
Our second model family attempts to make up for
errors in the word alignment by projecting from and
to constituents. In this study, our constituents are ob-
tained from full parse trees (see Section 5 for de-
tails). Models which use non-recursive structures are
also possible; however, we leave this to future work.

The main difference from word-based projection
models is the introduction of constituent information
as an intermediate level; we thus construct a con-
stituent alignment for which only a subset of word

alignments has to be accurate. The appropriate sig-
natures and notation for constituent-based projection
are summarised in Table 5.

In order to keep the model as flexible as pos-
sible, and to explore the influence of different de-
sign decisions, we model constituent-based projec-
tion as two independently parameterisable subtasks:
first we compute a real-valued similarity function
between source and target constituents; then, we em-
ploy the similarity function to align relevant con-
stituents and project the role information.
Similarity functions. In principle, any function
which matches the signature in Table 5 could be
used. In practice, the use of linguistic knowledge
runs into the problem of defining similarity between
category-based representations discussed above. For
this reason, we limit ourselves to two simple similar-
ity functions based on word overlap: Given source
and target constituents cs and ct , we define the word
overlap ow of cs with ct as the proportion of tokens
within ct aligned to tokens within cs. Let yield(c)
denote the set of tokens in the yield of a constituent
c, then:

ow(cs,ct) =
|(

S
ts∈yield(cs) al(ts))∩ yield(ct)|

|yield(ct)|
(5)

Since the asymmetry of this overlap measure leads
to high overlap scores for small target constituents,
we define word overlap similarity, as the product of
two constituents’ mutual overlap:

sim(cs,ct) = o(cs,ct) ·o(ct ,cs) (6)

Simple word-based overlap has one undesired char-
acteristic: larger constituents tend to be less similar
because of missing alignments (e.g., between func-
tion words). Since content words are arguably more
important for the role projection task, we define a
second overlap measure, content word overlap owc,
which takes only nouns, verbs and adjectives into
account. Let yieldc(c) denote the set of tokens in the
yield of c that are content words, then:

owc(cs,ct) =
|(

S
ts∈yieldc(cs) al(ts))∩ yieldc(ct)|

|yieldc(ct)|
(7)

Constituent alignment. Considerable latitude
is available in interpreting a similarity function to
derive a constituent alignment. Due to space limita-
tions, we demonstrate two basic models.

Our first forward constituent alignment model
(a f c), aligns source constituents that form the span
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r ∈ R Semantic role
cs ∈Cs,ct ∈Ct Source and target con-

stituents
yield : C→ T Yield of a constituent
yieldc : C→ T Content word yield of a

constituent
al ∈ Al : Ts→ 2Tt Word alignment
as ∈ As : R→ 2Cs Source role assignment
sim : Cs×Ct → R+ Constituent similarity
at : As×Sim×R→ 2Ct Projected target role as-

signment

Table 5: Notation and signature summary for
constituent-based projection

of a role to a single target constituent. We compute
the similarity of a target constituent ct to a set of
source constituents cs ∈ as(r) by taking the product
similarity for each source and target constituent pair:

a f c(as,sim,r) = argmax
ct∈Ct

∏
cs∈as(r)

sim(cs,ct) (8)

This projection model forces the target role assign-
ment to be a function, i.e., it makes the somewhat
simplifying assumption that each role corresponds
to a single target constituent.

Our second backward constituent alignment
model (abc) proceeds in the opposite direction: it it-
erates over target constituents and attempts to de-
termine their most similar source constituent for
each ct . If the aligned source constituent is labelled
with a role, it is projected onto ct :

abc(as,sim,r) = {ct |(argmax
cs∈Cs

sim(cs,ct)) ∈ as(r)}

(9)
In general, abc allows for more flexible role pro-

jection: it will sometimes decide not to project a
role at all (if the source constituents are dissimilar
to any target constituents), or it can assign a role
to more than one target constituent; however, this
means that there is less control over what is pro-
jected, and wrong alignments can lead to wrong re-
sults more easily.

Finally, if no word alignments are found for
complete source or target constituents, the maxi-
mal similarity rating in abc or ab f will be zero.
This is often the case for semantically weak single-
word constituents such as demonstrative pronouns
(e.g., [That] is right./ [Das] ist richtig.). When we
observe this phenomenon, we heuristically skip un-
aligned constituents (zero skipping).

Figure 2 contrasts the two constituent-based pro-
jection models using the frame QUESTIONING as

He asked all of them

Er fragte alle von ihnen

NP3

PP2

NP1

NP4

PP5NP6

Questioning

Questioning
NP1 PP2 NP3

NP4 0.33 0.5 1
PP5 0.67 1 0.5
NP6 0.33 0 0

Figure 2: Constituent-based semantic projection of
role ADDRESSEE (shadowed), frame QUESTION-
ING. Below: Constituent similarity matrix.

an example. Again, we only show one role, AD-
DRESSEE, indicated by the shadowed box in Fig-
ure 2. Note that the object NP in German was mis-
parsed as an NP and a PP, a relatively frequent er-
ror. The difference between the two decision proce-
dures can be explained straightforwardly by look-
ing at the table below the graph, which shows the
similarity matrix for the constituents according to
equation (6). In this table, the source constituents
(indices 1–3) correspond to columns, and the tar-
get constituents (indices 4–6) to rows. The align-
ment model in (8) iterates over labelled source con-
stituents (here only NP1) and chooses the row with
the highest value as the target constituent for a can-
didate role. In our case, this is the PP5 (cell in bold-
face). In contrast, model (9) iterates over all target
constituents (i.e., rows) and checks if the most sim-
ilar source constituent bears a role label. Since NP1
is the most similar constituent for NP6 (underlined
cell), (9) assigns the QUESTIONING role to NP6.

5 Experiments

Evaluation Framework. We implemented the
models described in the previous section and used
them to project semantic information from En-
glish onto German. For the constituent-based mod-
els, constituent information was obtained from the
output of Collins’ parser (1997) for English and
Dubey’s parser (2004) for German. Words were
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Model Precision Recall F-score
w 0.41 0.40 0.41
cw 0.46 0.45 0.46
Upper bound 0.85 0.84 0.84

Table 6: Results for word-based projection models

aligned using the default setting4 of GIZA++ (Och
and Ney, 2003), a publicly available implementa-
tion of the IBM models and HMM word alignment
models. We evaluated the projected roles against the
“gold standard” roles obtained from the manual an-
notation (see Section 3). We also compared our re-
sults to the upper bound given by the inter-annotator
agreement on the calibration data set.
Results. Table 6 shows our results for the word-
based projection models. The simplest word-based
model (aw), obtains an F-score of 0.41. This is a
good result considering that the model does not ex-
ploit any linguistic information (e.g., parts of speech
or syntactic structure). It also supports our hypothe-
sis that word alignments are useful for the role pro-
jection task. The convex complementing heuristic
(acw) delivers an F-score increase of five points over
the “words only” model, simply by making up for
holes in the word alignment.

We evaluated eight instantiations of the
constituent-based projection models; the results are
shown in Table 7. The best model (in boldface) uses
forward constituent alignment, content word-based
overlap similarity, and zero skipping. We observe
that backward constituent alignment-based models
(1–4) perform similarly to word-based projection
models (the F-score ranges between 0.40 and 0.45).
However, they obtain considerably higher precision
(albeit lower recall) than the word-based models.
This may be an advantage if the projected data
is destined for training target-language semantic
parsers. This precision/recall pattern appears to be
a direct result of abc, which only projects a role
from cs to ct if cs “wins” against all other source
constituents, thus resulting in reliable, but overly
cautious projections, which cannot not be further
improved by zero skipping.

The forward constituent alignment models (5–8)
show consistently higher performance than word-
based models and models 1–4, indicating that the
stronger assumptions made by forward alignment

4The training scheme involved five iterations of Model 1,
five iterations of the HMM model, five iterations of Model 3,
and five iterations of Model 4.

Model al o 0-skip Precision Recall F-score
1 bc w no 0.70 0.33 0.45
2 bc w yes 0.70 0.33 0.45
3 bc wc no 0.65 0.32 0.42
4 bc wc yes 0.65 0.32 0.42
5 f c w no 0.61 0.60 0.60
6 f c w yes 0.66 0.60 0.63
7 f c wc no 0.62 0.60 0.61
8 fc wc yes 0.70 0.60 0.65

Upper bound 0.85 0.84 0.84

Table 7: Results for constituent-based projection
models (al: constituent alignment model; o: overlap
measure; 0-skip: zero skipping)

are justified in the data. In addition, we also find
that we can increase precision by concentrating on
reliable alignments. This is achieved by using the
zero skipping heuristic (compare the odd vs. even-
numbered models in Table 7) and by computing
overlap on content words (compare Models 6 vs. 8,
and 5 vs. 7).

We used the χ2 test to examine whether the dif-
ferences observed between the two classes of mod-
els are statistically significant. The best constituent-
based model significantly outperforms the best
word-based model both in terms of precision
(χ2 = 114.47, p< 0.001) and recall (χ2 = 400.40,
p< 0.001). Both projection models perform signifi-
cantly worse than humans (p< 0.001).

Discussion. Our results confirm that constituent
information is important for the semantic projection
task. Our best model adopts a conservative strat-
egy which enforces a one-to-one correspondence be-
tween roles and target constituents. This strategy
leads to high precision, however recall lags behind
(see Model 8 in Table 7). Manual inspection of the
projection output revealed that an important source
of missing roles are word alignments gaps. Such
gaps are not only due to noisy alignments, but also
reflect genuine structural differences between trans-
lated sentences. Consider the following (simplified)
example for the STATEMENT frame (introduced by
say) and its semantic role STATEMENT (introduced
by we):

(10) We
Wir

claim
behaupten

X
X

and
und

we
—

say
sagen

Y
Y

The word alignment correctly aligns the German
pronoun wir with the first English we and leaves
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the second occurrence unaligned. Since there is no
corresponding German word for the second we, pro-
jection of the SPEAKER role fails. In future work,
this problem could be handled with explicit identi-
fication of empty categories (see Dienes and Dubey,
2003).

6 Conclusions

In this paper, we argue that parallel corpora show
promise in relieving the lexical acquisition bottle-
neck for low density languages. We proposed se-
mantic projection as a means of obtaining FrameNet
annotations automatically without additional human
effort. We examined semantic parallelism, a prereq-
uisite for accurate projection, and showed that se-
mantic roles can be successfully projected for pred-
icate pairs with matching frame assignments. Sim-
ilarly to previous work (Hwa et al., 2002), we find
that some mileage can be gained by assuming di-
rect correspondence between two languages. How-
ever, linguistic knowledge is key in obtaining mean-
ingful projections. Our experiments show that the
use of constituent information yields substantial im-
provements over relying on word alignment alone.
Nevertheless, the word-based models offer a good
starting point for low-density languages for which
parsers are not available. Their output could be fur-
ther post-processed manually or automatically using
bootstrapping techniques (Riloff and Jones, 1999).

We have presented a general, flexible framework
for semantic projection which can be easily applied
to other languages. An important direction for fu-
ture work lies in the assessment of more shallow
syntactic information (i.e., chunks) which can be ob-
tained more easily for new languages, and generally
in the integration of more linguistic knowledge to
guide projection. Finally, we will incorporate into
our projection approach automatic semantic role an-
notations for the source language and investigate the
potential of the projected annotations for training se-
mantic parsers for the target language.
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Abstract

We present a lexicon-free post-processing
method for optical character recognition
(OCR), implemented using weighted fi-
nite state machines. We evaluate the
technique in a number of scenarios rele-
vant for natural language processing, in-
cluding creation of new OCR capabilities
for low density languages, improvement
of OCR performance for a native com-
mercial system, acquisition of knowledge
from a foreign-language dictionary, cre-
ation of a parallel text, and machine trans-
lation from OCR output.

1 Introduction

The importance of rapidly retargeting existing natu-
ral language processing (NLP) technologies to new
languages is widely accepted (Oard, 2003). Statisti-
cal NLP models have a distinct advantage over rule
based approaches to achieve this goal, as they re-
quire far less manual labor; however, training statis-
tical NLP methods requires on-line text, which can
be hard to find for so-called “low density” languages
— that is, languages where few on-line resources ex-
ist. In addition, for many languages of interest input
data are available mostly in printed form, and must
be converted to electronic form prior to processing.

Optical character recognition (OCR) is often the
only feasible method to perform this conversion,
owing to its speed and cost-effectiveness. Unfor-
tunately, the performance of OCR systems is far

from perfect and recognition errors significantly de-
grade the performance of NLP applications. This is
true both in resource acquisition, such as automated
bilingual lexicon generation (Kolak et al., 2003),
and for end-user applications such as rapid machine
translation (MT) in the battlefield for document fil-
tering (Voss and Ess-Dykema, 2000). Moreover, for
low density languages, there simply may not be an
OCR system available.

In this paper, we demonstrate that via statistical
post-processing of existing systems, it is possible
to achieve reasonable recognition accuracy for low
density languages altogether lacking an OCR sys-
tem, to significantly improve on the performance of
a trainable commercial OCR system, and even to
improve significantly on a native commercial OCR
system.1 By taking a post-processing approach, we
require minimal assumptions about the OCR system
used as a starting point.

The proper role of our post-processing approach
depends on the language. For languages with little
commercial potential for OCR, it may well provide
the most practical path for language-specific OCR
development, given the expensive and time consum-
ing nature of OCR development for new languages
and the “black box” nature of virtually all state-of-
the-art OCR systems. For languages where native
OCR development may take place, it is a fast, prac-
tical method that allows entry into a new language
until native OCR development catches up. For these,
and also for languages where native systems exist,

1Currently we assume the availability of an OCR system that
supports the script of the language-of-interest, or which is script
independent (Natarajan et al., 2001).
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we show that post-processing can yield improve-
ments in performance.

Sections 2 and 3 describe the method and its im-
plementation. In Section 4 we cover a variety of rel-
evant NLP scenarios: Creating OCR capabilities for
Igbo, performing OCR on a dictionary for Cebuano,
using OCR to acquire the Arabic side of a common
parallel text, and evaluating the value of OCR post-
processing for machine translation of Arabic and
Spanish. In Sections 5 and 6 we discuss related work
and summarize our findings.

2 Post-Processing System

We use the noisy channel framework to formulate
the correction problem, revising our previous model
(Kolak et al., 2003). That model takes the form

P (O, b, a, C,W ) =
P (O, b|a,C,W )P (a|C,W )P (C|W )P (W )

whose components are a word-level source model
P (W ), a word-to-character modelP (C|W ), a seg-
mentation modelP (a|C,W ), and a model for char-
acter sequence transformation,P (O, b|a,C,W ). W
is the correct word sequence andC is the corre-
sponding character sequence, which is recognized
asO by the OCR system.a andb are segmentation
vectors forC andO.

The original model requires a lexicon that covers
all words in the processed text — a strong assump-
tion, especially for low density languages. We con-
verted the model into a character-based one, remov-
ing the need for a lexicon. Generation ofW is re-
placed by generation ofC, which rendersP (C|W )
irrelevant, and the model becomes

P (O, b, a, C) = P (O, b|a,C)P (a|C)P (C)

Although word-based models generally perform bet-
ter, moving from words to characters is a necessary
compromise because word-based models are useless
in the absence of a lexicon, which is the case for
many low-density languages.

In addition to eliminating the need for a lexicon,
we developed a novel method for handling word
merge/split errors.2 Rather than modeling these er-

2A merge error occurs when two or more adjacent items are
recognized as one, and a split error occurs when an item is rec-
ognized as two or more items. These errors can happen both at
word level and character level.

rors explicitly using a segmentation model, we sim-
ply treat them as character deletion/insertion errors
involving the space character, allowing us to handle
them within the error model. The segmentation step
is absorbed into the character transformation step,
so a andb are no longer necessary, hence the final
equation becomes

P (O,C) = P (O|C)P (C)

which is a direct application of the noisy chan-
nel model. We can describe the new generative
process as follows: First, a sequence of charac-
tersC are generated, with probabilityP (C), and
the OCR system converts it intoO with probability
P (O|C). For example, if the actual input wasa car
and it was recognized asajar, P (ajar, a car) =
P (ajar|a car)P (a car). Using the channel model
to address word merge/split errors without actually
using a word level model is, to our knowledge, a
novel contribution of our approach.

3 Implementation

We implemented our post-processing system using
the framework of weighted finite state machines
(WFSM), which provides a strong theoretical foun-
dation and reduces implementation time, thanks to
freely available toolkits, such as the AT&T FSM
Toolkit (Mohri et al., 1998). It also allows easy
integration of our post-processor with numerous
NLP applications that are implemented using FSMs
(e.g. (Knight and Graehl, 1997; Kumar and Byrne,
2003)).

3.1 Source Model

The source model assigns probabilityP (C) to orig-
inal character sequences,C. We use character level
n-gram language models as the source model, since
n-gram models are simple, easy to train, and usually
achieve good performance. More complicated mod-
els that make use of constraints imposed by a par-
ticular language, such as vowel harmony, can be uti-
lized if desired. We used the CMU-Cambridge Lan-
guage Modeling Toolkit v2 (Clarkson and Rosen-
feld, 1997) for training, using Witten-Bell smooth-
ing and vocabulary type 1; all other parameters were
left at their default values.
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3.2 Channel Model

The channel model assigns a probability toO given
that it was generated fromC. We experimented with
two probabilistic string edit distance models for im-
plementing the channel model. The first, following
our earlier model (2003), permits single-character
substitutions, insertions, and deletions, with associ-
ated probabilities. For example,P (ajar|a car) ≈
P (a7→a)P ( 7→ε)P (c7→j)P (a7→a)P (r 7→r). Note
that we are only considering the most likely edit se-
quence here, as opposed to summing over all pos-
sible ways to converta car to ajar. The second
is a slightly modified version of the spelling correc-
tion model of Brill and Moore (2000).3 This model
allows many-to-many edit operations, which makes
P (liter|litre) ≈ P (l 7→l)P (i7→i)P (tre7→ter) pos-
sible. We will refer to the these as the single-
character (SC) and multi-character (MC) error mod-
els, respectively.

We train both error models over a set of
corresponding ground truth and OCR sequences,
〈C,O〉. Training is performed using expectation-
maximization: We first find the most likely edit
sequence for each training pair to update the edit
counts, and then use the updated counts to re-
estimate edit probabilities. For MC, after finding the
most likely edit sequence, extended versions of each
non-copy operation that include neighboring charac-
ters are also considered, which allows learning any
common multi-character mappings. Following Brill
and Moore, MC training performs only one iteration
of expectation-maximization.

In order to reduce the time and space require-
ments of the search at correction time, we impose a
limit on number of errors per token. Note that this is
not a parameter of the model, but a limit required by
its computational complexity. A lower limit will al-
most always result in lower correction performance,
so the highest possible limit allowed by time and
memory constraints should be used. It is possible to
correct more errors per token by iterating the correc-
tion process. However, iterative correction cannot
guarantee that the result is optimal under the model.

3We ignore the location of the error within the word, since it
is not as important for OCR as it is for spelling.

3.3 Chunking

Since we do not require a lexicon, we work on
lines of text rather than words. Unfortunately the
search space for correcting a complete line is pro-
hibitively large and we need a way to break it down
to smaller, independent chunks. The chunking step
is not part of the model, but rather a pre-processing
step: chunks are identified, each chunk is corrected
independently using the model, and the corrected
chunks are put back together to generate the output.

Spaces provide a natural break point for chunks.
However, split errors complicate the process: if parts
of a split word are placed in different chunks, the er-
ror cannot be corrected. For example, in Figure 1,
chunking (b) allows the model to produce the de-
sired output, but chunking (a) simply does not allow
combining “sam” and “ple” into “sample”, as each
chunk is corrected independently.

Figure 1:Example of a bad and a good chunking

We address this by using the probabilities as-
signed to spaces by the source model for chunking.
We break the line into two chunks using the space
with the highest probability and repeat the process
recursively until all chunks are reduced to a rea-
sonable size, as defined by time and memory lim-
itations. Crucially, spurious spaces that cause split
errors are expected to have a low probability, and
therefore breaking the line using high probability
spaces reduces the likelihood of placing parts of a
split word in different chunks.

If a lexicon does happen to be available, we can
use it to achieve more reliable chunking, as follows.
The tokens of the input line that are present in the
lexicon are assumed to be correct. We identify runs
of out-of-lexicon tokens and attempt to correct them
together, allowing us to handle split errors. Note
that in this case the lexicon is used only to improve
chunking, not for correction. Consequently, cover-
age of the lexicon is far less important.

Our lexicon-free chunking algorithm placed an
erroneous boundary at 11.3% of word split points
for Arabic test data (Section 4.3). However, cor-
rection performance was identical to that of error-
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Figure 2:A small excerpt from Aku.ko.

free chunking.4 Incorrect decisions did not hurt be-
cause the correction method was not able to fix those
particular split errors, regardless. The errors of the
chunking and correction models coincided as they
both rely on the same language model. Therefore,
chunking errors are unlikely to reduce the correction
performance.

3.4 Correction

Correction is performed by estimating the most
probable source character sequenceĈ for a given
observed character sequenceO, using the formula:

Ĉ = argmax
C
{P (O|C)P (C)}

We first encodeO as an FSA and compose it with
the inverted error model FST.5 The resulting FST is
then composed with the language model FSA. The
final result is a lattice that encodes all feasible se-
quencesC, along with their probabilities, that could
have generatedO. We take the sequence associated
with the most likely path through the lattice aŝC.

4 Evaluation

We evaluate our work on OCR post-processing in
a number of scenarios relevant for NLP, including
creation of new OCR capabilities for low density
languages, improvement of OCR performance for
a native commercial system, acquisition of knowl-
edge from a foreign-language dictionary, creation of
a parallel text, and machine translation from OCR
output. The languages studied include Igbo, Ce-
buano, Arabic, and Spanish.

For intrinsic evaluation, we use the conventional
Word Error Rate (WER) metric, which is defined as

WER(C,O) =
WordEditDistance(C,O)

WordCount(C)

4Ignoring errors that result in valid words, lexicon-based
chunking is always error-free.

5Inversion reverses the direction of the error model, map-
ping observed sequences to possible ground truth sequences.

We do not use the Character Error Rate (CER) met-
ric, since for almost all NLP applications the unit of
information is the words. For extrinsic evaluation of
machine translation, we use the BLEU metric (Pap-
ineni et al., 2002).

4.1 Igbo: Creating an OCR System

Igbo is an African language spoken mainly in Nige-
ria by an estimated 10 to 18 million people, written
in Latin script. Although some Igbo texts use dia-
critics to mark tones, they are not part of the official
orthography and they are absent in most printed ma-
terials. Other than grammar books, texts for Igbo,
even hardcopy, are extremely difficult to obtain. To
our knowledge, the work reported here creates the
first OCR system for this language.

For the Igbo experiments, we used two sources.
The first is a small excerpt containing 6727 words
from the novel “Juo Obinna” (Ubesie, 1993). The
second is a small collection of short stories named
“Aku.ko. Ife Nke Ndi. Igbo” (Green and Onwua-
maegbu, 1970) containing 3544 words. We will re-
fer to the former as “Juo” and the latter as “Aku.ko.”
hereafter. We generated the OCR data using a com-
mercial English OCR system.6 Juo image files were
generated by scanning 600dpi laser printer output at
300dpi resolution. Aku.ko. image files were gener-
ated by scanning photocopies from the bound hard-
copy at 300dpi. Figure 2 provides a small excerpt
from the actual Aku.ko. page images used for recog-
nition. For both texts, we used the first two thirds for
training and the remaining third for testing.

We trained error and language models (EMs and
LMs) using the training sets for Juo and Aku.ko. sep-
arately, and performed corrections of English OCR
output using different combinations of these mod-
els on both test sets. Table 1 shows the results for
the Juo test set while Table 2 presents the results
for Aku.ko.. The relative error reduction ranges from
30% to almost 80%. The SC error model performs
better than the MC error model under all conditions.

6Abby Fine Reader Professional Edition Version 7.0
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Conditions Results
LM Data EM Data EM type WER (%) Red. (%)

Juo Juo MC 8.66 74.18
Juo Aku.ko. MC 15.23 54.59

Aku.ko. Juo MC 13.25 60.49
Aku.ko. Aku.ko. MC 19.08 43.11

Juo Juo SC 7.11 78.80
Juo Aku.ko. SC 11.49 65.74

Aku.ko. Juo SC 13.42 59.99
Aku.ko. Aku.ko. SC 18.92 43.59

Original OCR Output 35.44 -

Table 1:Post-correction WER for English OCR on Juo

Conditions Results
LM Data EM Data EM type WER (%) Red. (%)

Juo Juo MC 21.42 36.33
Juo Aku.ko. MC 18.08 46.25

Aku.ko. Juo MC 21.51 36.06
Aku.ko. Aku.ko. MC 18.16 46.02

Juo Juo SC 19.92 40.78
Juo Aku.ko. SC 16.49 50.98

Aku.ko. Juo SC 19.92 40.78
Aku.ko. Aku.ko. SC 16.40 51.25

Original OCR Output 33.64 -

Table 2:Post-correction WER for English OCR on Aku.ko.

This is due to the fact that MC requires more train-
ing data than SC. Furthermore, most of the errors in
the data did not require many-to-many operations.
Results in Tables 1 and 2 are for 6-gram language
model and error limit of 5; corresponding 3-gram
error rates were 1% to 2% (absolute) higher.

The best correction performance is achieved when
both the EM and LM training data come from the
same source as the test data, almost doubling the
performance achieved when they were from a dif-
ferent source.7 Note that the amount of training data
is small, four to eight pages, so optimizing perfor-
mance via manual entry of document-specific train-
ing text is not unrealistic for scenarios involving
long documents such as books.

4.1.1 Using a Trainable OCR System

In an additional experiment with Igbo, we found that
post-processing can improve performance substan-
tially even when an OCR system trained on Igbo
characters is the starting point. In particular, the
commercial OCR system used for Igbo experiments
supports user-trained character shape models. Us-

7There was no overlap between training and test data under
any circumstance.

Conditions Results
LM Data EM Data WER (%) Red. (%)

Juo Juo 3.69 50.34
Juo Aku.ko. 5.24 29.48

Aku.ko. Juo 5.08 31.63
Aku.ko. Aku.ko. 7.38 0.67

Original OCR Output 7.43 -

Table 3:Post-correction WER for trained OCR system on Juo

ing Juo as the source, we trained the commercial
OCR system manually on Igbo characters, result-
ing in a 7.43% WER on Juo without postprocess-
ing.8 Note that this is slightly higher than the 7.11%
WER achieved using an English OCR system to-
gether with our post-processing model. We used a
6-gram LM, and a SC EM with error limit of 5. Ta-
ble 3 shows that by post-processing the Igbo-trained
OCR system, we reduce the word error rate by 50%.

4.2 Cebuano: Acquiring a Dictionary

Cebuano is a language spoken by about 15 million
people in the Philippines, written in Latin script.
The scenario for this experiment is converting a
Cebuano hardcopy dictionary into electronic form,
as in DARPA’s Surprise Language Dry Run (Oard,
2003). The dictionary that we used had diacritics,
probably to aid in pronunciation. The starting-point
OCR data was generated using a commercial OCR
system.9 The fact that the tokens to be corrected
come from a dictionary means (1) there is little con-
text available and (2) word usage frequencies are not
reflected. Character-based models may be affected
by these considerations, but probably not to the ex-
tent that word-based models would be.

Table 4 shows WER for Cebuano after post-
processing. Thesizecolumn represents the number
of dictionary entries used for training, where each
entry consists of one or more Cebuano words. As
can be seen from the table, our model reduces WER
substantially for all cases, ranging from 20% to 50%
relative reduction. As expected, the correction per-
formance increases with the amount of training data;
note, however, that we achieve reasonable correction
performance even using only 500 dictionary entries
for training.

8The system trains by attempting OCR on a document and
asking for the correct character whenever it is not confident.

9ScanSoft Developer’s Kit 2000, which has no built-in sup-
port for Cebuano.
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Conditions Results
Size LM EM WER (%) Red. (%)
500 3-gram SC 5.37 33.04
500 3-gram MC 5.05 37.03
500 6-gram SC 6.41 20.07
500 6-gram MC 5.33 33.54
1000 3-gram SC 5.33 33.54
1000 3-gram MC 4.63 42.27
1000 6-gram SC 5.58 30.42
1000 6-gram MC 4.67 41.77
27363 3-gram SC 4.34 45.89
27363 3-gram MC 4.14 48.38
27363 6-gram SC 4.55 43.27
27363 6-gram MC 3.97 50.50
Original OCR Output 8.02 -

Table 4:Post-correction WER for Cebuano

Contrary to the Igbo results, the MC error model
performs better than the SC error model. And, inter-
estingly, the 3-gram language model performs better
than the 6-gram model, except for the largest train-
ing data and MC error model combination. Both dif-
ferences are most likely caused by the implications
of using a dictionary as discussed above.

4.3 Arabic: Acquiring Parallel Text

We used Arabic to illustrate conversion from hard-
copy to electronic text for a widely available paral-
lel text, the Bible (Resnik et al., 1999; Kanungo et
al., 2005; Oard, 2003). We divided the Bible into
ten equal size segments, using the first segment for
training the error model, the first nine segments for
the language model, and the first 500 verses from
the last segment for testing. Since diacritics are only
used in religious text, we removed all diacritics. The
OCR data was generated using a commercial Ara-
bic OCR system.10 Note that this evaluation differs
from Igbo and Cebuano, as the experiments were
performed using an existingnativeOCR system. It
also allowed us to evaluate chunking, as Arabic data
has far more word merge/split errors compared to
Igbo and Cebuano.

Table 5 shows the correction performance for
Arabic under various conditions. TheLimit col-
umn lists the maximum number of errors per to-
ken allowed and theM/S column indicates whether
correction of word merge/split errors was allowed.
We achieve significant reductions in WER for Ara-
bic. The first two rows show that the 6-gram lan-

10Sakhr Automatic Reader Version 6.0

Conditions Results
M/S LM Limit WER (%) Red. (%)
no 3-gram 2 22.14 10.33
no 6-gram 2 17.99 27.14
yes 3-gram 2 18.26 26.04
yes 3-gram 4 17.74 28.15
yes 5-gram 2 20.74 16.00
Original OCR Output 24.69 -

Table 5:Post-correction WER for Arabic

guage model performs much better than the 3-gram
model. Interestingly, higher ordern-grams perform
worse when we allow word merge/split errors. Note
that for handling word merge/split errors we need to
learn the character distributions within lines, rather
than within words as we normally do. Consequently,
more training data is required for reliable parameter
estimation. Handling word merge/split errors im-
prove the performance, which is expected. Allow-
ing fewer errors per token reduces the performance,
since it is not possible to correct words that have
more character errors than the limit. Unfortunately,
increasing the error limit increases the search space
exponentially, making it impossible to use high lim-
its. As mentioned in Section 3.2, iterative correction
is a way to address this problem.

4.4 Extrinsic Evaluation: MT

While our post-processing methods reduce WER,
our main interest is their impact on NLP applica-
tions. We have performed machine translation ex-
periments to measure the effects of OCR errors and
the post-processing approach on NLP application
performance.

For Arabic, we trained a statistical MT system us-
ing the first nine sections of the Bible data. The lan-
guage model is trained using the CMU-Cambridge
toolkit and the translation model using the GIZA++
toolkit (Och and Ney, 2000). We used the ReWrite
decoder (Germann, 2003) for translation.

BLEU scores for OCR, corrected, and clean text
were 0.0116, 0.0141, and 0.0154, respectively. This
establishes that OCR errors degrade the performance
of the MT system, and we are able to bring the per-
formance much closer to the level of performance
on clean text by using post-processing. Clearly the
BLEU scores are quite low; we are planning to per-
form experiments on Arabic using a more advanced
translation system, such as Hiero (Chiang, 2005).
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MT System Input Text BLEU Score
Systran OCR 0.2000
Systran Corrected 0.2606
Systran Clean 0.3188
ReWrite OCR 0.1792
ReWrite Corrected 0.2234
ReWrite Clean 0.2590

Table 6:Spanish-English translation results

In order to test in a scenario with better trans-
lation performance, we performed MT evaluations
using Spanish. We used a commercial translation
system, Systran, in addition to statistical translation.
More resources being available for this language,
corrected text for Spanish experiments was obtained
using our original model that takes advantage of a
lexicon (2003). Table 6 shows that scores are much
higher compared to Arabic, but the pattern of im-
provements using post-processing is the same.

5 Related Work

There has been considerable research on automatic
error correction in text. Kukich (1992) provides a
general survey of the research in the area. Unfor-
tunately, there is no standard evaluation benchmark
for OCR correction, and implementations are usu-
ally not publicly available, making a direct compar-
ison difficult.

Most correction methods are not suitable for
low density languages as they rely on lexicons.
Goshtasby and Ehrich (1988) present a lexicon-free
method based on probabilistic relaxation labeling.
However, they use the probabilities assigned to in-
dividual characters by the OCR system, which is
not always available. Perez-Cortes et al. (2000) de-
scribe a method which does not have this limitation.
They use a stochastic FSM that accepts the smallest
k-testable language consistent with a representative
sample. While the method can handle words not in
its lexicon in theory, it was evaluated using a large
k to restrict corrections to the lexicon. They report
reducing error rate from 33% to below 2% on OCR
output of hand-written Spanish names.

In addition to providing alternatives, the litera-
ture provides complementary methods. Guyon and
Pereira (1995) present a linguistic post-processor
based on variable memory length Markov models
that is designed to be used as the language model

component of character recognizers. Their model
can be used as the source model for our method.
Since it is a variable length model, it can allow us
to handle higher ordern-grams.

A script-independent OCR system is presented by
Natarajan et al. (2001). The system is evaluated
on Arabic, Chinese, and English, achieving 0.5% to
5% CER under various conditions. Since our post-
processing method can be used to reduce the error
rate of a trained OCR system, the two methods can
be combined to better adapt to new languages.

Voss and Ess-Dykema (2000) evaluated the ef-
fects of OCR errors on MT in the context of the
FALCon project, which combines off-the-shelf OCR
and MT components to provide crude translations
for filtering. They report significant degradation in
translation performance as a result of OCR errors.
For instance, for the Spanish system, OCR process
reduced the number of words that can be recognized
by the translation module by more than 60%.

6 Conclusions

We have presented a statistical post-processing
method for OCR error correction that requires mini-
mal resources, aimed particularly at low density lan-
guages and NLP scenarios. The technique gains
leverage from existing OCR systems, enabling both
minimal-labor adaptation of systems to new low
density languages and improvements in native OCR
performance.

We rigorously evaluated our approach using real
OCR data, and have shown that we can achieve
recognition accuracy lower than that achieved by a
trainable OCR system for a new language. For Igbo,
a very low density language, adapting English OCR
achieved relative error reductions as high as 78%, re-
sulting in 7.11% WER. We also showed that the er-
ror rate of a trainable OCR system after training can
be further reduced up to 50% using post-processing,
achieving a WER as low as 3.7%. Post-processing
experiments using Cebuano validate our approach in
a dictionary-acquisition scenario, with a 50.5% rel-
ative reduction in error rate from 8.02% to 3.97%.
Evaluation on Arabic demonstrated that the error
rate for a native commercial OCR system can be re-
duced by nearly 30%. In addition, we measured the
impact of post-processing on machine translation,
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quantifying OCR degradation of MT performance
and showing that our technique moves the perfor-
mance of MT on OCR data significantly closer to
performance on clean input. See Kolak (forthcom-
ing) for more details and discussion.

One limitation of our approach is its reliance on
an existing OCR system that supports the script of
the language of interest. Trainable OCR systems
are the only option if there is no OCR system that
supports the script of interest; however, training an
OCR system from scratch is usually a tedious and
time consuming task. Post-processing can be used
to reduce the training time and improve recognition
accuracy by aiding generation of more training data
once basic recognition capability is in place.
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Abstract

Dictionaries and word translation models
are used by a variety of systems, espe-
cially in machine translation. We build
a multilingual dictionary induction system
for a family of related resource-poor lan-
guages. We assume only the presence
of a single medium-length multitext (the
Bible). The techniques rely upon lexical
and syntactic similarity of languages as
well as on the fact that building dictionar-
ies for several pairs of languages provides
information about other pairs.

1 Introduction and Motivation

Modern statistical natural language processing tech-
niques require large amounts of human-annotated
data to work well. For practical reasons, the required
amount of data exists only for a few languages of
major interest, either commercial or governmental.
As a result, many languages have very little com-
putational research done in them, especially outside
the borders of the countries in which these languages
are spoken. Some of these languages are, however,
major languages with hundreds of millions of speak-
ers. Of the top 10 most spoken languages, Lin-
guistic Data Consortium at University of Pennsyl-
vania, the premier U.S. provider of corpora, offers
text corpora only in 7 (The World Factbook (2004),
2000 estimate) Only a few of the other languages
(French, Arabic, and Czech) have resources pro-
vided by LDC. Many Asian and Eastern European
languages number tens of millions of speakers, yet
very few of these seem to have any related compu-

tational linguistics work, at least as presented at the
international conferences, such as the ACL.1

The situation is not surprising, nor is it likely to
significantly change in the future. Luckily, most
of these less-represented languages belong to lan-
guage families with several prominent members. As
a result, some of these languages have siblings with
more resources and published research.2 Inter-
estingly, the better-endowed siblings are not always
the ones with more native speakers, since political
considerations are often more important.3 If one
is able to use the resources available in one lan-
guage (henceforth referred to assource) to facilitate
the creation of tools and resource in another, related
language (target), this problem would be alleviated.
This is the ultimate goal of this project, but in the
first stage we focus on multi-language dictionary in-
duction.

Building a high-quality dictionary, or even bet-
ter, a joint word distribution model over all the lan-
guages in a given family is very important, because
using such a model one can use a variety of tech-
niques to project information across languages, e.g.
to parse or to translate. Building a unified model for
more than a pair of languages improves the quality
over building several unrelated pairwise models, be-
cause relating them to each other provides additional
information. If we know that worda in languageA
has as its likely translation wordb in languageB,
andb is translated asc in C, then we also know that
a is likely to be translated asc, without looking at

1The search through ACL Anthology, for e.g., Telugu (∼70
million speakers) shows only casual mention of the language.

2Telugu’s fellow Dravidian languageTamil (∼65 million
speakers) has seen some papers at the ACL

3This is the case with Tamil vs. Telugu.
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theA toC model.

2 Previous Work

There has been a lot of work done on building dic-
tionaries, by using a variety of techniques. One
good overview is Melamed (2000). There is work
on lexicon induction using string distance or other
phonetic/orthographic comparison techniques, such
as Mann and Yarowsky (2001) or semantic com-
parison using resources such as WordNet (Kondrak,
2001). Such work, however, primarily focuses on
finding cognates, whereas we are interested in trans-
lations of all words. Moreover, while some tech-
niques (e.g., Mann and Yarowsky (2001)) use mul-
tiple languages, the languages usedhaveresources
such as dictionaries between some language pairs.
We do not require any dictionaries for any language
pair.

An important element of our work is focusing on
more than a pair of languages. There is an active
research area focusing on multi-source translation
(e.g., Och and Ney (2001)). Our setting is the re-
verse: we do not use multiple dictionaries in order
to translate, but translate (in a very crude way) in
order to build multiple dictionaries.

Many machine translation techniques require dic-
tionary building as a step of the process, and there-
fore have also attacked this problem. They use a va-
riety of approaches (a good overview is Koehn and
Knight (2001)), many of which require advanced
tools for both languages which we are not able to
use. They also use bilingual (and to some extent
monolingual) corpora, which we do have available.
They do not, however, focus on related languages,
and tend to ignore lexical similarity4, nor are they
able to work on more than a pair of languages at a
time.

It is also worth noting that there has been some
MT work on related languages which explores lan-
guage similarity in an opposite way: by using dic-
tionaries and tools for both languages, and assum-
ing that a near word-for-word approach is reasonable
(Hajic et al., 2000).

4Much of recent MT research focuses on pairs of languages
which are not related, such as English-Chinese, English-Arabic,
etc.

3 Description of the Problem

Let us assume that we have a group of related lan-
guages,L1 . . . Ln, and a parallel sentence-aligned
multitext C, with corresponding portions in each
language denoted asC1 . . . Cn. Such a multitext ex-
ists for virtually all the languages in the form of the
Bible. Our goal is to create a multilingual dictionary
by learning the joint distributionP (x1 . . . xn)xi∈Li
which is simply the expected frequency of then-
tuple of words in a completely word-aligned mul-
titext. We will approach the problem by learning
pairwise language models, although leaving some
parameters free, and then combine the models and
learn the remaining free parameters to produce the
joint model.

Let us, therefore, assume that we have a set of
models{P (x, y|θij)x∈Li,y∈Lj}i6=j where θij is a
parameter vector for pairwise model for languages
Li andLj . We would like to learn how to combine
these models in an optimal way. To solve this prob-
lem, let us first consider a simpler and more general
setting.

3.1 Combining Models of Hidden Data

Let X be a random variable with distribution
Ptrue(x), such that no direct observations of it exist.
However, we may have some indirect observations
of X and have built several models ofX ’s distri-
bution,{Pi(x|θi)}ni=1, each parameterized by some
parameter vectorθi. Pi also depends on some other
parameters that are fixed. It is important to note that
the space of models obtained by varyingθi is only a
small subspace of the probability space. Our goal is
to find a good estimate ofPtrue(x).

The main idea is that if somePi andPj are close
(by some measure) toPtrue, they have to be close
to each other as well. We will therefore make the
assumption that if some models ofX are close to
each other (and we have reason to believe they are
fair approximations of the true distribution) they are
also close to the true distribution. Moreover, we
would like to set the parametersθi in such a way
thatP (xi|θi) is as close to the other models as pos-
sible. This leads us to look for an estimate that is
as close to all of our models as possible, under the
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optimal values ofθi’s, or more formally:

Pest= arg min
P̂ (·)

min
θ1

. . .min
θn

d(P̂ (·), P1(·|θ1), . . . Pn(·|θn))

wheredmeasures the distance betweenP̂ and all the
Pi under the parameter settingθi. Since we have no
reason to prefer any of thePi, we choose the follow-
ing symmetric form ford:

n∑
i=1

D(P̂ (·)||Pi(·|θi))

whereD is a reasonable measure of distance be-
tween probability distributions. The most appro-
priate and the most commonly used measure in
such cases in the Kullback-Leibler divergence, also
known as relative entropy:

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

It turns out that it is possible to find the optimalP̂
under these circumstances. Taking a partial deriva-
tive and solving, we obtain:

P̂ (x) =
∏n
i=1 Pi(x|θi)1/n∑

x′∈X
∏n
i=1 Pi(x′|θi)1/n

Substituting this value into the expression for
function d, we obtain the following distance mea-
sure between thePi’s:

d′(P1(X|θ1) . . . Pn(X|θn))
= minP̂ d(P̂ , P1(X|θ1), . . . Pn(X|θn))
= − log

∑
x∈X

∏n
i=1 Pi(x|θi)1/n

This function is a generalization of the well-
known Bhattacharyya distance for two distributions
(Bhattacharyya, 1943):

b(p, q) =
∑
i

√
piqi

These results suggest the followingAlgorithm 1
to optimized (andd′):

• Set allθi randomly

• Repeat until change ind is very small:

– ComputeP̂ according to the above for-
mula

– For i from 1 ton

∗ Set θi in such a way as to minimize
D(P̂ (X)||Pi(X|θi))

– Computed according to the above for-
mula

Each step of the algorithm minimizesd. It is also
easy to see that minimizingD(P̂ (X)||Pi(X|θi)) is
the same as setting the parametersθi in order to max-
imize

∏
x∈X Pi(x|θi)P̂ (x), which can be interpreted

as maximizing the probability underPi of a cor-
pus in which wordx appearsP̂ (x) times. In other
words, we are now optimizingPi(X) given an ob-
served corpus ofX, which is a much easier problem.
In many types of models forPi the Expectation-
Maximization algorithm is able to solve this prob-
lem.

3.2 Combining Pairwise Models

Following the methods outlined in the previous
section, we can find an optimal joint probability
P (x1 . . . xn)xi∈Li if we are given several models
Pj(x1 . . . xn|θj). Instead, we have a number of pair-
wise models. Depending on which independence as-
sumptions we make, we can define a joint distribu-
tion over all the languages in various ways. For ex-
ample, for three languages,A,B, andC, and we can
use the following set of models:

P1(A,B,C) = P (A|B)P (B|C)P (C)
P2(A,B,C) = P (C|A)P (A|B)P (B)
P3(A,B,C) = P (B|C)P (C|A)P (A)

and

d′(P̂ , P1, P2, P3)
= D(P̂ ||P1) +D(P̂ ||P2) +D(P̂ ||P3)
= 2H(P̂ (A,C), P (A,C))
+ 2H(P̂ (A,B), P (A,B))
+ 2H(P̂ (B,C), P (B,C))− 3H(P̂ )
− H(P̂ (A), P (A))−H(P̂ (B), P (B))
− H(P̂ (C), P (C))

whereH(·) is entropy,H(·, ·) is cross-entropy, and
P̂ (A,B) meansP̂ marginalized to variablesA,B.
The last three cross-entropy terms involve monolin-
gual models which are not parameterized. The en-
tropy term does not involve any of the pairwise dis-
tributions. Therefore, ifP̂ is fixed, to maximized′
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we need to maximize each of the bilingual cross-
entropy terms.

This means we can apply the algorithm from
the previous section with a small modification
(Algorithm 2 ):

• Set all θij (for each language pairi, j) ran-
domly

• Repeat until change ind is very small:

– ComputePi for i = 1 . . . k wherek is the
number of the joint models we have cho-
sen

– ComputeP̂ from {Pi}
– For i, j such thati 6= j

∗ MarginalizeP̂ to (Li, Lj)
∗ Setθij in such a way as to minimize
D(P̂ (Li, Lj)||Pi(Li, Lj |θij))

– Computed according to the above for-
mula

Most of theθ parameters in our models can be
set by performing EM, and the rest are discrete with
only a few choices and can be maximized over by
trying all combinations of them.

4 Building Pairwise Models

We now know how to combine pairwise translation
models with some free parameters. Let us now dis-
cuss how such models might be built.

Our goal at this stage is to take a parallel bitext
in related languagesA andB and produce a joint
probability modelP (x, y), wherex ∈ A, y ∈ B.
Equivalently, since the modelsPA(x) and PB(y)
are easily estimated by maximum likelihood tech-
niques from the bitext, we can estimatePA→B(y|x)
or PB→A(x|y). Without loss of generality, we will
build PA→B(y|x).

The model we are building will have a number of
free parameters. These parameters will be set by the
algorithm discussed above. In this section we will
assume that the parameters are fixed.

Our model is a mixture of several components,

each discussed in a separate section below:

PA→B(y|x) = λfw(x)PfwA→B(y|x)
+ λbw(x)PbwA→B(y|x)
+ λchar(x)PcharA→B(y|x)
+ λpref (x)PprefA→B(y|x)
+ λsuf (x)PsufA→B(y|x)
+ λcons(x)PconsA→B(y|x)

(1)

where allλs sum up to one. Theλs are free pa-
rameters, although to avoid over-training we tie the
λs for x’s with similar frequencies. These lambdas
form a part of theθij parameter mentioned previ-
ously, whereLi = A andLj = B.

The components represent various constraints that
are likely to hold between related languages.

4.1 GIZA (forward)

This component is in fact GIZA++ software, origi-
nally created by John Hopkins University’s Summer
Workshop in 1999, improved by Och (2000). This
software can be used to create word alignments for
sentence-aligned parallel corpora as well as to in-
duce a probabilistic dictionary for this language pair.

The general approach taken by GIZA is as fol-
lows. LetLA andLB be the portions of the par-
allel text in languagesA andB respectively, and
LA = (xi)i=1...n andLB = (yi)i=1...m. We can
defineP (LB|LA) as

max
PA→B

max
Paligns

n∑
i=1

m∑
j=1

PA→B (yj |xi)Paligns(xi|j)

The GIZA software does the maximization by
building a variety of models, mostly described by
Brown et al. (1993). GIZA can be tuned in various
ways, most importantly by choosing which models
to run and for how many iterations. We treat these
parameters as free, to be set along with the rest at a
later stage.

As a side effect of GIZA’s optimization, we obtain
the PA→B(y|x) that maximizes the above expres-
sion. It is quite reasonable to believe that a model
of this sort is also a good model for our purposes.
This model is what we refer to asPfwA→B(y|x) in
the model overview.

GIZA’s approach is not, however, perfect. GIZA
builds several models, some quite complex, yet it
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does not use all the information available to it, no-
tably the lexical similarity between the languages.
Furthermore, GIZA tries to map words (especially
rare ones) into other words if possible, even if the
sentence has no direct translation for the word in
question.

These problems are addressed by using other
models, described in the following sections.

4.2 GIZA (backward)

In the previous section we discussed using GIZA to
try to optimizeP (LB|LA). It is, however, equally
reasonable to try to optimizeP (LA|LB) instead. If
we do so, we can obtainPfwB→A(x|y) that pro-
duces maximal probability forP (LA|LB). We,
however need a model ofPA→B(y|x). This is easily
obtained by using Bayes’ rule:

PbwA→B(y|x) =
PfwB→A(x|y)PB(y)

PA(x)

which requires us to havePB(y) andPA(x). These
models can be estimated directly fromLB andLA,
by using maximum likelihood estimators:

PA(x) =
∑
i δ(xi, x)
n

and

PB(y) =
∑
i δ(yi, y)
m

where δ(x, y) is the Kronecker’s delta function,
which is equal to 1 if its arguments are equal, and
to 0 otherwise.

4.3 Character-based model

This and the following models all rely on having a
model ofPA→B(y|x) to start from. In practice it
means that this component is estimated following
the previous components and uses the models they
provide as a starting point.

The basic idea behind this model is that in related
languages words are also related. If we have a model
Pc of translating characters in language A into char-
acters in language B, we can define the model for
translating entire words.

Let wordx in languageA consists of characters
x1 throughxn, and wordy in languageB consist of
charactersy1 throughym.

Let us define (the unnormalized) character model:

Puchar(y|x) = Pcharlen(y|x,m)Plength(m|x)

i.e., estimating the length ofy first, andy itself af-
terward. We make an independence assumption that
the length ofy depends only on length ofx, and are
able to estimate the second term above easily. The
first term is harder to estimate.

First, let us consider the case where lengths ofx
andy are the same (m = n). Then,

Pcharlen(y|x, n) =
n∏
i=1

Pc(yi|xi)

Let yj be wordy with j’s character removed. Let
us now consider the case whenm > n. We define
(recursively):

Pcharlen(y|x,m) =
m∑
i=1

1
m
Pcharlen(yi|x,m− 1)

Similarly, if n > m:

Pcharlen(y|x) =
n∑
i=1

1
n
Pcharlen(y|xi,m)

It is easy to see that this is a valid probability
model over all sequences of characters. However,
y is not a random sequence of characters, but a word
in languageB, moreover, it is a word that can serve
as a potential translation of wordx. So, to define a
proper distribution over wordsy given a wordx and
a set of possible translations ofx, T (x)

Pchar(y|x) = Puchar (y|x, y ∈ T (x))
= δy′∈T (x)

Puchar(y,y∈T (x)|x)∑
y′∈T (x)

Puchar(y′|x)

This is the complete definition ofPchar, except
for the fact that we are implicitly relying upon the
character-mapping model,Pc, which we need to
somehow obtain. To obtain it, we rely upon GIZA
again. As we have seen, GIZA can find a good word-
mapping model if it has a bitext to work from. If we
have aPA→B word-mapping model of some sort, it
is equivalent to having a parallel bitext with wordsy
andx treated as a sequence of characters, instead of
indivisible tokens. Each(x, y) word pair would oc-
cur PA→B(x, y) times in this corpus. GIZA would
then provide us with thePc model we need, by opti-
mizing the probabilityB language part of the model
given the languageA part.
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4.4 Prefix Model

This model and the two models that follow are built
on the same principle. Let there be a functionf :
A → CA and a functiong : B → CB. These func-
tions group words inA andB into some finite set of
classes. If we have somePA→B(y|x) to start with,
we can define

PfgA→B(y|x)
= P (y|g(y))P (g(y)|f(x))P (f(x)|x)

= P (y)
∑

x′:f(x′)=f(x)

∑
y′:g(y′)=g(y)

P (x′,y′)(∑
x′:f(x′)=f(x)

P (x′)

)(∑
y′:g(y′)=g(y)

P (y′)

)
For the prefix model, we rely upon the following

idea: words that have a common prefix often tend to
be related. Related words probably should translate
as related words in the other language as well. In
other words, we are trying to capture word-level se-
mantic information. So we define the following set
of f andg functions:

fn(x) = prefix(x, n)

gm(y) = prefix(y,m)

where n and m are free parameters, whose values we
will determine later. We therefore definePprefA→B
asPfg with f andg specified above.

4.5 Suffix Model

Similarly to a prefix model mentioned above, it is
also useful to have a suffix model. Words that have
the same suffixes are likely to be in the same gram-
matical case or share some morphological feature
which may persist across languages. In either case,
if a strong relationship exists between the result-
ing classes, it provides good evidence to give higher
likelihood to the word belonging to these classes. It
is worth noting that this feature (unlike the previous
one) is unlikely to be helpful in a setting where lan-
guages are not related.

The functionsf andg are defined based on a set of
suffixesSA andSB which are learned automatically.
f(x) is defined as the longest possible suffix ofx
that is in the setSA, andg is defined similarly, for
SB.

The setsSA andSB are built as follows. We start
with all one-character suffixes. We then consider
two-letter suffixes. We add a suffix to the list if it

occurs much more often than can be expected based
on the frequency of its first letter in the penultimate
position, times the frequency of its second letter in
the last position. We then proceed in a similar way
for three-letter suffixes. The threshold value is a free
parameter of this model.

4.6 Constituency Model

If we had information about constituent boundaries
in either language, it would have been useful to
make a model favoring alignments that do not cross
constituent boundaries. We do not have this infor-
mation at this point. We can assume, however, that
any sequence of three words is a constituent of sorts,
and build a model based on that assumption.

As before, letLA = (xi)i=1...n and LB =
(yi)i=1...m. Let us define asCA(i) a triple
of words (xi−1, xi, xi+1) and asCB(j) a triple
(yj−1, yj , yj+1). If we have some modelPA→B, we
can define

PCA→CB (j|i) = 1
C
PA→B(yj−1|xi−1)PA→B(yj |xi)

× PA→B(yj+1|xi+1)

whereC is the sum overj of the above products, and
serves to normalize the distribution.

PconsA→B(y|x)
=

∑n

i=1

∑m

j=1
P (y|CB(j))PCA→CB (j|i)P (CA(i)|x)

=
∑
i:xi=x

∑m
j=1 P (y|CB(j))PCA→CB (j|i)

= 1∑
j=1

δ(yj ,y)

∑
i:xi=x

∑
j:yi=y PCA→CB (j|i)

5 Evaluation

The output of the system so far is a multi-lingual
word translation model. We will evaluate it by pro-
ducing a tri-lingual dictionary (Russian-Ukrainian-
Belorussian), picking a highest probability transla-
tion for each word, from the corresponding Bibles.
Unfortunately, we do not have a good hand-built tri-
lingual dictionary to compare it to, but only one
good bilingual one, Russian-Ukrainian5. We will
therefore take the Russian-Ukrainian portion of our
dictionary and compare it to the hand-built one.

Our evaluation metric is the number of entries that
match between these dictionaries. If a word has sev-
eral translations in the hand-built dictionary, match-

5The lack of such dictionaries is preciselywhy we do this
work
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ing any of them counts as correct. It is worth not-
ing that for all the dictionaries we generate, the to-
tal number of entries is the same, since all the words
that occur in the source portion of the corpus have an
entry. In other words, precision and recall are pro-
portional to each other and to our evaluation metric.

Not all of the words that occur in our dictionary
occur in the hand-built dictionary and vice versa. An
absolute upper limit of performance, therefore, for
this evaluation measure is the number of left-hand-
side entries that occur in both dictionaries.

In fact, we cannot hope to achieve this number.
First, because the dictionary translation of the word
in question might never occur in the corpus. Second,
even if it does, but never co-occurs in the same sen-
tence as its translation, we will not have any basis
to propose it as a translation.6. Therefore we have
a “achievable upper limit”, the number of words
that have their “correct” translation co-occur at least
once. We will compare our performance to this up-
per limit.

Since there is no manual tuning involved we do
not have a development set, and use the whole bible
for training (the dictionary is used as a test set, as
described above).

We evaluate the performance of the model with
just the GIZA component as the baseline, and add
all the other components in turn. There are two pos-
sible models to evaluate at each step. The pairwise
model is the model given in equation 1 under the
parameter setting given by Algorithm 2, with Be-
lorussian used as a third language. The joint model
is the full model over these three languages as es-
timated by Algorithm 2. In either case we pick a
highest probability Ukrainian word as a translation
of a given Russian word.

The results for Russian-Ukrainian bibles are pre-
sented in Table 1. The “oracle” setting is the set-
ting obtained by tuning on the test set (the dictio-
nary). We see that using a third language to tune
works just as well, obtaining the true global max-
imum for the model. Moreover, the joint model
(which is more flexible than the model in Equation
1) does even better. This was unexpected for us, be-

6Strictly speaking, we might be able to infer the word’s exis-
tence in some cases, by performing morphological analysis and
proposing a word we have not seen, but this seems too hard at
the moment

Table 1: Evaluation for Russian-Ukrainian (with Be-
lorussian to tune)

Stage Pair Joint
Forward (baseline) 62.3% 71.7%
Forward+chars 77.1% 84.2%
Forward+chars+backward 81.3% 84.1%
Fw+chars+bw+prefix 83.5% 84.5%
Fw+chars+bw+prefix+suffix 84.5% 85%
Fw+chars+bw+pref+suf+const84.5% 85.2%

“Oracle” setting forλ’s 84.6%

Table 2: Evaluation for Russian-Ukrainian (with Be-
lorussian and Polish)

Tuned by Pair Joint
Belorussian (prev. table) 84.5% 85.2% &
Polish 84.6% 78.6%
Both 84.5% 85.2%

“Oracle” tuning 84.5%

cause the joint model relies on three pairwise mod-
els equally, and Russian-Belorussian and Ukrainian-
Belorussian models are bound to be less reliable for
Russian-Ukrainian evaluation. It appears, however,
that our Belorussian bible is translated directly from
Russian rather than original languages, and parallels
Russian text more than could be expected.

To insure our results are not affected by this fact
we also try Polish separately and in combination
with Belorussian (i.e. a model over 4 languages),
as shown in Table 2.

These results demonstrate that the joint model
is not as good for Polish, but it still finds the
optimal parameter setting. This leads us to pro-
pose the following extension: let us marginalize
joint Russian-Ukrainian-Belorussian model into just
Russian-Ukrainian, and add this model as yet an-
other component to Equation 1. Now we cannot use
Belorussian as a third language, but we can use Pol-
ish, which we know works just as well for tuning.
The resulting performance for the model is85.7%,
our best result to date.
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6 Discussion and Future Work

We have built a system for multi-dictionary in-
duction from parallel corpora which significantly
improves quality over the standard existing tool
(GIZA) by taking advantage of the fact that lan-
guages are related and we have a group of more
than two of them. Because the system attempts to
be completely agnostic about the languages it works
on, it might be used successfully on many language
groups, requiring almost no linguistic knowledge on
the part of the user. Only the prefix and suffix com-
ponents are somewhat language-specific, but even
they are sufficiently general to work, with varying
degree of success, on most inflective and agglutina-
tive languages (which form a large majority of lan-
guages). For generality, we would also need a model
of infixes, for languages such as Hebrew or Arabic.
We must admit, however, that we have not tested
our approach on other language families yet. It is
our short term plan to test our model on several Ro-
mance languages, e.g. Spanish, Portuguese, French.

Looking at the first lines of Table 1, one can see
that using more than a pair of languages with a
model using only a small feature set can dramat-
ically improve performance (compare second and
third columns), while able to find the optimal val-
ues for all internal parameters.

As discussed in the introduction, the ultimate goal
of this project is to produce tools, such as a parser,
for languages which lack them. Several approaches
are possible, all involving the use of the dictionary
we built. While working on this project, we would
no longer be treating all languages in the same way.
We would use the tools available for that language to
further improve the performance of pairwise mod-
els involving that language and, indirectly, even the
pairs not involving this language. Using these tools,
we may be able to improve the word translation
model even further, simply as a side effect.

Once we build a high-quality dictionary for a spe-
cial domain such as the Bible, it might be possible to
expand to a more general setting by mining the Web
for potential parallel texts.

Our technique is limited in the coverage of the
resulting dictionary which can only contain words
which occur in our corpus. Whatever the corpus
may be, however, it will include the most common

words in the target language. These are the words
that tend to vary the most between related (and even
unrelated) languages. The relatively rare words (e.g.
domain-specific and technical terms) can often be
translated simply by inferring morphological rules
transforming words of one language into another.
Thus, one may expand the dictionary coverage us-
ing non-parallel texts in both languages, or even in
just one language if its morphology is sufficiently
regular.
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Abstract

We develop an unsupervised semantic role
labelling system that relies on the direct
application of information in a predicate
lexicon combined with a simple probabil-
ity model. We demonstrate the usefulness
of predicate lexicons for role labelling,
as well as the feasibility of modifying an
existing role-labelled corpus for evaluat-
ing a different set of semantic roles. We
achieve a substantial improvement over an
informed baseline.

1 Introduction

Intelligent language technologies capable of full
semantic interpretation of domain-general text re-
main an elusive goal. However, statistical advances
have made it possible to address core pieces of
the problem. Recent years have seen a wealth of
research on one important component of seman-
tic interpretation—automatic role labelling (e.g.,
Gildea and Jurafsky, 2002; Pradhan et al., 2004; Ha-
cioglu et al., 2004, and additional papers from Car-
reras and Marquez, 2004). Such work aims to an-
notate each constituent in a clause with a semantic
tag indicating the role that the constituent plays with
respect to the target predicate, as in (1):

(1) [Yuka]Agent [whispered]Pred to [Dar]Recipient

Semantic role labelling systems address a crucial
first step in the automatic extraction of semantic re-
lations from domain-general text, taking us closer to
the goal of comprehensive semantic mark-up.

Most work thus far on domain-general role la-
belling depends on supervised learning over statis-
tical features extracted from a hand-labelled corpus.

The reliance on such a resource—one in which the
arguments of each predicate are manually identified
and assigned a semantic role—limits the portability
of such methods to other languages or even to other
genres of corpora.

In this study, we explore the possibility of using a
verb lexicon, rather than a hand-labelled corpus, as
the primary resource in the semantic role labelling
task. Perhaps because of the focus on what can
be gleaned from labelled data, existing supervised
approaches have made little use of the additional
knowledge available in the predicate lexicon asso-
ciated with the labelled corpus. By contrast, we ex-
ploit the explicit knowledge of the role assignment
possibilities for each verb within an existing lexi-
con. Moreover, we utilize a very simple probability
model within a highly efficient algorithm.

We use VerbNet (Kipper et al., 2000), a computa-
tional lexicon which lists the possible semantic role
assignments for each of its verbs. Our algorithm
extracts automatically parsed arguments from a cor-
pus, and assigns to each a list of the compatible roles
according to VerbNet. Arguments which are given
only a single role possibility are considered to have
been assigned an unambiguous role label. This set
of arguments constitutes our primary-labelled data,
which serves as the noisy training data for a simple
probability model which is then used to label the re-
maining (role ambiguous) arguments.

This method has several advantages, the foremost
of which is that it eliminates the dependence on a
role labelled corpus, a very expensive resource to
produce. Of course, a verb lexicon is also an expen-
sive resource, but one that is highly reusable across a
range of NLP tasks. Moreover, the approach points
at some potentially useful information that current
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supervised methods have failed to exploit. Even if
one has access to an annotated corpus for training,
our work shows that directly calling on additional
information from the lexicon itself may prove useful
in restricting the possible labels for an argument.

The method has disadvantages as well. The in-
formation available in a predicate lexicon is less di-
rectly applicable to building a learning model. In-
evitably, our results are noisier than in a super-
vised approach which has access to a labelled sam-
ple of what it must produce. Still, the method shows
promise: on unseen test data, the system yields an
F-measure of .83 on labelling of correctly extracted
arguments, compared to an informed baseline of .74,
and an F-measure of .65 (compared to .52) on the
overall identification and labelling task. The latter is
well below the best supervised performance of about
.80 on similar tasks, but it must be emphasized that
it is achieved with a simple probability model and
without the use of hand-labelled data. We view this
as a starting point by which to demonstrate the util-
ity of deriving more explicit knowledge from a pred-
icate lexicon, which can be later extended through
the use of additional probabilistic features.

We face a methodological challenge arising from
the particular choice of VerbNet for the prototyp-
ing of our method: the lexicon has no associated
semantic role labelled corpus. While this under-
scores the need for approaches which do not rely
on such a resource, it also means that we lack a
labelled sample of data against which to evaluate
our results. To address this, we use the existing
labelled corpus of FrameNet (Baker et al., 1998),
and develop a mapping for converting the FrameNet
roles to corresponding VerbNet roles. Our mapping
method demonstrates the possibility of leveraging
existing resources to support the development of role
labelling systems based on verb lexicons that do not
have an associated hand-labelled corpus.

2 VerbNet Roles and the Role Mapping

Before describing our labelling algorithm, we first
briefly introduce the semantic role information
available in VerbNet, and describe how we map
FrameNet roles to VerbNet roles.

whisper
Frames:

Agent V
Agent V Prep(+dest) Recipient
Agent V Topic

Verbs in same (sub)class:
[bark, croon, drone, grunt, holler, ...]

Figure 1: A portion of a VerbNet entry.

2.1 The VerbNet Lexicon
VerbNet is a manually developed hierarchical lexi-
con based on the verb classification of Levin (1993).
For each of almost 200 classes containing a total of
3000 verbs, VerbNet specifies the syntactic frames
along with the semantic role assigned to each argu-
ment position of a frame.1 Figure 1 shows an exam-
ple VerbNet entry. The thematic roles used in Verb-
Net are more general than the situation-specific roles
of FrameNet. For example, the roles Speaker, Mes-
sage, and Addressee of a Communication verb such
as whisper in FrameNet would be termed Agent,
Topic, and Recipient in VerbNet. These coarser-
grained roles are often assumed in linguistic the-
ory, and have some advantages in terms of capturing
commonalities of argument relations across a wide
range of predicates.

2.2 Mapping FrameNet to VerbNet Roles
As noted, VerbNet lacks a corpus of example role as-
signments against which to evaluate a role labelling
based upon it. We create such a resource by adapting
the existing FrameNet corpus. We formulate a map-
ping between FrameNet’s larger role set and Verb-
Net’s much smaller one, and create a new corpus
with our mapped roles substituted for the original
roles in the FrameNet corpus.

We perform the mapping in three steps. First we
use an existing mapping between the semantically-
specific roles in FrameNet and a much smaller inter-
mediate set of 39 semantic roles which subsume all
FrameNet roles.2 The associations in this mapping
are straightforward—e.g., the Place role for Abusing
verbs and the Area role for Operate-vehicle verbs are
both mapped to Location.

1Throughout the paper we use the term “frame” to refer to
a syntactic frame—a configuration of syntactic arguments of a
verb—possibly labelled with roles, as in Figure 1.

2This mapping was provided by Roxana Girju, UIUC.
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Second, from this intermediate set we create a
simple mapping to the set of 22 VerbNet roles. Some
roles are unaffected by the mapping (e.g., Cause
alone in the intermediate set maps to Cause in the
VerbNet set). Other roles are merged (e.g., Degree
and Measure both map to Amount). Moreover, some
roles in FrameNet (and the intermediate set) must be
mapped to more than one VerbNet role. For exam-
ple, an Experiencer role in FrameNet is considered
Experiencer by some VerbNet classes, but Agent by
others. In such cases, our mappings in this step must
be specific to the VerbNet class.

In this second step, some roles have no subsum-
ing VerbNet role, because FrameNet provides roles
for a wider variety of relations. For example, both
FrameNet and the intermediate role set contain a
Manner role, which VerbNet does not have. We
create a catch-all label, “NoRole,” to which we
map eight such intermediate roles: Condition, Man-
ner, Means, Medium, Part-Whole, Property, Pur-
pose, and Result. These phrases labelled NoRole are
adjuncts—constituents not labelled by VerbNet.

In the third step of our mapping, some of the roles
in VerbNet—such as Theme and Topic, Asset and
Amount—which appear to be too-fine grained for us
to distinguish reliably, are mapped to a more coarse-
grained set of VerbNet roles. The final set consists
of 16 roles: Agent, Amount, Attribute, Beneficiary,
Cause, Destination, Experiencer, Instrument, Loca-
tion, Material, Predicate, Recipient, Source, Stimu-
lus, Theme and Time; plus the NoRole label.

3 The Frame Matching Process

A main goal of our system is to demonstrate the
usefulness of predicate lexicons for the role la-
belling task. The primary way that we apply the
knowledge in our lexicon is via a process we call
frame matching, adapted from Swier and Steven-
son (2004). The automatic frame matcher aligns
arguments extracted from an automatically parsed
sentence with the frames in VerbNet for the target
verb in the sentence. The output of this process is
a highly constrained set of candidate roles (possi-
bly of size one) for each potential argument. The
resulting singleton sets constitute a (noisy) role as-
signment for their corresponding arguments, form-
ing our primary-labelled data. This data is then used

to train a probability model, described in Section 4,
which we employ to label the remaining arguments
(those having more than one candidate role).

3.1 Initialization of Candidate Roles
The frame matcher construes extracted arguments
from the parsed sentence as being in one of the
four main types of syntactic positions (or slots) used
by VerbNet frames: subject, object, indirect object,
and PP-object.3 Additionally, we specialize the lat-
ter by the individual preposition, such as “object of
for.” For the first three slot types, alignment be-
tween the extracted arguments and the frames is rel-
atively straightforward. An extracted subject would
be aligned with the subject position in a VerbNet
frame, for instance, and the subject role from the
frame would be listed as a possible label for the ex-
tracted subject.

The alignment of PP-objects is similar to that
of the other slot types, except that we add an ad-
ditional constraint that the associated prepositions
must match. For PP-object slots, VerbNet frames of-
ten provide an explicit list of allowable prepositions.
Alternatively, the frame may specify a required se-
mantic feature such as +path or +loc. In order
for an extracted PP-object to align with one of these
frame slots, its associated preposition must be in-
cluded in the list provided by the frame, or have the
specified feature. To determine the latter, we manu-
ally create lists of prepositions that we judge to have
each of the possible semantic features.

In general, this matching procedure assumes that
frames describing a syntactic argument structure
similar to that of the parsed sentence are more likely
to correctly describe the semantic roles of the ex-
tracted arguments. Thus, the frame matcher only
chooses roles from frames that are the best syntac-
tic matches with the extracted argument set. This
is achieved by adopting the scoring method of Swier
and Stevenson (2004), in which we compute the por-
tion %Frame of frame slots that can be mapped to
an extracted argument, and the portion %Sent of
extracted arguments from the sentence that can be
mapped to the frame. The score for each frame is
given by %Frame+%Sent, and only frames having
the highest score contribute candidate roles to the

3Since VerbNet has very few verbs with sentential comple-
ments, we do not consider them for now.
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Extracted Slots
Possible Frames for Verb V SUBJ OBJ %Frame %Sent Score
Agent V Agent 100 50 150
Agent V Theme Agent Theme 100 100 200
Instrument V Theme Instrument Theme 100 100 200
Agent V Recipient Theme Agent Theme 67 100 167

Table 1: An example of frame matching.

extracted arguments. An example scoring is shown
in Table 1. Note that two of the frames are tied for
the highest score of 200, resulting in two possible
roles for the subject (Agent and Instrument), and
Theme as the only possible role for the object.

As mentioned, this frame matching step is very
restrictive, and it greatly reduces role ambiguity.
Many potential arguments receive only a single can-
didate role, providing the primary-labelled data we
use to train our probability model. Some slots re-
ceive no candidate roles, which is an error for argu-
ment slots but which is correct for adjuncts. The re-
duction of candidate roles in general is very helpful
in lightening the subsequent load on the probability
model to be applied next, but note that it may also
cause the correct role to be omitted. We experiment
with choosing roles from the frames that are the best
syntactic matches, and from all possible frames.

3.2 Adjustments to the Role Mapping
We further extend the frame matcher, which has ex-
tensive knowledge of VerbNet, for the separate task
of helping to eliminate some of the inconsistencies
that are introduced by our role mapping procedure.
This is a process that applies concurrently with the
initialization of candidate roles described above, but
only affects the gold standard labelling of evaluation
data.4

For instance, FrameNet assigns the role Side2 to
the object of the preposition with occurring with the
verb brawl. Side2 is mapped to Theme by our role
mapping; however, in VerbNet, brawl does not ac-
cept Theme as the object of with. Our mapping thus
creates a target (i.e., gold standard) label in the eval-
uation data that is inconsistent with VerbNet. Since
there is no possibility of the role labeller assigning a
label that matches such a target, this unfairly raises

4Of course, the fact that the frame matcher “sees” the evalu-
ation set as part of its dual duties is not allowed to influence its
assignment of candidate roles.

the task difficulty. However, since brawl does ac-
cept Theme in another slot, it is not an option to
entirely eliminate this role in the mapping for the
verb. Instead, we use our frame matcher to verify
that each target role generated by our mapping from
FrameNet is allowed by VerbNet in the relevant slot.
If the target role is not allowed, then it is converted to
NoRole in the evaluation set. Constituents labelled
as NoRole are not considered target arguments, and
it is correct for the system to not assign labels in
these cases.

The NoRole conversions help to ensure that our
gold standard evaluation data is consistent with our
lexicon, but the method does have limitations. For
instance, some of the arguments which the sys-
tem fails to extract might have had their target role
changed to NoRole if they were properly extracted.
Additionally, in some cases a target role is converted
to NoRole when there is an actual role that VerbNet
would have assigned instead.

4 The Probability Model

Once argument slots are initialized with sets of pos-
sible roles, the algorithm uses a probability model
to label slots having two or more possibilities. Since
our primary goal is to demonstrate how much can be
accomplished through the frame matcher, we com-
pare a number of very simple probability models:

• P(r|v, s): the probability of a role given the
target verb and the slot; the latter includes sub-
ject, object, indirect object, and prepositional
object, where each PP slot is specialized by the
identity of the preposition;

• P(r|s): the probability of a role given the slot;

• P(r|sc): the probability of a role given the slot
class, in which all prepositional slots are treated
together.
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Each probability model predicts a role given certain
conditioning information, with maximum likelihood
estimates determined by the primary-labelled data
directly resulting from the frame matching step.5

We also compare one non-probabilistic model to
resolve the same set of ambiguous cases:

• Default assignment: candidate roles for am-
biguous slots are ignored; the four slot classes
of subject, object, indirect object and PP-object
are assigned the roles Agent, Theme, Recipi-
ent, and Location, respectively.

These are the most likely roles assigned by the frame
matcher over our development data.

For comparison, we also apply the iterative algo-
rithm developed by Swier and Stevenson (2004), us-
ing the same bootstrapping parameters. The method
uses backoff over three levels of specificity of prob-
abilities.

5 Materials and Methods

5.1 The Target Verbs
For ease of comparison, we use the same verbs as in
Swier and Stevenson (2004), except that we measure
performance over a much larger superset of verbs. In
that work, a core set of 54 target verbs are selected
to represent a variety of classes with interesting role
ambiguities, and the system is evaluated against only
those verbs. An additional 1105 verbs—all verbs
sharing at least one class with the target verbs—are
also labelled, in order to provide more data for the
probability estimations. Here, we consider our sys-
tem’s performance over the 1159 target verbs that
consist of the union of these two sets of verbs.

5.2 The Corpus and Preprocessing
The majority of sentences in FrameNet II are taken
from the British National Corpus (BNC Reference
Guide, 2000). Our development and test data con-
sists of a percentage of these sentences. For some
experiments, these sentences are then merged with
a random selection of additional sentences from the
BNC in order to provide more training data for the
probability estimations. We evaluate performance

5Note that we assume the probability of a role for a slot is in-
dependent of other slots—that is, we do not ensure a consistent
role assignment to all arguments across an instance of a verb.

only on FrameNet sentences that include our target
verbs.

All of our corpus data was parsed using the
Collins parser (Collins, 1999). Next, we use TGrep2
(Rohde, 2004) to automatically extract from the
parse trees the constituents forming potential argu-
ments of the target verbs. For each verb, we label as
the subject the lowest NP node, if it exists, that is im-
mediately to the left of a VP node which dominates
the verb. Other arguments are identified by finding
sister NP or PP nodes to the right of the verb. Heads
of noun phrases are identified using the method of
Collins (1999), which primarily chooses the right-
most noun in the phrase that is not inside a preposi-
tional phrase or subordinate clause. Error may be in-
troduced at each step of this preprocessing—the sen-
tence may be misparsed, some arguments (such as
distant subjects) may not be extracted, or the wrong
word may be found as the phrase head.

5.3 Validation and Test Data

A random selection of 30% of the preprocessed
FrameNet data is set aside for testing, and another
random 30% is used for development and valida-
tion. For experiments involving additional BNC
data, each 30% of the FrameNet sentences is em-
bedded in a random selection of 20% of the BNC.
We selected these percentages to yield a sufficient
amount of data for experimentation, while reserving
some unseen data for future work. The FrameNet
portion of the validation set includes 515 types of
our target verbs (across 161 VerbNet classes) in
4300 sentences, and contains a total of 6636 target
constituents—i.e., constituents that receive a valid
VerbNet role as their gold standard label, not No-
Role. The test set includes 517 of the target verbs
(from 163 classes) in 4308 sentences, yielding 6705
target constituents.6

To create an evaluation set, we map the manually
annotated FrameNet roles in the corpus to VerbNet
roles (or NoRole), as described in Sections 2.2 and
3.2. We use this role information to calculate perfor-
mance: the system should assign roles matching the
target VerbNet roles, and make no assignment when
the target is NoRole.

6The verbs appearing in the validation and test sets occur
respectively across 161 and 165 FrameNet classes (what in
FrameNet are called “frames”).
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5.4 Methods of Argument Identification
One of the decisions we face is how to evaluate the
identification of extracted arguments generated by
the system against the manually annotated target ar-
guments provided by FrameNet. We try two meth-
ods, the most strict of which is to require full-phrase
agreement: an extracted argument and a target ar-
gument must cover exactly the same words in the
sentence in order for the argument to be considered
correctly extracted. This means, for instance, that
a prepositional phrase incorrectly attached to an ex-
tracted object would render the object incompatible
with the target argument, and any system label on
it would be counted as incorrect. This evaluation
method is commonly used in other work (e.g., Car-
reras and Marquez, 2004).

The other method we use is to require that only
the head of an extracted argument and a target argu-
ment match. This latter method helps to provide a
fuller picture of the range of arguments found by the
system, since there are fewer near-misses caused by
attachment errors. Since heads of phrases are often
the most semantically relevant part of an argument,
labels on heads provide much of the same informa-
tion as labels on whole phrases. For these reasons,
we use head matching for most of our experiments
below. For comparison, however, we provide results
based on full-phrase matching as well.

6 Experimental Results
6.1 Experimental Setup
We evaluate our system’s performance on several as-
pects of the overall role labelling task; all results are
given in terms of F-measure, 2PR/(P + R).7 The
first task is argument identification, in which con-
stituents considered by our system to be arguments
(i.e., those that are extracted and labelled) are eval-
uated against actual target arguments. The second
task is labelling extracted arguments, which evalu-
ates the labelling of only those arguments that were
correctly extracted. Last is the overall role labelling
task, which evaluates the system on the combined
tasks of identification and labelling of all target ar-
guments.

We compare our results to an informed baseline
that has access to the same set of extracted argu-

7In each case, P and R are close in value.

ments as does the frame matcher. The baseline la-
bels all extracted arguments using the default role
assignments described in Section 4.

In addition to experiments in which we employ
various methods of resolving ambiguous assign-
ments, we also evaluate the system with varying
types and amounts of training data, and with two al-
ternate methods for choosing frames from which to
draw candidate roles.
6.2 Evaluation of Probability Models

We first evaluate our system with the three very
simple probability models, as well as the non-
probabilistic default assignment, to determine roles
for the extracted arguments that the frame matcher
considers to be ambiguous. We also report results
after only the frame matcher has been applied, to
indicate how much work is being done by it alone.
Because we have constructed the frame matcher to
be highly restrictive in assigning candidate roles to
extracted arguments, a large number (about 62%)
become primary-labelled data and so do not require
resolution of ambiguous roles. Only about 16% of
our extracted arguments have role ambiguities, and
about 22% (many of which are adjuncts) do not re-
ceive any candidates and remain unlabelled.

Task: Id. Lab. Id. + Lab.
Baseline .80 .74 .52
FM + P (r|sc) .83 .83 .65
FM + P (r|s) .83 .84 .65
FM + P (r|v, s) .83 .78 .61
FM + Dflt. Assgnmt. .83 .82 .64
FM only .83 .76 .60

As shown in the table, all models perform equally
well on identification, which is determined by the
frame matcher (FM); i.e., any extracted argument
receiving one or more candidate roles is “identi-
fied” as an argument. Performance is somewhat
above the baseline, which must label all extracted
arguments. For the task of labelling correctly ex-
tracted arguments and for the combined task, the
simplest probability models, P (r|sc) and P (r|s),
perform about the same. On the combined task, they
achieve .13 above the informed baseline, indicating
the effectiveness of such simple models when com-
bined with the frame matcher. The more specific
model, P (r|v, s), performs less well, and may be
over-fitting on this relatively small amount of train-
ing data.
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Two observations indicate the power of the frame
matcher. First, even using the non-probabilistic de-
fault assignments to resolve ambiguous roles sub-
stantially outperforms the baseline (and indeed per-
forms quite close to the best results, since the default
role assignment is often the same as that chosen by
the probability models). Importantly, the baseline
uses the same default assignments, but without the
benefit of the frame matcher to further narrow down
the possible arguments. Second, the frame matcher
alone achieves .60 F-measure on the combined task,
not far below the performance of the best models.
These results show that once arguments have been
extracted, much of the labelling work is performed
by the frame matcher’s careful application of lexical
information.

Henceforth we consider the use of the frame
matcher plus P (r|sc) as our basic system, since this
is our simplest model, and no other outperforms it.

6.3 Evaluation of Training Methods

In our above experiments, the probabilistic mod-
els are trained only on primary-labelled data from
the frame matcher run on the FrameNet data. We
would like to determine whether using either more
data or less noisy data may improve results. To pro-
vide more data, we ran the frame matcher on the
additional 20% of the BNC. This provides almost
600K more sentences containing our target verbs,
yielding a much higher amount of primary-labelled
data. To provide less-noisy data, we trained the
probability models on manually annotated target la-
bels from system-identified arguments in 1000 sen-
tences. While fewer sentences are used, all argu-
ments in the training data are guaranteed to have a
correct role assignment, in contrast to the primary-
labelled data output by the frame matcher. (We
chose 1000 sentences as an upper bound on an
amount of data that could be relatively easily anno-
tated by human judges.)

Training Prim.-lab. Prim.-lab. 1K sents
Data: FN BNC annot’d

Baseline .52
FM + P (r|sc) .65 .65 .65
FM + P (r|v, s) .61 .62 .63

For our basic model, P (r|sc), these variations in
training data do not affect performance. Only the
most specific model, P (r|v, s), shows improvement

when trained on more data or on manually annotated
data, although it still does not perform as well as the
simplest model. Because the models only choose
from among candidate roles selected by the frame
matcher, differences in the learned probability esti-
mations must be quite large to have an effect. At
least for the simplest model, these estimations do
not vary with a larger corpus or one lacking in noise.
However, the increase in performance seen here for
the more specific model, albeit small, may indicate
that richer probability models may require more or
cleaner training data.

6.4 Evaluation of Frame Choice

“Best” frames All Frames
Baseline .52
FM + P (r|sc) .65 .63

The frame matcher has been shown to shoulder
much of the responsibility in our system, and it is
worth considering variations in its operation. For
example, by having the frame matcher only choose
roles from the frames that are the best syntactic
matches to the sentence, role ambiguity is mini-
mized at the cost of possibly excluding the correct
role. To determine whether we may do better by re-
lying more on the probability model and less on the
frame matcher, we instead include role candidates
from all frames in a verb’s lexical entry. The effect
of this choice is more role ambiguity, decreasing the
number of primary-labelled slots by roughly 30%.
We see that performance using P (r|sc) is slightly
worse with the greater ambiguity admitted by using
all frames, indicating the benefit of precise selection
of candidate roles.

6.5 Differing Argument Evaluation Methods

Heads Full Phrase
Baseline .52 .49
FM + P (r|sc) .65 .61

As mentioned, for most of our evaluations we match
the arguments extracted by the system to the tar-
get arguments via a match on phrase heads, since
head labels provide much useful semantic informa-
tion. When we instead require that the extracted
arguments match the targets exactly, the number of
correctly extracted arguments falls from about 80%
of the roughly 6700 targets to about 74%, due to in-
creased parsing difficulty. As expected, this results
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in both the system and the baseline having perfor-
mance decreases on the overall task.

7 Related Work

Most role labelling systems have required hand-
labelled training data. Two exceptions are the sub-
categorization frame based work of Atserias et al.
(2001) and the bootstrapping labeller of Swier and
Stevenson (2004), but both are evaluated on only a
small number of verbs and arguments. In related un-
supervised tasks, Riloff and colleagues have learned
“case frames” for verbs (e.g., Riloff and Schmelzen-
bach, 1998), while Gildea (2002) has learned role-
slot mappings (but does not apply the knowledge for
the labelling task).

Other role labelling systems have also relied on
the extraction of much more complex features or
probability models than we adopt here. As a point
of comparison, we apply the iterative backoff model
from Swier and Stevenson (2004), trained on 20% of
the BNC, with our frame matcher and test data. The
backoff model achieves an F-measure of .63, slightly
below the performance of .65 for our simplest proba-
bility model, which uses less training data and takes
far less time to run (minutes rather than hours).

In general, it is not possible to make direct com-
parisons between our work and most other role la-
bellers because of differences in corpora and role
sets, and, perhaps more significantly, differences in
the selection of target arguments. However, the
best supervised systems, using automatic parses to
identify full argument phrases in PropBank, achieve
about .82 on the task of identifying and labelling
arguments (Pradhan et al., 2004). Though this is
higher than our performance of .61 on full phrase ar-
guments, our system does not require manually an-
notated data.

8 Conclusion

In this work, we employ an expensive but highly
reusable resource—a verb lexicon—to perform role
labelling with a simple probability model and a
small amount of unsupervised training data. We out-
perform similar work that uses much more data and
a more complex model, showing the benefit of ex-
ploiting lexical information directly. To achieve per-
formance comparable to that of supervised methods

may require human filtering or augmentation of the
initial labelling. However, given the expense of pro-
ducing a large semantically annotated corpus, even
such “human in the loop” approaches may lead to
a decrease in overall resource demands. We use
such a corpus for evaluation purposes only, modi-
fying it with a role mapping to correspond to our
lexicon. We thus demonstrate that such existing re-
sources can be bootstrapped for lexicons lacking an
associated annotated corpus.
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Abstract

This paper addresses the automatic clas-
sification of the semantic relations ex-
pressed by the English genitives. A learn-
ing model is introduced based on the sta-
tistical analysis of the distribution of gen-
itives’ semantic relations on a large cor-
pus. The semantic and contextual fea-
tures of the genitive’s noun phrase con-
stituents play a key role in the identifica-
tion of the semantic relation. The algo-
rithm was tested on a corpus of approx-
imately 2,000 sentences and achieved an
accuracy of 79% , far better than 44% ac-
curacy obtained with C5.0, or 43% ob-
tained with a Naive Bayes algorithm, or
27% accuracy with a Support Vector Ma-
chines learner on the same corpus.

1 Introduction

1.1 Problem Description

The identification of semantic relations in open text
is at the core of Natural Language Processing and
many of its applications. Detecting semantic rela-
tions is useful for syntactic and semantic analysis of
text and thus plays an important role in automatic
text understanding and generation. Furthermore, se-
mantic relations represent the core elements in the
organization of lexical semantic knowledge bases
used for inferences. Recently, there has been a re-
newed interest in text semantics fueled in part by
the complexity of some major research initiatives

in Question Answering, Text Summarization, Text
Understanding and others, launched in the United
States and abroad.

Two of the most frequently used linguistic con-
structions that encode a large set of semantic rela-
tions are the s-genitives, e.g. “man’s brother”, and
the of-genitives, e.g. “dress of silk”. The interpreta-
tion of these phrase-level constructions is paramount
for various applications that make use of lexical se-
mantics.

Example: “The child’s mother had moved the child
from a car safety seat to an area near the open
passenger-side door of the car.” (The Desert Sun,
Monday, October 18th, 2004).

There are two semantic relations expressed by
genitives: (1) “child’s mother” is an s-genitive en-
coding a KINSHIP relation, and (2) “passenger-side
door of the car” is an of-genitive encoding a PART-
WHOLE relation.

This paper provides a detailed corpus analysis of
genitive constructions and a model for their auto-
matic interpretation in English texts.

1.2 Semantics of Genitives

In English there are two kinds of genitives. In gen-
eral, in one, the modifier is morphologically linked
to the possessive clitic ’s and precedes the head noun
(s-genitive, i.e. NPmodif ’s NPhead), and in the
second one the modifier is syntactically marked by
the preposition of and follows the head noun (of-
genitive, i.e. NPhead of NPmodif ).

Although the genitive constructions have been
studied for a long time in cognitive linguistics, their
semantic investigation proved to be very difficult, as
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the meanings of the two constructions are difficult to
pin down. There are many factors that contribute to
the genitives’ semantic behavior, such as the type of
the genitive, the semantics of the constituent nouns,
the surrounding context, and others.

A characteristic of genitives is that they are very
productive, as the construction can be given various
semantic interpretations. However, in some situa-
tions, the number of interpretations can be reduced
by employing world knowledge. Consider the ex-
amples, “Mary’s book” and “Shakespeare’s book”.
“Mary’s book” can mean the book Mary owns, the
book Mary wrote, the book Mary is reading, or the
book Mary is very fond of. Each of these interpre-
tations is possible in the right context. In “Shake-
speare’s book”, however, the preferred interpreta-
tion, provided by a world knowledge dictionary, is
the book written by Shakespeare.

1.3 Previous Work

There has been much interest recently on the discov-
ery of semantic relations from open-text using sym-
bolic and statistical techniques. This includes the
seminal paper of (Gildea and Jurafsky, 2002), Sense-
val 3 and coNLL competitions on automatic labeling
of semantic roles detection of noun compound se-
mantics (Lapata, 2000), (Rosario and Hearst, 2001)
and many others. However, not much work has
been done to automatically interpret the genitive
constructions.

In 1999, Berland and Charniak (Berland and
Charniak, 1999) applied statistical methods on a
very large corpus to find PART-WHOLE relations.
Following Hearst’s method for the automatic ac-
quisition of hypernymy relations (Hearst, 1998),
they used the genitive construction to detect PART-
WHOLE relations based on a list of six seeds repre-
senting whole objects, (i.e. book, building, car, hos-
pital, plant, and school). Their system’s output was
an ordered list of possible parts according to some
statistical metrics (Dunning’s log-likelihood metric
and Johnson’s significant-difference metric). They
presented the results for two specific patterns (“NN’s
NN” and “NN of DT NN”). The accuracy obtained
for the first 50 parts was 55% and for the first 20
parts was 70%.

In 2003, Girju, Badulescu, and Moldovan (Girju,
Badulescu, and Moldovan, 2003) detected the PART-

WHOLE relations for some of the most frequent
patterns (including the genitives) using the Itera-
tive Semantic Specialization, a learning model that
searches for constraints in the WordNet noun hierar-
chies. They obtained an f-measure of 93.62% for s-
genitives and 91.12% for of-genitives for the PART-
WHOLE relation.

Given the importance of the semantic relations en-
coded by the genitive, the disambiguation of these
relations has long been studied in cognitive linguis-
tics (Nikiforidou, 1991), (Barker, 1995), (Taylor,
1996), (Vikner and Jensen, 1999), (Stefanowitsch,
2001), and others.

2 Genitives’ Corpus Analysis

2.1 The Data

In order to provide a general model of the genitives,
we analyzed the syntactic and semantic behavior of
both constructions on a large corpus of examples se-
lected randomly from an open domain text collec-
tion, LA Times articles from TREC-9. This analy-
sis is justified by our desire to answer the following
questions: “What are the semantic relations encoded
by the genitives?” and “What is their distribution on
a large corpus?”

A set of 20,000 sentences were randomly selected
from the LA Times collection. In these 20,000 sen-
tences, there were 3,255 genitive instances (2,249
of-constructions and 1,006 s-constructions). From
these, 80% were used for training and 20% for test-
ing.

Each genitive instance was tagged with the cor-
responding semantic relations by two annotators,
based on a list of 35 most frequently used semantic
relations proposed by (Moldovan et al., 2004) and
shown in Table 1. The genitives’ noun components
were manually disambiguated with the correspond-
ing WordNet 2.0 senses or the named entities if they
are not in WordNet (e.g. names of persons, names
of locations, etc).

2.2 Inter-annotator Agreement

The annotators, two graduate students in Computa-
tional Semantics, were given the genitives and the
sentences in which they occurred. Whenever the an-
notators found an example encoding a semantic re-
lation other than those provided, they had to tag it
as “OTHER”. Besides the type of relation, the an-
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notators were asked to provide the correct WordNet
2.0 senses of the two nouns and information about
the order of the modifier and the head nouns in the
genitive construction. For example, although in of-
constructions the head is followed by the modifier
most of the time, this is not always true. For in-
stance, in “owner of car[POSSESSION]” the head
owner is followed by the modifier car, while in
“John’s car[POSSESSION/R]” the order is reversed.
Approximately one third of the training examples
had the nouns in reverse order.

Most of the time, one genitive instance was tagged
with one semantic relation, but there were also sit-
uations in which an example could belong to more
than one relation in the same context. For example,
the genitive “city of USA” was tagged as a PART-
WHOLE relation and as a LOCATION relation. There
were 21 such cases in the training corpus.

The judges’ agreement was measured using the
Kappa statistics (Siegel and Castelan, 1988), one
of the most frequently used measure of inter-
annotator agreement for classification tasks: K =
Pr(A)−Pr(E)

1−Pr(E) , where Pr(A) is the proportion of
times the raters agree and Pr(E) is the probability
of agreement by chance.

The K coefficient is 1 if there is a total agreement
among the annotators, and 0 if there is no agreement
other than that expected to occur by chance.

On average, the K coefficient is close to 0.82 for
both of and s-genitives, showing a good level of
agreement for the training and testing data on the
set of 35 relations, taking into consideration the task
difficulty. This can be explained by the instructions
the annotators received prior to annotation and by
their expertise in lexical semantics.

2.3 Distribution of Semantic Relations

Table 1 shows the distribution of the semantic rela-
tions in the annotated corpus.

In the case of of-genitives, there were 19 relations
found from the total of 35 relations considered. The
most frequently occurring relations were POSSES-
SION, KINSHIP, PROPERTY, PART-WHOLE, LOCA-
TION, SOURCE, THEME, and MEASURE.

There were other relations (107 for of-genitives)
that do not belong to the predefined list of 35 rela-
tions, such as “state of emergency”. These examples
were clustered in different undefined subsets based

No. Freq. Semantic Relations Examples
Of S

1 36 220 POSSESSION “Mary’s book”
2 25 61 KINSHIP “Mary’s brother”
3 109 75 PROPERTY “John’s coldness”
4 11 123 AGENT “investigation of the crew”
5 5 109 TIME-EVENT “last year’s exhibition”
6 30 7 DEPICTION-DEPICTED “a picture of my nice”
7 328 114 PART-WHOLE “the girl’s mouth”
8 0 0 HYPERNYMY (IS-A) “city of Dallas”
9 0 0 ENTAILMENT N/A
10 10 3 CAUSE “death of cancer”
11 11 62 MAKE/PRODUCE “maker of computer”
12 0 0 INSTRUMENT N/A
13 32 46 LOCATION/SPACE “university of Texas”
14 0 0 PURPOSE N/A
15 56 33 SOURCE/FROM “president of Bolivia”
16 70 5 TOPIC “museum of art”
17 0 0 MANNER N/A
18 0 0 MEANS “service of bus”
19 10 4 ACCOMPANIMENT “solution of the problem”
20 1 2 EXPERIENCER “victim of lung disease”
21 49 41 RECIPIENT “Josephine’s reward”
22 0 0 FREQUENCY N/A
23 0 0 INFLUENCE N/A
24 5 2 ASSOCIATED WITH “contractors of shipyard”
25 115 1 MEASURE “hundred of dollars”
26 0 0 SYNONYMY N/A
27 0 0 ANTONYMY N/A
28 0 0 PROB. OF EXISTENCE N/A
29 0 0 POSSIBILITY N/A
30 0 0 CERTAINTY N/A
31 120 50 THEME “acquisition of the holding”
32 8 2 RESULT “result of the review”
33 0 0 STIMULUS N/A
34 0 0 EXTENT N/A
35 0 0 PREDICATE N/A
36 107 49 OTHER “state of emergency”

Table 1: The distribution of the semantic relations in
the annotated corpus of 20,000 sentences.

on their semantics. The largest subsets did not cover
more than 3% of the OTHER set of examples. This
observation shows that the set of 35 semantic rela-
tions from Table 1 is representative for genitives.

Table 1 also shows the semantic preferences of
each genitive form. For example, POSSESSION,
KINSHIP, and some kinds of PART-WHOLE relations
are most of the time encoded by the s-genitive, while
some specific PART-WHOLE relations, such as “dress
of silk” and “array of flowers”, cannot be encoded
but only by the of-genitive. This simple analysis
leads to the important conclusion that the two con-
structions must be treated separately as their seman-
tic content is different. This observation is also con-
sistent with other recent work in linguistics on the
grammatical variation of the English genitives (Ste-
fanowitsch, 2001).

3 The Model

3.1 Problem Formulation

Given a genitive, the goal is to develop a procedure
for the automatic labeling of the semantic relation
it conveys. The semantic relation derives from the
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semantics of the noun phrases participating in geni-
tives as well as the surrounding context.

Semantic classification of syntactic patterns in
general can be formulated as a learning problem.
This is a multi-class classification problem since the
output can be one of the semantic relations in the set.
We cast this as a supervised learning problem where
input/ output pairs are available as training data.

An important first step is to map the characteris-
tics of each genitive construction into a feature vec-
tor. Let’s define with xi the feature vector of an in-
stance i and let X be the space of all instances; i.e.
xi ∈ X . The multi-class classification is performed
by a function that maps the feature space X into a
semantic space S

F : X → S, where S is the set of semantic rela-
tions from Table 1, i.e. rk ∈ S.

Let T be the training set of examples or instances
T = (x1r1,x2r2, ...,xnrn) ⊆ (X × S)n where n is
the number of examples x each accompanied by its
semantic relation label r. The problem is to decide
which semantic relation r to assign to a new, unseen
example xn+1. In order to classify a given set of
examples (members of X), one needs some kind of
measure of the similarity (or the difference) between
any two given members of X .

3.2 Feature Space

An essential aspect of our approach below is the
word sense disambiguation (WSD) of the noun. Us-
ing a state-of-the-art open-text WSD system with
70% accuracy for nouns (Novischi et al., 2004), each
word is mapped into its corresponding WordNet 2.0
sense. The disambiguation process takes into ac-
count surrounding words, and it is through this pro-
cess that context gets to play a role in labeling the
genitives’ semantics.

So far, we have identified and experimented with
the following NP features:
1. Semantic class of head noun specifies the Word-
Net sense (synset) of the head noun and implic-
itly points to all its hypernyms. It is extracted au-
tomatically via a word sense disambiguation mod-
ule. The genitive semantics is influenced heavily by
the meaning of the noun constituents. For exam-
ple: “child’s mother” is a KINSHIP relation where
as “child’s toy” is a POSSESSION relation.
2. Semantic class of modifier noun specifies the

WordNet synset of the modifier noun. The follow-
ing examples show that the semantic of a genitive
is also influenced by the semantic of the modifier
noun; “Mary’s apartment” is a POSSESSION rela-
tion, and “apartment of New York” is a LOCATION

relation.
The positive and negative genitive examples of the

training corpus are pairs of concepts of the format:

<modifier semclass#WNsense;
head semclass#WNsense; target>,

where target is a set of at least one of the 36 se-
mantic relations. The modifier semclass and
head semclass concepts are WordNet semantic
classes tagged with their corresponding WordNet
senses.

3.3 Semantic Scattering Learning Model

For every pair of <modifier - head> noun genitives,
let us define with fm

i and fh
j the WordNet 2.0 senses

of the modifier and head respectively. For conve-
nience we replace the tuple < fm

i , fh
j > with fij .

The Semantic Scattering Model is based on the fol-
lowing observations:
Observation 1. fm

i and fh
j can be regarded as nodes

on some paths that link the senses of the most spe-
cific noun concepts with the top of the noun hierar-
chies.
Observation 2. The closer the pair of noun senses
fij is to the bottom of noun hierarchies the fewer the
semantic relations associated with it; the more gen-
eral fij is the more semantic relations.

The probability of a semantic relation r given fea-
ture pair fij

P (r|fij) =
n(r, fij)

n(fij)
, (1)

is defined as the ratio between the number of occur-
rences of a relation r in the presence of feature pair
fij over the number of occurrences of feature pair
fij in the corpus. The most probable relation r̂ is

r̂ = argmaxr∈RP (r|fij) (2)

From the training corpus, one can measure the quan-
tities n(r, fij) and n(fij). Depending on the level of
abstraction of fij two cases are possible:
Case 1. The feature pair fij is specific enough such
that there is only one semantic relation r for which
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P (r|fij) = 1 and 0 for all the other semantic rela-
tions.
Case 2. The feature pair fij is general enough such
that there are at least two semantic relations for
which P (r|fij) 6= 0. In this case equation (2) is
used to find the most appropriate r̂.

Definition. A boundary G∗ in the WordNet noun hi-
erarchies is a set of synset pairs such that :
a) for any feature pair on the boundary, denoted
fG∗

ij ∈ G∗, fG∗

ij maps uniquely into only one rela-
tion r, and
b) for any fu

ij � fG∗

ij , fu
ij maps into more than one

relation r, and
c) for any f l

ij ≺ fG∗

ij , f l
ij maps uniquely into a se-

mantic relation r. Here relations � and ≺mean “se-
mantically more general” and “semantically more
specific” respectively. This is illustrated in Figure
1.
Observation 3. We have noticed that there are more
concept pairs under the boundary G∗ than above, i.e.
| {f l

ij} |�| {f
u
ij} |.

fij

G
1

G
2

G
3

G*

G
4

f
ij
l

f
u
ij

G*

f
ij
G*

(b)(a)

Figure 1: (a) Conceptual view of the noun hierar-
chies separated by the boundary G∗; (b) Boundary
G∗ is found through an iterative process called “se-
mantic scattering”.

3.4 Boundary Detection Algorithm

An approximation to boundary G∗ is found using
the training set through an iterative process called
semantic scattering. We start with the most general
boundary corresponding to the nine noun WordNet
hierarchies and then specialize it based on the train-
ing data until a good approximation is reached.
Step 1. Create an initial boundary

The initial boundary denoted G1 is formed
from combinations of the nine WordNet hierar-
chies: abstraction#6, act#2, entity#1, event#1,
group#1, possession#2, phenomenon#1, psycholog-
ical feature#1, state#4. To each training exam-
ple a corresponding feature fij =< fm

i , fh
j >

is first determined, after which is replaced with
the most general corresponding feature consisting
of top WordNet hierarchy concepts denoted with
f1

ij . For instance, to the example “apartment of the
woman” it corresponds the general feature entity#1-
entity#1 and POSSESSION relation, to “husband of
the woman” it corresponds entity#1-entity#1 and
KINSHIP relation, and to “hand of the woman” it
corresponds entity#1-entity#1 and PART-WHOLE re-
lation. At this high level G1, to each feature pair f 1

ij

it corresponds a number of semantic relations. For
each feature, one can determine the most probable
relation using equation (2). For instance, to feature
entity#1-entity#1 there correspond 13 relations and
the most probable one is the PART-WHOLE relation
as indicated by Table 2.

Step 2. Specialize the boundary
2.1 Constructing a lower boundary
This step consists of specializing the semantic
classes of the ambiguous features. A feature f k

ij

on boundary Gk is ambiguous if it corresponds to
more then one relation and its most relevant rela-
tion has a conditional probability less then 0.9. To
eliminate non-important specializations, we special-
ize only the ambiguous classes that occurs in more
than 1% of the training examples.

The specialization procedure consists of first
identifying features f k

ij to which correspond more
than one semantic relation, then replace these fea-
tures with their hyponyms synsets. Thus one fea-
ture breaks into several new specialized features.
The net effect is that the semantic relations that
were attached to f k

ij will be “scattered” across the
new specialized features. This process continues till
each feature will have only one semantic relation at-
tached. Each iteration creates a new boundary, as
shown in Figure 1. Table 3 shows statistics of se-
mantic features f k

ij for each level of specialization
Gk. Note the average number of relations per fea-
ture decreasing asymptotically to 1 as k increases.

2.2 Testing the new boundary
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R 1 2 3 6 7 11 13 15 16 19 21 24 25 Others

P (r|entity − entity) 0.048 0.120 0.006 0.032 0.430 0.016 0.035 0.285 0.012 0.004 0.010 0.001 0.001 0

Table 2: Sample row from the conditional probability table where the feature pair is entity-entity. The
numbers in the top row identify the semantic relations (as in Table 1).

Of-genitives S-genitives
Boundary G1 G2 G3 G1 G2 G3

Number of modifier 9 31 74 9 37 91
features

Number head 9 34 66 9 24 36
features

No. of feature pairs 63 out of 81 216 out of 1054 314 out of 4884 41 of 81 157 out of 888 247 out of 3276
Number of features 26 153 281 14 99 200

with only one relation
Average number of 3 1.46 1.14 3.59 1.78 1.36
relations per feature

Table 3: Statistics for the semantic class features by level of specialization.

The new boundary is more specific then the previ-
ous boundary and it is closer to the ideal boundary.
However, we do not know how well it behaves on
unseen examples and we are looking for a boundary
that classifies with a high accuracy the unseen exam-
ples. We test the boundary on unseen examples. For
that we used 10% of the annotated examples (differ-
ent from the 10% of the examples used for testing)
and compute the accuracy (f-measure) of the new
boundary on them.

If the accuracy is larger than the previous bound-
ary’s accuracy, we are converging toward the best
approximation of the boundary and thus we should
repeat Step 2 for the new boundary.

If the accuracy is lower than the previous bound-
ary’s accuracy, the new boundary is too specific and
the previous boundary is a better approximation of
the ideal boundary.

For the automatic detection of the semantic re-
lations encoded by genitives, the boundary con-
structed by the Semantic Scattering model is more
apppropriate than a “tree cut”, like the ones used for
verb disambiguation (McCarthy, 1997) (Li and Abe,
1998) and constructed using the Minimum Descrip-
tion Length model (Rissanen, 1978). The develope-
ment of a ”tree cut” model for the detection of the
semantic relations encoded by genitives involves the
construction of a different ”tree cut” for each head
noun and threfore the usage of these cuts is restricted
to those head nouns. On the other hand, Semantic
Scattering constructs only one boundary that, unlike

the ”tree cut” model, is general enough to classify
any genitive construction, including the ones with
constituents unseen during training.

4 Semantic Relations Classification
Algorithm

The ideal boundary G∗ is used for classifying the
semantic relations encoded by genitives. The algo-
rithm consists of:
Step 1. Process the sentence. Perform Word Sense
Disambiguation and syntactic parsing of the sen-
tence containing the genitive.
Step 2. Identify the head and modifier noun con-
cepts.
Step 3. Identify the feature pair. Using the results
from WSD and WordNet noun hierarchies, map the
head and modifier concepts into the corresponding
classes from the boundary and identify a feature pair
fij that has the closest euclidean distance to the two
classes.
Step 4. Find the semantic relation. Using the feature
fij , determine the semantic relation that corresponds
to that feature on the boundary. If there is no such
relation, mark it as OTHER.

5 Results

For testing, we considered 20% of the annotated ex-
amples. We used half of the examples for detecting
the boundary G∗ and half for testing the system.

G∗ Boundary Detection
The algorithm ran iteratively performing boundary
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Of-genitives S-genitives
Results Baseline1 Baseline2 Results Baseline1 Baseline2 Results

Number of correctly 49 59 81 15 27 71
retrieved relations

Number of relations 73 75 99 63 66 85
retrieved

Number of correct 104 104 104 96 96 96
relations
Precision 67.12% 76.62% 81.82% 23.81% 40.91% 83.53%

Recall 47.12% 56.73% 77.88% 15.63% 28.13% 73.96%
F-measure 55.37% 65.92% 79.80% 18.87% 33.34% 78.45%

Table 4: Overall results for the semantic interpretation of genitives

specializations on the WordNet IS-A noun hierar-
chies in order to eliminate the ambiguities of the
training examples. Boundary G1 corresponds to the
semantic classes of the nine WordNet noun hier-
archies and boundaries G2 and G3 to their subse-
quent immediate hyponyms. For both s-genitives
and of-genitives, boundary G2 was more accurate
then boundary G1 and therefore we repeated Step
2. However, boundary G3 was less accurate then
boundary G2 and thus boundary G2 is the best ap-
proximation of the ideal boundary.

Semantic Relations Classification
Table 4 shows the results obtained when classify-
ing the 36 relations (the 36th relation being OTHER)
for of-genitives and s-genitives. The results are pre-
sented for the Semantic Scattering system that uses
G2 as the best approximation of the G∗ together with
two baselines. Baseline1 system obtained the re-
sults without any word sense disambiguation (WSD)
feature, i.e. using only the default sense number 1
for the concept pairs, and without any specializa-
tion. Baseline2 system applied two iterations of the
boundary detection algorithm but without any word
sense disambiguation.

Overall, the Semantic Scattering System achieves
an 81.82% precision and 77.88% recall for of-
genitives and an 83.53% precision and 73.96% re-
call for s-genitives.

Both the WSD and the specialization are impor-
tant for our system as indicated by the Baseline
systems performance. The impact of specializa-
tion on the f-measure (Baseline2 minus Baseline1) is
10.55% for of-genitives and 14.47% for s-genitives,
while the impact of WSD (final result minus Base-
line2) is 14% for of-genitives and 45.11% for s-
genitives.

Error Analysis
An important way of improving the performance of
a system is to perform a detailed error analysis of the
results. We have analyzed the various error sources
encountered in our experiments and summarized the
results in Table 5.

Error Type Of-genitives S-genitives
%Error %Error

Missing feature 28.57 29.17
General semantic classes 28.57 20.83

WSD System 19.05 29.17
Reversed order of constituents 14.29 12.5

Named Entity Recognizer 4.76 8.33
Missing WordNet sense 4.76 0

Table 5: The error types encountered on the testing
corpus.

6 Comparison with other Models

To evaluate our model, we have conducted ex-
periments with other frequently used machine
learning models, on the same dataset, using the
same features. Table 6 shows a comparison
between the results obtained with the Semantic
Scattering algorithm and the decision trees (C5.0,
http://www.rulequest.com/see5-info.html), the
naive Bayes model (jBNC, Bayesian Network
Classifier Toolbox, http://jbnc.sourceforge.net),
and Support Vector Machine (libSVM, Chih-
Chung Chang and Chih-Jen Lin. 2004. LIB-
SVM: a Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf).
The reason for the superior performance of Se-
mantic Scattering is because the classification
of genitives is feature poor relying only on the
semantics of the noun components, and the other
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three models normally work better with a larger set
of features.

Accuracy Of-genitives S-genitives
Semantic Scattering 79.85% 78.75%

Decision Trees (C5.0) 40.60% 47.0%

Naive Bayes (JBNC) 42.31% 43.7%

SVM (LibSVM) 31.45 % 23.51%

Table 6: Accuracy performance of four learning
models on the same testing corpus.

7 Discussion and Conclusions

The classification of genitives is an example of a
learning problem where a tailored model outper-
forms other generally applicable models.

This paper presents a model for the semantic clas-
sification of genitives. A set of 35 semantic relations
was identified, and we provided statistical evidence
that when it comes to genitives, some relations are
more frequent than others, while some are absent.
The model relies on the semantic classes of noun
constituents. The algorithm was trained and tested
on 20,000 sentences containing 2,249 of-genitives
and 1006 s-genitives and achieved an average preci-
sion of 82%, a recall of 76%, and an f-measure of
79%. For comparison, we ran a C5.0 learning sys-
tem on the same corpus and obtained 40.60% accu-
racy for of-genitives and 47% for s-genitives. A sim-
ilar experiment with a Naive Bayes learning system
led to 42.31% accuracy for of-genitives and 43.7%
for s-genitives. The performance with a Support
Vector Machines learner was the worst, achieving
only a 31.45% accuracy for of-genitives and 23.51%
accuracy for s-genitives. We have also identified the
sources of errors which when addressed may bring
further improvements.
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Abstract

Measuring the relative compositionality
of Multi-word Expressions (MWEs) is
crucial to Natural Language Processing.
Various collocation based measures have
been proposed to compute the relative
compositionality of MWEs. In this paper,
we define novel measures (both colloca-
tion based and context based measures) to
measure the relative compositionality of
MWEs of V-N type. We show that the
correlation of these features with the hu-
man ranking is much superior to the cor-
relation of the traditional features with the
human ranking. We then integrate the pro-
posed features and the traditional features
using a SVM based ranking function to
rank the collocations of V-N type based
on their relative compositionality. We
then show that the correlation between the
ranks computed by the SVM based rank-
ing function and human ranking is signif-
icantly better than the correlation between
ranking of individual features and human
ranking.

1 Introduction

The main goal of the work presented in this paper
is to examine the relative compositionality of col-

1Part of the work was done at Institute for Research in Cog-
nitive Science (IRCS), University of Pennsylvania, Philadel-
phia, PA 19104, USA, when he was visiting IRCS as a Visiting
Scholar, February to December, 2004.

locations of V-N type using a SVM based ranking
function. Measuring the relative compositionality of
V-N collocations is extremely helpful in applications
such as machine translation where the collocations
that are highly non-compositional can be handled in
a special way (Schuler and Joshi, 2004) (Hwang
and Sasaki, 2005).

Multi-word expressions (MWEs) are those whose
structure and meaning cannot be derived from their
component words, as they occur independently.
Examples include conjunctions like ‘as well as’
(meaning ‘including’), idioms like ‘kick the bucket’
(meaning ‘die’), phrasal verbs like ‘find out’ (mean-
ing ‘search’) and compounds like ‘village commu-
nity’. A typical natural language system assumes
each word to be a lexical unit, but this assumption
does not hold in case of MWEs (Becker, 1975)
(Fillmore, 2003). They have idiosyncratic interpre-
tations which cross word boundaries and hence are
a ‘pain in the neck’ (Sag et al., 2002). They account
for a large portion of the language used in day-to-
day interactions (Schuler and Joshi, 2004) and so,
handling them becomes an important task.

A large number of MWEs have a standard syn-
tactic structure but are non-compositional semanti-
cally. An example of such a subset is the class of
non-compositional verb-noun collocations (V-N col-
locations). The class of non-compositional V-N col-
locations is important because they are used very
frequently. These include verbal idioms (Nunberg
et al., 1994), support-verb constructions (Abeille,
1988), (Akimoto, 1989), among others. The ex-
pression ‘take place’ is a MWE whereas ‘take a gift’
is not a MWE.
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It is well known that one cannot really make a
binary distinction between compositional and non-
compositional MWEs. They do not fall cleanly into
mutually exclusive classes, but populate the con-
tinuum between the two extremes (Bannard et al.,
2003). So, we rate the MWEs (V-N collocations in
this paper) on a scale from 1 to 6 where 6 denotes
a completely compositional expression, while 1 de-
notes a completely opaque expression.

Various statistical measures have been suggested
for ranking expressions based on their composition-
ality. Some of these are Frequency, Mutual Infor-
mation (Church and Hanks, 1989) , distributed fre-
quency of object (Tapanainen et al., 1998) and LSA
model (Baldwin et al., 2003) (Schutze, 1998). In
this paper, we define novel measures (both collo-
cation based and context based measures) to mea-
sure the relative compositionality of MWEs of V-N
type (see section 6 for details). Integrating these sta-
tistical measures should provide better evidence for
ranking the expressions. We use a SVM based rank-
ing function to integrate the features and rank the
V-N collocations according to their compositional-
ity. We then compare these ranks with the ranks
provided by the human judge. A similar compari-
son between the ranks according to Latent-Semantic
Analysis (LSA) based features and the ranks of hu-
man judges has been made by McCarthy, Keller and
Caroll (McCarthy et al., 2003) for verb-particle con-
structions. (See Section 3 for more details). Some
preliminary work on recognition of V-N collocations
was presented in (Venkatapathy and Joshi, 2004).

We show that the measures which we have defined
contribute greatly to measuring the relative compo-
sitionality of V-N collocations when compared to the
traditional features. We also show that the ranks as-
signed by the SVM based ranking function corre-
lated much better with the human judgement that the
ranks assigned by individual statistical measures.

This paper is organized in the following sections
(1) Basic Architecture, (2) Related work, (3) Data
used for the experiments, (4) Agreement between
the Judges, (5) Features, (6) SVM based ranking
function, (7) Experiments & Results, and (8) Con-
clusion.

2 Basic Architecture

Every V-N collocation is represented as a vector of
features which are composed largely of various sta-
tistical measures. The values of these features for
the V-N collocations are extracted from the British
National Corpus. For example, the V-N collocation
‘raise an eyebrow’ can be represented as�

Frequency = 271, Mutual Information = 8.43, Dis-
tributed frequency of object = 1456.29, etc. � . A
SVM based ranking function uses these features to
rank the V-N collocations based on their relative
compositionality. These ranks are then compared
with the human ranking.

3 Related Work

(Breidt, 1995) has evaluated the usefulness of the
Point-wise Mutual Information measure (as sug-
gested by (Church and Hanks, 1989)) for the ex-
traction of V-N collocations from German text cor-
pora. Several other measures like Log-Likelihood
(Dunning, 1993), Pearson’s ��� (Church et al.,
1991), Z-Score (Church et al., 1991) , Cubic As-
sociation Ratio (MI3), etc., have been also pro-
posed. These measures try to quantify the associ-
ation of two words but do not talk about quantify-
ing the non-compositionality of MWEs. Dekang Lin
proposes a way to automatically identify the non-
compositionality of MWEs (Lin, 1999). He sug-
gests that a possible way to separate compositional
phrases from non-compositional ones is to check the
existence and mutual-information values of phrases
obtained by replacing one of the words with a sim-
ilar word. According to Lin, a phrase is proba-
bly non-compositional if such substitutions are not
found in the collocations database or their mutual
information values are significantly different from
that of the phrase. Another way of determining the
non-compositionality of V-N collocations is by us-
ing ‘distributed frequency of object’ (DFO) in V-N
collocations (Tapanainen et al., 1998). The basic
idea in there is that “if an object appears only with
one verb (or few verbs) in a large corpus we expect
that it has an idiomatic nature” (Tapanainen et al.,
1998).

Schone and Jurafsky (Schone and Jurafsky, 2001)
applied Latent-Semantic Analysis (LSA) to the anal-
ysis of MWEs in the task of MWE discovery, by way
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of rescoring MWEs extracted from the corpus. An
interesting way of quantifying the relative composi-
tionality of a MWE is proposed by Baldwin, Ban-
nard, Tanaka and Widdows (Baldwin et al., 2003).
They use LSA to determine the similarity between
an MWE and its constituent words, and claim that
higher similarity indicates great decomposability. In
terms of compositionality, an expression is likely
to be relatively more compositional if it is decom-
posable. They evaluate their model on English NN
compounds and verb-particles, and showed that the
model correlated moderately well with the Word-
net based decomposability theory (Baldwin et al.,
2003).

McCarthy, Keller and Caroll (McCarthy et al.,
2003) judge compositionality according to the de-
gree of overlap in the set of most similar words to
the verb-particle and head verb. They showed that
the correlation between their measures and the hu-
man ranking was better than the correlation between
the statistical features and the human ranking. We
have done similar experiments in this paper where
we compare the correlation value of the ranks pro-
vided by the SVM based ranking function with the
ranks of the individual features for the V-N collo-
cations. We show that the ranks given by the SVM
based ranking function which integrates all the fea-
tures provides a significantly better correlation than
the individual features.

4 Data used for the experiments

The data used for the experiments is British Na-
tional Corpus of 81 million words. The corpus is
parsed using Bikel’s parser (Bikel, 2004) and the
Verb-Object Collocations are extracted. There are
4,775,697 V-N collocations of which 1.2 million are
unique. All the V-N collocations above the fre-
quency of 100 (n=4405) are taken to conduct the ex-
periments so that the evaluation of the system is fea-
sible. These 4405 V-N collocations were searched in
Wordnet, American Heritage Dictionary and SAID
dictionary (LDC,2003). Around 400 were found in
at least one of the dictionaries. Another 400 were
extracted from the rest so that the evaluation set has
roughly equal number of compositional and non-
compositional expressions. These 800 expressions
were annotated with a rating from 1 to 6 by us-

ing guidelines independently developed by the au-
thors. 1 denotes the expressions which are totally
non-compositional while 6 denotes the expressions
which are totally compositional. The brief expla-
nation of the various ratings is as follows: (1) No
word in the expression has any relation to the ac-
tual meaning of the expression. Example : “leave a
mark”. (2) Can be replaced by a single verb. Ex-
ample : “take a look”. (3) Although meanings of
both words are involved, at least one of the words
is not used in the usual sense. Example : “break
news”. (4) Relatively more compositional than (3).
Example : “prove a point”. (5) Relatively less com-
positional than (6). Example : “feel safe”. (6) Com-
pletely compositional. Example : “drink coffee”.

5 Agreement between the Judges

The data was annotated by two fluent speakers of
English. For 765 collocations out of 800, both the
annotators gave a rating. For the rest, at least one
of the annotators marked the collocations as “don’t
know”. Table 1 illustrates the details of the annota-
tions provided by the two judges.

Ratings 6 5 4 3 2 1

Annotator1 141 122 127 119 161 95

Annotator2 303 88 79 101 118 76

Table 1: Details of the annotations of the two anno-
tators

From the table 1 we see that annotator1 dis-
tributed the rating more uniformly among all the
collocations while annotator2 observed that a sig-
nificant proportion of the collocations were com-
pletely compositional. To measure the agreement
between the two annotators, we used the Kendall’s
TAU ( � ) (Siegel and Castellan, 1988). � is the cor-
relation between the rankings1 of collocations given
by the two annotators. � ranges between 0 (little
agreement) and 1 (full agreement). � is defined as,

���
�����
	���

����� ��� � 	�� ��

����� ��� � 	��

� ����� � ��� � ��� � � ��! �

��� �
�#" � ��" ���%$&�

' ( ��! �
�*) � ��) ���+$&�

' ( � � � �,��� �%$&�
'

1computed from the ratings
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where ��� ’s are the rankings of annotator1 and ��� ’s
are the rankings of annotator2, n is the number of
collocations, ��� is the number of values in the �	� 

group of tied � values and � � is the number of values
in the � � 
 group of tied � values.

We obtained a � score of 0.61 which is highly sig-
nificant. This shows that the annotators were in a
good agreement with each other in deciding the rat-
ing to be given to the collocations. We also com-
pare the ranking of the two annotators using Pear-
son’s Rank-Correlation coefficient ( ��
 ) (Siegel and
Castellan, 1988). We obtained a ��
 score of 0.71 in-
dicating a good agreement between the annotators.
A couple of examples where the annotators differed
are (1) “perform a task” was rated 3 by annotator1
while it was rated 6 by annotator2 and (2) “pay trib-
ute” was rated 1 by annotator1 while it was rated 4
by annotator2.

The 765 samples annotated by both the annotators
were then divided into a training set and a testing set
in several possible ways to cross-validate the results
of ranking (section 8).

6 Features

Each collocation is represented by a vector whose
dimensions are the statistical features obtained from
the British National Corpus. The features used in
our experiments can be classified as (1) Collocation
based features and (2) Context based features.

6.1 Collocation based features

Collocation based features consider the entire collo-
cation as an unit and compute the statistical proper-
ties associated with it. The collocation based fea-
tures that we considered in our experiments are (1)
Frequency, (2) Point-wise Mutual Information, (3)
Least mutual information difference with similar
collocations, (4) Distributed frequency of object and
(5) Distributed frequency of object using the verb
information.

6.1.1 Frequency ( � )

This feature denotes the frequency of a colloca-
tion in the British National Corpus. Cohesive ex-
pressions have a high frequency. Hence, greater the
frequency, the more is the likelihood of the expres-
sion to be a MWE.

6.1.2 Point-wise Mutual Information ( � )

Point-wise Mutual information of a collocation
(Church and Hanks, 1989) is defined as,

������������� �����������������! "�# $�
�������# $���%���! "�����

where, � is the verb and � is the object of the col-
location. The higher the Mutual information of a
collocation, the more is the likelihood of the expres-
sion to be a MWE.

6.1.3 Least mutual information difference with
similar collocations ( & )

This feature is based on Lin’s work (Lin, 1999).
He suggests that a possible way to separate compo-
sitional phrases from non-compositional ones is to
check the existence and mutual information values
of similar collocations (phrases obtained by replac-
ing one of the words with a similar word). For exam-
ple, ‘eat apple’ is a similar collocation of ‘eat pear’.

For a collocation, we find the similar collocations
by substituting the verb and the object with their
similar words2. The similar collocation having the
least mutual information difference is chosen and
the difference in their mutual information values is
noted.

If a collocation ' has a set of similar collocations(
, then we define & as

&)����*+���,*-���.�/�10 
�2,3 �5476+8 �����9'#�: ;��� 8 �<� �
where

4=6+8 ���>� returns the absolute value of � and
� * and � * are the verb and object of the collocation '
respectively. If similar collocations do not exist for a
collocation, then this feature is assigned the highest
among the values assigned in the previous equation.
In this case, & is defined as,

&)���������)�.� 4 ����? @ � &)���,�!���A@5� �
where � and � are the verb and object of colloca-
tions for which similar collocations do not exist. The
higher the value of & , the more is the likelihood of
the collocation to be a MWE.

2obtained from Lin’s (Lin, 1998) automatically generated
thesaurus (http://www.cs.ualberta.ca/ B lindek/downloads.htm).
We obtained the best results (section 8) when we substituted
top-5 similar words for both the verb and the object. To mea-
sure the compositionality, semantically similar words are more
suitable than synomys. Hence, we choose to use Lin’s the-
saurus (Lin, 1998) instead of Wordnet (Miller et al., 1990).

902



6.1.4 Distributed Frequency of Object ( � )

The distributed frequency of object is based on the
idea that “if an object appears only with one verb
(or few verbs) in a large corpus, the collocation is
expected to have idiomatic nature” (Tapanainen et
al., 1998). For example, ‘sure’ in ‘make sure’ occurs
with very few verbs. Hence, ‘sure’ as an object is
likely to give a special sense to the collocation as it
cannot be used with any verb in general. It is defined
as,

���9�����
���� ����� � �����

0
where 0 is the number of verbs occurring with the
object ( � ), � � ’s are the verbs cooccuring with � and
�����,� ��������� . As the number of verbs ( 0 ) increases,
the value of ���9��� decreases. Here, � is a threshold
which can be set based on the corpus. This feature
treats ‘point finger’ and ‘polish finger’ in the same
way as it does not use the information specific to the
verb in the collocation. Here, both the collocations
will have the value ���������10
	��A��
 
 � . The 3 collocations
having the highest value of this feature are (1) come
true, (2) become difficult and (3) make sure.

6.1.5 Distributed Frequency of Object using
the Verb information ( � )

Here, we have introduced an extension to the fea-
ture � such that the collocations like ‘point finger’
and ‘polish finger’ are treated differently and more
appropriately. This feature is based on the idea that
“a collocation is likely to be idiomatic in nature if
there are only few other collocations with the same
object and dissimilar verbs”. We define this feature
as,

� ���������)�
���� ����� � ����� ����� 8�� �����<� � �

0
where 0������ is the number of verbs occurring

with � , ��� ’s are the verbs cooccuring with � and
�����,� ��������� . ��� 8�� �����<�,� � is the distance between
the verb � and �,� . It is calculated using the wordnet
similarity measure defined by Hirst and Onge (Hirst
and St-Onge, 1998). In our experiments, we consid-
ered top-50 verbs which co-occurred with the object
� . We used a Perl package Wordnet::Similarity by
Patwardhan3 to conduct our experiments.

3http://www.d.umn.edu/ B tpederse/similarity.html

6.2 Context based features

Context based measures use the context of a
word/collocation to measure their properties. We
represented the context of a word/collocation using
a LSA model. LSA is a method of representing
words/collocations as points in vector space.

The LSA model we built is similar to that de-
scribed in (Schutze, 1998) and (Baldwin et al.,
2003). First, 1000 most frequent content words (i.e.,
not in the stop-list) were chosen as “content-bearing
words”. Using these content-bearing words as col-
umn labels, the 50,000 most frequent terms in the
corpus were assigned row vectors by counting the
number of times they occurred within the same sen-
tence as content-bearing words. Principal compo-
nent analysis was used to determine the principal
axis and we get the transformation matrix � ������� � �����
which can be used to reduce the dimensions of the
1000 dimensional vectors to 100 dimensions.

We will now describe in Sections 6.2.1 and 6.2.2
the features defined using LSA model.

6.2.1 Dissimilarity of the collocation with its
constituent verb using the LSA model ( ! )

If a collocation is highly dissimilar to its con-
stituent verb, it implies that the usage of the verb in
the specific collocation is not in a general sense. For
example, the sense of ‘change’ in ‘change hands’
would be very different from its usual sense. Hence,
the greater the dissimilarity between the collocation
and its constituent verb, the more is the likelihood
that it is a MWE. The feature is defined as

!��9' �<� * ���#"  8 �1�%$=3�&��9'5�<� * �
8 � �%$73'&%�9' �<� * ���

( 854 �9'A�*) ( 8 4 ��� * �+ ( 8 4 �9'#� + � + ( 854 ��� * � +
where, ' is the collocation, � * is the verb of the

collocation and lsa( � ) is representation of � using
the LSA model.

6.2.2 Similarity of the collocation to the
verb-form of the object using the LSA
model ( , )

If a collocation is highly similar to the verb form
of an object, it implies that the verb in the collo-
cation does not contribute much to the meaning of
the collocation. The verb either acts as a sort of
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support verb, providing perhaps some additional as-
pectual meaning. For example, the verb ‘give’ in
‘give a smile’ acts merely as a support verb. Here,
the collocation ‘give a smile’ means the same as the
verb-form of the object i.e., ‘to smile’. Hence, the
greater is the similarity between the collocation and
the verb-form of the object, the more is the likeli-
hood that it is a MWE. This feature is defined as

, �9' �<��� * �)�
( 854 �9'#� ) ( 854 ���7�,*-�+ ( 8 4 �9'#� + � + ( 8 4 ����� * � +

where, ' is the collocation and ��� * is the verb-form
of the object � * . We obtained the verb-form of the
object from the wordnet (Miller et al., 1990) us-
ing its ‘Derived forms’. If the object doesn’t have a
verbal form, the value of this feature is 0. Table 2
contains the top-6 collocations according to this fea-
ture. All the collocations in Table 2 (except ‘receive
award’ which does not mean the same as ‘to award’)
are good examples of MWEs.

Collocation Value Collocation Value

pay visit 0.94 provide assistance 0.92

provide support 0.93 give smile 0.92

receive award 0.92 find solution 0.92

Table 2: Top-6 collocations according to this feature

7 SVM based ranking function/algorithm

The optimal rankings on the training data is com-
puted using the average ratings of the two users.
The goal of the learning function is to model itself
according to this rankings. It should take a rank-
ing function � from a family of ranking functions

�
that maximizes the empirical � (Kendall’s Tau). �
expresses the similarity between the optimal rank-
ing ( ��� ) and the ranking ( ��� ) computed by the func-
tion � . SVM-Light4 is a tool developed by Joachims
(Joachims, 2002) which provides us such a function.
We briefly describe the algorithm in this section.

Maximizing � is equivalent to minimizing the
number of discordant pairs (the pairs of collocations
which are not in the same order as in the optimal
ranking). This is equivalent to finding the weight

4http://svmlight.joachims.org

vector �� so that the maximum number of inequali-
ties are fulfilled.

� �9' �!��'<@5�
	/� ��� ���
 �9' �1� �����
 �9'!@ �
where '+� and '<@ are the collocations, �9'A�!��'<@5��	 ���
if the collocation ' � is ranked higher than ' @ for the
optimal ranking � � , 
 �9' � � and 
 �9'<@ � are the mapping
onto features (section 6) that represent the properties
of the V-N collocations 'A� and '<@ respectively and ��
is the weight vector representing the ranking func-
tion ��� .

Adding SVM regularization for margin maxi-
mization to the objective leads to the following opti-
mization problem (Joachims, 2002).

�/�10>�1�/���'� ��� ���� ���� ��� "� �� �������� � ��? @
'+� 0 8�� � � �� � 
 �9' � �  
 �9'!@ �<� � "  � ��? @,� � ��? @ � � ? @!� �

where � � ? @ are the (non-negative) slack variables
and C is the margin that allows trading-off margin
size against training error. This optimization prob-
lem is equivalent to that of a classification SVM on
pairwise difference vectors 
 �9' � � - 
 �9' @ � . Due to
similarity, it can be solved using decomposition al-
gorithms similar to those used for SVM classifica-
tion (Joachims, 1999).

Using the learnt function �#"�%$ ( �� � is the learnt
weight vector), the collocations in the test set can be
ranked by computing their values using the formula
below.

��',�9' � ���&�� � 
 �9' � �
8 Experiments and Results

For training, we used 10% of the data and for test-
ing, we use 90% of the data as the goal is to use only
a small portion of the data for training (Data was di-
vided in 10 different ways for cross-validation. The
results presented here are the average results).

All the statistical measures show that the expres-
sions ranked higher according to their decreasing
values are more likely to be non-compositional. We
compare these ranks with the human rankings (ob-
tained using the average ratings of the users). To
compare, we use Pearson’s Rank-Order Correlation
Coefficient ( � 
 ) (Siegel and Castellan, 1988).

We integrate all the seven features using the SVM
based ranking function (described in section 7). We
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see that the correlation between the relative compo-
sitionality of the V-N collocations computed by the
SVM based ranking function is significantly higher
than the correlation between the individual features
and the human ranking (Table 3).

Feature Correlation Feature Correlation
�

(f1) 0.129 � (f5) 0.203
� (f2) 0.117 � (f6) 0.139

� (f3) 0.210 � (f7) 0.300
�

(f4) 0.111 Ranking
�

0.448

Table 3: The correlation values of the ranking of
individual features and the ranking of SVM based
ranking function with the ranking of human judge-
ments

In table 3, we also see that the contextual feature
which we proposed, ‘Similarity of the collocation to
the verb-form of the object’ ( , ), correlated signifi-
cantly higher than the other features which indicates
that it is a good measure to represent the semantic
compositionality of V-N expressions. Other expres-
sions which were good indicators when compared
to the traditional features are ‘Least mutual infor-
mation difference with similar collocations’ ( & ) and
‘Distributed frequency of object using the verb in-
formation’ ( � ).
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Figure 1: The change in �,
 as more features are
added to the ranking function

To observe the contribution of the features to the
SVM based ranking function, we integrate the fea-
tures (section 6) one after another (in two different
ways) and compute the relative order of the collo-

cations according to their compositionality. We see
that as we integrate more number of relevant com-
positionality based features, the relative order corre-
lates better (better � 
 value) with the human ranking
(Figure 1). We also see that when the feature ‘Least
mutual information difference with similar colloca-
tions’ is added to the SVM based ranking function,
there is a high rise in the correlation value indicat-
ing it’s relevance. In figure 1, we also observe that
the context-based features did not contribute much
to the SVM based ranking function even though they
performed well individually.

9 Conclusion

In this paper, we proposed some collocation based
and contextual features to measure the relative com-
positionality of MWEs of V-N type. We then inte-
grate the proposed features and the traditional fea-
tures using a SVM based ranking function to rank
the V-N collocations based on their relative compo-
sitionality. Our main results are as follows, (1) The
properties ‘Similarity of the collocation to the verb-
form of the object’, ‘ Least mutual information dif-
ference with similar collocations’ and ‘Distributed
frequency of object using the verb information’ con-
tribute greatly to measuring the relative composi-
tionality of V-N collocations. (2) The correlation be-
tween the ranks computed by the SVM based rank-
ing function and the human ranking is significantly
better than the correlation between ranking of indi-
vidual features and human ranking.

In future, we will evaluate the effectiveness of the
techniques developed in this paper for applications
like Machine Translation. We will also extend our
approach to other types of MWEs and to the MWEs
of other languages (work on Hindi is in progress).
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Abstract

In this paper we investigate an applica-
tion of feature clustering for word sense
disambiguation, and propose a semi-
supervised feature clustering algorithm.
Compared with other feature clustering
methods (ex. supervised feature cluster-
ing), it can infer the distribution of class
labels over (unseen) features unavailable
in training data (labeled data) by the use of
the distribution of class labels over (seen)
features available in training data. Thus,
it can deal with both seen and unseen fea-
tures in feature clustering process. Our ex-
perimental results show that feature clus-
tering can aggressively reduce the dimen-
sionality of feature space, while still main-
taining state of the art sense disambigua-
tion accuracy. Furthermore, when com-
bined with a semi-supervised WSD algo-
rithm, semi-supervised feature clustering
outperforms other dimensionality reduc-
tion techniques, which indicates that using
unlabeled data in learning process helps to
improve the performance of feature clus-
tering and sense disambiguation.

1 Introduction

This paper deals with word sense disambiguation
(WSD) problem, which is to assign an appropriate
sense to an occurrence of a word in a given context.
Many corpus based statistical methods have been
proposed to solve this problem, including supervised
learning algorithms (Leacock et al., 1998; Towel and
Voorheest, 1998), weakly supervised learning algo-
rithms (Dagan and Itai, 1994; Li and Li, 2004; Mi-
halcea, 2004; Niu et al., 2005; Park et al., 2000;

Yarowsky, 1995), unsupervised learning algorithms
(or word sense discrimination) (Pedersen and Bruce,
1997; Scḧutze, 1998), and knowledge based algo-
rithms (Lesk, 1986; McCarthy et al., 2004).

In general, the most common approaches start by
evaluating the co-occurrence matrix of features ver-
sus contexts of instances of ambiguous word, given
sense-tagged training data for this target word. As
a result, contexts are usually represented in a high-
dimensional sparse feature space, which is far from
optimal for many classification algorithms. Further-
more, processing data lying in high-dimensional fea-
ture space requires large amount of memory and
CPU time, which limits the scalability of WSD
model to very large datasets or incorporation of
WSD model into natural language processing sys-
tems.

Standard dimentionality reduction techniques in-
clude (1) supervised feature selection and super-
vised feature clustering when given labeled data, (2)
unsupervised feature selection, latent semantic in-
dexing, and unsupervised feature clustering when
only unlabeled data is available. Supervised fea-
ture selection improves the performance of an ex-
amplar based learning algorithm over SENSEVAL-
2 data (Mihalcea, 2002), Naive Bayes and deci-
sion tree over SENSEVAL-1 and SENSEVAL-2 data
(Lee and Ng, 2002), but feature selection does not
improve SVM and Adaboost over SENSEVAL-1
and SENSEVAL-2 data (Lee and Ng, 2002) for
word sense disambiguation. Latent semantic in-
dexing (LSI) studied in (Scḧutze, 1998) improves
the performance of sense discrimination, while un-
supervised feature selection also improves the per-
formance of word sense discrimination (Niu et al.,
2004). But little work is done on using feature clus-
tering to conduct dimensionality reduction for WSD.
This paper will describe an application of feature

907



clustering technique to WSD task.
Feature clustering has been extensively studied

for the benefit of text categorization and document
clustering. In the context of text categorization, su-
pervised feature clustering algorithms (Baker and
McCallum, 1998; Bekkerman et al., 2003; Slonim
and Tishby, 2001) usually cluster words into groups
based on the distribution of class labels over fea-
tures, which can compress the feature space much
more aggressively while still maintaining state of
the art classification accuracy. In the context of
document clustering, unsupervised feature cluster-
ing algorithms (Dhillon, 2001; Dhillon et al., 2002;
Dhillon et al., 2003; El-Yaniv and Souroujon, 2001;
Slonim and Tishby, 2000) perform word clustering
by the use of word-document co-occurrence matrix,
which can improve the performance of document
clustering by clustering documents over word clus-
ters.

Supervised feature clustering algorithm groups
features into clusters based on the distribution of
class labels over features. But it can not group un-
seen features (features that do not occur in labeled
data) into meaningful clusters since there are no
class labels associated with these unseen features.
On the other hand, while given labeled data, un-
supervised feature clustering method can not uti-
lize class label information to guide feature cluster-
ing procedure. While, as a promising classification
strategy, semi-supervised learning methods (Zhou et
al., 2003; Zhu and Ghahramani, 2002; Zhu et al.,
2003) usually utilize all the features occurring in la-
beled data and unlabeled data. So in this paper we
propose a semi-supervised feature clustering algo-
rithm to overcome this problem. Firstly, we try to
induce class labels for unseen features based on the
similarity among seen features and unseen features.
Then all the features (including seen features and
unseen features) are clustered based on the distrib-
ution of class labels over them.

This paper is organized as follows. First, we
will formulate a feature clustering based WSD prob-
lem in section 2. Then in section 3 we will de-
scribe a semi-supervised feature clustering algo-
rithm. Section 4 will provide experimental results
of various dimensionality reduction techniques with
combination of state of the art WSD algorithms on
SENSEVAL-3 data. Section 5 will provide a review

of related work on feature clustering. Finally we will
conclude our work and suggest possible improve-
ment in section 6.

2 Problem Setup

Let X = {xi}
n
i=1

be a set of contexts of occur-
rences of an ambiguous wordw, wherexi repre-
sents the context of thei-th occurrence, andn is
the total number of this word’s occurrences. Let
S = {sj}

c
j=1

denote the sense tag set ofw. The first
l examplesxg(1 ≤ g ≤ l) are labeled asyg (yg ∈ S)
and otheru (l+u = n) examplesxh(l+1 ≤ h ≤ n)
are unlabeled. The goal is to predict the sense ofw
in contextxh by the use of label information ofxg

and similarity information among examples inX.
We useF̃ to represent feature clustering result

into N
F̃

clusters whenF is a set of features. After
feature clustering, any contextxi in X can be repre-
sented as a vector over feature clustersF̃ . Then we
can use supervised methods (ex. SVM) (Lee and
Ng, 2002) or semi-supervised methods (ex. label
propagation algorithm) (Niu et al., 2005) to perform
sense disambiguation on unlabeled instances of tar-
get word.

3 Semi-Supervised Feature Clustering
Algorithm

In supervised feature clustering process,F consists
of features occurring in the firstl labeled examples,
which can be denoted asFL. But in the setting of
transductive learning, semi-supervised learning al-
gorithms will utilize not only the features in labeled
examples (FL), but also unseen features in unlabeled
examples (denoted asFL). FL consists of the fea-
tures that occur in unlabeled data, but never appear
in labeled data.

Supervised feature clustering algorithm usually
performs clustering analysis over feature-class ma-
trix, where each entry(i, j) in this matrix is the num-
ber of times of thei-th feature co-occurring with the
j-th class. Therefore it can not group features inFL
into meaningful clusters since there are no class la-
bels associated with these features. We overcome
this problem by firstly inducing class labels for un-
seen features based on the similarity among features
in FL andFL, then clustering all the features (in-
cludingFL andFL) based on the distribution of class
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labels over them.
This semi-supervised feature clustering algorithm

is defined as follows:
Input:
Feature setF = FL

⋃
FL (the first|FL| features

in F belong toFL, and the remaining|FL| features
belong toFL), context setX, the label information
of xg(1 ≤ g ≤ l), N

F̃
(the number of clusters iñF );

Output:
Clustering solutioñF ;
Algorithm:
1. Construct|F | × |X| feature-example matrix

MF,X , where entryMF,X
i,j is the number of times of

fi co-occurring with examplexj (1 ≤ j ≤ n).
2. Form|F | × |F | affinity matrix W defined by

Wij = exp(−
d2

ij

σ2 ) if i 6= j and Wii = 0 (1 ≤
i, j ≤ |F |), wheredij is the distance (ex. Euclid-
ean distance) betweenfi (thei-th row inMF,X ) and
fj (thej-th row in MF,X ), andσ is used to control
the weightWij .

3. Construct|FL| × |S| feature-class matrix
Y FL,S , where the entryY FL,S

i,j is the number of
times of featurefi (fi ∈ FL) co-occurring with
sensesj .

4. Obtain hard label matrix for features inFL

(denoted asY FL,S
hard ) based onY FL,S , where entry

Y F,S
hard i,j = 1 if the hard label offi is sj , otherwise

zero. Obtain hard labels for features inFL using

a classifier based onW andY FL,S
hard . In this paper

we use label propagation (LP) algorithm (Zhu and
Ghahramani, 2002) to get hard labels forFL.

5. Construct|F | × |S| feature-class matrixY F,S
hard,

where entryY F,S
hard i,j = 1 if the hard label offi is

sj , otherwise zero.
6. Construct the matrixL = D−1/2WD−1/2 in

which D is a diagonal matrix with its (i, i)-element
equal to the sum of thei-th row ofW .

7. Label each feature inF as soft label̂Y F,S
i , the

i-th row of Ŷ F,S , whereŶ F,S = (I − αL)−1Y F,S
hard.

8. Obtain the feature clustering solutioñF by
clustering the rows of̂Y F,S

i into N
F̃

groups. In
this paper we use sequential information bottleneck
(sIB) algorithm (Slonim and Tishby, 2000) to per-
form clustering analysis.

End

Step 3 ∼ 5 are the process to obtain hard la-

bels for features inF , while the operation in step6
and7 is a local and global consistency based semi-
supervised learning (LGC) algorithm (Zhou et al.,
2003) that smooth the classification result of LP al-
gorithm to acquire a soft label for each feature.

At first sight, this semi-supervised feature cluster-
ing algorithm seems to make little sense. Since we
run feature clustering in step8, why not use LP algo-
rithm to obtain soft label matrixY F

L
,S for features

in FL by the use ofY FL,S andW , then just apply
sIB directly to soft label matrix̂Y F,S (constructed
by catenatingY FL,S andY F

L
,S)?

The reason for using LGC algorithm to acquire
soft labels for features inF is that in the context
of transductive learning, the size of labeled data is
rather small, which is much less than that of un-
labeled data. This makes it difficult to obtain re-
liable estimation of class label’s distribution over
features from only labeled data. This motivates
us to use raw information (hard labels of features
in FL) from labeled data to estimate hard labels
of features inFL. Then LGC algorithm is used
to smooth the classification result of LP algorithm
based on the assumption that a good classification
should change slowly on the coherent structure ag-
gregated by a large amount of unlabeled data. This
operation makes our algorithm more robust to the
noise in feature-class matrixY FL,S that is estimated
from labeled data.

In this paper,σ is set as the average distance be-
tween labeled examples from different classes, and
N

F̃
= |F |/10. Latent semantic indexing technique

(LSI) is used to perform factor analysis inMF,X be-
fore calculating the distance between features in step
2.

4 Experiments and Results

4.1 Experiment Design

For empirical study of dimensionality reduction
techniques on WSD task, we evaluated five dimen-
sionality reduction algorithms on the data in English
lexical sample (ELS) task of SENSEVAL-3 (Mihal-
cea et al., 2004)(including all the 57 English words
) 1: supervised feature clustering (SuFC) (Baker and
McCallum, 1998; Bekkerman et al., 2003; Slonim

1Available at http://www.senseval.org/senseval3
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and Tishby, 2001), iterative double clustering (IDC)
(El-Yaniv and Souroujon, 2001), semi-supervised
feature clustering (SemiFC) (our algorithm), super-
vised feature selection (SuFS) (Forman, 2003), and
latent semantic indexing (LSI) (Deerwester et. al.,
1990)2.

We usedsIB algorithm 3 to cluster features in
FL into groups based on the distribution of class la-
bels associated with each feature. This procedure
can be considered as our re-implementation of su-
pervised feature clustering. After feature clustering,
examples can be represented as vectors over feature
clusters.

IDC is an extension of double clustering method
(DC) (Slonim and Tishby, 2000), which performs it-
erations of DC. In the transductive version of IDC,
they cluster features inF as distributions over class
labels (given by the labeled data) during the first
stage of the IDC first iteration. This phase results in
feature clusters̃F . Then they continue as usual; that
is, in the second phase of the first IDC iteration they
groupX into N

X̃
clusters, whereX is represented

as distribution overF̃ . Subsequent IDC iterations
use all the unlabeled data. This IDC algorithm can
result in two clustering solutions:̃F andX̃. Follow-
ing (El-Yaniv and Souroujon, 2001), the number of
iterations is set as15, andN

X̃
= |S| (the number of

senses of target word) in our re-implementation of
IDC. After performing IDC, examples can be repre-
sented as vectors over feature clustersF̃ .

Supervised feature selection has been extensively
studied for text categorization task (Forman, 2003).
Information gain (IG) is one of state of the art cri-
teria for feature selection, which measures the de-
crease in entropy when the feature is given vs. ab-
sent. In this paper, we calculate IG score for each
feature inFL, then select top|F |/10 features with
highest scores to form reduced feature set. Then
examples can be represented as vectors over the re-
duced feature set.

LSI is an unsupervised factor analysis technique
based on Singular Value Decomposition of a|X| ×
|F | example-feature matrix. The underlying tech-
nique for LSI is to find an orthogonal basis for the

2Following (Baker and McCallum, 1998), we use LSI as a
representative method for unsupervised dimensionality reduc-
tion.

3Available at http://www.cs.huji.ac.il/∼noamm/

feature-example space for which the axes lie along
the dimensions of maximum variance. After using
LSI on the example-feature matrix, we can get vec-
tor representation for each example inX in reduced
feature space.

For each ambiguous word in ELS task of
SENSEVAL-3, we used three types of features to
capture contextual information: part-of-speech of
neighboring words with position information, un-
ordered single words in topical context, and local
collocations (as same as the feature set used in (Lee
and Ng, 2002) except that we did not use syntactic
relations). We removed the features with occurrence
frequency (counted in both training set and test set)
less than 3 times.

We ran these five algorithms for each ambiguous
word to reduce the dimensionality of feature space
from |F | to |F |/10 no matter which training data is
used (ex. full SENSEVAL-3 training data or sam-
pled SENSEVAL-3 training data). Then we can ob-
tain new vector representation ofX in new feature
space acquired by SuFC, IDC, SemiFC, and LSI or
reduced feature set by SuFS.

Then we used SVM4 and LP algorithm to per-
form sense disambiguation on vectors in dimension-
ality reduced feature space. SVM and LP were eval-
uated using accuracy5 (fine-grained score) on test
set of SENSEVAL-3. For LP algorithm, the test set
in SENSEVAL-3 data was also used as unlabeled
data in tranductive learning process.

We investigated two distance measures for LP: co-
sine similarity and Jensen-Shannon (JS) divergence
(Lin, 1991). Cosine similarity measures the angle
between two feature vectors, while JS divergence
measures the distance between two probability dis-
tributions if each feature vector is considered as
probability distribution over features.

For sense disambiguation on SENSEVAL-3 data,
we constructed connected graphs for LP algorithm
following (Niu et al., 2005): two instancesu, v will
be connected by an edge ifu is amongv’s k nearest
neighbors, or ifv is amongu’s k nearest neighbors

4We usedSV M
light with linear kernel function, available

at http://svmlight.joachims.org/.
5If there are multiple sense tags for an instance in training

set or test set, then only the first tag is considered as correct
answer. Furthermore, if the answer of the instance in test set is
“U”, then this instance will be removed from test set.
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as measured by cosine or JS distance measure.k is
5 in later experiments.

4.2 Experiments on Full SENSEVAL-3 Data

In this experiment, we took the training set in
SENSEVAL-3 as labeled data, and the test set as un-
labeled data. In other words, all of dimensionality
reduction methods and classifiers can use the label
information in training set, but can not access the
label information in test set. We evaluated differ-
ent sense disambiguation processes using test set in
SENSEVAL-3.

We use features with occurrence frequency no less
than 3 in training set and test set as feature setF for
each ambiguous word.F consists of two disjoint
subsets:FL andFL. FL consists of features occur-
ring in training set of target word in SENSEVAL-3,
while FL consists of features that occur in test set,
but never appear in training set.

Table 1 lists accuracies of SVM and LP
without or with dimensionality reduction on full
SENSEVAL-3 data. From this table, we have some
findings as follows:

(1) If without dimensionality reduction, the best
performance of sense disambiguation is70.3%
(LPJS), while if using dimensionality reduction,
the best two systems can achieve69.8% (SuFS +
LPJS) and69.0% (SemiFC + LPJS) accuracies.
It seems that feature selection and feature clustering
can significantly reduce the dimensionality of fea-
ture space while losing only about1.0% accuracy.

(2) Furthermore,LPJS algorithm performs bet-
ter than SVM when combined with the same dimen-
sionality reduction technique (except IDC). Notice
that LP algorithm uses unlabelled data during its dis-
ambiguation phase while SVM doesn’t. This indi-
cates that using unlabeled data helps to improve the
performance of sense disambiguation.

(3) When using LP algorithm for sense disam-
biguation, SemiFC performs better than other fea-
ture clustering algorithms, such as SuFC, IDC.
This indicates that clustering seen and unseen fea-
tures can satisfy the requirement of semi-supervised
learning algorithm, which does help the classifica-
tion process.

(4) When using SuFC, IDC, SuFS, or SemiFC for
dimensionality reduction, the performance of sense
disambiguation is always better than that using LSI

as dimensionality reduction method. SuFC, IDC,
SuFS, and SemiFC use label information to guide
feature clustering or feature selection, while LSI is
an unsupervised factor analysis method that can con-
duct dimensionality reduction without the use of la-
bel information from labeled data. This indicates
that using label information in dimensionality re-
duction procedure can cluster features into better
groups or select better feature subsets, which results
in better representation of contexts in reduced fea-
ture space.

4.3 Additional Experiments on Sampled
SENSEVAL-3 Data

For investigating the performance of various dimen-
sionality reduction techniques with very small train-
ing data, we ran them with onlylw examples from
training set of each word in SENSEVAL-3 as la-
beled data. The remaining training examples and
all the test examples were used as unlabeled data
for SemiFC or LP algorithm. Finally we evaluated
different sense disambiguation processes using test
set in SENSEVAL-3. For each labeled set sizelw,
we performed 20 trials. In each trial, we randomly
sampledlw labeled examples for each word from
training set. If any sense was absent from the sam-
pled labeled set, we redid the sampling.lw is set as
Nw,train × 10%, whereNw,train is the number of
examples in training set of wordw. Other settings
of this experiment is as same as that of previous one
in section 4.2.

In this experiment, feature setF is as same as that
in section 4.2.FL consists of features occurring in
sampled training set of target word in SENSEVAL-
3, while FL consists of features that occur in unla-
beled data (including unselected training data and all
the test set), but never appear in labeled data (sam-
pled training set).

Table 2 lists accuracies of SVM and LP with-
out or with dimensionality reduction on sampled
SENSEVAL-3 training data6. From this table, we
have some findings as follows:

(1) If without dimensionality reduction, the best
performance of sense disambiguation is 54.9%
(LPJS), while if using dimensionality reduction, the

6We can not obtain the results of IDC over 20 trials since it
costs about 50 hours for each trial (Pentium 1.4 GHz CPU/1.0
GB memory).
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Table 1: This table lists the accuracies of SVM and LP without or with dimensionality reduction on full
SENSEVAL-3 data. There is no result forLSI + LPJS , since the vectors obtained by LSI may contain
negative values, which prohibits the application of JS divergence for measuring the distance between these
vectors.

Without With various dimensionality
dimensionality reduction techniques

Classifier reduction SuFC IDC SuFS LSI SemiFC

SVM 69.7% 66.4% 65.1% 65.2% 59.1% 64.0%
LPcosine 68.4% 66.7% 64.9% 66.0% 60.7% 67.6%
LPJS 70.3% 67.2% 64.0% 69.8% - 69.0%

Table 2: This table lists the accuracies of SVM and LP without or with dimensionality reduction on sam-
pled SENSEVAL-3 training data. For each classifier, we performed paired t-test between the system using
SemiFC for dimensionality reduction and any other system with or without dimensionality reduction.≫ (or
≪) means p-value≤ 0.01, while > (or <) means p-value falling into(0.01, 0.05]. Both≫ (or≪) and>
(or <) indicate that the performance of current WSD system is significantly better(or worse) than that using
SemiFC for dimensionality reduction, when given same classifier.

Without With various dimensionality
dimensionality reduction techniques

Classifier reduction SuFC SuFS LSI SemiFC

SVM 53.4±1.1% (≫) 50.4±1.1% (≪) 52.2±1.2% (>) 49.8±0.8% (≪) 51.5±1.0%
LPcosine 54.4±1.2% (≫) 49.5±1.1% (≪) 51.1±1.0% (≪) 49.8±1.0% (≪) 52.9±1.0%
LPJS 54.9±1.1% (≫) 52.0±0.9% (≪) 52.5±1.0% (≪) - 54.1±1.2%

best performance of sense disambiguation is 54.1%
(SemiFC + LPJS). Feature clustering can signif-
icantly reduce the dimensionality of feature space
while losing only0.8% accuracy.

(2) LPJS algorithm performs better than SVM
when combined with most of dimensionality reduc-
tion techniques. This result confirmed our previous
conclusion that using unlabeled data can improve
the sense disambiguation process. Furthermore,
SemiFC performs significantly better than SuFC and
SuFS when using LP as the classifier for sense dis-
ambiguation. The reason is that when given very
few labeled examples, the distribution of class labels
over features can not be reliably estimated, which
deteriorates the performance of SuFC or SuFS. But
SemiFC uses only raw label information (hard label
of each feature) estimated from labeled data, which
makes it robust to the noise in very small labeled
data.

(3) SuFC, SuFS and SemiFC perform better than
LSI no matter which classifier is used for sense dis-

ambiguation. This observation confirmed our previ-
ous conclusion that using label information to guide
dimensionality reduction process can result in bet-
ter representation of contexts in feature subspace,
which further improves the results of sense disam-
biguation.

5 Related Work

Feature clustering has been extensively studied for
the benefit of text categorization and document clus-
tering, which can be categorized as supervised fea-
ture clustering, semi-supervised feature clustering,
and unsupervised feature clustering.

Supervised feature clustering algorithms (Baker
and McCallum, 1998; Bekkerman et al., 2003;
Slonim and Tishby, 2001) usually cluster words into
groups based on the distribution of class labels over
features. Baker and McCallum (1998) apply super-
vised feature clustering based on distributional clus-
tering for text categorization, which can compress
the feature space much more aggressively while still
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maintaining state of the art classification accuracy.
Slonim and Tishby (2001) and Bekkerman et. al.
(2003) apply information bottleneck method to find
word clusters. They present similar results with the
work by Baker and McCallum (1998). Slonim and
Tishby (2001) goes further to show that when the
training sample is small, word clusters can yield sig-
nificant improvement in classification accuracy.

Unsupervised feature clustering algorithms
(Dhillon, 2001; Dhillon et al., 2002; Dhillon et al.,
2003; El-Yaniv and Souroujon, 2001; Slonim and
Tishby, 2000) perform word clustering by the use
of word-document co-occurrence matrix, which do
not utilize class labels to guide clustering process.
Slonim and Tishby (2000), El-Yaniv and Souroujon
(2001) and Dhillon et. al. (2003) show that word
clusters can improve the performance of document
clustering.

El-Yaniv and Souroujon (2001) present an itera-
tive double clustering (IDC) algorithm, which per-
forms iterations of double clustering (Slonim and
Tishby, 2000). Furthermore, they extend IDC algo-
rithm for semi-supervised learning when given both
labeled and unlabeled data.

Our algorithm belongs to the family of semi-
supervised feature clustering techniques, which can
utilize both labeled and unlabeled data to perform
feature clustering.

Supervised feature clustering can not group un-
seen features (features that do not occur in labeled
data) into meaningful clusters since there are no
class labels associated with these unseen features.
Our algorithm can overcome this problem by induc-
ing class labels for unseen features based on the sim-
ilarity among seen features and unseen features, then
clustering all the features (including both seen fea-
tures and unseen features) based on the distribution
of class labels over them.

Compared with the semi-supervised version of
IDC algorithm, our algorithm is more efficient, since
we perform feature clustering without iterations.

The difference between our algorithm and unsu-
pervised feature clustering is that our algorithm de-
pends on both labeled and unlabeled data, but unsu-
pervised feature clustering requires only unlabeled
data.

O’Hara et. al. (2004) use semantic class-
based collocations to augment traditional word-

based collocations for supervised WSD. Three sep-
arate sources of word relatedness are used for
these collocations: 1) WordNet hypernym rela-
tions; 2) cluster-based word similarity classes; and
3) dictionary definition analysis. Their system
achieved56.6% fine-grained score on ELS task of
SENSEVAL-3. In contrast with their work, our data-
driven method for feature clustering based WSD
does not require external knowledge resource. Fur-
thermore, ourSemiFC+LPJS method can achieve
69.0% fine-grained score on the same dataset, which
shows the effectiveness of our method.

6 Conclusion

In this paper we have investigated feature clustering
techniques for WSD, which usually group features
into clusters based on the distribution of class labels
over features. We propose a semi-supervised fea-
ture clustering algorithm to satisfy the requirement
of semi-supervised classification algorithms for di-
mensionality reduction in feature space. Our ex-
perimental results on SENSEVAL-3 data show that
feature clustering can aggressively reduce the di-
mensionality of feature space while still maintaining
state of the art sense disambiguation accuracy. Fur-
thermore, when combined with a semi-supervised
WSD algorithm, semi-supervised feature cluster-
ing outperforms supervised feature clustering and
other dimensionality reduction techniques. Our ad-
ditional experiments on sampled SENSEVAL-3 data
indicate that our semi-supervised feature clustering
method is robust to the noise in small labeled data,
which achieves better performance than supervised
feature clustering.

In the future, we may extend our work by using
more datasets to empirically evaluate this feature
clustering algorithm. This semi-supervised feature
clustering framework is quite general, which can be
applied to other NLP tasks, ex. text categorization.
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Abstract

We consider the problem of question-
focused sentence retrieval from complex
news articles describing multi-event sto-
ries published over time. Annotators gen-
erated a list of questions central to under-
standing each story in our corpus. Be-
cause of the dynamic nature of the stories,
many questions are time-sensitive (e.g.
“How many victims have been found?”)
Judges found sentences providing an an-
swer to each question. To address the
sentence retrieval problem, we apply a
stochastic, graph-based method for com-
paring the relative importance of the tex-
tual units, which was previously used suc-
cessfully for generic summarization. Cur-
rently, we present a topic-sensitive version
of our method and hypothesize that it can
outperform a competitive baseline, which
compares the similarity of each sentence
to the input question via IDF-weighted
word overlap. In our experiments, the
method achieves a TRDR score that is sig-
nificantly higher than that of the baseline.

1 Introduction

Recent work has motivated the need for systems
that support “Information Synthesis” tasks, in which
a user seeks a global understanding of a topic or
story (Amigo et al., 2004). In contrast to the clas-
sical question answering setting (e.g. TREC-style

Q&A (Voorhees and Tice, 2000)), in which the user
presents a single question and the system returns a
corresponding answer (or a set of likely answers), in
this case the user has a more complex information
need.

Similarly, when reading about a complex news
story, such as an emergency situation, users might
seek answers to a set of questions in order to un-
derstand it better. For example, Figure 1 shows
the interface to our Web-based news summarization
system, which a user has queried for information
about Hurricane Isabel. Understanding such stories
is challenging for a number of reasons. In particular,
complex stories contain many sub-events (e.g. the
devastation of the hurricane, the relief effort, etc.) In
addition, while some facts surrounding the situation
do not change (such as “Which area did the hurri-
cane first hit?”), others may change with time (“How
many people have been left homeless?”). There-
fore, we are working towards developing a system
for question answering from clusters of complex sto-
ries published over time. As can be seen at the bot-
tom of Figure 1, we plan to add a component to our
current system that allows users to ask questions as
they read a story. They may then choose to receive
either a precise answer or a question-focused sum-
mary.

Currently, we address the question-focused sen-
tence retrieval task. While passage retrieval (PR) is
clearly not a new problem (e.g. (Robertson et al.,
1992; Salton et al., 1993)), it remains important and
yet often overlooked. As noted by (Gaizauskas et al.,
2004), while PR is the crucial first step for question
answering, Q&A research has typically not empha-
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Hurricane Isabel's outer bands moving onshore
produced on 09/18, 6:18 AM

2% Summary
The North Carolina coast braced for a weakened but still potent Hurricane Isabel while already rain-soaked areas as far
away as Pennsylvania prepared for possibly ruinous flooding. (2:3) A hurricane warning was in effect from Cape
Fear in southern North Carolina to the Virginia-Maryland line, and tropical storm warnings extended from South Carolina
to New Jersey. (2:14)

While the outer edge of the hurricane approached the North Carolina coast Wednesday, the center of the storm was still
400 miles south-southeast of Cape Hatteras, N.C., late Wednesday morning. (3:10) BBC NEWS World Americas
Hurricane Isabel prompts US shutdown (4:1)

Ask us:
What states have been affected by the hurricane so far?

Around 200,000 people in coastal areas of North Carolina and Virginia were ordered to evacuate or risk getting trapped
by flooding from storm surges up to 11 feet. (5:8) The storm was expected to hit with its full fury today, slamming into
the North Carolina coast with 105-mph winds and 45-foot wave crests, before moving through Virginia and bashing the
capital with gusts of about 60 mph. (7:6)

Figure 1: Question tracking interface to a summa-
rization system.

sized it. The specific problem we consider differs
from the classic task of PR for a Q&A system in
interesting ways, due to the time-sensitive nature of
the stories in our corpus. For example, one challenge
is that the answer to a user’s question may be up-
dated and reworded over time by journalists in order
to keep a running story fresh, or because the facts
themselves change. Therefore, there is often more
than one correct answer to a question.
We aim to develop a method for sentence re-

trieval that goes beyond finding sentences that are
similar to a single query. To this end, we pro-
pose to use a stochastic, graph-based method. Re-
cently, graph-based methods have proved useful for
a number of NLP and IR tasks such as document
re-ranking in ad hoc IR (Kurland and Lee, 2005)
and analyzing sentiments in text (Pang and Lee,
2004). In (Erkan and Radev, 2004), we introduced
the LexRank method and successfully applied it to
generic, multi-document summarization. Presently,
we introduce topic-sensitive LexRank in creating a
sentence retrieval system. We evaluate its perfor-
mance against a competitive baseline, which con-
siders the similarity between each sentence and the
question (using IDF-weighed word overlap). We
demonstrate that LexRank significantly improves
question-focused sentence selection over the base-
line.

2 Formal description of the problem

Our goal is to build a question-focused sentence re-
trieval mechanism using a topic-sensitive version of
the LexRank method. In contrast to previous PR sys-
tems such as Okapi (Robertson et al., 1992), which

ranks documents for relevancy and then proceeds to
find paragraphs related to a question, we address the
finer-grained problem of finding sentences contain-
ing answers. In addition, the input to our system is
a set of documents relevant to the topic of the query
that the user has already identified (e.g. via a search
engine). Our system does not rank the input docu-
ments, nor is it restricted in terms of the number of
sentences that may be selected from the same docu-
ment.
The output of our system, a ranked list of sen-

tences relevant to the user’s question, can be sub-
sequently used as input to an answer selection sys-
tem in order to find specific answers from the ex-
tracted sentences. Alternatively, the sentences can
be returned to the user as a question-focused sum-
mary. This is similar to “snippet retrieval” (Wu et
al., 2004). However, in our system answers are ex-
tracted from a set of multiple documents rather than
on a document-by-document basis.

3 Our approach: topic-sensitive LexRank

3.1 The LexRank method

In (Erkan and Radev, 2004), the concept of graph-
based centrality was used to rank a set of sentences,
in producing generic multi-document summaries.
To apply LexRank, a similarity graph is produced
for the sentences in an input document set. In the
graph, each node represents a sentence. There are
edges between nodes for which the cosine similar-
ity between the respective pair of sentences exceeds
a given threshold. The degree of a given node is
an indication of how much information the respec-
tive sentence has in common with other sentences.
Therefore, sentences that contain the most salient in-
formation in the document set should be very central
within the graph.
Figure 2 shows an example of a similarity graph

for a set of five input sentences, using a cosine simi-
larity threshold of 0.15. Once the similarity graph is
constructed, the sentences are then ranked according
to their eigenvector centrality. As previously men-
tioned, the original LexRank method performed well
in the context of generic summarization. Below,
we describe a topic-sensitive version of LexRank,
which is more appropriate for the question-focused
sentence retrieval problem. In the new approach, the
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score of a sentence is determined by a mixture model
of the relevance of the sentence to the query and the
similarity of the sentence to other high-scoring sen-
tences.

3.2 Relevance to the question

In topic-sensitive LexRank, we first stem all of the
sentences in a set of articles and compute word IDFs
by the following formula:

idfw = log

(
N + 1

0.5 + sfw

)
(1)

whereN is the total number of sentences in the clus-
ter, and sfw is the number of sentences that the word
w appears in.
We also stem the question and remove the stop

words from it. Then the relevance of a sentence s to
the question q is computed by:

rel(s|q) =
X
w∈q

log(tfw,s + 1)× log(tfw,q + 1) × idfw (2)

where tfw,s and tfw,q are the number of times w
appears in s and q, respectively. This model has
proven to be successful in query-based sentence re-
trieval (Allan et al., 2003), and is used as our com-
petitive baseline in this study (e.g. Tables 4, 5 and
7).

3.3 The mixture model

The baseline system explained above does not make
use of any inter-sentence information in a cluster.
We hypothesize that a sentence that is similar to
the high scoring sentences in the cluster should also
have a high score. For instance, if a sentence that
gets a high score in our baseline model is likely to
contain an answer to the question, then a related sen-
tence, which may not be similar to the question it-
self, is also likely to contain an answer.
This idea is captured by the following mixture

model, where p(s|q), the score of a sentence s given
a question q, is determined as the sum of its rele-
vance to the question (using the same measure as
the baseline described above) and the similarity to
the other sentences in the document cluster:

p(s|q) = d
rel(s|q)P

z∈C rel(z|q) +(1−d)
X
v∈C

sim(s, v)P
z∈C sim(z, v)

p(v|q) (3)

where C is the set of all sentences in the cluster. The
value of d, which we will also refer to as the “ques-
tion bias,” is a trade-off between two terms in the

Vertices:

Sentence IndexSentence Index SalienceSalience SentenceSentence

4 0.1973852892722677 Milan fire brigade officials said that...

1 0.03614457831325301 At least two people are dead, inclu...

0 0.28454242157110576 Officials said the plane was carryin...

2 0.1973852892722677 Italian police said the plane was car..

3 0.28454242157110576 Rescue officials said that at least th...

Graph

Figure 2: LexRank example: sentence similarity
graph with a cosine threshold of 0.15.

equation and is determined empirically. For higher
values of d, we give more importance to the rele-
vance to the question compared to the similarity to
the other sentences in the cluster. The denominators
in both terms are for normalization, which are de-
scribed below. We use the cosine measure weighted
by word IDFs as the similarity between two sen-
tences in a cluster:

sim(x, y) =

P
w∈x,y tfw,xtfw,y(idfw)2qP

xi∈x(tfxi,xidfxi
)2 ×

qP
yi∈y(tfyi,y idfyi

)2

(4)

Equation 3 can be written in matrix notation as
follows:

p = [dA + (1− d)B]Tp (5)

A is the square matrix such that for a given index i,
all the elements in the ith column are proportional
to rel(i|q). B is also a square matrix such that each
entry B(i, j) is proportional to sim(i, j). Both ma-
trices are normalized so that row sums add up to 1.
Note that as a result of this normalization, all rows
of the resulting square matrixQ = [dA+(1−d)B]
also add up to 1. Such a matrix is called stochastic
and defines a Markov chain. If we view each sen-
tence as a state in a Markov chain, thenQ(i, j) spec-
ifies the transition probability from state i to state j
in the corresponding Markov chain. The vector p
we are looking for in Equation 5 is the stationary
distribution of the Markov chain. An intuitive inter-
pretation of the stationary distribution can be under-
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stood by the concept of a random walk on the graph
representation of the Markov chain.
With probability d, a transition is made from the

current node (sentence) to the nodes that are simi-
lar to the query. With probability (1-d), a transition
is made to the nodes that are lexically similar to the
current node. Every transition is weighted according
to the similarity distributions. Each element of the
vector p gives the asymptotic probability of ending
up at the corresponding state in the long run regard-
less of the starting state. The stationary distribution
of a Markov chain can be computed by a simple it-
erative algorithm, called power method.1

A simpler version of Equation 5, where A is a
uniform matrix andB is a normalized binary matrix,
is known as PageRank (Brin and Page, 1998; Page
et al., 1998) and used to rank the web pages by the
Google search engine. It was also the model used to
rank sentences in (Erkan and Radev, 2004).

3.4 Experiments with topic-sensitive LexRank

We experimented with different values of d on our
training data. We also considered several threshold
values for inter-sentence cosine similarities, where
we ignored the similarities between the sentences
that are below the threshold. In the training phase
of the experiment, we evaluated all combinations
of LexRank with d in the range of [0, 1] (in incre-
ments of 0.10) and with a similarity threshold rang-
ing from [0, 0.9] (in increments of 0.05). We then
found all configurations that outperformed the base-
line. These configurations were then applied to our
development/test set. Finally, our best sentence re-
trieval system was applied to our test data set and
evaluated against the baseline. The remainder of the
paper will explain this process and the results in de-
tail.

4 Experimental setup

4.1 Corpus

We built a corpus of 20 multi-document clusters of
complex news stories, such as plane crashes, polit-
ical controversies and natural disasters. The data

1The stationary distribution is unique and the power method
is guaranteed to converge provided that the Markov chain is
ergodic (Seneta, 1981). A non-ergodic Markov chain can be
made ergodic by reserving a small probability for jumping to
any other state from the current state (Page et al., 1998).

clusters and their characteristics are shown in Ta-
ble 1. The news articles were collected from various
sources. “Newstracker” clusters were collected au-
tomatically by our Web-based news summarization
system. The number of clusters randomly assigned
to the training, development/test and test data sets
were 11, 3 and 6, respectively.
Next, we assigned each cluster of articles to an

annotator, who was asked to read all articles in the
cluster. He or she then generated a list of factual
questions key to understanding the story. Once we
collected the questions for each cluster, two judges
independently annotated nine of the training clus-
ters. For each sentence and question pair in a given
cluster, the judges were asked to indicate whether
or not the sentence contained a complete answer
to the question. Once an acceptable rate of inter-
judge agreement was verified on the first nine clus-
ters (Kappa (Carletta, 1996) of 0.68), the remaining
11 clusters were annotated by one judge each.
In some cases, the judges did not find any sen-

tences containing the answer for a given question.
Such questions were removed from the corpus. The
final number of questions annotated for answers
over the entire corpus was 341, and the distributions
of questions per cluster can be found in Table 1.

4.2 Evaluation metrics and methods

To evaluate our sentence retrieval mechanism, we
produced extract files, which contain a list of sen-
tences deemed to be relevant to the question, for the
system and from human judgment. To compare dif-
ferent configurations of our system to the baseline
system, we produced extracts at a fixed length of 20
sentences. While evaluations of question answering
systems are often based on a shorter list of ranked
sentences, we chose to generate longer lists for sev-
eral reasons. One is that we are developing a PR
system, of which the output can then be input to an
answer extraction system for further processing. In
such a setting, we would most likely want to gener-
ate a relatively longer list of candidate sentences. As
previously mentioned, in our corpus the questions
often have more than one relevant answer, so ideally,
our PR system would find many of the relevant sen-
tences, sending them on to the answer component
to decide which answer(s) should be returned to the
user. Each system’s extract file lists the document
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Cluster Sources Articles Questions Data set Sample question

Algerian terror AFP, UPI 2 12 train What is the condition under which
threat GIA will take its action?
Milan plane MSNBC, CNN, ABC, 9 15 train How many people were in the
crash Fox, USAToday building at the time of the crash?
Turkish plane BBC, ABC, 10 12 train To where was the plane headed?
crash FoxNews, Yahoo
Moscow terror UPI, AFP, AP 7 7 train How many people were killed in
attack the most recent explosion?
Rhode Island MSNBC, CNN, ABC, Lycos, 10 8 train Who was to blame for
club fire Fox, BBC, Ananova the fire?
FBI most AFP, UPI 3 14 train How much is the State Department offering
wanted for information leading to bin Laden’s arrest?
Russia bombing AP, AFP 2 11 train What was the cause of the blast?
Bali terror CNN, FoxNews, ABC, 10 30 train What were the motivations
attack BBC, Ananova of the attackers?
Washington DC FoxNews, Ha’aretz, BBC, 8 28 train What kinds of equipment or weapons
sniper BBC, Washington Times, CBS were used in the killings?
GSPC terror Newstracker 8 29 train What are the charges against
group the GSPC suspects?
China Novelty 43 25 18 train What was the magnitude of the
earthquake earthquake in Zhangjiakou?
Gulfair ABC, BBC, CNN, USAToday, 11 29 dev/test How many people

FoxNews, Washington Post were on board?
David Beckham AFP 20 28 dev/test How long had Beckham been playing for
trade MU before he moved to RM?
Miami airport Newstracker 12 15 dev/test How many concourses does
evacuation the airport have?
US hurricane DUC d04a 14 14 test In which places had the hurricane landed?
EgyptAir crash Novelty 4 25 29 test How many people were killed?
Kursk submarine Novelty 33 25 30 test When did the Kursk sink?
Hebrew University bombing Newstracker 11 27 test How many people were injured?
Finland mall bombing Newstracker 9 15 test How many people were in the mall

at the time of the bombing?
Putin visits Newstracker 12 20 test What issue concerned British
England human rights groups?

Table 1: Corpus of complex news stories.

and sentence numbers of the top 20 sentences. The
“gold standard” extracts list the sentences judged as
containing answers to a given question by the anno-
tators (and therefore have variable sizes) in no par-
ticular order.2

We evaluated the performance of the systems us-
ing two metrics - Mean Reciprocal Rank (MRR)
(Voorhees and Tice, 2000) and Total Reciprocal
Document Rank (TRDR) (Radev et al., 2005).
MRR, used in the TREC Q&A evaluations, is the
reciprocal rank of the first correct answer (or sen-
tence, in our case) to a given question. This measure
gives us an idea of how far down we must look in the
ranked list in order to find a correct answer. To con-
trast, TRDR is the total of the reciprocal ranks of all
answers found by the system. In the context of an-
swering questions from complex stories, where there
is often more than one correct answer to a question,
and where answers are typically time-dependent, we
should focus on maximizing TRDR, which gives us

2For clusters annotated by two judges, all sentences chosen
by at least one judge were included.

a measure of how many of the relevant sentences
were identified by the system. However, we report
both the average MRR and TRDR over all questions
in a given data set.

5 LexRank versus the baseline system

In the training phase, we searched the parameter
space for the values of d (the question bias) and the
similarity threshold in order to optimize the resulting
TRDR scores. For our problem, we expected that a
relatively low similarity threshold pair with a high
question bias would achieve the best results. Table 2
shows the effect of varying the similarity threshold.3

The notation LR[a, d] is used, where a is the simi-
larity threshold and d is the question bias. The opti-
mal range for the parameter a was between 0.14 and
0.20. This is intuitive because if the threshold is too
high, such that only the most lexically similar sen-
tences are represented in the graph, the method does
not find sentences that are related but are more lex-

3A threshold of -1 means that no threshold was used such
that all sentences were included in the graph.
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System Ave. MRR Ave. TRDR

LR[-1.0,0.65] 0.5270 0.8117
LR[0.02,0.65] 0.5261 0.7950
LR[0.16,0.65] 0.5131 0.8134
LR[0.18,0.65] 0.5062 0.8020
LR[0.20,0.65] 0.5091 0.7944
LR[-1.0,0.80] 0.5288 0.8152
LR[0.02,0.80] 0.5324 0.8043
LR[0.16,0.80] 0.5184 0.8160
LR[0.18,0.80] 0.5199 0.8154
LR[0.20,0.80] 0.5282 0.8152

Table 2: Training phase: effect of similarity thresh-
old (a) on Ave. MRR and TRDR.

System Ave. MRR Ave. TRDR

LR[0.02,0.65] 0.5261 0.7950
LR[0.02,0.70] 0.5290 0.7997
LR[0.02,0.75] 0.5299 0.8013
LR[0.02,0.80] 0.5324 0.8043
LR[0.02,0.85] 0.5322 0.8038
LR[0.02,0.90] 0.5323 0.8077
LR[0.20,0.65] 0.5091 0.7944
LR[0.20,0.70] 0.5244 0.8105
LR[0.20,0.75] 0.5285 0.8137
LR[0.20,0.80] 0.5282 0.8152
LR[0.20,0.85] 0.5317 0.8203
LR[0.20,0.90] 0.5368 0.8265

Table 3: Training phase: effect of question bias (d)
on Ave. MRR and TRDR.

ically diverse (e.g. paraphrases). Table 3 shows the
effect of varying the question bias at two different
similarity thresholds (0.02 and 0.20). It is clear that a
high question bias is needed. However, a small prob-
ability for jumping to a node that is lexically simi-
lar to the given sentence (rather than the question
itself) is needed. Table 4 shows the configurations
of LexRank that performed better than the baseline
system on the training data, based on mean TRDR
scores over the 184 training questions. We applied
all four of these configurations to our unseen devel-
opment/test data, in order to see if we could further
differentiate their performances.

5.1 Development/testing phase

The scores for the four LexRank systems and the
baseline on the development/test data are shown in

System Ave. MRR Ave. TRDR

Baseline 0.5518 0.8297

LR[0.14,0.95] 0.5267 0.8305
LR[0.18,0.90] 0.5376 0.8382
LR[0.18,0.95] 0.5421 0.8382
LR[0.20,0.95] 0.5404 0.8311

Table 4: Training phase: systems outperforming the
baseline in terms of TRDR score.

System Ave. MRR Ave. TRDR

Baseline 0.5709 1.0002

LR[0.14,0.95] 0.5882 1.0469
LR[0.18,0.90] 0.5820 1.0288
LR[0.18,0.95] 0.5956 1.0411
LR[0.20,0.95] 0.6068 1.0601

Table 5: Development testing evaluation.

Cluster B-MRR LR-MRR B-TRDR LR-TRDR

Gulfair 0.5446 0.5461 0.9116 0.9797
David Beckham trade 0.5074 0.5919 0.7088 0.7991
Miami airport 0.7401 0.7517 1.7157 1.7028
evacuation

Table 6: Average scores by cluster: baseline versus
LR[0.20,0.95].

Table 5. This time, all four LexRank systems outper-
formed the baseline, both in terms of average MRR
and TRDR scores. An analysis of the average scores
over the 72 questions within each of the three clus-
ters for the best system, LR[0.20,0.95], is shown
in Table 6. While LexRank outperforms the base-
line system on the first two clusters both in terms
of MRR and TRDR, their performances are not sub-
stantially different on the third cluster. Therefore,
we examined properties of the questions within each
cluster in order to see what effect they might have on
system performance.
We hypothesized that the baseline system, which

compares the similarity of each sentence to the ques-
tion using IDF-weighted word overlap, should per-
form well on questions that provide many content
words. To contrast, LexRank might perform bet-
ter when the question provides fewer content words,
since it considers both similarity to the query and
inter-sentence similarity. Out of the 72 questions in
the development/test set, the baseline system outper-
formed LexRank on 22 of the questions. In fact, the
average number of content words among these 22
questions was slightly, but not significantly, higher
than the average on the remaining questions (3.63
words per question versus 3.46). Given this obser-
vation, we experimented with two mixed strategies,
in which the number of content words in a question
determined whether LexRank or the baseline system
was used for sentence retrieval. We tried threshold
values of 4 and 6 content words, however, this did
not improve the performance over the pure strategy
of system LR[0.20,0.95]. Therefore, we applied this
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Ave. MRR Ave. TRDR

Baseline 0.5780 0.8673

LR[0.20,0.95] 0.6189 0.9906
p-value na 0.0619

Table 7: Testing phase: baseline vs. LR[0.20,0.95].

system versus the baseline to our unseen test set of
134 questions.

5.2 Testing phase

As shown in Table 7, LR[0.20,0.95] outperformed
the baseline system on the test data both in terms
of average MRR and TRDR scores. The improve-
ment in average TRDR score was statistically sig-
nificant with a p-value of 0.0619. Since we are in-
terested in a passage retrieval mechanism that finds
sentences relevant to a given question, providing in-
put to the question answering component of our sys-
tem, the improvement in average TRDR score is
very promising. While we saw in Section 5.1 that
LR[0.20,0.95] may perform better on some question
or cluster types than others, we conclude that it beats
the competitive baseline when one is looking to op-
timize mean TRDR scores over a large set of ques-
tions. However, in future work, we will continue
to improve the performance, perhaps by develop-
ing mixed strategies using different configurations
of LexRank.

6 Discussion

The idea behind using LexRank for sentence re-
trieval is that a system that considers only the sim-
ilarity between candidate sentences and the input
query, and not the similarity between the candidate
sentences themselves, is likely to miss some impor-
tant sentences. When using any metric to compare
sentences and a query, there is always likely to be
a tie between multiple sentences (or, similarly, there
may be cases where fewer than the number of de-
sired sentences have similarity scores above zero).
LexRank effectively provides a means to break such
ties. An example of such a scenario is illustrated in
Tables 8 and 9, which show the top ranked sentences
by the baseline and LexRank, respectively for the
question “What caused the Kursk to sink?” from the
Kursk submarine cluster. It can be seen that all top
five sentences chosen by the baseline system have

Rank Sentence Score Relevant?

1 The Russian governmental commission on the 4.2282 N
accident of the submarine Kursk sinking in
the Barents Sea on August 12 has rejected
11 original explanations for the disaster,
but still cannot conclude what caused the

tragedy indeed, Russian Deputy Premier Ilya
Klebanov said here Friday.

2 There has been no final word on what caused 4.2282 N
the submarine to sink while participating
in a major naval exercise, but Defense
Minister Igor Sergeyev said the theory

that Kursk may have collided with another
object is receiving increasingly

concrete confirmation.
3 Russian Deputy Prime Minister Ilya Klebanov 4.2282 Y

said Thursday that collision with a big
object caused the Kursk nuclear submarine
to sink to the bottom of the Barents Sea.

4 Russian Deputy Prime Minister Ilya Klebanov 4.2282 Y
said Thursday that collision with a big

object caused the Kursk nuclear submarine
to sink to the bottom of the Barents Sea.

5 President Clinton’s national security adviser, 4.2282 N
Samuel Berger, has provided his Russian
counterpart with a written summary of what
U.S. naval and intelligence officials believe

caused the nuclear-powered submarine Kursk to
sink last month in the Barents Sea, officials

said Wednesday.

Table 8: Top ranked sentences using baseline system
on the question “What caused the Kursk to sink?”.

the same sentence score (similarity to the query), yet
the top ranking two sentences are not actually rele-
vant according to the judges. To contrast, LexRank
achieved a better ranking of the sentences since it is
better able to differentiate between them. It should
be noted that both for the LexRank and baseline sys-
tems, chronological ordering of the documents and
sentences is preserved, such that in cases where two
sentences have the same score, the one published
earlier is ranked higher.

7 Conclusion

We presented topic-sensitive LexRank and applied
it to the problem of sentence retrieval. In a Web-
based news summarization setting, users of our sys-
tem could choose to see the retrieved sentences (as
in Table 9) as a question-focused summary. As in-
dicated in Table 9, each of the top three sentences
were judged by our annotators as providing a com-
plete answer to the respective question. While the
first two sentences provide the same answer (a col-
lision caused the Kursk to sink), the third sentence
provides a different answer (an explosion caused the
disaster). While the last two sentences do not pro-
vide answers according to our judges, they do pro-
vide context information about the situation. Alter-
natively, the user might prefer to see the extracted
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Rank Sentence Score Relevant?

1 Russian Deputy Prime Minister Ilya Klebanov 0.0133 Y
said Thursday that collision with a big

object caused the Kursk nuclear submarine
to sink to the bottom of the Barents Sea.

2 Russian Deputy Prime Minister Ilya Klebanov 0.0133 Y
said Thursday that collision with a big

object caused the Kursk nuclear submarine
to sink to the bottom of the Barents Sea.

3 The Russian navy refused to confirm this, 0.0125 Y
but officers have said an explosion in the
torpedo compartment at the front of the

submarine apparently caused the Kursk to sink.
4 President Clinton’s national security adviser, 0.0124 N

Samuel Berger, has provided his Russian
counterpart with a written summary of what
U.S. naval and intelligence officials believe

caused the nuclear-powered submarine Kursk to
sink last month in the Barents Sea, officials

said Wednesday.
5 There has been no final word on what caused 0.0123 N

the submarine to sink while participating
in a major naval exercise, but Defense
Minister Igor Sergeyev said the theory

that Kursk may have collided with another
object is receiving increasingly

concrete confirmation.

Table 9: Top ranked sentences using the
LR[0.20,0.95] system on the question “What caused
the Kursk to sink?”

answers from the retrieved sentences. In this case,
the sentences selected by our system would be sent
to an answer identification component for further
processing. As discussed in Section 2, our goal was
to develop a topic-sensitive version of LexRank and
to use it to improve a baseline system, which had
previously been used successfully for query-based
sentence retrieval (Allan et al., 2003). In terms of
this task, we have shown that over a large set of unal-
tered questions written by our annotators, LexRank
can, on average, outperform the baseline system,
particularly in terms of TRDR scores.
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Peñas, and Felisa Verdejo. 2004. An Empirical Study
of Information Synthesis Task. In Proceedings of the

42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 207–214,
Barcelona, Spain, July.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1–7):107–117.

Jean Carletta. 1996. Assessing Agreement on Classifica-
tion Tasks: The Kappa Statistic. CL, 22(2):249–254.

Gunes Erkan and Dragomir Radev. 2004. LexRank:
Graph-based Lexical Centrality as Salience in Text.
JAIR, 22:457–479.

Robert Gaizauskas, Mark Hepple, and Mark Greenwood.
2004. Information Retrieval for Question Answering:
a SIGIR 2004Workshop. In SIGIR 2004 Workshop on
Information Retrieval for Question Answering.

Oren Kurland and Lillian Lee. 2005. PageRank without
hyperlinks: Structural re-ranking using links induced
by language models. In SIGIR 2005, Salvador, Brazil,
August.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford University, Stanford,
CA.

Bo Pang and Lillian Lee. 2004. A Sentimental Educa-
tion: Sentiment Analysis Using Subjectivity Summa-
rization Based on Minimum Cuts. In Association for
Computational Linguistics.

Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, and
Amardeep Grewal. 2005. Probabilistic Question An-
swering on the Web. Journal of the American So-
ciety for Information Science and Technology, 56(3),
March.

Stephen E. Robertson, Steve Walker, Micheline
Hancock-Beaulieu, Aarron Gull, and Marianna Lau.
1992. Okapi at TREC. In Text REtrieval Conference,
pages 21–30.

G. Salton, J. Allan, and C. Buckley. 1993. Approaches
to Passage REtrieval in Full Text Information Systems.
In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 49–58.

E. Seneta. 1981. Non-negative matrices and markov
chains. Springer-Verlag, New York.

Ellen Voorhees and Dawn Tice. 2000. The TREC-8
Question Answering Track Evaluation. In Text Re-
trieval Conference TREC-8, Gaithersburg, MD.

Harris Wu, Dragomir R. Radev, and Weiguo Fan.
2004. Towards Answer-focused Summarization Using
Search Engines. New Directions in Question Answer-
ing.

922



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 923–930, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Multi-Perspective Question Answering Using the OpQA Corpus

Veselin Stoyanovand Claire Cardie
Department of Computer Science

Cornell University
Ithaca, NY 14850, USA

{ves,cardie }@cs.cornell.edu

Janyce Wiebe
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA
wiebe@cs.pitt.edu

Abstract

We investigate techniques to support the
answering of opinion-based questions.
We first present the OpQA corpus of opin-
ion questions and answers. Using the cor-
pus, we compare and contrast the proper-
ties of fact and opinion questions and an-
swers. Based on the disparate characteris-
tics of opinion vs. fact answers, we argue
that traditional fact-based QA approaches
may have difficulty in an MPQA setting
without modification. As an initial step
towards the development of MPQA sys-
tems, we investigate the use of machine
learning and rule-based subjectivity and
opinion source filters and show that they
can be used to guide MPQA systems.

1 Introduction

Much progress has been made in recent years in
automatic, open-domain question answering (e.g.,
Voorhees (2001), Voorhees (2002), Voorhees and
Buckland (2003)). The bulk of the research in this
area, however, addresses fact-based questions like:
“When did McDonald’s open its first restaurant?”
or “What is the Kyoto Protocol?”. To date, how-
ever, relatively little research been done in the area
of Multi-Perspective Question Answering (MPQA),
which targets questions of the following sort:

• How is Bush’s decision not to ratify the Kyoto Protocol
looked upon by Japan and other US allies?

• How do the Chinese regard the human rights record of the
United States?

In comparison to fact-based question answering
(QA), researchers understand far less about the prop-
erties of questions and answers in MPQA, and have
yet to develop techniques to exploit knowledge of
those properties. As a result, it is unclear whether
approaches that have been successful in the domain
of fact-based QA will work well for MPQA.

We first present theOpQAcorpus of opinion ques-
tions and answers. Using the corpus, we compare
and contrast the properties of fact and opinion ques-
tions and answers. We find that text spans identi-
fied as answers to opinion questions: (1) are approx-
imately twice as long as those of fact questions, (2)
are much more likely (37% vs. 9%) to representpar-
tial answers rather than complete answers, (3) vary
much more widely with respect to syntactic cate-
gory – covering clauses, verb phrases, prepositional
phrases, and noun phrases; in contrast, fact answers
are overwhelming associated with noun phrases, and
(4) are roughly half as likely to correspond to a sin-
gle syntactic constituent type (16-38% vs. 31-53%).

Based on the disparate characteristics of opinion
vs. fact answers, we argue that traditional fact-based
QA approaches may have difficulty in an MPQA
setting without modification. As one such modifi-
cation, we propose that MPQA systems should rely
on natural language processing methods to identify
information about opinions. In experiments in opin-
ion question answering using the OpQA corpus, we
find that filtering potential answers using machine
learning and rule-based NLP opinion filters substan-
tially improves the performance of an end-to-end
MPQA system according to both a mean reciprocal
rank (MRR) measure (0.59 vs. a baseline of 0.42)
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and a metric that determines the mean rank of the
first correct answer (MRFA) (26.2 vs. a baseline of
61.3). Further, we find that requiring opinion an-
swers to match the requested opinion source (e.g.,
does<source> approve of the Kyoto Protocol) dra-
matically improves the performance of the MPQA
system on the hardest questions in the corpus.

The remainder of the paper is organized as fol-
lows. In the next section we summarize related
work. Section 3 describes the OpQA corpus. Sec-
tion 4 uses the OpQA corpus to identify poten-
tially problematic issues for handling opinion vs.
fact questions. Section 5 briefly describes an opin-
ion annotation scheme used in the experiments. Sec-
tions 6 and 7 explore the use of opinion information
in the design of MPQA systems.

2 Related Work

There is a growing interest in methods for the auto-
matic identification and extraction of opinions, emo-
tions, and sentiments in text. Much of the relevant
research explores sentiment classification, a text cat-
egorization task in which the goal is to assign to
a document either positive (“thumbs up”) or nega-
tive (“thumbs down”) polarity (e.g. Das and Chen
(2001), Pang et al. (2002), Turney (2002), Dave et
al. (2003), Pang and Lee (2004)). Other research
has concentrated on analyzing opinions at, or below,
the sentence level. Recent work, for example, indi-
cates that systems can be trained to recognize opin-
ions, their polarity, their source, and their strength
to a reasonable degree of accuracy (e.g. Dave et
al. (2003), Riloff and Wiebe (2003), Bethard et al.
(2004), Pang and Lee (2004), Wilson et al. (2004),
Yu and Hatzivassiloglou (2003), Wiebe and Riloff
(2005)).

Related work in the area of corpus development
includes Wiebe et al.’s (2005) opinion annotation
scheme to identifysubjective expressions— expres-
sions used to express opinions, emotions, sentiments
and otherprivate statesin text. Wiebe et al. have
applied the annotation scheme to create the MPQA
corpus consisting of 535 documents manually an-
notated for phrase-level expressions of opinion. In
addition, the NIST-sponsored TREC evaluation has
begun to develop data focusing on opinions — the
2003 Novelty Track features a task that requires sys-

tems to identify opinion-oriented documents w.r.t. a
specific issue (Voorhees and Buckland, 2003).

While all of the above work begins to bridge
the gap between text categorization and question
answering, none of the approaches have been em-
ployed or evaluated in the context of MPQA.

3 OpQA Corpus

To support our research in MPQA, we created the
OpQA corpus of opinion and fact questions and an-
swers. Additional details on the construction of the
corpus as well as results of an interannotator agree-
ment study can be found in Stoyanov et al. (2004).

3.1 Documents and Questions

The OpQA corpus consists of 98 documents that ap-
peared in the world press between June 2001 and
May 2002. All documents were taken from the
aforementioned MPQA corpus (Wilson and Wiebe,
2003)1 and are manually annotated with phrase-
level opinion information, following the annotation
scheme of Wiebe et al. (2005), which is briefly
summarized in Section 5. The documents cover
four general (and controversial) topics: President
Bush’s alternative to the Kyoto protocol (kyoto); the
US annual human rights report (humanrights); the
2002 coup d’etat in Venezuela (venezuela); and the
2002 elections in Zimbabwe and Mugabe’s reelec-
tion (mugabe). Each topic is covered by between 19
and 33 documents that were identified automatically
via IR methods.

Both fact and opinion questions for each topic
were added to the OpQA corpus by a volunteer not
associated with the current project. The volunteer
was provided with a set of instructions for creat-
ing questions together with two documents on each
topic selected at random. He created between six
and eight questions on each topic, evenly split be-
tween fact and opinion. The 30 questions are given
in Table 1 sorted by topic.

3.2 Answer annotations

Answer annotations were added to the corpus by two
annotators according to a set of annotation instruc-

1The MPQA corpus is available at
http://nrrc.mitre.org/NRRC/publications.htm .
The OpQA corpus is available upon request.
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Kyoto
1 f What is the Kyoto Protocol about?
2 f When was the Kyoto Protocol adopted?
3 f Who is the president of the Kiko Network?
4 f What is the Kiko Network?
5 o Does the president of the Kiko Network approve of the US action concerning the Kyoto Protocol?
6 o Are the Japanese unanimous in their opinion of Bush’s position on the Kyoto Protocol?
7 o How is Bush’s decision not to ratify the Kyoto Protocol looked upon by Japan and other US allies?
8 o How do European Union countries feel about the US opposition to the Kyoto protocol?

Human Rights
1 f What is the murder rate in the United States?
2 f What country issues an annual report on human rights in the United States?
3 o How do the Chinese regard the human rights record of the United States?
4 f Who is Andrew Welsdan?
5 o What factors influence the way in which the US regards the human rights records of other nations?
6 o Is the US Annual Human Rights Report received with universal approval around the world?

Venezuela
1 f When did Hugo Chavez become President?
2 f Did any prominent Americans plan to visit Venezuela immediately following the 2002 coup?
3 o Did anything surprising happen when Hugo Chavez regained power in Venezuela after he was

removed by a coup?
4 o Did most Venezuelans support the 2002 coup?
5 f Which governmental institutions in Venezuela were dissolved by the leaders of the 2002 coup?
6 o How did ordinary Venezuelans feel about the 2002 coup and subsequent events?
7 o Did America support the Venezuelan foreign policy followed by Chavez?
8 f Who is Vice-President of Venezuela?

Mugabe
1 o What was the American and British reaction to the reelection of Mugabe?
2 f Where did Mugabe vote in the 2002 presidential election?
3 f At which primary school had Mugabe been expected to vote in the 2002 presidential election?
4 f How long has Mugabe headed his country?
5 f Who was expecting Mugabe at Mhofu School for the 2002 election?
6 o What is the basis for the European Union and US critical attitude and adversarial action toward

Mugabe?
7 o What did South Africa want Mugabe to do after the 2002 election?
8 o What is Mugabe’s opinion about the West’s attitude and actions towards the 2002 Zimbabwe elec-

tion?

Table 1: Questions in the OpQA collection by topic.
f in column 1 indicates a fact question;o, an opinion
question.

tions.2 Every text segment thatcontributesto an
answer to any of the 30 questions is annotated as
an answer. In particular, answer annotations include
segments that constitute apartial answer. Partial an-
swers either (1) lack the specificity needed to consti-
tute a full answer (e.g., “before May 2004” partially
answers the questionWhen was the Kyoto protocol
ratified? when a specific date is known) or (2) need
to be combined with at least one additional answer
segment to fully answer the question (e.g., the ques-
tion Are the Japanese unanimous in their opposition
of Bush’s position on the Kyoto protocol?is an-
swered only partially by a segment expressing a sin-
gle opinion). In addition, annotators mark the min-
imum answer spans (e.g., “a Tokyo organization,”
vs. “a Tokyo organization representing about 150
Japanese groups”).

4 Characteristics of opinion answers

Next, we use the OpQA corpus to analyze and com-
pare the characteristics of fact vs. opinion questions.
Based on our findings, we believe that QA systems
based solely on traditional QA techniques are likely

2The annotation instructions are available
at http://www.cs.cornell.edu/ ves/
Publications/publications.htm .

to be less effective at MPQA than they are at tradi-
tional fact-based QA.

4.1 Traditional QA architectures

Despite the wide variety of approaches implied by
modern QA systems, almost all systems rely on the
following two steps (subsystems), which have em-
pirically proven to be effective:

• IR module. The QA system invokes an IR subsystem that
employs traditional text similarity measures (e.g., tf/idf)
to retrieve and rank document fragments (sentences or
paragraphs) w.r.t. the question (query).

• Linguistic filters. QA systems employ a set of filters
and text processing components to discard some docu-
ment fragments. The following filters have empirically
proven to be effective and are used universally:

Semantic filtersprefer an answer segment that matches
the semantic class(es) associated with the question type
(e.g.,dateor time for whenquestions;personor organi-
zationfor whoquestions).

Syntactic filtersare also configured on the type of ques-
tion. The most common and effective syntactic filters se-
lect a specific constituent (e.g., noun phrase) according to
the question type (e.g.,whoquestion).

QA systems typically interleave the above two
subsystems with a variety of different processing
steps of both the question and the answer. The goal
of the processing is to identify text fragments that
contain an answer to the question. Typical QA sys-
tems do not perform any further text processing;
they return the text fragment as it occurred in the
text. 3

4.2 Corpus-based analysis of opinion answers

We hypothesize that QA systems that conform to
this traditional architecture will have difficulty han-
dling opinion questions without non-trivial modifi-
cation. In support of this hypothesis, we provide
statistics from the OpQA corpus to illustrate some of
the characteristics that distinguish answers to opin-
ion vs. fact questions, and discuss their implications
for a traditional QA system architecture.
Answer length. We see in Table 2 that the aver-
age length of opinion answers in the OpQA corpus

3This architecture is seen mainly in QA systems designed
for TREC’s “factoid” and “list” QA tracks. Systems competing
in the relatively new “definition” or “other” tracks have begun
to introduce new approaches. However, most such systems still
rely on the IR step and return the text fragment as it occurred in
the text.
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Number of answers Length Number of partials
fact 124 5.12 12 (9.68%)

opinion 415 9.24 154 (37.11%)

Table 2: Number of answers, average answer length
(in tokens), and number of partial answers for
fact/opinion questions.

is 9.24 tokens, almost double that of fact answers.
Unfortunately, longer answers could present prob-
lems for some traditional QA systems. In particu-
lar, some of the more sophisticated algorithms that
perform additional processingsteps such as logi-
cal verifiers (Moldovan et al., 2002) may be less ac-
curate or computationally infeasible for longer an-
swers. More importantly, longer answers are likely
to span more than a single syntactic constituent, ren-
dering the syntactic filters, and very likely the se-
mantic filters, less effective.
Partial answers. Table 2 also shows that over 37%
of the opinion answers were marked as partial vs.
9.68% of the fact answers. The implications of par-
tial answers for the traditional QA architecture are
substantial: an MPQA system will require anan-
swer generator to (1) distinguish between partial
and full answers; (2) recognize redundant partial an-
swers; (3) identify which subset of the partial an-
swers, if any, constitutes a full answer; (4) determine
whether additional documents need to be examined
to find a complete answer; and (5) asemble the final
answer from partial pieces of information.
Syntactic constituent of the answer.As discussed
in Section 4.1, traditional QA systems rely heav-
ily on the predicted syntactic and semantic class of
the answer. Based on answer lengths, we specu-
lated that opinion answers are unlikely to span a sin-
gle constituent and/or semantic class. This specula-
tion is confirmed by examining the phrase type as-
sociated with OpQA answers using Abney’s (1996)
CASS partial parser.4 For each question, we count
the number of times an answer segment for the ques-
tion (in the manual annotations) matches each con-
stituent type. We consider four constituent types
– noun phrase (n), verb phrase (v), prepositional
phrase (p), and clause (c) – and three matching cri-
teria:

4The parser is available from
http://www.vinartus.net/spa/ .

Fact Opinion
Ques- # of Matching Criteria syn Ques- # of Matching Criteria syn
tion answers ex up up/dn type tion answers ex up up/dn type
H 1 1 0 0 0 H 3 15 5 5 5 c
H 2 4 2 2 2 n H 5 24 5 5 10 n
H 4 1 0 0 0 H 6 123 17 23 52 n
K 1 48 13 14 24 n K 5 3 0 0 1
K 2 38 13 13 19 n K 6 34 6 5 12 c
K 3 1 1 1 1 c n K 7 55 9 8 19 c
K 4 2 1 1 1 n K 8 25 4 4 10 v
M 2 3 0 0 1 M 1 74 10 12 29 v
M 3 1 0 0 1 M 6 12 3 5 7 n
M 4 10 2 2 5 n M 7 1 0 0 0
M 5 3 1 1 2 c M 8 3 0 0 1
V 1 4 3 3 4 n V 3 1 1 0 1 c
V 2 1 1 1 1 n V 4 13 2 2 2 c
V 5 3 0 1 1 V 6 9 2 2 5 c n
V 8 4 2 4 4 n V 7 23 3 1 5
Cov- 124 39 43 66 Cov- 415 67 70 159
erage 31% 35% 53% erage 16% 17% 38%

Table 3: Syntactic Constituent Type for Answers in
the OpQA Corpus

1. Theexact match criterion is satisfied only by answer seg-
ments whose spans exactly correspond to a constituent in
the CASS output.

2. Theup criterion considers an answer to match a CASS
constituent if the constituent completely contains the an-
swer and no more than three additional (non-answer) to-
kens.

3. The up/dn criterion considers an answer to match a
CASS constituent if it matches according to theup crite-
rion or if the answer completely contains the constituent
and no more than three additional tokens.

The counts for the analysis of answer segment
syntactic type for fact vs. opinion questions are sum-
marized in Table 3. Results for the 15 fact ques-
tions are shown in the left half of the table, and
for the 15 opinion questions in the right half. The
leftmost column in each half provides the question
topic and number, and the second column indicates
the total number of answer segments annotated for
the question. The next three columns show, for each
of the ex, up, andup/dn matching criteria, respec-
tively, the number of annotated answer segments
that match the majority syntactic type among an-
swer segments for that question/criterion pair. Us-
ing a traditional QA architecture, the MPQA sys-
tem might filter answers based on this majority type.
The syn typecolumn indicates the majority syntac-
tic type using the exact match criterion; two values
in the column indicate a tie for majority syntactic
type, and an empty syntactic type indicates that no
answer exactly matched any of the four constituent
types. With only a few exceptions, theup andup/dn
matching criteria agreed in majority syntactic type.

Results in Table 3 show a significant disparity be-
tween fact and opinion questions. For fact ques-
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tions, the syntactic type filter would keep 31%, 35%,
or 53% of the correct answers, depending on the
matching criterion. For opinion questions, there is
unfortunately a two-fold reduction in the percentage
of correct answers that would remain after filtering
— only 16%, 17% or 38%, depending on the match-
ing criterion. More importantly, the majority syntac-
tic type among answers for fact questions is almost
always a noun phrase, while no single constituent
type emerges as a useful syntactic filter for opinion
questions (see thesyn phrasecolumns in Table 3).
Finally, because semantic class information is gener-
ally tied to a particular syntactic category, the effec-
tiveness of traditional semantic filters in the MPQA
setting is unclear.

In summary, identifying answers to questions in
an MPQA setting within a traditional QA architec-
ture will be difficult. First, the implicit and explicit
assumptions inherent in standard linguistic filters are
consistent with the characteristics of fact- rather than
opinion-oriented QA. In addition, the presence of
relatively long answers and partial answers will re-
quire a much more complexanswer generatorthan
is typically present in current QA systems.

In Sections 6 and 7, we propose initial steps to-
wards modifying the traditional QA architecture for
use in MPQA. In particular, we propose and evaluate
two types ofopinion filters for MPQA: subjectiv-
ity filters andopinion source filters. Both types of
linguistic filters rely on phrase-level and sentence-
level opinion information, which has been manually
annotated for our corpus; the next section briefly de-
scribes the opinion annotation scheme.

5 Manual Opinion Annotations

Documents in our OpQA corpus come from the
larger MPQA corpus, which contains manual opin-
ion annotations. The annotation framework is de-
scribed in detail in (Wiebe et al., 2005). Here we
give a high-level overview.

The annotation framework provides a basis for
subjective expressions: expressions used to express
opinions, emotions, and sentiments. The framework
allows for the annotation of both directly expressed
private states (e.g.,afraid in the sentence “John is
afraid that Sue might fall,”) and opinions expressed

by the choice of words and style of language (e.g.,
it is about timeandoppressionin the sentence “It is
about time that we end Saddam’s oppression”). In
addition, the annotations include several attributes,
including the intensity (with possible valueslow,
medium, high, andextreme) and thesourceof the
private state. Thesourceof a private state is the per-
son or entity who holds or experiences it.

6 Subjectivity Filters for MPQA Systems

This section describes threesubjectivity filters
based on the above opinion annotation scheme. Be-
low (in Section 6.3), the filters are used to remove
fact sentences from consideration when answering
opinion questions, and the OpQA corpus is used to
evaluate their effectiveness.

6.1 Manual Subjectivity Filter

Much previous research on automatic extraction of
opinion information performed classifications at the
sentence level. Therefore, we define sentence-level
opinion classifications in terms of the phrase-level
annotations. For our gold standard of manual opin-
ion classifications (dubbedMANUAL for the rest of
the paper) we will follow Riloff and Wiebe’s (2003)
convention (also used by Wiebe and Riloff (2005))
and consider a sentence to beopinion if it contains
at least one opinion of intensitymediumor higher,
and to befactotherwise.

6.2 Two Automatic Subjectivity Filters

As discussed in section 2, several research efforts
have attempted to perform automatic opinion clas-
sification on the clause and sentence level. We in-
vestigate whether such information can be useful for
MPQA by using the automatic sentence level opin-
ion classifiers of Riloff and Wiebe (2003) and Wiebe
and Riloff (2005).

Riloff and Wiebe (2003) use a bootstrapping al-
gorithm to perform a sentence-based opinion classi-
fication on the MPQA corpus. They use a set of high
precision subjectivity and objectivity clues to iden-
tify subjective and objective sentences. This data
is then used in an algorithm similar to AutoSlog-
TS (Riloff, 1996) to automatically identify a set of
extraction patterns. The acquired patterns are then
used iteratively to identify a larger set of subjective
and objective sentences. In our experiments we use
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precision recall F
MPQA corpus RULEBASED 90.4 34.2 46.6

NAIVE BAYES 79.4 70.6 74.7

Table 4: Precision, recall, and F-measure for the two
classifiers.

the classifier that was created by the reimplemen-
tation of this bootstrapping process in Wiebe and
Riloff (2005). We will useRULEBASED to denote
the opinion information output by this classifier.

In addition, Wiebe and Riloff used theRULE-
BASED classifier to produce a labeled data set for
training. They trained a Naive Bayes subjectivity
classifier on the labeled set. We will useNAIVE

BAYES to refer to Wiebe and Riloff’s naive Bayes
classifier.5 Table 4 shows the performance of the
two classifiers on the MPQA corpus as reported by
Wiebe and Riloff.

6.3 Experiments

We performed two types of experiments using the
subjectivity filters.

6.3.1 Answer rank experiments

Our hypothesis motivating the first type of exper-
iment is that subjectivity filters can improve the an-
swer identification phase of an MPQA system. We
implement the IR subsystem of a traditional QA sys-
tem, and apply the subjectivity filters to the IR re-
sults. Specifically, for each opinion question in the
corpus6 , we do the following:

1. Split all documents in our corpus into sentences.

2. Run an information retrieval algorithm7 on the set of all
sentences using the question as the query to obtain a
ranked listof sentences.

3. Apply a subjectivity filter to theranked listto remove all
fact sentences from theranked list.

We test each of theMANUAL , RULEBASED, and
NAIVE BAYES subjectivity filters. We compare the
rank of the first answer to each question in the

5Specifically, the one they labelNaive Bayes 1.
6We do not evaluate the opinion filters on the 15 fact ques-

tions. Since opinion sentences are defined as containing at least
one opinion of intensity medium or higher, opinion sentences
can contain factual information and sentence-level opinion fil-
ters are not likely to be effective for fact-based QA.

7We use the Lemur toolkit’s standard tf.idf implementation
available fromhttp://www.lemurproject.org/ .

Topic Qnum Baseline Manual NaiveBayes Rulebased
Kyoto 5 1 1 1 1

6 5 4 4 3
7 1 1 1 1
8 1 1 1 1

Human 3 1 1 1 1
Rights 5 10 6 7 5

6 1 1 1 1
Venezuela 3 106 81 92 35

4 3 2 3 1
6 1 1 1 1
7 3 3 3 2

Mugabe 1 2 2 2 2
6 7 5 5 4
7 447 291 317 153
8 331 205 217 182

MRR : 0.4244 0.5189 0.5078 0.5856
MRFA: 61.3333 40.3333 43.7333 26.2

Table 5: Results for the subjectivity filters.

ranked listbefore the filter is applied, with the rank
of the first answer to the question in theranked list
after the filter is applied.
Results.Results for the opinion filters are compared
to a simple baseline, which performs the informa-
tion retrieval step with no filtering. Table 5 gives the
results on the 15 opinion questions for the baseline
and each of the threesubjectivity filters. The table
shows two cumulative measures – the mean recip-
rocal rank (MRR)8 and the mean rank of the first
answer (MRFA).9

Table 5 shows that all threesubjectivity filtersout-
perform the baseline: for all three filters, the first
answer in the filtered results for all 15 questions is
ranked at least as high as in the baseline. As a result,
the three subjectivity filters outperform the baseline
in both MRR and MRFA. Surprisingly, the best per-
forming subjectivity filter isRULEBASED, surpass-
ing the gold standardMANUAL , both in MRR (0.59
vs. 0.52) and MRFA (40.3 vs. 26.2). Presum-
ably, the improvement in performance comes from
the fact thatRULEBASED identifies subjective sen-
tences with the highest precision (and lowest recall).
Thus, theRULEBASED subjectivity filter discards
non-subjective sentences most aggressively.

6.3.2 Answer probability experiments

The second experiment,answer probability, be-
gins to explore whether opinion information can be

8The MRR is computed as the average of1/r, wherer is
the rank of the first answer.

9MRR has been accepted as the standard performance mea-
sure in QA, since MRFA can be strongly affected by outlier
questions. However, the MRR score is dominated by the results
in the high end of the ranking. Thus, MRFA may be more ap-
propriate for our experiments because the filters are an interme-
diate step in the processing, the results of which other MPQA
components may improve.
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sentence
fact opinion

Manual fact 56 (46.67%) 64 (53.33%)
opinion 42 (10.14%) 372 (89.86%)

question Naive Bayes fact 49 (40.83%) 71 (59.17%)
opinion 57 (13.77%) 357 (86.23%)

Rulebased fact 96 (80.00%) 24 (20.00%)
opinion 184 (44.44%) 230 (55.56%)

Table 6: Answer probability results.

used in ananswer generator. This experiment con-
siders correspondences between (1) the classes (i.e.,
opinion or fact) assigned by the subjectivity filters to
the sentences containing answers, and (2) the classes
of the questions the answers are responses to (ac-
cording to the OpQA annotations). That is, we com-
pute the probabilities (whereans= answer):
P(ans is in a C1 sentence| ans is the answer to aC2 ques-

tion) for all four combinations ofC1=opinion, fact and
C2=opinion, fact.

Results. Results for the answer probability experi-
ment are given in Table 6. The rows correspond to
the classes of the questions the answers respond to,
and the columns correspond to the classes assigned
by the subjectivity filters to the sentences contain-
ing the answers. The first two rows, for instance,
give the results for theMANUAL criterion. MANUAL

placed 56 of the answers to fact questions in fact
sentences (46.67% of all answers to fact questions)
and 64 (53.33%) of the answers to fact questions in
opinion sentences. Similarly,MANUAL placed 42
(10.14%) of the answers to opinion questions in fact
sentences, and 372 (89.86%) of the answers to opin-
ion questions in opinion sentences.

The answer probability experiment sheds some
light on the subjectivity filter experiments. All three
subjectivity filters place a larger percentage of an-
swers to opinion questions in opinion sentences than
they place in fact sentences. However, the differ-
ent filters exhibit different degrees of discrimination.
Answers to opinion questions are almost always
placed in opinion sentences byMANUAL (89.86%)
and NAIVE BAYES (86.23%). While that aspect of
their performance is excellent,MANUAL andNAIVE

BAYES place more answers to fact questions in opin-
ion rather than fact sentences (though the percent-
ages are in the 50s). This is to be expected, because
MANUAL andNAIVE BAYES are more conservative
and err on the side of classifying sentences as opin-

ions: for MANUAL , the presence of any subjective
expression makes the entire sentence opinion, even
if parts of the sentence are factual;NAIVE BAYES

shows high recall but lower precision in recognizing
opinion sentences (see Table 4). Conversely,RULE-
BASED places 80% of the fact answers in fact sen-
tences and only 56% of the opinion answers in opin-
ion sentences. Again, the lower number of assign-
ments to opinion sentences is to be expected, given
the high precision and low recall of the classifier.
But the net result is that, forRULEBASED, the off-
diagonals are all less than 50%: it places more an-
swers to fact questions in fact rather than opinion
sentences (80%), and more answers to opinion ques-
tions in opinion rather than fact sentences (56%).
This is consistent with its superior performance in
the subjectivity filtering experiment.

In addition to explaining the performance of
the subjectivity filters, the answer rank experiment
shows that the automatic opinion classifiers can be
used directly in ananswer generatormodule. The
two automatic classifiers rely on evidence in the sen-
tence to predict the class (the information extraction
patterns used byRULEBASED and the features used
by NAIVE BAYES). In ongoing work we investigate
ways to use this evidence to extract and summarize
the opinions expressed in text, which is a task simi-
lar to that of ananswer generatormodule.

7 Opinion Source Filters for MPQA
Systems

In addition to subjectivity filters, we also define an
opinion source filterbased on the manual opinion
annotations. This filter removes all sentences that
do not have an opinion annotation with a source that
matches the source of the question10. For this filter
we only used theMANUAL source annotations since
we did not have access to automatically extracted
source information. We employ the same Answer
Rank experiment as in 6.3.1, substituting the source
filter for a subjectivity filter.
Results. Results for the source filter are mixed.
The filter outperforms the baseline on some ques-
tions and performs worst on others. As a result the
MRR for the source filter is worse than the base-

10We manually identified the sources of each of the 15 opin-
ion questions.
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line (0.4633 vs. 0.4244). However, the source fil-
ter exhibits by far the best results using the MRFA
measure, a value of 11.267. The performance im-
provement is due to the filter’s ability to recognize
the answers to the hardest questions, for which the
other filters have the most trouble (questionsmu-
gabe7 and 8). For these questions, the rank of the
first answer improves from 153 to 21, and from 182
to 11, respectively. With the exception of question
venezuela3, which does not contain a clear source
(and is problematic altogether because there is only
a single answer in the corpus and the question’s
qualification as opinion is not clear) thesource filter
always ranked an answer within the first 25 answers.
Thus,source filterscan be especially useful in sys-
tems that rely on the presence of an answer within
the first few ranked answer segments and then in-
voke more sophisticated analysis in theadditional
processingphase.

8 Conclusions

We began by giving a high-level overview of the
OpQA corpus. Using the corpus, we compared the
characteristics of answers to fact and opinion ques-
tions. Based on the different characteristics, we sur-
mise that traditional QA approaches may not be as
effective for MPQA as they have been for fact-based
QA. Finally, we investigated the use of machine
learning and rule-based opinion filters and showed
that they can be used to guide MPQA systems.
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Abstract

Following recent developments in the au-
tomatic evaluation of machine translation
and document summarization, we present
a similar approach, implemented in a mea-
sure called POURPRE, for automatically
evaluating answers to definition questions.
Until now, the only way to assess the cor-
rectness of answers to such questions in-
volves manual determination of whether
an information nugget appears in a sys-
tem’s response. The lack of automatic
methods for scoring system output is an
impediment to progress in the field, which
we address with this work. Experiments
with the TREC 2003 and TREC 2004 QA
tracks indicate that rankings produced by
our metric correlate highly with official
rankings, and that POURPRE outperforms
direct application of existing metrics.

1 Introduction

Recent interest in question answering has shifted
away from factoid questions such as “What city is
the home to the Rock and Roll Hall of Fame?”,
which can typically be answered by a short noun
phrase, to more complex and difficult questions.
One interesting class of information needs con-
cerns so-called definition questions such as “Who is
Vlad the Impaler?”, whose answers would include
“nuggets” of information about the 16th century
warrior prince’s life, accomplishments, and legacy.

Actually a misnomer, definition questions can be
better paraphrased as “Tell me interesting things
about X.”, where X can be a person, an organiza-
tion, a common noun, etc. Taken another way, defi-
nition questions might be viewed as simultaneously
asking a whole series of factoid questions about the
same entity (e.g., “When was he born?”, “What was
his occupation?”, “Where did he live?”, etc.), except
that these questions are not known in advance; see
Prager et al. (2004) for an implementation based on
this view of definition questions.

Much progress in natural language processing and
information retrieval has been driven by the creation
of reusable test collections. A test collection con-
sists of a corpus, a series of well-defined tasks, and
a set of judgments indicating the “correct answers”.
To complete the picture, there must exist meaning-
ful metrics to evaluate progress, and ideally, a ma-
chine should be able to compute these values auto-
matically. Although “answers” to definition ques-
tions are known, there is no way to automatically
and objectively determine if they are present in a
given system’s response (we will discuss why in
Section 2). The experimental cycle is thus tortuously
long; to accurately assess the performance of new
techniques, one must essentially wait for expensive,
large-scale evaluations that employ human assessors
to judge the runs (e.g., the TREC QA track). This
situation mirrors the state of machine translation and
document summarization research a few years ago.
Since then, however, automatic scoring metrics such
as BLEU and ROUGE have been introduced as stop-
gap measures to facilitate experimentation.

Following these recent developments in evalua-
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1 vital 32 kilograms plutonium powered
2 vital seven year journey
3 vital Titan 4-B Rocket
4 vital send Huygens to probe atmosphere of Titan, Saturn’s largest moon
5 okay parachute instruments to planet’s surface
6 okay oceans of ethane or other hydrocarbons, frozen methane or water
7 vital carries 12 packages scientific instruments and a probe
8 okay NASA primary responsible for Cassini orbiter
9 vital explore remote planet and its rings and moons, Saturn
10 okay European Space Agency ESA responsible for Huygens probe
11 okay controversy, protest, launch failure, re-entry, lethal risk, humans, plutonium
12 okay Radioisotope Thermoelectric Generators, RTG
13 vital Cassini, NASA’S Biggest and most complex interplanetary probe
14 okay find information on solar system formation
15 okay Cassini Joint Project between NASA, ESA, and ASI (Italian Space Agency)
16 vital four year study mission

Table 1: The “answer key” to the question “What is the Cassini space probe?”

tion research, we propose POURPRE, a technique for
automatically evaluating answers to definition ques-
tions. Like the abovementioned metrics, POURPRE

is based on n-gram co-occurrences, but has been
adapted for the unique characteristics of the question
answering task. This paper will show that POUR-
PRE can accurately assess the quality of answers
to definition questions without human intervention,
allowing experiments to be performed with rapid
turnaround. We hope that this will enable faster ex-
ploration of the solution space and lead to acceler-
ated advances in the state of the art.

This paper is organized as follows: In Section 2,
we briefly describe how definition questions are cur-
rently evaluated, drawing attention to many of the
intricacies involved. We discuss previous work in
Section 3, relating POURPRE to evaluation metrics
for other language applications. Section 4 discusses
metrics for evaluating the quality of an automatic
scoring algorithm. The POURPRE measure itself is
outlined in Section 5; POURPRE scores are corre-
lated with official human-generated scores in Sec-
tion 6, and also compared to existing metrics. In
Section 7, we explore the effect that judgment vari-
ability has on the stability of definition question
evaluation, and its implications for automatic scor-
ing algorithms.

2 Evaluating Definition Questions

To date, NIST has conducted two formal evaluations
of definition questions, at TREC 2003 and TREC
2004.1 In this section, we describe the setup of the
task and the evaluation methodology.

Answers to definition questions are comprised of
an unordered set of [document-id, answer string]
pairs, where the strings are presumed to provide
some relevant information about the entity being
“defined”, usually called the target. Although no
explicit limit is placed on the length of the answer
string, the final scoring metric penalizes verbosity
(discussed below).

To evaluate system responses, NIST pools answer
strings from all systems, removes their association
with the runs that produced them, and presents them
to a human assessor. Using these responses and re-
search performed during the original development of
the question, the assessor creates an “answer key”—
a list of “information nuggets” about the target. An
information nugget is defined as a fact for which the
assessor could make a binary decision as to whether
a response contained that nugget (Voorhees, 2003).
The assessor also manually classifies each nugget as

1TREC 2004 questions were arranged around “topics”; def-
inition questions were implicit in the “other” questions.
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[XIE19971012.0112] The Cassini space probe, due to be launched from Cape Canaveral in Florida of
the United States tomorrow, has a 32 kilogram plutonium fuel payload to power its seven year journey
to Venus and Saturn.
Nuggets assigned: 1, 2

[NYT19990816.0266] Early in the Saturn visit, Cassini is to send a probe named Huygens into the
smog-shrouded atmosphere of Titan, the planet’s largest moon, and parachute instruments to its hidden
surface to see if it holds oceans of ethane or other hydrocarbons over frozen layers of methane or water.
Nuggets assigned: 4, 5, 6

Figure 1: Examples of judging actual system responses.

either vital or okay. Vital nuggets represent con-
cepts that must be present in a “good” definition;
on the other hand, okay nuggets contribute worth-
while information about the target but are not essen-
tial; cf. (Hildebrandt et al., 2004). As an example,
nuggets for the question “What is the Cassini space
probe?” are shown in Table 1.

Once this answer key of vital/okay nuggets is cre-
ated, the assessor then manually scores each run. For
each system response, he or she decides whether or
not each nugget is present. Assessors do not sim-
ply perform string matches in this decision process;
rather, this matching occurs at the conceptual level,
abstracting away from issues such as vocabulary
differences, syntactic divergences, paraphrases, etc.
Two examples of this matching process are shown
in Figure 1: nuggets 1 and 2 were found in the top
passage, while nuggets 4, 5, and 6 were found in the
bottom passage. It is exactly this process of concep-
tually matching nuggets from the answer key with
system responses that we attempt to capture with an
automatic scoring algorithm.

The final F-score for an answer is calculated in
the manner described in Figure 2, and the final score
of a run is simply the average across the scores of all
questions. The metric is a harmonic mean between
nugget precision and nugget recall, where recall is
heavily favored (controlled by the β parameter, set
to five in 2003 and three in 2004). Nugget recall is
calculated solely on vital nuggets, while nugget pre-
cision is approximated by a length allowance given
based on the number of both vital and okay nuggets
returned. Early on in a pilot study, researchers dis-
covered that it was impossible for assessors to con-
sistently enumerate the total set of nuggets contained

Let

r # of vital nuggets returned in a response
a # of okay nuggets returned in a response
R # of vital nuggets in the answer key
l # of non-whitespace characters in the entire

answer string

Then
recall (R) = r/R

allowance (α) = 100× (r + a)

precision (P) =

{
1 if l < α

1− l−α
l otherwise

Finally, the F (β) = (β2 + 1)× P ×R
β2 × P +R

β = 5 in TREC 2003, β = 3 in TREC 2004.

Figure 2: Official definition of F-measure.

in a system response, given that they were usually
extracted text fragments from documents (Voorhees,
2003). Thus, a penalty for verbosity serves as a sur-
rogate for precision.

3 Previous Work

The idea of employing n-gram co-occurrence statis-
tics to score the output of a computer system against
one or more desired reference outputs was first suc-
cessfully implemented in the BLEU metric for ma-
chine translation (Papineni et al., 2002). Since then,
the basic method for scoring translation quality has
been improved upon by others, e.g., (Babych and
Hartley, 2004; Lin and Och, 2004). The basic idea
has been extended to evaluating document summa-
rization with ROUGE (Lin and Hovy, 2003).
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Recently, Soricut and Brill (2004) employed n-
gram co-occurrences to evaluate question answer-
ing in a FAQ domain; unfortunately, the task differs
from definition question answering, making their re-
sults not directly applicable. Xu et al. (2004) applied
ROUGE to automatically evaluate answers to defi-
nition questions, viewing the task as a variation of
document summarization. Because TREC answer
nuggets were terse phrases, the authors found it nec-
essary to rephrase them—two humans were asked
to manually create “reference answers” based on the
assessors’ nuggets and IR results, which was a labor-
intensive process. Furthermore, Xu et al. did not
perform a large-scale assessment of the reliability of
ROUGE for evaluating definition answers.

4 Criteria for Success

Before proceeding to our description of POURPRE, it
is important to first define the basis for assessing the
quality of an automatic evaluation algorithm. Cor-
relation between official scores and automatically-
generated scores, as measured by the coefficient of
determination R2, seems like an obvious metric for
quantifying the performance of a scoring algorithm.
Indeed, this measure has been employed in the eval-
uation of BLEU, ROUGE, and other related metrics.

However, we believe that there are better mea-
sures of performance. In comparative evaluations,
we ultimately want to determine if one technique
is “better” than another. Thus, the system rank-
ings produced by a particular scoring method are
often more important than the actual scores them-
selves. Following the information retrieval litera-
ture, we employ Kendall’s τ to capture this insight.
Kendall’s τ computes the “distance” between two
rankings as the minimum number of pairwise adja-
cent swaps necessary to convert one ranking into the
other. This value is normalized by the number of
items being ranked such that two identical rankings
produce a correlation of 1.0; the correlation between
a ranking and its perfect inverse is −1.0; and the ex-
pected correlation of two rankings chosen at random
is 0.0. Typically, a value of greater than 0.8 is con-
sidered “good”, although 0.9 represents a threshold
researchers generally aim for. In this study, we pri-
marily focus on Kendall’s τ , but also report R2 val-
ues where appropriate.

5 POURPRE

Previously, it has been assumed that matching
nuggets from the assessors’ answer key with sys-
tems’ responses must be performed manually be-
cause it involves semantics (Voorhees, 2003). We
would like to challenge this assumption and hypoth-
esize that term co-occurrence statistics can serve as
a surrogate for this semantic matching process. Ex-
perience with the ROUGE metric has demonstrated
the effectiveness of matching unigrams, an idea we
employ in our POURPRE metric. We hypothesize
that matching bigrams, trigrams, or any other longer
n-grams will not be beneficial, because they primar-
ily account for the fluency of a response, more rele-
vant in a machine translation task. Since answers to
definition questions are usually document extracts,
fluency is less important a concern.

The idea behind POURPRE is relatively straight-
forward: match nuggets by summing the unigram
co-occurrences between terms from each nugget and
terms from the system response. We decided to start
with the simplest possible approach: count the word
overlap and divide by the total number of terms in
the answer nugget. The only additional wrinkle is to
ensure that all words appear within the same answer
string. Since nuggets represent coherent concepts,
they are unlikely to be spread across different an-
swer strings (which are usually different extracts of
source documents). As a simple example, let’s say
we’re trying to determine if the nugget “A B C D” is
contained in the following system response:

1. A
2. B C D
3. D
4. A D

The match score assigned to this nugget would be
3/4, from answer string 2; no other answer string
would get credit for this nugget. This provision re-
duces the impact of coincidental term matches.

Once we determine the match score for every
nugget, the final F-score is calculated in the usual
way, except that the automatically-derived match
scores are substituted where appropriate. For exam-
ple, nugget recall now becomes the sum of the match
scores for all vital nuggets divided by the total num-
ber of vital nuggets. In the official F-score calcula-
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POURPRE ROUGE

Run micro, cnt macro, cnt micro, idf macro, idf +stop −stop
TREC 2004 (β = 3) 0.785 0.833 0.806 0.812 0.780 0.786
TREC 2003 (β = 3) 0.846 0.886 0.848 0.876 0.780 0.816
TREC 2003 (β = 5) 0.890 0.878 0.859 0.875 0.807 0.843

Table 2: Correlation (Kendall’s τ ) between rankings generated by POURPRE/ROUGE and official scores.

POURPRE ROUGE

Run micro, cnt macro, cnt micro, idf macro, idf +stop −stop
TREC 2004 (β = 3) 0.837 0.929 0.904 0.914 0.854 0.871
TREC 2003 (β = 3) 0.919 0.963 0.941 0.957 0.876 0.887
TREC 2003 (β = 5) 0.954 0.965 0.957 0.964 0.919 0.929

Table 3: Correlation (R2) between values generated by POURPRE/ROUGE and official scores.

tion, the length allowance—for the purposes of com-
puting nugget precision—was 100 non-whitespace
characters for every okay and vital nugget returned.
Since nugget match scores are now fractional, this
required some adjustment. We settled on an al-
lowance of 100 non-whitespace characters for every
nugget match that had non-zero score.

A major drawback of this basic unigram over-
lap approach is that all terms are considered equally
important—surely, matching “year” in a system’s re-
sponse should count for less than matching “Huy-
gens”, in the example about the Cassini space
probe. We decided to capture this intuition using in-
verse document frequency, a commonly-used mea-
sure in information retrieval; idf(ti) is defined as
log(N/ci), where N is the number of documents in
the collection, and ci is the number of documents
that contain the term ti. With scoring based on idf,
term counts are simply replaced with idf sums in
computing the match score, i.e., the match score of
a particular nugget is the sum of the idfs of match-
ing terms in the system response divided by the sum
of all term idfs from the answer nugget. Finally,
we examined the effects of stemming, i.e., matching
stemmed terms derived from the Porter stemmer.

In the next section, results of experiments with
submissions to TREC 2003 and TREC 2004 are re-
ported. We attempted two different methods for ag-
gregating results: microaveraging and macroaverag-
ing. For microaveraging, scores were calculated by
computing the nugget match scores over all nuggets

for all questions. For macroaveraging, scores for
each question were first computed, and then aver-
aged across all questions in the testset. With mi-
croaveraging, each nugget is given equal weight,
while with macroaveraging, each question is given
equal weight.

As a baseline, we revisited experiments by Xu
et al. (2004) in using ROUGE to evaluate definition
questions. What if we simply concatenated all the
answer nuggets together and used the result as the
“reference summary” (instead of using humans to
create custom reference answers)?

6 Evaluation of POURPRE

We evaluated all definition question runs submitted
to the TREC 20032 and TREC 2004 question an-
swering tracks with different variants of our POUR-
PRE metric, and then compared the results with the
official F-scores generated by human assessors. The
Kendall’s τ correlations between rankings produced
by POURPRE and the official rankings are shown in
Table 2. The coefficients of determination (R2) be-
tween the two sets of scores are shown in Table 3.
We report four separate variants along two different
parameters: scoring by term counts only vs. scoring
by term idf, and microaveraging vs. macroaveraging.
Interestingly, scoring based on macroaveraged term

2In TREC 2003, the value of β was arbitrarily set to five,
which was later determined to favor recall too heavily. As a
result, it was readjusted to three in TREC 2004. In our experi-
ments with TREC 2003, we report figures for both values.
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Figure 3: Scatter graph of official scores plotted
against the POURPRE scores (macro, count) for
TREC 2003 (β = 5).

counts outperformed any of the idf variants.
A scatter graph plotting official F-scores against

POURPRE scores (macro, count) for TREC 2003
(β = 5) is shown in Figure 3. Corresponding graphs
for other variants appear similar, and are not shown
here. The effect of stemming on the Kendall’s τ cor-
relation between POURPRE (macro, count) and of-
ficial scores in shown in Table 4. Results from the
same stemming experiment on the other POURPRE

variants are similarly inconclusive.
For TREC 2003 (β = 5), we performed an anal-

ysis of rank swaps between official and POURPRE

scores. A rank swap is said to have occurred if the
relative ranking of two runs is different under dif-
ferent conditions—they are significant because rank
swaps might prevent researchers from confidently
drawing conclusions about the relative effectiveness
of different techniques. We observed 81 rank swaps
(out of a total of 1431 pairwise comparisons for 54
runs). A histogram of these rank swaps, binned by
the difference in official score, is shown in Figure 4.
As can be seen, 48 rank swaps (59.3%) occurred
when the difference in official score is less than
0.02; there were no rank swaps observed for runs
in which the official scores differed by more than
0.061. Since measurement error is an inescapable
fact of evaluation, we need not be concerned with
rank swaps that can be attributed to this factor. For
TREC 2003, Voorhees (2003) calculated this value
to be approximately 0.1; that is, in order to conclude
with 95% confidence that one run is better than an-

Run unstemmed stemmed
TREC 2004 (β = 3) 0.833 0.825
TREC 2003 (β = 3) 0.886 0.897
TREC 2003 (β = 5) 0.878 0.895

Table 4: The effect of stemming on Kendall’s τ ; all
runs with (macro, count) variant of POURPRE.

Figure 4: Histogram of rank swaps for TREC 2003
(β = 5), binned by difference in official score.

other, an absolute F-score difference greater than 0.1
must be observed. As can be seen, all the rank swaps
observed can be attributed to error inherent in the
evaluation process.

From these results, we can see that evaluation
of definition questions is relatively coarse-grained.
However, TREC 2003 was the first formal evalua-
tion of definition questions; as methodologies are re-
fined, the margin of error should go down. Although
a similar error analysis for TREC 2004 has not been
performed, we expect a similar result.

Given the simplicity of our POURPRE metric,
the correlation between our automatically-derived
scores and the official scores is remarkable. Starting
from a set of questions and a list of relevant nuggets,
POURPRE can accurately assess the performance of
a definition question answering system without any
human intervention.

6.1 Comparison Against ROUGE

We choose ROUGE over BLEU as a baseline for
comparison because, conceptually, the task of an-
swering definition questions is closer to summariza-
tion than it is to machine translation, in that both are
recall-oriented. Since the majority of question an-
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swering systems employ extractive techniques, flu-
ency (i.e., precision) is not usually an issue.

How does POURPRE stack up against using
ROUGE3 to directly evaluate definition questions?
The Kendall’s τ correlations between rankings pro-
duced by ROUGE (with and without stopword re-
moval) and the official rankings are shown in Ta-
ble 2; R2 values are shown in Table 3. In all cases,
ROUGE does not perform as well.

We believe that POURPRE better correlates with
official scores because it takes into account special
characteristics of the task: the distinction between
vital and okay nuggets, the length penalty, etc. Other
than a higher correlation, POURPRE offers an advan-
tage over ROUGE in that it provides a better diag-
nostic than a coarse-grained score, i.e., it can reveal
why an answer received a particular score. This al-
lows researchers to conduct failure analyses to iden-
tify opportunities for improvement.

7 The Effect of Variability in Judgments

As with many other information retrieval tasks,
legitimate differences in opinion about relevance
are an inescapable fact of evaluating definition
questions—systems are designed to satisfy real-
world information needs, and users inevitably dis-
agree on which nuggets are important or relevant.
These disagreements manifest as scoring variations
in an evaluation setting. The important issue, how-
ever, is the degree to which variations in judgments
affect conclusions that can be drawn in a compar-
ative evaluation, i.e., can we still confidently con-
clude that one system is “better” than another? For
the ad hoc document retrieval task, research has
shown that system rankings are stable with respect to
disagreements about document relevance (Voorhees,
2000). In this section, we explore the effect of judg-
ment variability on the stability and reliability of
TREC definition question answering evaluations.

The vital/okay distinction on nuggets is one major
source of differences in opinion, as has been pointed
out previously (Hildebrandt et al., 2004). In the
Cassini space probe example, we disagree with the
assessors’ assignment in many cases. More impor-
tantly, however, there does not appear to be any op-

3We used ROUGE-1.4.2 with n set to 1, i.e. unigram match-
ing, and maximum matching score rating.

Figure 5: Distribution of rank placement using ran-
dom judgments (for top two runs from TREC 2004).

erationalizable rules for classifying nuggets as either
vital or okay. Without any guiding principles, how
can we expect our systems to automatically recog-
nize this distinction?

How do differences in opinion about vital/okay
nuggets impact the stability of system rankings? To
answer this question, we measured the Kendall’s τ
correlation between the official rankings and rank-
ings produced by different variations of the answer
key. Three separate variants were considered:

• all nuggets considered vital

• vital/okay flipped (all vital nuggets become
okay, and all okay nuggets become vital)

• randomly assigned vital/okay labels

Results are shown in Table 5. Note that this exper-
iment was conducted with the manually-evaluated
system responses, not our POURPRE metric. For the
last condition, we conducted one thousand random
trials, taking into consideration the original distri-
bution of the vital and okay nuggets for each ques-
tion using a simplified version of the Metropolis-
Hastings algorithm (Chib and Greenberg, 1995); the
standard deviations are reported.

These results suggest that system rankings are
sensitive to assessors’ opinion about what consti-
tutes a vital or okay nugget. In general, the Kendall’s
τ values observed here are lower than values com-
puted from corresponding experiments in ad hoc
document retrieval (Voorhees, 2000). To illustrate,
the distribution of ranks for the top two runs from
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Run everything vital vital/okay flipped random judgments
TREC 2004 (β = 3) 0.919 0.859 0.841 ± 0.0195
TREC 2003 (β = 3) 0.927 0.802 0.822 ± 0.0215
TREC 2003 (β = 5) 0.920 0.796 0.808 ± 0.0219

Table 5: Correlation (Kendall’s τ ) between scores under different variations of judgments and the official
scores. The 95% confidence interval is presented for the random judgments case.

TREC 2004 (RUN-12 and RUN-8) over the one
thousand random trials is shown in Figure 5. In 511
trials, RUN-12 was ranked as the highest-scoring
run; however, in 463 trials, RUN-8 was ranked as
the highest-scoring run. Factoring in differences of
opinion about the vital/okay distinction, one could
not conclude with certainty which was the “best” run
in the evaluation.

It appears that differences between POURPRE and
the official scores are about the same as (or in some
cases, smaller than) differences between the official
scores and scores based on variant answer keys (with
the exception of “everything vital”). This means that
further refinement of the metric to increase correla-
tion with human-generated scores may not be par-
ticularly meaningful; it might essentially amount to
overtraining on the whims of a particular human as-
sessor. We believe that sources of judgment variabil-
ity and techniques for managing it represent impor-
tant areas for future study.

8 Conclusion

We hope that POURPRE can accomplish for defini-
tion question answering what BLEU has done for
machine translation, and ROUGE for document sum-
marization: allow laboratory experiments to be con-
ducted with rapid turnaround. A much shorter ex-
perimental cycle will allow researchers to explore
different techniques and receive immediate feedback
on their effectiveness. Hopefully, this will translate
into rapid progress in the state of the art.4
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Abstract

In this paper we investigate the use of lin-
guistic knowledge in passage retrieval as
part of an open-domain question answer-
ing system. We use annotation produced
by a deep syntactic dependency parser for
Dutch, Alpino, to extract various kinds of
linguistic features and syntactic units to
be included in a multi-layer index. Sim-
ilar annotation is produced for natural lan-
guage questions to be answered by the
system. From this we extract query terms
to be sent to the enriched retrieval index.
We use a genetic algorithm to optimize the
selection of features and syntactic units
to be included in a query. This algo-
rithm is also used to optimize further pa-
rameters such as keyword weights. The
system is trained on questions from the
competition on Dutch question answering
within the Cross-Language Evaluation Fo-
rum (CLEF). We could show an improve-
ment of about 15% in mean total recip-
rocal rank compared to traditional infor-
mation retrieval using plain text keywords
(including stemming and stop word re-
moval).

1 Introduction

Improving information retrieval (IR) through natu-
ral language processing (NLP) has been the goal
for many researchers. NLP techniques such as

lemmatization and compound splitting have been
used in several studies (Krovetz, 1993; Hollink et al.,
2003). Linguistically motivated syntactic units such
as noun phrases (Zhai, 1997), head-modifier pairs
(Fagan, 1987; Strzalkowski et al., 1996) and subject-
verb-object triples (Katz and Lin, 2003) have also
been integrated in information retrieval. However,
most of these studies resulted in only little success
or even decreasing performance. It has been argued
that NLP and especially deep syntactic analysis is
still too brittle and ineffective (Katz and Lin, 2003).

Integrating NLP in information retrieval seems
to be very hard because the task here is to match
plain text keywords to natural language documents.
In question answering (QA), however, the task is
to match natural language questions to relevant an-
swers within document collections. For this, we
have to analyze the question in order to determine
what kind of answer the user is expecting. Tradi-
tional information retrieval is used in QA systems to
filter out relevant passages from the document col-
lection which are then processed to extract possible
answers. Hence, the performance of this passage re-
trieval component (especially in terms of recall) is
crucial for the success of the entire system. NLP
tools and linguistic resources are frequently used in
QA systems, e.g. (Bernardi et al., 2003; Moldovan
et al., 2002), although not very often for passage
retrieval (some exceptions are (Strzalkowski et al.,
1996; Katz and Lin, 2003; Neumann and Sacaleanu,
2004)).

Our goal is to utilize information that can be ex-
tracted from the analyzed question in order to match
linguistic features and syntactic units in analyzed
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documents. The main research question is to find
appropriate units and features that actually help to
improve the retrieval component. Furthermore, we
have to find an appropriate way of combining query
terms to optimize IR performance. For this, we ap-
ply an iterative learning approach based on example
questions annotated with their answers.

In the next section we will give a brief description
of our question answering system with focus on the
passage retrieval component. Thereafter we will dis-
cuss the query optimization algorithm followed by a
section on experimental results. The final section
contains our conclusions.

2 Question answering with dependency
relations

Our Dutch question answering system, Joost
(Bouma et al., 2005), consists of two streams: a table
look-up strategy using off-line information extrac-
tion and an on-line strategy using passage retrieval
and on-the-fly answer extraction. In both strate-
gies we use syntactic information produced by a
wide-coverage dependency parser for Dutch, Alpino
(Bouma et al., 2001). In the off-line strategy we use
syntactic patterns to extract information from unre-
stricted text to be stored in fact tables (Jijkoun et
al., 2004). For the on-line strategy, we assume that
there is a certain overlap between syntactic relations
in the question and in passages containing the an-
swers. Furthermore, we also use strategies for rea-
soning over dependency rules to capture semantic
relationships that are expressed by different syntac-
tic patterns (Bouma et al., 2005).

Our focus is set on open-domain question an-
swering using data from the CLEF competition on
Dutch QA. We have parsed the entire corpus pro-
vided by CLEF with about 4,000,000 sentences in
about 190,000 documents. The dependency trees are
stored in XML and are directly accessible from the
QA system. Syntactic patterns for off-line informa-
tion extraction are run on the entire corpus. For the
on-line QA strategy we use traditional information
retrieval to select relevant passages from the corpus
to be processed by the answer extraction modules.
This step is necessary to reduce the search space for
the QA system to make it feasible to run on-line QA.
As segmentation level we used paragraphs marked

in the corpus (about 1.1 million).
Questions are parsed within the QA system using

the same parser. Using their analysis, the system de-
termines the question type and, hence, the expected
answer type. According to the type, we try to find
the answer first in the fact database (if an appropri-
ate table exists) and then (as fallback) in the corpus
using the on-line QA strategy.

2.1 Passage retrieval in Joost

Information retrieval is one of the bottle-necks in the
on-line strategy of our QA system. The system re-
lies on the passages retrieved by this component and
fails if IR does not provide relevant documents. Tra-
ditional IR uses a bag-of-words approach using plain
text keywords to be matched with word-vectors de-
scribing documents. The result is usually a ranked
list of documents. Simple techniques such as stem-
ming and stop word removal are used to improve the
performance of such a system. This is also the base-
line approach for passage retrieval in our QA sys-
tem.

The passage retrieval component in Joost includes
an interface to seven off-the shelf IR systems. One
of the systems supported is Lucene from the Apache
Jakarta project (Jakarta, 2004). Lucene is a widely-
used open-source Java library with several exten-
sions and useful features. This was the IR engine of
our choice in the experiments described here. For
the base-line we use standard settings and a pub-
lic Dutch text analyzer for stemming and stop word
removal. Now, the goal is to extend the base-line
by incorporating linguistic information produced by
the syntactic analyzer. Figure 1 shows a dependency
tree produced for one of the sentences in the CLEF
corpus. We like to include as much information from
the parsed data as possible to find better matches be-
tween an analyzed question and passages that con-
tain answers. From the parse trees, we extract vari-
ous kinds of linguistic features and syntactic units to
be stored in the index. Besides the dependency rela-
tions the parser also produces part-of-speech (POS)
tags, named entity labels and linguistic root forms. It
also recognizes compositional compounds and par-
ticle verbs. All this information might be useful for
our passage retrieval component.

Lucene supports multiple index fields that can be
filled with different types of data. This is a useful
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Figure 1: A dependency tree produced by Alpino:
Het embargo tegen Irak werd ingesteld na de inval
in Koeweit in 1990. (The embargo against Iraq has
been declared after the invasion of Kuwait in 1990.)

feature since it allows one to store various kinds of
information in different fields in the index. Hence-
forth, we will call these data fields index layers and,
thus, the index will be called a multi-layer index. We
distinguish between token layers, type layers and an-
notation layers. Token layers include one item per
token in the corpus. Table 1 lists token layers de-
fined in our index.

Table 1: Token layers

text plain text tokens
root root forms
RootPOS root form + POS tag
RootHead root form + head
RootRel root form + relation name
RootRelHead root form + relation + head

We included various combinations of features de-
rived from the dependency trees to make it possi-
ble to test their impact on IR. Features are simply
concatenated (using special delimiting symbols be-
tween the various parts) to create individual items in
the layer. For example, the RootHead layer contains
concatenated dependent-head bigrams taken from
the dependency relations in the tree. Tokens in the
text layer and in the root layer have been split at hy-
phens and underscores to split compositional com-
pounds and particle verbs (Alpino adds underscores
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Figure 2: A dependency tree for a question: Wan-
neer stelde de Verenigde Naties een embargo in
tegen Irak? (When did the United Nations declare
the embargo against Iraq?)

between the compositional parts). Type layers in-
clude only specific types of tokens in the corpus, e.g.
named entities or compounds (see table 2).

Table 2: Type layers

compound compounds
ne named entities
neLOC location names
nePER person names
neORG organization names

Annotation layers include only the labels of (certain)
token types. So far, we defined only one annotation
layer for named entity labels. This layer may contain
the items ’ORG’, ’PER’ or ’LOC’ if such a named
entity occurs in the text passage.

3 Query formulation

Questions are analyzed in the same way as sentences
in documents. Hence, we can extract appropriate
units from analyzed questions to be matched with
the various layers in the index. For example, we
can extract root-head word pairs to be matched with
the RootHead layer. In this way, each layer can be
queried using keywords of the same type. Further-
more, we can also use linguistic labels to restrict our
query terms in several ways. For example, we can
use part-of-speech labels to exclude keywords of a
certain word class. We can also use the syntactic re-
lation name to define query constraints. Each token
layer can be restricted in this way (even if the feature
used for the restriction is not part of the layer). For
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example, we can limit our set of root keywords to
nouns even though part-of-speech labels are not part
of the root layer. We can also combine constraints,
for example, RootPOS keywords can be restricted to
nouns that are in an object relation within the ques-
tion.

Another feature of Lucene is the support of key-
word weights. Keywords can be “boosted” using so-
called “boost factors”. Furthermore, keywords can
also be marked as “required”. These two features
can be applied to all kinds of keywords (token layer,
type layer, annotation layer keywords, and restricted
keywords).

The following list summarizes possible keyword
types in our passage retrieval component:

basic: a keyword in one of the index layers

restricted: token-layer keywords can be restricted to a certain
word class and/or a certain relation type. We use only the
following word class restrictions: noun, name, adjective,
verb; and the following relation type restrictions: direct
object, modifier, apposition and subject

weighted: keywords can be weighted using a boost factor

required: keywords can be marked as required

Query keywords from all types can be combined into
a single query. We connect them in a disjunctive way
which is the default operation in Lucene. The query
engine provides ranked query results and, therefore,
each disjunction may contribute to the ranking of the
retrieved documents but does not harm the query if
it does not produce any matching results. We may,
for example, form a query with the following ele-
ments: (1) all plain text tokens; (2) named entities
(ne) boosted with factor 2; (3) RootHead bigrams
where the root is in an object relation; (4) RootRel
keywords for all nouns. Applying these parame-
ters to the question in figure 2 we get the following
query:1

text:(Irak embargo Verenigde Naties stelde)
ne:(Irakˆ2 Verenigde_Natiesˆ2)
RootHead:(Irak/tegen embargo/stel_in)
RootRel:(embargo/obj1)

Now, query terms from various keyword types may
refer to the same index layer. For example, we may
use weighted plain text keywords restricted to nouns
together with unrestricted plain text keywords. To

1Note that stop words have been removed.

combine them we use a preference mechanism to
keep queries simple and to avoid disjunctions with
conflicting keyword parameters: (a) Restricted key-
word types are more specific than basic keywords;
(b) Keywords restricted in relation type and POS are
more specific than keywords with only one restric-
tion; (c) Relation type restrictions are more specific
than POS restrictions. Using these rules we define
that weights of more specific keywords overwrite
weights of less specific ones. Furthermore, we de-
fine that the “required-marker” (’+’) overwrites key-
word weights. Using these definitions we would get
the following query if we add two elements to the
query from above: (5) plain text keywords in an ob-
ject relation with boost factor 3 and (6) plain text
keywords labeled as names marked as required.

text:(Irakˆ3 embargoˆ3 +Verenigde +Naties
stelde)
ne:(Irakˆ2 Verenigde_Natiesˆ2)
RootHead:(Irak/tegen embargo/stel_in)
RootRel:(embargo/obj1)

Finally, we can also use the question type deter-
mined by question analysis in the retrieval compo-
nent. The question type corresponds to the expected
answer type, i.e. we expect an entity of that type in
the relevant text passages. In some cases, the ques-
tion type can be mapped to one of the named entity
labels assigned by the parser, e.g. a name question is
looking for names of persons (ne = PER), a question
for a capital is looking for a location (ne = LOC) and
a question for organizations is looking for the name
of an organization (ne = ORG). Hence, we can add
another keyword type, the expected answer type to
be matched with named entity labels in the ne layer,
cf. (Prager et al., 2000).

There are many possible combinations of restric-
tions even with the small set of POS labels and rela-
tion types listed above. However, many of them are
useless because they cannot be instantiated. For ex-
ample, an adjective cannot appear in subject relation
to its head. For simplicity we limit ourselves to the
following eight combined restrictions (POS + rela-
tion type): names + {direct object, modifier, apposi-
tion, subject} and nouns + {direct object, modifier,
apposition, subject}. These can be applied to all to-
ken layers in the same way as the other restrictions
using single constraints.

Altogether we have 109 different keyword types
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using the layers and the restrictions defined above.
Now the question is to select appropriate keyword
types among them with the optimal parameters
(weights) to maximize retrieval performance. The
following section describes the optimization proce-
dure used to adjust query parameters.

4 Optimization of query parameters

In the previous sections we have seen the internal
structure of the multi-layer index and the queries we
use in our passage retrieval component. Now we
have to address the question of how to select layers
and restrict keywords to optimize the performance
of the system according to the QA task. For this
we employ an automatic optimization procedure that
learns appropriate parameter settings from example
data. We use annotated training material that is de-
scribed in the next section. Thereafter, the optimiza-
tion procedure is introduced.

4.1 CLEF questions and evaluation

We used results from the CLEF competition on
Dutch QA from the years 2003 and 2004 for train-
ing and evaluation. They contain natural language
questions annotated with their answers found in the
CLEF corpus (answer strings and IDs of documents
in which the answer was found). Most of the ques-
tions are factoid questions such as ’Hoeveel inwon-
ers heeft Zweden?’ (How many inhabitants does
Sweden have?). Altogether there are 631 questions
with 851 answers.2

Standard measures for evaluating information re-
trieval results are precision and recall. However,
for QA several other specialized measures have
been proposed, e.g. mean reciprocal rank (MRR)
(Vorhees, 1999), coverage and redundancy (Roberts
and Gaizauskas, 2004). MRR accounts only for the
first passage retrieved containing an answer and dis-
regards the following passages. Coverage and re-
dundancy on the other hand disregard the ranking
completely and focus on the sets of passages re-
trieved. However, in our QA system, the IR score

2Each question may have multiple possible answers. We
also added some obvious answers which were not in the original
test set when encountering them in the corpus. For example,
names and numbers can be spelled differently (Kim Jong Il vs.
Kim Jong-Il, Saoedi-Arabië vs. Saudi-Arabië, bijna vijftig jaar
vs. bijna 50 jaar)

(on which the retrieval ranking is based) is one of
the clues used by the answer identification modules.
Therefore, we use the mean of the total reciprocal
ranks (MTRR), cf. (Radev et al., 2002), to combine
features of all three measures:

MTRR =
1

x

x∑

i=1

∑

d∈Ai

1

rankRi
(d)

Ai is the set of retrieved passages containing an
answer to question number i (subset of Ri) and
rankRi

(d) is the rank of document d in the list of
retrieved passages Ri.

In our experiments we used the provided answer
string rather than the document ID to judge if a re-
trieved passage was relevant or not. In this way,
the IR engine may provide passages with correct an-
swers from other documents than the ones marked in
the test set. We do simple string matching between
answer strings and words in the retrieved passages.
Obviously, this introduces errors where the match-
ing string does not correspond to a valid answer in
the context. However, we believe that this does not
influence the global evaluation figure significantly
and therefore we use this approach as a reasonable
compromise when doing automatic evaluation.

4.2 Learning query parameters

As discussed earlier, there is a large variety of possi-
ble keyword types that can be combined to query the
multi-layer index. Furthermore, we have a number
of parameters to be set when formulating a query,
e.g. the keyword weights. Selecting the appropri-
ate keywords and parameters is not straightforward.
We like to carry out a systematic search for optimiz-
ing parameters rather than using our intuition. Here,
we use the information retrieval engine as a black
box with certain input parameters. We do not know
how the ranking is done internally or how the output
is influenced by parameter changes. However, we
can inspect and evaluate the output of the system.
Hence, we need an iterative approach for testing sev-
eral settings to optimize query parameters. The out-
put for each setting has to be evaluated according to
a certain objective function. For this, we need an au-
tomatic procedure because we want to check many
different settings in a batch run. The performance of
the system can be measured in several ways, e.g. us-
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ing the MTRR scores described in the previous sec-
tion. We have chosen to use this measure and the
annotated CLEF questions to evaluate the retrieval
performance automatically.

We decided to use a simplified genetic algorithm
to optimize query parameters. This algorithm is
implemented as an iterative “trial-and-error beam
search” through possible parameter settings. The
optimization loop works as follows (using a sub-set
of the CLEF questions):

1. Run initial queries (one keyword type per IR run) with
default weights.

2. Produce a number of new settings by combining two pre-
vious ones (= crossover). For this, select two settings
from an N-best list from the previous IR runs. Apply mu-
tation operations (see next step) until the new settings are
unique (among all settings we have tried so far).

3. Change some of the new settings at random (= mutation)
using pre-defined mutation operations.

4. Run the queries using the new settings and evaluate the
retrieval output (determine fitness).

5. Continue with 2 until some stop condition is satisfied.

This optimization algorithm is very simple but re-
quires some additional parameters. First of all, we
have to set the size of the population, i.e. the num-
ber of IR runs (individuals) to be kept for the next
iteration. We decided to keep the population small
with only 25 individuals. Then we have to decide
how to evaluate fitness to rank retrieval results. This
is done using the MTRR measure. Natural selection
using these rankings is simplified to a top-N search
without giving individuals with lower fitness values
a chance to survive. This also means that we can
update the population directly when a new IR run is
finished. We also have to set a maximum number of
new settings to be created. In our experiments we
limit the process to a maximum of 50 settings that
may be tried simultaneously. A new setting is cre-
ated as soon as there is a spot available.

An important part of the algorithm is the com-
bination of parameters. We simply merge the set-
tings of two previous runs (parents) to produce a
new setting (a child). That means that all keyword
types (with their restrictions) from both parents are
included in the child’s setting. Parents are selected at
random without any preference mechanism. We also

use a very simple strategy in cases where both par-
ents contain the same keyword type. In these cases
we compute the arithmetic mean of the weight as-
signed to this type in the parents’ settings (default
weight is one). If the keyword type is marked as re-
quired in one of the parents, it will also be marked as
required in the child’s setting (which will overwrite
the keyword weight if it is set in the other parent).

Another important principle in genetic optimiza-
tion is mutation. It refers to a randomized modifi-
cation of settings when new individuals are created.
First, we apply mutation operations where new set-
tings are not unique.3 Secondly, mutation operations
are applied with fixed probabilities to new settings.

In most genetic algorithms, settings are converted
to genes consisting of bit strings. A mutation op-
eration is then defined as flipping the value of one
randomly chosen bit. In our approach, we do not
use bit strings but define several mutation operations
to modify parameters directly. The following opera-
tions have been defined:

• a new keyword type is added to new settings
with a chance of 0.2

• a keyword type is removed from the settings
with a chance of 0.1

• a keyword weight (boost factor) is modified by
a random value between -5 and 5 with a chance
of 0.2 (but only if the weight remains a positive
value)

• a keyword type is marked as required with a
chance of 0.01

All these parameters are intuitively chosen. We as-
signed rather high probabilities to the mutation op-
erations to reduce the risk of local maximum traps.
Note that there is no obvious condition for termi-
nation. In randomized approaches like this one the
development of the fitness score is most likely not
monotonic and therefore, it is hard to predict when
we should stop the optimization process. However,
we expect the scores to converge at some point and
we may stop if a certain number of new settings does
not improve the scores anymore.

3We require unique settings in our implementation because
we want to avoid re-computation of fitness values for settings
that have been tried already. “Good” settings survive anyway
using our top-N selection approach.
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5 Experiments

We selected a random set of 420 questions from the
CLEF data for training and used the remaining 150
questions for evaluation. We used the optimization
algorithm with the settings as described above. IR
was run in parallel on 3-7 Linux workstations on a
local network. We retrieved a maximum of 20 pas-
sages per question. For each setting we computed
the fitness scores for the training set and the eval-
uation set using MTRR. The top scores have been
printed after each 10 runs and compared to the eval-
uation scores. Figure 3 shows a plot of the fitness
score development throughout the optimization pro-
cess in comparison with the evaluation scores.
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Figure 3: Parameter optimization

The base-line of 0.8799 refers to the retrieval re-
sult on evaluation data when using traditional IR
with plain text keywords only (i.e. using the text
layer, Dutch stemming and stop word removal). The
base-line performance on training data is slightly
worse with 0.8224 MTRR. After 1130 settings the
MTRR scores increased to 0.9446 for training data
and 1.0247 for evaluation data. Thereafter we can
observe a surprising drop in evaluation scores to
around 0.97 in MTRR. This might be due to over-
fitting although the drop seems to be rather radi-
cal. After that the curve of the evaluation scores
goes back to about the same level as achieved be-
fore and the training curve seems to level out. The
MTRR score after 3200 settings is at 1.0169 on eval-
uation data which is a statistically significant im-
provement of the baseline score (tested using the
Wilcoxon matched-pairs signed-ranks test at p <

0.01). MTRR measured on document IDs and eval-

uation data did also increase from 0.5422 to 0.6215
which is statistically significant at p¡0.02. Coverage
went up from 78.68% to 81.62% on evaluation data
and the redundancy was improved from 3.824 to
4.272 (significance tests have not been carried out).
Finally, the QA performance using Joost with only
the IR based strategy was increased from 0.289 (us-
ing CLEF scores) to 0.331. This, however, is not sta-
tistically significant according to the Wilcoxon test
and may be due to chance.

Table 3: Optimized parameters (3200 settings)

weighted keywords required keywords
layer restriction weight layer restriction

text 7.43 root name
text name 11.94
text adj 9.14 RootPOS
text mod 5.83 RootPOS obj1
text verb 4.33 RootPOS noun-mod
text noun-app 3.70
root 4.45 RootRel
root noun-su 2.65 RootRel app
root name-mod 9.71 RootRel noun-app
root noun-obj1 0.09 RootRel noun-mod
root mod 0.81 RootRel noun-obj1
root verb 0.01
RootHead noun-app 7.65 RootRelHead su
RootHead noun-mod 5.24 RootRelHead adj
RootHead name-su 1 RootRelHead name-app
RootRel mod 4.45
RootRel name-app 2.17 Q-type
RootRel noun 2.49
RootRelHead obj1 1.60
RootRelHead name-su 1
nePER 0.91

Table 3 shows the features and weights selected in
the training process. The largest weights are given
to names in the text layer, to root forms of names in
modifier relations and to plain text adjectives. Many
keyword types use ’name’ or ’noun’ as POS restric-
tion. A surprisingly large number of keyword types
are marked as required. Some of them overlap with
each other and are therefore redundant. For exam-
ple, all RootPOS keywords are marked as required
and therefore, the restrictions of RootPOS keywords
are useless because they do not alter the query. How-
ever, in other cases overlapping keyword type defini-
tions do influence the query. For example, RootRel
keywords in general are marked as required. How-
ever, other type definitions replace some of them
with weighted keywords, e.g., RootRel noun key-
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words. Finally, some of them may be changed back
to required keywords, e.g., RootRel keywords of
nouns in a modifier relation.

6 Conclusions

In this paper we describe an approach for integrat-
ing linguistic information derived from dependency
analyses in passage retrieval for question answer-
ing. Our retrieval component uses a multi-layer in-
dex containing various combinations of linguistic
features and syntactic units extracted from a fully
analyzed corpus of unrestricted Dutch text. Natu-
ral language questions are parsed in the same way.
Their analyses are used to build complex queries to
our extended index. We demonstrated a genetic al-
gorithm for optimizing query parameters to improve
the retrieval performance. The system was trained
on questions from the CLEF competition on open-
domain question answering for Dutch which are an-
notated with corresponding answers in the corpus.
We could show a significant improvement of about
15% in mean total reciprocal rank using extended
queries with optimized parameters compared with
the base-line of traditional information retrieval us-
ing plain text keywords.
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Abstract

MIT’s Audio Notebook added great value to the
note-taking process by retaining audio record-
ings, e.g. during lectures or interviews. The key
was to provide users ways to quickly and easily
access portions of interest in a recording. Sev-
eral non-speech-recognition based techniques
were employed. In this paper we present a
system to search directly the audio record-
ings by key phrases. We have identified the
user requirements as accurate ranking of phrase
matches, domain independence, and reasonable
response time. We address these requirements
by a hybrid word/phoneme search in lattices,
and a supporting indexing scheme. We will in-
troduce the ranking criterion, a unified hybrid
posterior-lattice representation, and the index-
ing algorithm for hybrid lattices. We present
results for five different recording sets, includ-
ing meetings, telephone conversations, and in-
terviews. Our results show an average search
accuracy of 84%, which is dramatically better
than a direct search in speech recognition tran-
scripts (less than 40% search accuracy).

1 Introduction

Lisa Stifelman proposed in her thesis the idea of the
“Audio Notebook,” where audio recordings of lectures
and interviews are retained along with the notes (Stifel-
man, 1997). She has shown that the audio recordings are
valuable to users if portions of interest can be accessed
quickly and easily.

Stifelman explored various techniques for this, includ-
ing user-activity based techniques (most noteworthy time-
stamping notes so they can serve as an index into the
recording) and content-based ones (signal processing for
accelerated playback, “snap-to-grid” (=phrase boundary)
based on prosodic cues). The latter are intended for sit-
uations where the former fail, e.g. when the user has no
time for taking notes, does not wish to pay attention to it,
or cannot keep up with complex subject matter, and as a
consequence the audio is left without index. In this pa-
per, we investigate technologies for searching thespoken
contentof the audio recording.

Several approaches have been reported in the litera-
ture for the problem of indexing spoken words in au-
dio recordings. The TREC (Text REtrieval Conference)
Spoken-Document Retrieval (SDR) track has fostered re-
search on audio-retrieval of broadcast-news clips. Most
TREC benchmarking systems use broadcast-news recog-
nizers to generate approximate transcripts, and apply text-
based information retrieval to these. They achieve re-
trieval accuracy similar to using human reference tran-
scripts, and ad-hoc retrieval for broadcast news is consid-
ered a “solved problem” (Garofolo, 2000). Noteworthy
are the rather low word-error rates (20%) in the TREC
evaluations, and that recognition errors did not lead to
catastrophic failures due to redundancy of news segments
and queries.

However, in our scenario, requirements are rather dif-
ferent. First, word-error rates are much higher (40-
60%). Directly searching such inaccurate speech recog-
nition transcripts suffers from a poor recall. Second, un-
like broadcast-news material, user recordings of conver-
sations will not be limited to a few specific domains. This
not only poses difficulties for obtaining domain-specific
training data, but also implies an unlimited vocabulary of
query phrases users want to use. Third, audio recordings
will accumulate. When the audio database grows to hun-
dreds or even thousands of hours, a reasonable response
time is still needed.

A successful way to deal with high word error rates is
the use of recognition alternates (lattices). For example,
(Seide and Yu, 2004; Yu and Seide, 2004) reports a sub-
stantial 50% improvement of FOM (Figure Of Merit) for
a word-spotting task in voicemails. Improvements from
using lattices were also reported by (Saraclar and Sproat,
2004) and (Chelba and Acero, 2005).

To address the problem of domain independence, a
subword-based approach is needed. In (Logan, 2002)
the authors address the problem by indexing phonetic or
word-fragment based transcriptions. Similar approaches,
e.g. using overlappingM -grams of phonemes, are dis-
cussed in (Scḧauble, 1995) and (Ng, 2000). (James
and Young, 1994) introduces the approach of searching
phoneme lattices. (Clements, 2001) proposes a similar
idea called “phonetic search track.” In previous work
(Seide and Yu, 2004), promising results were obtained
with phonetic lattice search in voicemails. In (Yu and
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Figure 1: System architecture.

Seide, 2004), it was found that even better result can be
achieved by combining a phonetic search with a word-
level search.

For the third problem, quick response time is com-
monly achieved by indexing techniques. However, in
the context of phonetic lattice search, the concept of “in-
dexing” becomes a non-trivial problem, because due to
the unknown-word nature, we need to deal with an open
set of index keys. (Saraclar and Sproat, 2004) proposes
to store the individual lattice arcs (inverting the lattice).
(Allauzen et al., 2004) introduces a general indexation
framework by indexing expected term frequencies (“ex-
pected counts”) instead of each individual keyword oc-
currence or lattice arcs. In (Yuet al., 2005), a similar idea
of indexing expected term frequencies is proposed, sug-
gesting to approximate expected term frequencies byM -
gram phoneme language modelsestimated on segments
of audio.

In this paper, we combine previous work on pho-
netic lattice search, hybrid search and lattice indexing
into a real system for searching recorded conversations
that achieves high accuracy and can handle hundreds of
hours of audio. The main contributions of this paper
are: a real system for searching conversational speech, a
novel method for combining phoneme and word lattices,
and experimental results for searching recorded conver-
sations.

The paper is organized as follows. Section 2 gives an
overview of the system. Section 3 introduces the over-
all criterion, based on which the system is developed,
Section 4 introduces our implementation for a hybrid
word/phoneme search system, and Section 5 discusses the
lattice indexing mechanism. Section 6 presents the exper-
imental results, and Section 7 concludes.

2 A System For Searching Conversations

A system for searching the spoken content of recorded
conversations has several distinct properties. Users are
searching their own meetings, so most searches will be
known-item searches with at most a few correct hits in the

archive. Users will often search for specific phrases that
they remember, possibly with boolean operators. Rele-
vance weighting of individual query terms is less of an
issue in this scenario.

We identified three user requirements:

• high recall and accurate ranking of phrase matches;
• domain independence – it should work for any topic,

ideally without need to adapt vocabularies or lan-
guage models;

• reasonable response time – a few seconds at most,
independent of the size of the conversation archive.

We address them as follows. First, to increase recall
we searchrecognition alternatesbased onlattices. Lat-
tice oracle word-error rates1 are significantly lower than
word-error rates of the best path. For example, (Chelba
and Acero, 2005) reports a lattice oracle error rate of 22%
for lecture recordings at a top-1 word-error rate of 45%2.
To utilize recognizer scores in the lattices, we formulat-
ing the ranking problem as one of risk minimization and
derive that keyword hits should be ranked by theirword
(phrase) posterior probabilities.

Second, domain independence is achieved by combin-
ing large-vocabulary recognition with a phonetic search.
This helps especially for proper names and specialized
terminology, which are often either missing in the vocab-
ulary or not well-predicted by the language model.

Third, to achieve quick response time, we use anM -
gram based indexing approach. It has two stages, where
the first stage is a fast index lookup to create a short-list of
candidate lattices. In the second stage, a detailed lattice
match is applied to the lattices in the short-list. We call
the second stagelinear searchbecause search time grows
linearly with the duration of the lattices searched.

1The “oracle word-error rate” of a lattice is the word error
rate of the path through the lattice that has the least errors.

2Note that this comparison was for a reasonably well-tuned
recognizer setup. Any arbitrary lattice oracle error rate can be
obtained by adjusting the recognizer’s pruning setup and in-
vesting enough computation time (plus possibly adapting the
search-space organization).
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The resulting system architecture is shown in Fig. 1. In
the following three sections, we will discuss our solutions
in these three aspects in details respectively.

3 Ranking Criterion

For ranking search results according to “relevance” to the
user’s query, several relevance measures have been pro-
posed in the text-retrieval literature. The key element of
these measures is weighting the contribution of individual
keywords to the relevance-ranking score. Unfortunately,
text ranking criteria are not directly applicable to retrieval
of speech because recognition alternates and confidence
scores are not considered.

Luckily, this is less of an issue in our known-item style
search, because the simplest of relevance measures can
be used: A search hit is assumed relevant if the query
phrase was indeed said there (and fulfills optional boolean
constraints), and it is not relevant otherwise.

This simple relevance measure, combined with a vari-
ant of the probability ranking principle (Robertson,
1977), leads to a system where phrase hits are ranked by
their phrase posterior probability. This is derived through
a Bayes-risk minimizing approach as follows:

1. Let the relevance beR(Q, hiti) of a returned audio
hit – hiti to a user’s queryQ formally defined is 1
(match) if the hit is an occurrence of the query term
with time boundaries(thiti

s , thiti

e ), or 0 if not.

2. The user expects the system to return a list of audio
hits, ranked such that theaccumulative relevanceof
the topn hits (hit1...hitn), averaged over a range of
n = 1...nmax, is maximal:

1
nmax

nmax∑
n=1

n∑

i=1

R(Q, hiti) != max . (1)

Note that this is closely related to popular word-
spotting metrics, such as the NIST (National Insti-
tute of Standards & Technology) Figure Of Merit.

To the retrieval system, the true transcription of each
audio file is unknown, so it must maximize Eq. (1) in the
sense of an expected value

EWT |O

{
1

nmax

nmax∑
n=1

n∑

i=1

RWT (Q, hiti)

}
!= max,

where O denotes the totality of all audio files (O
for observation),W = (w1, w2, ..., wN ) a hypothe-
sized transcription of the entire collection, andT =
(t1, t2, ..., tN+1) the associated time boundaries on a
shared collection-wide time axis.

RWT (·) shall be relevance w.r.t. the hypothesized tran-
scription and alignment. The expected value is taken
w.r.t. the posterior probability distributionP (WT |O)
provided by our speech recognizer in the form of scored

lattices. It is easy to see that this expression is max-
imal if the hits are ranked by their expected relevance
EWT |O{RWT (Q, hiti)}. In our definition of relevance,
RWT (Q, hiti) is written as

RWT (Q, hiti) =





1 ∃k, l : tk = thiti

s

∧tk+l = thiti

e

∧wk, ..., wk+l−1 = Q
0 otherwise

and the expected relevance is computed as

EWT |O{RWT (Q, hiti)} =
∑

WT

RWT (Q, hiti)P (WT |O)

= P (∗, thiti

s , Q, thiti

e , ∗|O)

with

P (∗, ts, Q, te, ∗|O) =
∑

W T :∃k,l:tk=ts∧tk+l=te
∧wk,...,wk+l−1=Q

P (WT |O). (2)

For single-word queries, this is the well-knownword pos-
terior probability (Wesselet al., 2000; Evermannet al.,
2000). To cover multi-label phrase queries, we will call it
phrase posterior probability.

The formalism in this section is applicable to all sorts
of units, such as fragments, syllables, or words. The tran-
scriptionW and its unitswk, as well as the query string
Q, should be understood in this sense. For a regular word-
level search,W andQ are juststrings of wordsIn the con-
text of phonetic search,W andQ arestrings of phonemes.
For simplicity of notation, we have excluded the issue of
multiple pronunciations of a word. Eq. (2) can be trivially
extended by summing up over all alternative pronuncia-
tions of the query. And in a hybrid search, there would
be multiple representations of the query, which are just as
pronunciation variants.

4 Word/Phoneme Hybrid Search

For a combined word and phoneme based search, two
problems need to be considered:

• Recognizer configuration. While established solu-
tions exist for word-lattice generation, what needs
to be done for generating high-quality phoneme lat-
tices?

• How should word and phoneme lattices be jointly
represented for the purpose of search, and how
should they be searched?

4.1 Speech Recognition

4.1.1 Large-Vocabulary Recognition
Word lattices are generated by a common speaker-

independent large-vocabulary recognizer. Because the
speaking style of conversations is very different from, say,
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your average speech dictation system, specialized acous-
tic models are used. These are trained on conversational
speech to match the speaking style. The vocabulary and
the trigram language model are designed to cover a broad
range of topics.

The drawback of large-vocabulary recognition is, of
course, that it is infeasible to have the vocabulary cover
all possible keywords that a user may use, particularly
proper names and specialized terminology.

One way to address thisout-of-vocabulary problemis
to mine the user’s documents or e-mails to adapt the rec-
ognizer’s vocabulary. While this is workable for some
scenarios, it is not a good solution e.g. when new words
are frequently introduced in the conversations themselves
rather than preceding written conversations, where the
spelling of a new word is not obvious and thus inconsis-
tent, or when documents with related documents are not
easily available on the user’s hard disk but would have to
be specifically gathered by the user.

A second problem is that the performance of state-of-
the-art speech recognition relies heavily on a well-trained
domain-matched language model. Mining user data can
only yield a comparably small amount of training data.
Adapting a language model with it would barely yield a
robust language model for newly learned words, and their
usage style may differ in conversational speech.

For the above reasons, we decided not to attempt to
adapt vocabulary and language model. Instead, we use
a fixed broad-domain vocabulary and language model
for large-vocabulary recognition, and augment this sys-
tem with maintenance-freephonetic searchto cover new
words and mismatched domains.

4.1.2 Phonetic Recognition

The simplest phonetic recognizer is a regular recog-
nizer with the vocabulary replaced by the list of phone-
mes of the language, and the language model replaced by
a phonemeM -gram. However, such phonetic language
model is much weaker than a word language model. This
results in poor accuracy and inefficient search.

Instead, our recognizer uses “phonetic word frag-
ments” (groups of phonemes similar to syllables or half-
syllables) as its vocabulary and in the language model.
This provides phonotactic constraints for efficient decod-
ing and accurate phoneme-boundary decisions, while re-
maining independent of any specific vocabulary. A set
of about 600 fragments was automatically derived from
the language-model training set by a bottom-up group-
ing procedure (Klakow, 1998; Ng, 2000; Seide and Yu,
2004). Example fragments are /-k-ih-ng/ (the syllable-
king), /ih-n-t-ax-r-/ (inter-), and /ih-z/ (the wordis).

With this, lattices are generated using the common
Viterbi decoder with word-pair approximation (Schwartz
et al., 1994; Ortmannset al., 1996). The decoder has been
modified to keep track of individual phoneme boundaries
and scores. These are recorded in the lattices, while
fragment-boundary information is discarded. This way,

phoneme lattices are generated.
In the results section we will see that, even with a well-

trained domain-matching word-level language model,
searching phoneme lattices can yield search accuracies
comparable with word-level search, and that the best per-
formance is achieved by combining both into a hybrid
word/phoneme system.

4.2 Unified Hybrid Lattice Representation

Combining word and phonetic search is desirable because
they are complementary: Word-based search yields bet-
ter precision, but has a recall issue for unknown and rare
words, while phonetic search has very good recall but suf-
fers from poor precision especially for short words.

Combining the two is not trivial. Several strategies are
discussed in (Yu and Seide, 2004), including using a hy-
brid recognizer, combining lattices from two separate rec-
ognizers, and combining the results of two separate sys-
tems. Both hybrid recognizer configuration and lattice
combination turned out difficult because of the different
dynamic range of scores in word and phonetic paths.

We found it beneficial to convert both lattices into
posterior-based representations calledposterior lattices
first, which are then merged into a hybrid posterior lat-
tice. Search is performed in a hybrid lattice in a unified
manner using both phonetic and word representations as
“alternative pronunciation” of the query, and summing up
the resulting phrase posteriors.

Posterior lattices are like regular lattices, except that
they do not store acoustic likelihoods, language model
probabilities, and precomputed forward/backward proba-
bilities, butarc and node posteriors. An arc’s posterior
is the probability that the arc (with its associated word
or phoneme hypothesis) lies on the correct path, while a
node posterior is the probability that the correct path con-
nects two word/phoneme hypotheses through this node.
In our actual system, a node is only associated with a
point in time, and the node posterior is the probability
of having a word or phoneme boundary at its associated
time point.

The inclusion of node posteriors, which to our knowl-
edge is a novel contribution of this paper, makes an exact
computation of phrase posteriors from posterior lattices
possible. In the following we will explain this in detail.

4.2.1 Arc and Node Posteriors
A latticeL = (N ,A, nstart, nend) is a directed acyclic

graph (DAG) withN being the set of nodes,A is the
set of arcs, andnstart, nend ∈ N being the unique ini-
tial and unique final node, respectively. Nodes represent
times and possibly context conditions, while arcs repre-
sent word or phoneme hypotheses.3

Each noden ∈ N has an associated timet[n] and pos-
sibly an acoustic or language-model context condition.
Arcs are 4-tuplesa = (S[a], E[a], I[a], w[a]). S[a], E[a]

3Alternative definitions of lattices are possible, e.g. nodes
representing words and arcs representing word transitions.
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∈ N denote the start and end node of the arc.I[a] is
the arc label4, which is either a word (in word lattices)
or a phoneme (in phonetic lattices). Last,w[a] shall be
a weight assigned to the arc by the recognizer. Specifi-
cally,w[a] = pac(a)1/λ ·PLM(a) with acoustic likelihood
pac(a), language model probabilityPLM, and language-
model weightλ.

In addition, we definepaths π = (a1, · · · , aK) as
sequencesof connected arcs. We use the symbolsS,
E, I, andw for paths as well to represent the respec-
tive properties for entire paths, i.e. the path start node
S[π] = S[a1], path end nodeE[π] = E[aK ], path la-
bel sequenceI[π] = (I[a1], · · · , I[aK ]), and total path
weightw[π] =

∏K
k=1 w[ak].

Finally, we defineΠ(n1, n2) as the entirety of all paths
that start at noden1 and end in noden2: Π(n1, n2) =
{π|S[π] = n1 ∧ E[π] = n2}.

With this, the phrase posteriors defined in Eq. 2 can be
written as follows.

In the simplest case,Q is a single word token. Then,
the phrase posterior is just the word posterior and, as
shown in e.g. (Wesselet al., 2000) or (Evermannet al.,
2000), can be computed as

P (∗, ts, Q, te, ∗|O) =

∑
π=(a1,··· ,aK )∈Π(nstart,nend):
∃l:[S[al]]=ts∧t[E[al]]=te∧I[al]=Q

w[π]

∑
π∈Π(nstart,nend)

w[π]

=
∑

a∈A:t[S[a]]=ts
∧t[E[a]]=te∧I[a]=Q

Parc[a] (3)

with Parc[a] being thearc posteriordefined as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

with the forward/backward probabilitiesαn andβn de-
fined as:

αn =
∑

π∈Π(nstart,n)

w[π]

βn =
∑

π∈Π(n,nend)

w[π].

αn andβn can conveniently be computed from the word
lattices by the well-known forward/backward recursion:

αn =

{
1.0 n = nstart∑
a:E[a]=n

αS[a] · w[a] otherwise

βn =

{
1.0 n = nend∑
a:S[a]=n

w[a] · βE[a] otherwise.

4Lattices are often interpreted as weighted finite-state accep-
tors, where the arc labels are theinput symbols, hence the sym-
bol I.

Now, in the general case of multi-label queries, the phrase
posterior can be computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK ):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK ]
Pnode[S[a2]] · · ·Pnode[S[aK ]]

with Pnode[n], thenode posterior5, defined as

Pnode[n] =
αn · βn

αnend

. (4)

4.2.2 Advantages of Posterior Lattices
The posterior-lattice representation has several advan-

tages over traditional lattices. First, lattice storage is re-
duced because only one value (node posterior) needs to be
stored per node instead of two (α, β)6. Second, node and
arc posteriors have a smaller and similar dynamic range
thanαn, βn, andw[a], which is beneficial when the val-
ues should be stored with a small number of bits.

Further, for the case of word-based search, the summa-
tion in Eq. 3 can also be precomputed by merging all lat-
tice nodes that carry the same time label, and merging the
corresponding arcs by summing up their arc posteriors.
In such a “pinched” lattice, word posteriors for single-
label queries can now be looked up directly. However,
posteriors for multi-label strings cannot be computed pre-
cisely anymore. Our experiments have shown that the im-
pact on ranking accuracy caused by this approximation is
neglectable. Unfortunately, we have also found that the
same is not true for phonetic search.

The most important advantage of posterior lattices for
our system is that they provide a way of combining the
word and phoneme lattices into a single structure – by
simply merging their start nodes and their end nodes. This
allows to implement hybrid queries in a single unified
search, treating the phonetic and the word-based repre-
sentation of the query as alternative pronunciations.

5 Lattice Indexing

Searching lattices is time-consuming. It is not feasible to
search large amounts of audio. To deal with hundreds or
even thousands of hours of audio, we need some form of
inverted indexing mechanism.

This is comparably straight-forward when indexing
text. It is also not difficult for indexing word lattices. In
both case, the set of words to index is known. However,
indexing phoneme lattices is very different, because the-
oretically any phoneme string could be an indexing item.

5Again, mind that in our lattice formulation word/phoneme
hypotheses are represented by arcs, while nodes just represent
connection points. The node posterior is the probability that the
correct path passes through a connection point.

6Note, however, that storage for the traditional lattice can
also be reduced to a single number per node by weight push-
ing (Saraclar and Sproat, 2004), using an algorithm that is very
similar to the forward/backward procedure.
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We address this by ourM -gram lattice-indexing
scheme. It was originally designed for phoneme lattices,
but can be – and is actually – used in our system for in-
dexing word lattices.

First, audio files are clipped into homogeneous seg-
ments. For an audio segmenti, we define theexpected
term frequency(ETF) of a query stringQ as summation
of phrase posteriors of all hits in this segment:

ETFi(Q) =
∑

∀ts,te

P (∗, ts, Q, te, ∗|Oi)

=
∑

π∈Πi:I[π]=Q

p[π]

with Πi being the set of all paths of segmenti.
At indexing time,ETFs of a list ofM -grams for each

segment are calculated. They are stored in an inverted
structure that allows retrieval byM -gram.

In search time, theETFs of the query string are es-
timated by the so-called “M -gram approximation”. In
order to explain this concept, we need to first introduce
P (Q|Oi) – the probability of observing query stringQ at
any word boundary in the recordingOi. P (Q|Oi) has a
relationship withETF as

ETFi(Q) = Ñi · P (Q|Oi)

with Ñi being the expected number of words in the seg-
menti. It can also be computed as

Ñi =
∑

n∈Ni

p[n],

whereNi is the node set for segmenti.
Like the M -gram approximation in language-model

theory, we approximateP (Q|Oi) as

P (Q|Oi) ≈ P̃ (Q|Oi)

=
l∏

k=1

P̃ (qk|qk−M+1, · · · , qk−1, O
i),

while the right-hand items can be calculated fromM -
gramETFs:

P̃ (qk|qk−M+1, · · · , qk−1, O
i)

=
ETFi(qk−M+1, · · · , qk)

ETFi(qk−M+1, · · · , qk−1)
.

The actual implementation uses onlyM -grams extracted
from a large background dictionary, with a simple backoff
strategy for unseenM -grams, see (Yuet al., 2005) for
details.

The resulting index is used in a two stage-search man-
ner: The index itself is only used as the first stage to de-
termine a short-list of promising segments that may con-
tain the query. The second stage involves a linear lattice
search to get final results.

Table 1: Test corpus summary.
test set dura- #seg- keyword set

tion ments (incl. OOV)
ICSI meetings 2.0h 429 1878 (96)
SWBD eval2000 3.6h 742 2420 (215)
SWBD rt03s 6.3h 1298 2325 (236)
interviews (phone) 1.1h 267 1057 (49)
interviews (lapel) 1.0h 244 1629 (107)

6 Results

6.1 Setup

We have evaluated our system on five different corpora of
recorded conversations:

• one meeting corpus (NIST “RT04S” development
data set, ICSI portion, (NIST, 2000-2004))

• two eval sets from the switchboard (SWBD) data
collection (“eval 2000” and “RT03S”, (NIST, 2000-
2004))

• two in-house sets of interview recordings of about
one hour each, one recorded over the telephone, and
one using a single microphone mounted in the inter-
viewee’s lapel.

For each data set, a keyword list was selected by an
automatic procedure (Seide and Yu, 2004). Words and
multi-word phrases were selected from the reference tran-
scriptions if they occurred in at most two segments. Ex-
ample keywords areoverseas, olympics, and“automated
accounting system”. For the purpose of evaluation, those
data sets are cut into segments of about 15 seconds each.
The size of the corpora, their number of segments, and
the size of the selected keyword set are given in Table 1.

The acoustic model we used is trained on 309h of the
Switchboard corpus (SWBD-1). The LVCSR language
model was trained on the transcriptions of the Switch-
board training set, the ICSI-meeting training set, and the
LDC Broadcast News 96 and 97 training sets. No ded-
icated training data was available for the in-house inter-
view recordings. The recognition dictionary has 51388
words. The phonetic language model was trained on the
phonetic version of the transcriptions of SWBD-1 and
Broadcast News 96 plus about 87000 background dictio-
nary entries, a total of 11.8 million phoneme tokens.

To measure the search accuracy, we use the “Figure
Of Merit” (FOM) metric defined by NIST for word-
spotting evaluations. In its original form, it is the aver-
age of detection/false-alarm curve taken over the range
[0..10] false alarms per hour per keyword. Because man-
ual word-level alignments of our test sets were not avail-
able, we modified the FOM such that a correct hit is a
15-second segment that contains the key phrase.

Besides FOM, we use a second metric – “Top Hit Pre-
cision” (THP), defined as the correct rate of the best
ranked hit. If no hit is returned for an existing query term,
it is counted as an error. Both of these metrics are relevant
measures in our known-item search.
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Table 2: Baseline transcription word-error rates (WER)
as well as precision (P), recall (R), FOM and THP for
searching the transcript.

test set WER P R FOM THP
[%] [%] [%] [%] [%]

ICSI meetings 44.1 80.6 43.8 43.6 43.6
SWBD eval2000 39.0 79.6 41.1 41.1 41.1
SWBD rt03s 45.2 72.6 36.3 36.3 36.0
interviews (phone) 57.7 68.8 31.6 29.3 31.3
interviews (lapel) 62.8 80.1 32.0 30.2 32.1
average 49.8 76.3 37.0 36.1 36.8

Table 3: Comparison of search accuracy for word,
phoneme, and hybrid lattices.

test set word phoneme hybrid
Figure Of Merit (FOM) [%]

ICSI meetings 72.1 81.2 88.2
SWBD eval2000 71.3 80.4 87.3
SWBD rt03s 66.4 76.9 84.2
interviews (phone) 60.6 73.7 83.3
interviews (lapel) 59.0 70.2 77.7
average 65.9 76.5 84.1
INV words only 69.4 77.0 84.7
OOV words only 0 73.8 73.8

Top Hit Precision (THP) [%]
ICSI meetings 67.2 65.0 78.7
SWBD eval2000 67.1 63.6 77.9
SWBD rt03s 59.6 59.1 71.7
interviews (phone) 55.7 64.4 73.1
interviews (lapel) 55.6 59.7 71.2
average 61.0 62.4 74.5
INV words only 64.5 62.4 75.3
OOV words only 0 60.5 60.5

6.2 Word/Phoneme Hybrid Search

Table 2 gives the LVSCR transcription word-error rates
for each set. Almost all sets have a word-error rates above
40%. Searching those speech recognition transcriptions
results in FOM and THP values below 40%.

Table 3 gives results of searching in word, phoneme,
and hybrid lattices. First, for all test sets, word-lattice
search is drastically better than transcription-only search.

Second, comparing word-lattice and phoneme-lattice
search, phoneme lattices outperforms word lattices on
all tests in terms of FOM. This is because phoneme lat-
tice has better recall rate. For THP, word lattice search
is slightly better except on the interview sets for which
the language model is not well matched. Hybrid search
leads to a substantial improvement over each (27.6% av-
erage FOM improvement and 16.2% average THP im-
provement over word lattice search). This demonstrates
the complementary nature of word and phoneme search.

We also show results separately for known words (in-
vocabulary, INV) and out-of-vocabulary words (OOV).
Interestingly, even for known words, hybrid search leads
to a significant improvement (get 22.0% for FOM and
16.7% for THP) compared to using word lattices only.

6.3 Effect of Node Posterior

In Section 4.2, we have shown that phrase posteriors can
be computed from posterior lattices if they include both
arc and node posteriors (Eq. 4). However, posterior rep-
resentations of lattices found in literature only include
word (arc) posteriors, and some posterior-based systems
simply ignore the node-posterior term, e.g. (Chelba and
Acero, 2005). In Table 4, we evaluate the impact on ac-
curacy when this term is ignored. (In this experiment,
we bypassed the index-lookup step, thus the numbers are
slightly different from Table 3.)

We found that for word-level search, the effect of node
posterior compensation is indeed neglectable. However,
for phonetic search it is not: We observe a 4% relative
FOM loss.

6.4 Index Lookup and Linear Search

Section 5 introduced a two-stage search approach using
anM -gram based indexing scheme. How much accuracy
is lost from incorrectly eliminating correct hits in the first
(index-based) stage? Table 5 compares three setups. The
first column shows results for linear search only: no index
lookup used at all, a complete linear search is performed
on all lattices. This search is optimal but does not scale
up to large database. The second column shows index
lookup only. Segments are ranked by the approximate
M -gram based ETF score obtained from the index. The
third column shows the two-stage results.

The index-based two-stage search is indeed very close
to a full linear search (average FOM loss of 1.2% and
THP loss of 0.2% points). A two-stage search takes under
two seconds and is mostly independent of the database
size. In other work, we have applied this technique suc-
cessfully to search a database of nearly 200 hours.

6.5 The System

Fig. 2 shows a screenshot of a research prototype for a
search-enabled audio notebook. In addition to a note-
taking area (bottom) and recording controls, it includes
a rich audio browser showing speaker segmentation and
automatically identified speaker labels (both not scope of
this paper). Results of keyword searches are shown as
color highlights, which are clickable to start playback at
that position.

7 Conclusion

In this paper, we have presented a system for searching
recordings of conversational speech, particularly meet-

Table 4: Effect of ignoring the node-posterior term in
phrase-posterior computation (shown for ICSI meeting
set only).

FOM word phoneme
exact computation 72.1 82.3
node posterior ignored 72.0 79.2
relative change [%] -0.1 -3.8
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Table 5: Comparing the effect of lattice indexing. Shown
is unindexed “linear search,” index lookup only (seg-
ments selected via the index without subsequent linear
search), and the combination of both.

test set linear index two-
search lookup stage

Figure Of Merit (FOM) [%]
ICSI meetings 88.6 86.4 88.2
SWBD eval2000 88.7 86.5 87.3
SWBD rt03s 87.3 85.1 84.2
interviews (phone) 83.8 81.2 83.3
interviews (lapel) 78.3 76.1 77.7
average 85.3 83.1 84.1

Top Hit Precision (THP) [%]
ICSI meetings 78.8 70.7 78.7
SWBD eval2000 78.0 71.4 77.9
SWBD rt03s 71.9 65.7 71.7
interviews (phone) 73.8 64.6 73.1
interviews (lapel) 70.8 65.9 71.2
average 74.7 67.7 74.5

ings and telephone conversations. We identified user re-
quirements as accurate ranking of phrase matches, do-
main independence, and reasonable response time. We
have addressed these by hybrid word/phoneme lattice
search and a supporting indexing scheme. Unlike many
other spoken-document retrieval systems, we search
recognition alternates instead of only speech recognition
transcripts. This yields a significant improvement of key-
word spotting accuracy. We have combined word-level
search with phonetic search, which not only enables the
system to handle the open-vocabulary problem, but also
substantially improves in-vocabulary accuracy. We have
proposed a posterior-lattice representation that allows for
unified word and phoneme indexing and search. To speed
up the search process, we proposedM -gram based lat-
tice indexing, which extends our open vocabulary search
ability for large collection of audio. Tested on five dif-
ferent recording sets including meetings, conversations,
and interviews, a search accuracy (FOM) of 84% has
been achieved – dramatically better than searching speech
recognition transcripts (under 40%).

Figure 2: Screenshot of our research prototype of a
search-enabled audio notebook.
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Abstract

Applying the noisy channel model to
search query spelling correction requires
an error model and a language model.
Typically, the error model relies on a
weighted string edit distance measure.
The weights can be learned from pairs
of misspelled words and their corrections.
This paper investigates using the Expec-
tation Maximization algorithm to learn
edit distance weights directly from search
query logs, without relying on a corpus of
paired words.

1 Introduction
There are several sources of error in written lan-
guage. Typing errors can be divided into two
groups (Kucich, 1992): typographic errors and cog-
nitive errors. Typographic errors are the result of
mistyped keys and can be described in terms of key-
board key proximity. Cognitive errors on the other
hand, are caused by a misunderstanding of the cor-
rect spelling of a word. They include phonetic er-
rors, in which similar sounding letter sequences are
substituted for the correct sequence; and homonym
errors, in which a word is substituted for another
word with the same pronunciation but a different
meaning. Spelling errors can also be grouped into
errors that result in another valid word, such as
homonym errors, versus those errors that result in
a non-word. Generally non-word errors are easier to
detect and correct. In addition to its traditional use
in word processing, spelling correction also has ap-
plications in optical character recognition and hand-

writing recognition. Spelling errors in this context
are caused by inaccurate character recognition.

Spelling correction is a well developed research
problem in the field of computational linguistics.
The first dictionary based approach to spelling cor-
rection (Damerau, 1964) considers all words that
can not be found in a dictionary as misspellings. The
correct word is found by making a single edit op-
eration (insertion, deletion, or substitution) on the
misspelled word and re-checking the dictionary for
the inclusion of the altered version. This method
works well for correcting most typos, but often mis-
spelled words are off by more than one character.
A method of quantifying string-to-string distance is
introduced in (Wagner and Fischer, 1974), allowing
the consideration of multiple edit operations when
determining candidate corrections. Each edit op-
eration is assigned a fixed cost. Edit operations,
though, can be more accurately modelled by consid-
ering every possible insertion, deletion, and substitu-
tion operation individually instead of having a fixed
cost for each operation. For example, the applica-
tion of probabilistic models to spelling correction is
explored in (Kernighan, Church, and Gale, 1990),
in which a confusion matrix describes the probabil-
ity of each letter being substituted for another. The
Bayesian noisy channel model is used to determine
the the error probabilities, with the simplifying as-
sumption that each word has at most one spelling
error. In (Ristad and Yianilos, 1997), a probabilistic
model of edit distance is learned from pairs of mis-
spelled words and their corrections. This extends
Kernighan’s approach by allowing multiple edit op-
erations rather than assuming a single edit. The
probability of edit operations is learned from a cor-
pus of pairs of misspelled words and corrections.
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Search query correction is an interesting branch
of spelling correction. Due to the wide variety of
search queries, dictionary based spelling correction
is not adequate for correcting search terms. The con-
cept of using query logs to aid in spelling correction
is explored in (Brill and Cucerzan, 2004). It is noted
that using traditional Levenshtein distance as an er-
ror model can lead to inappropriate corrections, so a
weighted distance measure is used instead.

This paper focuses on deriving a language model
and probabilistic error model directly from search
query logs without requiring a corpus of misspelled
words paired with their corrections. The task of
search query spelling correction is analyzed, and
an implementation of the Expectation Maximization
(EM) algorithm to learn an error model is described,
with reference to similar approaches. In Section 2,
the make-up of search queries is analyzed in the
context of spelling correction. Section 3 details the
noisy channel model spelling correction framework
and describes how the EM algorithm is applied to
learn an error model. The learned error model is ex-
plored in Section 4. The derived model is tested in
Section 5 by comparing its performance in the single
word spelling correction task to popular spell check-
ing applications. Finally, conclusions and directions
for future work are presented in Section 6.

2 Analysis of Search Queries
Search queries present a difficult challenge for tradi-
tional spelling correction algorithms. As mentioned
above, dictionary-based approaches cannot be used
since many search terms include words and names
that are not well established in the language. Fur-
thermore, search queries typically consist of a few
key words rather than grammatically correct sen-
tences, making grammar-based approaches inappro-
priate. In addition, spelling errors are more com-
mon in search queries than in regular written text,
as approximately 10-15 % of search queries contain
a misspelling (Brill and Cucerzan, 2004). The suit-
ability of query logs as a corpus for spelling correc-
tion is investigated in this section.

The metaspy website1 displays search queries
submitted to the popular metacrawler search engine
in real time. Over a period of five days in the last

1www.metaspy.com

Figure 1: Query Length Frequency Histogram

week of March 2005, 580,000 queries were ex-
tracted from the site. Several interesting observa-
tions can be made from the analysis of the search
queries.

2.1 Query Length
On average, each query consisted of approximately
3 words. Figure 1 shows the distribution of query
lengths.

As illustrated in Figure 1, over 80% of queries
include more than one search term. Thus word n-
gram probabilities provide useful statistical knowl-
edge that can be exploited to improve spelling cor-
rection. Although word cooccurrences are not used
for spelling correction in this paper, the possibilities
for n-gram analysis are explored in Section 3.2. The
longer queries (>5 terms) often contain quotations,
song lyric excerpts or very specific product names.

The frequency of words in written text has been
shown to follow Zipf’s law. That is, if the words are
ordered in terms of frequency, the relationship be-
tween frequency and rank can be approximated with
the following equation.

F ≈
C

rm
(1)

where F is the frequency, r is rank, C is a constant,
and m is an exponent close to 1. In logarithmic
form,

log(F ) = log(C)−m ∗ log(r) (2)

The frequency and rank of search query tokens
approximately follow the same distribution, with
some deviation at the high and low ends. Figure 2
shows the frequency distribution for dictionary and
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Figure 2: Token Frequency vs. Rank for Dictionary and Non-Dictionary Words

non-dictionary search query tokens. The word list
available on most Unix systems /usr/dict/words is a
comprehensive list that contains 96,274 words, in-
cluding names, plurals, verbs in several tenses, and
colloquialisms. Following tokenization of the query
logs, the tokens were divided into dictionary and
non-dictionary words. The frequency-rank relation-
ship is similar for both types of words, except that
nearly all of the 100 most frequent query tokens are
dictionary words. The exponent m, the (negative)
slope of the linear best fit lines shown in Figure 2,
was determined to be 1.11 for dictionary words, and
1.14 for non-dictionary words. As in (Baeza-Yates,
2005), the exponent is slightly higher than 1, partly
due to the less frequent use of function words such
as the in search queries relative to formal writing.

Although the majority of search tokens can be
found in a standard dictionary, a large proportion of
the less common queries are not dictionary words.
In fact, 73% of unique word types were not found
in the dictionary. Taking token frequency into con-
sideration, these non-dictionary tokens account for
approximately 20% of query search words, includ-
ing correctly and incorrectly spelled words. How-
ever, the majority of the non-dictionary tokens are
correctly spelled words, illustrating the unsuitabil-
ity of traditional dictionary based spelling correction
for search query correction.

What are these non-dictionary words? An anal-
ysis of the top two hundred non-dictionary words
in the query logs allows categorization into a few
main groups. The percentage of non-dictionary
words belonging to each category, and some exam-
ples from each category are shown in Table 1. The
first category, e-speak, includes words and abbre-

Word Class Percent Examples
1 E-speak &

new words
45% pics, html, multiplayer,

clipart, mpeg, midi
2 Companies

& Products
18% google, xbox, ebay,

hotmail , playstation
3 Proper

Names
16% (los) angeles, ratzinger,

ilios, mallorca
4 Medical

terms
5% ERBS, mesothelioma,

neuropsychological,
alzheimers

5 Misspellings 9% womens, realestate
6 Foreign

Words
6% lettre, para

Table 1: Classes of Non-Dictionary Words

viations that are commonly used online, but have
not crossed over into common language. This cat-
egory includes words such as pics, multiplayer, and
clipart. The second category is closely related to
the first, and includes company and product names,
such as google, xbox, and hotmail. Many of these
terms refer to online entities or computer games.
Incorrectly spelled words are another main class
of non-dictionary tokens. Among the top 20 non-
dictionary tokens are words with missing punctua-
tion, such as womens and childrens, or with miss-
ing spaces, such as realestate. Names of people
and locations are also common search queries, as
well as medical terminology. Finally, foreign words
make up another class of words that are not found
in an (English) dictionary. The 20 highest frequency
non-dictionary tokens from the extracted query logs
are pics, html, multiplayer, googletestad, google,
xbox, childrens, ebay, angeles, hotmail, womens,
ERBS, clipart, playstation, ratzinger, Ilios, lettre,
realestate, tech and mallorca.

957



3 Spelling Correction for Search Queries
The spelling correction problem can be considered
in terms of the noisy channel model, which consid-
ers the misspelled word v to be a corrupted version
of the correctly spelled word w.

P (w|v) =
P (v|w)P (w)

P (v)
(3)

Finding the best candidate correction W involves
maximizing the above probability.

W = argmaxwP (v|w)P (w) (4)

The denominator P (v) in Equation 3 is the same
for all w and can be eliminated from the calculation.
P (v|w) models the errors that corrupt string w into
string v, and P (w) is the language model, or prior
probability, of word w.

3.1 Error Model
Given two strings v and w, P (v|w) is the probability
that v is transmitted given that the desired word is
w. One method of describing the noise model is to
consider P (v|w) to be proportional to the number of
edit operations required to transform w into v. This
gives

P (v|w) ∝ ED(v, w) (5)

where ED(v, w) is the edit distance between v and
w.

The traditional edit distance calculation assigns a
fixed cost for each insertion, deletion, and substi-
tution operation. For example, each insertion and
deletion may be assigned a cost of 1, while substitu-
tions are assigned a cost of 1.5. The edit distance
calculation can be accomplished by dynamic pro-
gramming.

The error model can be improved if each edit op-
eration is considered separately, rather than assign-
ing a fixed cost to each operation. For example, the
substitution of the letter i for the letter e may be
much more likely than k for e. Thus if a string S1

differs from string S2 by one e → i substitution, it
should be considered more similar to S2 than a string
S3 that differs from S1 by an e → k substitution.

Generating an accurate error model that consid-
ers each edit operation individually requires learn-
ing edit distance weights. As described in (Ristad

and Yianilos, 1997), character-to-character edit dis-
tance costs ED(e) can be related to edit probability
P (e) by means of the equation:

ED(e) = − log[P (e)] (6)

where e is an edit operation consisting of a sub-
stitution of one alphanumeric character for another
(c1 → c2), an insertion ( → c1), or a deletion
(c1 → ).

Thus higher probability edits will have lower edit
distances, and the string to string edit distance cal-
culation proceeds in the same way as the tradi-
tional calculation. This convenient representation
allows whole string-to-string edit probability to be
expressed in terms of the edit distance of the edit
sequence [e1...en]:

P (w|v) = ΠP (ei)

= P (e1) ∗ P (e2) ∗ ... ∗ P (en) (7)

Taking the log of both sides gives

log[P (w|v)] = log[P (e1)] + log[P (e2)]

+ ... + log[P (en)] (8)

Finally, by combining 6 and 8 we can relate the
probability of misspelling a string w as v to string-
to-string edit distance.

log[P (w|v)] = −ED(w, v) (9)

The edit probabilities can be estimated using the
expectation maximization (EM) algorithm as de-
scribed in Section 3.3.

3.2 Language Model
Along with the error model, a language model is
used to determine the most likely correction for ev-
ery input query. Often, spelling correction programs
use N-gram language models that use nearby words
to help determine the most probable correction. For
example, it is noted in (Brill and Cucerzan, 2004)
that employing a trigram language model can sub-
stantially improve performance relative to a unigram
model. However, if search query logs are not very
large, bigram or trigram data may be too sparse to
be helpful. Nevertheless, a word unigram model can
be used for training the error model. The unigram

958



model is determined by tokenizing the query logs
and determining the frequency of each token. The
language model P (w) is the frequency of the word
C(w) divided by the total number of tokens N in the
query log:

P (w) =
C(w)

N
(10)

Add-One smoothing is used to account for words not
present in query logs.

3.3 Determining Edit Probabilities with
Expectation Maximization

The EM algorithm is used to determine the parame-
ters of the probability distribution for a given a set of
data. It can be considered to be a soft-clustering al-
gorithm: given several data points, the task is to find
the cluster parameters which best represent the data.
The EM algorithm is applied iteratively to each data
point in a two-step process; the expectation step de-
termines the degree to which data agrees with each
cluster/hypothesis, and the maximization step up-
dates the parameters to reflect the inclusion of the
new data.

Prior to running the EM algorithm, the edit dis-
tance table is seeded with initial values. The ini-
tialization stage assigns high probability (low edit
distance) to characters being typed correctly, and
a lower probability for character substitutions. For
each character l, substitution distance is equally dis-
tributed over all other characters and the deletion
operation (l → ). Specifically the initial prob-
ability for a character match was set to 90%, and
the remaining 10% was equally distributed over the
other 26 possible substitutions. Essentially, the first
edit distance calculated in the EM algorithm will be
equivalent to the fixed-weight Levenshtein distance.
After this preprocessing stage, the edit probability
matrix is iteratively improved with the E-Step and
M-Step described below. The operation of the EM
algorithm is illustrated in Figure 3.

For each query token, possible corrections are
harvested from the query word list. The entire word
list is searched, and any word within a threshold
edit distance is considered as a candidate. Since the
query logs can be quite large, determining the ex-
act weighted edit distance between the input query
and each logged query is quite computationally ex-
pensive. Instead, the candidate queries are first nar-

Figure 3: The EM process

rowed down using a fast approximate string match-
ing algorithm (Wu and Manber, 1990) to determine
all candidates within k unweighted edit operations.
Then, the candidate queries that are within a second
tighter threshold T, based on weighted edit distance,
are kept.

Candidates(v) = {wi|ED(wi, v) < T}

Generally several words in the query logs will
meet the above criteria. The threshold T is chosen
to ensure the inclusion of all reasonable corrections,
while maintaining a manageable computation time.
If T were infinite, every query log token would need
to be considered, taking too much time. On the other
hand, if T is too small, some corrections may not be
considered. In practice, K was set to 3 unweighted
edits, and T was set as a constant proportion of word
length.

The expectation of each candidate correction is
the probability that the word wi was desired given
that the query was v:

P (wi|v) =
P (v|wi)P (wi)

P (v)
(11)

where P (v|w) and P (w) are determined using the
error and language models described in Equations
(9) and (10).

If the value of T is set high enough, it can be
assumed that the correct word w is within the set
of candidates. So, the sum of probabilities over all
candidates is normalized to P (v) in accordance with
Bayes Rule of Total Probability.

P (v) = ΣjP (v|wj)P (wj) (12)
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Correction Error
Model

Language
Model

Total
Proba-
bility

Normal-
ized

equipment 0.0014 0.00078 1.1e-6 0.77
equpment 0.64 5.0e-7 3.4e-7 0.23
equpiment 0.0005 5.0e-7 1.0e-9 0.0005

Table 2: Candidate Corrections for equpment

This gives us the following formula for the expecta-
tion value

P (wi|v) =
P (v|wi)P (wi)

ΣjP (v|wj)P (wj)
(13)

The E-step is used to generate candidate correc-
tions for input query tokens. For example, input
query ”equpment” returns the candidate corrections
and their probabilities shown in Table 2.

Note that several incorrectly spelled words, in-
cluding ”equpment” itself, are given as candidate
corrections. However, the language model derived
from the query logs assigns a low probability to
the incorrect candidates. In the case of a correctly
spelled query, the most likely candidate correction
is the word itself. However, occasionally there is a
correctly spelled but infrequent word within a small
edit distance of another more common word. In this
case, the language model will bias the correction
probability in favor of an incorrect edit. Neverthe-
less, overall these cases do not seem to cause a sig-
nificant impact on the error model except in the case
of plural nouns as discussed in Section 4.

The maximization step updates the edit distance
probabilities and edit distance table to reflect the
query considered in the E-Step. For each can-
didate correction, the required edits are added to
the edit frequency table, weighted by the proba-
bility of the correction. Then, the probability of
an edit for each character is normalized to 1 and
the edit probabilities are stored in a table. Finally,
Equation 6 is used to generate the edit probabil-
ity table. For example, for the input query ”equp-
ment” in response to the first candidate correction
(equpment → equipment), the following substitu-
tion frequencies will each be incremented by 0.77:
e → e, q → q, u → u, i → , p → p,m → m, e →
e, n → n, t → t. The (i → ) edit represents dele-
tion of the letter i.

Letter Subs Letter Subs
a e qo n fkb
b grnw o a ei
c ksm p nfrm
d ds nk q glk
e ao i r sdm
f btpj s mdn
g o ks t yir
h rab u rio
i aue v awcm
j blhm w prgk
k vots x gtms
l r is y ioaje
m nkvs z skmt

Table 3: Most Common Substitutions

4 The Learned Error Model

Approximately 580,000 queries were extracted from
the metaspy site over a period of 5 days. After gener-
ating a language model by analyzing token frequen-
cies, the EM algorithm was run on a subset of the
queries to find the edit probability matrix.

After 15,000 iterations, several patterns can be
observed in the edit distance table. The most com-
mon edit operations are shown in Table 3. As ex-
pected, vowels are most commonly substituted for
other vowels. As can be seen in the table, vowel-
to-vowel edits are more probable than vowel-to-
consonant transitions. The letter e is most com-
monly mistyped as a, o, and i; the letter i is most
often mistyped as a, u, and e. For the most part,
vowel substitutions can be considered to be cogni-
tive errors (except o → i may be a cognitive error or
typographic error). The effect of keyboard key prox-
imity is also evident; b is often typed as g; d as s; m

as n; and so on. Other errors seem to be a result of
phonetic similarity; c is misspelled as k and s; q as g

and k; and v as w. In general, the edit probabilities
roughly match those derived using a corpus of word
pairs in (Kernighan, Church, and Gale, 1990).

The insertion probabilities for each letter are
shown in Figure 4. Equation 6 is used to convert the
edit distances to probabilities. Words in the plural
form cause problems for the algorithm, as is illus-
trated by the high probability of s insertion in Fig-
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Figure 4: Letter Insertion Probabilities

ure 4. That is because high frequency query words
often appear in both singular and plural form. Every
time the singular form is encountered, the plural is
considered as a viable candidate correction, and the
s insertion probability is increased. Complementar-
ily, every time the plural form is seen, the singular
form is considered, increasing the s deletion proba-
bility. Indeed, as can be seen in Table 3, deletion is
the highest probability operation for the letter s.

5 Testing
To test the accuracy of the error model, the well-
known Unix based spelling correction programs Is-
pell2 and Aspell3 spell checking programs were used
for comparison. Ispell generates candidate cor-
rections by considering all words within 1 edit of
the misspelled word. Aspell uses the metaphone
algorithm (Philips, 1990), which divides English
words into phonetic segments, and generates al-
ternate spellings by substituting similar sounding
phones. The test data set4 consists of 547 mis-
spelled words paired with their best correction as de-
termined by a human expert.Compound words were
removed from the test set, leaving 508 misspellings.
Several of the misspellings differ from the correction
by multiple edit operations. Only the error model
learned by the EM algorithm on the search engine
queries was used; instead of using the probabilis-
tic language model derived from the query logs and
used for training, the word list in /usr/dict/words was
used, with equal probability assigned to each word.

2International Ispell Version 3.1.20.
http://www.lasr.cs.ucla.edu/geoff/ispell.html

3Kevin Atkinson. Aspell Version 0.29.
http://aspell.sourceforge.net/

4Kevin Atkinson. http://aspell.net/test/

Spell
Checker

ISPELL
3.1.20

ASPELL
0.29

EMBED Google

Total
Tokens

508 508 508 508

Total
Found

272
(53.5%)

480
(94.5%)

402
(79.1%)

-

Top 1
(%)

197
(38.8%)

302
(59.5%)

211
(41.5%)

291
(57%)

Top 5
(%)

260
(51.2%)

435
(85.6%)

331
(65.2%)

-

Top 25
(%)

272
(53.5%)

478
(94.1%)

386
(76.0%)

-

Table 4: Spelling Correction Accuracy

Since the test data is composed of single words of
varying prevalence, a language model does not sig-
nificantly aid correction. In practice, the language
model would improve performance.

Table 4 compares the performance of the As-
pell and Ispell spell checkers with the Expecta-
tion Maximization Based Edit Distance (EMBED)
spelling correction system described in this paper.
The percentages refer to the percentage of instances
in which the correct correction was within the top
N suggestions given by the algorithm. If only the
top recommended correction is considered, EMBED
fares better than Ispell, but worse than Aspell. For
the top 5 and 25 corrections, the rankings of the al-
gorithms are the same.

As Table 4 shows, in several cases the EMBED al-
gorithm did not find the correction within the top 25
suggestions. Typically, the misspellings that could
not be found had large edit distances from their
corrections. For example, suggestions for the mis-
spelling ”extions” included ”actions” and ”motions”
but not the desired correction ”extensions”. In gen-
eral, by using a phonetic model to compress English
words, Aspell can find misspellings that have larger
edit distances from their correction. However, it re-
lies on a language specific pronunciation model that
is manually derived. EM based spelling correction,
on the other hand, can be learned from a unlabeled
corpus and can be applied to other languages with-
out modification. Although the test data set was
comprised of misspelled dictionary words for the
purposes of comparison, the spelling correction sys-
tem described here can handle a continuously evolv-
ing vocabulary. Also, the approach described here
can be used to train more general error models.
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Comparison to online spelling suggestion systems
such as provided by the Google search engine is dif-
ficult since search results are returned for nearly ev-
ery query on account of the large lexicon. Conse-
quently, many suggestions provided by Google are
reasonable, but do not correspond to the golden stan-
dard in the test data. For example, ”cimplicity” and
”hallo” are not considered misspellings since several
online companies and products contain these terms,
and ”verison” is corrected to ”verizon” rather than
”version.” While Google returns 291 corrections in
agreement with the data set (57%), another 44 were
judged to be acceptable corrections, giving an accu-
racy of 66%. In addition, several of the apparently
misspelled test strings are new words, proper names,
or commonly accepted alternate spellings that are
common on the web, so no suggestions were given.
Taking these words into account would further im-
prove the accuracy rating.

6 Conclusions and Future Work

The EM algorithm is able to learn an accurate error
model without relying on a corpus of paired strings.
The edit probabilities determined using the EM al-
gorithm are similar to error models previously gen-
erated using other approaches. In addition, the gen-
erated error model can be used to find the correct
spelling of misspelled words as described in Section
5. However, there are several improvements that
can be made to improve spelling error correction.
One step is increasing the size of the corpus. While
the corpus included nearly 580,000 queries, sev-
eral thousand of those queries were correctly spelled
words without any misspelled versions in the corpus,
or misspelled words without the correctly spelled
version available. This results in the misidentifi-
cation of candidate spelling corrections. Another
improvement that can improve candidate correction
identification is the use of better language models,
as discussed in Section 3.2. Since a large propor-
tion of queries contain more than one word, word
n-gram statistics can be used to provide context sen-
sitive spelling correction. Finally, a large proportion
of typos involve letter transpositions, and other oper-
ations that can not be captured by a single-letter sub-
stitution model. In (Brill and Moore, 2000), a more
general model allowing generic string to string ed-

its is used, allowing many-to-one and one-to-many
character substitution edits. Pronunciation modeling
in (Toutanova and Moore, 2002) further improves
spelling correction performance.
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Abstract

Query expansion techniques generally se-
lect new query terms from a set of top
ranked documents. Although a user’s
manual judgment of those documents
would much help to select good expansion
terms, it is difficult to get enough feedback
from users in practical situations. In this
paper we propose a query expansion tech-
nique which performs well even if a user
notifies just a relevant document and a
non-relevant document. In order to tackle
this specific condition, we introduce two
refinements to a well-known query expan-
sion technique. One is application of a
transductive learning technique in order to
increase relevant documents. The other is
a modified parameter estimation method
which laps the predictions by multiple
learning trials and try to differentiate the
importance of candidate terms for expan-
sion in relevant documents. Experimen-
tal results show that our technique outper-
forms some traditional query expansion
methods in several evaluation measures.

1 Introduction

Query expansion is a simple but very useful tech-
nique to improve search performance by adding
some terms to an initial query. While many query
expansion techniques have been proposed so far, a
standard method of performing is to use relevance

information from a user (Ruthven, 2003). If we
can use more relevant documents in query expan-
sion, the likelihood of selecting query terms achiev-
ing high search improvement increases. However it
is impractical to expect enough relevance informa-
tion. Some researchers said that a user usually noti-
fies few relevance feedback or nothing (Dumais and
et al., 2003).

In this paper we investigate the potential perfor-
mance of query expansion under the condition that
we can utilize little relevance information, espe-
cially we only know a relevant document and a non-
relevant document. To overcome the lack of rele-
vance information, we tentatively increase the num-
ber of relevant documents by a machine learning
technique calledTransductive Learning. Compared
with ordinal inductive learning approach, this learn-
ing technique works even if there is few training ex-
amples. In our case, we can use many documents
in a hit-list, however we know the relevancy of few
documents. When applying query expansion, we use
those increased documents as if they were true rel-
evant ones. When applying the learning, there oc-
curs some difficult problems of parameter settings.
We also try to provide a reasonable resolution for
the problems and show the effectiveness of our pro-
posed method in experiments.

The point of our query expansion method is that
we focus on the availability of relevance information
in practical situations. There are several researches
which deal with this problem. Pseudo relevance
feedback which assumes topn documents as rele-
vant ones is one example. This method is simple and
relatively effective if a search engine returns a hit-
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list which contains a certain number of relative doc-
uments in the upper part. However, unless this as-
sumption holds, it usually gives a worse ranking than
the initial search. Thus several researchers propose
some specific procedure to make pseudo feedback
be effective (Yu and et al, 2003; Lam-Adesina and
Jones, 2001). In another way, Onoda (Onoda et al.,
2004) tried to apply one-class SVM (Support Vec-
tor Machine) to relevance feedback. Their purpose
is to improve search performance by using only non-
relevant documents. Though their motivation is sim-
ilar to ours in terms of applying a machine learning
method to complement the lack of relevance infor-
mation, the assumption is somewhat different. Our
assumption is to utilizes manual but the minimum
relevance judgment.

Transductive leaning has already been applied in
the field of image retrieval (He and et al., 2004). In
this research, they proposed a transductive method
called the manifold-ranking algorithm and showed
its effectiveness by comparing with active learn-
ing based Support Vector Machine. However, their
setting of relevance judgment is not different from
many other traditional researches. They fix the total
number of images that are marked by a user to 20.
As we have already claimed, this setting is not prac-
tical because most users feel that 20 is too much for
judgment. We think none of research has not yet an-
swered the question. For relevance judgment, most
of the researches have adopted either of the follow-
ing settings. One is the setting of “Enough relevant
documents are available”, and the other is “No rele-
vant document is available”. In contrast to them, we
adopt the setting of “Only one relevant document is
available”. Our aim is to achieve performance im-
provement with the minimum effort of judging rele-
vancy of documents.

The reminder of this paper is structured as fol-
lows. Section 2 describes two fundamental tech-
niques for our query expansion method. Section 3
explains a technique to complement the smallness
of manual relevance judgment. Section 4 introduces
a whole procedure of our query expansion method
step by step. Section 5 shows empirical evidence
of the effectiveness of our method compared with
two traditional query expansion methods. Section 6
investigates the experimental results more in detail.
Finally, Section 7 summarizes our findings.

2 Basic Methods

2.1 Query Expansion

So far, many query expansion techniques have been
proposed. While some techniques focus on the
domain specific search which prepares expansion
terms in advance using some domain specific train-
ing documents (Flake and et al, 2002; Oyama and et
al, 2001), most of techniques are based on relevance
feedback which is given automatically or manually.

In this technique, expansion terms are selected
from relevant documents by a scoring function. The
Robertson’swpq method (Ruthven, 2003) is often
used as such a scoring function in many researches
(Yu and et al, 2003; Lam-Adesina and Jones, 2001).
We also use it as our basic scoring function. It cal-
culates the score of each term by the following for-
mula.

wpqt =
(

rt

R
− nt − rt

N − R

)
∗log

rt/(R − rt)

(nt − rt)/(N − nt − R + rt)
(1)

wherert is the number of seen relevant documents
containing termt. nt is the number of documents
containingt. R is the number of seen relevant doc-
uments for a query.N is the number of documents
in the collection. The second term of this formula
is called the Robertson/Spark Jones weight (Robert-
son, 1990) which is the core of the term weighting
function in the Okapi system (Robertson, 1997).

This formula is originated in the following for-
mula.

wpqt = (pt − qt) log
pt(1− qt)
qt(1− pt)

(2)

wherept is the probability that a termt appears in
relevant documents.qt is the probability that a term
t appears in non-relevant documents. We can easily
notice that it is very important how the two prob-
ability of pt and qt should be estimated. The first
formula estimatespt with rt

R andqt with Nt−Rt
N−R . For

the good estimation ofpt andqt, plenty of relevant
document is necessary. Although pseudo feedback
which automatically assumes topn documents as
relevant is one method and is often used, its perfor-
mance heavily depends on the quality of an initial
search. As we show later, pseudo feedback has lim-
ited performance.

We here consider a query expansion technique
which uses manual feedback. It is no wonder
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manual feedback shows excellent and stable perfor-
mance if enough relevant documents are available,
hence the challenge is how it keeps high perfor-
mance with less amount of manual relevance judg-
ment. In particular, we restrict the manual judgment
to the minimum amount, namely onlya relevant
document and a non-relevant document. In this
assumption, the problem is how to find more rele-
vant documents based on a relevant document and a
non-relevant document. We use transductive learn-
ing technique which is suitable for the learning prob-
lem where there is small training examples.

2.2 Transductive Learning

Transductive learning is a machine learning tech-
nique based on the transduction which directly de-
rives the classification labels of test data without
making any approximating function from training
data (Vapnik, 1998). Because it does not need to
make approximating function, it works well even if
the number of training data is small.

The learning task is defined on a data setX
of n points. X consists of training data set
L = (x⃗1, x⃗2, ..., x⃗l) and test data setU =
(x⃗l+1, x⃗l+2, ..., x⃗l+u); typically l ≪ u. The purpose
of the learning is to assign a label to each data point
in U under the condition that the label of each data
point inL are given.

Recently, transductive learning or semi-
supervised learning is becoming an attractive
subject in the machine learning field. Several
algorithms have been proposed so far (Joachims,
1999; Zhu and et al., 2003; Blum and et al., 2004)
and they show the advantage of this approach in
various learning tasks. In order to apply transductive
learning to our query expansion, we select an algo-
rithm called “Spectral Graph Transducer(SGT)“
(Joachims, 2003), which is one of the state of the art
and the best transductive learning algorithms. SGT
formalizes the problem of assigning labels toU with
an optimization problem of the constrained ratiocut.
By solving the relaxed problem, it produces an
approximation to the original solution.

When applying SGT to query expansion,X cor-
responds to a set of topn ranked documents in a
hit-list. X does not corresponds to a whole docu-
ment collection because the number of documents

in a collection is too huge1 for any learning sys-
tem to process.L corresponds to two documents
with manual judgments, a relevant document and
a non-relevant document. Furthermore,U corre-
sponds to the documents ofX ∩ L whose rele-
vancy is unknown. SGT is used to produce the rel-
evancy of documents inU . SGT actually assigns
values aroundγ+ − θ for documents possibly be-
ing relevant andγ− − θ for documents possibly be-

ing non-relevant.γ+ = +
√

1−fp

fp
, γ− = −

√
fp

1−fp
,

θ = 1
2(γ+ + γ−), andfp is the fraction of relevant

documents inX. We cannot know the true value of
fp in advance, thus we have to estimate its approxi-
mation value before applying SGT.

According to Joachims, parameterk (the number
of k-nearest points of a data⃗x) andd (the number
of eigen values to ...) give large influence to SGT’s
learning performance. Of course those two parame-
ters should be set carefully. However, besides them,
fp is much more important for our task because it
controls the learning performance. Since extremely
small L (actually |L| = 2 is our setting) give no
information to estimate the true value offp, we do
not strain to estimate its single approximation value
but propose a new method to utilize the results of
learning with some promisingfp. We describe the
method in the next section.

3 Parameter Estimations based on
Multiple SGT Predictions

3.1 Sampling for Fraction of Positive Examples

SGT prepares 2 estimation methods to setfp au-
tomatically. One is to estimate from the fraction
of positive examples in training examples. This
method is not suitable for our task becausefp is
always fixed to 0.5 by this method if the number
of training examples changes despite the number of
relevant documents is small in many practical situa-
tions. The other is to estimate with a heuristic that
the difference between a setting offp and the frac-
tion of positive examples actually assigned by SGT
should be as small as possible. The procedure pro-
vided by SGT starts fromfp = 0.5 and the nextfp is
set to the fraction of documents assigned as relevant
in the previous SGT trial. It repeats untilfp changes

1Normally it is more than ten thousand.
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Input
Ntr // the number of training examples

Output
S // a set of sampling points

piv = ln(Ntr); // sampling interval
nsp = 0; // the number of sampling points
for(i = piv; i ≤ Ntr − 1; i+ = piv){

addi to ;
nsp++;
if(nsp == 10){ exit; }

}

Figure 1: Pseudo code of sampling procedure forfp

five times or the difference converges less than 0.01.
This method is neither works well because the con-
vergence is not guaranteed at all.

Presetting offp is primarily very difficult problem
and consequently we take another approach which
laps the predictions of multiple SGT trials with some
sampledfp instead of setting a singlefp. This ap-
proach leads to represent a relevant document by not
a binary value but a real value between 0 and 1. The
sampling procedure forfp is illustrated in Figure 1.
In this procedure, sampling interval changes accord-
ing to the number of training examples. In our pre-
liminary test, the number of sampling points should
be around 10. However this number is adhoc one,
thus we may need another value for another corpus.

3.2 Modified estimations forpt and qt

Once we get a set of sampling pointsS = {f i
p :

i = 1 ∼ 10}, we run SGT with eachf i
p and laps

each resultant of prediction to calculatept andqt as
follows.

pt =
∑

i r
i
t∑

i Ri
(3)

qt =
∑

i nt − ri
t∑

i N −Ri
(4)

Here, Ri is the number of documents which SGT
predicts as relevant withith value off i

p, andri
t is

the number of documents inRi where a termt ap-
pears. In each trial, SGT predicts the relevancy of
documents by binary value of 1 (for relevant) and 0
(for non-relevant), yet by lapping multiple resultant
of predictions, the binary prediction value changes

to a real value which can represents the relevancy of
documents in more detail. The main merit of this
approach in comparison with fixingfp to a single
value, it can differentiate a value ofpt if Ntr is small.

4 Expansion Procedures

We here explain a whole procedure of our query ex-
pansion method step by step.

1. Initial Search: A retrieval starts by inputting a
query for a topic to an IR system.

2. Relevance Judgment for Documents in a
Hit-List : The IR system returns a hit-list for
the initial query. Then the hit-list is scanned
to check whether each document is relevant or
non-relevant in descending order of the rank-
ing. In our assumption, this reviewing pro-
cess terminates when a relevant document and
a non-relevant one are found.

3. Finding more relevant documents by trans-
ductive learning: Because only two judged
documents are too few to estimatept and qt

correctly, our query expansion tries to increase
the number of relevant documents for thewpq
formula using the SGT transductive learning al-
gorithm. As shown in Figure2, SGT assigns a
value of the possibility to be relevant for the
topic to each document with no relevance judg-
ment (documents under the dashed line in the
Fig) based on two judged documents (docu-
ments above the dashed line in the Figure).

1. Document     1

2. Document     0

3. Document     ?

4. Document     ?

              :

i.  Document     ?

              :

Manually

assigned

Assigned by

Transductive

 Learning

Labels

Hit list

“1” means a positive label

“0” means a negative label

“?” means an unknown label

Figure 2: A method to find tentative relevant docu-
ments
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4. Selecting terms to expand the initial query:
Our query expansion method calculates the
score of each term appearing in relevant docu-
ments (including documents judged as relevant
by SGT) usingwpq formula, and then selects
a certain number of expansion terms according
to the ranking of the score. Selected terms are
added to the initial query. Thus an expanded
query consists of the initial terms and added
terms.

5. The Next Search with an expanded query:
The expanded query is inputted to the IR sys-
tem and a new hit-list will be returned. One
cycle of query expansion finishes at this step.

In the above procedures, we naturally intro-
duced transductive learning into query expan-
sion as the effective way in order to automati-
cally find some relevant documents. Thus we
do not need to modify a basic query expan-
sion procedure and can fully utilize the poten-
tial power of the basic query expansion.

The computational cost of transductive learn-
ing is not so much. Actually transductive learn-
ing takes a few seconds to label 100 unla-
beled documents and query expansion with all
the labeled documents also takes a few sec-
onds. Thus our system can expand queries suf-
ficiently quick in practical applications.

5 Experiments

This section provides empirical evidence on how
our query expansion method can improve the per-
formance of information retrieval. We compare our
method with other traditional methods.

5.1 Environmental Settings

5.1.1 Data set

We use the TREC-8 data set (Voorhees and Har-
man, 1999) for our experiment. The document cor-
pus contains about 520,000 news articles. Each doc-
ument is preprocessed by removing stopwords and
stemming. We also use fifty topics (No.401-450)
and relevance judgments which are prepared for ad-
hoc task in the TREC-8. Queries for an initial search
are nouns extracted from thetitle tag in each topic.

5.1.2 Retrieval Models

We use two representative retrieval models which
are bases of the Okapi (Robertson, 1997) and
SMART systems. They showed highest perfor-
mance in the TREC-8 competition.

Okapi : The weight function in Okapi is BM25. It
calculates each document’s score by the follow-
ing formula.

score(d) =
∑
T∈Q

w(1) · (k1 + 1)tf(k3 + 1)qtf

(K + tf)(k3 + qtf)
(5)

w(1) = log
(rt + 0.5)/(R − rt + 0.5)

(nt − rt + 0.5)/(N − nt − R + rt + 0.5)
(6)

K = k1

(
(1 − b) + b

dl

avdl

)
(7)

where Q is a query containing termsT , tf
is the term’s frequency in a document,qtf is
the term’s frequency in a text from whichQ
was derived. rt and nt are described in sec-
tion 2. K is calculated by (7), wheredl and
avdl denote the document length and the av-
erage document length. In our experiments,
we setk1 = 1.2, k3 = 1000, b = 0.75, and
avdl = 135.6. Terms for query expansion are
ranked in decreasing order ofrt × w(1) for the
following Okapi’s retrieval tests without SGT
(Okapi manual and Okapi pseudo) to make
conditions the same as of TREC-8.

SMART : The SMART’s weighting function is as
follows2.

score(d) =∑
T∈Q

{1 + ln(1 + ln(tf))} ∗ log(
N + 1

df
) ∗ pivot (8)

pivot =
1

0.8 + 0.2 × dl
avdl

(9)

df is the term’s document frequency.tf , dl and
avdl are the same as Okapi. When doing rele-
vance feedback, a query vector is modified by
the following Rocchio’s method (with parame-
tersα = 3, β = 2, γ = 2).

Q⃗new = αQ⃗old+
β

|Drel|
∑
Drel

d⃗− γ

|Dnrel|
∑

Dnrel

d⃗ (10)

2In this paper, we use AT&T’s method (Singhal et al., 1999)
applied in TREC-8
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Table 1: Results of Initial Search
P10 P30 RPREC MAP R05P

Okapi ini 0.466 0.345 0.286 0.239 0.195
SMART ini 0.460 0.336 0.271 0.229 0.187

Drel and Dnrel are sets of seen relevant and
non-relevant documents respectively. Terms
for query expansion are ranked in decreasing
order of the above Rocchio’s formula.

Table 1 shows their initial search results of Okapi
(Okapi ini ) and SMART (SMART ini ). We adopt
five evaluation measures. Their meanings are as fol-
lows (Voorhees and Harman, 1999).

P10 : The precision after the first 10 documents are
retrieved.

P30 : The precision after the first 30 documents are
retrieved.

R-Prec : The precision after the first R documents
are retrieved, where R is the number of relevant
documents for the current topic.

MAP : Mean average precision (MAP) is the aver-
age precision for a single topic is the mean of
the precision obtained after each relevant doc-
ument is retrieved (using zero as the precision
for relevant documents that are not retrieved).

R05P : Recall at the rank where precision first dips
below 0.5 (after at least 10 documents have
been retrieved).

The performance of query expansion or relevance
feedback is usually evaluated on a residual collec-
tion where seen documents are removed. However
we compare our method with pseudo feedback based
ones, thus we do not use residual collection in the
following experiments.

5.1.3 Settings of Manual Feedback

For manual feedback, we set an assumption that
a user tries to find relevant and non-relevant doc-
uments within only top 10 documents in the result
of an initial search. If a topic has no relevant doc-
ument or no non-relevant document in the top 10
documents, we do not apply manual feedback, in-
stead we consider the result of the initial search for

Table 2: Results ofOkapi sgt (5 terms expanded)
P10 P30 RPREC MAP R05P

20 0.516 0.381 0.308 0.277 0.233
50 0.494 0.380 0.286 0.265 0.207
100 0.436 0.345 0.283 0.253 0.177

Table 3: Results ofOkapi sgt (10 terms expanded)
P10 P30 RPREC MAP R05P

20 0.508 0.383 0.301 0.271 0.216
50 0.520 0.387 0.294 0.273 0.208
100 0.494 0.365 0.283 0.261 0.190

Table 4: Results ofOkapi sgt (15 terms expanded)
P10 P30 RPREC MAP R05P

20 0.538 0.381 0.298 0.274 0.223
50 0.528 0.387 0.298 0.283 0.222
100 0.498 0.363 0.280 0.259 0.197

Table 5: Results ofOkapi sgt (20 terms expanded)
P10 P30 RPREC MAP R05P

20 0.546 0.387 0.307 0.289 0.235
50 0.520 0.385 0.299 0.282 0.228
100 0.498 0.369 0.272 0.255 0.188

such topics. There are 8 topics3 which we do not
apply manual feedback methods.

5.2 Basic Performance

Firstly, we evaluate the basic performance of our
query expansion method by changing the number
of training examples. Since our method is based on
Okapi model, we represent it asOkapi sgt (with pa-
rametersk = 0.5∗Ntr, d = 0.8∗Ntr. k is the num-
ber of nearest neighbors,d is the number of eigen
values to use andNtr is the number of training ex-
amples).

Table 2-5 shows five evaluation measures of
Okapi sgt when the number of expansion terms
changes. We test 20, 50 and 100 as the number of
training examples and 5, 10 15 and 20 for the num-
ber of expansion terms. As for the number of train-
ing examples, performance of 20 and 50 does not
differ so much in all the number of expansion terms.
However performance of 100 is clearly worse than
of 20 and 50. The number of expansion terms does
not effect so much in every evaluation measures. In
the following experiments, we compare the results
of Okapi sgtwhen the number of training examples
is 50 with other query expansion methods.

3Topic numbers are 409, 410, 424, 425, 431, 432, 437 and
450
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Table 6: Results of Manual Feedback Methods
(MAP)

5 10 15 20
Okapi sgt 0.265 0.273 0.274 0.282

Okapi man 0.210 0.189 0.172 0.169
SMART man 0.209 0.222 0.220 0.219

Table 7: Results of Manual Feedback Methods (10
terms expanded)

P10 P30 RPREC MAP R05P
Okapi sgt 0.520 0.387 0.294 0.273 0.208

Okapi man 0.420 0.285 0.212 0.189 0.132
SMART man 0.434 0.309 0.250 0.222 0.174

5.3 Comparison with other Manual Feedback
Methods

We next compare our query expansion method with
the following manual feedback methods.

Okapi man : This method simply uses only one
relevant document judged by hand. This is
called incremental relevance feedback(Aal-
bersberg, 1992; Allan, 1996; Iwayama, 2000).

SMART man : This method is SMART’s manual
relevance feedback (with parametersα = 3,
β = 2, γ = 0). γ is set to 0 because the perfor-
mance is terrible ifγ is set to 2.

Table 6 shows the mean average precision of
three methods when the number of expansion terms
changes. Since the number of feedback docu-
ments is extremely small, two methods except for
Okapi sgt get worse than their initial searches.
Okapi man slightly decreases as the number of ex-
pansion terms increases. Contrary,SMART man
do not change so much as the number of expansion
terms increases. Table 7 shows another evaluation
measures with 10 terms expanded. It is clear that
Okapi sgtoutperforms the other two methods.

5.4 Comparison with Pseudo Feedback
Methods

We finally compare our query expansion method
with the following pseudo feedback methods.

Okapi pse : This is a pseudo version of Okapi
which assumes top 10 documents in the initial
search as relevant ones as well as TREC-8 set-
tings.

Table 8: Results of Pseudo Feedback Methods
(MAP)

5 10 15 20
Okapi sgt 0.265 0.273 0.274 0.282
Okapi pse 0.253 0.249 0.247 0.246

SMART pse 0.236 0.243 0.242 0.242

Table 9: Results of Pseudo Feedback Methods (10
terms expanded)

P10 P30 RPREC MAP R05P
Okapi sgt 0.520 0.387 0.294 0.273 0.208
Okapi pse 0.478 0.369 0.279 0.249 0.206

SMART pse 0.466 0.359 0.272 0.243 0.187

SMART pse : This is a pseudo version of SMART.
It also assumes top 10 documents as relevant
ones. In addition, it assumes top 500-1000 doc-
uments as non-relevant ones.

In TREC-8, above two methods uses TREC1-5 disks
for query expansion and a phase extraction tech-
nique. However we do not adopt these methods in
our experiments4. Since these methods showed the
highest performance in the TREC-8 adhoc task, it
is reasonable to compare our method with them as
competitors.

Table 8 shows the mean average precision of
three methods when the number of expansion terms
changes. Performance does not differ so much if the
number of expansion terms changes.Okapi sgtout-
performs at any number of expansion. Table 9 shows
the results in other evaluation measures.Okapi sgt
also outperforms except forR05P. In particular, per-
formance inP10is quite well. It is preferable behav-
ior for the use in practical situations.

6 Discussion

In the experiments, the feedback documents for
Okapi sgt is top ranked ones. However some users
do not select such documents. They may choose
another relevant and non-relevant documents which
rank in top 10. Thus we test an another experiment
where relevant and non-relevant documents are se-
lected randomly from top 10 rank. Table 10 shows
the result. Compared with table 2, the performance
seems to become slightly worse. This shows that a

4Thus the performance in our experiments is a bit worse than
the result of TREC-8
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Table 10: Results ofOkapi sgt with random feed-
back (5 terms expanded)

P10 P30 RPREC MAP R05P
20 0.498 0.372 0.288 0.265 0.222
50 0.456 0.359 0.294 0.268 0.200
100 0.452 0.335 0.270 0.246 0.186

user should select higher ranked documents for rel-
evance feedback.

7 Conclusion

In this paper we proposed a novel query expansion
method which only use the minimum manual judg-
ment. To complement the lack of relevant docu-
ments, this method utilizes the SGT transductive
learning algorithm to predict the relevancy of un-
judged documents. Since the performance of SGT
much depends on an estimation of the fraction of
relevant documents, we propose a method to sam-
ple some good fraction values. We also propose a
method to laps the predictions of multiple SGT tri-
als with above sampled fraction values and try to
differentiate the importance of candidate terms for
expansion in relevant documents. The experimental
results showed our method outperforms other query
expansion methods in the evaluations of several cri-
teria.
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Abstract 

This paper explores the segmentation of 
tutorial dialogue into cohesive topics. A 
latent semantic space was created using 
conversations from human to human tu-
toring transcripts, allowing cohesion be-
tween utterances to be measured using 
vector similarity.  Previous cohesion-
based segmentation methods that focus on 
expository monologue are reapplied to 
these dialogues to create benchmarks for 
performance.  A novel moving window 
technique using orthonormal bases of se-
mantic vectors significantly outperforms 
these benchmarks on this dialogue seg-
mentation task. 

1 Introduction 

Ever since Morris and Hirst (1991)’s ground-
breaking paper, topic segmentation has been a 
steadily growing research area in computational 
linguistics, with applications in summarization 
(Barzilay and Elhadad, 1997), information retrieval 
(Salton and Allan, 1994), and text understanding 
(Kozima, 1993).  Topic segmentation likewise has 
multiple educational applications, such as question 
answering, detecting student initiative, and assess-
ing student answers. 

There have been essentially two approaches to 
topic segmentation in the past.  The first of these, 
lexical cohesion, may be used for either linear 
segmentation (Morris and Hirst, 1991; Hearst, 
1997) or hierarchical segmentation (Yarri, 1997; 
Choi, 2000).  The essential idea behind the lexical 

cohesion approaches is that different topics will 
have different vocabularies.  Therefore the lexical 
cohesion within topics will be higher than the lexi-
cal cohesion between topics, and gaps in cohesion 
may mark topic boundaries. The second major ap-
proach to topic segmentation looks for distinctive 
textual or acoustic markers of topic boundaries, 
e.g. referential noun phrases or pauses (Passonneau 
and Litman, 1993; Passonneau and Litman, 1997).  
By using multiple markers and machine learning 
methods, topic segmentation algorithms may be 
developed using this second approach that have a 
higher accuracy than methods using a single 
marker alone (Passonneau and Litman, 1997). 

The primary technique used in previous studies, 
lexical cohesion, is no stranger to the educational 
NLP community.  Lexical cohesion measured by 
latent semantic analysis (LSA) (Landauer and Du-
mais, 1997; Dumais, 1993; Manning and Schütze, 
1999) has been used in automated essay grading 
(Landauer, Foltz, and Laham, 1998) and in under-
standing student input during tutorial dialogue 
(Graesser et al., 2001). The present paper investi-
gates an orthonormal basis of LSA vectors, cur-
rently used by the AutoTutor ITS to assess student 
answers (Hu et al., 2003), and how it may be used 
to segment tutorial dialogue. 

The focus on dialogue distinguishes our work 
from virtually all previous work on topic segmen-
tation: prior studies have focused on monologue 
rather than dialogue. Without dialogue, previous 
approaches have only limited relevance to interac-
tive educational applications such as intelligent 
tutoring systems (ITS).  The only existing work on 
topic segmentation in dialogue, Galley et al. 
(2003), segments recorded speech between multi-
ple persons using both lexical cohesion and dis-
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tinctive textual and acoustic markers.  The present 
work differs from Galley et al. (2003) in two re-
spects, viz. we focus solely on textual information 
and we directly address the problem of tutorial dia-
logue.   

In this study we apply the methods of Foltz et al. 
(1998), Hearst (1994, 1997), and a new technique 
utilizing an orthonormal basis to topic segmenta-
tion of tutorial dialogue.  All three are vector space 
methods that measure lexical cohesion to deter-
mine topic shifts.  Our results show that the new 
using an orthonormal basis significantly outper-
forms the other methods. 

Section 2 reviews previous work, and Section 3 
reviews the vector space model.  Section 4 intro-
duces an extension of the vector space model 
which uses an orthonormal basis.  Section 5 out-
lines the task domain of tutorial dialogue, and Sec-
tion 6 presents the results of previous and the 
current method on this task domain. A discussion 
and comparison of these results takes place in Sec-
tion 7.  Section 8 concludes. 

2 Previous work 

Though the idea of using lexical cohesion to seg-
ment text has the advantages of simplicity and in-
tuitive appeal, it lacks a unique implementation.  
An implementation must define how to represent 
units of text, compare the cohesion between units, 
and determine whether the results of comparison 
indicate a new text segment.  Both Hearst (1994, 
1997) and Foltz et al. (1998) use vector space 
methods discussed below to represent and compare 
units of text. The comparisons can be characterized 
by a moving window, where successive overlap-
ping comparisons are advanced by one unit of text.  
However, Hearst (1994, 1997) and Foltz et al. 
(1998) differ on how text units are defined and on 
how to interpret the results of a comparison. 

The text unit's definition in Hearst (1994, 1997) 
and Foltz et al. (1998) is generally task dependent, 
depending on what size gives the best results. For 
example, when measuring comprehension, Foltz et 
al. (1998) use the unit of the sentence, as opposed 
to the more standard unit of the proposition, be-
cause LSA is most correlated with comprehension 

at that level.  However, when using LSA to seg-
ment text, Foltz et al. (1998) use the paragraph as 
the unit, to "smooth out" the local changes in cohe-
sion and become more sensitive to more global 
changes of cohesion.  Hearst likewise chooses a 
large unit, 6 token-sequences of 20 tokens (Hearst, 
1994), but varies these parameters dependent on 
the characteristics of the text to be segmented, e.g. 
paragraph size.  

Under a vector space model, comparisons are 
performed by calculating the cosine of vectors rep-
resenting text.  As stated previously, these com-
parisons reflect the cohesion between units of text. 
In order to use these comparisons to segment text, 
however, one must have a criterion in place.  Foltz 
et al. (1998), noting mean cosines of .16 for 
boundaries and .43 for non-boundaries, choose a 
threshold criterion of .15, which is two standard 
deviations below the boundary mean of .43.  Using 
LSA and this criterion, Foltz et al. (1998) detected 
chapter boundaries with an F-measure of .33 (see 
Manning and Schütze (1999) for a definition of F-
measure).  Hearst (1994, 1997) in contrast uses a 
relative comparison of cohesion, by recasting vec-
tor comparisons as depth scores.  A depth score is 
computed as the difference between a given vector 
comparison and its surrounding peaks, i.e. the local 
maxima of vector comparisons on either side of the 
given vector comparison.  The greater the differ-
ence between a given comparison and its surround-
ing peaks, the higher the depth score.  Once all the 
depth scores are calculated for a text, those that are 
higher than one standard deviation below the mean 
are taken as topic boundaries.  Using a vector 
space method without singular value decomposi-
tion, Hearst (1997) reports an F-measure of .70 
when detecting topic shifts between paragraphs.  
Thus previous work suggests that the Hearst 
(1997) method is superior to that of Foltz et al. 
(1998), having roughly twice the accuracy indi-
cated by F-measure.  Although these two results 
used different data sets and are therefore not di-
rectly comparable, one would predict based on this 
limited evidence that the Hearst algorithm would 
outperform the Foltz algorithm on other topic seg-
mentation tasks. 
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3 The vector space model 

The vector space model is a statistical technique 
that represents the similarity between collections of 
words as a cosine between vectors (Manning and 
Schütze, 1999).  The process begins by collecting 
text into a corpus.  A matrix is created from the 
corpus, having one row for each unique word in 
the corpus and one column for each document or 
paragraph.  The cells of the matrix consist of a 
simple count of the number of times word i ap-
peared in document j.  Since many words do not 
appear in any given document, the matrix is often 
sparse.  Weightings are applied to the cells that 
take into account the frequency of word i in docu-
ment j and the frequency of word i across all 
documents, such that distinctive words that appear 
infrequently are given the most weight. Two col-
lections of words of arbitrary size are compared by 
creating two vectors.  Each word is associated with 
a row vector in the matrix, and the vector of a col-
lection is simply the sum of all the row vectors of 
words in that collection.  Vectors are compared 
geometrically by the cosine of the angle between 
them. 

LSA (Landauer and Dumais, 1997; Dumais 
1993) is an extension of the vector space model 
that uses singular value decomposition (SVD).  
SVD is a technique that creates an approximation 
of the original word by document matrix.  After 
SVD, the original matrix is equal to the product of 
three matrices, word by singular value, singular 
value by singular value, and singular value by 
document.  The size of each singular value corre-
sponds to the amount of variance captured by a 
particular dimension of the matrix.  Because the 
singular values are ordered in decreasing size, it is 
possible to remove the smaller dimensions and still 
account for most of the variance.  The approxima-
tion to the original matrix is optimal, in the least 
squares sense, for any number of dimensions one 
would choose.  In addition, the removal of smaller 
dimensions introduces linear dependencies be-
tween words that are distinct only in dimensions 
that account for the least variance.  Consequently, 
two words that were distant in the original space 
can be near in the compressed space, causing the 
inductive machine learning and knowledge acqui-
sition effects reported in the literature (Landauer 
and Dumais, 1997).  

4 An orthonormal basis 

Cohesion can be measured by comparing the co-
sines of two successive sentences or paragraphs 
(Foltz, Kintsch, and Landauer, 1998).  However, 
cohesion is a crude measure: repetitions of a single 
sentence will be highly cohesive (cosine of 1) even 
though no new information is introduced.  A varia-
tion of the LSA algorithm using orthonormalized 
vectors provides two new measures, “informativ-
ity” and “relevance”, which can detect how much 
new information is added and how relevant it is in 
a context (Hu et al., 2003).  The essential idea is to 
represent context by an orthonormalized basis of 
vectors, one vector for each utterance.  The basis is 
a subspace of the higher dimensional LSA space, 
in the same way as a plane or line is a subspace of 
3D space.  The basis is created by projecting each 
utterance vector onto the basis of previous utter-
ance vectors using a method known as the Gram-
Schmidt process (Anton, 2000).  Each projected 
utterance vector has two components, a component 
parallel to the basis and a component perpendicular 
to the basis.  These two components represent “in-
formativity” and “relevance”, respectively.  Let us 
first consider “relevance”. Since each vector in the 
basis is orthogonal, the basis represents all linear 
combinations of what has been previously said.  
Therefore the component of a new utterance vector 
that is parallel to the basis is already represented 
by a linear combination of the existing vectors.  
“Informativity” follows similarly: it is the perpen-
dicular component of a new utterance vector that 
can not be represented by the existing basis vec-
tors. For example, in Figure 1, a new utterance cre-
ates a new vector that can be projected to the basis, 
forming a triangle.  The leg of the triangle that lies 

VS 1 

VS 2

Informativity

Relevance 

Figure 1.  Projecting a new utterance to the basis
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along the basis indicates the “relevance” of the 
recent utterance to the basis; the perpendicular leg 
indicates new information.  Accordingly, a re-
peated utterance would have complete “relevance” 
but zero new information. 

5 Procedure 

The task domain is a subset of conversations from 
human-human computer mediated tutoring ses-
sions on Newton’s Three Laws of Motion, in 
which tutor and tutee engaged in a chat room-style 
conversation.  The benefits of this task domain are 
twofold. Firstly, the conversations are already tran-
scribed.  Additionally, tutors were instructed to 
introduce problems using a fixed set of scripted 
problem statements.  Therefore each topic shift 
corresponds to a distinct problem introduced by the 
tutor.  Clearly this problem would be trivial for a 
cue phrase based approach, which could learn the 
finite set of problem introductions. However, the 
current lexical approach does not have this luxury: 
words in the problem statements recur throughout 
the following dialogue. 

Human to human computer mediated physics tu-
toring transcripts first were removed of all markup, 
translated to lower case, and each utterance was 
broken into a separate paragraph.  An LSA space 
was made with these paragraphs alone, approxi-
mately one megabyte of text.  The conversations 
were then randomly assigned to training (21 con-
versations) and testing (22 conversations).  The 
average number of utterances per topic, 16 utter-
ances, and the average number of words per utter-
ance, 32 words, were calculated to determine the 
parameters of the segmentation methods.  For ex-
ample, a moving window size greater than 16 ut-
terances implies that, in the majority of 
occurrences, the moving window straddles three 
topics as opposed to the desired two.  

To replicate Foltz et al. (1998), software was 
written in Java that created a moving window of 
varying sizes on the input text, and the software 
retrieved the LSA vector and calculated the cosine 
of each window.  Hearst (1994, 1997) was repli-
cated using the JTextTile (Choi, 1999) Java soft-
ware. A variant of Hearst (1994, 1997) was created 
by using LSA instead of the standard vector space 
method.  The orthonormal basis method also used 
a moving window; however, in contrast to the pre-
vious methods, the window is not treated just as a 

large block of text.  Instead, the window consists 
of two orthonormal bases, one on either side of an 
utterance.  That is, a region of utterances above the 
test utterance is projected, utterance by utterance, 
into an orthonormal basis, and likewise a region of 
utterances below the test utterance is projected into 
another orthonormal basis.  Then the test utterance 
is projected into each orthonormal basis, yielding 
measures of “relevance” and “informativity” with 
respect to each.  Next the elements that make up 
each orthonormal basis are aggregated into a block, 
and a cosine is calculated between the test utter-
ance and the blocks on either side, producing a 
total of six measures. 

Each tutoring session consists of the same 10 
problems, discussed between one of a set of 4 tu-
tors and one of 18 subjects. The redundancy pro-
vides a variety of speaking and interaction styles 
on the same topic. 

Tutor: A clown is riding a 
unicycle in a straight line.  
She accidentally drops an egg 
beside her as she continues 
to move with constant veloc-
ity. Where will the egg land 
relative to the point where 
the unicycle touches the 
ground?  Explain. 
Student: The egg should land 
right next to the unicycle.  
The egg has a constant hori-
zontal velocity.  The verti-
cal velocity changes and 
decreases as gravity pulls 
the egg downward at a rate of 
9.8m/s^2.  The egg should 
therefore land right next to 
the unicycle. 
Tutor: Good! There is only 
one thing I would like to 
know. What can you say about 
the horizontal velocity of 
the egg compared to the hori-
zontal velocity of the clown? 
Student: Aren't they the 
same? 

All of the 10 problems are designed to require ap-
plication of Newton’s Laws to be solved, and 
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therefore conversations share many terms such as 
force, velocity, acceleration, gravity, etc.  

6 Results 

For each method, the development set was first 
used to establish the parameters such as text unit 
size and classification criterion.  The methods, 
tuned to these parameters, were then applied to the 
testing data. 
 

6.1 Foltz et al. (1998) 

In order to replicate Foltz et al.’s results, a text unit 
size and window size needed to be chosen.  The 
utterance was chosen as the text unit size, which 
included single word utterances, full sentences, and 
multi-sentence utterances.  To determine the most 
appropriate window size, results from all sizes be-
tween 1 and 16 (the average number of utterances 
between topic shifts) were gathered.  The greatest 
difference between the means for utterances that 
introduce a topic shift versus non-shift utterances 
occurs when the window contains four utterances.  
The standard deviation is uniformly low for win-
dows containing more than two utterances and 
therefore can be disregarded in choosing a window 
size.   

The optimal cosine threshold for classification 
was found using logistic regression (Garson, 2003) 
which establishes a relationship between the cosine 
threshold and the log odds of classification. The 
optimal cutoff was found to be shift odds = .17 
with associated F-measure of .49.  The logistic 
equation of best fit is: 
 

cosine)  (-13.345  1.887  odds)ln(shift ⋅+=  
 

F-measure of .49 is 48% higher than the F-
measure reported by Foltz et al. (1998) for seg-
menting monologue.  On the testing corpus the F-
measure is .52, which demonstrates good generali-
zation for the logistic equation given.  Compared 
the F-measure of .33 reported by Foltz et al. 
(1998), the current result is 58% higher. 

6.2 Hearst (1994, 1997) 

The JTextTile software was used to implement 
Hearst (1994) on dialogue.  As with Foltz et al. 
(1998), a text unit and window size had to be de-

termined for dialogue. Hearst (1994) recommends 
using the average paragraph size as the window 
size.  Using the development corpus's average 
topic length of 16 utterances as a reference point, 
F-measures were calculated for the combinations 
of window size and text unit size in Table 1. 

The optimal combination of parameters (F-
measure = .17) is a unit size of 16 words and a 
window size of 16 units.  This combination 
matches Hearst (1994)'s heuristic of choosing the 
window size to be the average paragraph length.  

  

Table 1. Unit vs. window size for Hearst method 
 
On the test set, this combination of parameters 

yielded an F-measure of .14 as opposed to the F-
measure for monologue reported by Hearst (1997), 
.70.  For dialogue, the algorithm is 20% as effec-
tive as it is for monologue.  It is unclear, however, 
exactly what part of the algorithm contributes to 
this poor performance. The two most obvious pos-
sibilities are the segmentation criterion, i.e. depth 
scores, or the standard vector space method. 

To further explore these possibilities, the Hearst 
method was augmented with LSA.  Again, the unit 
size and window size had to be calculated.  As 
with Foltz, the unit size was taken to be the utter-
ance.  The window size was determined by com-
puting F-measures on the development corpus for 
all sizes between 1 and 16.  The optimal window 
size is 9, F-measure = .22.  Given the smaller 
number of test cases, 22, this F-measure of .22 is 
not significantly different from .17.  However, the 
Foltz method is significantly higher than both of 
these, p < .10. 

6.3 Orthonormal basis 

The text unit used in the orthonormal basis is the 
single utterance.  The optimal window size, i.e. the 
orthonormal basis size, was determined by creating 
a logistic regression to calculate the maximum F-
measure for several orthonormal basis sizes.  The 
findings of this procedure are listed in Table 2. 

    Window 
size 

   

  2 4 8 16 32 
Unit 
size 8 .134 .129 .130 .146 .144 

 16 .142 .133 .130 .171 .140 
 32 .138 .132 .130 .151 .143 
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Table 2. F-measure for orthonormal basis sizes 
 
F-measure monotonically increases until the or-

thonormal basis holds six elements and holds rela-
tively steady for larger orthonormal basis sizes.  
Since F-measure does not increase much over .72 
for greater orthonormal basis sizes, 6 was chosen 
as the most computationally efficient size for the 
strength of the effect.  The logistic equation of best 
fit is: 
 

)ityinformativ(2.771
)relevance(-2.698

)ityinformativ(-23.567
)relevance(-30.843

)cosine (16.703 
 20.027 

odds)ln(shift  

2

2

1

1

2

⋅+
⋅+
⋅+
⋅+
⋅+

=   

 
Where the index of 1 indicates a measure on the 
window preceding the utterance, and an index of 2 
indicates a measure on the window following the 
utterance.  In the regression, the cosine between 
the utterance and the preceding window was not 
significant, p = .86.  This finding reflects the intui-
tion that the cosine to the following window varies 
according to whether the following window is on a 
new topic, whereas the cosine to the preceding 
window is always high. Additionally, measures of 
“relevance” and “informativity” correspond to vec-
tor length; all other measures did not contribute 
significantly to the model and so were not in-
cluded.   

The sign of the metrics illuminates their role in 
the model.  The negative sign on the coefficients 
for relevance1, informativity1, and relevance2 indi-
cates that they are inversely correlated with an ut-
terance signaling the start of a new topic.  The only 
surprising feature is that informativity1 is nega-
tively correlated instead of positively correlated: 
one would expect a topic shift to introduce new 
information.  There is possibly some edge effect 
here, since the last move of a topic is often a sum-
marizing move that shares many of the physics 
terms present in the introduction of a new topic.  
On the other hand, the positive sign on cosine2 and 

informativity2 indicates that the start of a new topic 
should have elements in common with the follow-
ing material and add new information to that mate-
rial, as an overview would.  Beyond the sign, the 
exponentials of these values indicate how the two 
basis metrics are weighted. For example, when 
informativity2 is raised by one unit, a topic shift is 
16 times more likely.   

On the testing corpus the F-measure of the or-
thonormal basis method is .67, which is signifi-
cantly different from the performance of all three 
methods mentioned above, p < .05.   Table 3 com-
pares this result with the previous results in the 
current study for segmenting dialogue. 
 

Method Hearst Hearst + 
LSA Foltz Orth. 

basis 
F .14 .22 .52 .67 

Table 3. Comparison of dialogue segmentation methods 

7 Discussion 

The relative ranking of these results is not alto-
gether surprising given the relationships between 
inferencing and LSA and between inferencing and 
dialogue.  Foltz et al. (1998) found that LSA 
makes simple bridging inferences in addition to 
detecting lexical cohesion.  These bridging infer-
ences are a kind of collocational cohesion (Halli-
day and Hassan, 1976) whereby words that co-
occur in similar contexts become highly related in 
the LSA space.  Therefore in applications where 
this kind of inferencing is required, one might ex-
pect an LSA based method to excel. 

Similarly to van Dijk and Kintsch's model of 
comprehension (van Dijk and Kintsch, 1983), dia-
logue can require inferences to maintain coher-
ence. According to Grice's Co-operative Principle, 
utterances lacking semantic coherence flout the 
Maxim of Relevance and license an inference 
(Grice, 1975):  

 
S1: Let’s go dancing. 
S2: I have an exam tomorrow. 

 
The "inference" in the sense of Foltz, Kintsch, 

and Landauer (1998) would be represented by a 
high cosine between these utterances, even though 
they don't share any of the same words.  Dialogue 
generally tends to be less lexically cohesive and 
require more inferencing than expository mono-

Size 3 4 5 6 8 10 15 
F .59 .63 .65 .72 .73 .72 .73
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logue, so one might predict that LSA would excel 
in dialogue applications. 

However, LSA has a weakness: the cosine 
measure between two vectors does not change 
monotonically as new word vectors are added to 
either of the two vectors.  Accordingly, the addi-
tion of a word vector can cause the cosine between 
two text units to dramatically increase or decrease. 
Therefore the distinctive properties of individual 
words can be lost with the addition of more words 
to a text unit.  This problem can be addressed by 
using an orthonormal basis (Hu et al., 2003).   By 
using a basis, each utterance is kept independent, 
so “inferencing” can extend over both the entire set 
of utterances and the linear combination of any of 
its subsets.  Accordingly, when “inferencing” over 
the entire text unit is required, one would expect a 
basis method using LSA vectors to outperform a 
standard LSA method.  This expectation has been 
put to the test recently by Olney & Cai (2005), 
who find that an orthonormal basis can signifi-
cantly predict entailment on test data supplied by 
the PASCAL Textual Entailment Challenge 
(PASCAL, 2004). 

Beyond relative performance rankings, more 
support for the above reasoning can be found in the 
difference between Hearst and Hearst + LSA. Re-
call that in monologue, Hearst (1997) reports a 
much larger F-measure than Foltz et al. (1998), .70 
vs. .33, albeit on different data sets.  In the present 
dialogue corpus, these roles are reversed, .14 vs. 
.52.  Possible reasons for this reversal are the seg-
mentation criterion, the vector space method, or 
the fact that Foltz has been trained on similar data 
via regression and Hearst has not.  However, com-
paring the Hearst algorithm with the Hearst + LSA 
algorithm indicates that a 57% improvement stems 
from the addition of LSA, keeping all other factors 
constant. While this result is not statistically sig-
nificant, the direction of the result supports the use 
of an “inferencing” vector space method for seg-
menting dialogue.  

Unfortunately, the large difference in F-measure 
between the Foltz algorithm and the Hearst + LSA 
algorithm is more difficult to explain.  These two 
methods differ by their segmentation criterion and 
by their training (Foltz is a regression model and 
Hearst is not). It may be that Hearst (1994, 1997)’s 
segmentation criterion, i.e. depth scores, do not 
translate well to dialogue.  Perhaps the assignment 
of segment boundaries based on the relative differ-

ence between a candidate score and its surrounding 
peaks is highly sensitive to cohesion gaps created 
by conversational implicatures.  On the other hand 
the differences between these two methods may be 
entirely attributable to the amount of training they 
received.  One way to separate the contributions of 
the segmentation criterion and training would be to 
create a logistic model using the Hearst + LSA 
method and to compare this to Foltz.  

The increased effectiveness of the orthonormal 
basis method over the Foltz algorithm can also be 
explained in terms of “inferencing”.  Since “infer-
encing” is overwhelmed by lexical cohesion (Foltz 
et al., 1998), the increase in window size for the 
Foltz algorithm deteriorates performance for a 
window size greater than 4.  In contrast, the or-
thonormal basis method becomes most effective as 
the orthonormal basis size increases past 4.  This 
dichotomy illustrates that the Foltz algorithm is not 
complementary to an “inferencing” approach in 
general.  Use of an orthonormal basis, on the other 
hand, increases sensitivity to collocational cohe-
sion without sacrificing lexical cohesion. 

8 Conclusion 

This study explored the segmentation of tutorial 
dialogue using techniques that have previously 
been applied to expository monologue and using a 
new orthonormal basis technique.  The techniques 
previously applied to monologue reversed their 
roles of effectiveness when applied to dialogue.  
This role reversal suggests the predominance of 
collocational cohesion, requiring “inferencing”, 
present in this tutorial dialogue.  The orthonormal 
basis method, which we suggest has an increased 
capacity for “inferencing”, outperformed both of 
the techniques previously applied to monologue, 
and demonstrates that segmentation of these tuto-
rial dialogues most benefits from a method sensi-
tive to lexical and collocational cohesion over 
large text units. 
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Abstract 

This work addresses the task of identify-
ing thematic correspondences across sub-
corpora focused on different topics.  We 
introduce an unsupervised algorithmic 
framework based on distributional data 
clustering, which generalizes previous ini-
tial works on this task.  The empirical re-
sults reveal interesting commonalities of 
different religions.  We evaluate the re-
sults through measuring the overlap of our 
clusters with clusters compiled manually 
by experts.  The tested variants of our 
framework are shown to outperform al-
ternative methods applicable to the task. 

1 Introduction 

The ability to identify analogies and correspon-
dences is one of the fascinating aspects of intelli-
gence.  Research in cognitive science has 
acknowledged the significance of this ability of 
human thinking, particularly in learning across dif-
ferent situations or domains where the common 
base to learning is not straightforward.  Several 
previous computational models of analogy making 
(e.g. Falkenhainer et al., 1989) suggested symbolic 
computational mechanisms for constructing de-
tailed mappings that connect corresponding ingre-
dients across analogized systems. 

This work explores the identification of thematic 
correspondences in texts through an extension of 
the well known data clustering problem.  Previous 

works aimed at identifying – through clusters of 
words – concepts, sub-topics or themes that are 
prominent within a corpus of texts (e.g., Pereira et 
al., 1993; Li, 2002; Lin and Pantel, 2002).  The 
current work deals with extending this line of re-
search to identify corresponding themes across a 
corpus pre-divided to several sub-corpora, which 
are focused on different, yet related, topics. 

This research task has been defined quite re-
cently (Dagan et al., 2002), and has not been ex-
plored extensively yet.  One could think, however, 
of many potential applications for drawing corre-
spondences across textual resources: comparison 
of related firms or products, identifying equivalen-
cies in news published in different countries, and 
so on.  The experimental part of our work deals 
with revealing correspondences between different 
religions: Buddhism, Christianity, Hinduism, Islam 
and Judaism.  Given a pre-partition of the corpus to 
sub-corpora, one for each religion, our method ex-
poses common aspects for all religions, such as 
sacred writings, festivals and suffering. 

The mechanism we employ directs correspond-
ing key terms in the different sub-corpora, such as 
names of festivals of different religions, to be in-
cluded in the same cluster.  Term clustering meth-
ods in general, and in this work in particular, rely 
on word co-occurrence statistics: terms sharing 
similar words co-occurrence statistics are clustered 
together.  Different topics, however, are character-
ized by distinctive terminology and typical word 
co-locations.  Therefore, given a pre-divided cor-
pus, similar co-occurrence patterns would typically 
be extracted from the same topical sub-corpus.  
When the terminology and typical phrases em-
ployed by each topic differ greatly (even if the top-
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ics are essentially related, e.g. different religions), 
the tendency to form topic-specific clusters intensi-
fies regardless of factors that otherwise could have 
impact this tendency, such as the co-occurrence 
window size.  Consequently, corresponding key 
terms of different topics may not be assigned by a 
standard method to the same cluster, in contrast to 
our goal.  The method described in this paper aims 
precisely at this problem: it is designed to neutral-
ize salient co-occurrence patterns within each topi-
cal sub-corpus and to promote less salient patterns 
that are shared across the sub-corpora. 

In an earlier line of research we have formulated 
the above problem and addressed it within a prob-
abilistic vector-based setting, presenting two re-
lated heuristic algorithms (Dagan et al., 2002; 
Marx et al., 2004).  Here, we devise a general prin-
cipled distributional clustering paradigm for this 
problem, termed cross-partition clustering, and 
show that the earlier algorithms are special cases of 
the new framework.   

This paper proceeds as follows: Section 2 de-
scribes in more detail the cross-partition clustering 
problem. Section 3 reviews distributional data 
clustering methods, which form the basis to our 
algorithmic framework described in Section 4.  
Section 5 presents experimental results that reveal 
interesting themes common to different religions 
and demonstrates, through an evaluation based on 
human expert data, that the different variants of 
our framework outperform alternative methods. 

2 The cross-partition clustering problem 

The cross-partition clustering problem is an exten-
sion of the standard (single-set) data clustering 
problem.  In the cross-partition setting, the dataset 
is pre-partitioned into several distinct subsets of 
elements to be clustered.  For example, in our ex-
periments each of these subsets consisted of topical 
key terms to be clustered.  Each such subset was 
extracted automatically from a sub-corpus corre-
sponding to a different religion (see Section 5). 

As in the standard clustering problem, our goal 
is to cluster the data such that each term cluster 
would capture a particular theme in the data.  
However, the generated clusters are expected to 
identify themes that cut across all the given sub-
sets.  For example, one cluster consists of names of 
festivals of different religions, such as Easter, 
Christmas, Sunday (Christianity) Ramadan, Fri-

day, Id-al-fitr (Islam) and Sukoth, Shavuot, Pass-
over (Judaism; see Figure 4 for more examples). 

3 Distributional clustering 

Our algorithmic framework elaborates on Pereira 
et al.’ s (1993) distributional clustering method.  
Distributional clustering probabilistically clusters 
data elements according to the distribution of a 
given set of features associated with the data.  Each 
data element x is represented as a probability dis-
tribution p

�
y �x�  over all features y.  In our data 

p
�
y �x�  is the empirical co-occurrence frequency of a 

feature word y with a key term x, normalized over 
all feature word co-occurrences with x. 

The distributional clustering algorithmic scheme 
(Figure 1) is a probabilistic (soft) version of the 
well-known K-means algorithm.  It iteratively al-
ternates between: 
(1) Calculating assignments to clusters: calculate 
an assignment probability p

�
c �x�  for each data ele-

ments x into each one of the clusters c.  This soft 
assignment is proportional to an information theo-
retic distance (KL divergence) between the ele-
ment's p

�
y �x�  representation, and the centroid of c, 

represented by a distribution p
�
y �c� .  The marginal 

cluster probability p
�
c�  may optionally be set as a 

prior in this calculation, as in Tishby et al. (1999; 
in Figure 1 we mark it with dotted underline, to 
denote it is optional).  

Set t ��� , and repeatedly iterate the two update-steps 
below, till convergence (at time step t ��� , initialize 
pt � c� x	  randomly or arbitrarily and skip step 1):
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Figure 1: A general formulation of the iterative 
distributional clustering algorithm (with a fixed $

 value and a fixed number of clusters).  The 
underlined pt %'&%'&%'&%'& (( (( c)) ))  term is optional. 
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 (2) Calculating cluster centroids: calculate a 
probability distribution p

�
y �c�  over all features y 

given each cluster c, based on the feature distribu-
tion of cluster elements, weighed by the p

�
c �x�  as-

signment probability calculated in step (1) above.  
This step imposes the independence of the clus-
ters c of the features y given the data x (similarly 
to the naïve Bayes supervised framework). 

Subsequent works (Tishby et al., 1999; Gedeon et 
al., 2003) have studied and motivated further the 
earlier distributional clustering method.  Particu-
larly, it can be shown that the algorithm of Figure 
1 locally minimizes the following cost function: 

Fdist-clust � H
 C� � H
�
C �X� � $  H

�
Y�C� , (1) 

where H denotes entropy1 and X, Y and C are for-
mal variables whose values range over all data 
elements, features and clusters, respectively. 

Tishby et al.’s (1999) information bottleneck 
method (IB) includes the marginal cluster entropy 
H 
 C�  in the cost term2 (it is marked with dotted un-
derline to denote its inclusion is optional, so that 
Eq. (1) encapsulates two different cost terms).  The 
addition of H 
 C�  corresponds to including the op-
tional prior term pt% & ( c)  in step (1) of the algorithm. 

The parameter 
$

 that appears in the cost term 
and in step (1) of the algorithm can have any posi-
tive real value.  It counterbalances the relative im-
pact of the considerations of maximizing feature 
information conveyed by the partition to clusters, 
i.e. minimizing H

�
Y�C� , versus applying the maxi-

mum entropy principle  to the cluster assignment 
probabilities (see Gedeon et al., 2004), i.e., maxi-
mizing H

�
C �X� .  The higher 

$
 is, the more “deter-

mined”  the algorithm becomes in assigning each 
element into the most appropriate cluster.  In sub-
sequent runs of the algorithm 

$
 can be increased, 

yielding more separable clusters (clusters with no-
ticeably different centroids) upon convergence.  
The runs can repeat until, for some 

$
, the desired 

number of separate clusters is obtained. 

4 The cross-partition clustering method  

In the cross-partition framework, the pre-partition 
of the data to subsets is captured through an addi-
                                                           
1 The entropy of a random variable A is H� A����� a	 b p� a� log p� a� , where a ranges 
over all values of A; the entropy of A conditioned on another variable B is 
H� A
 B����� a	 b p� a� b� log p� a
 b� , with a and b range over all values of A and B. 
2 The IB cost function was originally formulated as FIB  �   I � C
 X����� I � C
 Y� . 
This formulation is equivalent to ours, as I � C
 X��� H � C��� H � C
 X�  and I � C
 Y���  
H� Y���  H� Y
C� , while H � Y�  is a constant term depending only on the data. 

tional formal variable W, whose values range over 
the subsets.  In our data, each religion corresponds 
to a different W value, w.  Each religion-related 
key term x is associated with one religion w, with 
p
�
w �x�����  (and p

�
w' �x��� 0 for any w' � w).  For-

mally, our framework allows probabilistic pre-
partition, i.e., p

�
w �x�  values between 0 and 1 but 

this option was not examined empirically. 
The Cross-Partition (CP) clustering method 

(Figure 2) is an extended version of the probabilis-
tic K-means scheme, introducing additional steps 
in the iterative loop that incorporate the added pre-
partition variable W: 
(1) Calculating assignments to clusters, i.e. prob-
abilistic p

�
c �x�  values, is based on current values 

of cluster centroids, as in distributional clustering. 

(2) Calculating subset-projected cluster centroids. 
Given the current element assignments, centroids 
are  computed separately for each  combination of 

Set t ���  and repeatedly iterate the following update 
steps sequence, till convergence (in the first iteration, 
when  t ���  randomly or arbitrarily initialize pt � c� x	  
and skip step CP1): 
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Figure 2: The cross partition clustering iterative 
algorithm (with fixed 

$
 and ,  values and a fixed 

number of clusters).  The terms marked by dotted 
underline, pt %'& ( c)   and p* t ( c) , are optional. 
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a cluster c projected on a pre-given subset w.  
Each such subset-projected centroid is given by a 
probability distribution p

�
y �c,w�  over the features 

y, for each c and w separately (instead of p
�
y �c� . 

(3) Re-evaluating cluster-feature association.  
Based on the subset projected centroids, the asso-
ciations between features and clusters are re-
evaluated: features that are commonly prominent 
across all subsets are promoted relatively to fea-
tures with varying prominence.  A weighted geo-
metric mean scheme achieves this effect: the 
value of � wp

�
y �c,w��� p� w�  is larger as the different 

p
�
y �c,w�  values are distributed more uniformly 

over the different w's, for any given c and y.  ,  is 
a positive valued free parameter, which controls 
the impact of uniformity versus variability of the 
averaged values.  The re-evaluated associations 
resulting from this stage are probability distribu-
tions over the clusters denoted p*

�
c �y� .  We add an 

asterisk to distinguish this conditioned probability 
distribution from other p

�
c �y�  values that can be 

calculated directly from the output of the previous 
steps. 

(4) Calculating cross-partition “ global”  centroids: 
based on the probability distributions p*

�
c �y� , we 

calculate   a   probability  distribution  p*
�
y �c�    for 

every cluster c through a straightforward applica-
tion of Bayes rule, obtaining the cross partition 
cluster centroids. 

The novelty of the CP algorithm lies in step (3): 
rather than deriving cluster centroids directly, as in 
the standard k-means scheme, cluster-feature asso-
ciations are biased by their prominence across the 
cluster projections over the different subsets.  This 
way, only features that are prominent in the cluster 
across most subsets end up prominent in the even-
tual cluster centroid (computed in step 4).  By in-
corporating for every c–y pair a product over all 
w's, independence of the feature-cluster associa-
tions from specific w values is ensured.  This con-
forms to our target of capturing themes that cut 
across the pre-given partition and are not corre-
lated with specific subsets. 

Employing a separate update step in order to ac-
complish the above direction implies deviation 
from the familiar cost-based scheme.  Indeed, the 
CP method is not directed by a single cost function 
that globally quantifies the cross partition cluster-
ing task on the whole.  Rather, there are four dif-

ferent “ local”  cost-terms, each articulating a 
different aspect of the task.  As shown in the ap-
pendix, each of the update steps (1)–(4) reduces 
one of these four cost terms, under the assumption 
that values not modified by that step are held con-
stant.  This assumption of course does not hold as 
values that are not modified by a given step are 
modified by another.  Hence, downward conver-
gence (of any of the cost terms) is not guaranteed. 

However, empirical experimentation shows that 
the dynamics of the CP algorithm tend to stabilize 
on an equilibrial steady state, where the four dif-
ferent distributions produced by the algorithm bal-
ance each other, as illustrated in Figure 3.  In fact, 
convergence occurred in all our text-based experi-
ments (as well as in experiments with synthetic 
data; Marx et al., 2004). 

Manipulating the value of the 
$

 parameter works 
in practice for the CP method as it works for distri-
butional clustering: increasing 

$
 along subsequent 

runs enables the formation of configurations of 
growing numbers of clusters.  The CP framework 
introduces an additional parameter, , .  Intuitively, 
step (3).  As said, the geometric mean scheme 
promotes those c–y associations for which the 
p
�
y �c,w�  values are distributed evenly across the w's 

(for any fixed c and y).  A low ,  would imply a 
relatively low penalty to those c–y combinations 
that are not distributed evenly across the w's,  but it  

 

 
Figure 3: A schematic illustration of the dynam-
ics of the CP framework versus that of distribu-
tional clustering.  In distributional clustering 
convergence is onto a configuration where the 
two systems of distributions complementarily 
balance one another, bringing a cost term to a lo-
cally minimal value.  In CP, stable configurations 
maintain balanced inter-dependencies (equilib-
rium) of four systems of probability distributions. 
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entails also loss of more information compared to 
high �.  We experimented with � values that are 
fixed during a whole sequence of runs, while only 
	  is gradually incremented (see Section 5).  

Likewise the optional incorporation of priors in 
the distributional clustering scheme (Figure 1), the 
CP framework detailed in Figure 2 encapsulates 
four different algorithmic variants: the prior terms 
(marked in Figure 2 with dotted underline) can be 
optionally added in steps (1) and/or (3) of the algo-
rithm.  As in the distributional clustering case, the 
inclusion of these terms corresponds to inclusion 
of cluster entropy in the corresponding cost terms 
(see Appendix).  It is interesting to note that we 
introduced previously, on intuitive accounts, some 
of these variants separately.  Here we term the 
three variations involving priors CPI (prior added 
in step (1) only, which is the same as the method 
described in Dagan et al., 2002), CPII (prior added 
in step (3) only) and CPIII (prior added in both 
steps; as the method in Marx et al., 2004).  The 
version with no priors is denoted CP.  Our formu-
lation reveals that these are all special cases of the 
general CP framework described above. 

5 Experimental Results 

The data elements that we used for our experi-
ments – religion related key terms – were auto-
matically extracted from a pre-divided corpus 
addressing five religions: Buddhism, Christianity, 
Hinduism, Islam and Judaism.  The clustered key-
term set was pre-partitioned, correspondingly, to 
five disjoint subsets, one per religion�  w.3  In our 
experimental setting, the key term subsets for the 
different religions were considered disjoint, i.e., 
occurrences of the same word in different subsets 
were considered distinct elements.  The set of fea-
tures y consisted of words that co-occurred with 
key terms within � 5 word window, truncated by 
sentence boundaries.  About � � � �  features, each 
occurring in all five sub-corpora, were selected. 

We survey below some results, which were pro-
duced by the plain (unprioired) CP algorithm with 
�� � � � � � �  applied to all five religions together.  
First, we describe our findings qualitatively and 
afterwards we provide quantitative evaluation. 

                                                           
3 We use the dataset of Marx et al. (2004) – five sub-corpora, of roughly one 
million words each, consisting of introductory web pages, electronic journal 
papers and encyclopedic entries about the five religions; about � � �  key terms 
were extracted from each sub-corpus to form the clustered subsets. 

5.1 Cross-religion Themes 

We have found that even the coarsest partition of 
the data to two clusters was informative and illu-
minating.  It revealed two major aspects that seem 
to be equally fundamental in the religion domain.  
We termed them the “spiritual aspect”  and “estab-
lishment aspect”  of Religion.  The “spiritual”  clus-
ter incorporated terms related with theology, 
underlying concepts and personal religious experi-
ence.  Many of the terms assigned to this cluster 
with highest probability, such as heaven, hell, soul, 
god and existence, were in common use of several 
religions, but it included also religion-specific 
words such as atman, liberation and rebirth (key 
concepts of Hinduism).  The “establishment”  clus-
ter contained names of schools, sects, clergical po-
sitions and other terms connected to religious 
institutions, geo-political entities and so on.  Terms 
assigned to this cluster with high probability were 
mainly religion specific: protestant, vatican, uni-
versity, council in Christianity; conservative, re-
constructionism, sephardim, ashkenazim in 
Judaism and so on (few terms though were com-
mon to several religions, for instance east and 
west).  This two-theme partition was obtained per-
sistently (also when the CP method was applied to 
pairs of religions rather than to all five). Hence, 
these aspects appear to be the two universal con-
stituents of religion-related texts in general, to the 
level the data reflect faithfully this domain. 

Clusters of finer granularity still seem to capture 
fundamental, though more focused, themes.  For 
example, the partition into seven clusters revealed 
the following topics (our titles): “schools” , “divin-
ity” , “ religious experience” , “writings” , “ festivals 
and rite” , “material existence, sin, and suffering” 
and “ family and education” .  Figure 4 details the 
members of highest p� c� x�  values within each relig-
ion in each of the seven clusters. 

The relation between the seven clusters to the 
coarser two-cluster configuration can be described 
in soft-hierarchy terms:  the “schools”  cluster and, 
to some lesser extent “ festivals”  and “ family” , are 
related with the “establishment aspect”   reflected in 
the partition to two, while “divinity” , “ religious 
experience”  and  “suffering”  are  clearly associated 
with the “spiritual aspect” .  The remaining topic, 
“writings” , is equally associated with both.  The 
probabilistic framework  enabled the  CP method to 
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cCLUSTER 1 “ School s”  
Buddhism: america � asia � japan� west � east � korea� india �  
china � tibet � 

Christianity: orthodox � protestant � catholic � west�  
orthodoxy � organization � rome� council � america �  

Hinduism: west � christian � religious � civilization �  
buddhism � aryan � social� founder � shaiva �  

Islam: africa � asia � west� east � sunni � shiah � christian� 
country � civilization � philosophy � 

Judaism: reform � conservative � reconstructionism � zion-
ism � orthodox � america� europe � sephardim � ashkenazim � 

CLUSTER 2 “ Di vi ni t y”  
Buddhism: god � brahma � 
Christianity: holy-spirit � jesus-christ � god � father� 
savior � jesus � baptize� salvation � reign � 

Hinduism: god � brahma � 
Islam: god � allah � peace� messenger � jesus � worship�   
believing � tawhid � command� 

Judaism: god � hashem � bless� commandment � abraham � 

CLUSTER 3 “ Rel i gi ous Exper i ence”  
Buddhism: phenomenon � perception � consciousness � human� 
concentration � mindfulness � physical � liberation � 

Christianity: moral � human � humanity � spiritual � rela-
tionship � experience � expression � incarnation � divinity� 

Hinduism: consciousness � atman � human � existence� lib-
eration � jnana � purity� sense � moksha � 

Islam: spiritual � human � physical � moral � consciousness� 
humanity � exist � justice� life � 

Judaism: spiritual � human � existence � physical � expres-
sion � humanity � experience� moral � connect � 

CLUSTER 4 “ Wr i t i ngs”  
Buddhism: pali-canon � sanskrit � sutra � pitaka� english � 
translate � chapter � abhidhamma� book � 

Christianity: chapter � hebrew � translate � greek new-
testament � book � text� old-testament � luke � 

Hinduism: rigveda � gita � sanskrit � upanishad � sutra� 
smriti � brahma-sutra � scripture � mahabharata � 

Islam: chapter � surah � bible� write � translate � hadith� 
book � language � scripture� 

Judaism: tanakh � scripture � mishnah � book � oral� talmud � 
bible � write � letter� 

CLUSTER 5 “ Fest i val s and Ri t e”  
Buddhism: full-moon � celebration � stupa � ceremony� sakya � 
abbot � ajahn � robe� retreat � 

Christianity: easter � tabernacle � christmas � sunday� 
sabbath � jerusalem � pentecost� city � season � 

Hinduism: puja � ganesh � festival � ceremony � durga� rama � 
pilgrimage � rite � temple� 

Islam: kaabah � id � ramadan� friday � id-al-fitr � haj� mecah � 
mosque � salah � 

Judaism: sukoth � festival � shavuot � temple � passover� 
jerusalem � rosh-hashanah � temple-mount � rosh-hodesh � 

CLUSTER 6 “ Si n,  Suf f er i ng,  Mat er i al  Exi st ence”  
Buddhism: lamentation � water � grief � kill � eat� hell �  
animal � death � heaven� 

Christianity: fire � punishment � eat � water� animal � lost� 
hell � perish � lamb�  

Hinduism: animal � heaven � earth � death � water� kill � demon� 
birth � sun � 

Islam: water � animal � hell� punishment � paradise � food� 
pain � sin � earth� 

Judaism: animal � water � eat� kosher � sin � heaven� death � 
food � forbid � 

CLUSTER 7 “ Fami l y and Educat i on”  
Buddhism: child � friend � son� people � family � question� 
learn � hear � teacher� 

Christianity: friend � family � mother � boy � question� 
woman � problem � learn� child � 

Hinduism: child � question � son� mother � family � learn� 
people � teacher � teach� 

Islam: sister � husband � wife� child � family � marriage� 
mother � woman � brother� 

Judaism: child � marriage � wife� mother � father � women� 
question � family � people� 

 

Figure 4: A sample from a seven-cluster CP con-
figuration of the religion data, including the first 
members – up to nine – of highest p� c� x�  within 
each religion in each cluster.  Cluster titles were 
assigned by the authors for reference. 

cope with these composite relationships between 
the coarse partition and the finer one. 

It is interesting to have a notion of those features 
y with high p* � c� y� , within each cluster c.  We ex-
emplify those typical features, for each one of the 
seven clusters, through four of the highest p* � c� y�  
features (excluding those terms that function as 
both features and clustered terms):  
�   “schools”  cluster: 

central, dominant� , mainstream, affiliate;  
�   “divinity”  cluster:  

omnipotent� , almighty, mercy, infinite;  
�   “ religious experience”  cluster:  

intrinsic, mental, realm, mature;  
�   “writings”  cluster:  

commentary, manuscript, dictionary, grammar;  
�   “ festivals and rite”  cluster:  

annual, funeral, rebuild, feast;  
�   “material existence, sin, and suffering”  cluster:  

vegetable, insect, penalty, quench; 
�   “community and family”  cluster:  

parent, nursing, spouse, elderly.  
We demonstratively focus on the two-cluster 

and seven-cluster, as these numbers are small 
enough to allow review of all clusters.  Configura-
tions of more clusters revealed additional sub-
topics, such as education, prayer and so on. 

There are some prominent points of correspon-
dence between our findings to Ninian Smart’s 
comparative religion classics Dimensions of the 
Sacred (1996).  For instance, Smart’s ritual dimen-
sion corresponds to our “ festivals and rite”  cluster 
and his experiential and emotional dimension cor-
responds to our “ religious experience”  cluster. 

5.2 Evaluation with Expert Data  

We evaluated the performance of our method 
against cross-religion key term clusters constructed 
manually by a team of three experts of comparative 
religion studies.  Each manually produced cluster-
ing configuration referred to two of the five relig-
ions rather than to all five jointly, as in our 
qualitative review.  We examined eight of the ten 
religion pairs that can be chosen from the total of 
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five.  Each religion pair was addressed independ-
ently by two different experts using the same set of 
key terms (so the total number of contributed con-
figurations was 16).  Thus, we could also asses the 
level of agreement between experts.  

As an overlap measure we employed the Jaccard 
coefficient, which is the ratio n� � � � � � n� � � 
 �n� � � 
 �n� � � , 
where: 
n� �  is the number of term pairs assigned to the 
same cluster by both our method and the expert; 

n� �  is the number of term pairs co-assigned by our 
method but not by the expert; 

n� �  is the number of term pairs co-assigned by the 
expert but not by our method. 
As the Jaccard score relies on counts of individ-

ual term pairs, no assumption with regard to the 
suitable number of clusters is required.  Hence, for 
each religion pair we produced with our method 
configurations of two to 16 clusters and calculated 
for each Jaccard scores based on the overlap with 
the relevant expert configurations.  The scores ob-
tained were averaged over the 15 configurations.  
The means, over all 16 experimental cases, of 
those average values are displayed in Table 1. 

We tested all four CP method variants, with dif-
ferent fixed values of the � parameter.  In addition, 
we evaluated results obtained by the priored ver-
sion of distributional clustering (the IB method, 
Tishby et al., 1999; see Figure 1).  Marx et al. 
(2004) mentioned Information Bottleneck with 
Side Information (IB-SI, Chechik & Tishby, 2003) 
as a method capable – unlike standard distribu-
tional clustering – of capturing information regard-
ing pre-partition to subsets, which makes this 
method a seemingly sensible alternative to the CP 
method.  Therefore, we tested the IB-SI method as 
well, following the adaptation scheme to the CP 
setting described by Marx et al, with a fixed value 
of its parameter, � � � � � � � �  (with higher values con-
vergence did not take place in all experiments).  As 
Table 1 shows, the different CP variants performed 
better than the alternatives.  The CPIII varinat, with 
both prior types, was less robust to changes in � 
value and seemed to be more sensitive to noise. 

The experimental part of this work demonstrates 
that the task of drawing thematic correspondences 
is challenging.   In the particular domain that we 
have examined the level of agreement between 
experts seems to make it evident that the task is 
inherently subjective  and just partly consensual.  It 

Table 1:  Mean Jaccard scores for several meth-
ods, examined over of the 16 religion-pair 
evaluation cases (incorporating mean Jaccard 
scores over 2–16 clustering configurations, see 
text).  The differences between most CP variants 
and cross-expert agreement are not statistically 
significant.  The differences between IB, IB-SI 
and CPIII with � = 0.83 and expert agreement are 
significant (two-tailed t-test, df  = 15, p <� � � � � ). 

 � = 0.48 � = 0.56 � = 0.67 � = 0.83 

CP� 0.405 0.383 0.400 0.394 

CPI � 0.416 0.400 0.415 0.399 

CPII 0. 410 0.387 0.409 0.417 

CPIII � 0. 405 0.420 0.370 0.293 

IB:   0.1734 IB-SI ( �  = 0.07):   0.1995 

Agreement between the experts:   0.462 

is remarkable therefore that most variations of our 
method approximate rather closely the upper 
bound of the level of agreement between the ex-
perts.  Further, we have shown the merit of pro-
moting shared cross-subset patterns and 
neutralizing topic-specific regularities in a newly 
introduced dedicated computational step.  Methods 
that do not consider this direction (IB) or that in-
corporate it within a more conventional cost based 
search (IB-SI) yield notably poorer performance. 

6 Disscussion  

In this paper, we studied and demonstrated the 
cross partition method, a computational framework 
that addresses the task of identifying analogies and 
correspondences in texts.  Our approach to this 
problem bridges between cognitive observations 
regarding analogy making, which have inspired it, 
and unsupervised learning techniques. 

While previous cognitively-motivated computa-
tional frameworks required structured input (e.g. 
Falkenhainer et al., 1989), the CP method adapts 
distributional clustering (Pereira et al., 1993), a 
standard approach applicable to unstructured data.  
Unlike standard clustering, the CP method consid-
ers an additional source of information: pre-
partition of the clustered data to several topical 
subsets (originated in different sub-corpora) be-
tween which a correspondence is drawn.   

The innovative aspect of the cross-partition 
method lies in distinguishing feature information 
that cuts across the given pre-partition to subsets 

985



versus subset-specific information.  In order to in-
corporate this aspect within distributional cluster-
ing, the CP method interleaves several update 
steps, each locally optimizing a different cost term. 

Our experiments demonstrate that the CP 
method is capable of revealing interesting and non-
trivial corresponding themes in texts.  The results 
obtained with most variants of the CP method, 
with suitable tuning of the parameters, outperform 
comparable methods – standard distributional clus-
tering and the IB-SI method – and are rather close 
to the level of agreement between experts. 

The CP method revealed, along various resolu-
tion levels, meaningful themes that to our under-
standing can be considered prominent constituents 
of Religion.  It would be an interesting challenge to 
apply the CP framework further for other tasks, 
possibly with more practical flavor, such as com-
paring and detecting commonalities between 
commercial products and firms, identifying equiva-
lencies and precedents in legal cases and so on. 
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Appendix 

This appendix specifies the four “ local”  cost terms men-
tioned in Section 4 and describes how the CP algo-
rithmic framework (Fig. 2) modifies them. 

Step (1) of the CP framework computes p� c� x�  values 
that reduce the value of the following term: 

FCP1
� � � � � � �  H� C� � � 
 � H � C� X� � 
 � 	 �

�
*�Y� C� � , 

where 
�

*�Y� C� � � � 
 � � x � p�x� � � c � p�c � x � � � y � p�y� x � � log� p*�y � c � .  
The p*�y � c �  values are considered as if they are constant. 

Step (2) computes p�c � x �  values reducing the value of 

FCP2 � � � 
 � � x � p�x � � � c � p�c � x � � � y � p�y � x � � � w� p�w� x � � log� p�y� c� w� �  

which is equal to H�Y� C� W� , subject to an independence 
assumption extending the assumption explicated in  
footnote 4, namely for each feature y, cluster c, and pre-
given subset w: p�c � y,w� � � � � x � p�x � � p�c � x � � p�y� x � � p�w� x � . 

Step (3) finds p*�c � y �  values that reduce the value of 

FCP3 � � � � � � �  H*�C� � 
 � H*�C� Y � � 
 � �  

�
�Y �C� W� � , 

where H*�C� Y � � � � � � 
 � � y � p�y � � � c � p*�c � y � � log� p*�c � y �  and �
�Y� C� W� � � � � � 
 � � w� p�w� � � y � p�y� � � c � p*�c � y � � log� p�y� c� w� � , 

which is equal to the conditioned entropy H�Y� C� W�  
under an assumption that W is independent of C and Y.  
The p�y � c,w�  values in this term are considered as if they 
are held constant. 

Step (4) finds p*�y � c �  values that reduce the value of 

FCP4 � � � � � � 
 � � y � p�y� � � c � p*�c � y � � log� p*�y � c � � , 

which can be denoted H*�Y �C� . The p*�c � y �  values 
are considered as if they are constant. 

The underlined H�C �  and H*�C �  terms in FCP1 and FCP3 
are optional; there inclusion implies the inclusion of the 
prior terms in steps (1) and (3) of the algorithm (see 
Figure 2). 
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Abstract

Many language processing tasks can be re-
duced to breaking the text into segments
with prescribed properties. Such tasks
include sentence splitting, tokenization,
named-entity extraction, and chunking.
We present a new model of text segmenta-
tion based on ideas from multilabel clas-
sification. Using this model, we can natu-
rally represent segmentation problems in-
volving overlapping and non-contiguous
segments. We evaluate the model on en-
tity extraction and noun-phrase chunking
and show that it is more accurate for over-
lapping and non-contiguous segments, but
it still performs well on simpler data sets
for which sequential tagging has been the
best method.

1 Introduction

Text segmentation is a basic task in language pro-
cessing, with applications such as tokenization, sen-
tence splitting, named-entity extraction, and chunk-
ing. Many parsers, translation systems, and extrac-
tion systems rely on such segmentations to accu-
rately process the data. Depending on the applica-
tion, segments may be tokens, phrases, or sentences.
However, in this paper we primarily focus on seg-
menting sentences into tokens.

The most common approach to text segmenta-
tion is to use finite-state sequence tagging mod-
els, in which each atomic text element (character

or token) is labeled with a tag representing its role
in a segmentation. Models of that form include
hidden Markov models (Rabiner, 1989; Bikel et
al., 1999) as well as discriminative tagging mod-
els based on maximum entropy classification (Rat-
naparkhi, 1996; McCallum et al., 2000), conditional
random fields (Lafferty et al., 2001; Sha and Pereira,
2003), and large-margin techniques (Kudo and Mat-
sumoto, 2001; Taskar et al., 2003). Tagging mod-
els are the best previous methods for text segmen-
tation. However, their purely sequential form limits
their ability to naturally handle overlapping or non-
contiguous segments.

We present here an alternative view of segmenta-
tion as structured multilabel classification. In this
view, a segmentation of a text is a set of segments,
each of which is defined by the set of text positions
that belong to the segment. Thus, a particular seg-
ment may not be a set of consecutive positions in
the text, and segments may overlap. Given a text
x = x1 · · · xn, the set of possible segments, which
corresponds to the set of possible classification la-
bels, is seg(x) = {O,I}n; for y ∈ seg(x), yi = I
iff xi belongs to the segment. Then, our segmen-
tation task is to determine which labels are correct
segments in a given text. We have thus a structured
multilabel classification problem: each instance, a
text, may have multiple structured labels, represent-
ing each of its segments. These labels are structured
in that they do not come from a predefined set, but
instead are built from sets of choices associated to
the elements of arbitrarily long instances.

More generally, we may be interested in typed
segments, e.g. segments naming different types of
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entities. In that case, the set of segment labels is
seg(x) = T × {O,I}n, where T is the set of seg-
ment types. Since the extension is straightforward,
we frame the discussion in terms of untyped seg-
ments, and only discuss segment types as needed.

At first sight, it might appear that we have made
the segmentation problem intractably harder by turn-
ing it into a classification problem with a number
of labels exponential on the length of the instance.
However, we can bound the number of labels under
consideration and take advantage of the structure of
labels to find the k most likely labels efficiently. This
will allow us to exploit recent advances in online dis-
criminative methods for multilabel classification and
ranking (Crammer and Singer, 2002).

Though multilabel classification has been well
studied (Schapire and Singer, 1999; Elisseeff and
Weston, 2001), as far as we are aware, this is the
first study involving structured labels.

2 Segmentation as Tagging

The standard approach to text segmentation is to use
tagging techniques with a BIO tag set. Elements in
the input text are tagged with one of B for the be-
ginning of a contiguous segment, I for the inside
of a contiguous segment, or O for outside a seg-
ment. Thus, segments must be contiguous and non-
overlapping. For instance, consider the sentence Es-
timated volume was a light 2.4 million ounces. Fig-
ure 1a shows how this sentence would be labeled
using the BIO tag set for the problem of identifying
base NPs in text. Given a particular tagging for a
sentence, it is trivial to find all the segments, those
whose tag sequences are longest matches for the reg-
ular expression BI∗. For typed segments, the BIO
tag set is easily augmented to indicate not only seg-
ment boundaries, but also the type of each segment.
Figure 1b exemplifies the tags for the task of finding
people and organizations in text.

Sequential tagging with the BIO tag set has
proven quite accurate for shallow parsing and named
entity extraction tasks (Kudo and Matsumoto, 2001;
Sha and Pereira, 2003; Tjong Kim Sang and
De Meulder, 2003). However, this approach
can only identify non-overlapping, contiguous seg-
ments. This is sufficient for some applications, and
in any case, most training data sets are annotated

without concern for overlapping or non-contiguous
segments. However, there are instances in which se-
quential labeling techniques using the BIO label set
will encounter problems.

Figure 2 shows two simple examples of segmen-
tations involving overlapping, non-contiguous seg-
ments. In both cases, it is difficult to see how a
sequential tagger could extract the segments cor-
rectly. It would be possible to grow the tag set to
represent a bounded number of overlapping, non-
contiguous segments by representing all possible
combinations of segment membership over k over-
lapping segments, but this would require an arbitrary
upper bound on k and would lead to models that gen-
eralize poorly and are expensive to train.

Dickinson and Meurers (2005) point out that, as
language processing begins to tackle problems in
free-word order languages and discourse analysis,
annotating and extracting non-contiguous segmen-
tations of text will become increasingly important.
Though we focus primarily on entity extraction and
NP chunking in this paper, there is no reason why
ideas presented here could not be extended to man-
aging other non-contiguous phenomena.

3 Structured Multilabel Classification

As outlined in Section 1, we represent segmentation
as multilabel classification, assigning to each text
the set of segments it contains. Figure 3 shows the
segments for the examples of Figure 2. Each seg-
ment is given by a O/I assignment to its words, in-
dicating which words belong to the segment.

By representing the segmentation problems as
multilabel classification, we have fundamentally
changed the objective of our learning and inference
algorithms. The sequential tagging formulation is
aimed to learn and find the best possible tagging of
a text. In multilabel classification, we train model
parameters so that correct labels — that is, correct
segments – receive higher score than all incorrect
ones. Likewise, inference becomes the problem of
finding the set of correct labels for a text, that is, the
set of correct segments.

We now describe the learning problem using the
decision-theoretic multilabel classification and rank-
ing framework of Crammer and Singer (2002) and
Crammer (2005) as our starting point. In Sec-
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a. Estimated volume was a light 2.4 million ounces .
B I O B I I I I O

b. Bill Clinton and Microsoft founder Bill Gates met today for 20 minutes .
B-PER I-PER O B-ORG O B-PER I-PER O O O O O O

Figure 1: Sequential labeling formulation of text segmentation using the BIO label set. a) NP-chunking
tasks. b) Named-entity extraction task.

a) Today, Bill and Hilary Clinton traveled to Canada.
- Person: Bill Clinton
- Person: Hilary Clinton

b) ... purified bovine P450 11 beta / 18 / 19 - hydroxylase was ...
- Enzyme: P450 11 beta-hydroxylase
- Enzyme: P450 18-hydroxylase
- Enzyme: P450 19-hydroxilase

Figure 2: Examples of overlapping and non-contiguous text segmentations.

tion 3.2, we describe a polynomial-time inference
algorithm for finding up to k correct segments.

3.1 Training Multilabel Classifiers

Our model is based on a linear score s(x,y; w) for
each segment y of text x, defined as

s(x,y; w) = w · f(x,y)

where f(x,y) is a feature vector representation of
the sentence-segment pair, and w is a vector of
feature weights. For a given text x, act(x) ⊆
seg(x) denotes the set of correct segments for x, and
bestk(x; w) denotes the set of k segments with high-
est score relative to the weight vector w. For learn-
ing, we use a training set T = {(xt, act(xt))}

|T |
t=1 of

texts labeled with the correct segmentation.
We will discuss later the design of f(x,y) and an

efficient algorithm for finding the k highest scoring
segments (where k is sufficiently large to include
all correct segments). In this section, we present a
method for learning a weight vector w that seeks to
score correct segments above all incorrect segments.

Crammer and Singer (2002), extended by Cram-
mer (2005), provide online learning algorithms for
multilabel classification and ranking that take one
instance at a time, construct a set of scoring con-
straints for the instance, and adjust the weight vec-
tor to satisfy the constraints. The constraints en-
force a margin between the scores of correct labels
and those of incorrect labels. The benefits of large-
margin learning are best known from SVMs (Cris-
tianini and Shawe-Taylor, 2000; Schölkopf and

Training data: T = {(xt, act(xt))}
|T |
t=1

1. w(0) = 0; i = 0
2. for n : 1..N

3. for t : 1..|T |

4. w(i+1) = arg minw
‚

‚

‚
w −w(i)

‚

‚

‚

2

s.t. s(xt, y; w) ≥ s(xt, y
′; w) + 1

∀y ∈ act(xt), ∀y
′ ∈ bestk(xt; w(i))− act(xt)

6. i = i + 1

7. w = w(N∗|T |)

Figure 4: A simplified version of the multilabel
learning algorithm of Crammer and Singer (2002).

Smola, 2002), and are analyzed in detail by Cram-
mer (2005) for online multilabel classification.

For segmentation, the number of possible labels
(segments) is exponential on the length of the text.
We make the problem tractable by including only the
margin constraints between correct segments and at
most k highest scoring incorrect segments. Figure 4
sketches an online learning algorithm for multilabel
classification based on the work of Crammer (2005).
In the algorithm, w(i+1) is the projection of w(i) onto
the set of weight vectors such that the scores of cor-
rect segments are separated by a margin of at least
1 from the scores of incorrect segments among the
k top-scoring segments. This update is conservative
in that there is no weight change if the constraint set
is already satisfied or empty; if some constraints are
not satisfied, we make the smallest weight change
that satisfies the constraints. Since, the objective is
quadratic in w and the constraints are linear, the op-
timization problem can be solved by Hildreth’s al-
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a) Today , Bill and Hilary Clinton traveled to Canada .
O O I O O I O O O O
O O O O I I O O O O

b) ... purified bovine P450 11 beta / 18 / 19 - hydroxylase was ...
O O I I I O O O O I I O
O O I O O O I O O I I O
O O I O O O O O I I I O

Figure 3: Correct segments for two examples.

gorithm (Censor and Zenios, 1997).
Using standard arguments for linear classifiers

(add constant feature, rescale weights) and the fact
that all the correct scores in line 4 of Figure 4 are re-
quired to be above all the incorrect scores in the top
k, that line can be replaced by

w(i+1) = arg minw
∥

∥w − w(i)
∥

∥

2

s.t. s(xt,y; w) ≥ 1 and s(xt,y
′; w) ≤ −1

∀y ∈ act(xt),∀y
′ ∈ bestk(xt; w(i)) − act(xt)

If v is the number of correct segments for x,
this transformation replaces O(kv) constraints with
O(k + v) constraints: segment scores are compared
to a single positive or negative threshold rather then
to each other. At test time, we find the segments
with positive score by finding the k highest scoring
segments and discarding those with a negative score.

3.2 Inference

During learning and at test time we require a method
for finding the k highest scoring segments. At test
time, we predict as correct all the segments with pos-
itive score in the top k. In this section we give an
algorithm that calculates this precisely.

For inference, tagging models typically use the
Viterbi algorithm (Rabiner, 1989). The algorithm is
given by the following standard recurrences:

S[i, t] = maxt′ s(t
′, t, i) + S[i − 1, t′]

B[i, t] = arg maxt′ s(t
′, t, i) + S[i − 1, t′]

with appropriate initial conditions, where s(t′, t, i)
is the score for going from tag t′ at i − 1 to tag t

at i. The dynamic programming table S[i, t] stores
the score of the best tag sequence ending at posi-
tion i with tag t, and B[i, t] is a back-pointer to the
previous tag in the best sequence ending at i with
t, which allows us to reconstruct the best sequence.
The Viterbi algorithm has easy k-best extensions.

We could find the k highest scoring segments us-
ing Viterbi. However, for the case of non-contiguous
segments, we would like to represent higher-order
dependencies that are difficult to model in Viterbi. In
particular, in Figure 3b we definitely want a feature
bridging the gap between Bill and Clinton, which
could not be captured with a standard first-order
model. But moving to higher-order models would
require adding dimensions to the dynamic program-
ming tables S and B, with corresponding multipliers
to the complexity of inference.

To represent dependencies between non-
contiguous text positions, for any given segment
y = y1 · · · yn, let i(y) = 0i1 · · · im(n + 1) be the
increasing sequence of indices ij such that yij = I,
padded for convenience with the dummy first index
0 and last index n + 1. Also for convenience, set
x0 = -s- and xn+1 = -e- for fixed start and
end markers. Then, we restrict ourselves to feature
functions f(x,y) that factor relative to the input as

f(x,y) =

|i(y)|
∑

j=1

g(i(y)j−1, i(y)j) (1)

where i(y)j is the jth integer in i(y) and g is a fea-
ture function depending on arbitrary properties of
the input relative to the indices i(y)j−1 and i(y)j .

Applying (1) to the segment Bill Clinton in Fig-
ure 3, its score would be

w · [g(0, 3) + g(3, 6) + g(6, 11)]

This feature representation allows us to include de-
pendencies between non-contiguous segment posi-
tions, as well as dependencies on any properties of
the input, including properties of skipped positions.

We now define the following dynamic program

S[i] = maxj<i S[j] + w · g(j, i)
B[i] = arg maxj<i S[j] + w · g(j, i)
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These recurrences compute the score S[i] of the best
partial segment ending at i as the sum of the max-
imum score of a partial segment ending at position
j < i, and the score of skipping from j to i. The
back-pointer table B allows us to reconstruct the se-
quence of positions included in the segment.

Clearly, this program requires O(n2) time for a
text of length n. Furthermore we can easily augment
this algorithm in the standard fashion to find the k

best segments, and multiple segment types, result-
ing in a runtime of O(n2kT ), where T is the number
of types. O(n2kT ) is not ideal, but is still practical
since in this work we are segmenting sentences. If
we can bound the largest gap in any non-contiguous
segment by a constant g � n, then the runtime can
be improved to O(ngkT ). This runtime does not
compare favorably to the standard Viterbi algorithm
that runs in O(nT 2), especially for large k. How-
ever, we found that for even large k we could still
train large models in a matter of hours and test on
unseen data in a few minutes.

3.2.1 Restrictions

Often a segmentation task or data set will restrict
particular kinds of segments. For instance, it may be
the case that a data set does not have any overlap-
ping or non-contiguous segments. Embedded seg-
mentations – those in which one segment’s tokens
are a subset of another’s – is also a phenomenon that
sometimes does not occur.

It is easy to restrict the inference algorithm to dis-
allow such segments if they are unnecessary. For ex-
ample, if two segments overlap or are embedded, the
inference algorithm can just return the highest scor-
ing one. Or it can simply ignore all non-contiguous
segments if it is known that they do not occur in the
data. In Section 4 we will augment the inference
algorithm accordingly for each data set.

3.3 Feature Representation

We now discuss the design of the feature function
for two consecutive segment positions g(j, i), where
j < i. We build individual binary-valued features
from predicates over the input, for instance, the iden-
tities of words in the sentence at particular posi-
tions relative to i and j. The selection of predicates
varies by task, and we provide specific predicate sets
in Section 4 for various data sets. In this section,

we use for illustration word-pair identity predicates
such as xj = Bill & xi = Clinton.

For sequential tagging models, predicates are
combined with the set of states (or tags) to create
a feature representation. For our model, we define
the following possible states:

start ≡ j = 0
end ≡ i = n + 1

next ≡ j = i − 1
skip ≡ j < i − 1

For example, the following features would be on for
g(0, 3)1 and g(3, 6), respectively, in Figure 3a:

xj = -s- & xi = Bill & start
xj = Bill & xi = Clinton & skip

These features indicate a predicate’s role in the seg-
ment: at the beginning, at the end, over contiguous
segment words or skipping over some words. All
features can be augmented to indicate specific seg-
ment types for multi-type segmentation tasks. No
matter what the task, we always add predicates that
represent ranges of the distance i−j, as well as what
words or part-of-speech tags occur between the two
words. For instance, g(3, 6) might contain

word-in-between= and & skip

These features are designed to identify common
characteristics of non-contiguous segments such
as the presence of conjunctions or punctuation in
skipped portions. Although we have considered only
binary features here, the model in principle allows
arbitrary real-valued feature.

3.4 Summary

We presented a method for text segmentation that
equates the problem to structured multilabel classi-
fication where each label corresponds to a segment.
We showed that learning and inference can be man-
aged tractably in the formulation by efficiently find-
ing the k highest scoring segments through a dy-
namic programming algorithm that factors the struc-
ture of each segment. The only concern is that k

must be large enough to include all correct segments,

1Note that “skip” is not on for g(0, 3) even though j < i−1.
Start and end states override other states.
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which we will discuss further in Section 4. This
method naturally models all possible segmentations
including those with overlapping or non-contiguous
segments. Out approach can be seen as multilabel
variant of the work of McDonald et al. (2004), which
creates a set of constraints to separate the score of
the single correct output from the k highest scoring
outputs with an appropriate large margin.

4 Experiments

We now describe a set of experiments on named en-
tity and base NP segmentation. For these experi-
ments, we set k = n, where n is the length of the
sentence. This represents a reasonable upper bound
on the number of entities or chunks in a sentence and
results in a time complexity of O(n3T ).

We compare our methods with both the averaged
perceptron (Collins, 2002) and conditional random
fields (Lafferty et al., 2001) using identical predicate
sets. Though all systems use identical predicates, the
actual features of the systems are different due to
the fundamental differences between the multilabel
classification and sequential tagging models.

4.1 Standard data sets

Our first experiments are standard named entity and
base NP data sets with no overlapping, embedded or
non-contiguous segments. These experiments will
show that, for simple segmentations, our model is
competitive with sequential tagging models.

For the named entity experiments we used the
CoNLL 2003 (Tjong Kim Sang and De Meulder,
2003) data with people, organizations, locations and
miscellaneous entities. We used standard predicates
based on word, POS and orthographic information
over a previous to next word window. For the NP
chunking experiments we used the standard CoNLL
2000 data set (Kudo and Matsumoto, 2001; Sha and
Pereira, 2003) using the predicate set defined by Sha
and Pereira (2003).

The first three rows of Table 1 compare the mul-
tilabel classification approach to standard sequen-
tial classifiers. As one might expect, the perfor-
mance of the multilabel classification method is be-
low that of the sequential tagging methods. This is
because those methods model contiguous segments
well without the need for thresholds or k-best infer-

ence. In addition, the multilabel method shows sig-
nificantly higher precision then recall. One possible
reason for this is that during the course of learning,
the model will see many segments that are nearly
correct, e.g., segments that overlap correct segments
and differ by a single token. As a result, the model
learns to score all segments containing even a small
amount of negative evidence as invalid in order to
ensure that these nearly correct segments have a suf-
ficiently low score.

One way to alleviate this problem is to restrict the
inference algorithm to not return any overlapping,
non-contiguous or embedded segmentations as dis-
cussed in Section 3.2.1, since this data set does not
contain segments of this kind. This way, the learning
stage only updates the parameters when a nearly cor-
rect segment actually out scores the correct one. The
results of this system are shown in row 4 of Table 1.
We can see that this change did lead to a more bal-
anced precision/recall, however it is clear that more
investigation is required.

4.2 Chemical substance extraction

The second set of experiments involves extract-
ing chemical substance names from MEDLINE ab-
stracts that relevant to the inhibition of the enzyme
CYP450 (PennBioIE, 2005). We focus on abstracts
that have at least one overlapping or non-contiguous
annotation. This data set contains 6164 annotated
chemical substances, including 6% that are both
overlapping and non-contiguous. Figure 3b is an
example from the corpus. We use identical predi-
cates to the named entity experiments in Section 4.1.
Though the data does contain overlapping and non-
contiguous segments, it does not contain embedded
segments. Results are shown in Table 2 using 10-
fold cross validation. The sequential tagging models
were trained using only sentences with no overlap-
ping or non-contiguous entities. We found this pro-
vided the best performance. Row 4 of Table 2 shows
the multilabel approach with the inference algorithm
restricted to not allow embedded segments.

We can see that our method does significantly bet-
ter on this data set (up to a 26% reduction in er-
ror). It is also apparent that the model is picking up
some overlapping and non-contiguous entities (see
Table 2). However, the models performance on these
kinds of entities is lower than overall performance.
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a. Named-Entity Extraction b. NP-chunking
Precision Recall F-measure Precision Recall F-measure

Avg. Perceptron 82.46 83.14 82.80 94.22 93.88 94.05
CRFs 83.36 83.57 83.47 94.57 94.00 94.29

Multilabel 92.47 74.19 82.33 94.65 92.28 93.45
Multilabel with Restrictions 91.08 76.68 83.26 94.10 93.70 93.90

Table 1: Results for named-entity extraction and NP-chunking on data sets with only non-overlapping and
contiguous segments annotated.

Chem Substance Extraction - A Chem Substance Extraction - B
Precision Recall F-measure Precision Recall F-measure

Avg. Perceptron 82.98 79.40 81.15 1.0 0.0 0.0
CRFs 85.85 79.06 82.31 1.0 0.0 0.0

Multilabel 88.24 80.84 84.38 62.56 33.67 43.78
Multilabel with Restrictions 88.55 84.59 86.53 72.58 45.92 56.25

Table 2: Results for chemical substance extraction. Table A is for all entities in the data set and Table B is
only for those entities that are overlapping and non-contiguous.

4.3 Tuning Precision and Recall

The learning algorithm in Section 3.1 seeks a sep-
arator through the origin, though, our experimental
results suggest that this tends to favor precision at
the expense of recall. However, at test time we can
use a separation threshold different from zero. This
parameter allows us to trade off precision against re-
call, and could be tuned on held-out data.

Figure 5 plots precision, recall and f-measure
against the threshold for the basic multilabel model
on the chemical substance, NP chunking and person
entity extraction data sets. These plots clearly show
what is expected: higher thresholds give higher pre-
cision, and lower thresholds give higher recall. In
these data sets at least, a zero threshold is almost
always near optimal, though sometimes we would
benefit from a slightly lower threshold.

5 Discussion

We have presented a method for text segmentation
that is base on discriminatively learning structured
multilabel classifications. The benefits include

• Competitive performance with sequential tag-
ging models.

• Flexible modeling of complex segmentations,
including overlapping, embedded and non-
contiguous segments.

• Adjustable precision-recall trade off.

However, there is a computation cost for our models.
For a text of length n, training and testing require

O(n3T ) time, where T is the number of segment
types. Fortunately, this still results in training times
on the order of hours.

Our approach is related to the work of Bockhorst
and Craven (2004). In this work, a conditional ran-
dom field model is trained to allow for overlapping
segments with an O(n2) inference algorithm. The
model is applied to biological sequence modeling
with promising results. However, our approaches
differ in two major respects. First, their model is
probabilistic, and trained to maximize segmenta-
tion likelihood, while our model is trained to max-
imize margin. Second, our method allows for non-
contiguous segments, at the cost of a slower O(n3)
inference algorithm.

In further work, the classification threshold
should also be learned to achieve the desired balance
between precision and recall. It would also be useful
to investigate methods for combining these models
with standard sequential tagging models to get top
performance on simple segmentations as well as on
overlapping or non-contiguous ones.

A broader area of investigation are other problems
in language processing that can benefit from struc-
tured multilabel classification, e.g., ambiguities in
language often result in multiple acceptable parses
for sentences. It may be possible to extend the al-
gorithms presented here to learn to distinguish all
acceptable parses from unacceptable ones instead of
just finding a single parse when many are valid.
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Figure 5: Precision (squares), Recall (circles) and F-measure (line) plotted against threshold values. CHEM:
chemical substance extraction, NP: noun-phrase chunking, and PER: person name extraction.
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Abstract

We present a novel voice-based human-
computer interface designed to enable in-
dividuals with motor impairments to use
vocal parameters for continuous control
tasks. Since discrete spoken commands
are ill-suited to such tasks, our interface
exploits a large set of continuous acoustic-
phonetic parameters like pitch, loudness,
vowel quality, etc. Their selection is opti-
mized with respect to automatic recogniz-
ability, communication bandwidth, learn-
ability, suitability, and ease of use. Pa-
rameters are extracted in real time, trans-
formed via adaptation and acceleration,
and converted into continuous control sig-
nals. This paper describes the basic en-
gine, prototype applications (in particu-
lar, voice-based web browsing and a con-
trolled trajectory-following task), and ini-
tial user studies confirming the feasibility
of this technology.

1 Introduction

Many existing human-computer interfaces (e.g.,
mouse and keyboard, touch screens, pen tablets,
etc.) are ill-suited to individuals with motor
impairments. Specialized (and often expensive)
human-computer interfaces that have been devel-
oped specifically for this target group include sip
and puff switches, head mice, eye-gaze devices, chin
joysticks and tongue switches. While many indi-
viduals with motor impairments have complete use

∗This material is based on work supported by the National
Science Foundation under grant IIS-0326382.

of their vocal system, these devices make little use
of it. Sip and puff switches, for example, have low
communication bandwidth, making it impossible to
achieve more complex control tasks.

Natural spoken language is often regarded as
the obvious choice for a human-computer inter-
face. However, despite significant research efforts
in automatic speech recognition (ASR) (Huang et
al., 2001), existing ASR systems are still not suf-
ficiently robust to a wide variety of speaking condi-
tions, noise, accented speakers, etc. ASR-based in-
terfaces are therefore often abandoned by users after
a short initial trial period. In addition, natural speech
is optimal for communication between humans but
sub-optimal for manipulating computers, windows-
icons-mouse-pointer (WIMP) interfaces, or other
electro-mechanical devices (such as a prosthetic ro-
botic arm). Standard spoken language commands
are useful for discrete but not for continuous op-
erations. For example, in order to move a cursor
from the bottom-left to the upper-right of a screen,
the user might have to repeatedly utter “up” and
“right” or “stop” and “go” after setting an initial tra-
jectory and rate, which is quite inefficient. For these
reasons, we are developing alternative and reusable
voice-based assistive technology termed the “Vocal
Joystick” (VJ).

2 The Vocal Joystick

The VJ approach has three main characteristics:
1) Continuous control parameters: Unlike standard
speech recognition, the VJ engine exploits continu-
ous vocal characteristics that go beyond simple se-
quences of discrete speech sounds (such as syllables
or words) and include e.g., pitch, vowel quality, and
loudness, which are then mapped to continuous con-
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trol parameters.
2) Discrete vocal commands: Unlike natural speech,
the VJ discrete input language is based on a pre-
designed set of sounds. These sounds are selected
with respect to acoustic discriminability (maximiz-
ing recognizer accuracy), pronounceability (reduc-
ing potential vocal strain), mnemonic characteris-
tics (reducing cognitive load), robustness to environ-
mental noise, and application appropriateness.
3) Reusable infrastructure: Our goal is not to create
a single application but to provide a modular library
that can be incorporated by developers into a variety
of applications that can be controlled by voice. The
VJ technology is not meant to replace standard ASR
but to enhance and be compatible with it.

2.1 Vocal Characteristics

Three continuous vocal characteristics are extracted
by the VJ engine:energy, pitch, and vowel qual-
ity, yielding four specifiable continuous degrees of
freedom. The first of these, localized acousticen-
ergy, is used for voice activity detection. In addi-
tion, it is normalized relative to the current vowel
detected (see Section 3.3), and is used by our cur-
rent VJ-WIMP application (Section 4) to control the
velocity of cursor movements. For example, a loud
voice causes a faster movement than does a quiet
voice. The second parameter,pitch, is also extracted
but is currently not mapped to any control dimension
in the VJ-WIMP application but will be in the future.
The third parameter isvowel quality. Unlike conso-
nants, which are characterized by a greater degree of
constriction in the vocal tract, vowels have much in-
herent signal energy and are therefore well-suited to
environments where both high accuracy and noise-
robustness are crucial. Vowels can be characterized
using a 2-D space parameterized by F1 and F2, the
first and second vocal-tract formants (resonant fre-
quencies). We initially experimented with directly
extracting F1/F2 and using them for directly spec-
ifying 2-D continuous control. While we have not
ruled out the use of F1/F2 in the future, we have
so far found that even the best F1/F2 detection al-
gorithms available are not yet accurate enough for
precise real-time specification of movement. There-
fore, we classify vowels directly and map them onto
the 2-D vowel space characterized by degree of con-
striction (i.e., tongue height) and tongue body posi-
tion (Figure 1). In our VJ-WIMP application, we use
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Figure 1: Vowel configurations as a function of their
dominant articulatory configurations.

the four corners of this chart to map to the 4 princi-
ple directions of up, down, left, and right as shown
in Figure 2 (note that the two figures are flipped and
rotated with respect to each other). We have four
different VJ systems running: A) a4-class system
allowing only the specification of the 4 principle di-
rections; B) a5-class systemthat also includes the
phone [ax] to act as a carrier when wishing to vary
only pitch and loudness; C) a8-classsystem that in-
cludes the four diagonal directions; and D) a9-class
system that includes all phones and directions. Most
of the discussion in this paper refers to the 4-class
system.

A fourth vocal characteristic is also extracted
by the VJ engine, namelydiscrete sounds. These
sounds may correspond to button presses as on a
mouse or joystick. The choice of sounds depends
on the application and are chosen according to char-
acteristic 2 above.

3 The VJ Engine

Our system-level design goals are modularity, low
latency, and maximal computational efficiency. For
this reason, we share common signal processing
operations in multiple signal extraction modules,
which yields real-time performance but leaves con-
siderable computational headroom for the back-end
applications being driven by the VJ engine.

Figure 3 shows the VJ engine architecture having
three modules: signal processing, pattern recogni-
tion, and motion control.

3.1 Signal Processing

The goal of the signal processing module is to ex-
tract low-level acoustic features that can be used in
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estimating the vocal characteristics. The features we
use are energy, normalized cross-correlation coeffi-
cients (NCCC), formant estimates, Mel-frequency
cepstral coefficients (MFCCs), and formant esti-
mates. To extract features, the speech signal is PCM
sampled at a rate ofFs =16,000Hz. Energy is mea-
sured on a frame-by-frame basis with a frame size
of 25ms and a frame step of 10ms. Pitch is ex-
tracted with a frame size of 40ms and a frame step of
10ms. Multiple pattern recognition tasks may share
the same acoustic features: for example, energy and
NCCCs are used for pitch tracking, and energy and
MFCCs can be used in vowel classification and dis-
crete sound recognition. Therefore, it is more ef-
ficient to decouple feature extraction from pattern
recognition, as is shown in Figure 3.

3.2 Pattern Recognition

The pattern recognition module uses the acoustic
features to extract desired parameters. The estima-
tion and classification system must simultaneously
performenergycomputation (available from the in-

put), pitch tracking, vowel classification, and dis-
crete sound recognition.

Many state-of-the-artpitch trackersare based on
dynamic programming (DP). This, however, often
requires the meticulous design of local DP cost func-
tions. The forms of these cost functions are usu-
ally empirically determined and/or their parameters
are tuned by algorithms such as gradient descent
(D.Talkin, 1995). Since different languages and ap-
plications may follow very different pitch transition
patterns, the cost functions optimized for certain lan-
guages and applications may not be the most appro-
priate for others. Our VJ system utilizes a graphi-
cal model mechanism to automatically optimize the
parameters of these cost functions, and has been
shown to yield state-of-the-art performance (X.Li et
al., 2004; J.Malkin et al., 2005).

For frame-by-framevowel classification, our de-
sign constraints are the need for extremely low la-
tency and low computational cost. Probability es-
timates for vowel classes thus need to be obtained
as soon as possible after the vowel has been uttered
or after any small change in voice quality has oc-
curred. It is well known that models of vowel clas-
sification that incorporate temporal dynamics such
as hidden Markov models (HMMs) can be quite ac-
curate. However, the frame-by-frame latency re-
quirements of VJ make HMMs unsuitable for vowel
classification since HMMs estimate the likelihood
of a model based on the entire utterance. An alter-
native is to utilize causal “HMM-filtering”, which
computes likelihoods at every frame based on all
frames seen so far. We have empirically found,
however, that slightly non-causal and quite local-
ized estimates of the vowel category probability
is sufficient to achieve user satisfaction. Specifi-
cally, we obtain probability estimates of the form
p(Vt|Xt−τ , . . . , Xt+τ ), whereV is a vowel class,
and Xt−τ , . . . , Xt+τ are feature frames within a
length2τ + 1 window of features centered at time
t. After several empirical trials, we decided on
neural networks for vowel classification because of
the availability of efficient discriminative training al-
gorithms and their computational simplicity. Specif-
ically we use a simple 2-layer multi-layer percep-
tron (Bishop, 1995) whose input layer consists of
26 ∗ 7 = 182 nodes, where 26 is the dimension of
Xt, the MFCC feature vector, and2τ + 1 = 7 is the
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number of consecutive frames, and that has50 hid-
den nodes (the numbers7 and50 were determined
empirically). The output layer has 4 output nodes
representing 4 vowel probabilities. During training,
the network is optimized to minimize the Kullback-
Leibler (K-L) divergence between the output and the
true label distribution, thus achieving the aforemen-
tioned probabilistic interpretation.

The VJ engine needs not only to detect that the
user is specifying a vowel (for continuous control)
but also a consonant-vowel-consonant (CVC) pat-
tern (for discrete control) quickly and with a low
probability of confusion (a VJ system also uses C
and CV patterns for discrete commands). Requir-
ing an initial consonant will phonetically distinguish
these sounds from the pure vowel segments used
for continuous control — the VJ system constantly
monitors for changes that indicate the beginning of
one of the discrete control commands. The vowel
within the CV and CVC patterns, moreover, can help
prevent background noise from being mis-classified
as a discrete sound. Lastly, each such pattern cur-
rently requires an ending silence, so that the next
command (a new discrete sound or continuous con-
trol vowel) can be accurately initiated. In all cases, a
simple threshold-based rejection mechanism is used
to reduce false positives.

To recognize the discrete control signals, HMMs
are employed since, as in standard speech recogni-
tion, time warping is necessary to normalize for dif-
ferent signal durations corresponding to the same
class. Specifically, we embed phone HMMs into
“word” (C, CV, or CVC) HMMs. In this way, it
is possible to train phone models using a training
set that covers all possible phones, and then con-
struct an application-specific discrete command vo-
cabulary without retraining by recombining existing
phone HMMs into new word HMMs. Therefore,
each VJ-driven application can have its own appro-
priate discrete sound set.

3.3 Motion Control: Direction and Velocity

The VJ motion control module receives several pat-
tern recognition parameters and processes them to
produce output more appropriate for determining 2-
D movement in the VJ-WIMP application.

Initial experiments suggested that using pitch to
affect cursor velocity (Igarashi and Hughes, 2001)
would be heavily constrained by an individual’s vo-

cal range. Giving priority to a more universal user-
independent VJ system, we instead focused on rela-
tive energy. Our observation that users often became
quiet when trying to move small amounts confirmed
energy as a natural choice. Drastically different in-
trinsic average energy levels for each vowel, how-
ever, meant that comparing all sounds to a global av-
erage energy would create a large vowel-dependent
bias. To overcome this, we distribute the energy per
frame among the different vowels, in proportion to
the probabilities output by the neural network, and
track the average energy for each vowel indepen-
dently. By splitting the power in this way, there is
no effect when probabilities are close to 1, and we
smooth out changes during vowel transitions when
probabilities are more evenly distributed.

There are many possible options for determining
velocity (a vector capturing both direction and speed
magnitude) and “acceleration” (a function determin-
ing how the control-to-display ratio changes based
on input parameters), and the different schemes have
a large impact on user satisfaction. Unlike a standard
mouse cursor, where the mapping is from 2-D hand
movement to a 2-D screen, the VJ system maps from
vocal-tract articulatory movement to a 2-D screen,
and the transformation is not as straightforward. All
values are for the current time framet unless indi-
cated otherwise. First, a raw direction value is cal-
culated for each axisj ∈ {x, y} as

dj =
∑

i

pi · 〈vi, ej〉 (1)

in which pi = p(Vt = i|Xt−τ,...,t+τ ) is the proba-
bility for vowel i at timet, vi is a unit vector in the
direction of voweli, ej is the unit-length positive di-
rectional basis vector along thej axis, and〈v, e〉 is
the projection of vectorv onto unit vectore. To de-
termine movement speed, we first calculate a scalar
for each axisj as

sj =
∑

i

max
[
0, gi

(
pi · f(

E

µi
)
)]

· |〈vi, ej〉|

whereE is the energy in the current frame,µi is the
average energy for voweli, andf(·) andgi(·) are
functions used for energy normalization and percep-
tual scaling (such as logs and/or cube-roots). This
therefore allocates frame energy to direction based
on the vowel probabilities. Lastly, we calculate the
velocity for axisj at the current frame as

Vj = β · sα
j · exp(γsj). (2)
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whereβ represents the overall system sensitivity and
the other values (α andγ) are warping constants, al-
lowing the user to control the shape of the accelera-
tion curve. Typically only one ofα andγ is nonzero.
Setting both to zero results in constant-speed move-
ment along each axis, whileα = 1 and γ = 0
gives a linear mapping that will scale motion with
energy but have no acceleration. The current user-
independent system usesβ = 0.6, γ = 1.0 and sets
α = 0. Lastly, the final velocity along axisj is Vjdj .
Future publications will report on systematic evalu-
ations of differentf(·) andgi(·) functions.

3.4 Motion Control: User Adaptation

Since vowel quality is used for continuous control,
inaccuracies can arise due to speaker variability ow-
ing to different speech loudness levels, vocal tract
lengths, etc. Moreover, a vowel class articulated by
one user might partially overlap in acoustic space
with a different vowel class from another user. This
imposes limitations on a purely user-independent
vowel classifier. Differences in speaker loudness
alone could cause significant unpredictability. To
mitigate these problems, we have designed an adap-
tation procedure where each user is asked to pro-
nounce four pre-defined vowel sounds, each last-
ing 2-3 seconds, at the beginning of a VJ ses-
sion. We have investigated several novel adaptation
strategies utilizing both neural networks and support
vector machines (SVM). The fundamental idea be-
hind them both is that an initial speaker-independent
transformation of the space is learned using train-
ing data, and is represented by the first layer of a
neural network. Adaptation data then is used to
transform various parameters of the classifier (e.g.,
all or sub-portions of the neural network, or the para-
meters of the SVM). Further details of some of these
novel adaptation strategies appear in (X.Li et al.,
2005), and the remainder will appear in forthcom-
ing publications. Also, the average energy values of
each vowel for each user are recorded and used to
normalize the speed control rate mentioned above.
Preliminary evaluations on the data so far collected
show very good results, with adaptation reducing the
vowel classification error rate by 18% for the 4-class
case, and 35% for the 8-class case. Moreover, infor-
mal studies have shown that users greatly prefer the
VJ system after adaptation than before.

4 Applications and Videos

Our overall intent is for VJ to interface with a va-
riety of applications, and our primary application
so far has been to drive a standard WIMP interface
with VJ controls, what we call theVJ-WIMP ap-
plication. The current VJ version allows left but-
ton clicks (press and release, using the consonant
[k]) as well as left button toggles (using consonant
[ch]) to allow dragging. Since WIMP interfaces
are so general, this allows us to indirectly control
a plethora of different applications. Video demon-
strations are available at the URL:http://ssli.
ee.washington.edu/vj .

One of our key VJ applications is vocal web
browsing. The video (dated 6/2005) shows exam-
ples of two web browsing tasks, one as an exam-
ple of navigating the New York Times web site, the
other using Google Maps to select and zoom in on a
target area. Section 5 describes a preliminary evalu-
ation on these tasks. We have also started using the
VJ engine to control video games (third video ex-
ample), have interfaced VJ with the Dasher system
(Ward et al., 2000) (we call it the “Vocal Dasher”),
and have also used VJ for figure drawing.

Several additional direct VJ-applications have
also been developed. Specifically, we have directly
interfaced the VJ system into a simple blocks world
environment, where more precise object movement
is possible than via the mouse driver. Specifically,
this environment can draw arbitrary trajectories, and
can precisely measure user fidelity when moving an
object along a trajectory. Fidelity depends both on
positional accuracy and task duration. One use of
this environment shows the spatial direction corre-
sponding to vocal effort (useful for training, forth
video example). Another shows a simple robotic
arm being controlled by VJ. We plan to use this
environment to perform formal and precise user-
performance studies in future work.

5 Preliminary User Study

We conducted a preliminary user study1 to evaluate
the feasibility of VJ and to obtain feedback regard-
ing specific difficulties in using the VJ-WIMP sys-
tem. While this study is not accurate in that: 1) it
does not yet involve the intended target population

1The user study presented here used an earlier version of VJ
than the current improved one described in the preceding pages.
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of individuals with motor impairments, and: 2) the
users had only a small amount of time to practice and
become adept at using VJ, the study is still indica-
tive of the VJ approach’s overall viability as a novel
voice-based human-computer interface method. The
study quantitatively compares VJ performance with
a standard desktop mouse, and provides qualitative
measurement of the user’s perception of the system.

5.1 Experiment Setup

We recruited seven participants ranging from age 22
to 26, none of whom had any motor impairment.
Of the seven participants, two were female and five
were male. All of them were graduate students in
Computer Science, although none of them had pre-
viously heard of or used VJ. Four of the participants
were native English speakers; the other three had an
Asian language as their mother tongue.

We used a Dell Inspiron 9100 laptop with a 3.2
GHz Intel Pentium IV processor running the Fedora
Core 2 operating system, with a 1280 x 800 24-bit
color display. The laptop was equipped with an ex-
ternal Microsoft IntelliMouse connected through the
USB port which was used for all of the tasks in-
volving the mouse. A head-mounted Amanda NC-
61 microphone was used as the audio input device,
while the audio feedback from the laptop was output
through the laptop speakers. The Firefox browser
was used for all of the tasks, with the browser screen
maximized such that the only portion of the screen
which was not displaying the contents of the web
page was the top navigation toolbar which was 30
pixels high.

5.2 Quantitative and Qualitative Evaluation

At the beginning of the quantitative evaluation, each
participant was given a brief description of the VJ
operations and was shown a demonstration of the
system by a practiced experimenter. The participant
was then guided through an adaptation process dur-
ing which she/he was asked to pronounce the four
directional vowels (Section 3.4). After adaptation,
the participant was given several minutes to practice
using a simple target clicking application. The quan-
titative portion of our evaluation followed a within-
participant design. We exposed each participant to
two experimental conditions which we refer to as
input modalities: themouseand theVJ. Each par-
ticipant completed two tasks on each modality, with

one trial per task.

The first task was a link navigation task (Link),
in which the participants were asked to start from a
specific web page and follow a particular set of links
to reach a destination. Before the trial, the experi-
menter demonstrated the specified sequence of links
to the participant by using the mouse and clicking at
the appropriate links. The participant was also pro-
vided with a sheet of paper for their reference that
listed the sequence of links that would lead them to
the target. The web site we used was a Computer
Science Department student guide and the task in-
volved following six links with the space between
each successive link including both horizontal and
vertical components.

The second task was map navigation (Map), in
which the participant was asked to navigate an on-
line map application from a starting view (showing
the entire USA) to get to a view showing a partic-
ular campus. The size of the map was 400x400
pixels, and the set of available navigation controls
surrounding the map included ten discrete zoom
level buttons, eight directional panning arrows, and
a click inside the map causing the map to be centered
and zoomed in by one level. Before the trial, a prac-
ticed experimenter demonstrated how to locate the
campus map starting from the USA view to ensure
they were familiar with the geography.

For each task, the participants performed one trial
using the mouse, and one trial using a 4-class VJ.
The trials were presented to the participants in a
counterbalanced order. We recorded the completion
time for each trial, as well as the number offalse
positives(system interprets a click when the user
did not make a click sound),missed recognitions
(the user makes a click sound but the system fails to
recognize it as a click), anduser errors(whenever
the user clicks on an incorrect link). The recorded
trial times include the time used by all of the above
errors including recovery time.

After the completion of the quantitative evalu-
ation, the participants were given a questionnaire
which consisted of 14 questions related to the partic-
ipants’ perception of their experience using VJ such
as the degree of satisfaction, frustration, and embar-
rassment. The answers were encoded on a 7-point
Likert scale. We also included a space where the
participants could write in any comments, and an in-

1000



0

10

20
30

40

50

60

70
80

90

100

Link Map

Task type

Ta
sk

 c
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

Mouse

Vocal Joystick

Figure 4: Task complement times

0
2
4
6
8

10
12
14
16
18
20

M, K
ore

a

M, N
ort

he
ast

M, M
idw

es
t

M, N
ort

he
ast

F, M
id-

Atla
nti

c

F, C
hin

a

M, C
hin

a

Participant (Gender, Origin)

N
um

be
r o

f m
is

se
d 

re
co

gn
iti

on
s

Link

Map

Figure 5: Missed recognitions by participant

formal post-experiment interview was performed to
solicit further feedback.

5.3 Results

Figure 4 shows the task completion times for Link
and Map tasks, Figure 5 shows the breakdown of
click errors by individual participants, Figure 6
shows the average number of false positive and
missed recognition errors for each of the tasks.
There was no instance of user error in any trial. Fig-
ure 7 shows the median of the responses to each of
the fourteen questionnaire questions (error bars in
each plot show± standard error). In our measure-
ment of the task completion times, we considered
the VJ’s recognition error rate as a fixed factor, and
thus did not subtract the time spent during those er-
rors from the task completion time.

There were several other interesting observations
that were made throughout the study. We noticed
that the participants who had the least trouble with
missed recognitions for the clicking sound were ei-

0

1
2

3
4

5

6
7

8
9

10

Link Map

Task type

N
um

be
r o

f e
rr

or
s

False positive

Missed Recognition

Figure 6: Average number of click errors per task

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Eas
y t

o l
ea

rn

Eas
y t

o u
se

Diff i
cu

lt t
o c

on
tro

l

Frustr
ati

ng
Fun

Tirin
g

Emba
rra

ss
ing

Int
uit

ive

Erro
r p

rone

Self
-co

ns
cio

us

Self
-co

ns
cio

us
ne

ss
 de

cre
ase

d

Vow
el s

ou
nd

s d
ist

ing
uish

ab
le

Map
 ha

rder 
tha

n s
earc

h

Moti
on

 m
atc

he
d i

nte
nti

on

Strongly
agree

Strongly
disagree

Figure 7: Questionnaire results

ther female or with an Asian language background,
as shown in Figure 5. Our hypothesis regarding the
better performance by female participants is that the
original click sound was trained on one of our fe-
male researcher’s voice. We plan also in future work
to determine how the characteristics of different na-
tive language speakers influence VJ, and ultimately
to correct for any bias.

All but one user explicitly expressed their confu-
sion in distinguishing between the [ae] and [aa] vow-
els. Four of the seven participants independently
stated that their performance would probably have
been better if they had been able to practice longer,
and did not attribute their perceived suboptimal per-
formance to the quality of the VJ’s recognition sys-
tem. Several participants reported that they felt their
vocal cords were strained due to having to produce a
loud sound in order to get the cursor to move at the
desired speed. We suspect this is due either to ana-
log gain problems or to their adapted voice being too
loud, and therefore the system calibrating the nor-
mal speed to correspond to the loud voice. We have
since removed this problem by adjusting our adapta-
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tion strategy to express preference for a quiet voice.
In summary, the results from our study suggest

that users without any prior experience were able
to perform basic mouse based tasks using the Vocal
Joystick system with relative slowdown of four to
nine times compared to a conventional mouse. We
anticipate that future planned improvements in the
algorithms underlying the VJ engine (to improve ac-
curacy, user-independence, adaptation, and speed)
will further increase the VJ system’s viability, and
combined with practice could improve VJ enough so
that it becomes a reasonable alternative compared to
a standard mouse’s performance.

6 Related Work

Related voice-based interface studies include
(Igarashi and Hughes, 2001; Olwal and Feiner,
2005). Igarashi & Hughes presented a system where
non-verbal voice features control a mouse system —
their system requires a command-like discrete sound
to determine direction before initiating a movement
command, where pitch is used to control veloc-
ity. We have empirically found an energy-based
mapping for velocity (as used in our VJ system)
both more reliable (no pitch-tracking errors) and
intuitive. Olwal & Feiner’s system moves the mouse
only after recognizing entire words. de Mauro’s
“voice mouse”http://www.dii.unisi.it/
∼maggini/research/voice mouse.html
focuses on continuous cursor movements similar
to the VJ scenario; however, the voice mouse
only starts moving after the vocalization has been
completed leading to long latencies, and it is not
easily portable to other applications. Lastly, the
commercial dictation program Dragon by ScanSoft
includes MouseGridTM(Dra, 2004) which allows
discrete vocal commands to recursively 9-partition
the screen, thus achieving log-command access to a
particular screen point. A VJ system, by contrast,
uses continuous aspects of the voice, has change
latency (about 60ms) not much greater than reaction
time, and allows the user to make instantaneous
directional change using one’s voice (e.g., a user
can draw a ”U” shape in one breath).

7 Conclusions

We have presented new voice-based assistive tech-
nology for continuous control tasks and have

demonstrated an initial system implementation of
this concept. An initial user study using a group
of individuals from the non-target population con-
firmed the feasibility of this technology. We plan
next to further improve our system by evaluating a
number of novel pattern classification techniques to
increase accuracy and user-independence, and to in-
troduce additional vocal characteristics (possibilities
include vibrato, degree of nasality, rate of change
of any of the above as an independent parameter)
to increase the available simultaneous degrees of
freedom controllable via the voice. Moreover, we
plan to develop algorithms to decouple unintended
user correlations of these parameters, and to further
advance both our adaptation and acceleration algo-
rithms.

References
C. Bishop. 1995.Neural Networks for Pattern Recogni-

tion. Clarendon Press, Oxford.

2004. Dragon naturally speaking, MousegridTM , Scan-
Soft Inc.

D.Talkin. 1995. A robust algorithm for pitch track-
ing (RAPT). In W.B.Kleign and K.K.Paliwal, editors,
Speech Coding and Synthesis, pp. 495–515, Amster-
dam. Elsevier Science.

X. Huang, A. Acero, and H.-W. Hon. 2001.Spoken Lan-
guage Processing: A Guide to Theory, Algorithm, and
System Development. Prentice Hall.

T. Igarashi and J. F. Hughes. 2001. Voice as sound: Us-
ing non-verbal voice input for interactive control. In
ACM UIST 2001, November.

J.Malkin, X.Li, and J.Bilmes. 2005. A graphical model
for formant tracking. InProc. IEEE Intl. Conf. on
Acoustics, Speech, and Signal Processing.

A. Olwal and S. Feiner. 2005. Interaction techniques us-
ing prosodic feature of speech and audio localization.
In Proceedings of the 10th International Conference
on Intelligent User Interfaces, pp. 284–286.

D. Ward, A. F. Blackwell, and D. C. MacKay. 2000.
Dasher - a data entry interface using continuous ges-
tures and language models. InACM UIST 2000.

X.Li, J.Malkin, and J.Bilmes. 2004. A graphical model
approach to pitch tracking. InProc. Int. Conf. on Spo-
ken Language Processing.

X.Li, J.Bilmes, and J.Malkin. 2005. Maximum mar-
gin learning and adaptation of MLP classifers. In9th
European Conference on Speech Communication and
Technology (Eurospeech’05), Lisbon, Portugal, Sep-
tember.

1002



Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 1003–1010, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Speech-based Information Retrieval System
with Clarification Dialogue Strategy

Teruhisa Misu Tatsuya Kawahara
School of informatics

Kyoto University
Sakyo-ku, Kyoto, Japan

misu@ar.media.kyoto-u.ac.jp

Abstract

This paper addresses a dialogue strategy
to clarify and constrain the queries for
speech-driven document retrieval systems.
In spoken dialogue interfaces, users often
make utterances before the query is com-
pletely generated in their mind; thus input
queries are often vague or fragmental. As
a result, usually many items are matched.
We propose an efficient dialogue frame-
work, where the system dynamically se-
lects an optimal question based on infor-
mation gain (IG), which represents reduc-
tion of matched items. A set of possible
questions is prepared using various knowl-
edge sources. As a bottom-up knowl-
edge source, we extract a list of words
that can take a number of objects and po-
tentially causes ambiguity, using a depen-
dency structure analysis of the document
texts. This is complemented by top-down
knowledge sources of metadata and hand-
crafted questions. An experimental evalu-
ation showed that the method significantly
improved the success rate of retrieval, and
all categories of the prepared questions
contributed to the improvement.

1 Introduction

The target of spoken dialogue systems is being ex-
tended from simple databases such as flight informa-
tion (Levin et al., 2000; Potamianos et al., 2000) to

general documents (Fujii and Itou, 2003) including
newspaper articles (Chang et al., 2002; Hori et al.,
2003). In such systems, the automatic speech recog-
nition (ASR) result of the user utterance is matched
against a set of target documents using the vector
space model, and documents with high matching
scores are presented to the user.

In this kind of document retrieval systems, user
queries must include sufficient information to iden-
tify the desired documents. In conventional doc-
ument query tasks with typed-text input, such as
TREC QA Track (NIST and DARPA, 2003), queries
are (supposed to be) definite and specific. However,
this is not the case when speech input is adopted.
The speech interface makes input easier. However,
this also means that users can start utterances before
queries are thoroughly formed in their mind. There-
fore, input queries are often vague or fragmental,
and sentences may be ill-formed or ungrammatical.
Moreover, important information may be lost due to
ASR errors. In such cases, an enormous list of possi-
ble relevant documents is usually obtained because
there is very limited information that can be used
as clues for retrieval. Therefore, it is necessary to
narrow down the documents by clarifying the user’s
intention through a dialogue.

There have been several studies on the follow-up
dialogue, and most of these studies assume that the
target knowledge base has a well-defined structure.
For example, Denecke (Denecke and Waibel, 1997)
addressed a method to generate guiding questions
based on a tree structure constructed by unifying
pre-defined keywords and semantic slots. However,
these approaches are not applicable to general docu-
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Figure 1: System overview

ment sets without such structures.
In this paper, we propose a dialogue strategy to

clarify the user’s query and constrain the retrieval
for a large-scale text knowledge base, which does
not have a structure nor any semantic slots. In the
proposed scheme, the system dynamically selects an
optimal question, which can reduce the number of
matched items most efficiently. As a criterion of
efficiency of the questions, information gain (IG)
is defined. A set of possible questions is prepared
using bottom-up and top-down knowledge sources.
As a bottom-up knowledge source, we conduct de-
pendency structure analysis of the document texts,
and extract a list of words that can take a number
of objects, thus potentially causing ambiguity. This
is combined with top-down knowledge sources of
metadata and hand-crafted questions. The system
then updates the query sentence using the user’s re-
ply to the question, so as to generate a confirmation
to the user.

2 Document retrieval system for
large-scale knowledge base

2.1 System overview

We have studied a dialogue framework to overcome
the problems in speech-based document retrieval
systems. In the framework, the system can han-
dle three types of problems caused by speech input:
ASR errors, redundancy in spoken language expres-
sion, and vagueness of queries. First, the system re-
alizes robust retrieval against ASR errors and redun-

Table 1: Document set (Knowledge Base: KB)

Text collection # documents text size
(byte)

glossary 4,707 1.4M
FAQ 11,306 12M

DB of support articles 23,323 44M

dancies by detecting and confirming them. Then, the
system makes questions to clarify the user’s query
and narrow down the retrieved documents.

The system flow of these processes is summarized
below and also shown in Figure 1.

1. Recognize the user’s query utterance.

2. Make confirmation for phrases which may in-
clude critical ASR errors.

3. Retrieve from knowledge base (KB).

4. Ask possible questions to the user and narrow
down the matched documents.

5. Output the retrieval results.

In this paper, we focus on the latter stage of the
proposed framework, and present a clarification dia-
logue strategy to narrow down documents.

2.2 Task and back-end retrieval system

Our task involves text retrieval from a large-scale
knowledge base. For the target domain, we adopt a
software support knowledge base (KB) provided by
Microsoft Corporation. The knowledge base con-
sists of the following three kinds: glossary, fre-
quently asked questions (FAQ), and support articles.
The specification is listed in Table 1, and there are
about 40K documents in total. An example of sup-
port article is shown in Figure 2.

Dialog Navigator (Kiyota et al., 2002) has been
developed at University of Tokyo as a retrieval sys-
tem for this KB. The system accepts a typed-text in-
put from users and outputs a result of the retrieval.
The system interprets an input sentence by taking
syntactic dependency and synonymous expression
into consideration for matching it with the KB. The
target of the matching is the summaries and detail
information in the support articles, and the titles of
the Glossary and FAQ. The retrieved result is dis-
played to the user as the list of documents like Web
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� �
HOWTO:
Use Speech Recognition in Windows XP
The information in this article applies to:

• Microsoft Windows XP Professional

• Microsoft Windows XP Home Edition

Summary: This article describes how to use speech
recognition in Windows XP. If you installed speech
recognition with Microsoft Office XP, or if you pur-
chased a new computer that has Office XP installed,
you can use speech recognition in all Office pro-
grams as well as other programs for which it is en-
abled.

Detail information: Speech recognition enables the op-
erating system to convert spoken words to written
text. An internal driver, called a speech recognition
engine, recognizes words and converts them to text.
The speech recognition engine ...

� �
Figure 2: Example of software support article

search engines. Since the user has to read detail
information of the retrieved documents by clicking
their icons one by one, the number of items in the
final result is restricted to about 15.

In this work, we adopt Dialog Navigator as a
back-end system and construct a spoken dialogue in-
terface.

3 Dialogue strategy to clarify user’s vague
queries

3.1 Dialogue strategy based on information
gain (IG)

In the proposed clarification dialogue strategy, the
system asks optimal questions to constrain the given
retrieval results and help users find the intended
ones. Questions are dynamically generated by se-
lecting from a pool of possible candidates that sat-
isfy the precondition. The information gain (IG)
is defined as a criterion for the selection. The IG
represents a reduction of entropy, or how many re-
trieved documents can be eliminated by incorpo-
rating additional information (a reply to a question
in this case). Its computation is straightforward if
the question classifies the document set in a com-
pletely disjointed manner. However, the retrieved
documents may belong to two or more categories for

some questions, or may not belong to any category.
For example, some documents in our KB are related
with multiple versions of MS-Office, but others may
be irrelevant to any of them. Moreover, the match-
ing score of the retrieved documents should be taken
into account in this computation. Therefore, we de-
fine IG H(S) for a candidate question S by the fol-
lowing equations.

H(S) = −
n∑

i=0

P (i) · log P (i)

P (i) =
|Ci|∑n

i=0 |Ci|
|Ci| =

∑

Dk∈i

CM(Dk)

Here, Dk denotes the k-th retrieved document by
matching the query to the KB, and CM(D) denotes
the matching score of document D. Thus, Ci rep-
resents the number of documents classified into cat-
egory i by candidate question S, which is weighted
with the matching score. The documents that are not
related to any category are classified as category 0.

The system flow incorporating this strategy is
summarized below and also shown in Figure 3.

1. For a query sentence, retrieve from KB.

2. Calculate IG for all possible candidate ques-
tions which satisfy precondition.

3. Select the question with the largest IG (larger
than a threshold), and ask the question to the
user. Otherwise, output the current retrieval re-
sult.

4. Update the query sentence using the user’s re-
ply to the question.

5. Return to 1.

This procedure is explained in detail in the fol-
lowing sections.

3.2 Question generation based on bottom-up
and top-down knowledge sources

We prepare a pool of questions using three methods
based on bottom-up knowledge together with top-
down knowledge of KB. For a bottom-up knowledge
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Table 2: Examples of candidate questions (Dependency structure analysis: method 1)

Question Precondition Ratio of IG
applicable doc.

What did you delete? Query sentence includes “delete” 2.15 (%) 7.44
What did you install? Query sentence includes “install” 3.17 (%) 6.00
What did you insert? Query sentence includes “insert” 1.12 (%) 7.12
What did you save? Query sentence includes “save” 1.81 (%) 6.89

What is the file type? Query sentence includes “file” 0.94 (%) 6.00
What did you setup? Query sentence includes “setup” 0.69 (%) 6.45

source, we conducted a dependency structure anal-
ysis on KB. As for top-down knowledge, we make
use of metadata included in KB and human knowl-
edge.

3.2.1 Questions based on dependency structure
analysis (method 1)

This type of question is intended to clarify the
modifier or object of some words, based on de-
pendency structure analysis, when they are uncer-
tain. For instance, the verb “delete” can have var-
ious objects such as “application program” or “ad-
dress book”. Therefore, the query can be clarified by
identifying such objects if they are missing. How-
ever, not all words need to be confirmed because the
modifier or object can be identified almost uniquely
for some words. For instance, the object of the
word “shutdown” is “computer” in most cases in this
task domain. It is tedious to identify the object of
such words. We therefore determine the words to be

confirmed by calculating entropy for modifier-head
pairs from the text corpus. The procedure is as fol-
lows.

1. Extract all modifier-head pairs from the text of
KB and query sentences (typed input) to an-
other retrieval system1 provided by Microsoft
Japan.

2. Calculate entropy H(m) for every word based
on probability P (i). This P (i) is calculated
with the occurrence count N(m) of word m
that appears in the text corpus and the count
N(i, m) of word m whose modifier is i.

H(m) = −
∑

i

P (i) ∗ log P (i)

P (i) =
N(i, m)
N(m)

1http://www.microsoft.com/japan/enable/nlsearch/
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Table 3: Examples of candidate questions (Metadata: method 2)

Question Precondition Ratio of IG
applicable doc.

What is the version None 30.03 (%) 2.63of your Windows?
What is your application? None 30.28 (%) 2.31

What is the version Query sentence includes “Word” 3.76 (%) 2.71of your Word?
What is the version Query sentence includes “Excel” 4.13 (%) 2.44of your Excel?

Table 4: List of candidate questions (Human knowledge: method 3)

Question Precondition Ratio of IG
applicable doc.

When did the symptom occur? None 15.40 (%) 8.08
Tell me the error message. Query sentence includes “error” 2.63 (%) 8.61
What do you concretely None 6.98 (%) 8.04

want to do?

As a result, we selected 40 words that have a large
value of entropy. Question sentences for these words
were generated with a template of “What did you
...?” and unnatural ones were corrected manually.
Categories for IG calculation are defined by objects
of these words included in matched documents. The
system can make question using this method when
these words are included in the user’s query. Ta-
ble 2 lists examples of candidate questions using this
method. In this table, ratio of applicable document
corresponds to the ratio of documents that include
the words selected above, and IG is calculated using
applicable documents.

3.2.2 Questions based on metadata included in
KB (method 2)

We also prepare candidate questions using the
metadata attached to the KB. In general large-scale
KBs, metadata is usually attached to manage them
efficiently. For example, category information is at-
tached to newspaper articles and books in libraries.
In our target KB, a number of documents include
metadata of product names to which the document
applies. The system can generate question to which
the user’s query corresponds using this metadata.
However, some documents are related with multiple
versions, or may not belong to any category. There-
fore, the performance of these questions greatly de-

pends on the characteristics of the metadata.
Fourteen candidate questions are prepared using

this method. Example of candidate questions are
listed in Table 3. Ratio of applicable document cor-
responds to the ratio of documents that have meta-
data of target products.

3.2.3 Questions based on human knowledge
(method 3)

Software support is conventionally provided by
operators at call centers. We therefore prepare can-
didate questions based on the human knowledge that
has been accumulated there. This time, three kinds
of questions are hand-crafted. For instance, the
question “When did the symptom occur?” tries to
capture key information to identify relevant docu-
ments. The categories for IG caluclation are defined
using hand-crafted rules by focusing on key-phrases
such as “after ...” or “during ...”. Candidate ques-
tions are listed in Table 4.

An example dialogue where the system asks ques-
tions based on IG is in Figure 4.

3.3 Update of retrieval query sentence

Through the dialogue to clarify the user’s query,
the system updates the query sentence using the
user’s reply to the question. Our backend informa-
tion retrieval system does not adopt simple “bag-
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S1: What is your problem?
U1: Too garbled to read.
(Retrieval results): � �

1. Close button and maximize button are garbled.

2. Characters are garbled in Outlook Today.

3. Characters are garbled while inserting Japanese
text.

4. VB application is garbled to read.
· · ·

� �
(Calculate IG)
· Candidate question 1:

What is garbled to read? – IG 5.27
· Candidate question 2:

What is the version of your Windows? – IG 1.43
· Candidate question 3:

When did the symptom occur? – IG 2.47
· · ·

S2: (Select question with largest IG)
What is garbled to read?

U2: Characters on window button.
S3: (Update query sentence)

Retrieving with “Characters on window button are too garbled
to read”.

Figure 4: Example dialogue

of-words” model, but conducts a more precise de-
pendency structure analysis for matching; therefore
forming an appropriate query sentence is desirable
rather than simply adding keywords. Moreover, it is
more comprehensible to the user to present the up-
dated query sentence than to show the sequence of
ASR results. Here, the update rules of the query sen-
tence are prepared as follows.

1. Questions based on dependency structure anal-
ysis
The user’s reply is added immediately before
of after the word that is the reply’s modifying
head. For instance, the reply to the question
“What did you delete?” is inserted right after
the word “delete” in the query sentence.

2. Questions based on metadata of KB
Phrases “In {Product name} {version name}”
are added to the query sentence.

3. Questions based on human knowledge
The position where the user’s reply is inserted
is specified beforehand for each question can-
didate. For instance, the reply to the question

“Tell me the error message.” is inserted right
after the word “error” in the query sentence.

A dialogue example where the system updates the
user’s query is shown in Figure 5. In the exam-
ple, the system makes confirmation “Retrieving with
‘When I try to open it in explorer, I cannot open Ex-
cel 2002 file’ ” at the end of the dialogue before pre-
senting the actual retrieval result.

3.4 Experimental evaluation

We implemented and evaluated the proposed
method. We collected a test data by 14 subjects who
had not used our system Each subject was requested
to retrieve support articles for 14 tasks, which con-
sisted of prepared scenarios (query sentences were
not given). The subjects were allowed to utter a
query again up to twice per task if they thought an
adequate retrieval result was not obtained. As a re-
sult, we collected 238 utterances for 196 (=14 × 14)
tasks in total. An example of scenario and user ut-
terances are shown in Figure 6. The average word
accuracy of ASR was 82.9%. The threshold value in
IG that the system makes a question is set to 1.0 ini-
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S1: What is your problem?
U1: I cannot open the file.
S2: What is the file type? (method 1)
U2: Excel file.
(Update query sentence): “I cannot open Excel file.”
S3: What is the version of your Excel? (method 2)
U3: My Excel is version 2002.
(Update query sentence): “I cannot open Excel 2002 file.”
S4: When did the symptom occur? (method 3)
U4: Tried to open it in explorer.
S5: Retrieving with “When I try to open it in explorer, I cannot

open Excel 2002 file”.

Figure 5: Query sentence update using user’s reply

� �
• An example of scenario

You are looking for restaurant in Kyoto using
WWW. You have found a nice restaurant and tried
to print out an image of the map showing the restau-
rant. However, it is not printed out. (Your browser
is IE 6.0)

• Examples of users’ utterance

– I want to print an image of map.

– I can’t print out.

– I failed to print a picture in homepage using
IE.

– Please tell me how to print out an image.

� �
Figure 6: Example of scenario and user utterances

tially, and incremented by 0.3 every time the system
generates a question through a dialogue session.

First, we evaluated the success rate of retrieval.
We regarded a retrieval as successful when the re-
trieval result contained a correct document entry for
the scenario. We compared the following cases.

1. Transcript: A correct transcript of the user ut-
terance, prepared manually, was used as an in-
put.

2. ASR result (baseline): The ASR result was
used as an input.

3. Proposed method (log data): The system gener-
ated questions based on the proposed method,
and the user replied to them as he/she thought
appropriate.

We also evaluated the proposed method by simu-
lation in order to confirm its theoretical effect. Var-
ious factors of the entire system might influence the

performance in real dialogue which is evaluated by
the log data. Specifically, the users might not have
answered the questions appropriately, or the replies
might not have been correctly recognized. There-
fore, we also evaluated with the following condition.

4. Proposed method (simulation): The system
generated questions based on the proposed
method, and appropriate answers were given
manually.

Table 5 lists the retrieval success rate and the rank of
the correct document in the retrieval result, by these
cases. The proposed method achieved a better suc-
cess rate than when the ASR result was used. An
improvement of 12.6% was achieved in the simula-
tion case, and 7.7% by the log data. These figures
demonstrate the effectiveness of the proposed ap-
proach. The success rate of the retrieval was about
5% higher in the simulation case than the log data.
This difference is considered to be caused by follow-
ing factors.

1. ASR errors in user’s uttered replies
In the proposed strategy, the retrieval sentence
is updated using the user’s reply to the question
regardless of ASR errors. Even when the user
notices the ASR errors, he/she cannot correct
them. Although it is possible to confirm them
using ASR confidence measures, it makes di-
alogue more complicated. Hence, it was not
implemented this time.

2. User’s misunderstanding of the system’s ques-
tions
Users sometimes misunderstood the system’s
questions. For instance, to the system question
“When did the symptom occur?”, some user
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Table 5: Success rate and average rank of correct
document in retrieval

Success Rank of
rate correct doc.

Transcript 76.1% 7.20
ASR result (baseline) 70.7% 7.45

Proposed method 78.4% 4.40(log data)
Proposed method 83.3% 3.85(simulation)

Table 6: Comparison of question methods

Success # generated
rate questions

(per dialogue)

ASR result (baseline) 70.7% —
Dependency structure 74.5% 0.38analysis (method 1)

Metadata (method 2) 75.7% 0.89
Human knowledge 74.5% 0.97(method 3)

All methods 83.3% 2.24(method 1-3)

replied simply “just now” instead of key infor-
mation for the retrieval. To this problem, it may
be necessary to make more specific questions
or to display reply examples.

We also evaluated the efficiency of the individual
methods. In this experiment, each of the three meth-
ods was used to generate questions. The results are
in Table 6. The improvement rate by the three meth-
ods did not differ very much, and most significant
improvement was obtained by using the three meth-
ods together. While the questions based on human
knowledge are rather general and were used more
often, the questions based on the dependency struc-
ture analysis are specific, and thus more effective
when applicable. Hence, the questions based on the
dependency structure analysis (method 1) obtained
a relatively high improvement rate per question.

4 Conclusion

We proposed a dialogue strategy to clarify user’
queries for document retrieval tasks. Candidate
questions are prepared based on the dependency
structure analysis of the KB together with KB meta-
data and human knowledge. The system selects an

optimal question based on information gain (IG).
Then, the query sentence is updated using the user’s
reply. An experimental evaluation showed that the
proposed method significantly improved the success
rate of retrieval, and all categories of the prepared
questions contributed to the improvement.

The proposed approach is intended for restricted
domains, where all KB documents and several
knowledge sources are available, and it is not ap-
plicable to open-domain information retrieval such
as Web search. We believe, however, that there are
many targets of information retrieval in restricted
domains, for example, manuals of electric appli-
ances and medical documents for expert systems.
The methodology proposed here is not so dependent
on the domains, thus applicable to many other tasks
of this category.
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Abstract

This paper describes an application of re-
inforcement learning to determine a dia-
log policy for a complex collaborative task
where policies for both the system and a
proxy for a user of the system are learned
simultaneously. With this approach a use-
ful dialog policy is learned without the
drawbacks of other approaches that re-
quire significant human interaction. The
specific task that the agents were trained
on was chosen for its complexity and re-
quirement that both conversants bring task
knowledge to the interaction, thus ensur-
ing its collaborative nature. The results of
our experiment show that you can use re-
inforcement learning to create an effective
dialog policy, which employs a mixed ini-
tiative strategy, without the drawbacks of
large amounts of data or significant human
input.

1 Introduction

The problem of developing a dialog manager can be
expressed as the task of building a specific dialog
policy for the dialog system to follow as it interacts
with the user. A dialog policy can be thought of as an
enumeration of all of the states a dialog system can
be in, and the corresponding action to take from each
of those states. Thus a policy completely specifies
the behavior of a dialog manager.

Most conventional approaches to accomplishing
this task seek to directly model human interactions
in some manner. These techniques include hand-
crafting a policy, using a Wizard-of-Oz approach in
an iterative manner and inducing a policy from a

human-human dialog corpus. All three approaches
have shortcomings that make them less than ideal for
developing dialog systems. The approach of hand-
crafting of a dialog policy is problematic as it is
difficult to predict how a user with interact with it,
making it difficult to craft an optimal policy. To get
around this, an iterative approach can be used, with
a Wizard taking the place of the system. However, it
is still difficult to train a wizard, and it is difficult to
explore many different strategies in order to find the
optimal one. Human-human dialog can be used for
policy generation, as this should represent optimal
behavior to accomplish a task. However, computers
are not capable of behaving exactly as a human. In
addition, humans might not interact with a computer
as they would another person.

Recently a number of researchers have proposed
using reinforcement learning to alleviating the prob-
lems encountered with more conventional methods
of developing dialog policies. With the development
of a good policy evaluation function, reinforcement
learning can effectively and quickly explore a large
policy space. There is the additional benefit that it
will learn a policy that is optimal for the capabilities
of the system.

The main drawback of reinforcement learning ap-
proaches is that they require some form of conver-
sational partner to train the system against. Con-
ventionally, these partners have taken the form of a
human (Walker, 2000; Singh et al., 2002) or a simu-
lated user (Levin et al., 2000; Scheffler and Young,
2002; Georgila et al., 2005). These two types of con-
versational partners limit the complexity and diver-
sity of policies that can be generated by reinforce-
ment learning. These two approaches to training
partners limit the whole system to the abilities of
the partners themselves. For a human partner we
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run into the significant time and effort problems that
were present in Wizard-of-Oz and handcrafting pol-
icy development. With a simulated user the system
is limited by the complexity and flexibility of the
simulated user, which itself can require a large de-
gree of handcrafting by its creator.

In this paper, we propose a solution to the con-
versational partner problem of generating a dialog
policy with reinforcement learning. We have taken a
complex collaborative task and used reinforcement
learning, applied to both participants, to develop a
dialog policy for the task. By training both agents
simultaneously we are able to avoid the uncertain-
ties of creating a user to train against, as well as the
time and data limitations of training directly against
humans. Our training approach allows us to avoid
these conventional drawbacks even while applying
reinforcement learning to complex tasks.

Section 2 provides a brief overview of previous
work in using reinforcement learning for dialog sys-
tems. Sections 3 and 4 describe the dialog task and
its specification as a reinforcement-learning prob-
lem. Section 5 and 6 present the results of this ex-
periment and a discussion of them.

2 Related Work

A number of researchers have explored using re-
inforcement learning to create a policy for a dia-
log system. Walker (2000) trained a dialog system,
ELVIS, to learn a dialog strategy for supporting spo-
ken language access to a user’s email. The main
function of ELVIS is to provide verbal summaries of
email folders. This summary could consist of simple
statements about the number of messages or a more
detailed description of current emails.

Reinforcement learning is used to determine the
best settings for a variety of properties of the sys-
tem. For example, the system must learn to choose
between email reading styles of reading back the full
email first, reading a summary of the email first, or
prompting the user with the two choices of reading
styles. The system also learns whether it is better to
take a mixed initiative or a system initiative strategy
when interacting with the user.

To enable the learning process, ELVIS utilized
human users as its conversational partner. Users per-
formed a set of tasks with ELVIS, with each run us-
ing different state-property values, which were ran-

domly chosen for that dialog. In order to support hu-
mans as a training partner Walker restricted the pol-
icy space so that it would only contain policies that
were capable of accomplishing the available system
tasks. Thus, during training the users would not be
faced with a system that simply could not perform
the tasks asked of it.

ELVIS was trained with a Q-learning approach
that sought to determine the expected utility at each
state, where utility was a subjective function involv-
ing such variables as task completion and user sat-
isfaction. The state variables utilized in the training
process were (a) whether the user’s name is known,
(b) what the initiative style is, (c) the task progress,
and (d) what the user’s current goal is. Given these
state variables, ELVIS was able to learn the best
style to adopt in responding to the user’s requests at
various points in the dialog. One major shortcoming
of the conversational partner used with ELVIS is its
reliance upon human interaction for training. This
shortcoming is somewhat mitigated by the fact that
the learning problem was one of fitting together pre-
existing policy components, but would be severely
limiting if the goal was to learn a complete dialog
policy. The amount of data necessary for learning a
complete policy makes direct human interaction in
the learning process unrealistic.

Levin et al. (2000) tackles a slightly different
reinforcement-learning task. She is learning a pol-
icy to use in a dialog system built from a small set
of atomic actions. This system is trained to provide
a verbal interface to an airline flight database. This
system is able to provide users with a way to find
flights that meet a dynamic set of criteria. The di-
alog agent’s state consists of information regarding
the departure city, destination city, flight date, etc.
Levin takes a useful approach in reducing the size
of true state space by simply tracking when a partic-
ular state variable has a value rather than including
the specific value in the state. For instance during
a dialog when the system determines that the de-
parture city is New York it does not distinguish this
from when it has determined that the departure city
is Chicago.

To converse with the dialog agent during rein-
forcement learning, Levin uses a “simulated user.”
The simulated user is created from a corpus of hu-
man dialogs with a prior airline system. In de-

1012



veloping this user Levin makes the simplifying as-
sumption that a user’s response is based solely on
the previous prompt. Then the specific probabilities
for each user response are determined by examin-
ing the corpus for exchanges that match the possible
prompts for the new dialog agent as well as hand
crafting some of the probabilities. During the actual
learning the agent used Monte Carlo training with
exploring starts in order to fully explore the state
space.

The “simulated user” method of supplying the
conversational partner seems difficult and not partic-
ularly applicable to tasks where a dialog corpus does
not already exist, but Kearns and Singh (1998) indi-
cates that the accuracy of the transition probabilities
for the probabilistic user is not critical for the dialog
agent to learn an optimal strategy. While this experi-
ment does allow for the dialog agent to learn a com-
plex strategy, the notion of learning against a sim-
ulated user limits the space of policies that will be
considered during training. Training against a con-
versational partner that is a model of a human au-
tomatically prejudices the system towards policies
that we would be inclined towards building by hand
and precludes the sincere exploration of all possible
policies.

3 Task Specification

For our experiment we use the task presented in
Yang and Heeman (2004), which is a modification
of the DesignWorld task of Walker (1995). The task
requires 2 conversants to agree on 5 pieces of furni-
ture to place in a room. Both conversants know all
of the furniture items that can be chosen, which dif-
fer by color, type and point value. Each conversant
also has private preferences about which furniture
items it wants in the room; such as ‘if there is a red
couch in the room, I also want a lamp in the room’.
Each preference has a score. As this is a collabora-
tive task, the conversants have the goal of finding the
5 furniture items that have the highest score, where
the score is the sum of the point value of each of
the 5 chosen furniture items less the scores for any
violated preferences of either conversant.

The conversational agents work to achieve their
goal by performing the following actions:propose,
accept, reject, inform , andrelease turn. If there
is not a current proposal, either agent canpropose

an item, which makes that item into the current pro-
posal. If there is a current proposal, the other conver-
sant canacceptit or reject it. Accepting an item re-
sults in that item being included in the task solution
and removes it as the current proposal. Rejecting
a proposed item removes it as the current proposal.
When an item has been rejected it remains a valid
choice for future proposals. In addition to accept-
ing or rejecting a proposal, either conversant may
inform the other conversant of preferences that are
violated by the current proposal. A preference is vi-
olated by the current proposal if the addition of that
proposed item to the solution set would cause the
solution set to violate the preference. When a con-
versant informs of a violated preference, that prefer-
ence becomes mutually known and so affects future
decisions by both participants. Only preferences that
are not known by the other conversant are commu-
nicated. For turn taking, we include the actionre-
lease turn, which the conversant that currently has
the turn can perform to signal that it is relinquishing
the turn (cf. Traum and Hinkelman, 1992). Note that
after a release turn, the other agent must make the
next move, which could itself be a release turn. The
inclusion of this action allows conversants to per-
form multiple actions in a row, such as a reject, an
inform, and a propose. Our approach to turn tak-
ing differs slightly from Yang and Heeman, as they
make it an implicit part of other actions.

In order to successfully utilize these actions in a
dialog, some reasoning effort is required of the con-
versants. Conversants must be able to determine
what preferences are violated by a pending proposal
and which of the remaining items makes the best
proposal. In order to keep the reasoning effort man-
ageable, we follow Yang and Heeman and use a
greedy algorithm to pick the item that results in the
best score for the item plus the set of items already
accepted. The conversants do not consider interac-
tions with the items that will be subsequently added
to the plan. Conversants using this greedy approach
can construct a plan that is very close to optimal.

4 Learning Specification

4.1 Agent Specification

In order to apply reinforcement learning to this task
we must formalize the conversants as reinforcement
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learning agents, specifying their state and actions,
as well as the environment they will interact in. In
order to reduce the size of the state space for this
task we simplified the representation of the state in
a manner similar to that done by Levin (2004). We
formulated the state of the dialog agents with many
of the more specific details of the actual state of the
task removed. For instance the agent state does not
include specific information about the furniture item
that is the pending proposal, rather the agent’s state
only indicates that there is a pending proposal.

The state specification for each agent includes
the following binary variables:Pending-Proposal,
I-Proposed, Violated-Preference, Prior-Violated-
Preferences, and Better-Alternative . Pending-
Proposal indicates whether an item has been pro-
posed but not accepted or rejected.I-Proposed in-
dicates if the agent made the most recent proposal.
Violated-Preferenceindicates that the pending pro-
posal has caused one or more violations of the
conversant’s private preferences.Prior-Violated-
Preferencesindicates whether the conversant had
one or more violated preferences when the pending
proposal was made. This variable allows the agent
to remember what its original response to a proposal
was, even after it may have shared all of its prefer-
ences that were violated (thus creating a state where
it no longer has any violated personal preferences).
Better-Alternative indicates that the agent thinks it
knows an item that would achieve a better score than
the item currently proposed.

The actions from Section 3 can be sequenced in
a number of different orders, leading to different
policies. Unlike Yang and Heeman, who compared
handcrafted policies, we use reinforcement learning
to learn policy pairs, one part of the pair for the sys-
tem, and the other for the simulated user. We have
restricted the space of policies that can be learned.
First, we reduce the space by only considering le-
gal sequences of actions. For example, if there is a
pending proposal, another item cannot be proposed.
Second, after 5 items have been accepted, the dialog
is automatically ended. Third, to keep the space of
dialog policies small, we force an inform to inform
of all violated preferences at once.

The Reinforcement Learning states and actions of
our dialog agents capture a subset of the true state
of the dialog. Our agents do not have the ability to

distinguish between, or develop distinct policies in
response to, the proposal of a blue chair versus a red
desk. Since our formulation of the dialog agents do
not encode specific information about items or pref-
erences, the dialog environment must maintain these
details. This extra information that must include the
currently proposed item, what each agent’s private
and currently violated preferences are, what pref-
erences are shared between each agent, what items
have been accepted as part of the task solution, and
what items are still available for selection. This tech-
nique of generalizing the state space is the same as
the one used by Levin (2000), and allows us to keep
the state space at a manageable size for our task.

4.2 Reinforcement Learning

For our Reinforcement Learning algorithm we chose
to use an on-policy Monte Carlo method (Sutton and
Barto, 1998). Our chosen task is naturally episodic
since the two agents agreeing upon five items indi-
cates task completion and thus the end of the dialog,
which constitutes one learning episode. We also im-
posed a limit of 500 interactions per dialog in order
to ensure that each learning episode was finite even
if the task was not successfully completed. For
some state-action pairs our task does not allow the
accurate specification of the resulting state. In fact,
due to the way that our state representation simpli-
fies the true task environment an action choice for
many states will necessarily lead to different states
depending upon the task environment. For instance,
proposing an item will sometimes lead to that items
acceptance and sometimes it will be rejected. Given
this uncertainty our learning approach necessarily
had to learn the expected rewards of actions instead
of states.

At the end of each dialog the interaction is given
a score based on the evaluation function and that
score is used to update the dialog policy of both
agents. The state-action history for each agent is
iterated over separately and the score from the re-
cent dialog is averaged in with the expected return
from the existing policy. We chose not to include
any discounting factor to the dialog score as we pro-
gressed back through the dialog history. The deci-
sion to equally weight each state-action pair in the
dialog history was made because an action’s contri-
bution to the dialog score is not dependent upon its
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proximity to the end of the task. An action that ac-
cepts a proposed item at the beginning of the dialog
should be rewarded as much as an action that accepts
a proposed item later in the same dialog.

In order for the learning agents to obtain a large
enough variety of experiences to fully explore the
state space some exploration technique must be
used. We chose to use e-greedy action selection in
order to achieve this goal. With this approach the
dialog agent makes an on policy action choice with
probability 1-e and a random valid action choice the
rest of the time.

Training both agents simultaneously causes each
agent to learn its policy as an optimal response to the
opposing agent. This can create problems in the ini-
tial stages of training as each agent has an immature
policy that is based on little experience. In this situ-
ation each of the agents will associate weights with
state action pairs based on action choices of the op-
posing agent that are themselves not well developed.
As training progresses the eccentricities of the ini-
tial immature policies are perpetuated and the learn-
ing process does not converge on an effective dialog
policy for either agent.

In order to combat the problem of converging to
an effective policy we divided up the agent training
process into multiple epochs. Each epoch is com-
posed of a number of training episodes. The initial
epsilon value is set to a large value and for each suc-
cessive epoch the epsilon value for action selection
is decreased. With an initially high epsilon value
the agents are able to develop a policy that is ini-
tially weighted more heavily towards a response to
random action selection than the immature policy of
the other agent. As the epsilon value decreases, each
agent slowly adjusts its learning to be weighted more
heavily towards a response to the other agent’s pol-
icy. This approach allows the agents to develop a
minimally coherent dialog policy before beginning
to rely too heavily upon the response of the oppos-
ing agent.

Utilizing this strategy of continuously decreasing
epsilon values we were able to get both agents to
converge to an effective and coherent dialog policy.
The initial epsilon value was set to 80

4.3 Objective Function

In the reinforcement learning process the objective
function provides the dialog agents with feed-back
on the success of each dialog. The specification of
this function requires input from a human. For our
learning specification we crafted a simple function
that attempted to model a human perception of a di-
alog’s quality. Our objective function is linear com-
bination of the solution quality (S) and the dialog
length (L), taking the form:

o(S, I) = w1S − w2L

wherew1 andw2 are positive constants. As higher
values forS and lower values forL indicate better
dialogs, we subtractw2L from w1S. Instead of at-
tempting to hand pick the constants in the objective
function, we explored the effects of different values,
which we report in Section 5.2.

For our experiment we trained the dialog agents
for 200 epochs, where each epoch consisted of 200
training episodes. After the training the agents, we
then had them perform 5000 dialogs with 100% on-
policy action selection (i.e. strictly following the
learned policy). The results of these 5000 dialogs
were then combined to obtain an average plan score
and average number of interactions for the policy of
the agents. These two values are then combined ac-
cording to the objective function to obtain a numeric
score for the learned policy.

5 Results

In this section, we present the results of the dialog
policies that we learned. We first present 3 baseline
policies to which we will compare the performance
of our learned policies. We will then present results
varying the weights in the objective function in com-
parison to the baseline policies. As we are learning
a pair of policies—one for the system and one rep-
resenting the user—we explore how well the system
policy does against handcrafted ones, that will repre-
sent what a user might do, rather than test it against
its learned counter-part.

5.1 Baseline Policies

In order to provide comparative data to evaluate the
effectiveness of our approach, we will compare the
performance of the policies learned for the system
and user against several pairs of handcrafted poli-
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cies. The first pair implement theunrestricted ini-
tiative strategy of Yang and Heeman. Here, one con-
versant, A, proposes an item and then the other, B,
informs A of any violated preferences. B then pro-
poses an alternative and A informs B of any violated
preferences. The process repeats until an item is pro-
posed that does not violate any of the other agent’s
preferences. The second pair of policies implement
therestricted initiative policy of Yang and Heeman,
in which A proposes an item and B informs A of
any violated preferences. However, the conversants
do not switch roles: it is always A who proposes
items and B that informs of preferences and accepts.
These two policies represent successful handcrafted
pairs of dialog policies. The third pair represents a
minimum performance: A proposes an item and B
simply accepts it. This is repeated for all 5 items,
with A making all of the proposals. This policy
is anun-collaborative approach, which represents
how well A can do on its own.

5.2 Impact of Weights on Learned Policy

We first explore the ability of the reinforcement
learning algorithm to learn a dialog policy pair that
is optimal with respect to the objective function. The
only important aspect of the weights is the ratio be-
tween the two:w2/w1. We varied the ratio from
0.1 to 0.5 in increments of 0.02. For each weight
setting, we learned 66 policy pairs, and tested each
policy pair on 1000 different task configurations. We
compared the average objective function score of the
learned policy pairs with the baseline restricted pol-
icy pair (cf. Scheffler and Young, 2002). Figure 1
shows the percentage of the learned policies that per-
form at least as well as the unrestricted policy pair
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Figure 1: Percentage of learned policies performing
better than unrestricted baseline pair.

at each weight setting. Interestingly, it is clear that
there is a lack of convergence in the learning pro-
cess, no weight ratio learns a good policy 100% of
the time. Additionally, we see that as the weight
ratio increases (putting more emphasis on shorter
dialogs), the ability of the algorithm to learn good
policies decreases. As the objective function gives
this aspect more weight, it is more difficult for the
objective function to learn the importance of solu-
tion quality. We think this lack of convergence is
due to learning both the system and a simulated user
at the same time, which is a more difficult reinforce-
ment learning problem than just learning the policy
for the system against a fixed user.

5.3 Lack of Convergence

To better understand the lack of convergence, we ex-
plore when a single weight is chosen for the objec-
tive function. For this analysis, we restricted our-
selves to the objective function having a ratio for
w2/w1 of 0.1, one of the best performing weights
from section 5.2. For this setting, we learned a num-
ber of policy pairs, each learned from a different se-
quence of task configurations. We then tested each
policy pair on 1000 task configurations, in which ac-
tions are selected strictly according to the learned
policy. This gives us 1000 dialogs for each policy
pair. We then computed the average objective func-
tion score for each policy pair and plotted them as a
histogram in Figure 2. As can be seen, at this weight
setting, 63% of the learned policies achieved an ob-
jective function score around 44.8. However, the
rest achieved a performance substantially less than
this. Hence, the reinforcement learning procedure
does not always converge on an optimal solution.

To better understand why reinforcement learning
is not always converging, we examined the compo-
nents of the objective function score: solution qual-
ity and dialog length. Figure 3 uses the same x-axis
as Figure 2: average objective function score. The
y-axis plots the average solution quality and average
dialog length. We see that at this weight ratio, all
learned dialogue pairs are very consistent in solution
quality, but that the difference in objective function
scores is mainly due to differences in dialog length.
This is consistent with our earlier observation that
the reinforcement learning strategy sometimes dis-
proportionately favors shorter dialog length.
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Figure 2: Average objective function scores for poli-
cies learned withw2/w1 = 0.1.
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Figure 3: Variation of solution quality and dialogue
length versus objective function score for policies
learned withw2/w1 = 0.1.

5.4 Consistency of Policies

For the weight ratio of 0.1, the reinforcement learn-
ing algorithm usually finds a good policy pair. To
further improve the likelihood of this happening, we
could learn multiple policy pairs, and then pick the
best performing one. In this section, we compare
learned policies chosen in this way against the re-
stricted baseline pairs. We learned 10 sets of 10 dia-
logue pairs. We then ran each on 1000 task configu-
rations and chose the best performing policy pair in
each set. We then ran the resulting 10 policy pairs
on another set of 1000 task configurations. Table 1
gives the average objective function score for each of
the 10 learned policy pairs and the 3 baseline pairs.
From the table, we see that the learned policy pair
performs almost as well as the restricted policy pair,
for both solution quality and dialog length.

5.5 Robustness of Learned Policies

All of the results so far have used the learned pol-
icy for the system interacting with the corresponding
policy that was learned for the user. However, there

Objective Solution Dialog
Function Quality Length

Learned Policies 44.90 46.71 18.17
Restricted 45.04 46.89 18.44
Unrestricted 44.40 46.80 24.07
Uncollaborative 32.52 33.62 11.00

Table 1: Comparison of Learned Policies

is no guarantee that a real user will behave like the
learned policy. Thus, the true test of our approach
is to run the learned system policy against actual
users. The problem with testing our policies against
actual users is that there are a number of aspects
of dialog that we have not modeled, such as non-
understandings, misunderstandings, and even pars-
ing sentences into the action specification and gener-
ating sentences from the action specification. Thus,
as a simplification we tested our learned system pol-
icy on the handcrafted baseline policies.

For the weight ratio of 0.1, we learned 10 sets of
10 pairs of policies and choose the best policy pair
from each set. For each of the 10 policy pairs, we ran
the system policy against the 6 individual policies
from the 3 baseline policy pairs. We changed the
hand-crafted policies slightly from Yang and Hee-
man so that the policies would not fail if they en-
countered unexpected input. For example, for the
restricted policy for A (the conversant who proposes
but never informs), if the learned policy proposes an
item, A always rejects it. For the restricted policy
for B (the conversant who informs but never pro-
poses), if the learned policy releases the turn when
there is not an item proposed, B simply releases the
turn back to the learned policy.

Figure 4 shows the resulting average objective
function scores on 1000 dialog runs. For each base-
line policy, we show the performance with the pol-
icy pair, and then with each side of the baseline pol-
icy interacting with the learned policy. We see that
although the performance of the learned policy is
not as good as with the handcrafted pair, the perfor-
mance is close, with the major shortcoming being
a general increase in dialog length. Thus, the poli-
cies that we have learned our robust against different
strategies a user might want to use.
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baseline policies.

6 Conclusion

In this paper, we proposed using reinforcement for
learning a dialog strategy for the system. Our ap-
proach differs from past research in that we learn
the system policy in conjunction with learning a user
policy. This approach of learning the user policy al-
lows us to minimize human involvement, as neither
a training corpus must be collected nor a simulated
user built. Thus, the only human input required for
this approach was to define the domain task and to
define success in that domain. While our training
approach did not always find an effective policy, we
overcame this obstacle by carefully choosing a ra-
tio for the weights in the objective function and by
running the learning algorithm multiple times. Our
approach resulted in learned system and user dia-
log policies that achieved comparable performance
with handcrafted system and user policy pairs. Fur-
thermore, the learned system policies were robust.
When the learned system policies ‘conversed’ with
the handcrafted user policies, the resulting dialogs
had comparable solution quality to what the hand-
crafted system and user policies achieved together.

Even with the lack of convergence our approach
could be applied to more complicated domains in or-

der to learn an effective dialog policy. Our approach
would be especially useful in situations where there
are no existing corpora of human-human interac-
tions for the domain or as a way to provide a check
against a policy based on human intuition. In most
situations where the domain requires significant col-
laboration between the dialog system and the user,
training both the system and a user simultaneously
will prove to be much less costly and labor intensive
approach.
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