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Introduction

We are excited to welcome you to SIGDIAL 2020, the 21st Annual Meeting of the Special Interest Group
on Discourse and Dialogue. This year the conference is being held virtually, on July 1-3, 2020, with the
Satellite Event YRRSDS 2020 (Young Researchers’ Roundtable on Spoken Dialog Systems) and just
before ACL 2020 that will take place also virtually July 5-10, 2020.

The SIGDIAL conference is a premier publication venue for research in discourse and dialogue. This
year, the program includes three keynote talks, nine presentation sessions, three demo sessions, and a
special session entitled “Situated Dialogue with Virtual Agents and Robots (RoboDial 2.0)” organized
by Jose David Lopes, Stephanie Lukin, Matthew Marge, Vikram Ramanarayanan, Matthias Scheutz,
Casey Kennington, and Cynthia Matuszek.

We received 104 submissions this year, which comprised 62 long papers, 32 short papers and 10 demo
descriptions. This year, for the first time, we had 8 Senior Program Committee (SPC) members who
were responsible for a set of 10-15 papers each, guiding the discussion process and writing a meta-
review. Every submission was assigned to one SPC and received at least three reviews. When making our
selections for the program, we carefully considered the reviews, meta-reviews and the comments made
during the discussions among reviewers. The members of the Senior Program Committee and Program
Committee did an excellent job in reviewing the submitted papers, and we thank them for their essential
role in selecting the accepted papers and helping produce a high quality program for the conference. In
line with the SIGDIAL tradition, our aim has been to create a balanced program that accommodates as
many favorably rated papers as possible. We accepted 41 papers: 23 long papers, 10 short papers, and 8
demo descriptions. These numbers give an overall acceptance rate of 39%. The acceptance rate for long
papers (37%) and short papers (31%) remains in line with the acceptance rate from last year.

Each of the three conference days features one keynote and several oral sessions, with the remaining
time given to demos, special session and sponsor sessions. In organizing the virtual conference, we
decided to keep as much as possible the spirit of an in person conference. All keynotes, talks and
demos are pre-recorded and made available at the beginning of the conference for participants to watch
asynchronously. The long and short papers are organized in thematic sessions and take into consideration
the speakers’ different time zones. The sessions contain 3-4 pre-recorded talks followed by a Live QA
part with the presenters. For demos, we organized Live Question Answering sessions with the demo
presenters. Topic-wise, we have papers on evaluation and corpora, natural language generation, task
oriented dialogues, knowledge use and acquisition, behaviour modeling, dialogue policy and dialogue
state tracking, modeling convergence in dialogues, and the semantics and pragmatics of discourse and
dialogue.

A conference of this scale requires advice, help and enthusiastic participation of many parties, and
we have a big ‘thank you’ to say to all of them. Regarding the program, we thank our three keynote
speakers, Asli Celikyilmaz (Microsoft Research), Diane Litman (University of Pittsburgh) and Gabriel
Skantze (KTH Royal Institute of Technologies), for their inspiring talks on "Neural text Generation:
Progress and Challenges", "Argument Mining, Discourse Analysis, and Educational Applications" and
"Conversational Turn-taking in Human-robot Interaction". We also thank the organizers of the special
session on Situated Dialogue with Virtual Agents and Robots (RoboDial 2.0). We are grateful for their
smooth and efficient coordination with the main conference.

We extend special thanks to our Local Chair, Casey Kennington, for handling the situation of adapting
to a virtual conference. SIGDIAL 2020 would not have been possible without his effort in arranging
the virtual platform, handling registration, numerous preparations for the conference, and last but not
least, Casey’s personal contributions, which exceeded those of a local organizer. We also thank the
virtual presentation co-chairs, Koji Inoue and Erik Ekstedt, for helping the authors with their video
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presentations, arranging for the video streaming during the conference and hosting the Zoom Live QAs
sessions.

David Vandyke, our Sponsorship Chair, has conducted the massive task of recruiting and liaising with
our conference sponsors, many of whom continue to contribute year after year. We thank David for his
dedicated work and his assistance with conference planning. We gratefully acknowledge the support of
our sponsors: (Gold level) Apple and Rasa Technologies and (Silver level) Toshiba Research Europe and
Honda Research Institute.

In addition, we thank Nina Dethlefs, Mentoring Chair for SIGDIAL 2020, for her dedicated work on the
mentoring process. The goal of mentoring is to assist authors of papers that contain important ideas but
require significant stylistic modifications, and we thank our mentoring team for their excellent support
of the authors; and Stefan Ultes, our publication chair, capped the long organizational process by putting
together these high quality conference proceedings.

We thank the SIGdial board, both current and emeritus officers, Gabriel Skantze, Mikio Nakano, Vikram
Ramanarayanan, Ethan Selfridge, Jason Williams and Amanda Stent, for their advice and support from
beginning to end.

We once again thank our senior program committee members (Dilek Hakkani-Tur, Annie Louis, Mikio
Nakano, Rebecca J. Passonneau, Gabriel Skantze, Manfred Stede, David Traum, Koichiro Yoshino) and
program committee members for committing their time to help us select an excellent technical program.
Finally, we thank all the authors who submitted to the conference and all conference participants for
making SIGDIAL 2020 a success and for growing the research areas of discourse and dialogue with
their fine work.

Olivier Pietquin, General Chair

Smaranda Muresan and Yun-Nung (Vivian) Chen, Program Co-Chairs
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Keynote Abstracts

Keynote 1 - Conversational Turn-taking in Human-robot Interaction
Gabriel Skantze
KTH Royal Institute of Technologies

Abstract

The last decade has seen a breakthrough for speech interfaces, much thanks to the advancements in
speech recognition. Apart from voice assistants in smart speakers and phones, an emerging application
area are social robots, which are expected to serve as receptionists, teachers, companions, coworkers,
etc. Just like we prefer physical meetings over phone calls and video conferencing, social robots
can potentially offer a much richer interaction experience than non-embodied dialogue systems. One
example of this is the Furhat robot head, which started as a research project at KTH, but is now used
in commercial applications, such as serving as a concierge at airports and performing job interviews.
However, even though this recent progress is very exciting, current dialogue systems are still limited in
several ways, especially for human-robot interaction. In this talk, I will specifically address the modelling
of conversational turn-taking. As current systems lack the sophisticated coordination mechanisms found
in human-human interaction, they are often plagued by interruptions or sluggish responses. In a face-
to-face conversation, we use various multi-modal signals for this coordination, including linguistic and
prosodic cues, as well as gaze and gestures. I will present our work on the use of deep learning for
modelling these cues, which can allow the system to predict, and even project, potential turn-shifts. I
will also present user studies which show how the robot can regulate turn-taking in multi-party dialogue
by employing various turn-taking signals. This can be used to both facilitate a smoother interaction, as
well as shaping the turn-taking dynamics and participation equality in multi-party settings.

Biography

Gabriel Skantze is professor in speech technology with a specialization in dialogue systems at KTH
Royal Institute of Technology. His research focuses on the development of computational models for
situated dialogue and human-robot interaction. He is also co-founder and chief scientist at Furhat
Robotics, a startup based in Stockholm developing a platform for social robotics. Since 2019, he is
the president of SIGdial.
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Keynote 2 - Neural Text Generation: Progress and Challenges
Asli Celikyilmaz
Microsoft Research

Abstract

Automatic text generation enables computers to summarize text, describe pictures to visually impaired,
write stories or articles about an event, have conversations in customer-service, chit-chat with individuals,
and other settings, etc. Neural text generation — using neural network models to generate coherent text —
have seen a paradigm shift in the last years, caused by the advances in deep contextual language modeling
(e.g., LSTMs, GPT) and transfer learning (e.g., ELMO, BERT). While these tools have dramatically
improved the state of text generation, particularly for low resource tasks, state-of-the-art neural text
generation models still face many challenges: a lack of diversity in generated text, commonsense
violations in depicted situations, difficulties in making use of multi-modal input, and many more. I
will discuss existing technology to generate text with better discourse structure, narrative flow, or one
that can use world knowledge more intelligently. I will conclude the talk with a discussion of current
challenges and shortcomings of neural text generation, pointing to avenues for future research.

Biography

Asli Celikyilmaz is a Principal Researcher at Microsoft Research (MSR) in Redmond, Washington.
She is also an Affiliate Professor at the University of Washington. She has received Ph.D. Degree
in Information Science from University of Toronto, Canada, and later continued her Postdoc study
at Computer Science Department of the University of California, Berkeley. Her research interests
are mainly in deep learning and natural language, specifically on language generation with long-term
coherence, language understanding, language grounding with vision, and building intelligent agents for
human-computer interaction She is serving on the editorial boards of Transactions of the ACL (TACL) as
area editor and Open Journal of Signal Processing (OJSP) as Associate Editor. She has received several
“best of” awards including NAFIPS 2007, Semantic Computing 2009, and CVPR 2019.
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Keynote 3 - Argument Mining, Discourse Analysis, and Educational Applications
Diane Litman
University of Pittsburgh

Abstract

The written and spoken arguments of students are educational data that can be automatically mined
for purposes such as student assessment or teacher professional development. This talk will illustrate
some of the opportunities and challenges in educationally-oriented argument mining. I will first describe
how we are using discourse analysis to improve argument mining systems that are being embedded in
educational technologies for essay grading and for analyzing classroom discussions. I will then present
intrinsic and extrinsic evaluation results for two of our argument mining systems, using benchmark
persuasive essay corpora as well as our recently released Discussion Tracker corpus of collaborative
argumentation in high school classrooms.

Biography

Diane Litman is Professor of Computer Science, Senior Scientist with the Learning Research and
Development Center, and Faculty Co-Director of the Graduate Program in Intelligent Systems, all at
the University of Pittsburgh. Her current research focuses on enhancing the effectiveness of educational
technology through the use of spoken and natural language processing techniques such as argument
mining, summarization, multi-party dialogue systems, and revision analysis. She is a Fellow of the
Association for Computational Linguistics, has twice been elected Chair of the North American Chapter
of the Association for Computational Linguistics, has co-authored multiple papers winning best paper
awards, and was the SIGdial Program Co-Chair in 2018.
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Semantic Guidance of Dialogue Generation with Reinforcement Learning

Cheng-Hsun Hsueh
National Yang-Ming University

Jimbokururu27@gmail.com

Abstract

Neural encoder-decoder models have shown
promising performance for human-computer
dialogue systems over the past few years.
Howeyver, due to the maximum-likelihood ob-
jective for the decoder, the generated re-
sponses are often universal and safe to the
point that they lack meaningful information
and are no longer relevant to the post. To ad-
dress this, in this paper, we propose seman-
tic guidance using reinforcement learning to
ensure that the generated responses indeed in-
clude the given or predicted semantics and
that these semantics do not appear repeatedly
in the response. Synsets, which comprise
sets of manually defined synonyms, are used
as the form of assigned semantics. For a
given/assigned/predicted synset, only one of
its synonyms should appear in the generated
response; this constitutes a simple but effec-
tive semantic-control mechanism. We conduct
both quantitative and qualitative evaluations,
which show that the generated responses are
not only higher-quality but also reflect the as-
signed semantic controls.

1 Introduction

Dialogue generation systems with adequate arti-
ficial intelligence responses hold great potential
for practical use. A decent human-computer dia-
logue system should generate coherent and infor-
mative responses based on human-provided posts
(Li et al., 2017). Sequence-to-sequence models
(Sutskever et al., 2014) with long-short term mem-
ory (Hochreiter and Schmidhuber, 1997) or gated
recurrent networks (Cho et al., 2014) have demon-
strated profound improvements in open-domain
dialogue systems (Shang et al., 2015; Vinyals and
Le, 2015; Luan et al., 2016; Xu et al., 2016; Yao et
al., 2017). However, these models often generate
overly generic responses (Sordoni et al., 2015; Li et
al., 2016a) that are independent of the given posts

1

Wei-Yun Ma
Academia Sinica

ma@iis.sinica.edu.tw

due to the maximum-likelihood-estimation-based
objectives.

To improve the variety of the responses, re-
cent studies usually use semantically conditioned
LSTM, relying on additional semantic indicators
such as keywords to guide the decoding process.
However, keywords typically appear repeatedly in
generated utterances with this strategy. To address
this, Wen et al. (2015b) propose a special gate
mechanism to reduce the influence of the keywords.
However, since this design does not directly ad-
dress the concern in the objectives, repeated key-
words still often remain a problem in practice; we
confirm this is in our experiments.

To address this issue, in this paper, we introduce
the semantically controlled and recorded LSTM
(SCR-LSTM) cell, which provides semantic guid-
ance via reinforcement learning (RL) as well as a
recording mechanism that records the existence of
the desired semantics to ensure that the generated
responses indeed include the given or predicted
semantics; also, the desired semantics are not to
appear repeatedly in the response. For the form
of the assigned semantics we use synsets, which
provide a more flexible semantic representation
for practical use, and any lexical or knowledge
taxonomy can be used to serve this role. For a
given/assigned/predicted synset, only one of its
covering synonyms should appear in the generated
response.

In addition, when synsets are used to semanti-
cally control the generated responses, the responses
may indeed show the assigned semantics, but the
responses could be not diverse enough, or the re-
lation to the given posts may be tenuous, because
the major goal of the model is to meet the seman-
tic constraints. Therefore, we add a conditional
SeqGAN (Yu et al., 2017) to assure that the gener-
ated responses are similar to true human responses
and are related to the given posts while specifying

Proceedings of the SIGdial 2020 Conference, pages 1-9
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semantics to avoid dull or repetitive responses.

As with conventional GAN (Goodfellow et al.,
2014), our conditional SeqGAN comprises a gener-
ator and a discriminator; however, with the pro-
posed discriminator we seek to not only distin-
guish machine-generated utterances from human-
generated utterances but also distinguish post-
independent from post-dependent utterances. The
resulting additional SeqGAN architecture gener-
ates responses that are more related to the posts.

2 Background
2.1 Semantically conditioned LSTM

To incorporate given dialogue acts into utterance
generation, Wen et al. (2015b) propose the seman-
tic controlled LSTM (SC LSTM) cell, a special neu-
ral cell. The assigned dialogue acts are represented
in one-hot form, and are fed into dialogue acts
cells, which rely on a decreasing mechanism on
dialogue acts information to avoid repetition. The
formula for this semantically conditioned LSTM is
as following:

it = o(Wwiws + Whihyi—1) (1)

fr = U(Wwfwt + thht—l) 2

or = oc(Wyowr + Wiohi—1)  (3)

¢ = tanh(Wyewr + Whehi—1)  (4)

ct = ft ® c—1 + iy @ & + tanh(Wyedy) — (5)
ht = o @ tanh(c;)  (6)

With its additional third term, only formula (5)
of cell value ¢; differs from traditional LSTM. Term
dy serves as the dialogue act one-hot vector, and is
derived from the following formula:

Ty = U(erwt + Z alWilLrhf‘,fl) (7)
l

di =1 ®@di—1 (8)

Wen et al. (2015b) term the mechanism based
on (7) and (8) a dialogue act cell (DA cell). Vector
r¢, known as the reading gate, is determined by the
input of the current time step and the hidden state
of the past generation history, and is multiplied
element-wise with the dialogue act vector d; to
either retain or discard its information in future
generation time steps.

The monotonically decreasing value of the di-
alogue act vector is intended to reduce repetition.

However, the design provides an insufficient guar-
antee on avoiding repetition, as the model provides
no direct link between the dialogue act generation
possibility and the value of d;; thus repeated key-
words continue to remain a problem in practice.

2.2 Sequence GAN

The original generative adversarial network (GAN)
is ill-suited to text generation given the discrete na-
ture of text. In particular, the changing-signal guid-
ance from the discriminator does not correspond
to discrete dictionary tokens (Yu et al., 2017). Fur-
thermore, the rewards can only be given to entire
sequences when the whole generation is finished,
making it impossible to estimate the value of a
specific token in the generation step. Sequence
GAN introduces a policy gradient (Sutton et al.,
1999) as well as a rollout mechanism to help the
discriminator pass its scores to the generator.

Given a current and incompletely generated re-
sponse Y1+ = [y1,Y2,Y3,--.,Yt], where t is the
current time step of generation and y; is the to-
ken generated at the current step, a reward is to
be given to the current token y,. However, these
rewards can be estimated only once the entire se-
quence has been generated. To account for this, the
generator must “roll out” the complete responses
at every current step. For example, if we roll out
starting from time step t, the complete utterance
can be generated using Monte Carlo search as

Y] € MCY%(Yiy; N) 9)

where MC denotes Monte Carlo search, G denotes
the generator, and IV denotes the assigned repeat-
ing turn for searching. The incomplete responses
are completed after the rollout and then judged by
the discriminator, which assigns reward scores to
the rollouted responses. Rollout is accomplished
using N Monte Carlo searches, and the rewards
are averaged to serve as the expected utility for the
incomplete utterance generated at time step ¢:

1 N
V(Vir) = 5 > Do(Yiir)

n=1

(10)

where Dy (Y]?) denotes the score assigned by the
discriminator.

2.3 Conditional GAN

Unconditioned GAN loses control on generating
the intended type of data. By giving conditions for
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Figure 1: Proposed semantically controlled and
recorded LSTM (SCR LSTM) cell.

GAN to depend on (Mirza and Osindero, 2014), it
is possible to guide the generation process. Con-
ditional GAN extends the original GAN by pro-
viding extra information y for both the generator
and the discriminator. The generator conditions on
y, whereas the discriminator judges whether the
generated data is suitable based on the relatedness
of the generated results and the extra information
. Thus, the formula for conditional GAN extends
the original GAN with y to become

InGiIl ngXV(D, G) = ExNPdata(x) [lOgD(x | Y)]
+ E.op.»llog(l = D(G(z | y)))] (11)

where z denotes the generated data and x denotes
the training data.

3 Methods

3.1 Semantically Controlled and Recorded
LSTM Cell

Extended from (Wen et al. 2015b), we introduce
the semantically controlled and recorded LSTM
(SCR LSTM) cell, which provides semantic guid-
ance and a recording mechanism, as shown in Fig-
ure 1. It integrates a DA cell with a synonym act
and a special recording cell which we propose to
provide a mechanism to record the existence of the
desired semantics. We term this a dialog act record
cell (DAR cell).

3.2 DA Cell with Synonym Act

The DA cell (Wen et al. 2015b) is integrated in our
SCR LSTM cell, but here we slightly change the
definition of act. We define an act as an element
(synonym) of the assigned synset; we expect that
just one of the acts (synonyms) will be used in the
generation. A one-hot vector is used to encode this
synonym act, denoted by d;, where each element

corresponds to a word in the vocabulary, and it is
assigned 1 if the corresponding word belongs to the
assigned synset. For example, in Figure 2, given
an assigned synset - synset;, there are three vocab-
ulary elements (synonyms)—‘tribe’, *group’, and
’clan’—thus the vocabulary-size d; is represented
as [0..0,1,0..0,1,0..0,1,0..0], in which the three
Is refer to ‘tribe’, *group’, and "clan’, respectively.
Value d; is fed into the DA cell, which relies on a
decreasing mechanism for dialogue act information
to prevent repetition, as shown in (7) and (8).

Note that although the three synonyms are all
indexed in d;, this does not mean that all three syn-
onyms (dialogue acts) are to appear in the response.
Instead, we expect only one of these to appear, in
fact to appear exactly once, in contrast to (Wen et al.
2015b). However, the DA cell merely decays the
influence of the assigned dialogue acts, and does
not directly address this concern in the objectives;
thus repeated keywords still remain a problem in
practice, as we verify experimentally. To address
this shortcoming, we propose the dialog act record
cell (DAR cell) in concert with the DA cell.

3.3 DAR Cell with Synset Act

With the DAR cell we seek to provide a mechanism
to record the occurrence of the desired semantics'
to ensure that they are indeed included in the gen-
erated responses. At every generation time step we
use a one-hot vector s;, the dimension of which is
the total number of synsets, to record whether the
assigned synsets appear. Each element of s; indi-
cates whether the synset appears or not. For gener-
ation, s, is initialized as [0..0]. Once an element of
the assigned synset appears during generation, the
synset’s corresponding element in s; is changed to
1. We develop a special gate called an M Gate to
realize this function, which is formally presented
in Algorithm 1.

Figure 2 illustrates the overall structure. Given
an assigned synset - synset;, there are three vocab-
ulary elements (synonyms): ‘tribe’, ’group’, and
“clan’. As generation proceeds, at the second time
step, as ‘tribe’ is generated, s; is updated from
[0..0,0,0..0] to [0..0,1,0..0], in which 1 refers to
synset;’s current status. The updated s; informs
the model that synset; has already appeared, in-
structing it to not generate any element of synset;
afterward.

'"In our model, the desired semantics can be multiple

synsets or a single synset. All of our experiments are based
on a single synset.
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which retain or discard synset information in every generation step based on whether the assigned synset has

appeared or not.

Algorithm 1 M Gate Algorithm.

Input: s;_; and y;_; (y refers to generated token)
Output: s
St = St—1
for each synset; € assigned synset do
if y;_1 € synset; then

st(i) = 1 /ls4(@) refers to i-th element
oI S¢

end if
6: end for

N

e

The SCR LSTM cell value c¢; integrating the DA
cell and DAR cell is

c=fi®c1+1 ¢

+ tanh(WdCdt) + tanh(Wsynsst) (12)

where Wy d; and Wy, s; are the outputs of the
DA and DAR cell, respectively, and Wy, € Rhxdi
Wyns € R"™% d, € {0,1}%, and s; € {0, 1}%.
Value d; denotes the vocabulary size, do denotes
the total number of synsets, and A denotes the di-
mension of hidden states in the decoder.

To both prevent repetition and ensure the de-
sired semantics in the generated responses, we use
reinforcement learning to penalize our model for

violations. The reward is

Csyn = 1 — |semantic occurence — 1|  (13)

where semantic occurrence is an integer that
records the current occurrence (frequency) of the
elements of the assigned synset at every time step
of the generation. Thus we expect that when the
generation is finished, semantic occurrence will be
exactly 1 instead of a number greater than 1, in-
dicating repetition of the desired semantics, or 0,
indicating the absence of the desired semantics.

Thus only a semantic occurrence of 1 results in
the highest value of 1 for C'*¥"; a semantic occur-
rence of 0 and a semantic occurrence greater than
1 cause C'*¥Y™ to be less than or equal to 0.

Although this reward encourages appropriate ap-
pearances of the assigned synsets in the response, it
could cause the model ignore other critical require-
ments for a response, including fluency, relevance
to the posts, and information. To account for this,
we add a conditional SeqGAN to provide another
reward D , which is the result of its discriminator,
seeking to ensure that the generated responses ap-
proximate true human responses and are related to
the given posts.

The discriminator not only distinguishes
machine-generated utterances from human-
generated utterances but also distinguishes



post-independent from post-dependent utterances.
D derives its score by projecting the concatenated
final hidden states of two LSTM sequence-to-
sequence networks to a 2-dimensional vector
followed by softmax. The first LSTM network
is given posts as encoder inputs and responses
as decoder inputs, whereas the second network
switches posts and responses. Therefore, the
discriminator model can be formulated as

D = D inal inal
¢(p, q) softmax (W [hlgm ;h2§|p ])
(14)

where p denotes post, ¢ denotes response, W de-
notes the projection matrix, and h; and hs denote
two sequence-to-sequence networks respectively.
During training, a third of the training batches are
pairs composed of posts with their correlated hu-
man responses, another third is composed of pairs
of posts with an uncorrelated human response, and
the final third is pairs of posts with a generated
response. Only the first third is labeled frue; the
other two-thirds are labeled false.

For every generation step, the expected utility V'
is given by both the semantic occurrence and the
discriminator, calculated using Monte Carlo search
as

N
1 n syn (yn
V(p7 Ylit) = N ZD(b(pa Yl:T)—I_C v (leT)7
n=1

Y] € MCY% (Y1, N) (15)

where the notation p denotes the post, Yi.; =
[Y1,Y2,Y3, - .., y:] denotes the generated sequence,
and G denotes the generator. N is the number of
turns in the Monte Carlo search, here set to 5. The
utility is then applied in the REINFORCE algo-
rithm (Williams, 1992) as

VJ(0) ~

> (V(p,Y14) = b)Viogp(y: | 2, Yi-1) (16)
t

where b denotes the baseline value to reduce the
variance of the utility.

4 Evaluation

4.1 Dataset

Conversation data from Weibo was used for train-
ing and evaluation. The training data is composed
of 570k post-response pairs with 3360 synonym

Algorithm 2 Training Algorithm.

Input: (post, response) pairs with assigned synsets
1: Initialize generator and discriminator
2: Pre-train generator (G using maximum likeli-
hood estimation
3: repeat

4: Generator G generates response Y7.7 given
post and assigned synset

5: for t € range(T') do
: for n € range(N) do // N is turns of

MC search
7: st < M-Gate(y}', s¢—1)
Roll out Y7, to full sentence Y|
: end for
10: Calculated the expected utility of Y74
by equation(15)
11: end for

12: Update generator G
13: Update discriminator D
14: until reinforcement learning converges

Semantics fetched
from posts

Semantics fetched
from real responses

Dataset 1:
To exclude influence of
semantic selection

Figure 3: The two datasets in experiment.
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Figure 4: Structure of E-HowNet.

sets, and the testing data is composed of 2k post-
response pairs with 1731 synonym sets.

Here we established two datasets, as shown in
Figure 3. In the first dataset, we attempted to elim-
inate interference from semantic selection and fo-
cus mainly on the effect of the model. Therefore,
we fetched the assigned semantics from human
response by randomly selecting one synset from
the human response. In the first dataset, we used
both human evaluation and automatic evaluation
to analyze the efficacy of our model. Thereafter



we switched to the second dataset, where the as-
signed semantics are simply fetched from posts by
randomly selecting one synset from a post. We
analyze the feasibility of our model in practical use.
Automatic evaluations are also performed for the
second dataset.

The synonyms of an assigned synset are re-
trieved from E-hownet (Ma and Shih, 2018; Chen
et al. 2005), a structured Chinese knowledge net.
The structure of E-hownet is shown in Figure 4.
The synonyms of an assigned word are at the same
level of the word, whereas meanings of a word are
inferior to the word.

For the experiments here we fetch only the syn-
onyms. Note that our model is not confined to
E-hownet; other synonym datasets could be used
for our proposed model as well.

4.2 Baselines

SEQ2SEQ

The Sequence-to-sequence model (Sutskever et
al., 2014) with an attention mechanism (Bahdanau
et al., 2014) is implemented without auxiliary key-
words.
Hierarchical Gated Fusion Unit (HGFU)

HGFU (Yao et al., 2017) incorporates assigned
keywords into sequence generation. We replace the
keyword input with the synset to focus the compar-
ison on the model design and ensure a fair compar-
ison.
Semantically conditioned LSTM (SC-LSTM)

Wen et al. (2015b) use dialogue acts cells to gen-
erate utterances that contain the assigned dialogue
acts. Here we replace the dialogue acts with synsets
for comparison. In addition, for a full comparison,
we implement SC-LSTM with over-generation, as
suggested by Wen et al. 2015a, generating 20 se-
quences and selecting the top-scoring one.

4.3 Proposed method

SCR-LSTM + RL

This approach extends the former method us-
ing an RL mechanism and an additional DAR cell
to record whether the synonym set has already
been generated in previous generation steps (Sec-
tion 3.1).

The proposed methods and baselines all leverage
beam search with a beam size of 5 to generate ap-
propriate responses. Only the top-scored sequences
are selected for further evaluation.

Methods Average score
SEQ2SEQ 0.99
HGFU 1.19
SC-LSTM (over generation) | 1.06
SCR-LSTM+RL 1.23

Table 1: Scores of different models from human evalu-

ation
Situation Percentage
HGFU win 24.65%
Tie 42.71%
SCR-LSTM + RL win | 32.64%

Table 2: Comparison between HGFU and SCR-LSTM
+ reinforcement learning

Methods Repetition | Non-appearing
percentage | percentage

HGFU 22.99% 4.00%

SC-LSTM 3.05% 5.55%

(over generation)

SCR-LSTM+RL | 2.10% 0.25%

Table 3: Percentage of synonym repetition and non-
appearing when semantics are fetched from responses

Methods Repetition | Non-appearing
percentage | percentage

HGFU 31.03% 4.05%

SC-LSTM 2.90% 5.55%

(over generation)

SC-LSTM 13.10% 1.25%

(MLE)

SCR-LSTM+RL 2.20% 0.50%

(w/o discriminator)

SCR-LSTM+RL 4.15% 0.70%

(w/ discriminator)

Table 4: Percentage of synonym repetition and non-
appearing when semantics are fetched from posts

Methods Uni Bi Tri
-gram | -gram | -gram

SEQ2SEQ 3.20% 10.81% | 19.15%

HGFU 7.11% | 23.99% | 39.87%

SC-LSTM 15.02% | 61.47% | 89.85%

(over generation)

SC-LSTM 7.60% | 22.33% | 36.53%

(MLE)

SCR-LSTM+RL 8.73% | 25.10% | 39.80%

(w/o discriminator)

SCR-LSTM+RL 891% | 26.17% | 42.21%

(w/ discriminator)

Table 5: Unigram, bigram and trigram variations of dif-

ferent methods




Methods

Example 1

Example 2

Post: If . FIlE — L 55 R AR |
Post: OK...I am anticipating the answer!

Synset: 77 « Wy BPEE . HHEE . HHER

Post: K AFAZE, B DU HAL
Post: I am defamed because I can’t draw

Synset: 1% « REE- Tork g AT

(over generation)

Not looking forward to it?

(anticipate) (cannot)
SEQ2SEQ Ureh, WA R SR FE A VR E

Ok, thank you for your support I drew what you drew
HGFU RIS A7 AR

What are you saying? No way
SC-LSTM AR g2 NEA A& RE?

Life wouldn’t cause that, would it?

SCR-LSTM (MLE)

TRy, Bk
Okay, looking forward to it!

IR, FAARER
No, I like it too

SCR-LSTM +RL | %! NI}
(w/o discriminator) | Looking forward to it! No way

SCR-LSTM + RL
(w/ discriminator)

i, HOEERE
OK, stay tuned

A2, ZHRBETFER
No, I think it’s pretty good too

Table 6: Examples of different models

Methods

Example 1

Example 2

Post: & [OEN, 1RBHE. FarG
Post: It’s ironic, obviously ... haha
Synset: [1] ~ & (is)

Post: MG, BHESRILATE 2!
Post: Haha, I will try every dish!
Synset: %« 2 (taste)

SCR-LSTM +RL | &R, FABIREFWMAT 2T
(w/o discriminator) | Yes, I like him too Taste it!
SCR-LSTM +RL | W, ZuBRER XK 22!

(w discriminator)

Yeah, I also find it funny

You are welcome to have a taste!

Table 7: Examples SCR-LSTM with and without discriminator

Methods
Example 1

SCR-LSTM (w/ discriminator)
Post: LML KB, M EHEL
Post: Greetings from the baby in
Fuzhou, happy new year in Nanchang
Synset: & /NP~ BEF -~ EIL
(kids, baby)

Response: Hi§f 1#Z 717!

Response: Thanks, kids!

Post: Wit 241, &IL?

Post: What is it about? Raising child?
Synset: ¥t « Ui~ Pk~ i (say)
Response: Rt 4

Response: What do you mean?

Example 2

Table 8: Synsets help to extend semantics

4.4 Results and analysis

Human evaluation

Since automatic metrics such as the BLEU score
or perplexity are not suitable in evaluating dialogue
generation (Shang et al., 2015), we used human
judgments instead. The criteria of human evalua-
tion are referenced from Shang et al. (2015) with
three levels: unsuitable, neutral, and suitable. To

be judged ‘suitable’, the response must be clearly
correlated to the post and must be natural. For
‘neutral’, the response can be suitable in a specific
scenario. The response is considered ‘unsuitable’
if it does not fit in any scenario provided by the
post. Scores of 0, 1, and 2 were given for the three
levels respectively. Four methods for comparison
were evaluated, with 230 generated responses each.
Every generated response was evaluated by three
people using Amazon Turk. As mentioned above,
the semantics for this part of data were fetched
from real human responses.

Table 1 demonstrates that SCR-LSTM + RL re-
ceives the highest score and HGFU ranks second.
To further compare the two methods, 96 posts and
generated responses from the two methods were
compared directly, with ties allowed. Table 2 shows
that the proposed method still outperforms HGFU.

Also note that the proposed model outperforms
SEQ2SEQ, which does not rely on extra semantic
guidance, demonstrating that semantic guidance
plays an important role in generating meaningful
and related sequences given the post.



Automatic evaluation

To further evaluate the effect of the proposed
model, we implemented automatic evaluations. We
also calculate the percentage of semantic repeti-
tion and non-appearance. Table 3 shows that when
semantics are fetched from human responses, SCR-
LSTM + RL generates sequences with the least se-
mantic repetition and absence. For dataset 1, both
human evaluation and automatic evaluation prove
that with semantic selection, the proposed model
generates natural responses with the assigned se-
mantics appearing only once.

To further evaluate the feasibility of our model
in practical use, we shift to dataset 2, in which se-
mantics are fetched from posts. We evaluate the
effect of reinforcement learning and the discrimina-
tor, respectively, using three methods: SCR-LSTM
trained with maximum-likelihood-estimation with-
out RL (SCR-LSTM MLE), SCR-LSTM trained
with synset occurrences during reinforcement learn-
ing but without the discriminator (SCR-LSTM +
RL w/o discriminator), and SCR-LSTM trained
with synset occurrences and the discriminator
(SCR-LSTM + RL w/ discriminator), respectively.

We implement as automatic methods the per-
centage of semantic repetition and that of non-
appearance. Table 4 shows that SCR-LSTM + RL
both with and without discriminator methods gener-
ate less semantic repetition and absence than SCR-
LSTM MLE. This shows that reinforcement learn-
ing with the target of single-appearance semantics
has achieved its goal. SCR-LSTM+RL without the
discriminator, which is trained using only synset oc-
currences as a reward, reduces semantic repetition
and absence even more, resulting in the best perfor-
mance in Table 4. In addition, SCR-LSTM MLE
also results in significantly less semantic repetition
and fewer absences than HGFU, showing that the
proposed SCR-LSTM design alone is enough to
induce the desired semantics to appear just once.

Another metric is the percentage of distinct uni-
grams, bigrams, and trigrams. Proposed by Li et al.
2016b, this quantifies the diversity of a generated
sequence. This metric is calculated by counting the
distinct unigrams, bigrams, and trigrams, and di-
vided this by the total number of unigrams, bigrams,
and trigrams respectively. Table 5 shows that SCR-
LSTM + RL with the discriminator achieves higher
distinct unigram, bigram, and trigram percentages
than SCR-LSTM + RL without the discriminator.
Thus the discriminator does help the reinforcement

learn to generate more diverse responses. Note that
the over-generation of SC-LSTM yields the high-
est diversity because the model generates words
randomly and thus has a higher possibility to pick
up non-frequent words. Table 6 contains examples
from different models.

Case study: Effect of the discriminator

The effect of the discriminator is seen in Table
7, which compares SCR-LSTM + RL with and
without the discriminator. In the first example,
SCR-LSTM + RL w/o discriminator generates a
sequence that is not correlated with the given post.
SCR-LSTM + RL w/ discriminator generates a bet-
ter sequence that is relevant to the post. For the
second example, both methods generate relevant
sequences to the post, but SCR-LSTM + RL w/o
discriminator generates a sequence that is too short
and not very informative while the LSTM + RL
w/ discriminator generates a sequence that is more
meaningful and diverse.
Case study: Semantic coverage

With the synset implementation we seek to ex-
tend the semantic coverage of the desired keywords.
In Table 8, keywords from posts are not directly
used when generating responses. Instead, the syn-
onyms of the keywords are used as extra informa-
tion during the generation process. This shows
that a particular synonym may be used as semantic
guidance in generated responses.

5 Conclusion

In this work, to develop an effective semantic con-
trol mechanism, we propose the SCR-LSTM model
with reinforcement learning to ensure that the de-
sired semantics appear once and do not repeat. We
also present a conditional SeqGAN to help generate
more coherent and informative responses. Results
from both human and automatic evaluations show
that the proposed models outperform other base-
lines and achieve the lowest repetition and absence
percentages of the assigned synsets in the gener-
ated responses, proving that the proposed approach
indeed produces high-quality responses under the
desired semantic control. Also, we prove that Seq-
GAN is an essential part of enabling the model to
generate more diverse and coherent responses.
The proposed model leverages synsets to serve
as the semantic guidance. To investigate the feasi-
bility of our model in practical use, in this work,
the assigned synsets are simply fetched from posts.
However, the selection or prediction of the desired



semantics is an interesting task that we leave to
future study.
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Abstract

In this paper, we introduce a counseling dia-
logue system that provides real-time assistance
to counseling trainees. The system generates
sample counselors’ reflections —i.e., responses
that reflect back on what the client has said
given the dialogue history. We build our model
upon the recent generative pretrained trans-
former architecture and leverage context aug-
mentation techniques inspired by traditional
strategies used during counselor training to fur-
ther enhance its performance. We show that
the system incorporating these strategies out-
performs the baseline models on the reflection
generation task on multiple metrics. To con-
firm our findings, we present a human evalu-
ation study that shows that the output of the
enhanced system obtains higher ratings and
is on par with human responses in terms of
stylistic and grammatical correctness, as well
as context-awareness.

1 Introduction

A recent survey on mental and behavioral health-
care showed that while there is an increasing need
for counseling services, the available mental health
workforce is barely coping with this demand.! An
important reason behind this unmet need is that the
training of counselors requires a lot of time and ef-
fort. Typically, counselor training involves refining
counseling skills through practice and feedback us-
ing role-play activities, simulated patients, or real
patients, thus heavily relying on human supervision
and interaction.

In clinician training, feedback and coaching can
significantly improve the post-training counselor
proficiency (Miller et al., 2004). However, the stan-
dard way of providing systematic feedback relies
on human coding of the counseling sessions. This

'nttps://www.mhanational.org/issues/
state—-mental-health-america

process can take up to ten times as long as the dura-
tion of the session itself, and thus it does not scale
up (Atkins et al., 2014).

Previous work has focused on developing auto-
matic tools for counseling evaluation and training
tasks, including automatic coding (i.e., recognizing
a counselor behavior) and forecasting (i.e., pre-
dicting the most appropriate behavior for the next
counselor’s utterance) (Tanana et al., 2016; Park
et al., 2019; Cao et al., 2019). These tools aim to
facilitate the evaluation of a counseling encounter
and, to some extent, provide generic guidance dur-
ing the conversation. Although these systems help
counselors by suggesting the timing of a certain
counseling behavior, they do not offer any help on
how to acomplish it.

Among the different skills to be learned by coun-
selors, reflective listening has been shown to be an
important skill related to positive therapeutic out-
comes (Moyers et al., 2009). Reflective listening
is a conversational strategy used by counselors to
show that they understand their clients’ perspec-
tives, feelings, and values (Miller and Rollnick,
2013). During this process, the counselor listens to
the client’s statements and then makes a statement
(reflection) that is a reasonable approximation of
the meaning of what the client has said. Thus, the
main role of reflections is to keep the conversation
focused on the client and to move the conversation
forward. For example, considering the following
utterance by the client, a counselor could make re-
flections (a) or (b) to show an understanding of the
client’s feelings and concerns.

Client: 1 want to quit smoking because I
don’t want another heart attack; I want to
see my kids grow up.

Counselor (a): You are scared that you
might have another heart attack.
Counselor (b): It seems that you see a con-
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nection between your smoking and the pos-
sibility of having another heart attack.

Motivated by the importance of reflective listen-
ing skills and the significance of real-time feedback
in the success of a counseling encounter, we envi-
sion our system as an automatic assistant that pro-
vides counselors with sample reflection language
that is appropriate to the conversation context, thus
helping counselors to acquire or improve reflective
listening skills by emulating traditional psychother-
apy training, but without the need of close human
supervision.

We present a reflection generation system that
leverages state-of-the-art language models, and fur-
ther improve it with context augmentation tech-
niques inspired by traditional counselor training.
Specifically, we (1) identify previously used reflec-
tions from related sessions based on the current
context, similar to how trainee counselors are ex-
posed to several types of reflections on the same
topic before they have to produce their own; and (2)
we expand the content with synonyms for verbs and
nouns, similar to how counselors are advised to use
rephrasing strategies such as synonym rewording
(Flasher and Fogle, 2012).

We perform a domain adaptation on an addi-
tional counseling corpus containing a variety of
counseling styles, and fine-tune our system on a
corpus of successful counseling interactions with
labels available. Thus, it allows the system to ben-
efit from successful counseling patterns derived
from the cumulative experience of a large number
of professionals. We conduct several comparative
experiments, and perform evaluations using auto-
matic metrics for language generation, including
n-gram based, embedding-based and language di-
versity metrics. In addition, given the subjective
nature of our task and the inability of automatic
metrics to capture other relevant aspects of reflec-
tion generation, we conduct a human evaluation to
assess the ability of our system to generate coun-
seling reflections that are grammatically correct,
fluent, and relevant to the conversation context.

2 Related Work

There have been significant efforts put in building
automatic tools that provide support for mental and
behavioral health. In particular, for dialogue-based
counseling most of the existing work has focused
on generating conversational agents that emulate
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the counselor in chat-bot like settings. For instance,
(Han et al., 2013) built a system that extracts Swlh
(who, what, when, where, why, and how) infor-
mation and user emotions (happy, afraid, sad, and
angry) to recognize what the user says, predict
the conversation context and generate suitable re-
sponses based on utterance templates developed
to encode three basic counseling techniques (para-
phrasing, asking open questions, and reflecting feel-
ings). A similar system is presented in (Han et al.,
2015), where authors first detect the user emotion
and intention (e.g., greeting, self-disclosure, in-
forming, questioning) and then extract the entities
present in the utterance as well as related informa-
tion (from an external knowledge base) to generate
an appropriate response using language templates.

While these studies have focused on the de-
livery of health interventions via conversational
agents (i.e., virtual counselors), we seek to build
an automatic dialogue generation system that can
help training counselors to improve their everyday
practice. This is in line with a recent study on
the impact of technology in psychotherapy, which
has identified the development of technologies for
counselor’s training and feedback and technology-
mediated treatment as important needs in this do-
main (Imel et al., 2017). Initial work in this direc-
tion is presented in (Tanana et al., 2019), where au-
thors present a system that implements an artificial
standardized client that interacts with the counselor
and provides trainees with real-time feedback on
their use of specific counseling skills by providing
suggestions on the type of skills to use. Following
the same line of work, our goal is to aid counselors
while training specific skills, more specifically re-
flective listening skills. However, different from
previous work, we focus on presenting the coun-
selor with automatically generated samples for po-
tential reflections that can be used immediately in
the conversation.

Finally, potential applications of our proposed
system include supporting counselor training in
counseling platforms such as Talkspace?, which
currently has over a million users and five thousand
therapists, and Crisis Text Line,’ with 20 thousand
counselors, handling over three thousand conversa-
tions a day, allowing users to connect with licensed
therapists and to seek help via text messaging. The
ability to automatically generate reflections given

“https://www.talkspace.com/
*https://www.crisistextline.org/



a conversation context can assist these counselors
in formulating what they are going to say, thus
improving the efficiency and quality of their reflec-
tions, with the final goal of increasing the number
of people they can help and the effectiveness of
their interaction on patient outcomes.

3 Model Overview

To build an automatic reflection generation sys-
tem, we rely on the Generative Pretrained Trans-
former 2 (GPT-2) architecture (Radford et al.,
2019) as a base model. GPT-2 is a state of the art
transformer-based general purpose language model
that has been found useful for dialogue generation
tasks (Zhang et al., 2019). Our choice is motivated
by its ability to produce language that closely emu-
lates text written by humans (Wolf et al., 2019b).

Our model learns how to generate a counselor
reflection using a GPT-2 architecture by operating
entirely in a sequence-to-sequence way. In order
to condition the generation on the counseling dia-
logue context and to generate reflections that are
stylistically correct, we fine-tune the model with
conversations in the counseling domain.

Below, we describe important elements of the
model architecture related to the reflection genera-
tion task.

Input representation. The input sequence for
the model consists of a counselor’s utterance and
a dialogue context including previous utterances
from either the client or counselor. The window
size of the dialogue context is set to five utterances,
as a larger window size did not improve perfor-
mance in preliminary experiments.

Embeddings. Besides learning word and posi-
tional embeddings, we also learn type embeddings
to indicate whether the current token is part of
the utterance from the client, counselor, or the re-
flection response. We use a trainable embedding
matrix to map each location or type into a vector
with the same size as the token embeddings. Sepa-
ration tokens are also added to further delimit these
elements in the dialogue.

Decoding details. The generator model consists
of a transformer decoder with a similar structure
to the decoder in (Vaswani et al., 2017) but only
keeping the self-attention blocks. During the de-
coding stage, we assume we only have access to
the augmented input and dialogue context and not
the response. At each time-step, the model chooses
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a token from the output distribution conditioned on
the context and the previously decoded tokens. The
chosen token will be added into the input in the
next time-step. To generate more diverse and ex-
pressive reflections, we adopted the top-k random
sampling method (Holtzman et al., 2019), where
the model samples from the k options with the
highest probabilities.

4 Counseling-style Reflection Generation

Our goal is not only to generate natural-looking
text that is relevant to the prompt but also to resem-
ble the language style that counselors use while
generating reflections. Thus, we extend the base
model to incorporate two strategies that are com-
monly used by counselors while generating reflec-
tive statements.

First, we consider a training scenario where
trainees are first shown sample reflections made
while discussing different behavioral change goals
(e.g. smoking cessation or weight management).
After they have been exposed to several types of
reflections, trainees are usually asked to construct
alternative reflections for a given scenario as a way
to reinforce what they have learned. In this case,
trainees might associate previous reflections with
the same behavioral change target as potential ex-
amples to generate their own. We attempt to use the
same strategy to improve our system’s responses.
Thus, we devise a retrieval-based method to ob-
tain a reflection to be used to expand the dialogue
context.

Second, considering that counselors generate re-
flections using rephrasing strategies such as reword-
ing with synonyms and verb tense changes, we
design a content expansion method that augments
the system input with verb and nouns synonymes.
These methods are described in detail below.

4.1 Retrieval of the Most Similar Reflection

We seek to identify reflections that contain wording
that could be useful for generating an appropriate
reflection given the dialogue context. This is done
in two main steps.

Selecting a relevant conversation. We start by
identifying a set of relevant conversations i.e., con-
versations discussing the same behavior change.
We then calculate the semantic similarity between
the current dialogue context and this set of conver-
sations. More specifically, we use TF-IDF (term
frequency-inverse document frequency) encoding
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Figure 1: Model architecture. The fine-tuned model uses only client and therapist utterances, while the retrieval
and content expansion models include additional input (TF-IDF matching and synonym content expansion) for the

generation model.

Class Precision | Recall | F1 score
In context 0.768 0.779 0.773
Not in context 0.765 0.754 0.759

Table 1: Performance metrics for the reflection-in-
context classifier

for the dialogue context and candidate conversa-
tions and calculate their cosine similarity. We then
select the conversation with the highest similarity
as the most relevant conversation given the context.
This stage may be further improved with methods
such as BM25 or neural-based matching in future
work.

Selecting a candidate reflection. Our next step
focuses on identifying, among the reflections made
in the most similar conversation, which of them
is more likely to be a good match to the current
context. The selected reflection is then added to the
input of the generation system as a way to provide
wording alternatives. For this task, we first build a
set of candidate pairs by concatenating the current
dialogue context and each of the reflections made in
the most similar conversation. Then, we feed them
to a binary classifier that aims to classify whether
a sequence contains a valid reflection according
to the given context. We score each sequence us-
ing the probabilities provided by the classifier and
choose the one with the highest score as the best ex-
ample reflection to be added to our current dialogue
context.

To build the reflection-in-context classifier, we
use a GPT-2 model and modify it by adding a clas-
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sification layer to the output layer. The classifier
is trained on a balanced set, with positive sam-
ples consisting of reflections from our main dataset,
along with five previous utterances in the actual
conversation, and negative samples consisting of
reflections paired with random context windows
taken from different conversations. We train the
classifier using an 80%-20% split for training and
testing sets respectively. The classifier achieves an
accuracy of 76%, with detailed metrics per class
shown in Table 1, thus showing reasonable perfor-
mance on determining whether a reflection matches
the current context.

4.2 Content Expansion

We augment the context content by applying synset
expansion to synonyms and verbs. We first apply
part-of-speech (POS) tagging on the context utter-
ances using Stanford CoreNLP (Manning et al.,
2014) to identify nouns and verbs and then obtain
their corresponding synonyms for all their mean-
ings using the English WordNet (Miller, 1998).

We then produce one rephrase for each utter-
ance in the context by replacing the original nouns
and/or verbs with a randomly selected synonym
with the same POS tag. Our system uses the result-
ing utterances to augment the current context.

5 Experimental Setup

5.1 Counseling Datasets

We use the Motivational Interviewing (MI) coun-
seling dataset from Pérez-Rosas et al. (2016) as the
main corpus for training our retrieval and genera-



Total sessions 254
Vocabulary size 8,259
Total reflections 3,939
Average turns / session 97.2
Average tokens / reflection 20.9

Table 2: Statistics of the MI dataset

tion models, and perform language model domain
adaptation using the Alexander Street dataset con-
sisting of a variety of psychotherapy styles (e.g.,
cognitive behavioral, existential, solution focused).
The datasets are described below.

MI Counseling Dataset: This dataset consists
of 276 MI conversations annotated at utterance
level with counselor verbal behaviors using the
Motivational Interviewing Treatment Integrity 4.0
(MITI). In addition, the dataset also contains labels
at the session-level, which evaluate the quality of
the counseling interaction. The conversations por-
tray MI encounters for three main behavior change
goals: smoking cessation, medication adherence,
and weight management. Among the different an-
notations available in the dataset, we focus on the
annotations of counselor reflections, including sim-
ple reflections and complex reflections. Before we
use the MI dataset, we remove transcripts corre-
sponding to encounters that were deemed as low-
quality counseling based on the global evaluation
of the counseling interactions, i.e, sessions hav-
ing low empathy scores or a low ratio of questions
to reflections. We are thus left with a set of 254
counseling conversations. Dataset statistics are pro-
vided in Table 2. During our experiments using
this dataset, we use 10% of the data as the test set
and 5% as the validation set.

Alexander Street Dataset: This is a collection
of psychotherapy videos that are published by
Alexander Street Press.* The videos and its cor-
responding transcripts, containing psychotherapy
conversations between clients and therapists on
several behavioral and mental issues, are available
through a library subscription. From this library,
we downloaded the transcripts available under the
Counseling & Therapy in Video: Volume IV, which
contains around 400 real therapy sessions. How-
ever, due to the format inconsistencies, we were
able to collect only 312 transcripts.

*http://alexanderstreet.com/
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5.2 Reflection Generation Neural
Architecture

During our experiments, we use a medium-size
pre-trained GPT-2 (Radford et al., 2019) model
as the backbone network for the language genera-
tion models. Our models are implemented using
the Transformers library (Wolf et al., 2019a). The
base model uses a byte-pair encoding (BPE) (Gage,
1994) and has a vocabulary size of 50,257. We use
dropout with probability 0.1 for the embedding and
attention layers and also for the residual connection
in the blocks.

In addition, we use a warmup scheme for the
learning rate using 5% of the total steps as warmup
steps (Popel and Bojar, 2018). We use the Adam
optimizer with weight decay (Kingma and Ba,
2015) to optimize the network at a learning rate
of 6e-5. All models are trained for 10 epochs with
early stopping.

5.3 Reflection Generation Experiments

We conduct two main sets of experiments on au-
tomatic reflection generation as described below.
During our experiments we use the datasets de-
scribed in section 5.1.

Reflection generation using a fine-tuned GPT-2
model. In this experiment we use the base model
described in section 5.2 to generate counselor re-
flections. We first perform domain adaption of
the language model using the Alexander Street
dataset. We then fine-tune the generator using the
MI dataset.

Reflection generation with retrieval and con-
tent expansion strategies. We extend the fine-
tuned model to include the retrieval of the most
similar reflection and content expansion strategies
described in section 4.1 and 4.2. We experiment
with incremental models that incorporate one strat-
egy at the time.

Finally, we compare our models with a seq2seq
model, which is frequently used as a baseline for
conditional text generation problems (Vinyals and
Le, 2015). We use the seq2seq implementation
available in OpenNMT (Klein et al., 2017). The
encoder and decoder are 2-layers GRU (Gated Re-
current Units) (Cho et al., 2014) with 512 hidden
units. We train the model for 10 epochs with an
Adam optimizer at a learning rate of 0.001.



ROUGE Embedding Diversity
Models RG-1 | RG-2 [ RG-L | Greedy | Average | Extrema | Div-1 | Div-2 Avg Len
Seq2Seq 0.078 | 0.004 | 0.060 | 0.363 0.613 0.309 | 0.156 | 0.447 | 11.189
Fine-tuned GPT-2 0.152 | 0.020 | 0.117 | 0.446 0.726 0.382 | 0.134 | 0.496 | 18.522
+ retrieval 0.156 | 0.025 | 0.117 | 0.456 0.735 0.390 | 0.127 | 0.486 | 18.677
+ content expansion | 0.162 | 0.031 | 0.126 | 0.453 0.731 0.386 | 0.128 | 0.498 | 18.412

Table 3: Performance of our models and the seq2seq baseline on the automatic generation of counselor reflections
using ROUGE and embedding based metrics and n-gram diversity. We also show the average length of generated

utterances for each model.

5.3.1 Automatic Evaluation Metrics

For the quantitative analysis of our reflection gener-
ation model, we use well-known automatic metrics
for language generation, including:

ROUGE metrics: We use the ROUGE metric, a
word overlap metric frequently used in the evalu-
ation of neural language generation systems (Lin,
2004), including ROUGE-N, and ROUGE-L.

We decided to use ROUGE over other n-gram-
based metrics, such as BLEU, because our task of
generating reflective responses shares some simi-
larity with the task of text summarization, where
ROUGE is the metric of choice. Additionally, eval-
uations that we ran with other n-gram-based met-
rics had results consistent with those obtained with
ROUGE.

Embedding-based metrics: We also use three
embedding-based metrics, namely greedy match-
ing, embedding average, and vector extrema (Liu
et al., 2016). The first matches each token in one
sentence to its nearest neighbor in the reference
sentence, this metric favours generated reflections
containing keywords that are semantically similar
to the ground truth reflection. The other two cal-
culate similarity for a pair of sentences based on
their vector representations instead of matching
each word. The sentence vector representations are
constructed by averaging the word embeddings or
taking the number with the highest absolute value
for each dimension.

Diversity: We also evaluate diversity by measur-
ing the ratio of distinct n-grams in the generated
reflection with respect to the reference reflection.

5.3.2 Human Evaluation for Reflection
Generation
To assess our automatic reflection generation sys-

tems’ ability to produce relevant and coherent re-
flections, we also conducted a human evaluation
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study. We recruited two annotators familiar with
counseling reflections, and asked them to evalu-
ate the generated outputs and the ground truth re-
sponses for 50 samples randomly chosen from our
test set. Given the conversation context of the latest
five utterances, the annotators are asked to evaluate
three main properties of several response candi-
dates: relevance, reflection-likeness, and quality.
The candidates are composed of the ground truth re-
sponse and generated responses from four systems,
i.e. seq2seq, GPT fine-tuned, and two improved
versions using retrieval and content expansion. The
annotators evaluate one candidate at a time, without
knowledge of its origin.

Quality is evaluated using a 5-point Likert scale
(i.e., 5: very good, 4: good, 3: acceptable, 2: poor
and 1: very poor). We chose a 3-point Likert scale
(i.e., 1: not at all, 2: somewhat, 3: very much)
to evaluate relevance and reflection-likeness, since
a finer scale may exceed the annotators’ discrim-
inating power (Jacoby and Matell, 1971). More
specifically, we use the following prompts:

Relevance: Does the response seem appropriate
to the conversation? Is the response on-topic?

Reflection-likeness: Does the response show un-
derstanding of the feelings of the client? Does
the response paraphrase or summarize what
the client has said?

Quality: How do you judge the overall quality
of the utterance in terms of its grammatical
correctness and fluency?

We measured inter-rater agreement using Krip-
pendorff’s a (Krippendorff, 2018) and obtain agree-
ment values of 0.18, 0.23, and 0.12 for relevance,
reflection-likeness, and quality, respectively. The
subjective nature of the question prompts may be
the main reason for the low to fair levels of agree-
ment on the different categories. The difference in
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Figure 2: Human evaluation mean scores and standard deviations on the three criteria: relevance, reflection-
likeness, and quality. (The former two criteria are in 3-point Likert scales. Quality uses a 5-point Likert scale;
“*” indicate statistically significant improvement (p<<0.01) over the seq2seq baseline)

personal preference and the level of background
knowledge can both be sources of disagreement
(Amidei et al., 2018). We plan to use more sophis-
ticated evaluation schemes in future work, such as
magnitude estimation or RankME (Novikova et al.,
2018), instead of a plain Likert scale.

6 Results

6.1 Automatic Metrics

Table 3 reports scores for our models and the
seq2seq baseline. From this table, we observe that
all our proposed models outperform the seq2seq
baseline as measured by the different metrics. In
addition, our models with context augmentation
(i.e., including retrieval of the most similar reflec-
tion and content expansion) outperform the fine-
tuned model, thus suggesting that the proposed
retrieval and expansion strategies are useful to im-
prove the generation of reflections. Interestingly,
the generation model augmented with the most
similar reflection scores higher when using the em-
bedding metrics, thus indicating that the model
benefits from augmenting the context with words
that are semantically close to it. Similarly, when us-
ing context expansion, we observe improved scores
for the ROUGE-based metrics as the model takes
advantage of the additional wording alternatives.

6.2 Human Evaluations

The average scores for each system response on rel-
evance, reflection-likeness and quality are shown
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Figure 3: Spearman’s correlation between human eval-
uation metrics and automatic metrics

in Figure2. From this figure, the general trend in-
dicates that our systems perform on-par or above
the reference reflections (ground truth), and outper-
form the baseline with statistical significance for
both, relevance and reflection-likeness.

More specifically, in terms of relevance, we ob-
serve that our context-augmented models score
the best by providing reflections that are more in
line with the conversation context. Furthermore,
they score very close to the ground truth reflec-
tion. In contrast, the seq2seq output obtains the
lowest scores, thus suggesting that the generated
reflections are more likely to be off-topic. The
reflection-likeness follows a similar trend, confirm-
ing that the retrieval and expansion strategies do
improve the model context.

For quality assessments, all systems (with the
exception of the seq2seq model) produce responses
considered to be of good quality according to the



Counseling Dialogue Context

Model Generated Reflection

C: Um, yes, um I think, um, more so in terms of my
family history, um and then suddenly last week I got the
diagnosis of pre - diabetes. Um, and um, that’s kinda
thrown a wrench into my otherwise healthy normal you
know life that I think I lead.

T: So you are worried that this diagnosis is going to impact
your day to day activities?

C: Um, I’'m worried a whole lot because my dad has, um
diabetes and he uh, is right now going under dialysis,... So,
the idea that I might be facing some of these issues in my
future is horrendous for me.

Sounds like you really want to make some
changes just to, as a prevention way to
make sure you don’t have to go through
some of the things your farther went

Ground truth

through.
Seq2seq Okay, so no missed meds.
Fine-tuned So.you are really concerned about your
weight.
So you are really concerned about your
N Contgnt health and where it might go in the fu-
expansion

ture.

C: The joy of smoking!

T: It’s just, there’s something that is enjoyable

C: Yes! It’s habit! I mean it is a habit. And there are
certain things that make me smoke, you know, reasons I
smoke every day

T: Uh huh,

C: It’s the nicotine, is a piece of it. But it’s not the only
piece.

Retrieved: So it’s really becoming realistic in terms of
how this habit that you’ve gotten used to can play a part in
your other behaviors and your activities that you enjoy too.

Ground truth Uh huh, ok, so you enjoy it.

Seq2seq In the trash can.
There are other things that make you
Fi smoke, and that you like to have, so
ine-tuned

there’s that, there’s some withdrawal or
other symptoms that make you smoke.

There are other things that you enjoy do-

+ Retrieval .
ing, okay!

Table 4: Top: A case where content expansion helps. Bottom: A case where retrieval leads to an off-topic
response. Examples of the generated reflections using the seq2seq baseline and our proposed systems. We show
the dialogue context along with the ground truth reflection, where C stands for client, T stands for therapist. If the
generated reflection consists of multiple utterances, we only show the first utterance.

Likert scale. Particularly, the system with retrieval
scores 4.8% higher than the system with only fine-
tuning. This can be attributed to the model condi-
tioning the generation on sentences that have sim-
ilar content but somewhat varying structure, thus
allowing the model to take advantage of this infor-
mation. The content expansion model performs
similarly to the model with just fine-tuning. A
potential explanation for this is that the content ex-
pansion sometimes produces subject-verb disagree-
ment thus introducing noise during the generation
process.

Finally, the reflection-likeness aspect of our eval-
uation obtains the highest scores from our retrieval
model, followed by the content expansion model.

Human correlation analysis. To further vali-
date our models, we conduct a correlation analysis
between automatic metrics and human assessments
as shown in Figure 3. In this analysis, we use Spear-
man’s correlation because we care more about the
monotonic relationship of the metrics instead of a
linear relationship. From the results, we observe
that the automatic metrics show weak positive cor-
relations with human evaluations of relevance and
reflection-likeness. Moreover, the quality evalua-
tion shows a weak correlation with automatic met-
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rics, which is somehow expected as n-gram-based
metrics and embedding-based metrics do not take
grammar into consideration. Similarly, the aver-
age length of generated reflections has almost no
impact on whether the response is fluent or con-
tains grammatical errors. On the other hand, av-
erage length obtains the highest correlations with
reflection-likeness and relevance, suggesting that a
longer reflection is more likely to contain informa-
tion the client has previously mentioned.

6.3 Qualitative Analysis

To gain further insights into how the augmented
input helps with generation, we analyze a sample
output for our different systems as shown in Ta-
ble 4. From this table, we observe that all models
based on the pre-trained GPT-2 are able to gener-
ate reflections that agree, to some extent, with the
dialogue context.

For the counseling conversation shown in the
upper side of the table, we observe that the seq2seq
model generates an off-topic reflection while the
reflections generated by the other systems seem
to be more relevant to the context. Therefore,
showing the effectiveness of transfer learning for
counseling-style reflection generation. More in-
terestingly, when using content expansion the sys-



tem is able to generate a reflection with the phrase
“in the future” as a more specific response, which
further confirms that our expansion strategy does
strengthen the signal of important information that
we want the model to capture.

We also observe cases where our methods intro-
duce noise in the reflection generation system. For
example, in the counseling conversation shown in
the bottom section of Table 4, the model trained
without augmented context produces the most ap-
propriate response. The retrieved sentence suc-
cessfully captures the idea of “habits,” while the
conversation is about reasons other than habits that
make the client to enjoy smoking, thus leading to
the generation of a less relevant reflection.

7 Conclusion

We presented a system based on a state of the art
language model that generates counseling reflec-
tions based on the counselor-client dialogue con-
text. We first conducted domain adaptation and sub-
sequently fine-tuned the system with motivational
interviewing conversations. We then improved the
system by augmenting the dialogue context using
retrieval and content expansion methods that im-
plement actual strategies used by counselors while
generating reflections.

We conducted comparative experiments between
systems implementing these strategies and demon-
strated their effectiveness in generating improved
reflections as measured by standard language gener-
ation metrics such as ROUGE as well as embedding-
based and diversity metrics. To further validate our
models, we conducted a human evaluation study
on the generated responses. The evaluation showed
that humans scored our proposed systems higher
than the baseline model on quality, relevance, and
reflection-likeness.

We believe that counselors could benefit from
the proposed system by using the automatically
generated reflections as reference while learning to
formulate reflective statements.
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Abstract

Natural language generators (NLGs) for task-
oriented dialogue typically take a meaning rep-
resentation (MR) as input, and are trained end-
to-end with a corpus of MR/utterance pairs,
where the MRs cover a specific set of dialogue
acts and domain attributes. Creation of such
datasets is labor intensive and time consuming.
Therefore, dialogue systems for new domain
ontologies would benefit from using data for
pre-existing ontologies. Here we explore, for
the first time, whether it is possible to train an
NLG for a new larger ontology using existing
training sets for the restaurant domain, where
each set is based on a different ontology. We
create a new, larger combined ontology, and
then train an NLG to produce utterances cov-
ering it. For example, if one dataset has at-
tributes for family friendly and rating informa-
tion, and the other has attributes for decor and
service, our aim is an NLG for the combined
ontology that can produce utterances that re-
alize values for family friendly, rating, decor
and service. Initial experiments with a base-
line neural sequence-to-sequence model show
that this task is surprisingly challenging. We
then develop a novel self-training method that
identifies (errorful) model outputs, automati-
cally constructs a corrected MR input to form
a new (MR, utterance) training pair, and then
repeatedly adds these new instances back into
the training data. We then test the resulting
model on a new test set. The result is a self-
trained model whose performance is an ab-
solute 75.4% improvement over the baseline
model. We also report a human qualitative
evaluation of the final model showing that it
achieves high naturalness, semantic coherence
and grammaticality.

1 Introduction

Natural language generators (NLGs) for task-
oriented dialogue take meaning representations

*Work done prior to joining Amazon.
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(MRs) as inputs, i.e. a set of dialogue acts with
attributes and their values, and output natural
language utterances realizing the MR. Current
NLGs are trained end-to-end with a corpus of
MR/utterance pairs where the MRs cover a specific
set of dialogue acts and domain attributes. Creation
of such datasets is labor intensive and time consum-
ing. However, when building an NLG for a new
domain ontology, it should be possible to re-use
data built on existing domain ontologies. If this
were possible, it would speed up development of
new dialogue systems significantly.

Here we experiment with one version of this task
by building a new domain ontology based on com-
bining two existing ontologies, and utilizing their
training data. Each dataset is based on a different
domain ontology in the restaurant domain, with
novel attributes and dialogue acts not seen in the
other dataset, e.g. only one has attributes represent-
ing family friendly and rating information, and only
one has attributes for decor and service. Our aim
is an NLG engine that can realize utterances for
the extended combined ontology not seen in the
training data, e.g. for MRs that specify values for
Sfamily friendly, rating, decor and service. Figure 1
illustrates this task. Example E1 is from a train-
ing set referred to as NYC, from previous work
on controllable sentence planning in NLG (Reed
et al., 2018), while E2 is from the E2E NLG shared
task (Novikova et al., 2017a). As we describe in
detail in Section 2, E1 and E2 are based on two
distinct ontologies. Example E3 illustrates the task
addressed in this paper: we create a test set of novel
MRs for the combined ontology, and train a model
to generate high quality outputs where individual
sentences realize attributes from both ontologies.

To our knowledge, this is a completely novel
task. While it is common practice in NLG to con-
struct test sets of MRs that realize attribute com-
binations not seen in training, initial experiments
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ID | Ontology | MEANING REPRESENTATION EXAMPLE
El | NYC I suggest you go to [RESTAURANT].
(TRAIN- RECOMMEND[YES], INFORM(NAME[RESTAURANT], The food, service and atmosphere
ING) SE/RVICE[EXCELLENT], FOOD[EXCELLENT], are all excellent. oven if it is expensive
DECOR[EXCELLENT], LOCATION[AREA], W’ ) T
PRICE[EXPENSIVE]) )
E2 | E2E INFORM(NAME|RESTAURANT], [RESTAURANT] is a [RESTAURANT-TYPE] in
(TRAIN- EATTYPE[RESTAURANT-TYPE], CUSTOMER- | [AREA] near [POINT-OF-INTEREST]. It has
ING) RATING[HIGH], = AREA[AREA], NEAR[POINT-OF- | a high customer rating.
INTEREST])
E3 | COMBINED . ]
(TEST) RECOMMEND = YES, INFORM(NAME|[RESTAURANT], | [RESTAURANT] is the best because it has
EATTYPE[RESTAURANT-TYPE], FOOD = EXCELLENT, | excellent service and atmosphere. It is
LOCATION[AREA], NEAR[POINT-OF-INTEREST], | a [RESTAURANT-TYPE] offering excellent
CUSTOMER-RATING[HIGH], DECOR = EXCELLENT, | food in [AREA] near [POINT-OF-INTEREST]
SERVICE=EXCELLENT, PRICE=EXPENSIVE) with a high customer rating, but it is expen-
sive.
Figure 1: E1 and E2 illustrate training instances from the two source datasets E2E and NYC. E2E attributes

are represented in blue and NYC is in red. Some attributes are shared between both sources: here the unique
dialogue acts and attributes for each source are underlined in E1 and E2. E3 illustrates an MR from the target test
set that we dub COM. All the MRs in COM combine dialogue acts and attributes from E2E and NYC. There is
no training data corresponding to E3. The MRs illustrate how some attribute values, e.g2. RESTAURANT NAME,
POINT-OF-INTEREST, are delexicalized to improve generalization.

showed that this task is surprisingly adversarial.
However, methods for supporting this type of gen-
eralization and extension to new cases would be
of great benefit to task-oriented dialogue systems,
where it is common to start with a restricted set
of attributes and then enlarge the domain ontol-
ogy over time. New attributes are constantly being
added to databases of restaurants, hotels and other
entities to support better recommendations and bet-
ter search. Our experiments test whether existing
data that only covers a subset of attributes can be
used to produce an NLG for the enlarged ontology.

We describe below how we create a test set —
that we call COM — of combined MRs to test differ-
ent methods for creating such an NLG. A baseline
sequence-to-sequence NLG model has a slot error
rate (SER) of .45 and only produces semantically
perfect outputs 3.5% of the time. To improve per-
formance, we experiment with three different ways
of conditioning the model by incorporating side
constraints that encode the source of the attributes
in the MR (Sennrich et al., 2016; Harrison et al.,
2019). However, this only increases the proportion
of semantically perfect model outputs from 3.5%
to 5.5% (Section 4.1).

We then propose and motivate a novel self-
training method that greatly improves performance
by learning from the model mistakes. An error anal-
ysis shows that the models do produce many com-
bined outputs, but with errorful semantics. We de-
velop a rule-based text-to-meaning semantic extrac-
tor that automatically creates novel correct MR/text
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training instances from errorful model outputs, and
use these in self-training experiments, thus learn-
ing from our mistakes (Section 4.2). We validate
the text-to-meaning extractor with a human evalu-
ation. We find that a model trained with this pro-
cess produces SERs of only .03, and semantically
perfect outputs 81% of the time (a 75.4 percent im-
provement). A human evaluation shows that these
outputs are also natural, coherent and grammatical.
Our contributions are:

e Definition of a novel generalization task for
neural NLG engines, that of generating from
unseen MRs that combine attributes from two
datasets with different ontologies;
Systematic experiments on methods for con-
ditioning NLG models, with results showing
the effects on model performance for both se-
mantic errors and combining attributes;

A novel self-training method that learns from
the model’s mistakes to produce semantically
correct outputs 81% of the time, an absolute
75.4% improvement.

We start in Section 2 by defining the task in more
detail, describe our models and metrics in Section 3,
and results in Section 4. We discuss related work
throughout the paper where it is most relevant and
in the conclusion in Section 5.

2  Ontology Merging and Data Curation

We start with two existing datasets, NYC and E2E,
representing different ontologies for the restaurant



domain. The NYC dataset consists of 38K utter-
ances (Reed et al., 2018; Oraby et al., 2018), based
on a restaurant ontology used by Zagat (Stent et al.,
2002, 2004)." The E2E dataset consists of 47K
utterances distributed for the E2E Generation Chal-
lenge (Novikova et al., 2017a).2 Each dataset con-
sists of pairs of reference utterances and meaning
representations (MRs). Figure 1 shows sample
MRs for each source and corresponding training
instances as E1 and E2.

Ontology Merging. We first make a new com-
bined ontology ONTO-COM by merging NYC and
E2E. Attributes, dialogue acts, and sample values
for E2E and NYC are illustrated on the left-hand
side of Figure 2, and the result of merging them
to create the new ontology is on the right-hand
side of Figure 2. Since there are only 8 attributes
in each source dataset, we developed a script by
hand that maps the MRs from each source into the
ONTO-COM ontology.

NYC MR: SOURCE-1

Inform (Name = Babbo
Location = West Village
Cuisine = Italian
Service = Excellent
FoodQuality = Excellent
Décor =
Price = Expensive)

Recommend = Yes

COMBINED MR: TEST

Inform (Name = Babbo
Location = West Village
Cuisine = Italian
Service = Excellent
FoodQuality = Excellent
Décor = Excellent
Price = Expensive
Near = Sheridan Square

E2E MR: SOURCE-2

Customer Rating = 4/5

EatType = Bistro

FamilyFriendly = No)
Recommend = Yes

Inform (Name = Babbo
Area = West Village
FoodType = Italian
Near = Sheridan Square
Customer Rating = 4/5
EatType = Bistro
PriceRange = Expensive
FamilyFriendly = No)

Figure 2: An example illustrating how dialogue acts
and attributes for both source databases are merged and
relabelled to make a new combined ontology used in
train and test.

As Figure 2 shows, both datasets have the IN-
FORM dialogue act, and include the attributes name,
cuisine, location, and price after mapping. The
unique attributes for the NYC ontology are scalar
ratings for service, food quality and decor. The
NYC dataset also has the RECOMMEND dialogue
act, seen in E1 in Figure 1. The unique attributes
of the E2E ontology are customer rating, eat type
(“coffee shop”), near and family friendly.
Training Data. Given the combined ontology
ONTO-COM, we then map the training data for both
E2E and NYC into ONTO-COM by relabelling the

Uhttp://nlds.soe.ucsc.edu/sentence-planning-NLG
“http://www.macs.hw.ac.uk/InteractionLab/E2E/
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MRs to have consistent names for shared attributes
as illustrated in Figure 2. We create a balanced
training set of ~77K from the two original datasets
by combining all NYC references with a random
same-size sample of E2E references.

Test Set. We then manually create a test set, COM,
consisting of 3040 MRs based on the new com-
bined ontology ONTO-COM. Each test MR must
have at least one attribute from E2E and one at-
tribute from NYC so that it combines attributes
from both sources: these MRs provide combina-
tions never seen in training.> Example E3 in Fig-
ure 1 provides an example test MR. The procedure
for creating the test set ensures that the length and
complexity of the test set are systematically varied,
with lengths normally distributed and ranging from
3 to 10 attributes. Recommendations only occur
in the NYC training data, and they increase both
semantic and syntactic complexity, with longer
utterances that use the discourse relation of JUS-
TIFICATION (Stent et al., 2002), e.g. Babbo is the
best because it has excellent food. We hypothesize
that recommendations may be more challenging
to combine across domains, so we vary MR com-
plexity by including the RECOMMEND dialogue act
in half the test references. We show in Section 4
that the length and complexity of the MRs is an
important factor in the performance of the trained
models.

3 Experimental Overview and Methods

Given the training and test sets for the combined on-
tology in Section 2, we test 4 different neural model
architectures and present results in Section 4.1. We
then propose a a novel self-training method, and
present results in Section 4.2. These experiments
rely on the model architectures presented here in
Section 3.1, and the Text-to-Meaning semantic ex-
tractor and performance metrics in Section 3.2.

3.1 Model Architectures

In the recent E2E NLG Challenge shared task, mod-
els were tasked with generating surface forms from
structured meaning representations (MRs) (Dusek
et al., 2020). The top performing models were all
RNN encoder-decoder systems. Here we also use a
standard RNN Encoder-Decoder model (Sutskever
et al., 2014) that maps a source sequence (the input
MR) to a target sequence (the utterance text). We

3The train and test data are available at

http://nlds.soe.ucsc.edu/source-blending-NLG



first implement a baseline model and then add three
variations of model supervision that aim to improve
semantic accuracy. All of the models are built with
OpenNMT-py, a sequence-to-sequence modeling
framework (Klein et al., 2017).

Encoder. The MR is represented as a sequence of
(attribute, value) pairs with separate vocabularies
for attributes and values. Each attribute and each
value are represented using 1-hot vectors. An (at-
tribute, value) pair is represented by concatenating
the two 1-hot vectors.

The input sequence is processed using two single
layer bidirectional-LSTM (Hochreiter and Schmid-
huber, 1997) encoders. The first encoder operates
at the pair level, producing a hidden state for each
attribute-value pair of the input sequence. The
second LSTM encoder is intended to produce utter-
ance level context information in the form of a full
MR encoding produced by taking the final hidden
state after processing the full input sequence. The
outputs of both encoders are combined via concate-
nation. That is, the final state of the second encoder
is concatenated onto each hidden state output by
the first encoder. The size of the pair level encoder
is 46 units and the size of the MR encoder is 20
units. Model parameters are initialized using Glo-
rot initialization (Glorot and Bengio, 2010) and
optimized using Stochastic Gradient Descent with
mini-batches of size 128.

Decoder. The decoder is a uni-directional LSTM
that uses global attention with input-feeding. Atten-
tion weights are calculated via the general scoring
method (Luong et al., 2015). The decoder takes two
inputs at each time step: the word embedding of
the previous time step, and the attention weighted
average of the encoder hidden states. The ground-
truth previous word is used when training, and the
predicted previous word when evaluating. Beam
search with five beams is used during inference.

Supervision. Figure 3 shows the baseline system
architecture as well as three types of supervision,
based on conditioning on source (E2E, NYC) in-
formation. The additional supervision is intended
to help the model attend to the source domain in-
formation. We call the three types of supervision
GUIDE, ATTR and BOOL, and the baseline architec-
ture NOSUP, representing that it has no additional
supervision.

The supervision methods are shown in Figure

4. The source feature has a vocabulary of three
items: nyc, e2e and both. Since both is never seen
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Figure 3: Attentional Encoder-Decoder architecture
with each supervision method shown.

Name Near Service

Restaurant Point-of-

interest

Good

ATTR

nyc=true nyc=true

e2e=false

nyc=~false

e2e=true eZe=true

Name Near Service Source

BOOL Point-of-

interest

Restaurant Good nyc & e2e

Figure 4: An illustration of ATTR and BOOL supervi-
sion methods, with the source supervision (NYC or
E2E) shown in red.

in train, the source information is represented us-
ing two booleans: True||False denotes a reference
from E2E while False||True denotes a reference
from NYC. This encoding is intended to encour-
age generalization at inference time. During infer-
ence, blending of information from both sources
is specified by using True||True. The ATTR super-
vision method represents the source information
by concatenating the boolean source token onto
each attribute as seen in Figure 4. This redundantly
represents the source information locally to each
attribute, which has been effective for tasks such as
question generation and stylistic control (Harrison
and Walker, 2018; Harrison et al., 2019). The BOOL
supervision method adds the boolean source token
to the end of the sequence of attribute-value pairs
as its own attribute, as in work on machine transla-
tion and controllable stylistic generation (Sennrich
etal., 2016; Yamagishi et al., 2016; Ficler and Gold-
berg, 2017). The GUIDE model inputs the source
information directly to the decoder LSTM. In pre-
vious work, putting information into the decoder in
this way has yielded improvements in paraphrase



generation and controllable generation (Iyyer et al.,
2018; Harrison et al., 2019)

3.2 Text-to-Meaning Semantic Extractor

Much previous work in NLG relies on a test set that
provides gold reference outputs, and then applies
automatic metrics such as BLEU that compare the
gold reference to the model output (Papineni et al.,
2002; Dusek et al., 2020), even though the limita-
tions of BLEU for NLG are widely acknowledged
(Belz and Reiter, 2006; Stent et al., 2005; Novikova
et al., 2017b; Liu et al., 2016). To address these
limitations, recent work has started to develop “ref-
erenceless” NLG evaluation metrics (Dusek et al.,
2017; Kann et al., 2018; Tian et al., 2018; Mehri
and Eskenazi, 2020).

Since there are no reference outputs for the COM
test set, we need a referenceless evaluation metric.
We develop a rule-based text-to-MR semantic ex-
tractor (TTM) that allows us to compare the input
MR to an MR automatically constructed from an
NLG model textual output by the TTM, in order to
calculate SER, the slot error rate. The TTM system
is based on information extraction methods. We
conduct a human evaluation of its accuracy below.
A similar approach is used to calculate semantic
accuracy in other work in NLG, including com-
parative system evaluation in the E2E Generation
Challenge (Juraska et al., 2018; Dusek et al., 2020;
Wiseman et al., 2017; Shen et al., 2019).

The TTM relies on a rule-based automatic
aligner that tags each output utterance with the
attributes and values that it realizes. The aligner
takes advantage of the fact that the RECOMMEND
dialogue act, and the attributes and their values are
typically realized from a domain-specific finite vo-
cabulary. The output of the aligner is then used by
the TTM extractor to construct an MR that matches
the (potentially errorful) utterance that was gen-
erated by the NLG. We refer to this MR as the
“retrofit MR”. The retrofit MR is then compared to
the input MR in order to automatically calculate
the slot error rate SER:

D+R+S+H

ER =
SER N

where D is the number of deletions, R is the num-
ber of repetitions, S is the number of substitutions,
H is the number of hallucinations and N is the
number of slots in the input MR (Nayak et al., 2017,
Reed et al., 2018; Wen et al., 2015). Section A.1 in
the supplementary materials provides more detail
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and examples for each type of semantic error. SER
is first calculated on individual utterances and then
averaged over the whole test set. For additional
insight, we also report the percentage of seman-
tically perfect outputs (perfect%), outputs where
the SER is 0 and there are no semantic errors. This
measure is analogous to the Sentence Error Rate
used in speech recognition.

Human TTM Accuracy Evaluation. We evalu-
ated the TTM and the automatic SER calculation
with a separate experiment where two NLG experts
hand-labelled a random sample of 200 model out-
puts. Over the 200 samples, the automatic SER was
.45 and the human was .46. The overall correlation
of the automatic SER with the human SER over all
types of errors (D,R,S,H) is .80 and the correlation
with deletions, the most frequent error type, is .97.
Retrofit MRs for Self-Training. The TTM is crit-
ical for our novel self-training method described in
Section 4.2. The retrofit MRs match the (errorful)
NLG output: when these MR/NLG output pairs
combine attributes from both sources, they provide
novel corrected examples to add back into training.

4 Results

We run two sets of experiments. We first run all of
the NLG models described in Section 3.1 on the
COM test set, and automatically calculate SER and
perfect% as described in Section 3.2. We report
these results in Section 4.1. Section 4.2 motivates
and describes the self-training method and presents
the results, resulting in final models that generate
semantically perfect outputs 83% of the time.

4.1 Initial Model Results

Model | Training Test SER PERFECT
N %
NOSUP | E2E + NYC | COM 45 | 106 3.5%
GUIDE | E2E + NYC | COM .66 15 0.5%
ATTR E2E + NYC | COM 46 | 167  5.5%
BOOL E2E + NYC | COM 45 86 2.8%

Table 1: SER and perfect% on test for each model type
on the test of 3040 MRs (COM) that combine attributes
from both sources.

Semantic Accuracy. Table 1 summarizes the re-
sults across the four models NOSUP, GUIDE, ATTR
and BOOL. Overall, the results show that the task,
and the COM test set, are surprisingly adversar-
ial. All of the models have extremely high SER,
and the SER for NOSUP, ATTR, and BOOL are very
similar. Row 2 shows that the GUIDE model has
much worse performance than the other models,



in contrast to other tasks (Iyyer et al., 2018). We
do not examine the GUIDE model further. Row
3 shows that the ATTR supervision results in the
largest percentage of perfect outputs (5.5%).

Model | Training Test SER PERF %
NOSUP | E2E E2E .16 19%
NOSUP | E2E + NYC | E2E 18 15%
NOSUP | NYC NYC .06 69%
NOSUP | E2E + NYC | NYC .06 71%

Table 2: Baseline results for each source on its own test
using the NOSUP model. E2E test N = 630. NYC test
N =314.

The results in Table 1 should be compared with
the baselines for testing NOSUP on only E2E or
NYC in Table 2. Both the E2E and NYC test sets
consist of unseen inputs, where E2E is the standard
E2E generation challenge test (Dusek et al., 2020),
and NYC consists of novel MRs with baseline at-
tribute frequencies matching the training data.*
Rows 1 and 3 test models trained on only E2E
or only NYC, while Rows 2 and 4 test the same
trained NOSUP model used in Row 1 of Table 1
on E2E or NYC test sets respectively. Compar-
ing Rows 1 and 2 shows that training on the same
combined data used in Table 1 slightly degrades
performance on E2E, however, this SER is still con-
siderably lower than the .45 SER for the NOSUP
model tested on the COM test set, shown in the first
row of Table 1. Row 4 shows that the NOSUP model
trained on the combined data appears to improve
performance on the NYC test because the perfect%
goes up from 69% in Row 3 to 71%. The SER of
.06 shown in Row 4 should also be compared to
the .45 SER reported for the NOSUP model in the
first row of Table 1. These results taken together
establish that the combined MRs in the COM test
provide a very different challenge than the E2E and
NYC unseen test inputs.

However, despite the poor performance of the
initial models, we hypothesized that there may
be enough good outputs to experiment with self-
training. Since the original training data had no
combined outputs, decoding may benefit from even
small numbers of training items added back in self-
training.

Human Evaluation. The automatic SER results

“Previous work on the E2E dataset has also used seq2seq
models, with SOA results for SER of 1% (Dusek et al., 2020),
but here we do not use the full training set. Our partition of
the NYC dataset has not been used before, but experiments
on comparable NYC datasets have SERs of .06 and .02 (Reed
et al., 2018; Harrison et al., 2019).
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Model NAT. COHER. GRAMMAT.
NOSUP 4.04 4.13 4.12
ATTR 4.11 4.25 4.14
BOOL 3.97 4.18 4.25
AGREEMENT .63 .62 .65

Table 3: Human Evaluation for NOSUP (N = 100) ATTR
(N = 100) and BOOL (N = 86) for Naturalness, Seman-
tic Coherence, and Grammaticality

provide insight into the semantic accuracy of the
models, but no assessment of other aspects of per-
formance. We thus conduct a human evaluation on
Mechanical Turk to qualitatively assess fluency, co-
herency and grammaticality. We use the automatic
SER to select 100 semantically perfect references
from the NOSUP and the ATTR models’ test out-
puts, and the 86 perfect references from BOOL. We
ask 5 Turkers to judge on a scale of 1 (worst) to
5 (best) whether the utterance is: (1) fluent and
natural; (2) semantically coherent; and (3) gram-
matically well-formed. Table 3 reports the average
score for these qualitative metrics as well as the
Turker agreement, using the average Pearson cor-
relation across the Turkers. The results show that
the agreement among Turkers is high, and that all
the models perform well, but that the ATTR model
outputs are the most natural and coherent, while
the BOOL model outputs are the most grammatical.

4.2 Self-Training

In order to conduct self-training experiments, we
need perfect outputs that combine attributes from
both sources to add back into training. These out-
puts must also be natural, coherent and grammat-
ical, but Table 3 shows that this is true of all the
models. A key idea for our novel self-training
method is that the TTM (Section 3.2) automatically
produces “retrofit” corrected MRs that match the
output texts of the NLG models. Thus we expect
that we can construct more perfect outputs for self-
training by using retrofitting than those in Table
1. Here, we first analyse the outputs of the initial
models to show that self-training is feasible, and
then explain our method and present results.

Error Analysis. An initial examination of the out-
puts suggests that the models simply have trouble
combining attributes from both sources. We pro-
vide examples in Table 10 in Section A.2 in the
supplementary materials. To quantify this obser-
vation, we define a metric, Source Blending Rate
(SB), that counts the percentage of outputs that
combine attributes from both sources, whether or
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Figure 5: Source Blending Rate (SB) as a function of
MR length for NOSUP, ATTR and BOOL.

not the attribute values are accurate:
Rsb

SB = N
where R, is the count of references r that contain
an attribute a; C source; and another attribute a;
C sources, and N is the total number of references.
Only attributes that appear uniquely in each source
are included in the a;, a;: the unique attributes are
illustrated in Figure 2.

Figure 5 graphs SB as a function of MR length
showing that indeed the models do in many cases
produce combined outputs and that the type of
model supervision greatly influences SB. The NO-
SUP model is the worst: a fact that is masked by
the NOSUP model’s SER in Table 1, which appears
to be on a par with both ATTR and BOOL. Interest-
ingly, all models are more likely to produce an SB
output as the MRs get longer, but Figure 5 shows
clearly that the BOOL model especially excels.

For self-training, we also need a model that gen-
erates utterances with the RECOMMEND dialogue
act. As mentioned in Section 2, recommenda-
tions increase both semantic and syntactic com-
plexity. Half the test items contain a recommenda-
tion, so we need a model that can produce them.
Table 4 presents results for SER and SB depend-
ing on whether a RECOMMEND was in the MR,
showing that the three models vary a great deal.
However, the BOOL row for the SB column shows
that when the MR includes a recommendation, the
BOOL model produces a combined output far more
frequently than NOSUP or ATTR (SB =.73).

Thus Figure 5 and Table 4 show that the BOOL
model produces the most combined outputs. After
TTM extraction, the BOOL model provides the most
instances (1405) of retrofit MR/output pairs to add
to self-training, and we therefore use BOOL in the
self-training experiments below.

Retrofitting MRs for Self-Training. Table 5 illus-
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Model SER SB

REC NO-REC REC NO-REC
NOSUP 43 .46 44 .56
ATTR S1 41 .36 117
BOOL 47 43 73 .67

Table 4: Effect of the RECOMMEND dialogue act on
Slot Error Rate (SER) and Source Blending (SB) for
the three types of model supervision: NOSUP, ATTR
and BOOL.

trates how the TTM works, and shows that it can
effectively create a new MR that may not have been
previously seen in training, allowing the model to
learn from its mistakes. The caption for Table 5
explains in detail the retrofitting process and how
it leads to new examples to use in self-training.

It is important to note that the retrofit MRs for
some NLG outputs cannot be used for self-training.
NLG model outputs whose semantic errors include
repetitions can never be used in self-training, be-
cause valid MRs do not include repeated attributes
and values, and the method doesn’t edit the NLG
output string. However, deletion errors cause no
issues: the retrofit MR simply doesn’t have that
attribute. Substitutions and hallucinations can be
used because the retrofit MR substitutes a value
or adds a value to the MR, as long as the realized
attribute value is valid, e.g. “friendly food” is not a
valid value for food quality.>°
Experiments. To begin the self-training experi-
ments, we apply the source-blending metric (SB)
defined above to identify candidates that combine
attributes from both sources, and then apply the
TTM to construct MRs that match the NLG model
outputs, as illustrated in Table 5, eliminating ref-
erences that contain a repetition. We start with
the same combined 76,832 training examples and
the 1405 retrofit MR/NLG outputs from the BOOL
model. We explore two bootstrapping regimes, de-
pending on whether a model output is a repetition
of one that we have already seen in training. One
model keeps repetitions and adds them back into
training, which we dub S-Repeat, and the other
model only adds unique outputs back into training,
which we dub S-Unique.

Quantitative Results. Figure 6 shows how the
SER and perfect% continuously improve on the

SWe applied the human evaluation in Section 3.2 to in-
stances included in self-training: the correlation between hu-
man judgements and the automatic SER is .95, indicating that
the retrofit MRs are highly accurate.

STable 10 in Section A.2 provides additional examples of
errorful outputs that can or cannot be used in self-training.



Original MR Text-to-MR OUTPUT
name[RESTAURANT], cuisine[fastfood], | name[RESTAURANT], cui- | [RESTAURANT] is a fast food restau-
decor[good], qual[fantastic], loca- | sine[fastfood], qual[good], loca- | rant located in the riverside area. it

tion[riverside], price[cheap], eatType[pub],
familyFriendly[no]

tion[riverside], familyFriendly[no]

has good food and it is not family
friendly.

name[RESTAURANT], recommend[yes], cui-
sine[fastfood], qual[good], location[riverside],
familyFriendly[no]

name[RESTAURANT],
sine[fastfood], qual[good], loca-
tion[riverside], familyFriendly[no]

cul- | [RESTAURANT] is a fast food restau-
rant in the riverside area. it is not

family friendly and has good food.

Table 5: Examples to show retrofitting. The examples start from different original MRs (col 1), but yield the same
MR after text-to-MR extraction (col 2). In Row 1, the model output in column 3 deleted the attributes price, decor
and eat type (pub), and substituted the value “good” for “fantastic” for the quality attribute. In Row 2 the model
deleted the RECOMMEND dialogue act, but otherwise realized the original MR correctly. At test time, the original
MRs produced different outputs (col 3). Thus the retrofitting yields two unique novel instances for self-training.

COM test set for S-Repeat over 10 rounds of self-
training, and that S-Repeat has better performance,
indicating that adding multiple instances of the
same item to training is useful. The performance
on the COM test set of the S-Unique model flat-
tens after 8 rounds. After 10 rounds, the S-Repeat
model has an SER of .03 and produces perfect out-
puts 82.9% of the time, a 77.4 percent absolute
improvement over the best results in Table 1.

I SER

Perfect %
IS

Self-Training lterati

—e— repeat perfect —e— unique perfect —e— repeat SER

—e— unique SER

Figure 6: SER and perfect% on the COM test set for
S-Repeat vs. S-Unique during self-training

COMB-2 Test Set. Since the the self-training pro-
cedure used the COM test set during self-training,
we construct a new test with 3040 novel MRs using
the procedure described in Section 2, which we call
COM-2. First we test the initial models on COM-2,
resulting in a best SER of 0.45 for the BOOL model,
identical with the result for COM. For perfect% the
best result was 5.3% on the ATTR model, which is
again comparable to the original COM test set. We
then tested the final self-trained model on COM-2,
with the result that the SER for S-Repeat (0.03) and
S-Unique (0.11) are again identical to the result for
COM. The perfect% is comparable to that reported
in Figure 6; it decreases by 2.2% for S-Repeat to
80.7% and increases by .2% for S-Unique to 50.7%.
Overall, the performance on COM-2 improved by
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an absolute 75.4%.

I SER

Perfect %

4 5 ; 7 8 9
MR Length

—e— repeat perfect —e— ropeat SER

—e— unique SER

Figure 7: SER and perfect% on COM-2 as a function
of MR length for BOOL supervision before self-training
and for the S-Repeat model after self-training.

Figure 7 shows that the results improve, not only
overall, but also by MR length. It plots the SER
and perfect% results, by MR length, for the BOOL
model before and after self-training. While the
perfect% decreases as the number of attributes in-
crease, there is a large improvement over the initial
model results. Also, after self-training the worst
perfect% is still above 0.5, which is higher than
perfect% for any MR length before self-training.
The SER also improves over all MR lengths after
self-training, not exceeding .06, significantly better
than even the shortest MR before self-training.’
Human Evaluation. We also performed a human

Model NAT. COHER. GRAMMAT.
S-REPEAT 3.99 4.08 4.02
S-UNIQUE 4.06 4.13 4.14
AGREEMENT 57 .61 .57

Table 6: Human Evaluation on Mechanical Turk for
S-Repeat (N = 100) and S-Unique (N = 100) for Natu-
ralness, Semantic Coherence, and Grammaticality

"Performance results for the self-trained model on the
original E2E and NYC test sets in supplement A.3 shows that
performance also improves on the E2E and NYC test sets.



evaluation on Mechanical Turk to assess the qual-
itative properties of the model outputs after self-
training. We selected 100 perfect references for
S-Repeat and 100 for S-Unique and used the same
HIT as described in Section 4.1. Table 6 reports
the average score for these qualitative metrics as
well as the Turker agreement, using the average
Pearson correlation across the Turkers. The results
show that naturalness, coherence and grammatical-
ity are still high after self-training for both models,
but that the S-Unique model produce better outputs
from a qualitative perspective. We believe we could
improve the self-training method used here with
additional referenceless evaluation metrics that aim
to measure naturalness and grammaticality (Mehri
and Eskenazi, 2020). We leave this to future work.

# | Realization

1

[RESTAURANT] is the best place because it is a fam-
ily friendly pub with good decor and good food.
[RESTAURANT] is a family friendly restaurant with
bland food and is in the low price range. It is the
best restaurant.

[RESTAURANT] is a family friendly coffee shop
with decent service and a low customer rating. It
is in the £20-25 price range.

[RESTAURANT] is the best restaurant because it is
in the east village, it is near [POINT-OF-INTEREST]
with great service and if is affordable.

2

Table 7: Example outputs with source blending. NYC
attributes are represented using red and E2E attributes
are represented using blue

Qualitative and Linguistic Analysis. Table 7 pro-
vides outputs from the models that display differ-
ent ways of combining attributes from the original
sources. In Row 1 we can see that the RECOM-
MEND dialogue act from NYC can be combined in
the same sentence as the attributes family friendly
and eat type from E2E and aggregate these E2E
attributes with NYC attributes decor and food qual-
ity using a “with” operator. Row 2 shows another
example where the NYC and E2E attributes are
joined using a “with” operator. In Row 3 there
is a single sentence with four attributes where the
NYC attribute is preceded and followed by E2E
attributes. Row 4 concatenates the two sources
in a single sentence using sentence coordination.
The “east village” location from the NYC dataset,
is concatenated with the attributes near from E2E
and service from NYC. These examples show that
the NLG models can combine attributes from both
sources in many different ways. Table 11 in Sec-
tion A.4 provides additional detail by providing
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examples along with their corresponding MRs.

5 Conclusion

This paper presents the first experiments on train-
ing an NLG for an extended domain ontology by
re-using existing within-domain training data. We
show that we can combine two training datasets for
the restaurant domain, that have different ontolo-
gies, and generate output that combines attributes
from both sources, by applying a combination of
neural supervision and a novel self-training method.
While it is common practice to construct test sets
with unseen attribute combinations, we know of
no prior work based on constructing a new com-
bined ontology. Our experiments show that the task
is surprisingly adversarial, consistent with recent
work suggesting that neural models often fail to
generalize (Wallace et al., 2019; Feng et al., 2018;
Ribeiro et al.; Goodfellow et al., 2014). Work on
domain transfer shares similar goals to the experi-
ments presented here (Wen et al., 2016; Golovanov
et al., 2019), but these methods do not produce
NLG outputs that integrate attributes from two dif-
ferent sources into the same sentence. Our final
results show that the ability of our self-training
method to automatically construct new training in-
stances results in high quality natural, coherent and
grammatical outputs with high semantic accuracy.

In future, we hope to generalize our novel self-
training method to build an NLG that can combine
two distinct domains, e.g. hotels or movies com-
bined with restaurants in multi-domain dialogue
(Budzianowski et al., 2018; Gasi¢ et al., 2015;
Hakkani-Tiir et al., 2016; Cervone et al., 2019;
Ultes et al., 2017). Ideally systems that cover mul-
tiple domains should be able to produce utterances
that seamlessly integrate both domains, if data ex-
ists for each domain independently. However, there
may be additional challenges in such combinations.
Our results require the initial neural models to
generate some combined outputs. It is not clear
whether there are some aspects of our experimental
setup that facilitate this, e.g. it may require some
attributes to be shared across the two initial ontolo-
gies, or some shared vocabulary. Thus it is possible
that initial models for two more distinct domains
may not produce any combined outputs, and it may
be necessary to seed the self-training experiments
with a small number of combined training instances.
We leave these issues to future work.
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A Supplementary Materials: Learning
from Mistakes: Combining Ontologies
via Self-Training for Dialogue
Generation

A.1 Types of Semantic Errors

The TTM is tuned to identify 4 common neural
generation errors: deletions (failing to realize a
value), repetitions (repeating an attribute), substi-
tutions (mentioning an attribute with an incorrect
value), and hallucinations (introducing an attribute
that was not in the original MR at all).

Table 9 illustrates each of these types of semantic
errors. Row 1 shows deletions of cuisine, price and
near which are in the MR but not in the realization.
Row 2 demonstrates a repetition, where location
and decor are both repeated. Decor is realized with
two different lexical values, “good ambiance” and
“good decor”. There is a substitution in Row 3
where the MR states that the food quality is “bad”,
but food quality is realized as ”good”. Finally, Row
4 has a hallucination, service is not in the MR but
it in the second sentence of the realization.

A.2 Example Errorful NLG Model Outputs

Table 10 provides examples of NLG model output
utterances with high SERs. It illustrates how the
NLG models struggle to combine attributes from
the two ontologies which is required by all the
input MRs (Column SB). It also illustrates cases
where it is not possible to produce a valid retrofit
MR that can be added back into training during
self-training (Column Valid). In most cases these
are due to many repetitions. Row 1 is an example
where there is no source blending and since it has a
repetition (price) it cannot be used for self-training
(valid = no). Row 1 also illustrates an ungrammat-
ical realization of price which we have no way to
automatically detect at present it is in the high price.
Row 2 has three deletions as well as two repetitions.
The output repeats It is in midtown three times in a
row. Row 3 has five errors, it does not realize the
dialogue act RECOMMEND and has deleted three
other attributes and it hallucinations food quality.
While this is a significant number of errors, this
realization can still be used in self-training, since
none of its errors are repetitions. Row 4 has all
four types of errors. It deletes cuisine, decor and
service, it realizes a value for family friendly twice
with different values, a substitution and finally it
hallucinates food quality. Row 5 actually has more
errors than slots. It deletes all but two of its at-
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tributes: name and rating. It also hallucinates food
quality and repeats rating.

Model | Training Test SER PERF %
BOOL S-REPEAT | E2E .14 25%
BOOL S-REPEAT | NYC .05 77%

Table 8: Performance of the self-trained S-Repeat
model on the original E2E and NYC test sets. E2E test
N =630. NYC test N = 314.

A.3 Performance on E2E and NYC test sets

Table 2 provided a baseline for NOSUP’s perfor-
mance before self-training on the original test sets
for E2E and NYC. We also verify that the self-
trained model performs well after self-training. Ta-
ble 8 shows that self-training improves the results
for the original E2E and NYC test sets.

A.4 Example Final Model Outputs

Table 11 provides outputs from the final iteration of
self-training that display different ways of combin-
ing different attributes from the ontologies. Row
1 shows that the model can combine attributes
from the two sources in the same sentence, with
attributes from each source, decor and rating, ap-
pearing in a single sentence with and. Row 2 shows
a different way of combining attributes from the
two sources, with family friendly and food qual-
ity, in a single sentence, this time using with. In
Row 3 we can see that the model can also generate
complex sentences for recommendations using the
marker because. Also, the attribute used in the be-
cause clause is from E2E i.e. family friendly but
such sentences never appear in the original E2E
training data. The last row shows a complex sen-
tence where decor is combined with eat type and
customer rating, again a novel combination.



Error Type | MR | Realization
Delete CUISINE, | name[RESTAURANT], cuisine[mexican], loca- | [RESTAURANT] is a coffee shop that is not family
PRICE, NEAR tion[midtown], price[expensive], eatType[coffee shop], | friendly. It is located in Midtown.

familyFriendly[no], near[POINT-OF-INTEREST]

Repeat LOCA-

name[RESTAURANT], decor[good], location[midtown

[RESTAURANT] is a coffee shop in Midtown West

TION, DECOR west], eatType[coffee shop], rating[1 out of 5] with good ambiance. It is in Midtown West with

good decor.

Substitution name[RESTAURANT], decor[good], qual[bad], loca- | [RESTAURANT] is in Tribeca/Soho with good food

QUALITY BAD | tion[tribeca/soho], eatType[pub] and good decor. It is a pub.

to GOOD

Hallucination name[RESTAURANT], decor[good], qual[good], loca- | [RESTAURANT] is near [POINT-OF-INTEREST] in

SERVICE tion[riverside], near[POINT-OF-INTEREST] the riverside area. It has good food, good decor and

good service.
Table 9: Model outputs illustrating types of semantic errors.

# \ SER\ Valid\ SB \ MR \ Realization

1] .60 | no no | name[RESTAURANT], decor[fantastic], | [RESTAURANT] is a child friendly restaurant with
qual[acceptable], pricelhigh], fami- | french food and it is in the high price range. it is in
lyFriendly[yes] the high price.

21 .63 | no no | name[RESTAURANT], recommend[yes], | [RESTAURANT] is the best restaurant since it is a
cuisine[japanese], decor [bad], loca- | japanese restaurant with bad ambiance and it is in
tion[midtown], service[fantastic], | midtown. it is in midtown. it is in midtown.
rating[low], near[POINT-OF-INTEREST]/

31 .71 | yes yes | name[RESTAURANT], recommend[yes], | [RESTAURANT] is a pub with good food and it is
decor[fantastic], located near the xnear.
service[acceptable], eatType[pub],
rating[high], near[xnear]

41 .75 | no yes | name[RESTAURANT], cuisine[southern], | [RESTAURANT] is a cheap, family friendly coffee
decor[fantastic], location[city centre], | shop with good food. it is in the city centre. it is
price[cheap], service [good], eatType[coffee | not family friendly.
shop], familyFriendly[no]

5| 1.17| no yes | name[RESTAURANT], cuisine[indian], | [RESTAURANT] provides good food and has great
decor[fantastic], service[good], | customer rating and has great customer rating .
rating[high], near[POINT-OF-INTEREST]/

Table 10: Example pathological outputs with high SERs from the NLG models before self-training. Valid realiza-
tions (col 3) are defined as those usable for self-training. In the MRs, the NYC attributes are represented using
typewriter font and E2E attributes are represented using italics.

# | MR

Realization

1 | name[RESTAURANT],cuisine[Indian],
decor[fantastic],qual [good], service[good],
rating[high], near[POINT-OF-INTEREST/

[RESTAURANT] is a Indian restaurant with great service
and excellent ambiance and a high customer rating. It is
located near the [POINT-OF-INTEREST].

2 | name[RESTAURANT], recommend [yes],decor [good],
qual [good], price[cheap], service[bad]l, fami- | food, good ambiance and bad service. It is in the low price
lyFriendly[yes], range.

[RESTAURANT] is a family friendly restaurant with good

3 name[RESTAURANT], recommend [yes], decor [bad],
qual [good], location[flatiron/union square], price[cheap],
service [acceptablel, eatType[coffee shop], rating[3

out of 5],

[RESTAURANT] is the best restaurant because it is a family
friendly coffee shop with good food, friendly service and
bad ambiance. It is in Flatiron/Union Square. It has a
customer rating of 3 out of 5. It is cheap.

4 | name[RESTAURANT], recommend [yes], cui- | [RESTAURANT] is a Mediterranean pub with excellent am-

sine[mediterranean], decor[fantastic], price[very | biance and a customer rating of 5 out of 5. It is in the upper

expensive], eatType[pub], rating[5 out of 5] price range. It is the best restaurant.

Table 11: Example outputs of source blending from final self-training iterations. In the MRs, the NYC attributes
are represented using typewriter font and E2E attributes are represented using italics.
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Abstract

Task-oriented dialog systems rely on dialog
state tracking (DST) to monitor the user’s goal
during the course of an interaction. Multi-
domain and open-vocabulary settings compli-
cate the task considerably and demand scal-
able solutions. In this paper we present a
new approach to DST which makes use of var-
ious copy mechanisms to fill slots with val-
ues. Our model has no need to maintain a
list of candidate values. Instead, all values
are extracted from the dialog context on-the-
fly. A slot is filled by one of three copy mech-
anisms: (1) Span prediction may extract val-
ues directly from the user input; (2) a value
may be copied from a system inform memory
that keeps track of the system’s inform opera-
tions; (3) a value may be copied over from a
different slot that is already contained in the
dialog state to resolve coreferences within and
across domains. Our approach combines the
advantages of span-based slot filling methods
with memory methods to avoid the use of value
picklists altogether. We argue that our strat-
egy simplifies the DST task while at the same
time achieving state of the art performance on
various popular evaluation sets including Mul-
tiwoz 2.1, where we achieve a joint goal accu-
racy beyond 55%.

1 Introduction

The increasing popularity of natural language
human-computer interaction urges the development
of robust and scalable task-oriented dialog systems.
In order to fulfill a user goal, a dialogue system
must be capable of extracting meaning and intent
from the user input, and be able to keep and up-
date this information over the continuation of the
dialog (Young et al., 2010). This task is called dia-
log state tracking (DST). Because the next dialog
system action depends on the current state of the
conversation, accurate dialog state tracking (DST)
is absolutely vital.
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U: i'm looking for an ant in tk of town.

S: there are 33 restaurants [...]. would you like to narrow your search by type of food?

U: iabout food. surprise me.

S: (fitzbillies restaurant]serves british food, [...]. would you like to hear about any others? [...].
14 can you book it please and get me the reference number?

S: sure , what day and time would you like and how many people ?
U: i would like a table for(5/at(11:30 on tuesday][...]

S: okay, the booking was successful. [...]. is there anything else i can help you with?

U: i'm also looking for a place to stay. it needs [...] fil@@MWifijand [be] in the(SAMEarcAAs therestaurant)

Turn  Domain-slot pair Value Type Coreference

span

restaurant-pricerange expensive

restaurant-area center span

restaurant-food <dontcare> (dontcare)

restaurant-name fitzbillies informed
restaurant-people 5

11:30

span
restaurant-book_time span

restaurant-book_day tuesday span
(bool)

coreference (multiturn) | restaurant-area

hotel-internet <true>

U A W W WN R O o

hotel-area center

Figure 1: Example dialog in MultiWOZ.

DST is tasked to extract from the user input in-
formation on different concepts that are necessary
to complete the task at hand. For example, in order
to recommend a restaurant to a user, the system
needs to know their preferences in terms of price,
location, etc. These concepts are encapsulated in an
ontology, where dialogue domain (e.g., restaurant
or hotel), slot (e.g., price range or location), and
value (e.g. cheap or expensive) are defined. Solv-
ing this information extraction task is prerequisite
for forming a belief over the dialog state.

Traditional approaches to DST operate on a fixed
ontology and perform prediction over a pre-defined
set of slot-value pairs (MrkSi¢ et al., 2016; Liu and
Lane, 2017; Zhong et al., 2018). Such approaches
perform very well on datasets which are defined
over fairly small ontologies. Apply these methods
to more complex datasets however reveals various
limitations (Ren et al., 2018; Nouri and Hosseini-
Asl, 2018). First, it is often difficult to obtain a
complete ontology for a task. Second, slot-value
pairs that were outside the ontology or the train-
ing data are impossible to capture during test time.
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Third, such methods at best scale linearly with the
size of the ontology. Most importantly, the idea of
fixed ontologies is not sustainable, as in real world
applications they are subject to constant change.

Human-computer interactions often need to be
defined over multiple domains at the same time,
ideally with unrestricted vocabulary. Recent ap-
proaches to multi-domain and open-vocabulary
DST extract values from the dialog context di-
rectly by predicting value spans in the input (Gao
et al., 2019; Chao and Lane, 2019; Kim et al., 2019;
Zhang et al., 2019). Span prediction is a demonstra-
bly potent method to detect relevant information
in utterances, but its major drawback is that it only
suits extractive values that are explicitly expressed
as a sequence of tokens. This is the reason why
span-based methods benefit from the support of a
picklist, i.e., a list of value candidates from which
a system can choose. Still, these methods fall short
when handling nuanced and subtle phenonema that
often occur in natural conversations, such as coref-
erence and value sharing (’I'd like a hotel in the
same area as the restaurant.”), and implicit choice
(”Any of those is ok.”).

In this work, we propose a new approach to value
independent multi-domain DST:

1. In addition to extracting values directly from
the user utterance via span prediction and
copy, our model creates and maintains two
memories on-the-fly, one for system inform
slots, and one for the previously seen slots.

The system inform memory solves the implicit
choice issue by allowing copy mechanism
from concepts mentioned by the system, e.g.,
values that are offered and recommended.

. The DS memory allows the use of values al-
ready existing in the dialogue state to infer
new values, which solves the coreference and
value sharing problems.

We call this approach TripPy, Triple copy strat-
egy DST.! Our experiments results show that our
model is able to handle out-of-vocabulary and rare
values very well during test time, demonstrating
good generalization. In a detailed analysis we take
a closer look at each of the model’s components to
study their particular roles.

'Our code will be released upon publication of this work.
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2 Related Work

Dialog state tracking has been of broad interest to
the dialog research community, which is reflected
by the existence of a series of DST challenges (Hen-
derson et al., 2014; Rastogi et al., 2019). These
challenges consistently pushed the boundaries of
DST performance. Current state-of-the-art has to
prove to work on long, diverse conversations in
multiple domains with a high slot count and prin-
cipally unrestricted vocabulary (Eric et al., 2019).
Dialogs of such complex nature are tough for tradi-
tional approaches that rely on the availability of a
candidate list due to scalability and generalization
issues (Mrksi¢ et al., 2016; Liu and Lane, 2017;
Ramadan et al., 2018; Rastogi et al., 2017).

Span-based approaches recently alleviated both
problems to some extent. Here, slot values are ex-
tracted from the input directly by predicting start
and end positions in the course of the dialog. For
instance, Xu and Hu (2018) utilizes an attention-
based recurrent network with a pointer mechanism
to extract values from the context. This extractive
approach has its limitations, since many express-
ible values are not found verbatim in the input,
but rather mentioned implicitly, or expressed by a
variety of rephrasings.

With the assistance of contextual models such
as BERT (Devlin et al., 2018), issues arising from
expressional variations can be mitigated. Recent
work has demonstrated that encoding the dialog
context with contextual representations supports
span prediction to generalize over rephrasings.
SUMBT (Lee et al., 2019) utilizes BERT to encode
slot IDs and candidate values and learns slot-value
relationships appearing in dialogs via an attention
mechanism. Dialog context is encoded with recur-
rence. BERT-DST (Chao and Lane, 2019) employs
contextual representations to encode each dialog
turn and feeds them into classification heads for
value prediction. The dialog history, however, is
not considered for slot filling. In Gao et al. (2019),
DST is rendered as a reading comprehension task
that is approached with a BERT-based dialog con-
text encoder. A slot carryover prediction model de-
termines whether previously detected values should
be kept in the DS for the current turn.

An alternative to span prediction is value genera-
tion. TRADE (Wu et al., 2019) and MA-DST (Ku-
mar et al., 2020) generate a DS from the input us-
ing a copy mechanism to combine the distributions
over a pre-defined vocabulary and the vocabulary



of current context. SOM-DST (Kim et al., 2019)
applies a similar mechanism for value generation,
but takes the previous dialog turn as well as the pre-
vious DS as input to BERT to predict the current
DS. A state operation predictor determines whether
a slot actually needs to be updated or not. The
downside of generative models is that they tend
to produce invalid values, for instance by word
repetitions or omissions.

Recently, a hybrid approach called DS-DST has
been proposed that makes use of both span-based
and picklist-based prediction for slot-filling (Zhang
et al., 2019). In contrast to generative approaches,
picklist-based and span-based methods use existing
word sequences to fill slots. DS-DST somewhat al-
leviates the limitations of span prediction by filling
a subset of slots with a picklist method instead.

Recent works seemed to reveal a trade-off be-
tween the level value independence in a model
and the DST performance. Chao and Lane (2019)
and Gao et al. (2019) solely rely on span-prediction,
but their performance lacks behind methods that at
least partially rely on a pre-defined list of candidate
values. This has impressionably been demonstrated
by Zhang et al. (2019). Their model could not
compete when relying on span-prediction entirely.
In contrast, when relying solely on their picklist
slot-filling method, they achieved the to-date best
performance on MultiWOZ 2.1. The proposed dual-
strategy approach lies favorably between these two
extremes.

To the best of our knowledge, none of the recent
approaches to complex DST tasks such as Multi-
WOZ (Budzianowski et al., 2018; Eric et al., 2019)
are value independent in the strict sense. What’s
more, they tremendously benefit from the use of
a value candidate list. Our work tackles this lim-
itation by introducing a triple copy strategy that
relies on span-prediction as well as memory mech-
anisms. In contrast to other hybrid approaches such
as Zhang et al. (2019), our memory mechanisms
create candidate lists of values on-the-fly with the
dialog context as only source of information, thus
avoiding the use of pre-defined picklists. We let
the model decide which strategy to choose for each
slot at each turn. Our approach differs from Chao
and Lane (2019) and Kim et al. (2019) in that we
consider the dialog history as context in addition
to the current turn. We also differ from approaches
like Lee et al. (2019) since we do not employ re-
currence. Like Kim et al. (2019), we use auxiliary

37

inputs at each turn, but we do so as a late feature fu-
sion strategy. With our slot-value copy mechanism
to resolve coreferring value phrases, we employ a
method which is reminiscent of Gao et al. (2019)’s
slot carryover, but with the sharp distinction that
we copy values between different slots, facilitating
value sharing within and across domains.

3 TripPy: Triple Copy Strategy for DST

Our model expects the following input format
to perform dialog state tracking. Let X
{(Ur,My),...,(Ur,Mr)} be the sequence of
turns that comprise a dialog of length T'. U, is
the user utterance at turn ¢, M; is the system
utterance that preceeds the user utterance. The
task of the model is (1) to determine for every
turn whether any of the N domain-slot pairs in
S ={S1,..., SN} is present, (2) to predict the val-
ues for each S, and (3) to track the dialog state DS}
over the course of the dialog, i.e., for t € [1,T].
We employ a triple-copy strategy to fill the slots.
The intuition is that values are either explicitly ex-
pressed by the user, that they are expressed by the
system and referred to by the user via confirmation
or rejection, or that they have been expressed earlier
in the dialog as assignment to another domain-slot
pair (coreference). Each of these cases is handled
by one of three copy mechanisms. It becomes ap-
parent that slots can not be filled by exclusively
resorting to one particular copy method. Therefore,
we employ slot gates that determine at each turn
which method to use to fill the respective slot.
Figure 2 depicts our model. We encode the
dialog context with a BERT front-end and feed-
forward the resulting contextual representations to
various classification heads to solve the sub-tasks
for DST. The aggregate sequence representation is
the input to the slot gates. The sequence of token
representations is the input to the span predictors.

3.1 Context Encoder

We use BERT (Devlin et al., 2018) as front-end to
encode at each turn ¢ the dialog context as

Ry = BERT(|CLS] @ U; @ [SEP] & M;®

[SEP] & H; & [SEP)), M

where Hy = (Up—1, My—1),...,(Uy, My) is the
history of the dialog up to and excluding turn ¢. The
special token [CLS] preceeds every input sequence
to BERT, and [SEP] separates portions of the input
sequence. It is then R; = [rCS 7} ;max]

sTiye ey Ty s



none
dontcare
true
false
none
dontcare
span
inform
refer

end pos distribution

[

start pos distribution

1
0 0
0 1
0

0

Coilne

0 0

[ u|U|1[[SEP]][ my |

[ e | [ 1SEPY ][ By |

1 0

ainform '
t current user utterance

preceeding system utterance

dialog history

Figure 2: Architecture of our proposed model. TripPy takes the turn and dialog history as input and outputs a DS.

where rCIS is a representation of the entire turn
including the dialog context H;. The vectors r}
to r; "™ are contextual representations for the se-
quence of input tokens (including special tokens).
Both types of representations are used for the fol-

lowing classification tasks.

3.2 Slot Gates

Our model is equipped with a slot gate for each
domain-slot pair. This ensures greatest flexibil-
ity for multi-domain DST, as there is no restric-
tion as to how many domains might be present
in a single turn. At each turn ¢, slot gates as-
sign each slot S, to one of the classes in C' =
{none, dontcare, span, inform, refer}. The first
two labels express special cases. none denotes
that the slot does not take a value in this turn and
dontcare states that any value is acceptable for this
slot. The remaining three labels each denote one
of the model’s copy mechanisms. span indicates
that a value is present in U, that can be extracted
via span prediction. inform indicates that the user
refers to a value that has been uttered by the system
in M;. Lastly, refer indicates that the user refers
to a value that is already present in D.S;.

The input to the slot gates is rELS, and the prob-
ability distribution over classes C' for domain-slot

pair Sy, at turn ¢ is p§ ° (r1S) =

softmax (W . CLS 1 peatey < RS (2)

i.e., each slot gate is realized by a trainable linear
layer classification head for BERT.

Boolean slots, i.e., slots that only take binary val-
ues, are treated separately. Here, the list of possible
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classes is Choo1 = {none, dontcare, true, false}

and the slot gate probability is pz %ate(rtCLS) =

softmaX(W;Dgate . TtCLS + b?gate) e R (3

3.3 Span-based Value Prediction

For each slot s that is to be filled via span predic-
tion, a domain-slot specific span prediction layer
takes the token representations [rf, . .., ;] of
the entire dialog context for turn ¢ as input and
projects them as follows:

g Bi) = WP rp + B € R? - (4a)
P = softmax(ay) (4b)
pfgd = softmax(;) (40)
start] = argmax(p}'e™) (4d)
end; = argmax(pfgd). (4e)

Each span predictor is realized by a trainable linear
layer classification head for BERT, followed by
two parallel softmax layers to predict start and end
position. Note that there is no special handling for
erroneously predicting end; < startj. In practice,
the resulting span will simply be empty.

3.4 System Inform Memory for Value
Prediction

The system inform memory I; = {I},..., IV}
keeps track of all slot values that were informed by
the system in dialog turn ¢. A slot in D.S; needs to
be filled by an informed value, if the user positively
refers to it, but does not express the value such that
span prediction can be used. E.g., in Figure 1 the



slot gate for domain-slot <restaurant, name>
should predict inform. The slot is filled by copy-
ing the informed value into the dialog state, i.e.,
DS} = I}, where 1 is the index of the respective
domain-slot.

3.5 DS Memory for Coreference Resolution

The more complex a dialog can be, the more likely
it is that coreferences need to be resolved. For
instance, the name of a restaurant might very well
be the destination of a taxi ride, but the restaurant
might not be referred to explicitly upon ordering
a taxi within the same conversation. Coreference
resolution is challenging due to the rich variety of
how to form referrals, as well as due to the fact
that coreferences often span multiple turns. An
example of a coreference that can be handled by
our model is found in the example in Figure 1.

The third copy mechanism utilizes the DS as
a memory to resolve coreferences. If a slot gate
predicts that the user refers to a value that has al-
ready been assigned to a different slot during the
conversation, then the probability distribution over
all possible slots that can be referenced is

refer
t,s

(r§5) =

s
refer

- rCES ps

refer

softmax( ) e RV+

SE)

i.e., for each slot, a linear layer classification head
either predicts the slot which contains the refer-
enced value, or none for no reference.

3.6 Auxiliary Features

Some recent approaches to neural DST utilize aux-
iliary input to preserve contextual information. For
instance, SOM-DST adds the dialog state to its
single-turn input as a means to preserve context
across turns.

We already include contextual information in the
input to BERT by appending the dialog history H;.
In addition to that, we also create auxiliary features
based on the system inform memory and the DS
memory. We generate two binary vectors a*o™ ¢
{0,1}" and a® € {0,1}" that indicate whether
(1) a slot has recently been informed (based on the
system inform memory), or (2) a slot has already
been filled during the course of the dialog (based
on the DS memory). These vectors are added to the
output of BERT in a late fusion approach, and the

slot gate probabilities in Equations 2, 3 and 5 be-

A b N A
come (1), (7£15) and i (761,

with ftCLS — ’I”tCLS D a%nform o ags.
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3.7 Partial Masking

We partially mask the dialog history H; by replac-
ing values with BERT’s generic [UNK] token. The
masking is partial in the sense that it is applied
only to the past system utterances. For the sys-
tem utterances, the contained values are known and
their masking is straightforward. The idea behind
partially masking the history is that the model is
compelled to focus on the historical context infor-
mation rather than the sighting of specific values.
This should result in more robust representations
rCS and therefore better overall slot gate perfor-
mance.

3.8 Dialog State Update

We employ the same rule-based update mechanism
as Chao and Lane (2019) to track the dialog state
across turns. At every turn, we update a slot, if
a value has been detected which is not none. If a
slot-value is predicted as none, then the slot will
not be updated.

4 Experimental Setup
4.1 Datasets

We train and test our model on four datasets, Mul-
tiwOZ 2.1 (Eric et al., 2019), WOZ 2.0 (Wen
et al., 2016), sim-M and sim-R (Shah et al., 2018).
Among these, MultiwOZ 2.1 is by far the most
challenging dataset. It is comprised of over 10000
multi-domain dialogs defined over a fairly large
ontology. There are 5 domains (train, restaurant,
hotel, taxi, attraction) with 30 domain-slot pairs
that appear in all portions of the data.

The other datasets are single-domain and signifi-
cantly smaller. Evaluations on these mainly serve
as sanity check to show that we don’t overfit to
a particular problem. Some slots in sim-M and
sim-R show a high out-of-vocabulary rate, making
them particularly interesting for evaluating value
independent DST.

The single domain datasets come with span la-
bels. However, MultiwOZ 2.1 does not. We there-
fore generate our own span labels by matching the
ground truth value labels to their respective utter-
ances.

4.2 Evaluation

We compute the joint goal accuracy (JGA) on all
test sets for straightforward comparison with other
approaches. The joint goal accuracy defined over
a dataset is the ratio of dialog turns in that dataset



Models MultiwOZ 2.1
DST-reader 36.40%
DST-span 40.39%
SUMBT 42.40%**
TRADE 45.60%
MA-DST 51.04%
DS-DST 51.21%
SOM-DST 52.57%
DS-picklist 53.30%
TripPy 55.294+0.28 %

Table 1: DST Results on MultiwOZ 2.1 in JGA (& de-
notes the standard deviation. ** MultiWOZ 2.0 result.

for which all slots have been filled with the correct
value according to the ground truth. Note that none
needs to be predicted if a slot value is not present
in a turn. In addition to JGA, we compute the
accuracy of the slot gates (joint and per-class) and
various other metrics for a more detailed analysis
of model design decisions.

We run each test three times with different seeds
and report the average numbers for more reliable
results. MultiWOZ 2.1 is in parts labeled inconsis-
tently. For a fair evaluation, we consider a value
prediction correct, if it matches any of its valid
labels (for instance “’centre” and “’center” for the
slot-value hotel-area=centre) as being correct. We
semi-automatically analyzed value label inconsis-
tencies in the training portion of the dataset in order
to identify all label variants for any given value.
During testing, these mappings are applied as is.

4.3 Training

We use the pre-trained BERT-base-uncased trans-
former (Vaswani et al., 2017) as context encoder
front-end. This model has 12 hidden layers with
768 units and 12 self-attention heads each. The
maximum input sequence length is set to 180
tokens after WordPiece tokenization (Wu et al.,
2016), except for MultiWwOZ 2.1, where we set this
parameter to 512. We compute the joint loss as

L=0.8"Lgate + 0.1 Lspan + 0.1 Ligfer. (6)

The function for all losses is joint cross entropy. As
there is no coreferencing in the evaluated single-
domain datasets, the refer loss is not computed in
those cases and the loss function is

L =08 Lgate + 0.2 - Lopan (7)

instead. Span predictors are presented only spans
from the user utterances U; to learn from (includ-
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Models WOZ 2.0
NBT 84.2%
BERT-DST 87.7%
GLAD 88.1%
GCE 88.5%
StateNet 88.9%
SUMBT 91.0%
TripPy 92.71+0.2 %

Table 2: DST Results on WOZ 2.0.

Models sim-M sim-R
SMD-DST 96.8%* 94.4%*
LU-DST 50.4% 87.1%
BERT-DST 80.1% 89.6%
TripPy 83.5+1.2% 90.0+0.2%

Table 3: DST Results on sim-M and sim-R. * should
be considered as oracle because the value candidates
are ground truth labels.

ing the user utterances in the history portion H; of
the input). During training we set the span predic-
tion loss to zero for all slots that are not labeled as
span. Likewise, the coreference prediction losses
are set to zero if slots are not labeled as refer. For
optimization we use Adam optimizer (Kingma and
Ba, 2014) and backpropagate through the entire
network including BERT, which constitutes a fine-
tuning of the latter. The initial learning rate is set
to 2¢~°. We conduct training with a warmup pro-
portion of 10% and let the LR decay linearly after
the warmup phase. Early stopping is employed
based on the JGA of the development set. During
training we use dropout (Srivastava et al., 2014) on
the BERT output with a rate of 30%. We do not use
slot value dropout (Xu and Sarikaya, 2014) except
for one dataset (sim-M), where performance was
greatly affected by this measure (see Section 5.1.

5 Experimental Results

Tables 1, 3 and 2 show the performance of our
model in comparison to various baselines. TripPy
achieves state-of-the-art performance on all four
evaluated datasets, with varying distance to the
runner-up. Most notably, we were able to push the
performance on MultiwOZ 2.1, the most complex
task, by another 2.0% absolute compared to the pre-
vious top scoring method, achieving 55.3% JGA.
The improvements on the much smaller datasets
WOZ 2.0, sim-M and sim-R demonstrate that the
model benefits from its design on single-domain



Model JGA
Span prediction only (entire turn) 42.63%
+ triple copy mechanism 49.23%
+ dialog history 52.58%

+ auxiliary features 54.08%

+ masking 54.29%
TripPy (full sequence width) 55.29%

Table 4: Ablation experiments for our model.
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Figure 3: Per class performance of the slot gates for
different versions of our model (ablation study).
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tasks as well. The following analysis serves a better
understanding of our model’s strengths.

5.1 Analysis

We analyse the performance of TripPy on abla-
tion experiments on MultiWOZ 2.1 (see Table 4).
Our baseline model is best compared to BERT-
DST (Chao and Lane, 2019); we only take single
turns as input, and only use span prediction to ex-
tract values from the turn. The resulting perfor-
mance is comparable to other span-based methods
such as DST-reader and DST-span and confirms
that the dialogs in MultiWOZ are too complex
to only be handled by this information extracting
mechanism alone.

Impact of the triple copy mechanism Using
our proposed triple copy mechanism pushes the
performance close to 50%, surpassing TRADE and
closing in on the leading hybrid approaches. Es-
pecially the performance of the slot gates benefits
from this change (see Figure 3). When looking at
the F1 score for the individual classes, one can see
that the span class benefits from the distinction. It
is important to point out that none of the corefer-
ences that our model handles can be resolved by
span-prediction alone. This means that otherwise
guaranteed misses can now be avoided and corefer-
ences can be resolved by copying values between
slots. What’s more, using the dialog state memory
to resolve coreferences helps value detection across
multiple turns, as a value that has been referred to
in the current turn might have been assigned to
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Figure 4: Performance of TripPy on slots with high
OOV rate. ALL denotes the average of all slots of the
respective dataset.

another slot multiple turns before.

Impact of the dialog history We found that us-
ing the dialog history as additional context informa-
tion is critical to a good performance, as it reduces
contextual ambiguity. This is clearly reflected in
the improved performance of the slot gates (see
Figure 3, which has two positive effects. First, the
presence and type of values is recognized correctly
more often. Especially the special value dontcare,
and boolean slots (taking values true and false)
benefit from the additional context. This is only
logical, since they are predicted by the slot gate
using the representation vector of the [CLS] to-
ken. Second, values are assigned to the correct slot
more often than without the additional contextual
information. With the additional dialog history, we
outperform DS-DST and match SOM-DST, which
set the previous state-of-the-art.

Impact of the auxiliary features SOM-DST
uses single turns as input, but preserves additional
contextual information throughout the dialog by
using the dialog state as auxiliary input. By adding
our memory based auxiliary features in a late fusion
approach, we surpass SOM-DST, and ultimately
DS-picklist, which performs slot-filling with the
knowledge of the full ontology. Even though our
features carry less information, that is, only the
identities of the informed slots — tracked by the
system inform memory — and the identities of the
previously seen slots — tracked by the DS memory
—, we see substantial improvement using them. Ob-
viously, more information about the progress of the
dialog helps the slot gates and the referral gates in
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Figure 5: Recall of values depending on the amount of
samples seen during training. O seen samples means
the value is OOV during test time.

their classification tasks.

Impact of partial masking We found that mask-
ing the informed values in past system utterances
does not give a clear benefit, but it also does not
harm performance of the slot gates. While the
inform cases are detected more accurately, some
other cases suffer from the loss of information in
the input. Overall, there is a minor overall im-
provement observable. We report the numbers for
MultiWOZ in Table 4 and Figure 3, but would like
to note that we have seen the same trend on all
other datasets as well.

Impact of the context width Our best model uti-
lizes the full width of BERT (512 tokens). This is
a clear advantage for longer dialogs. Maximal con-
text width is not a decisive factor for the single-
domain datasets, since their dialogs tend to be
shorter. As expected, we have not seen any change
in performance on these. For MultiWOZ, we gain
1% absolute by maximizing the history length to
preserve as much of the dialog history as possible,
achieving 55.3% JGA.

5.2 Generalization Study

It is important that a DST model generalizes well
to previously unseen values. We looked at the per-
formance of our model on slots with exceptionally
high out-of-vocabulary rates, of which we identi-
fied 8 across the evaluated datasets. Figure 4 plots
performance measures for these slots and compares
them to the average performance for all slots in the
respective datasets. Generally, the slots that expect
named entities as values show the lowest accuracy.
However, the below-average performance of these
slots does not seem to be caused by a particularly
high OOV rate. Even at 100%, the movie slot of
sim-M still performs comparably well. Other slots
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Figure 6: Per-slot accuracy of TripPy on the original
test set and the OOV test set. Underlined slot names
indicate slots with at least one OOV value.

with relatively high OOV rate still perform close to
or better than the average.

Figure 5 plots the recall of values depending on
the number of samples seen during training. To
our surprise, it does not seem to matter whether a
particular value has never been seen during training
in order to be detected correctly. OOV values are
detected just as well as generally less common
values. Our observations however indicate that the
model benefits tremendously by seeing a certain
minimal amount of training samples for each value,
which is somewhere around 50. In other words, if
such amounts of data are available, then the model
is able to effectively utilize them. In the same
Figure we compare TripPy to the span prediction
baseline. The latter clearly struggles with OOVs
and rare values and generally seems to require more
training samples to achieve a good recall. The
higher recall on OOV values is likely caused by the
fact that many unseen values are of the category
time of day, which mostly follows a strict format
and is therefore easier to spot. Overall, TripPy
clearly generalizes better over sample counts.

To test the limits of our model’s generalization
capacities, we manually replaced most of the val-
ues in the MultiWOZ test set by (fictional but still
meaningful) OOV values. Of the over 1000 unique
slot-value pairs appearing in the modified test set,
about 84% are OOV after the replacement. Fig-
ure 6 compares the per-slot accuracy of our model
on the original test set and the OOV test set. Un-
derlined slot names indicate slots with at least one
OOV value. Their average OOV rate is 90%. Sur-
prisingly, most of these slots maintain their high



accuracy and only few suffer from the high OOV
count. Mainly it is one particular domain, train,
which suffers above-average performance drops.
However, the remainder of the slots maintain their
performance. This demonstrates that our model is
well equipped to handle OOV values, regardless of
the type (e.g., named entity, time of day).

6 Conclusion

We have demonstrated that our approach can han-
dle challenging DST scenarios. Having to detect
unseen values does not considerably impair our
model’s general performance. The information
extraction capabilities of our proposed model are
rooted in the memory-based copy mechanisms and
perform well even in extreme cases as discussed in
Section 5.2. The copy mechanisms are not limited
by a predefined vocabulary, since the memories
themselves are value agnostic.

To further improve the DST capabilities of
TripPy, we hope to introduce slot independence
as at present its tracking abilities are limited to
slots that are predefined in the ontology. For that,
We would like to expand our approach towards the
schema-guided paradigm for dialog modeling. We
also would like to employ a more sophisticated up-
date strategy, for example by adding the option to
partially forget. There already exists an intriguing
set of works focusing on these issues and we hope
to incorporate and expand upon it in the future.
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Abstract

We will demonstrate a deployed conversa-
tional Al system that acts as a host of a smart-
building on a university campus. The sys-
tem combines open-domain social conversa-
tion with task-based conversation regarding
navigation in the building, live resource up-
dates (e.g. available computers) and events in
the building. We are able to demonstrate the
system on several platforms: Google Home
devices, Android phones, and a Furhat robot.

1 Introduction

The combination of social chat and task-oriented
dialogue has been gaining more and more pop-
ularity as a research topic (Papaioannou et al.,
2017c; Pecune et al., 2018; Khashe et al., 2019). In
this paper, we describe a social bot called Alana!
and how it has been modified to provide task-
based assistance in an intelligent building (called
the GRID) at the Heriot-Watt University cam-
pus in Edinburgh. Alana was first developed for
the Amazon Alexa Challenge in 2017 (Papaioan-
nou et al., 2017b,a) by the Heriot-Watt University
team and then improved for the same competition
in 2018 (Curry et al., 2018). The team reached
the finals in both years. Now Alana successfully
serves as a system core for other conversational
Al projects (Foster et al., 2019).

In the GRID project, several new functionali-
ties have been added to the original Alana system
which include providing the users with informa-
tion about:

e the GRID building itself (e.g. facilities,
rooms, construction date, opening times),

e location of rooms and directions to them,
e events happening in the building,
e computers available for use — updated live.

'See http://www.alanaai.com

Currently, our intelligent assistant is available
for users on several Google Home Mini devices
distributed in the GRID — a large university build-
ing with multiple types of users ranging from stu-
dents to staff, and visitors from business/industry.
It is also available on Android phones via Google
Actions as part of the Google Assistant. The
system is reconfigurable for other buildings, via
a graph representation of locations and their con-
nectivity. It connects to live information about
available resources such as computers and to an
event calendar.

2 System Architecture

Figure 1 presents the architecture of the system.

Neodj Graph DB
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[ Weather Bot ] [ Fact Bot ] [Wiki Bm] [Reddit Bot]

Figure 1: System architecture.

The Alana system is an ensemble of several dif-
ferent conversational bots that can all potentially
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produce a reply to the user’s utterance. Each bot
uses different information resources to produce its
reply. Example resources are: Wikipedia, Reddit,
many different News feeds, a database of interest-
ing facts etc. Additionally, there are also conver-
sational bots that drive the dialogue in case it has
stalled, deal with profanities, handle clarifications,
or express the views, likes, and dislikes of a virtual
Persona. The decision regarding which bot’s reply
is selected to be verbalised is handled by the Dia-
logue Manager (DM).

ASR/TTS Inthe GRID project, the audio stream
is handled using the Google Speech API and the
system is therefore also available as an action on
Google Assistant on Android phones.

NLU In the Alana system, users’ utterances are
parsed using a complex NLU pipeline, described
in detail in (Curry et al., 2018), consisting of
steps such as Named Entity Recognition, Noun
Phrase extraction, co-reference and ellipsis resolu-
tion, and a combination of regex-based and deep-
learning-based intent recognition. In the GRID
project, an additional NLU module has been im-
plemented for building-specific enquiries which
uses the RASA? framework. In the Persona bot
we use AIML patterns for rapid reconfigurability
and control.

NLG The NLG strategy depends on the differ-
ent conversational bots. It ranges from the use of
complex and carefully designed templates to auto-

matically summarised news and Wikipedia articles
(Curry et al., 2018).

DM In every dialogue turn each of the bots at-
tempts to produce a response. Which response
will be uttered to the user is determined by a se-
lection strategy which is defined by a bot priority
list and can also be learned from data (Shalymi-
nov et al., 2018). If several bots produce a re-
sponse in a given turn, the response of the bot with
the highest priority is selected. The Directions,
Events, and Resources bots are placed at the top of
the priority list in order to increase the chance of
their responses being selected because all of them
provide information regarding the GRID building.
The Coherence Bot has the lowest priority since its
role is to handle turns when none of the other bots
produce a response so that the conversation can be
driven forward.

2See https://rasa.com/

46

The Neodj Graph Database Figure 2 presents
the graph representation of how the rooms are con-
nected with each other in the GRID building. To
port the system to different buildings, this repre-
sentation would be changed to reflect the locations
and their spatial connectivity.

MR - Meeting Room

( Imagineering J éone\\ /Zfon}\l —
Suite 1‘3// \\1,4
\ / — I Partner |
@ L N\
@ ( ZO"§\| IBoarerl

Figure 2: Graph representation of spatial connectivity
— example for the GRID building.

3 Example Dialogues

General information about the GRID building is
encoded in Persona’s AIML templates. It is this
bot that responds to questions whose answers are
generally fixed over time — for example about
opening hours and where one can buy a cup of
coffee. For examples of responses generated by
Persona, see Dialogue 1.

The Ethics Bot has been implemented to ob-
tain users’ consent for storing and processing tran-
scriptions of their conversations. The request for
user consent is omitted in the example dialogues.

The Directions Bot handles requests for loca-
tions of rooms and directions to them. It connects
to the Neo4j graph database where it retrieves the
shortest paths. The Events Bot responds whenever
events information is requested for either a specific
room or the building in general. The information
is stored in the Neo4j database as well where the
events are assigned to particular rooms. It is re-
trieved from a university timetable system and up-
dated every day.



A: Welcome to the GRID building! How can I help you
today?

U: What does GRID stand for?

A: (persona) GRID stands for Global, Research, In-
novation and Discovery. Is there anything else I can
help you with?

U: What time does this building close?

A: (persona) This building never closes. It is open
24/7. Did you know that you can have a chat with
me about music? Also, if you're looking for a specific
room, you can ask me how to get there.

U: Actually, I really need a cup of coffee. Do you know
where I can get one?

A: (persona) You can have a cup of coffee at the cafe
on the ground floor. It looks like a tuk tuk. Can I help
you with anything else?

U: What is a tuk tuk?

A: (wiki_bot) I think that an auto rickshaw is a mo-
torized version of the pulled rickshaw or cycle rick-
shaw. Most have three wheels and do not tilt. They
are known by many terms in various countries includ-
ing auto, baby taxi, bajaj, chand gari, lapa, tuk-tuk,
3wheel or tukxi.

U: Wow, that’s interesting. Thanks, goodbye!

A: It was lovely talking to you! Goodbye!

Dialogue 1: Questions about the GRID building. U —
User, and A — Alana system.

The role of the Resources Bot is to provide the
user with information about how many computers
are currently free in the GRID building’s labs. The
bot scrapes the data live from a university website.
Dialogue 2 presents example responses produced
by the Directions, Events, and Resources Bots.

Dialogue 3 shows an example of social chat one
can have with our system. Alana offers conversa-
tion about various topics such as music, movies,
and sports. It provides current news as well.

4 Future Work

4.1 Deployment on a Robot

We can already deploy Alana on a Furhat® robot
during special events in the GRID building. We
believe that having Alana deployed on a robot
makes it even more attractive and encourages
more people to interact with it.

This will also be useful for a future project
which will aim to further extend Alana’s function-
alities so that for example, it can become a virtual
receptionist in the National Robotarium (a smart
research building for Human-Robot Interaction)
which is soon to be built at the Heriot-Watt Uni-
versity campus in Edinburgh.

3See https://www.furhatrobotics.com/

A: Hello, and welcome to the GRID building! What can 1
assist you with?

U: Hi! What can you do?

A: (persona) If you're looking for a room, I can tell
you where it is. I can also tell you what events are hap-
pening in this building and where you can find a free
computer.

U: Are there any available computers in the Flex Lab?

A: (resources_bot) Sorry, there is Flex Lab 1 and
Flex Lab 2 in this building. Which one do you mean?

U: Number 2.

A: (resources_bot) I'm afraid there are no free
computers in the Flex Lab 2 at the moment, but I know
that the room Digital Lab has the most free computers,
it has 97 PCs available.

U: Where is the Digital Lab?

A: (directions_bot) The Digital Lab is on the first
Sfloor. Would you like directions?

U: Yes, please.

A: (directions_bot) From the entrance, head
across the atrium to the right and take the accessible
lift to the first floor, then turn right, the door to the Dig-
ital Lab will be in front of you. Don’t forget that you
can ask me about events happening in this building.

U: Ok, is there anything on today?

A: (events_bot) There are 2 events taking place in
the Boardroom today. An event called Negotiate Train-
ing is scheduled from 10:30 until 12:30. Another event
called Virtual Reality Workshop is taking place from
13:15 until 19:15. Is there anything else I can help
you with?

U: No, I'm good. Thanks, goodbye!

A: It was lovely talking to you! Goodbye!

Dialogue 2: Task-based dialogue. U — User, and A —
Alana system.

A: Welcome to the GRID building! How can I help you
today?

U: Let’s talk about music.

A: (coherence_bot) I'm into music. I'm really into
rap and rock. What about you?

U: Ilike Bob Dylan a lot.

A: (news_bot) A friend of mine told me about this news
headline from MTV News about Bob Dylan. Timothée
Chalamet will play Bob Dylan in his next Oscar wor-
thy role. Do you want to hear some more about this?

U: Who is Timothée Chalamet?

A: (wiki_bot) As far as I know, Timothée Hal Chala-
met is an American actor.

U: What movies do you like?

A: (persona) My favourite movie is Star Wars. I love
the two androids in that film. Which movie do you like?

U: The new Star Trek movies are pretty good.

A: (news_bot) Related to Star Trek, I heard this news
headline from a friend, ‘Star Trek: Picard’: Every-
thing you need to watch before the new CBS series.
Do you want to learn more?

U: No, thanks. I’ve gotta go. Bye!

A: It was lovely talking to you! Goodbye!

Dialogue 3: Open-domain chat about music, movies,
and news. U — User, and A — Alana system.



4.2 Graphical App

Furthermore, we collaborate with Speech Graph-
ics* which is a company that provides facial ani-
mation for speaking game characters from audio
input. Together we aim to create a mobile app
with Alana and its animated avatar which will be
available to students and academics at Heriot-Watt
University in Edinburgh. Figure 3 presents two of
the avatars available for Alana. We believe that the
interaction with the graphical app will be more ap-
pealing for users than talking to the Google Home
devices.

4 sSPeecH)\GRAPHICS

@ soescH\GRAPHICS

Figure 3: Example Speech Graphics avatars.

4.3 Evaluation

We are conducting experiments where we com-
pare two versions of the developed system. One of
them is the full version of the Alana-GRID system
implemented in this project and the other is Alana
deprived of its open-domain conversational skills
i.e. only capable of providing information about
the GRID building which the user requests. Our
hypothesis is that open-domain social chat adds
value to virtual assistants and makes it more plea-
surable and engaging to talk to them.
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Abstract

In this paper, we present the newest version of
retico - a python-based incremental dialogue
framework to create state-of-the-art spoken di-
alogue systems and simulations. Retico pro-
vides a range of incremental modules that are
based on services like Google ASR, Google
TTS, and Rasa NLU. Incremental networks
can be created either in code or with a graph-
ical user interface. In this demo, we present
three example systems that are implemented in
retico: a spoken translation tool that translates
speech in real-time, a conversation simulation
that models turn-taking, and a spoken dialogue
restaurant information service.

1 Introduction

Classical architectures of spoken dialogue sys-
tems rely on a pipeline approach, where data is
passed through and transformed by a set of mod-
ules. These modules perform a specific task on the
data, for example, convert speech signals into text
(ASR modules) or extracting domain-specific in-
formation from text (NLU modules). While this ar-
chitecture separates the concern between the mod-
ules and modularizes the development of spoken
dialogue systems, the resulting agents are slow to
process data and cannot react quickly to changes in
the input.

Incremental processing, an architecture where
modules work on small increments of data and
forward hypotheses based on those increments to
the next module, increases the processing speed
and reactiveness of dialogue systems while still re-
taining the modularized approach of the pipeline
architecture (Schlangen and Skantze, 2011). How-
ever, due to the overhead of creating and revoking
hypotheses and processing on incomplete data, the
complexity of each module in an incremental di-
alogue system increases. For researchers, it can
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be a challenge to implement and evaluate incre-
mental modules, as they do not have the time and
knowledge to implement a complete incremental
dialogue system, just to evaluate the part they are
researching.

The incremental processing toolkit (InproTK) is
an open-source toolkit written in Java that provides
an interface for incremental modules and defines an
architecture for incremental units, hypothesis han-
dling, and connections between incremental mod-
ules (Baumann and Schlangen, 2012). However,
the toolkit does not provide an integrated frame-
work that allows for the design and evaluation of
networks.

In this paper, we present the current version of
retico, an incremental framework for spoken di-
alogue that was first published in (Michael and
Moller, 2019). Retico is a framework written in
python and published as an open-source project'.
We demonstrate three types of speech and dia-
logue systems that are implemented in this frame-
work. First, we showcase an incremental transla-
tion service that utilizes Google Translate to rec-
ognize, translate, and synthesize speech. Also, we
showcase a simulation of a conversation with turn-
taking, where two agents interact with each other.
Finally, we showcase a spoken dialogue system
in the restaurant information domain. All demo
systems are visualized in a graphical user interface,
and the networks can be adjusted live (e.g., speech
synthesis modules can be switched).

2 Related Work

The incremental model has been formalized
by Schlangen and Skantze in (Schlangen and
Skantze, 2009, 2011). The resulting framework
InproTK (Baumann and Schlangen, 2012) has been
used for incremental speech recognition and syn-

! Available at www . github.com/uhlo/retico
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thesis and dialogue systems, among others. Based
on this, InproTKg extends the toolkit for the use of
situated dialogue(Kennington et al., 2014).

Recent work in modules of spoken dialogue sys-
tems like speech recognition (Selfridge et al., 2011)
and end-of-turn prediction (Skantze, 2017) focused
on incremental processing, and a state-of-the-art
natural language understanding module has been
incrementalized (Rafla and Kennington, 2019).

Incremental processing cannot only be used in
spoken dialogue system, but it also can be use-
ful for research regarding conversation simula-
tion (Michael and Moller, 2020).

3 Architecture

The architecture of retico is written in python based
on the conceptual model of incremental processing
described in (Schlangen and Skantze, 2009). Core
of this framework are the abstract definitions of
an incremental module (IM) and an incremental
unit (IU). Both definitions provide interfaces and
processing routines to handle concurrent process-
ing of modules and the flow of IUs between the
modules. Each IM has a left buffer, where IUs of
other modules are placed to be processed and a
right buffer where new hypotheses are placed and
sent to IMs further down the incremental pipeline.
Usually, an IM defines one or more types of [U that
it is able to process and one type of IU it produces
and produces or revokes hypotheses based on every
incoming unit.

Besides these modules, retico provides interfaces
for information exchange apart from IUs by chang-
ing meta-information of IMs and by calling “trig-
ger” modules, that produce IUs on-demand and
insert them to the buffers of modules.

3.1 Incremental Units

Incremental units are mainly defined by their pay-
load, which differs widely depending on the type of
data the IU is carrying. For example, an AudioIU
stores chunks of audio data that is captured by a
microphone, while a TextIU stores text recog-
nized by an ASR module or generated by an NLG
module.

IUs also manage references to IUs they are based
on, as well as IUs that precede it. This information
is automatically collected and added to the IU when
it is created as part of the processing routine of an
Incremental Module.

Additionally, IUs retain information on their
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hypothesis-status, that is, if they are committed
(no further changes to the hypothesis will be made)
or if they are revoked (the hypothesis is no longer
valid and may be replaced with a newer hypothe-
sis). Also, meta-data in the form of key-value-pairs
can be attached to an IU. In contrast to the payload
of an IU, the meta-data is not standardized for a
type of an IU and is not guaranteed to be present.
However, it is a useful tool for debugging or storing
information used for visualization.

3.2 Incremental Modules

Incremental modules represent the core function-
ality of retico. Their connectivity is defined
by one or more input IU types and one output
IU type. However, there are special producer
modules that do not accept any input IUs be-
cause they obtain information from other sources
(e.g., the MicrophoneModule) and consumer
modules that do not output any IUs (e.g., the
SpeakerModule). The primary processing
method of an incremental module is invoked ev-
ery time there is a new IU in the left buffer, and it
may return a new [U for the right buffer. Like IUs,
incremental modules are also able to hold meta-
data, which is used for debugging and visualization
purposes.

Retico already includes modules from various
fields of a spoken dialogue system. Most no-
tably, there exists modules that handle Audio in-
put and output, online and offline speech recogni-
tion (CMUSphinx, Google ASR), natural language
understanding (rasa NLU), dialogue management
(agenda-based, rasa RNN-based, n-gram-based),
speech synthesis (Mary TTS, Google TTS) as well
as translation services (Google Translate). Addi-
tional modules and integrations from other frame-
works are in planning.

3.3 Logging and Persistence

The IUs that are defined in retico generalize via
the python inheritance structure, so that standard
data types like audio, text, and dialogue acts are
supported. This allows retico to persist IUs of these
types with so-called “recorder” modules.

Retico modules are serializable so that networks
can be stored into a file to be loaded and initialized
again later.

3.4 Graphical User Interface

While modules can be created, connected, and run
purely in python code, it also provides a GUI that



Figure 1: Screenshot of the graphical user interface to
create, save and load incremental networks.
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Figure 2: The schema of the translation service.
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visualized networks and the flow of IUs. Figure 1
shows the user interface that runs in a browser.
Available modules are shown in a tree list and can
added onto the canvas. Connections between mod-
ules can be made by clicking on the sockets, and
the interface highlights only modules that can pro-
cess the specific IU type. When a network is run
in the GUI, the modules show basic information
about the IU they are currently processing.

Networks created with the GUI can be saved to
a file and be loaded again with the GUI or with
python code. The position and size information
of the modules are stored in the module’s meta-
data, which allows retico to retain the layout of the
network when loading it from file.

4 Demonstrations

In this section, we present three different projects
that are created entirely in retico. Due to the modu-
lar approach of retico, these systems are not fixed
regarding the modules they use for a given task.
For example, rectico is able to use two different
speech synthesis modules that can be interchanged.

4.1 Spoken Translation Service

The translation service utilizes speech recognition,
a text translation service, and speech synthesis to
translate sentences spoken into the system. As can
be seen in Figure 2, the main components used in
this setup are the Google ASR, Google TTS, and
the Google Translate modules. While the ASR
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Figure 3: The schema of one agent in the turn-taking
conversation simulation network. The complete sim-
ulation includes two agents whose speech-input and -
output are connected, as well as a recording modules
that stores the conversation onto disk for further evalu-
ations.

module works on word and sub-word level, the
translation module collects multiple words so that
a potential translation stabilizes. The translated
sentences are synthesized with Google TTS and
transmitted to the speakers.

The languages that can be translated by this ser-
vice are only limited by the capabilities of Google
ASR, TTS, and translation services. However, we
tested the system with German-English, English-
French, and German-French translations.

Because there is no echo suppression imple-
mented in this version of the service, the loud-
speaker, and the microphone have to be acoustically
separated (e.g., via a headset).

4.2 Conversation Simulation

The conversation simulation consists of two spo-
ken dialogue systems that are connected and can
communicate through an audio channel. Because
of the incremental implementation, the agents can
predict the end-of-turn of their interlocutors and
perform rudimentary turn-taking. As can be seen in
Figure 3, an Audio Dispatching Module
is used to control when an agent speaks and when
it is silent, and it also provides feedback of the sta-
tus of the current utterance back to the dialogue
manager. The simulated conversation itself models
a short conversation test as standardized by (ITU-T
Recommendation P.805, 2007). Concretely, the sce-
nario describes a telephone conversation between a
worker at a pizzeria and a customer. The customer
inquires about available dishes and their toppings,
selects an item from the menu, and the pizzeria
worker requests information like telephone number
and address.

The modules in this network (ASR, TTS, NLG,
NLU, end-of-turn) are based on recorded data
from real conversations performed in laboratory
conditions that were transcribed and annotated



with dialogue acts and turn markers. The incre-
mental modules in the simulation make use of
meta-information transmitted through retico’s side-
channel to perform their tasks. The utterances pro-
duced by the agents are sliced from the empirical
conversations. However, other synthesis methods
can be used.

4.3 Restaurant Information System

The restaurant information system is a spoken dia-
logue system that finds restaurants based on user-
given criteria like location of the restaurant, as well
as the type and price of food. Once every slot
is filled, the dialogue system queries a database
and recommends restaurants that match the crite-
ria. Depending on the complexity of the query, the
request to the database can be slow. The incremen-
tal processing, together with a caching-mechanism
implemented into the database connector, allows
for faster response times of the dialogue system.
The speech recognition and synthesis are real-
ized with Google ASR, and TTS modules, and rasa
NLU is used for the natural language understand-
ing. The dialogue manager used in this system is
rule-based and uses slot-filling to query restaurants.

5 Conclusion

In this paper, we presented the newest version of
retico, a framework for incremental dialogue pro-
cessing. We described the incremental architecture
and highlighted the logging and persistence fea-
tures as well as the graphical user interface. We
also showcased three application ideas created with
the framework, that span a wide range of possible
speech dialogue systems. We described a service
that translates speech in increments, a conversa-
tion simulation that is able to perform turn-taking,
and a dialogue system that processes increments to
decrease the time used to query a database.

While we focus on applications in the area of
spoken dialogue, the incremental approach of this
framework can be applied to other areas of research
as well. For example, modules for video input and
object detection can be used to reference positions
of objects in the dialogue, and robotics features
may be integrated so that a dialogue system can
interact with its environment.

The framework is published as open source and
available online at
https://www.github.com/uhlo/retico.
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Abstract

We present a comprehensive platform to
run human-computer experiments where an
agent instructs a human in Minecraft, a 3D
blocksworld environment. This platform en-
ables comparisons between different agents by
matching users to agents. It performs exten-
sive logging and takes care of all boilerplate,
allowing to easily incorporate new agents to
evaluate them. Our environment is prepared to
evaluate any kind of instruction giving system,
recording the interaction and all actions of the
user. We provide example architects, a Wizard-
of-Oz architect and set-up scripts to automati-
cally download, build and start the platform.

1 Introduction

Collaborative human-computer interaction can oc-
cur in different environments. While interaction
in the physical world is often a desirable goal, it
places a huge burden on automatic agents as per-
ception is a hard problem, raising the barrier of
setting up such experiments significantly. On the
other end, interactions on a custom-built platform
may be a good fit to explore specific phenomena,
but they do not scale easily to different or com-
plex problems. A good example for a custom-built
virtual 3D world is the GIVE challenge, where an
instruction system must guide a player to press a
specific sequence of buttons in a 3D environment
while avoiding to step into traps (Byron et al., 2009;
Striegnitz et al., 2011). We instead use a general-
purpose 3D environment.

We release an experimentation platform based
on Minecraft (see Figure 1). Minecraft is a game in
which the players are situated in a 3D world, which
mainly consists of blocks. The game can either be
played locally as a single-player game or one can
join an online server and play with others. The play-
ers can move around, place and remove blocks, and
even craft new blocks or items. As such, Minecraft
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Figure 1: Example of instructions provided to a user.
New instructions appear at the bottom of the chat text
and old ones fade out after five seconds. In this case,
the world is initialized with a tiny river; the stripes are
the barriers for the user.

can be seen as a classic blocksworld that can be
scaled up a lot in complexity: Blocks can have
different types (wood, earth, stone, glass, lamps,
...), they can be combined into high-level objects,
and special blocks even enable building circuits,
resulting in Turing-complete machinery. Minecraft
contains different game modes: a survival mode,
which focuses on exploration and survival in the
game world, and the creative mode, focusing on
building. We make use of the creative mode.

This feature-richness makes Minecraft a perfect
environment for the evaluation of all kinds of in-
telligent agents (Johnson et al., 2016), from rein-
forcement learning agents (Guss et al., 2019), to
instruction receiving (Szlam et al., 2019) and in-
struction giving assistants (Narayan-Chen et al.,
2019). Its popularity (Minecraft is the most sold
game of all time), together with the client-server
architecture make Minecraft a tool well-suited for
crowd-sourcing with volunteers from all over the
world. Moreover, there are tons of instruction
videos for Minecraft on the internet which could
be used as auxiliary datasets for offline instruction
giving. This addresses several of the limitations
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Figure 2: Overview of the services in MC-Saar-Instruct. Updates on the world state are passed along the full lines,

instructions are forwarded along the dashed lines.

that previous frameworks like GIVE had: attracting
an even larger number of users for the experiments,
being more engaging, and allowing for a variety of
experiments of increasing complexity.

The platform presented here makes it easy to
set up and run instruction giving experiments in
Minecraft. In our research, we focus on instructing
the user to build complex objects (Wichlacz et al.,
2019; Kohn and Koller, 2019), but our platform
can easily be used for other generation tasks.

2 System Overview

MC-Saar-Instruct is implemented as a distributed
platform which is shown in Figure 2. It consists of
the following components, which can each run on
their own server:

The Minecraft server accepts connections
from users.

The Broker decides which scenario will be
played by the user, tells the Minecraft server
how to initialize the user’s world, pairs the
user with an architect and logs all interactions.

The Architect is the agent with which the user
interacts. It receives status updates of the
world through the broker and sends natural
language instructions back.

While there is only one Minecraft server and
one broker, there can be several different kinds of
architects, each hosted by its own Architect Server.
All interactions between these components are han-
dled using the grpc library,! abstracting away the
low-level networking and providing a succinct and
type-save remote procedure call (RPC) interface.

'"https://grpc.io/
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We provide example Architect Servers in Java,
but they can be written in any language with grpc
bindings, such as Python, Go, and many more.

2.1 The Minecraft Server

In contrast to other experimentation systems, such
as Johnson et al. (2016) (who modify the Minecraft
client) or Szlam et al. (2019) (who use the third-
party server Cuberite), we make use of the official
Minecraft server, which means that users can use
an unmodified up-to-date Minecraft client. Experi-
ments can also make use of all features introduced
by new Minecraft releases, if they wish. All func-
tionality in Minecraft, including building Turing-
complete apparatuses, can be used.

Upon entering the server, each player is tele-
ported into their own world, which is automatically
set up to reflect the start state of the scenario se-
lected by the broker (see Figure 1). All interaction
between players is inhibited and all changes made
by players are reset once they disconnect. Move-
ment is restricted to a square area and players can-
not remove the bottom-most layer of the world and
fall into the void. World changes not caused by
the player (e. g. weather, time) are disabled. The
Minecraft Server runs in creative mode so play-
ers have infinite access to building blocks and no
decreasing hunger or health bars.

Every 100ms, the server sends the current player
position and orientation to the broker. It also sends
updates whenever the state of the world changes,
i.e. whenever a block is placed or destroyed.

Whenever the architect or the broker sends a
message to a user, it is shown as a standard chat
message (see Figure 1). Players can also send chat
messages to the broker. This can be used for re-
sponses in experiment surveys (see Section 5) or for



an architect that can handle clarification questions.

Because all modifications are implemented in a
server plugin, players can connect with an unmodi-
fied Minecraft client over the internet.

2.2 The Broker

The broker is the centerpiece of the whole system.
It connects to all Architect Servers and provides an
RPC interface for the Minecraft server. Whenever
a player joins the Minecraft server, the broker gets
a message and decides which scenario should be
played and what kind of architect the user should
be paired with. It then sends a request to the corre-
sponding Architect Server to initialize a new ar-
chitect and matches that architect to the player.
Other than these decisions, the broker is mostly
passive. All communication between architect and
player is routed over the broker. The broker logs
all messages to a database, i.e. block additions
and deletions, text messages sent to and from the
user and position and camera orientation updates.
It also logs the start and end times of experiments
and each questionnaire.

The broker provides a web interface to mon-
itor the experiments. It shows the status of the
newest experiments and can show a complete list
of all database records from a specific game. An
in-memory database can be used for development
purposes so that no local database needs to be set
up and the database is clean on every start.

2.3 The Architect

The architect generates the instructions for the
users. Each kind of architect is hosted by an Ar-
chitect Server. Every time an experiment is sup-
posed to start with this type of architect, the Ar-
chitect Server instantiates a new architect. The
server keeps track of which architect is connected
to which game and forwards messages from the
broker to the correct architect.

The architect is what a researcher developing and
evaluating a new instruction-giving agent needs to
implement, using e.g. our high-level Java API. The
Architect Server, which manages different archi-
tects, can then be reused without changes. Archi-
tects could also be implemented in other language
with grpc bindings; this would then require reimple-
menting the Architect Server in the new language.

In our Java API, an architect must implement
four functions (see Figure 3): one is called when
a block is placed, one when a block is destroyed,
one for every update of the position and orientation
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handleStatusInformation (StatusM) ;
handleBlockPlaced (BlockPlacedM) ;
handleBlockDestroyed (BlockDestroyedM) ;
String getArchitectInformation();

Figure 3: Interface to implement for a new architect.
The base class provides a method to send text mes-
sages.

Figure 4: Excerpt from world file for Figure 1. Each
line has the X, Y and Z coordinates plus the block type.

of the player and one to obtain the name of the
architect. The architect can then send a string to the
user at any time, to be displayed in their Minecraft
client. A basic architect can be implemented in 80
lines of Java code.

The architect also determines when the player
has reached the objective, as it is the only compo-
nent keeping track of the state of the game. This
design means that all experiment-specific logic is
encapsulated in the architect and both broker and
Minecraft server can always stay unchanged.

3 Defining and Running Experiments

An experiment is defined by two components: the
scenarios that the players are supposed to work on
and the architects that should be evaluated.

A scenario consists of a definition of an initial
state of the world and architect-specific informa-
tion instructing the architect of the goal. The initial
world state is given by a list of blocks with their
location and type (see Figure 4). Each scenario
is identified by a unique name. We use a shared
dependency for all components that contains the
necessary descriptions of the world state when start-
ing a scenario as well as the scenario-specific data
for the architects, ensuring that the architects and
the Minecraft server use the same initial setup.

4 Wizard-of-Oz Architect

We also ship a Wizard-of-Oz architect (woz) to per-
form human-human interaction experiments. This
architect runs in a second Minecraft server where
only one player may log in. That player can nei-
ther move nor place or destroy blocks. Once this
architect is paired with a player by the broker, the
viewpoint of the woz player is synchronized with
the player, i. e. the woz player always sees exactly



what the player sees. The woz player may send
text messages and these are forwarded as instruc-
tions in the same manner as those generated by an
automatic agent.

We conducted initial experiments with spoken
interaction and noticed that the instruction givers
used patterns only possible with spoken interaction
such as exactly timing single words to the instruc-
tion follower’s actions and self-correction. The
text-based Wizard-of-Oz setup on the other hand
mirrors the setup with an automatic architect as
closely as possible.

5 Post-experiment Questionnaires

After finishing an experiment, the participants fill
out a questionnaire using the in-game chat. Once
the architect determines that a game is over (hope-
fully in a successful way), the broker takes over
the communication channel and asks the user a se-
ries of configurable questions. The questions and
answers to this post-experiment questionnaire are
logged to the database.

The in-game questionnaire allows to keep all
interaction with the experiment platform inside a
single medium by removing the need to e. g. open
a website. It also ensures that the questionnaires
and experiment data are always correctly matched.
Finally, the questionnaire mechanism can be used
for fraud prevention (Villalba, 2019).

6 Conclusions

We introduced a system for researching situated
human-computer dialogue in the Minecraft domain.
While primarily focused on instruction giving, it
can potentially also be used for two-way text inter-
action. The framework abstracts away from most
of the low-level system, providing a clean and easy
to use interface for implementing instruction givers.
The system also takes care of matching study par-
ticipants with different architects and logging of all
interactions. We ship several example architects,
including a Wizard of Oz architect.

We plan to implement a replay viewer which
streams the previously recorded actions by a partic-
ipant to a Minecraft server. All necessary data is
already being stored in the database.

MC-Saar-Instruct as well as scripts to automati-
cally download, build and run specific versions of
it for reproducible experiments are available from
https://minecraft-saar.github.io.
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Abstract

This paper describes the design and function-
ality of ConvoKit, an open-source toolkit for
analyzing conversations and the social inter-
actions embedded within. ConvoKit provides
an unified framework for representing and ma-
nipulating conversational data, as well as a
large and diverse collection of conversational
datasets. By providing an intuitive interface
for exploring and interacting with conversa-
tional data, this toolkit lowers the technical
barriers for the broad adoption of computa-
tional methods for conversational analysis.

1 Introduction

The NLP community has benefited greatly from
the public availability of standard toolkits, such as
NLTK (Bird et al., 2009), StanfordNLP (Qi et al.,
2018), spaCy (Honnibal and Montani, 2020), or
scikit-learn (Pedregosa et al., 2011). These toolk-
its allow researchers to focus on developing new
methods rather than on re-implementing existing
ones, and encourage reproducibility. Furthermore,
by lowering the technical entry level, they facili-
tate the export of NLP techniques to other fields.

Although much of natural language is produced
in the context of conversations, none of the exist-
ing public NLP toolkits are specifically targeted at
the analysis of conversational data. In this paper,
we introduce ConvoKit (https://convokit.cornell.
edu), a Python package that provides a unified
open-source framework for computationally an-
alyzing conversations and the social interactions
taking place within, as well as a large collection of
conversational data in a compatible format.

In designing a toolkit for analyzing conversa-
tions, we start from some basic guiding principles.
Firstly, conversations are more than mere ‘bags of
utterances’, so we must capture what connects ut-
terances into meaningful interactions. This trans-
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lates into native support of reply and tree structure
as well as other dependencies across utterances.

Secondly, conversations are inherently social.
People often engage in multiple conversations, and
how we understand interactions is contingent on
what we know about the respective interlocutors.
Similarly, the way we understand each speaker is
contingent on their entire conversational history.
Thus, a conversational analysis toolkit must allow
for the integration of speaker information and be-
haviors across different conversations.

Thirdly, conversations occur in vastly different
contexts, from dyadic face-to-face interactions, to
discussions and debates in institutional settings,
to online group discussions, and to large-scale
threaded discussions on social media. This means
that the toolkit must offer a level of abstraction that
supports different interaction formats.

Finally, since conversational data is key to many
social science fields (e.g. political science, sociol-
ogy, social psychology), the framework should be
accessible to a broad audience: not only experi-
enced NLP researchers, but anyone with questions
about conversations who may not necessarily have
a high degree of NLP expertise.

In this paper, we describe how these principles
guided our design of ConvoKit’s framework archi-
tecture (Section 2), describe some of the analysis
methods (Section 3) and datasets (Section 4) in-
cluded in ConvoKit, and conclude with some high-
level remarks on future developments (Section 5).

2 Framework Architecture

The current state of the software and data ecosys-
tem for conversational research is fragmented:
popular conversational datasets are each dis-
tributed in different data formats, each using their
own task-specific schemas, while similarly, code
for reproducing various conversational methods
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Corpus

Utterance [ID=U003]
Isle of Dogs.

Conversation [ID=C01]

Utterance [ID=U001]
What's your favorite movie?

\{ Speaker [ID=Alice] ‘

Utterance [ID=U002]
Apocalypse Now.

‘# Speaker [ID=Bob] ‘

All
%

Conversation [ID=C02] /,” ,"j Speaker [ID=Charlie] ‘
Utterance [ID=U004] |/ 4/
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/
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1
1

Utterance [ID=U005]
Next Tuesday.

’ Utterance [ID=U006] ’

Oh no, that’s soon!

Figure 1: Visualization of the relationship between
the four core classes of the Corpus hierarchy.
Solid arrows denote reply-to relationships between
Utterances, while dashed arrows denote attribution
of each Utterance to its authoring Speaker.

tends to be ad-hoc with no guarantee of over-
lapping functionality or cross-compatibility. This
combination of factors poses a barrier to both re-
producibility and broader adoption.

To address these issues, a unified framework
for analyzing conversations must provide both a
standardized format for representing any conver-
sational data, and a general language for describ-
ing manipulations of said data. Furthermore, as
described in Section 1, the representation must
go beyond a mere ‘“bag-of-utterances” and na-
tively capture the structure of conversations, while
the language of manipulations must be expressive
enough to describe actions at different levels of the
conversation: individual utterances, entire conver-
sations, speakers in and across conversations, and
arbitrary combinations of the above.

These criteria directly lead to the two core
abstractions underlying ConvoKit: the Corpus,
representing a collection of one or more con-
versations, and the Transformer, representing
some action or computation that can be done to
a Corpus. To draw an analogy to language,
Corpus objects are the nouns of ConvoKit, while
Transformers are the verbs.

Representing conversational data. The main
data structure for organizing conversational data
in ConvoKit is the Corpus, which forms the top of
a hierarchy of classes representing different levels
of a conversation (Figure 1): A Corpus is a col-
lection of Conversations, each Conversation
is made up of one or more Utterances, and
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each Utterance is attributed to exactly one
Speaker (but each Speaker can own multiple
Utterances). Conversations, Utterances and
Speakers are identified by unique IDs. Conver-
sation structure is represented by the reply_to
field of the Utterance class, which specifies the
ID of the other Utterance it replies to (i.e., its
parent node in the conversation tree). ConvoKit
leverages the relationships between Utterances,
Speakers, and Conversations to provide rich
navigation of a Corpus, such as tree traver-
sal of Utterances within a Conversation or
chronological iteration over all of a Speaker’s
Utterance history.

Custom metadata. Objects in the Corpus hierar-
chy contain some basic information that is gener-
ally useful for most operations on conversational
data, such as the text content and timestamp of
each Utterance. However, any use of ConvoKit
beyond basic analyses will likely require addi-
tional task-specific information. This is supported
by ConvoKit in the form of metadata. Each of the
four classes in the hierarchy contains a field called
meta, which is a lookup table that may be used
to store additional information about the Corpus,
Conversation, Utterance, or Speaker under
some descriptive name. In practice, metadata
ranges in complexity from speaker ages to sub-
utterance level DAMSL speech act tags.

Manipulating conversational data. ConvoKit
supports conversational analyses centered on any
level of the hierarchy; for instance, one may
wish to examine linguistic characteristics of
Utterances, characterize a Conversation in
terms of the structure of its Utterances, or track
a Speaker’s behavior across the Conversations
they have taken part in throughout their lifetime.

Such flexibility in analysis is achieved by ab-
stracting manipulations of conversational data
through the Transformer class. At a high level, a
Transformer is an object that takes in a Corpus
and returns the same Corpus with some modifica-
tions applied. In almost all cases, these modifica-
tions will take the form of changed or added meta-
data. For example, the PolitenessStrategies
Transformer annotates every Utterance with a
feature vector that counts the presence of polite-
ness features from Danescu-Niculescu-Mizil et al.
(2013), while UserConvoDiversity annotates
every Speaker with a measure of their linguistic
diversity across the whole Corpus.



The key to ConvoKit’s flexibility is that, while
a Transformer can represent any arbitrary ma-
nipulation of a Corpus and operate at any level
of abstraction, all Transformer objects share the
same syntax—that is, the Transformer class API
represents a general language for specifying ac-
tions to be taken on a Corpus. This interface is
directly modeled after the scikit-learn class of the
same name: a Transformer provides a fit()
function and a transform() function. fit() is
used to prepare/train the Transformer with any
information it needs beforehand; for example, a
Transformer that computes bag-of-words rep-
resentations of Utterances would first need to
build a vocabulary. transform() then performs
the actual modification of the Corpus.

In addition to these standard functions,
Transformers also provide a summarize()
helper function that offers a high-level tab-
ular or graphical representation of what the
Transformer has computed.  For example,
PolitenessStrategies offers a summarize()
implementation that plots the average occurrence
of each politeness feature. This can be helpful for
getting a quick sense of what the Transformer
does, for simple exploratory analyses of a Corpus,
or for debugging.

A single Transformer on its own might
not make significant changes, but because
Transformers return the modified Corpus, mul-
tiple Transformers can be chained together, each
one taking advantage of the previous one’s output
to produce increasingly complex results (see Fig-
ure 2 for an example).

3 Transformers

In this section, we introduce some of the built-in
Transformers that are available for general use.
Broadly speaking, we can group the functionality
of Transformers into three categories: prepro-
cessing, feature extraction, and analysis.
Preprocessing refers to the preliminary pro-
cessing of the Corpus objects prior to some sub-
stantive analysis. For example, at the Utterance-
level, preprocessing steps can include converting
dirty web text into a cleaned ASCII representa-
tion (implemented in TextCleaner) or running a
dependency parse (implemented in TextParser).
At the Conversation-level, preprocessing steps
might include merging consecutive utterances by
the same speaker, while at the Speaker-level, they
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1 corp = Corpus(filename=download(

2 'movie—corpus’))

3

4 # Preprocessing step

5 tc = TextCleaner()

6 tc.transform(corp)

7

8 # Constructing new metadata

9 for c in corp.iter_conversations():

10 genders = [s.metal ’gender’] for s
— in c.iter_speakers()]

11 convo.metal ‘mixed’] = 'M’ in
— genders and 'F’ in genders

12

13 # Analysis step

14 fw = FightingWords()

15 fw.fit(corp,

16 classl_func=lambda utt: utt.
— get_conversation().metal ‘mixed’],

17 class2_func=lambda utt: not utt.
— get_conversation().metal ‘mixed’])

18 fw.summarize(corp)

Figure 2: Basic example code demonstrating how com-
bining different Transformers, and leveraging the
Corpus hierarchy’s rich navigation features and meta-
data functionality, can be used to study conversational
data—in this example, comparing the language used in
mixed-gender and single-gender movie dialogs.

might include merging contributions from speak-
ers with multiple user accounts.

Feature extraction refers to transformation of
conversational data, such as utterance text or con-
versational structure, into (numerical) features for
further analysis and applications. An example of
an Utterance-level feature extractor is the previ-
ously described PolitenessStrategies, while
an example of a Conversation-level feature ex-
tractor is HyperConvo, which constructs a hyper-
graph representation of the Conversation and
extracts features such as (generalized) reciprocity,
indegree and outdegree distributions, etc.

Analysis the process of combining
Utterance, Conversation and Speaker
features and metadata into a statistical or ma-
chine learning model to achieve a higher-level
understanding of the Corpus. For example,
FightingWords implements Monroe et al.
(2008)’s method for prinicpled comparison of
language used by two subsets of a Corpus;
Classifier acts as a wrapper around any
scikit-learn machine learning model and can be
used to classify Utterances, Conversations,
or Speakers based on the output of feature
extraction Transformers; and Forecaster

is



implements Chang and Danescu-Niculescu-Mizil
(2019)’s method for modeling the future trajectory
of a Conversation.

Figure 2 illustrates how Transformers belong-
ing to each category can be combined in sequence
to perform a practical conversational task: com-
paring the language used in movie dialogs contain-
ing characters of different genders to that used in
dialogs containing only one gender.'

4 Datasets

ConvoKit ships with a diverse collection of
datasets already formatted as Corpus objects and
ready for use ‘out-of-the-box’. These datasets
cover the wide range of settings conversational
data can come from, including face-to-face in-
stitutional interactions (e.g., supreme court tran-
scripts), collaborative online conversations (e.g.,
Wikipedia talk pages), threaded social media dis-
cussions (e.g., a full dump of Reddit), and even
fictional exchanges (e.g., movie dialogs).

The diversity of these datasets further demon-
strates the expressiveness of our choice of conver-
sation representation. We also provide guidelines
and code for transforming other datasets into Con-
voKit format, allowing ConvoKit’s reach to extend
beyond what data is already offered.

5 Conclusions and Future Work

In this paper, we presented ConvoKit, a toolkit that
aims to make analysis of conversations accessible
to a broad audience. It achieves this by provid-
ing intuitive and user friendly abstractions for both
representation and manipulation of conversational
data, thus promoting reproducibility and adoption.
ConvoKit is actively being developed. While
it is currently heavily centered around text anal-
ysis (with other modalities being only indirectly
supported as metadata), providing first-class sup-
port for spoken dialogs is considered as an impor-
tant line for future extension. In addition, we aim
to continue to incorporate new datasets, analysis
methods, and integrate with other parts of the NLP
software ecosystem that could benefit from Con-
voKit’s abstractions, including dialog generation
toolkits such as ParlAI (Miller et al., 2018).

'This example, together with its output and other
examples, can be found at https://convokit.cornell.edu/
documentation/examples.html.

2A complete list of datasets can be found at https:/
convokit.cornell.edu/documentation/datasets.html.
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ConvoKit is an open-source project and we wel-
come contributions of any kind, ranging from bug-
fixes and documentation, to augmenting existing
corpora with additional useful metadata, to en-
tirely new datasets and analysis methods.>

Acknowledgments

We thank the anonymous reviewers for their
thoughtful comments and are grateful to all Con-
voKit contributors. This work was supported by
an NSF CAREER award IIS-1750615. Zhang was
supported in part by a Microsoft PhD Fellowship.

References

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Jonathan P. Chang and Cristian Danescu-Niculescu-
Mizil. 2019. Trouble on the Horizon: Forecasting
the Derailment of Online Conversations as they De-
velop. In Proceedings of EMNLP.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof,
Dan Jurafsky, Jure Leskovec, and Christopher Potts.
2013. A Computational Approach to Politeness with
Application to Social Factors. In Proceedings of
ACL.

Matthew Honnibal and Ines Montani. 2020. spaCy:
Natural Language Understanding with Bloom Em-
beddings, Convolutional Neural Networks and In-
cremental Parsing.

Alexander H. Miller, Will Feng, Adam Fisch, Jiasen
Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, and
Jason Weston. 2018. ParlAl: A Dialog Research
Software Platform. arXiv:1705.06476 [cs].

Burt L. Monroe, Michael P. Colaresi, and Kevin M.
Quinn. 2008. Fightin’ Words: Lexical Feature Se-
lection and Evaluation for Identifying the Content
of Political Conflict. Political Analysis, 16(04).

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency
Parsing from Scratch. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies.

3See contribution guidelines on the ConvoKit webpage.



Commonsense Evidence Generation and Injection in Reading
Comprehension

Ye Liu'!, Tao Yang?, Zeyu You?, Wei Fan? and Philip S. Yu!
!Department of Computer Science, University of Illinois at Chicago, IL, USA
2Tencent Hippocrates Research Lab, Palo Alto, CA, USA
{yliu279, psyu}@uic.edu, {tytaoyang, davidwfan} @tencent.com, youz @onid.orst.edu

Abstract

Human tackle reading comprehension not only
based on the given context itself but often rely
on the commonsense beyond. To empower the
machine with commonsense reasoning, in this
paper, we propose a Commonsense Evidence
Generation and Injection framework in read-
ing comprehension, named CEGI. The frame-
work injects two kinds of auxiliary common-
sense evidence into comprehensive reading to
equip the machine with the ability of ratio-
nal thinking. Specifically, we build two evi-
dence generators: one aims to generate tex-
tual evidence via a language model; the other
aims to extract factual evidence (automati-
cally aligned text-triples) from a common-
sense knowledge graph after graph completion.
Those evidences incorporate contextual com-
monsense and serve as the additional inputs to
the reasoning model. Thereafter, we propose
a deep contextual encoder to extract seman-
tic relationships among the paragraph, ques-
tion, option, and evidence. Finally, we employ
a capsule network to extract different linguistic
units (word and phrase) from the relations, and
dynamically predict the optimal option based
on the extracted units. Experiments on the Cos-
mosQA dataset demonstrate that the proposed
CEGI model outperforms the current state-of-
the-art approaches and achieves the highest ac-
curacy (83.6%) on the leaderboard.

1 Introduction

Contextual commonsense reasoning has long been
considered as the core of understanding narratives
(Hobbs et al., 1993; Andersen, 1973) in reading
comprehension (Charniak and Shimony, 1990). De-
spite the broad recognition of its importance, the
research of reasoning in narrative text is limited due
to the difficulty of understanding the causes and ef-
fects within the context. Comprehending reasoning
requires not only understanding the explicit mean-
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P: | was walking home from the store, when | saw an old man laying
on the sidewalk, bleeding. The right side of his face was all covered
in blood. He was conscious but seemed dazed and probably
intoxicated. Nearby there was a young man dialing his cell phone.

Q: What may happen after the young man makes his call?
A: An ambulance would likely come to the scene.
B: The taxi would pick up the young man.
C: None of the above choices.
D: The bus would arrive at the stop soon.
Generated Evidence:
Textual: He will call for medical attention.
Factual: <Blood, AtLocation, emergency room>
<Blood, AtLocation, hospital>, <Ambulance, AtLocation, hospital>

Figure 1: Example of generated evidence helping an-
swer the commonsense question.

ing of each sentence but also making inferences
based on implicit connections between sentences.

To answer a contextual commonsense question
correctly, two important characteristics need to be
well considered. First, the information that is re-
quired to infer a correct answer may be beyond the
context, and hence adding external commonsense
knowledge to guide the reasoning is necessary. Sec-
ond, how to use external knowledge to gain contex-
tual understanding between the paragraph, question
and option set is difficult but important. Despite the
great success of large pre-trained models such as
BERT (Devlin et al., 2018), GPT (Radford et al.,
2018) and RoBERTa (Liu et al., 2019), recent stud-
ies suggest that those models fail to capture suf-
ficient knowledge and provide commonsense in-
ference. For example, Poerner et al. (2019) show
that language models perform well in reasoning
about entity names, but fail to capture rich factual
knowledge. Moreover, Talmor et al. (2019) state
that language models fail on half of the reasoning
tasks which require symbolic operations such as
comparison, conjuction and composition.

To this end, we introduce a Commonsense
Evidence Generation and Injection framework in
reading comprehension, named CEGI, which gen-
erates useful evidence from textual and factual
knowledge and injects the generated evidence into
pre-trained models such as ROBERTa. We propose
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to generate evidence regarding the facts and their
relations. More specifically, we use language mod-
els to generate textual evidence and extract factual
evidence from a knowledge graph after graph com-
pletion. We then inject both evidences into the pro-
posed contextual commonsense reasoning model
to predict the optimal answer. As shown in Figure
1, the “He will call
for medical attention” and

“both blood & ambulance locate at hospital”
can help the model find the correct answer “An
ambulance would likely come to the scene”.

To capture relations between the paragraph and
question, many reading comprehension models
(Zhang et al., 2019a; Tang et al., 2019) have been
proposed. However, those reasoning models are
essentially based on the given context without un-
derstanding the facts behind. Moreover, in many
situations, the candidate option set contains dis-
tractors that are quite similar to the correct answer.
In other words, understanding the relations among
the option set is also important. We employ a cap-
sule network (Sabour et al., 2017), which uses a
routing-by-agreement mechanism to capture the
correlations among different options and make the
final decision.

Our proposed CEGI framework not only utilizes
external commonsense knowledge to generate rea-
soning evidence but also adopts a capsule network
to make the final answer prediction. The explain-
able evidence and the ablation studies indicate that
our method has a large impact on the performance
of the commonsense reasoning in reading compre-
hension. The contributions of this paper are sum-
marized as follows: 1) We introduce two evidence
generators which are learned from textual and fac-
tual knowledge sources; 2) We provide an injection
method that can infuse both evidences into the con-
textual reasoning model; 3) We adapt a capsule net-
work to our reasoning model to capture interactions
among candidate options when making a decision;
4) We show our CEGI model outperforms current
state-of-the-art models on the CosmosQA dataset
and generates richer interpretive evidence which
helps the commonsense reasoning.

2 Related Work
2.1

To model the relation and alignment between the
pairs of paragraph, question and option set, various
approaches seek to use attention and pursue deep

Multi-choice Reading Comprehension
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representation for prediction. Tang et al. (2019)
and Wang et al. (2018b) model the semantic rela-
tionships among paragraph, question and candidate
options from multiple aspects of matching. Zhu
et al. (2018a) propose a hierarchical attention flow
model, which leverages candidate options to cap-
ture the interactions among paragraph, question
and candidate options. Chen et al. (2019) merge
various attentions to fully extract the mutual infor-
mation among the paragraph, question and options
and form the enriched representations.

2.2 Commonsense Knowledge Injection

To empower the model with human commonsense
reasoning, various approaches have been proposed
on the context-free commonsense reasoning task.
The majority of the approaches are focusing on
finding the question entity and a reasoning path on
the knowledge graph to obtain the answer entity
(Huang et al., 2019; Zellers et al., 2018; Talmor
et al., 2018). For an instance, Lin et al. (2019) con-
struct graphs to represent relevant commonsense
knowledge, and then calculate the plausibility score
of the path between the question and answer entity.
Lv et al. (2019) extract evidence from both struc-
tured knowledge base and unstructured texts to
build a relational graph and utilize graph attention
to aggregate graph representations to make final
predictions. However for contextual commonsense
reasoning, it’s hard to find a single most relevant
entity from the paragraph or question to obtain the
correct answer.

Other approaches focus on enhancing the pre-
trained language models through injecting exter-
nal knowledge into the model and updating the
model parameters in multi-task learning (Zhang
et al., 2019b; Lauscher et al., 2019; Levine et al.,
2019). A knowledge graph injected ERNIE model
is introduced in (Zhang et al., 2019b) and a weakly
supervised knowledge-pretrained language model
(WKLM) is introduced in (Xiong et al., 2019). They
both inject the knowledge through aligning the
source with the fact triplets in WikiData. However,
the parameters need to be retrained when inject-
ing new knowledge, which could lead to the catas-
trophic forgetting (McCloskey and Cohen, 1989).

3 Task Definition

In multi-choice reading comprehension, we are
given a paragraph P with t tokens P
[P1, P2, - - -, Pt], @ question Q containing n tokens
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[SEP]
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[SEP]
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Figure 2: The proposed commonsense evidence generation and injection (CEGI) framework.

Q = [q1,92,.-.,qn) and the option set with m
candidate options O = {01, 03, ...,0y,}, where
each candidate option is a text with h tokens
O; = [01,09,...,0y]. The goal is to select the
correct answer A from the candidate option set.
For simplicity, we denote X = {P,Q, O} as one
data sample and denote y = [y1,y2,...,Vm] as a
one-hot label, where each scale y; = 1(0; = A) is
an indicator function. In the training stage, we are
given N setof (X, y)", the goal is to learn a model
f : X —y. In the testing, we need to predict yst
given test samples X't

When answering a question according to the
paragraph, we observe that the context itself of-
ten does not provide enough clues to guide us
to the correct answer. To this end, we need to
know comprehensive information beyond the con-
text and perform commonsense reasoning. Hence,
we split the task into two parts: evidence generation
and answer prediction, respectively. Our proposed
CEGI model addresses both parts accordingly by
two generators: textual evidence generator and fac-
tual evidence generator. In textual evidence gener-
ator, our goal is to generate relevant evidence text
E = [e1,eq,..., €] given question Q and para-
graph P. Note that the number of evidence tokens
k may vary in different question and paragraph
pair. In factual evidence generator, the goal is to
generate relevant text that describes the relations
between facts where the facts are the entities from
paragraph, question and options. In the second part,
we aim to learn a classifier P(y|P,Q, O, E) that
predicts the correct option when a new data sam-
ple is given. By using the evidence generated from
the first part, we expect the reasoning model can
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be enhanced with the auxiliary information, espe-
cially for those questions that require contextual
commonsense reasoning.

4 Methodology

To tackle reading comprehension task with com-
monsense reasoning, we introduce a commonsense
evidence generation and injection (CEGI) frame-
work. The system diagram of the CEGI framework
is shown in Fig. 2. First, the evidence generation
module produces textual evidence and factual ev-
idence. Those generated evidences will be used
as auxiliary inputs for the reasoning model. Sec-
ond, the contextual commonsense reasoning mod-
ule generates deep contextual features for the para-
graph, question, option and evidence. Meanwhile,
a bidirectional attention mechanism is applied to
the features to capture representations of the pair
of paragraph, question, option set and evidence.
Next, all pairs are concatenated and fed into a con-
volutional neural network for extracting different
linguistic units of the options. At least, a capsule
network is then applied to dynamically update the
representation vector of the candidate options. The
final answer is one of the options with the largest
vector norm. We describe more details of each com-
ponent in the following subsections.

4.1 Evidence Generation

It is worthy to mention that many commonsense
reasoning types, such as causes of events and ef-
fects of events, are important factors of understand-
ing the context in reading comprehension. While
those factors are often not explicit or given in the
paragraph and option set, answering such may be-



come difficult. To this end, we seek to learn relevant
evidence that contains commonsense knowledge.
Specifically, we leverage pretrained language mod-
els to learn from both context and knowledge graph
that may contain reasoning relations. We exploit
two kinds of generators, textual evidence generator
and factual evidence generator.

4.1.1 Textual Evidence Generator

We observe that daily life events often follow a
common routine such that when one event hap-
pened, the resulting event or the cause of such an
event follows a specific pattern. For an example,
in Figure 1, the given paragraph describes a sce-
nario that the old man is hurt and the young man
is making a phone call. If we know that he is call-
ing for medical attention, answering the question
would become easy. Hence, the goal of our pro-
posed textual evidence generator is to generate the
text that follows daily life event routines. We rely
on a pretrained language model to acquire the tex-
tual evidence by using GPT2 (Radford et al., 2018)
and Uniml (Dong et al., 2019). Specifically, in the
training, we concatenate the paragraph, question
and the correct answer as the input to the standard
language model (Liu et al., 2018). Accordingly,
the textual evidence generated from the language
model is the following sentence after the question
text. Note that we stack [P [SEP] Q [SEP] A] as
the input to train the language model. Formally,
let [w!,...,w'] = [P [SEP] Q [SEP] A]. The
language generation model aims to maximize the
following likelihood (Radford et al., 2018):

T . .
['gen = Zi:1p<wllwla---awlil)7 (1)

where the conditional probability p(w'|wl, ...,
w1 = f(w!,...,wi"!) and f is a sequence
of operations that (i) converts each token w!
into token embedding W; and position embed-
ding W' ; (ii) transforms them into features with
L layers where each layer feature is H'(w') =
h!(g(Wit, Wity H'(wi™1)), and (iii) converts
the feature into a probability using a linear clas-
sifier by predicting the next token w'.

Moreover, we aim to generate evidence that can
discriminate the correct answer from option dis-
tractors. Hence, we add the answer prediction loss
into the objective to fine-tune the language model.
The text input for the jth option is x; = [P [SEP] Q
[SEP] Oj;]. We use all N samples to optimize the
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following objective (with a regularization term \):

Lelass = Z log(SOftmaX(HL (WO)Wy))a
(z,y)e{X.y}

2)

Liotal = Egen + A% ﬁclassy )

where HL (w?) is the last layer feature of the first
token and Wy is the parameters to learn to predict
label y.

Test stage: we only use [P [SEP] Q] as the input
to the language model and use the model to gener-
ate the next sentence as an evidence which means
model is agnostic to the correct answer.

4.1.2 Factual Evidence Generator

Aside from the textual evidence that contains in-
formation about the facts of daily life routine, re-
lations between the facts are also important for
question answering. In this section, we propose to
utilize a factual knowledge graph to extract facts
and relations and use them as additional evidence.
Specifically, we use the ConceptNet (Speer et al.,
2017)! as the base model. We use a knowledge
graph completion algorithm Bosselut et al. (2019)
to find new relations to further improve the quality
of the generated factual evidence.

We define X° = {z{, ..., xfs|} as the subject,
X" = {ag, ...,x‘rr‘} as the relation, and X°
{z§, ..., a:|00|} as the object. We use the [X*® [SEP]
X" [SEP] X°] triplets as the input to the knowl-
edge graph completion language model in Bosselut
et al. (2019) to generate additional triplets that con-
tain new subject and object relations. To generate
factual evidence, we first extract entities from the
given data X'. We then select the related entities that
match the subject X® in forms of subject-relation-
object triplets. After that, we filter the triplets by
selecting the subject X ** that follows: (i) part-of-
speech (POS) tag of X** word matches the POS
tag of the entity word; (ii) subject X ** word fre-
quency is less than the word frequency of the object
X? plus a threshold K?; (iii) subject X ** word is
not in the top-K frequent words based on the word
frequency table?; and (iv) the relation X" in the
(X**, X", X°) triplets connects no more than K"
objects from the same subject X**. K, K° and K"
are the hyper-parameters. Finally, we convert the

!ConceptNet is a knowledge graph, which consists of
triples obtained from the Open Mind Common Sense entries.
https://www.wordfrequency.info/free.

asp



filtered triplets into a nature language sequences
as our factual evidences. For example, “(trouble,
Partof, life)” would be converted to “trouble is part
of life”.

4.2 Model Learning with Contextual
Commonsense Reasoning

After the relevant reasoning evidences are gener-
ated, the goal is to combine the evidence with the
given data and then build a reasoning model to
make a selection for the correct answer. In the fol-
lowing, we introduce our proposed contextual com-
monsense reasoning module, which utilizes con-
textual encoding, evidence injection and a capsule
network components to make the prediction.
Contextual Encoding Recently, RoOBERTa (Liu
et al., 2019) has shown to be effective and powerful
in many natural language processing tasks and it
is potentially beneficial for generating deep con-
textual features as well. Here, we use RoBERTa
as an intermediate component to generate hid-
den representation of paragraph, question, the
ith opti.on and evidence [H), Hp, Hy, Hy, Hyep,
0,» Hyep, Hp] = Encode([[CLS], P, [SEP], Q,
[SEP], Oi, [SEP], E]). We use the last layer of the
RoBERTa model to encode, and thus the function
Encode(+) returns the last layer features for each
token. The corresponding features of paragraph,
question, option and evidence are H, € RI*t,
H‘Q e RIxm, Hioi € RN and H € R
where d is the dimension of the feature. Since we
have m options, we have m set of features.
Evidence Injection Given the previously gener-
ated evidence representation Hi;. We aim to inte-
grate it with the paragraph HL,, question Hb and
option Hioi. Here, we adopt the attention mecha-
nism used in QANet (Yu et al., 2018) to model the
interaction between H}E and the paragraph H}):

Sib = Att(Hy, Hp) = Softmax(Hp W H},)
“4)
G = HiSE | 5)

where W, € RI%d is the bi-linear model parame-
ter matrix. Since S € R**X is the activation map
(attention weights) between each token in P and
each token in E, the learned relation representa-
tion G%) € RI*t of the paragraph P contains evi-
dence information E. The other two relations Gi%
and Gi% regarding P can be generated accordingly.

Similarly, we can model the other interactions for
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question Q as Gi%, G%, G%, and each option O;
as Gi%i, GiEOi and Gi%i.

To incorporate the relation information, we use
the co-matching algorithm introduced in Wang et al.
(2018Db) to generate the final representation of the
input. First, we obtain the matching result between
the paragraph and the question as follows:

M2 =

2 = (WulG} ©Hp;GE O Hb] + by @ 1)T,

(6)

where ()™ denotes ReLU function, 1
[1,1,...,1]T € R™! is vector of all ones, and
W, € RY2d and by, € RY*! are the model pa-
rameters. Following Tai et al. (2015) and Wang
et al. (2018b), we use notation © and ® as the
element-wise subtraction and multiplication be-
tween two matrices and ® as outer product of two
vectors. Similarly, we can obtain the other pairs as
MED, Mi(l);, . ,Mi%i. In the next step, we concate-
nate all the pairs regarding P as

Cip = [MQ - MY ME | e R, (7)

where [:] denotes the vertical concatenation opera-
tion. Each column ¢; is the co-matching state that
concurrently matches a paragraph token with the
question, candidate option and the evidence. Ac-
cordingly, we can obtain the question representa-
tion Ciq and option representation Cio,. Finally,
we concatenate them all to obtain the final represen-
tation F = [Cy, ..., Cy] € R3m(E+0+h) \where
each C; = [Cip, Ciq, Cio,] € R3x(t+nth),

Since the final representation only contains the
fine-grid token-level information, we employ a con-
volutional neural network (CNN) to extract higher
level (phrase-level) patterns. To generate phrase pat-
terns with different size, we use two convolutional
kernels: size 1 x 2 with stride 2 and size 1 x 4 with
stride 4 to convolve with F along the dimension
of hidden state. In other words, such an operation
extracts non-overlapping moving windows on F
with window size 2 and 4.

Rl = MaXPOOhnglxg{CNleg(F)}
Ry = MaxPooling; 1 { CNNj 4 (F)}

To ensure Ry and Ry have the same dimension, we
use a max pooling of size 1 x 2 with stride 2 for Ry
and a max pooling of size 1 x 1 with stride 1 for Ro.
We concatenate Ry and R to generate phrase-level
representation L = [Ry, Ry] € R3dxm((t+n+h)/2),



With L, to predict the final answer, one of the
commonly applied operation is to simply take the
maximum over the hidden dimension of length
(t +n + h)/2. However, the max operation only
consider the most significant phrase for each can-
didate without aware of the others. To explore the
correlation between options and dynamically se-
lect the optimal one, we use dynamic routing-by-
agreement algorithm represented in Sabour et al.
(2017). Specifically, we convert L; to a capsule v;
using the following steps:

(t+n+h)/2
Wils, =2
o lisl? s

- J

T L [Isil? Mlsil]

ili

where L; is the ith column vector of L, affine trans-
formation matrix Wj; and weighting c;; are the cap-
sule network model parameters. The learned ﬂj‘i
denotes the “vote” of the capsule j for the input cap-
sule i. The agreement of “prediction vector” L ili
between the current jth output and th parent cap-
sule is captured by the coupling coefficients c;;. The
value of ¢j; would increase if higher level capsule
s; and lower lever capsule L; highly agreed.

Model Learning If an option Oj is the correct
answer, we would like the top-level capsule v; to
have a high energy, otherwise, we expect the energy
of vj to be low. Since the La-norm (square root of
the energy) of the capsule vector v; represents the
scoring of how likely the jth candidate is the correct
answer, we use the following loss function (Sabour
et al., 2017) to learn the model parameters:

Lopre = ijl{Yi -max(0,m* — [|vj|])?
+ Ai(1 —yi) max(0, ||vj|| —m™)?} (8)

where )\ is a down-weighting coefficient, m™ and
m~ are margins. In our experiments, we set m* =
0.9,m~ =0.1, \; =0.5.

5 Experiments

In the experiment, we evaluate the performance
of our proposed CEGI framework from different
aspects, including evidence generation tasks and
the answer prediction of contextual commonsense
reasoning tasks.

5.1 Dataset and Baseline

CosmosQA is the dataset that is designed for read-
ing comprehension with commonsense reasoning
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(Huang et al., 2019). Samples are collected from
people’s daily narratives and the type of questions
are concerning the causes or effects of events. Par-
ticularly answering the questions require contex-
tual commonsense reasoning over the considerably
complex, diverse, and long context. In general, the
dataset contains a total of 35.2K multiple-choice
questions, including 25262 training samples, 2985
development samples, and 6963 testing samples.>

Baseline We categorize baseline methods into the
following three groups: 1. Co-Matching (Wang
et al., 2018b), Commonsense-RC (Wang et al.,
2018a), DMCN (Zhang et al., 2019a), Multiway
(Huang et al., 2019). 2. GPT2-FT (Radford et al.,
2018), BERT-FT (Devlin et al., 2018), RoBERTa-
FT (Liu et al., 2019). 3. Commonsense-KB (Li
et al., 2019), K-Adapter (Wang et al., 2020). The
baseline details are in appendix A.2.

Table 1: Comparison of approaches on CosmosQA (Ac-
curacy %) from the AI2 Leaderboard. T+F means using
generated textual and factual evidence together.

Model Dev = Test
Co-Matching (Wang et al., 2018b) 459 447
Commonsense-RC (Wang et al., 2018a) | 47.6 = 48.2
DMCN (Zhang et al., 2019a) 67.1 67.6
Multiway (Huang et al., 2019) 68.3 684
GPT-FT (Radford et al., 2018) 54.0 544
BERT-FT (Devlin et al., 2018) 66.2 67.1
RoBERTa-FT (Liu et al., 2019) 79.4 79.2
Commonsense-KB (Li et al., 2019) 59.7 \

K-Adapter (Wang et al., 2020) 81.8 \

CEGI(T+F) 83.8 83.6
Human \  94.0

5.2 Experimental Results and Analysis

Table 1 shows the performance of different ap-
proaches reported on the AI2 Leaderboard.*.
Comparing to all methods, our proposed model
CEGI(T+F) has the highest accuracy on both devel-
opment set and test set. Most of the reading com-
prehension approaches utilize the attention mecha-
nism to capture the correlations between paragraph,
question and option set, therefore, the model tends
to select the one option that is semantically closest
to the paragraph. Among all of the group 1 meth-
ods, Multiway has the highest accuracy of 68.3%.
3The CosmosQA dataset can be obtained from https:
//leaderboard.allenai.org/cosmosqga/
*https://leaderboard.allenai.org/
cosmosga/ The test dataset is hidden by the AI2

and methods like Commonsense-KB and K-Adapter are not
reported on the Leaderboard.



Group 2 methods consider deep contextual rep-
resentation of the given paragraph, question and
option set, and increase the performance. Com-
paring group 2 methods with group 1 methods,
RoBERTa-FT, which uses dynamic masking and
large mini-batches strategy to train BERT, gains
11.1% accuracy increase compared to Multiway.
However, it is worthy to mention that more than
83% of correct answers are not in the given pas-
sages in the CosmosQA dataset. Hence, multi-
choice reading comprehension models do not gain
big improvement as they tend to select the choice
which has the most overlapped words with the
paragraph without commonsense reasoning. Even
though, group 2 methods consider connecting the
paragraph with question and option through a deep
bi-directional strategy, the reasoning for question
answering is still not well-addressed in the models.
By utilizing additional knowledge, Commonsense-
KB or K-Adapter teach pretrained models with
commonsense reasoning. K-Adapter gains 2.4%
accuracy increase than RoBERTa-FT. Those ap-
proaches leverage the structured knowledge but fail
to produce a prominent prediction improvement.
Comparing our CEGI approach with RoBERTa,
we gain a 4% increase and 2% increase than K-
Adapter, which demonstrates that injecting evi-
dence is beneficial and incorporating interactive
attentions can further enhance the model.

5.3 Evidence Evaluation

In this section, we investigate the generated evi-
dence from the textual generator and factual genera-
tor. Moreover, we study the quality of the generated
evidence on another dataset—CommonsenseQA.

5.3.1 Textual Evidence Generator

Dataset Open Mind Common Sense (OMCS) cor-
pus (Singh et al., 2002) is a crowd-sourced knowl-
edge database of commonsense statements >, where
its English dataset contains a million sentences
from over 15,000 contributors. We consider using
this dataset to pretrain the textual evidence genera-
tor and using CosmosQA to fine-tune the generator.
Setup We use both BERT and GPT2 model to gen-
erate evidence and compare the results. To obtain
a language model that contains representation of
facts, we first pretrain both models with the OMCS
data using the loss function in Eq. 1. Then we use

Shttps://github.com/commonsense/
conceptnet5/wiki/Downloads
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CosmosQA data to fine-tune the pretrained model
using multi-task loss in Eq. 3.

Metrics In line with prior work (Wang and Cho,
2019), we evaluate the performance of evidence
generation based on quality and diversity. In terms
of quality, we follow Yu et al. (2017) and compute
the BLEU score between the generated evidence
and the ground truth evidence to measure the simi-
larity. The perplexity (PPL) score is also reported as
a proxy for fluency. In terms diversity, we consider
using self-BLEU (Zhu et al., 2018b), which mea-
sures how similar between two generated sentences.
Generally, a higher self-BLEU score implies that
the model has a lower diversity.

Results From Table 2, we observe that, compared
to CEGI-GPT2, the CEGI-BERT generator has
higher diversity (Self-BLEU decreases 4 for bi-
gram and decreases 2.1 for tri-gram) but lower qual-
ity (BLEU decreases 1.3 for tri-gram and PPL in-
creases 27.1). Even though the perplexity on CEGI-
BERT is as good as CEGI-GPT?2, after reading the
samples, we find out that many of the generated
language are fairly coherent. For a more rigorous
measure of generation quality, we collect human
judgments on sentences for 100 samples using a
four-point scale (the higher the better). For each
sample, we ask three annotators to rate the sen-
tence on its fluency and take the average of the
three judgments as the sentence’s fluency score.
For CEGI-BERT and CEGI-GPT2, we get mean
scores of 3.21, 3.17 respectively. Those results im-
ply that generated evidence are semantically con-
sistent with the correct evidence and can be used
as auxiliary knowledge for the reasoning step.

Table 2: Generation performance on CosmosQA.

Quality Diversity
Model BLEU(T) PPL() Self-BLEU(])
n=2 n=3 n=2 n=3
CEGI-BERT 40.8 322 153.8 305 14.7
CEGI-GPT2 39.8 33.5 126.7 342 16.6

Table 3: Generation performance on ConceptNet

Model PPL Score N/Tsro N/To
LSTM-s \ 60.83 86.25 7.83
CKBG \ 57.17 86.25 8.67
CEGI-BERT 4.89 92.19 65.32 4.12
CEGI-GPT2 4.58 93.89 61.72 3.90




5.3.2 Factual Evidence Generator

Dataset ConceptNet® is a commonsense knowl-
edgebase of the most basic things a person knows.
We use the 100K version of the training set in Con-
ceptNet, which contains 34 relation types, to train
the factual evidence generator. Tuples within the
data are in the standard < s, r, 0 > form.

Setup We set s and r as input for both GPT2 and
BERT and use them to generate the new object o.
To compare with our proposed GPT2 model and
BERT model, we include a LSTM model (LSTM-
s) and the BiLSTM model (CKBG) in (Saito et al.,
2018). We train the LSTM model to generate o, and
we train the CKBG model from both directions: s,
r as input and o, 7 as input.

Metrics Similar to the textual evidence generation
task, we use PPL to evaluate our model on relation
generation. To evaluate the quality of generated
knowledge, we also report the number of generated
positive examples that are scored by the Bilinear
AVG model (Li et al., 2016). “N/T sro” and “N/T
0” are the proportions of generated tuples and gen-
erated objects which are not in the training set.
Results As we observed from Table 3, CEGI-
GPT2 has the lowest PPL (4.58) and highest score
(93.89), which indicates the CEGI-GPT2 model
is confident and accurate at the generated rela-
tions. Even though the generated tuples on LSTM-s
and CKGB model has high “N/T sro” (both are
86.25%) and “N/T o” (7.83% and 8.67% respec-
tively), which means they generate novel relations
and expand the knowledge graph, the generated
nodes and relations may not be correct. We still
need to rely on the Score to evaluate and they
do poorly (60.83% and 57.17% respectively) in
terms of Score. Since our proposed CEGI-GPT2
and CEGI-BERT model have high Score and low
PPL, we believe that both models can produce high-
quality knowledge and still be able to extend the
size of the knowledge graph.

5.3.3 Evidence Evaluation on
CommonsenseQA

CommonsenseQA’ is a multi-choice question an-
swering dataset, which contains roughly 12K ques-
tions with one correct answer and four distractor
answers. Since the CommonsenseQA data only re-
quires different types of commonsense knowledge
to predict the correct answers, it does not contain
*https://ttic.uchicago.edu/-kgimpel/

commonsense.html
"nttps://www.tau-nlp.org/commonsenseqa
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paragraphs compared to CosmosQA. We use our
textual generator and factual generator to gener-
ate evidence using CommonsenseQA data and use
that to test the performance on answer prediction.
To train our proposed textual evidence generator,
we use Cos-e® as the ground truth evidence. Cos-e
uses Amazon Mechanical Turk to provide reason-
ing explanations for the CommonsenseQA dataset.
To train our proposed factual evidence generator,
we follow the same procedure as described in sub-
section 4.1.2. To predict the answer based on both
evidence, we prepare the input as [Q [SEP] O;
[SEP] E ] to the RoBERTa model.

Baselines KagNet (Lin et al., 2019), Cos-E (Rajani
et al., 2019), DREAM (Lv et al., 2019), RoBERTa
+ KE, RoBERTa + IR and RoBERTa + CSPT (Lv
etal., 2019). All baselines use extracted knowledge
from ConceptNet or Wikipedia. The details are in
the appendix A.2.

Table 4: Accuracy (%) of different models on Common-
senseQA development set

Model Acc
KagNet (Lin et al., 2019) 62.4
Cos-E (Rajani et al., 2019) 64.7
DREAM (Lv et al., 2019) 73.0
RoBERTa+CSPT (Lv et al., 2019) 76.2
RoBERTa+KE (Lv et al., 2019) 77.5
RoBERTa+IR (Lv et al., 2019) 78.9
RoBERTa + T 78.8
RoBERTa + F 77.6
RoBERTa + (T+F) 79.1

Result Results on CommonsenseQA datasets are
summarized in Table 4. RoBERTa + T, RoBERTa +
F and RoBERTa + (T+F) includes textual evidence,
factual evidence and both evidence together respec-
tively. We observe that our model RoBERTa + T
and RoBERTa + F can produce competitive per-
formance compared to all baselines. By utilizing
both textual knowledge and factual knowledge, our
approach outperforms RoOBERTa+IR and achieves
the highest accuracy 79.1%.

5.4 Ablation Study

To evaluate the contributions of individual com-
ponents of our proposed framework, we use an
ablation study. Table 5 summarizes ablation studies
on the development set of CosmosQA from several
aspects: the influence of the generated evidence;
which evidence is better, textual or factual; the in-
fluence of the capsule network.

$https://github.com/salesforce/cos—e



Result We can see that injecting generated explain-
able evidence can help the model achieve a better
performance in terms of accuracy. Using generated
textual evidence and factual evidence together can
benefit more. Using capsule network significantly
improves the reasoning performance, we doubt that
is due to the hierarchical structure information from
both token-level and phrase-level are extracted by
capsule network.

Table 5: Accuracy (%) of different models on Cosmos
development set. ¢/ means selecting the module.

Model Text Fact Capsule Co-Att | Acc
CEGI v v v v 83.8
CEGI-V1 v v v 834
CEGI-V2 v v v 83.2
CEGI-V3 v v 82.6
CEGI-V4 v v 82.2
RoBERTa-FT 79.4

6 Conclusion

In this paper, we proposed a commonsense evi-
dence generation and injection model to tackle
reading comprehension. Both textual and factual ev-
idence generators were used to enhance the model
for answering questions which requires common-
sense reasoning. After the evidences were gener-
ated, we adopted attention mechanism to find the re-
lation and match between paragraph, question, op-
tion and evidence. We used convolutional network
to capture the multi-grained features. To capture
diverse features and iteratively make a decision, we
proposed using a capsule network that dynamically
capture different features to predict the answer.
The AI2 Leaderboard of CosmosQA task demon-
strated that our method can tackle commonsense-
based reading comprehension pretty well and it
outperformed the current state-of-the-art approach
K-Adapter with a 2% increase in term of accu-
racy. Experiments regarding the evidence genera-
tors showed that the generated evidence is human-
readable and those evidences are helpful for the
reasoning task.
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A Appendix

A.1 Training Details

In CosmosQA experiments, we use pretrained
weight of RoOBERTa large. We run experiments on
a 24G Titan RTX for 5 epochs, set the max se-
quence length to 256. For hyper-parameters, we
set the routing iterations of capsule network as 3,
batch size is chosen from {8, 16, 24, 32}, learning
rate is chosen from {2e-5, le-5, 5e-6} and warmup
proportion is chosen from {0, 0.1, 0.2, 0.5}. For
CEGI(F+L), the best performance is achieved at
batch size=24, Ir=1e-5, warmup_proportion=0.1
with 16-bit float precision. GPT2 with 12-layer and
BERT _base model are used in evidence generation.
In textual evidence generation, we set A in Eq. 3
to 0.5, max sequence length to 40, batch size to 32
and the learning rate to 6.25e-0.5. In factual evi-
dence generation, we set max sequence length to
15, batch size to 64, the learning rate to le-5. For
both generators, we train 100000 iterations with
early stop.

A.2 Baseline Methods

Cosmos Baselines

1. Co-Matching (Wang et al., 2018b) captures
the interactions between paragraph with question
and option set through attention. Commonsense-
RC (Wang et al., 2018a) performs three-way
unidirectional attention to model interactions
between paragraph, question, and option set.
DMCN (Zhang et al., 2019a) applies dual attention
between paragraph and question or option set
using BERT encoding output. Multiway (Huang
et al., 2019) uses BERT to learn the semantic
representation and uses multiway bidirectional
interaction between each pair of input paragraph,
question and option set.

2. GPT2-FT (Radford et al., 2018), BERT-FT
(Devlin et al., 2018) and RoOBERTa-FT (Liu et al.,
2019) are the pretrained transformer language
models with additional fine-tuning steps on
CosmosQA.

3. Commonsense-KB (Li et al., 2019) uses logic
relations from a commonsense knowledge base
(e.g., ConceptNet’) with rule-based method to
generate multiple-choice questions as additional
training data to fine-tune the pretrained BERT
model. K-Adapter (Wang et al., 2020) infuses
commonsense knowledge into a large pre-trained

‘http://conceptnet.io/
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network.

CommonsenseQA Baselines
KagNet (Lin et al., 2019) uses ConceptNet as extra
knowledge and proposes a knowledge-aware graph
network and finally scores answers with graph
representations. Cos-E (Rajani et al., 2019) con-
structs human-annotated evidence for each ques-
tion and generates evidence for test data. DREAM
(Lvetal., 2019) adopts XL Net-large as the baseline
and extracts evidence from Wikipedia. ROBERTa
+ KE, RoBERTa + IR and RoBERTa + CSPT
(Lv et al., 2019) adopt RoBERTa as the baseline
and utilize the evidence from Wikipedia, search
engine and OMCS, respectively.

A.3 Case Study

To verify the generated evidence performance, we
perform case studies on textual generator and fac-
tual generator. In addition, we also show a case that
the proposed capsule network can help to select the
answer by comparing with the other options.

P: My favorite part of the job is training and handling the
animals. | really like that they are trusting me to be able to
handle some of the animals without supervision. There is
always someone around if | need help, but they are n't
overseeing it like they were in the beginning, which makes
me feel like they trust me which is important for a work
environment. It makes me feel like | ' ve earned a place
there ... and | believe | have.
Q: What may be your reason for thinking you 've earned
your place there ?

A: None of the above choices .

B: They told me that they trust me with the animals.

C: They delegate supervision tasks to me.

D: They delegate tasks to me without supervision.

Evidence:

CEGI-BERT: | am an expert at handling animals
CEGI-GPT2: They trust me and | handle animal without
supervision.

P: You fell asleep in my arms, a few hours later and | took to
watching you the whole night. My mind was filled with
nothing but thoughts of you, how holding you makes me
forget everything else and suddenly | realize. We are meant
to be together.
Q: What might have happened had you not shared an
intimate moment with her?
A: | would have realized how much | love her at a later
stage because | love her anyway.
B: I would have gone to bed without her.
C: None of the above choices.
D: | would not have realized how much | love her and
want to be with her.
Evidence:
CEGI-BERT: | would not have experienced the feelings that |
had for her
CEGI-GPT2: He might not have gotten to have a romantic
moment with her.

Figure 3: Examples of textual evidence generator.

Case Study on Textual Generator We show
examples of automatically generated evidences by



CEGI-GPT2 and CEGI-BERT in Figure 3. We
observe that using the multi-tasking loss, CEGI-
BERT and CEGI-GPT2 generate more accurate ev-
idence. Moreover, using those generated evidences
is helpful for predicting the correct answer. In the
first example, the evidence generated by CEGI-
GPT2 “They trust me and I handle animal without
supervision.” can help select the Answer D “They
delegate tasks to me without supervision.” In the
second example, the evidence generated by CEGI-
BERT “I would not have experienced the feelings
that I had for her.” is close to the Answer D.

P: My nephew hates bees, and he moved over to my sisters '
house. He was trying to tell me the world did n't need bees. |
told him that most plant and animal life would die within a
decade of bees disappearing from the planet.
Q: What 's a possible reason why the nephew hates bees ?
A: Because he moved to the writer 's sister 's house.
B: Because most plant and animal life would die within
decade of bees disappearing from the planet .
C: Because he got bite before.
D: None of the above choices.
Evidence:
<bee, Desires, flower> <bee, Capableof, sting> <bee,
Capableof, buzz> <bee, AtLocation, any garden> <planet,
HasProperty, beautiful> <planet, IsA, orbitting sun> <planet,
AtlLocation, solar system>, <planet, ReceivesAction, fill with
sand>

/P: Also, if he were to clean the interior first, he wud hafta
remove the body kits and put them aside as the interior is the
hardest part of any vehicle wash, having to remove oil, dirts,
grease and what - nots. Soon, he stepped up to do the spray
job first. Everything seemed well as he was left to spray the
finished smooth surface. He began spraying right under the

sun.

Q: Why does he feel that he must perform the spray job while
the sun beats down?

A: None of the above choices.

B: The sun assists in warming the paint so it is easy to

apply.

C: The sun keeps the paint from spilling off the car.

D: The sun dries the paint which is sprayed on quickly.
Evidence:
<sun, Capableof, dry something that be wet>, <spray,
HasProperty, wet>, <spray Atlocation, waterfall>, <interior,
HasProperty, inside>, <vehicle, UsedFor, transportation>,
<vehicle, Capableof, travel>, <vehicle, UsedFor, mobility>

Figure 4: Examples of factual evidence generator.

Case Study on Factual Generator Figure 4
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shows the examples of evidences generated by the
factual generator. In the first example, from evi-
dence, we know “bee is capable of sting”, so option
C “Because he got bite before” will be the correct
answer. Some options like B “Because most plant
and animal life would die within decade of bees
disappearing from the planet” appear in the con-
text “I told him that most plant and animal life
would be die within a decade of bees disappearing
from the planet”, and thus without the evidence it
could puzzle the model to select B. In the second
example, we have the evidence “sun has capable
of drying something that be wet” and “spray has
property wet”, so it is easy to reach the correct an-
swer D “The sun dries the paint which is sprayed
on quickly”.

Case Study on Capsule Network We investi-
gate the case with and without capsule network in
the model. As shown in Figure 5, it is hard to an-
swer the question simply by reading through the
paragraph. However, after comparing with the other
options, option A will be the best answer. In this
case, the generated evidence is not useful to pre-
dict the correct answer A. But the capsule network
considering all other candidate options when an-
swering the question can help predict “She wanted
her to look at a pretty rock™ as answer.

P: Last night just at twilight to be exact my daughter , her
little head all sweaty from running around like a little
maniac with the other children in the neighborhood came
bounding into the house skidding to a halt in the kitchen,
\" Mommy ! Look ! Is n't it beautiful I'\"
Q: What did her daighter want her to look at ?

A: She wanted her to look at a pretty rock.

B: The daughter wanted her to look at the sun going

down.

C: None of the above choices.

D: She wanted her to see the other pretty children.

Figure 5: Example of capsule network predict correctly
while without capsule network predict wrongly.
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Abstract

In this work, we study collaborative online
conversations. Such conversations are rich
in content, constructive and motivated by a
shared goal. Automatically identifying such
conversations requires modeling complex dis-
course behaviors, which characterize the flow
of information, sentiment and community
structure within discussions. To help capture
these behaviors, we define a hybrid relational
model in which relevant discourse behaviors
are formulated as discrete latent variables and
scored using neural networks. These variables
provide the information needed for predict-
ing the overall collaborative characterization
of the entire conversational thread. We show
that adding inductive bias in the form of latent
variables results in performance improvement,
while providing a natural way to explain the
decision.

1 Introduction

Online conversations are rampant on social me-
dia channels, news forums, course websites and
various other discussion websites consisting of di-
verse groups of participants. While most efforts
have been directed towards identifying and filtering
negative and abusive content (Wang and Cardie,
2014; Wulczyn et al., 2017; Zhang et al., 2018),
in this paper we focus on characterizing and au-
tomatically identifying the positive aspects of on-
line conversations (Jurafsky et al., 2009; Niculae
and Danescu-Niculescu-Mizil, 2016; Napoles et al.,
2017a). We specifically focus on collaborative con-
versations, which help achieve a shared goal such
as gaining new insights about the discussion topic
like response informativeness, engagement etc.
Rather than looking at the outcomes of such
conversations (e.g., task completion (Niculae and
Danescu-Niculescu-Mizil, 2016)), we analyze con-
versational behaviors, specifically looking at indica-
tions of collaborative behavior that is conducive to

group learning and problem-solving. These include
purposeful interactions centered around a specific
topic, as well as open and respectful exchanges
that encourage participants to elaborate on previ-
ous ideas. To help clarify these concepts, consider
the following conversation snippet.

User A : We should invest in more resources to
encourage young people to be responsible citizens.

Response Option 1 : I wonder if more initiatives at
grassroots level can help them to identify and understand
issues of their local community more deeply.

Response Option 2 : Good point, I agree.

We compare the two possible responses to User
A’s post. Option 1 offers a balanced contribution,
developing the idea presented in the original post
and allowing the conversation to proceed. Option 2,
while polite and positive, is not collaborative as the
initial idea is not expanded on. In fact, agreement
is often used as a polite way to end conversations
without contributing additional content. Despite
the positive sentiment, capturing the absence of bal-
anced content contribution and the absence of idea
development as different discourse behaviors, one
can infer that it is not a collaborative conversation.

While humans could tell the two apart by detect-
ing constructive discourse behaviors, automatically
capturing these behaviors is highly challenging.
Anecdotal evidence, collected by extracting fea-
tures from conversation transcripts, can lead to con-
flicting information, as identifying collaborative
behavior relies on complex interactions between
posts. Our main intuition in this paper is that rea-
soning and enforcing consistency over these behav-
iors can help capture the conversational dynamics
and lead to more accurate predictions.

Our technical approach follows this intuition.
We design a hybrid relational model that com-
bines neural networks and declarative inference
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to capture high-level discourse behaviors. Since
we only have access to the raw conversational text,
we model these behaviors as discrete latent vari-
ables, used to support and justify the final decision
— whether the conversation is collaborative or not.

Explicitly modeling discourse behaviors as la-
tent variables allows us to add inductive bias, con-
straining the representation learned by the neural
model. It also provides a natural way to “debug”
the learning process, by evaluating the latent vari-
ables activation. Our experiments show that the
joint model involving global learning of different
latent discourse behaviors improves performance.
We use the Yahoo News Annotated Comments Cor-
pus (Napoles et al., 2017b), and expanded the an-
notation for the collaborative task.'

2 Task Definition

Collaborative conversations are purposeful interac-
tions, often revolving around a desired outcome, in
which interlocutors build on each others’ ideas to
help move the discussion forward. Collaborative
conversations are an important tool in collabora-
tive problem solving (Greiff, 2012) and require
collaboration skills (Flor et al., 2016; Hao et al.,
2016). We focus on identifying indicators of suc-
cessful collaboration. We build on the work of
Napoles et al. 2017a, who released a dataset anno-
tated for engaging, respectful and informative con-
versations, and annotate it for collaborative conver-
sations, in which participants build on each other’s
words, provide constructive critique, elaborate on
suggested ideas, generalizing them and synthesiz-
ing new ideas and knowledge in the process.

During the annotation process, we identified
several repeating behaviors (detailed below) that
helped characterize and separate between collabo-
rative and non-collaborative conversations.

2.1 Non-Collaborative Discourse Behaviors
(A) Low Idea Development users who: (1) de-
viate from the thread topic and change the topic,
(2) ignore previously raised ideas and give prefer-
ence to their own, (3) repeat or reinforce previous
viewpoints.  (B) Low User Engagement users
who: (1) show little interest, (2) add shallow con-
tributions, such as jokes or links.  (C) Negative
Sentiment relevant when disagreements are not
resolved politely and respectfully. (D) Rudeness
use of abusive, rude or impolite words.

! Annotated dataset available at https://gitlab.com/ayush-
jain/collaborative-yahoo-discourse
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2.2 Collaborative Discourse Behaviors

(A) High Idea Development when users stay on
topic (with respect to the original post) and new
ideas are formed and developed based on preced-
ing turns. (B) Reference to Previous Posts users
refer to the previous post to advance the conver-
sation. (C) Back and Forth users support and
appreciate the ideas shared by others, and are po-
lite when expressing disagreements. (D) Pos-
itive Sentiment resulting in positive interactions
among users, expressed through polite conversation
or informal emoticons. (E) High User Engage-
ment leading to insightful discussions, meaningful
to its participants. (F) Balanced Content Distri-
bution between all members in the group. (G)
Questions raised by participants to advance the
conversation.

Annotation Process Two annotators labeled the
conversations based on these guidelines, with an
accuracy in inter-annotator agreement of 81%.

3 Modeling Collaborative Behaviors

Identifying collaborative conversations requires
characterizing nuanced behaviors. In previous
work, this analysis was defined by extracting social
and discourse features directly from the raw data.
In contrast, we view this decision as a probabilistic
reasoning process over the relevant conversational
behaviors that were identified during the annota-
tion process (Sec. 2.1 and 2.2). Since these be-
haviors are not directly observed, and have to be
inferred from the raw conversational features, we
treat them as discrete latent variables which are as-
signed together-with, and consistent-with, the final
classification task.

Each behavior is captured by a binary latent vari-
able, denoted as h = (hy, ..., hy), indicating if it’s
active or not in the given thread. These decisions
are then connected with the final prediction, de-
noted y, a binary output value. This results in a
factor graph (Figure 1). Each individual decision
is scored by a neural net, and uses a set of features
capturing relevant properties in the input conversa-
tion. To learn this model, we extend DRailL (Zhang
et al., 2016), a recently introduced framework for
combining declarative inference with neural net-
works, described briefly in the following section.
Our extension allows for the introduction of dis-
crete latent predicates into the model.



I Thread(x) = Collaborative(x)
-+ Thread(x) - Behavior(x, h;)
-l Behavior(x, h;) - Collaborative(x)

Figure 1: Factor Graph for Collaborative Conversations

3.1 Learning and Inference with DRail

DRaiL uses a first-order logic template language
to define structured prediction problems. A task
is defined by specifying a finite set of predicates,
corresponding to observed or output information.
Decisions are modeled using rule templates, for-
matted as horn clauses: A = B, where A (body) is
a conjunction of observations and predicted values,
and B (head) is the output variable to be predicted.
The collection of rules represents the global deci-
sion, taking into account the dependencies between
the rules using a set of constraints C. Rule instances
are represented by variables r;, and they are scored
using neural nets, defined over a parameter set w.

y = arg max,. Z r; - score(x, w,T;)
i
Visr; € {0,1}

subject to C, (D)

We define two models using this representation.
The first, DRaiL. Local, trains a single neural net,
represented by the rule: THREAD(T)= ISCoOL-
LABORATIVE(T), mapping the thread to the pre-
dicted value directly. The input layer to the neu-
ral net is the union of word indicators and all the
features used to capture conversational behavior
(Table 1). This approach is similar in spirit to previ-
ous works, classifying conversational threads using
aggregated features.

The second, DRaiL. Global, builds on the previ-
ous model, augmenting it with rules capturing in-
dividual discourse behaviors, and then associating
the predictions of these rules with the final predic-
tion task. We define the set of latent conversational
behaviors B € {Idea Development, Reference to
Previous Post, Sentiment, Balanced Content, Back
and Forth, Questioning Activity, User Engagement,
Rudeness and Controversial}.

We define two rules for each behavior in
B, as follows: THREAD(T)=- LATENTBEHAV-
IOR(T,B), corresponding to a neural net pre-
dicting the occurrence of the specific behavior
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Behavior | Features
S Degree of sentiment and intensity
B.C Sentences per post, words per posts, post depth
C Upvote/downvote ratio, v — d, v + d, u/(u + d)
R.PP 2 per. pronouns, quotes of prev. posts, @username tags
B.F (Dis)agreement markers, content indicators, post references
LF Lexical chains (Barzilay and Elhadad, 1997)
R Profanity, bad words, short posts indicators
UA Number of posts, number of threads
QA Question marks, question forms, question types
Table 1: Features per Behavior. Sentiment (S), Bal-

anced Content (B.C), Controversial (C), Reference to
Previous Posts (R.P.P) Back and Forth (B.F), Idea Flow
(LF), Rudeness (R), User Activity (U.A), Questioning
activity (Q.A)

B in conversational thread T. We also add the
rule: LATENTBEHAVIOR(T,B)= ISCOLLABORA-
TIVE(T), capturing the relationship between the
latent behavior and the collaborative prediction.

Each rule template is associated with an initial
feature representation and a neural architecture to
learn its scoring function. After scoring factors,
values are assigned to the output variables by run-
ning an inference procedure. DRailL uses Integer
Linear Programming (ILP) to solve the inference
problem. In our setup, we compare two models,
with and without inference, corresponding to the
global and local models.

Global Learning When multiple rules are de-
fined in DRaiL, each has its own neural architec-
ture and parameters. Since these rules are intercon-
nected, DRaiL learns a globally normalized model
which uses inference to ensure that the scoring
functions for all rules result in a globally consistent
decision. We adapted the structured hinge loss used
in DRailL to handle latent predicates. The loss func-
tion is defined over all neural parameters w, and
the error is back-propagated to update all networks.

A 1 ¢
Lp(w) = min 2 [[w]|* + n;& )

Where &; is the slack variable, capturing the margin
violation penalty for a given training example, and
defined as follows:

gi = Igix(f(xia h7 Y, W) + A(yv yl))

- m}?Xf(Xia ha Yis W)

Here, x; and y; are the inputs and gold labels for
the i-th instance and h denotes the active DRail
rules corresponding to latent discourse behaviors.



4 Empirical Evaluation
4.1 Dataset and Experimental Settings

We annotate conversations on the Yahoo News An-
notated Comments Corpus (Napoles et al., 2017b)
following the guidelines specified in section 2, with
81% inter-annotator accuracy. The dataset consists
of 2130 conversations for training, 97 for valida-
tion and 100 for testing. The data is imbalanced,
with more conversations being non-collaborative
(64%, 69% and 67% for training, validation and
testing, respectively). Additionally, we annotated
the fine-grained discourse behaviors for a sample
set of 103 conversations.

We used feedforward networks for all rules, with
one hidden layer and a softmax on top. All hidden
layers use sigmoid activations. The number of
hidden units are: 400 for the local rule, 50 for idea
flow and 100 for all remaining behaviors. Rules
that map a latent behavior to a final decision did
not have a hidden layer. We used a learning rate
of 0.01. All of these parameters, as well as the
weights for the different rules, were tuned using
the validation set.

4.2 Experiments

We compare the model that explicitly reasons about
conversational behaviors and their relationships
(DRaiL Global), with a local model that predicts
whether a conversation is collaborative or not by
using all discourse features as inputs to a single rule
(DRaiL Local). To motivate the use of neural net-
works, we include two Linear SVM baselines, using
bag-of-words and the set of all discourse features
(Table 1). These results (Table 2) demonstrate the
advantage of modeling competing discourse behav-
iors as latent variables and making a joint decision
using inference, as opposed to just representing
them using input features.

compare their correctness before learning (based
on initialization parameters) and after global learn-
ing. Inference is used in both cases. Table 3 de-
scribes the results. We can see that performance
consistently improved after global training com-
pared to the initialization point, a clear indication
of the connection between the latent information
and the predicted conversational outcome. Identi-
fying rude behaviors yields the highest F1 score
(0.62), which can be expected as the decision re-
lies on lexical information (negative and abusive
words). Similarly, it is relatively easy to identify
balanced content behavior, given that structural fea-
tures (outlined in table 1) are very informative. Lex-
ical chains, representing the repeated occurrence
of a single word or of several closely related words
over the course of a post (Barzilay and Elhadad,
1997), are also successful at capturing idea flow
behaviors. However, controversial and back and
forth behaviors are more challenging.

[ Individual Behavior | FI (before)  FI (after) |
Idea Flow 0.371 0.574
Controversial 0.390 0.420
Balanced Content 0.541 0.610
Sentiment 0.462 0.548
User Activity 0.521 0.570
Reference to Previous Posts 0.299 0.427
Questioning Activity 0.427 0.511
Rudeness 0.514 0.620
Back and Forth 0.470 0.520

Table 3: Predicting Individual Latent Behaviors on An-
notated Sample Set Before and After Global Learning

We performed an ablation study to see if the
global model is driven by any particular discourse
behavior (Table 4). We observe that performance
drops significantly if the sentiment behavior is re-
moved. Just using rules related to idea flow, sen-
timent and balanced content behaviors leads to an
F1 score of 0.62.

| Model | Prec. Rec. Fl
Linear SYM(BoW) 060 058 059 | [ Model | Precision Recall FI1 |
Linear SVM(BoW + disc.) 0.63 061 0.62 All 0.690 0.680  0.687
DRaiL Local(single NN) 0.65 0.64 0.64 All except S 0.483 0.495 0.489
DRaiL Global (latent vars.) | 0.69 0.68 0.69 All except L.F 0.635 0.554  0.591
All except B.C 0.581 0.593  0.586
Table 2: Predicting Collaborative Conversations (Fixed All except QA 0.578 0.588  0.582
splits) LF+S+B.C 0.645 0.607  0.625
We conduct an additional experiment to evaluate ISE-;B:.SCZU('ji QA 8282 gggg 82(1)(2)

the quality of the predicted latent behaviors. To do
this, we annotated the discourse behaviors based on
the definitions provided in section 2, and evaluate
the activations produced by our global model. We
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Table 4: Ablation Study. Sentiment (S), Idea Flow (I.F),
Balanced Content (B.C), Questioning Activity (Q.A),
User Activity (U.A), Controversial (C)



5 Summary and Future Work

In this paper, we introduce the task of identify-
ing collaborative conversations and provide anno-
tations for a subset of the Yahoo News Annotated
Comments Corpus. We suggest an approach that
combines neural networks with constrained infer-
ence for identifying collaborative conversations,
and showed how adding additional inductive bias
in the form of discrete latent variables can improve
learning. Moreover, we show that we are able to
capture and explain individual discourse behaviors
without additional supervision, which in turn al-
lows us to gain insight into the final decision made
by the model. Collaborative interactions help lever-
age the synergy between team members tackling
complex problems, we hope to contribute in the de-
velopment of automated systems supporting such
processes.
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Abstract
We  investigate differences in  user
communication with live chat agents

versus a commercial Intelligent Virtual Agent
(IVA). This case study compares the two
types of interactions in the same domain for
the same company filling the same purposes.
We compared 16,794 human-to-human
conversations and 27,674 conversations
with the IVA. Of those IVA conversations,
8,324 escalated to human live chat agents.
We then investigated how human-to-human
communication strategies change when users
first communicate with an IVA in the same
conversation thread. We measured quantity,
quality, and diversity of language, and
analyzed complexity using numerous features.

We find that while the complexity of language
did not significantly change between modes,
the quantity and some quality metrics did vary
significantly. This fair comparison provides
unique insight into how humans interact with
commercial IVAs and how IVA and chatbot
designers might better curate training data
when automating customer service tasks.

1 Introduction

An intelligent virtual agent (IVA) is a subset of
chatbots designed for the commercial enterprise
realm to mimic a human customer service agent.
A popular use case for IVAs is live chat deflection,
where they are trained to handle the most common
interactions while still allowing for escalation to a
human agent when required or requested.

As a company that has designed and built IVAs
for enterprise applications for many years, we had
intuition that the language we saw in live chat
interaction was different from the language we
saw coming into the IVA, but the difference had
not yet been quantified. After using live chat
data for training an IVA, we were occasionally
surprised at the gaps in understanding it presented
once in production, even though the training data
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originated from the same company the IVA was
built for. In order to improve analysis and training,
we sought a standard to create and gather data more
consistent with actual IVA usage and filter out some
of the non-representative live chat data.

We also wanted to investigate how the IVA was
affecting conversations with live chat operators.
While there are differences, a user behaves
consistently when he/she is chatting with a human,
similarly they are consistent when chatting with
an IVA. In this paper we demonstrate that chatting
with an IVA has significant impact on language
beyond what has been documented by human-to-
human computer mediated conversation such as
instant messenger or live chat.

The IVA and live chat corpora used in this study
originated from a financial services company where
customers are interacting with the IVA and live
chat on their website for the same purposes making
the comparisons extremely relevant. However,
due to data use agreements with the financial
services company, the identification of the origin
and corpora cannot be made public.

2 Related Works

Hill et al. (2015) have done comparisons between
inter-human and “toy” chatbot conversations.
However, in this comparison the conversations
were sampled from completely unrelated domains
making the comparison less valid.

While tools to improve the training process of
IVAs from live chat or call center transcriptions
exist such as (Bouraoui et al., 2019), there has not
been a focused linguistic study on the difference in
communication styles between human-human and
human-machine in service dialogs. Such a study
could inform such tools where specific samples
may or may not make good training samples due
to projected communication differences with IVAs.
To our knowledge this is the first study to compare
real world language of users with IVAs and live
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chat from the same origin.

3 Method

The IVA for this research was originally trained on
live chat conversations from the financial sector and
continuously refined while in production. It was
designed to understand frequently asked questions
and conversational work flows around the largest
business use case: waiving fees (for example
conversations see Appendix B). Besides business
intents, the IVA also responds to persona (e.g.
asking if the IVA is married), common courtesy,
and profanity. Escalation points were designed
where human involvement was desired (e.g. credit
limit changes, account closure). There was no
dynamic response delay, no avatar, and users were
informed at the beginning of the conversation that
they were speaking with an IVA (see Appendix A).

For our corpus, we selected 16,794 conversations
with live chat agents from June through October
2017 and 27,674 conversations with the IVA
that occurred in January 2020. Within the
IVA conversations, 19,350 conversations were
completed with IVA only while 8,324 escalated
at some point to a live chat agent.

For the purpose of this work we only looked at
the user language and actions and not the IVA or
live agent responses. The IVA was launched in
2017 on the company website along side a live chat
option. After 2017, access to live chat without first
talking to the IVA was disabled due to the success
of the IVA at automating a continuously expanding
set of use cases. We chose to sample IVA data
from 2020 to allow for adequate refinement time to
present statistics representative of communicating
with a mature IVA implementation.

3.1 Conversational Clicks

When we discuss turn-taking in conversation with
a multi-modal IVA, we must consider that there
are different methods than typing to elicit more
information. For instance, clicking on suggested
topic or answer links presented by the IVA will
continue the conversation as though the user had
typed the text of the link. In our domain, specific
actions need to occur if a credit card is stolen.
If a user goes to either an IVA or a live chat
operator and says, “I need to get a replacement
card,” the operator might respond with a “Was the
card stolen?”” whereas the IVA might present two
conversational clicks, <Replace a lost or damaged
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card> <Replace a stolen card>. There were a few
considerations for counting these interactions in
respect to word counts and user turns.

Remove conversational clicks as a word level
metric. This metric allows for direct comparison
of the complexity of typed user inputs, but hinders
the ability to compare at a conversational level.
Both IVA and live chat operators can ask a yes or
no questions, but if we drop the click of a “yes”
response link to the IVA we lose the comparison to
the “yes” response in live chat.

Count clicks as a one word turn. In our
example, if we assume a conversational click
would only solicit a single piece of information
a single word turn would be a fair metric. However,
conversational clicks are not always of this type.
Some present additional information (such as what
to do if a stolen card is found) or other suggested
topics (such as upsell opportunities).

Count the language in the link text as the user
input. In our example, the same information
is required, but the method of eliciting that
information has changed the user’s interaction from
a single word typed input, “yes,” to a four word
conversational click.

For any of these metrics, the count would not be
representative of the language a user might input if
the conversational click was not present.

For all options considered, there were sufficient
concerns that any metrics provided on this data set
would be implementation dependent, so we chose
to present the statistics for all three options outlined
so the reader can understand where the differences
lie and to what extent noise exists within our IVA
data set from conversational link clicks. To control
for question complexity between environments, we
measured the frequency of yes/no questions and
found that they occurred 8% more often in live chat
than IVA conversations.

3.2 Turns

For the purposes of this study, if the user clicks
on a suggestion by the IVA that advances the
conversation (that is, it returns a response in the
IVA), it will count as a turn. IVA turns are ABAB,
that is, the user (A) takes a turn and the IVA (B)
follows. Live chat turns can extend over multiple
inputs, such as, ABAAAB. In such cases, these
will be joined into a single turn. In other words, we
will treat ABAAAB as ABAB.



Live Chat

IVA Only

Mixed Sessions  Mixed - IVA Mixed - Live Chat

User Words/Session 68.83 (61.90)

27.91 (22.10)

114.88 (84.67)  32.45(23.50) 82.51 (80.31)

Words/Session (links = 0 words)  n/a 23.70 (20.97) 107.61 (84.50) 25.16 (22.34) n/a
Words/Session (links = 1 word) n/a 24.72 (21.16)  109.15 (84.52) 26.71 (22.58) n/a
User Turns/Session 5.12 (3.81) 3.06 (2.16) 10.65 (5.56) 4.03 (2.04) 6.62 (2.04)
Type/Token 0.77 (0.11) 0.82 (0.07) 0.79 (0.07) 0.81 (0.06) 0.78 (0.10)

Table 1: Means and standard deviation of session level analysis. Words/Session is raw words including link click
text, links = 0 ignores link clicks, and links = 1 treats link clicks as single word inputs. Type/Token is the ratio of

unique words over all words in the session.

3.3 Sentences

Successful conversation over chat does not require
full, grammatically complete sentences and IVAs
are frequently used as keyword searches. Sentence
boundaries and punctuation are many times
missing or grammatically misused. As such, we
ignore sentence-level metrics.

3.4 Metrics

There are 3 session types: Live Chat (human to
human conversation), IVA Only (human to IVA
conversation) and Mixed Session (sessions that
started with the IVA and escalated to a human live
chat operator). A mixed session has two subtypes:
Mixed - IVA (user inputs to the IVA in a Mixed
Session) and Mixed - Live Chat (user inputs to the
human live chat operator in a Mixed Session).

We used the L2 Syntactic Complexity Analyzer
(L2SCA) (Lu, 2010) to measure complexity.
However, we will not be using any of L2SCA’s
sentence based metrics for the reasons discussed
in 3.3. We also ran the user turns through our own
measures for quality and quantity.

For quality, we selected some of the variables
selected by Lortie and Guitton (2011) and Hill
et al. (2015) from LIWC (Pennebaker et al., 2015)
and included a metric for politeness. However,
we did not to use LIWC due to data security
policies. For fair comparison, we used word lists
from closed class words and opted out of the
more subjective open class word based features,
other than profanity. The variables of quality we
investigated were misspellings, words with more
than 6 characters, pronouns, articles, profanity, and
politeness.

Misspellings compared tokens against a list
of company products and services first, and, if
the token was not found there, it was then spell-
checked against the English aspell wordlist!.

'nttps://ftp.gnu.org/gnu/aspell/dict/
en
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Gratitude is a count of the variations of thank
in a turn. We considered only expressions of
gratitude as politeness for this study to reduce
potential classification error from approaches such
as (Yildirim et al., 2005).

Profanity was checked using a regex of
common swear word phrases. There is substantial
variation in how people manage to misspell a
profane word. The regular expressions are not
exhaustive, but broad enough to ensure a quality
sample.

Tokens are counted by splitting on white space.
Thus punctuation won’t count as unique tokens and
contractions will only count as a single token.

Type/Token is the ratio of unique words over all
words in a turn or session.

Sentiment was measured using the NLTK
implementation of VADER (Hutto and Gilbert,
2014) and is normalized from -1 to 1.

4 Analysis

Conversation Level: We begin with the full
conversation level metrics shown in Table 1. Each
conversation which escalated to live chat involves
a link click where the link text was 4 words. This
extra click is included in the IVA session.

Live chat conversations take 1.7 times more turns
with more than 2.5 times more words. Where
escalation is not required, a user can achieve a
more efficient resolution with the IVA. However,
if the IVA is in fact deflecting the easier to handle
issues this could explain some of the differences.

On the other hand, the user experience for
escalation is substantially less efficient. First the
user has an average length IVA conversation and
then escalates to the human agent for a more
involved conversation with an average of 1.5 more
turns and 14 more words than the live chat sessions
alone. This indicates the user’s tasks presented to
the IVA are not being properly reviewed by the live
chat agents, requiring substantial additional effort



Live Chat IVA Only Mixed - IVA' Mixed - Live Chat

Tokens 14.33 (14.29) 9.11 (8.00)  8.05 (7.03) 12.54 (13.44)
Tokens (links = 0 words) n/a 7.74 (9.00) 6.24 (8.16) n/a

Tokens (links = 1 word) n/a 8.07 (8.72) 6.62(7.87) n/a

Type/Token 0.79 (0.13) 0.80 (0.12) 0.78 (0.12) 0.75 (0.17)
Misspellings 0.61 (1.16) 0.18 (0.53) 0.13 (0.44) 0.58 (1.06)

Six Character Words 3.08 (3.69) 2.452.29) 2.21(2.20) 2.44 (3.51)
Profanity 0.00 (0.02) 0(@0) 0(0) 0.00 (0.02)
Gratitude 0.20 (0.41) 0.05 (0.22)  0.01 (0.09) 0.11 (0.35)
Sentiment 0.20 (0.33) 0.08 (0.27)  0.06 (0.24) 0.20 (0.30)

Table 2: Means and standard deviation of language quality metrics per turn. Tokens includes link click text, links
= 0 ignores link clicks, and links = 1 treats link clicks as single word inputs. Type/Token is the ratio of unique

words over all words in a turn.

on the part of the user to restate them.

Turn Level: Table 2 gives the turn level metrics.
Users type substantially shorter inputs (between
1.5 and 1.8 times) when speaking with an IVA.
It appears that beside being more concise with
IVA, users are also more careful as there were
4.2% of tokens misspelled in live chat vs 2.0%
when interacting with the IVA only and 1.6% when
interacting with the IVA prior to speaking with a
live chat agent. After communicating with an IVA,
users increased to a 4.6% misspelling rate.

Human-to-human gratitude is significantly more
frequent than with an IVA. However, after
continuing to a human after the IVA, gratitude
is almost halved. This reflects the more difficult
conversations when live chat is tier 2 support.

Sentiment for human-to-human was significantly
more positive. IVA turns were neutral. IVA-only
turns averaged 0.08 where as live chat conversation
turns averaged 0.2. One would expect the live
chat conversations that were preceded by the IVA
to be more negative reflecting the decrease in
user efficiency discussed in the previous section.
However, sentiment for live chat after [IVA actually
remained at 0.2, perhaps indicating that live chat
was usually leading to a reasonable (if not always
satisfactory) resolution or the additional effort
seemed justified to the users as they were in a sense
restarting the conversation with a new party.

Hill et al. (2015) showed significant profanity
in chatbot language and Burton and Gaskin (2019)
showed a self-reported tendency to be less polite
to digital assistants. In our data, only live chat
sessions had any profanity to speak of. We
speculate that the overall lack of profanity has to
do with the professional setting of the customer
service environment where previous studies were
on open domain chatbots and personal assistants
such as Amazon’s Alexa.
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Pronouns: Live Chat users were almost 2.9
times more likely to refer to the human as ’you’
than they were with an IVA (Table 3). When a user
escalates to live chat, the pronouns increase, but in
general pronoun use is less in conversations that
escalated. This implies that when a user knows that
they aren’t chatting with a human, they remove any
references to it as a person, consistent with Burton
and Gaskin (2019).

L2SCA returned results that could be explained
by shorter turns and fewer words shown between
live chat and IVA (Table 3). However, there
were two increases worth mentioning in IVA-
only conversations. Complex nominals per T-unit
(CN/T) increased in IVA usage from a mean of 0.64
to 0.70. The other is mean length of clauses which
increased from 5.34 to 5.78. Given the decrease
in T-units and Clause/T-unit, this may indicate
a tendency of IVA users to rely on conveying
information through noun phrases than complete
verb phrases. However, these increases were not
reflected in users who escalated to Live Chat, the
reason for this is unclear.

L2SCA did show that live chat language after
IVA was less complex across every measure.
This may be part of the explanation for the
reduction in gratitude in those conversations:
they were less polite because they were more
concise. It may be that as the conversation is less
efficient, the language becomes more efficient to
compensate, but more research is needed to prove
this hypothesis.

5 Application and Conclusion

When designing an IVA and when given live chat
data for training, it’s tempting to tag random
inputs indiscriminately for training. However,
indiscriminately adding longer inputs more



Live Chat IVA Only Mixed - IVA Mixed - Live Chat
Pronouns 1.92 (2.22) 1.60 (1.60) 1.33(1.55) 1.46 (2.06)
Ist Person 1.31(1.77)  1.28(1.35) 1.09 (1.30) 0.88 (1.53)
2nd Person 0.31(0.59) 0.13(0.37) 0.08 (0.30) 0.30 (0.65)
3rd Person 0.30(0.59) 0.19(0.49) 0.16 (0.45) 0.28 (0.72)
Articles 0.73(1.19) 0.58 (0.88) 0.50 (0.82) 0.64 (1.20)
Verb Phrase (VP) 237(2.54) 1.93(1.70) 1.67(1.58) 1.96 (2.26)
Clause (C) 1.92(1.97) 1.52(1.30) 1.34(1.21) 1.60 (1.74)
T-Unit (T) 1.26 (1.13)  1.10(0.79)  0.99 (0.75) 1.09 (1.02)
Dependent Clause (DC)  0.62 (1.12)  0.40 (0.75)  0.32 (0.68) 4.03 (2.04)
Complex T-Unit (CT) 0.40 (0.70)  0.29(0.53)  0.23 (0.49) 0.31 (0.61)
Coordinate Phrase (CP)  0.17 (0.46) 0.13 (0.37)  0.10 (0.33) 0.12 (0.42)
Complex Nominal (CN)  1.14 (1.63) 0.88 (1.12) 0.74 (1.03) 0.93 (1.42)
Mean Length of T 8.13(7.94) 7.90(6.40) 6.95(6.26) 7.42 (7.65)
Mean Length of C 534 (4.10) 5.78(3.97) 5.20(3.96) 5.10 (4.15)
VP/T 1.50 (1.43) 1.46(1.20) 1.32(1.14) 1.38 (1.39)
C/T 1.22(1.10) 1.15(0.88) 1.05(0.84) 1.13 (1.05)
DC/C 0.18 (0.27) 0.14 (0.25) 0.12(0.24) 0.16 (0.27)
DC/T 0.40 (0.78) 0.29(0.61) 0.24 (0.57) 0.34 (0.74)
CT/T 0.24 (0.39) 0.21(0.39) 0.18 (0.34) 0.21 (0.39)
CP/T 0.10(0.31)  0.09 (0.29)  0.08 (0.27) 0.09 (0.29)
CP/C 0.07 (0.22)  0.06 (0.22)  0.05 (0.20) 0.06 (0.21)
CN/T 0.70 (1.06)  0.64 (0.90)  0.55(0.84) 0.63 (1.00)
CN/C 0.41(0.54) 0.43(0.56) 0.38 (0.55) 0.39 (0.55)

Table 3: Means and standard deviation of pronoun and article usage and the results of L2SCA per turn.

common in live chat may introduce unnecessary
noise to the data. Given our observations, we
recommend that training language be more focused
to the task and rely on more direct language. We
also recommend designers do not neglect to add
training samples in the form of keyword searches
for the users who still view the IVA as a search
tool.

When live chat data is not available, a synthetic
strategy must take place. One such strategy
outlined by Leuski et al. (2006) is to give a human

a sample input and ask them to synthesize new data.

A better plan would be to give the user a task of
retrieving information and then asking them what

questions they would use to get that information.

This would encourage the simple direct language
that IVAs are more likely to see in the wild instead
of forcing the human to be creative, which may
result in language unlikely to be seen by an IVA.
Users are currently more likely to be concise
with IVAs than human live chat operators in the
same domain. This is an advantage to the user as
an IVA can respond more quickly and get them the

needed information with less language production.

Modern contact centers use various performance
metrics to rate contact center agents, which
has a direct impact on their compensation and
recognition (Cheong et al., 2008). A successful
IVA will significantly reduce the number of
conversations coming into a contact center, and the
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conversations that do will largely consist of more
difficult cases. As these types of conversations now
make up a much larger part of the performance
metrics, and the operators no longer get the positive
feedback from the easy cases, they appear less
effective than before the IVA was implemented.
This decrease in performance should be expected
and these metrics adjusted, perhaps by weighting
by the difficultly of the task, so that human contact
center agents are not punished by the deployment
of IVAs alongside them.

There exists substantial research regarding how
to measure the performance of a dialog system,
but the study of how people communicate through
language with artificial intelligence in the wild
is still in its infancy. The nature of the data
originating from commercial IVAs means that
corpora are seldom shared, making the research
more challenging. In spite of these sharing
restrictions, in this paper we have presented an
approach to analyze the nature of language use
between humans and IVAs compared to that of
human chat operators in a way that still allows the
research community to understand in what way
humans currently communicate differently with
IVAs than other humans in the same domain. If
others with commercially deployed IVAs repeat
such experiments we can observe how humans
adapt to IVAs over time in the wild, and change the
way IVA conversations are designed accordingly.
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A Implementation Considerations

Some research on human-chatbot interactions
suggests that dynamic response times increased
overall satisfaction with the chatbot (Gnewuch
et al.,, 2018). Ciechanowski et al. (2019)
recommended avoiding avatars or otherwise
making the chatbot appear human visually. It is
unknown how these, or any other measures, will
impact user language.

B Example Dialogs

User: hi i did not mean to make a late payment i was in
the hospital, can you please waive the charge for me :)

IVA integration checks against user account and eligibility
for fee waiver

IVA: Your account is eligible for a fee waiver. Customers
can have this fee waived when <list of business
conditions>. Are you sure you want to apply this fee
waiver now?

Yes (link)

No (link)

User: yes please

IVA: The fee has been waived. Can I help you with
anything else?

User closes window

Live Chat Agent: Hello <user>. How can I help you
today

User: Hi. My bill came in and I saw a fee.
User: What is that all about?
Live Chat Agent: Let me take a look at that.

Live Chat Agent: It looks like this fee was applied to
your account for <business reasons>.

User: I didn’t know. Is there any way you can waive the
fee this time?

User: That never has happened before.

Live Chat Agent: It looks like your account is eligible
for a one time waiver. You will not be eligible again until
<business requirements>. Would you like to apply that
now?

User: Yes. Please.

Live Chat Agent: Ok. It’s done. Is there anything else |
can do for you?

User: No Thanks.
User: Bye.

Live Chat Agent: Thank you for contacting <company>.
Have a great day.

User: thanks bye.

Figure 1: An example conversation with an IVA
(top) and an example with a human live chat operator
(bottom) completing the same task of waiving a fee.

Company-specific information has been sanitized.
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User: waive the fee

1VA integration checks against user account and eligibility
for fee waiver

IVA: Your account is eligible for a fee waiver. Customers
can have this fee waived when <list of business
conditions>. Are you sure you want to apply this fee
waiver now?

Yes (link)

No (link)

User: clicks link “Yes”

IVA processes fee waiver and returns with confirmed status

IVA: The fee has been waived. Can I help you with
anything else?

User closes window

Figure 2: An example conversation showing the user
advancing the conversation through conversational link
clicks.

User: waive the fee

IVA integration checks against user account and eligibility
for fee waiver

IVA: Your account is not eligible for a fee waiver.
Customers can have this fee waived when <list of business
conditions>.

User: Is there any leniency for a one time exception

IVA: Exceptions can be made in the cases of <list of
business conditions>.

1VA integration checks if a live chat operator is available

IVA: In order to do this, we need to connect you to a live
chat operator. Wait time is currently 2 minutes.
Connect to Live Chat (link)

User: clicks link “Connect to Live Chat”
1VA hands off conversation to live chat operator

Operator: Hello <user>, I see you are asking to waive a
fee on your account?

User: Yes. Can you do that for me?

Operator: Give me just a second while I look up your
account

Operator: I’'m sorry, it looks like your account is not
currently eligible for a fee waiver right now.

User: The thing before told me you could make an
exception for <business condition>.

User: Can you do that for me?

Conversation continues with live chat operator

Figure 3: An example conversation showing
integration points for waiving a fee and escalation to
live chat, as well as the use of conversational links of
more than one word. See Section 3.1 for a discussion
on the various ways to count such click interactions.
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Abstract

Turn-entry timing is an important requirement
for conversation, and one that few spoken di-
alogue systems consider. In this paper we in-
troduce a computational framework, based on
work from psycholinguistics, which is aimed
at achieving proper turn-entry timing for situ-
ated agents. Our approach involves incremen-
tal processing and lexical prediction of the turn
in progress, which allows a situated dialogue
agent to start its turn and initiate actions earlier
than would otherwise be possible. We evaluate
the framework by integrating it within a cog-
nitive robotic architecture and testing perfor-
mance on a corpus of situated, task-oriented
human-robot directives. We demonstrate that:
1) the system is superior to a non-incremental
system in terms of faster responses, reduced
gap between turns, and the ability to perform
actions early, 2) the system can time its turn
to come in immediately at a turn transition,
or earlier to produce several types of overlap,
and 3) the system is robust to various forms of
disfluency in the input. Overall, this domain-
independent framework can be integrated into
existing dialogue systems to improve respon-
siveness, and is another step toward more nat-
ural and fluid turn-taking behavior.

1 Introduction

Behavioral evidence shows that humans are able to
exchange turns extremely quickly in conversation
— within a few hundred milliseconds on average
(Levinson and Torreira, 2015). This is a universal
human characteristic, though the nature of the tim-
ings varies slightly across languages (Stivers et al.,
2009). There is some debate about exactly how hu-
mans achieve this performance, but evidence from
psycholinguistic studies suggests that it is likely
done by processing ongoing utterances incremen-
tally and making lexicosyntactic predictions about
the turn in progress (de Ruiter et al., 2006; Mag-
yari and de Ruiter, 2012). This allows a listener to
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plan what to say and to anticipate the end of the
speaker’s turn accurately so that turn-transitions
are seamless, and gaps between turns are mini-
mized. It also allows for the production of speech
overlap, to produce conversational behaviors such
as backchanneling and repair. Such human be-
haviors are desirable for spoken dialogue systems
(SDSs) where naturalness is a priority (Edlund
et al., 2008).

SDS research has produced an impressive body
of work on turn-taking (e.g. Bohus and Horvitz
(2011); Kronlid (2006); Raux and Eskenazi (2009,
2012); Skantze and Schlangen (2009); Zhao et al.
(2015)), and some early work on overlap and com-
pletions (Baumann and Schlangen, 2011; DeVault
et al., 2011b; Gervits and Scheutz, 2018a). How-
ever, relatively little focus has been placed on using
turn-taking capabilities for responsive turn-entry
timing, especially for situated agents. One excep-
tion is the approach by Baumann and Schlangen
(2011) which involves estimating word duration to
produce collaborative completions.

We build on this prior work through the devel-
opment of a framework for achieving responsive
turn-entry timing, as well as a full set of adaptive
human-like overlap and completion behaviors. Our
approach involves using utterance-level predictions
from partial input and information from a world
modeler to determine when to enter the turn (in-
cluding producing overlap at any of the entry points
shown in Figure 1), and whether to initiate actions
early. Such capabilities are particularly important
for situated dialogue agents, as responses, and es-
pecially actions, often involve lengthy processing
delays, which can be mitigated by preparing or
initiating them during an ongoing turn. Section 2
describes how this framework builds on existing
research, including our novel Turn-Entry Manager
(TEM) described in Section 2.4. In Section 3 we de-
scribe implementation details related to integrating
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Transition Post- Interjacent Last-Item Transition-Relevance
Space Transition Place
A A A A A

fbringv<uh>\ the mug to the bedroom

~

Figure 1: Entry points in a sample utterance based on (Jefferson, 2004). A fluid turn exchange starts at the
transition point between turns (transition-relevance place or TRP), whereas earlier entry points indicate various

types of overlap.

the framework in a cognitive robotic architecture.
Then in Section 4 we evaluate our implementation
on a corpus of situated human-robot dialogue utter-
ances. Finally, we close with a discussion of the
contributions and directions for future work.

2 A Framework for Turn-Entry Timing

Here we discuss the framework needed to manage
turn-entry timing for situated dialogue agents, and
the related work that the framework builds on.

2.1 Incremental Processing with Prediction

Obtaining an early understanding of the meaning
of an utterance allows for faster feedback, support-
ive overlap, and faster actions. To achieve this, the
SDS needs prediction, which is enabled by incre-
mental processing.

Extensive prior work has supported fast and
effective incremental processing with prediction
(Paetzel et al., 2015; Skantze, 2017). For exam-
ple, Schlangen and Skantze (2011) developed the
Incremental Unit (IU) framework which supports
incrementalaity with prediction, revision, and man-
agement of alternative hypotheses. This and other
related approaches (e.g., Heintze et al. (2010);
Skantze and Schlangen (2009)) involve interpreting
meaning from each partial input rather than trying
to predict the complete utterance. Other work has
focused on predicting a full utterance (or seman-
tic frame) from partial input using a maximum en-
tropy classification approach (DeVault et al., 2011a;
Sagae et al., 2009). These approaches attempt to
find the point of maximal understanding at which
a response can be initiated, and have been demon-
strated to support the production of collaborative
completions (DeVault et al., 2009). While these
approaches use lexical cues in the input to generate
predictions, other cues can also be used for situated
interaction, including gesture and gaze (Kenning-
ton et al., 2013), and acoustic features (Maier et al.,
2017; Ward et al., 2010). Our approach builds on
this prior work in incremental processing, using it
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as a component in our overall framework.

2.2 Speech Overlap Production

Speech overlap has been shown to serve many use-
ful functions in conversation, including responsive-
ness and repair (Jefferson, 2004), but historically
the SDS community has viewed it as an intrusive
property and used the term barge-in. Some SDS
work exists on the topic of intentional overlap pro-
duction, including a body of work aimed at produc-
ing appropriate backchannel feedback (Lala et al.,
2017; Truong et al., 2010). Another example comes
from DeVault et al. (2011b), who designed a proto-
type system using predictive capabilities to perform
collaborative completions and backchannel feed-
back. This work provides a necessary first step,
but it only covers a subset of the different types
of overlap possible, leaving out those that occur at
the transition space, post-transition, and interjacent
positions (Drew, 2009). Moreover, this work does
not deal with situated dialogue or issues of timing
in speech synthesis. Situated dialogue presents ad-
ditional opportunities for overlap which have yet
to be explored, such as coming in mid-utterance
to clarify an un-actionable command. Finally, if
a system will be producing overlap, then mecha-
nisms to manage and recover from overlap are also
needed. A preliminary approach was demonstrated
in Gervits and Scheutz (2018a) based on a corpus
analysis in Gervits and Scheutz (2018b), but other-
wise there is limited work in this area.

2.3 Preemptive Action Execution

For dialogue in real-world or virtual environments
with humans, situated agents can use predictive
language capabilities to perform actions early or
at least begin some processing during an ongoing
utterance. This has been explored by Hough and
Schlangen (2016), who developed a real-time incre-
mental grounding framework that supports “fluid”
interaction using the IU framework. While the
system performance is impressive, this work only
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Figure 2: Component diagram of the turn-taking framework as implemented in the DIARC cognitive robotic
architecture. Boxes represent architectural components and arrows represent the flow of information.

focused on action and did not involve timing dia-
logue responses. Moreover, the only actions con-
sidered were those that the robot could carry out.
In human-robot interaction, a robot might be in-
structed to perform an action that it does not know
how to do or that it cannot currently do. In order to
respond early, the robot will need to simulate the
action to determine if it will be successful. This
simulation may involve a cognitive architecture
carrying out an actual “mental” simulation of the
action, or simply checking if the preconditions for
the action are met. This is the type of processing
that can be done during an ongoing utterance.

2.4 Turn-Entry Manager

Given the multitude of points for which a system
may need to enter a turn (as shown in Figure 1),
some process is needed to manage turn entry. We
propose a Turn-Entry Manager (TEM) component
that carries out these tasks. The TEM works as
follows: it receives full utterance predictions from
partial automatic speech recognition (ASR) results
and determines when to initiate a follow-up utter-
ance and action based on the confidence in the
prediction as well as task context and agent goals.
The most intuitive location for the TEM is in the
Dialogue Manager (DM), as it uses information
only available further along in the pipeline. The
TEM will store the following information about
its prediction of an ongoing utterance: semantics
and text of the utterance, remaining words and ex-
pected duration of the utterance, response and ac-
tion associated with the utterance, confidence in
the prediction, cost of the action, entry time for
the transition-relevance place (TRP) (Sacks et al.,
1974) and several overlap positions, and latency of
various components. Most of this information is
updated with each increment received by the parser.
Using this information, the TEM determines the
timing of when to take a turn so as to achieve fluid
turn transitions. Depending on its policy, it can also
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come in early to produce various kinds of overlap.
While most SDSs have some process that manages
turn entry, none, to our knowledge, possess the
capabilities described here.

3 Implementation in a Cognitive Robotic
Architecture

To effectively interact in a situated environment,
robots need to react to and affect the environment,
as well as to reason about the task and user; this
requires a cognitive robotic architecture. We in-
tegrated our turn-entry timing framework into the
DIARC architecture (Scheutz et al., 2019). We
used DIARC due to its emphasis on situated robot
dialogue (highlighted in Gervits et al. (2020)),
although in principle our framework is general
enough to be used with any architecture of its type.
Below we discuss each of the key components in
our architectural configuration.

3.1 Situated Natural Language Processing

Our work is mostly performed in the language-
processing components of DIARC, shown in Fig-
ure 2. First, speech is received by the ASR compo-
nent, which converts it into text. For ASR, we use
the Sphinx4 recognizer, modified to output incre-
mental results. A text interface can also be used
to simulate incremental speech input. The word-
by-word results are sent to the Utterance Predic-
tion component (described further in Section 3.2),
which generates a prediction using a bigram lan-
guage model and sends the prediction to the Se-
mantic Interpreter component. We use a rule-based
parser that performs syntactic and semantic parsing,
and converts the text of an utterance into a logical
predicate form. The predicate is then sent to the
DM component, which is a goal-based dialogue
manager that uses a Prolog knowledge base for
storing declarative knowledge, and for performing
logical inference over that knowledge to engage



in mixed-initiative dialogue. The DM implements
a version of the TEM described in Sec. 2.4. The
DM also interacts with the Goal Manager (GM)
component, which contains a database of actions
that the robot can perform (including dialogue ac-
tions) and facilitates action execution. Actions in
DIARC are defined by their pre-, post-, and op-
erating conditions. The post-conditions of an ac-
tion are goal predicates that describe a state of
the world that an agent is trying to achieve, e.g.,
did(self,moveTo(self,bookshelf)) for an action goal,
and did(self,spoke(okay)) for a dialogue goal. For
dialogue actions, the DM obtains the surface form
of the response utterance from the NL Generator
component, and then submits the goal associated
with the action to the GM. The GM then calls the
text-to-speech (TTS) component (which is a wrap-
per for MaryTTs) to produce speech output. Phys-
ical actions are handled in a similar way, except
that the Effector component corresponding to the
action handles the execution.

3.2 Utterance Prediction with Contextual
Bias

For utterance prediction, we implemented a bigram
language model trained on the frequency distribu-
tion of bigrams in the HuRIC corpus (see Sec. 4).
More sophisticated prediction algorithms are pos-
sible, but given the importance of speed, we chose
a simple and effective approach. The prediction is
computed as follows: given an initial word as input,
the model generates a set of complete utterances
based on the most probable follow-up words along
with their associated probability. A cumulative
probability threshold is used to determine when
a prediction is sufficient, at which point the full
utterance prediction with the highest probability is
sent to the parser. If the threshold is not reached,
then the algorithm waits for the next input word
and repeats the same process.

A contextual bias is included to represent the
influence of the situated environment as observed
by the robot and included in a world model. This
context influences the utterance predictor by in-
creasing the probability of specific bigrams by a
set amount, causing the model to favor those words.
In our preliminary implementation, the context is
hand-tuned for each utterance in the corpus', but
situated agents would be able to determine this con-

'For example, the context for the utterance “Grab the bottle

on the kitchen table” may be ‘kitchen’ (describing the envi-
ronment) and ‘bottle’ (describing an item in the environment)

&9

text by perceiving the environment, through task
knowledge, or through the dialogue history.

3.3 An Algorithm for Turn-Entry
Management

The TEM algorithm works as follows (see Algo-
rithm 1): First, an utterance is received incremen-
tally from the ASR component. In parallel, each
word is sent to the Utterance Predictor component,
where the bigram language model described in
Sec. 3.2 generates predictions based on the fre-
quency distribution of the training corpus and any
contextual bias (Algorithm 1, line 3).

If a prediction clears a set threshold, then it is
sent to the DM component. The DM first computes
a score for the prediction based on the cost of the
associated action and the confidence in the proba-
bility (line 5). If the score is above a set threshold
then it continues. The score threshold can be set to
minimize early execution for costly actions (e.g.,
actions that can cause delay to repair, such as move-
ment) in the case of a wrong prediction. If the score
threshold is exceeded, the DM next computes the
TRP and last-item entry points based on the utter-
ance start time and expected duration, accounting
for the known TTS delay, which was about 40 ms
in our system (lines 7-8).

Next, the preconditions for the action associated
with the predicted utterance are checked (line 9). If
the action exists and the preconditions are met, then
a response is set (but not yet generated; line 13);
otherwise, a failure explanation is generated and
immediately produced (line 11). In the case that
the preconditions are met, the DM sets the overlap
type (TRP, last-item, or collaborative completion)
based on a simple policy (line 14).> The action
corresponding to the prediction is then performed
(line 15). Finally, once the overlap type is set, a
separate thread running every 1 ms waits until the
current system time reaches the designated entry
point and then produces the associated response
(lines 22-26).

4 Evaluation

To evaluate the efficacy of our framework, we used
a corpus of directives to a household robot from
the S4R dataset of the HuRIC corpus (Bastianelli
et al., 2014). The dataset consisted of 96 impera-
tive utterances from a task in which people were

The current policy is that if the response utterance is an

acknowledgment then the system will produce a last-item
overlap, otherwise it will aim for the TRP with no overlap.



Algorithm 1 Turn-Entry Manager Algorithm

p.LI_entry = p.startTime + p.duration - TTS _delay - p.lastWord.duration

1: procedure TEM(Utterance u)
2 for all word € udo
3 Prediction p = generatePrediction(word)
4 if p.probability > probThreshold then
5: p-score = p.cost * p.confidence
6 if p.score >= scoreThreshold then
7 p.TRP_entry = p.startTime + p.duration - TTS _delay
8
9: actionStatus = simulate Action(p.action)
10: if actionStatus == fail then
11: generateResponse(failure)
12: else
13: p.response = setResponse()
14: p-setOverlapType(p.response)
15: performAction(p.action)
16: end if
17: end if
18: end if
19: end for
20: end procedure
21:

22: procedure WAITTOSPEAK(Prediction p)

23: if currentTime >= p. TRP_entry then
24: generateResponse(p.response)
25: end if

26: end procedure

asked to give commands to a physical robot operat-
ing in a household environment. The language was
unscripted and had few constraints, though people
were told about the robot’s capabilities and the lo-
cations and objects that it could recognize. While
the evaluation corpus contains only directives (no
dialogue), it includes the kinds of utterances com-
monly seen in situated task-based dialogues, to
which a robot would need to promptly respond
(and potentially initiate early), and serves as a use-
ful benchmark to test our framework.

The central aim of the evaluation is to show how
a situated agent given these instructions can make
predictions and respond at the TRP compared to
a non-incremental baseline system. We also seek
to demonstrate the potential for overlap produc-
tion and preemptive action execution. In addition
to the standard directives in the corpus, we also
evaluate several variants of them which contain dis-
fluency. It is important that SDSs are resilient to
disfluency, as it is common in team communication
channels (particularly in remote communication)
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and has been implicated in effective team perfor-
mance (Gervits et al., 2016a,b). Including disfluent
utterances in the evaluation was done to show that
the algorithm can handle variations in the input
and still produce timely responses. Table 1 lists
the utterance subsets that were constructed from
the original corpus data. These include: 1) the
original utterance, 2) utterance-initial non-lexical
filler, 3) non-lexical filler after the first word, 4) 200
ms pause before the final word, and 5) repetition
self-repair of the first word.

Subset Example Utterance
1 go to the kitchen
2 <um>go to the kitchen
3 go <uh>to the kitchen
4 go to the <200 ms pause>kitchen
5 go- go to the kitchen

Table 1: Utterance subsets used in the evaluation



4.1 Approach

First, the text strings from the HuRIC corpus were
extracted, along with the frequency distribution
of bigrams. Parse rules (linking the text string to
a semantic form) and actions (specifying the pre-
conditions and effect) were defined for each utter-
ance, and we generated the 5 subsets (see Table 1)
for each utterance in the corpus.

While the system is capable of processing speech
incrementally, we used incremental text input for
the evaluation in order to abstract away some of
the ASR noise (e.g., latency, errors, etc.)>. To sim-
ulate the timing associated with real speech, we
added a delay before each word corresponding to
180 ms x the number of syllables in the word. This
decision is based on the upper bound of the esti-
mated duration of a syllable from Wilson and Wil-
son (2005), and is roughly in line with data from
the Switchboard corpus, in which the mean syllable
duration was 200 ms (SD: 103) (Greenberg, 1999).
To handle the disfluency in Subsets 2-5, we used a
simple keyword-spotting approach to detect fillers
and pauses in the input, like most ASRs can do.
These fillers were excluded from the recognizer re-
sult, but importantly their duration was added to the
timing. We assume that fillers such as uh and um
are one syllable in length, and so have a duration
of 180 ms. While not all types of disfluencies are
handled with these subsets, we leave prolongations
and more complex self-repairs for future work.

The turn-taking policy used in the evaluation is
that the robot will attempt to come in at the TRP if it
made an early prediction and the action status of the
prediction was successful. If the action status was
a failure then the robot will overlap with the failure
explanation immediately. The score threshold was
set to 0 to maximize data collection. Other policies
are, however, possible such as never overlapping, or
using a higher score threshold to minimize wrong
predictions for costly actions.

4.1.1 Measures and Hypotheses

Our primary measure was the Floor Transfer Offset
(FTO), a term introduced by de Ruiter et al. (2006).
FTO is defined as the time difference in ms be-
tween the start of a turn and the end of the previous
turn. Positive values indicate gaps whereas neg-
ative values indicate overlap. We also computed

3In particular, we experienced significant delays with in-
cremental speech input. This is likely due to our Sphinx4 con-
figuration, as others have reported much faster performance
with the same ASR (Baumann and Schlangen, 2012).
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the accuracy of the prediction model, the timing
of when a prediction was made, and the point at
which an action was initiated.

Overall, we expected the algorithm to perform
well for the majority of examples in Subset 1, lead-
ing to smaller FTOs compared to a non-incremental
system. This gives us:

H1: Incremental utterance prediction would lead
to smaller FTOs and earlier actions than non-
incremental processing without online prediction.

The non-incremental baseline system we used is a
similar DIARC configuration, with the main differ-
ence being that input is non-incremental and the
Utterance Predictor component is bypassed. We
ran utterances from Subset 1 in which a correct
prediction was made through this non-incremental
configuration to compare performance. Next, we
expected that the timing in the system would work
out such that it can time its turn to come in at or
near the TRP for actionable predictions, and much
earlier for un-actionable ones. Thus we have:

H2: Incremental utterance prediction would en-
able the system to 1) hit the TRP entry point for re-
sponses to actionable predictions, 2) initiate those
actions early, 3) and produce interjacent (mid-
speech) overlap for un-actionable predictions.

If the system makes an early prediction, subsequent
processing takes minimal time, so it should be able
to hit the TRP for all but very late predictions. It
would also be able to initiate the action shortly after
the DM receives the prediction. For early predic-
tions that are not actionable, it should produce an
interjacent overlap well before the utterance is fin-
ished. Finally, we expect performance on Subsets
2-5 to be dependent on whether a prediction was
made before or after the disfluency was detected.
This is because the TRP entry point is computed
from the expected duration of the predicted utter-
ance, and this duration may be incorrect if the pre-
diction did not incorporate the additional timing of
the disfluency. This leads to:

H3: The approach would be robust to disfluency
in the input, but only if the disfluency was detected
before a prediction was made.

Given H3, we expect the FTO for Subsets 1 and 2
to be close to 0 for correct predictions, since these
involve either no filler or an utterance-initial filler
(which will always be detected before a prediction
is made). Subset 4 will likely have a negative FTO,
as predictions will usually be made before the final
word, and so the 200 ms pause will not be added to
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Figure 3: Histograms showing the floor transfer offset
for A) predictive system and B) non-incremental (base-
line) system for cases in which a correct early predic-
tion was made. N = 68.

the utterance duration, leading to earlier turn entry.

4.2 Results

Below we present the results of the evaluation de-
scribed in Sec. 4. In general, prediction accuracy
of our bigram model was 70.8% with 340 of 480
test utterances predicted correctly. On average, a
prediction was made 50.8 4= 17.7% of the way into
an utterance, duration-wise.

4.2.1 H1: Incremental vs Non-Incremental
Processing

H1 dealt with the difference in FTOs between our
framework implementation and a non-incremental
baseline configuration of the same architecture. We
compared the correctly-predicted utterances from
Subset 1 (N=68) and the same utterances tested
on the baseline system. A Welch’s independent-
samples t-test showed a significant difference be-
tween FTOs for the incremental prediction cases
(M =-1.1 £ 3.2 ms) compared to the baseline cases
(M =1409.5 £ 8.6 ms), #(85) = 1259.2, p < .001
(see Figure 3). These results support H/ in that
a system running our framework was able to take
a turn significantly earlier than a non-incremental
one that did not use the framework.
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4.2.2 H2: Timing Turn-Entry

H2 stated that our framework implementation
would allow the system to reliably come in at the
TRP for actionable predictions, and produce early
failure explanations in the form of interjacent over-
lap for un-actionable (i.e., incorrect) predictions.
For Subset 1 (fluent) utterances, we found a mean
FTO of -1.1 & 3.2 ms. Since an FTO of 0 means
a seamless transition, these results support H2 in
that the system was able to time its turn to hit the
TRP very accurately for actionable predictions. For
those predictions that were un-actionable in Subset
1, the system produced a failure explanation with
amean FTO of -683.2 + 713.7 ms (see Figure 4).
The earliest FTO was -2780 ms and the latest was
-8 ms. These results provide further support for H2
in that the system was able to provide early failure
explanations (i.e., interjacent overlap) when a pre-
dicted action could not be performed. See Table 2
for an overview of the results.
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Figure 4: Floor Transfer Offset for cases in which the
predicted utterance could not be performed. The sys-
tem produced an interjacent overlap at the earliest op-
portunity. N = 15

To demonstrate preemptive action execution, we
calculated (for Subset 1) the earliest point at which
an action can be initiated. This is the point at which
a prediction was sent to the DM and the precondi-
tions for the corresponding action were checked.
The difference between the end of the utterance
and this point was 635 + 197 ms, meaning that on
average, an action could be initiated 635 ms before
the end of an utterance.

As a supplementary analysis and to evaluate per-
formance with varying syllable duration, we tested
10 random utterances from Subset 1 in which each
syllable in the input was assigned a random dura-
tion between 100 and 200 ms (following Greenberg
(1999)). The average syllable count for these utter-
ances was 5.7 & 1.6 and the average FTO was -16.5



TRP Entry

N FTO (early prediction) N
All 340 -55.7£88.0 65
Subset1 68 -1.1+£3.2 13
Subset2 68 -5.5+£31.8 13
Subset3 68  -40.7 £75.9 13
Subset4 68  -191.2 +46.1 13
SubsetS 68  -41.0 +£75.6 13

Interjacent Entry

FTO (no prediction) N FTO

157.9 +47.5 75 -709.3 £ 714.2
164.8 + 21.3 15 -683.2 +713.7
1483+ 194 15 -710.9 +703.5
147.8 £ 154 15 -746.4+717.6
1499 +13.9 15 -687.6 + 780.1
176.0 = 101.4 15 -630.6 +661.8

Table 2: Table of evaluation results. Mean values for Floor-Transfer Offset (FTO) are displayed for all evaluation
cases (N =480). For a given case, either an early prediction was made, or no prediction was made. If the prediction
was correct and actionable, then a TRP entry was selected and an acknowledgment was produced. If the prediction
was un-actionable (i.e., incorrect), then an interjacent overlap was selected and a failure explanation was produced.

+ 87.9 ms, with a range of -155 to 152 ms. The
difference between these results and the original
set was that the predicted duration could now be
wrong, and this was reflected in the slightly early
entry times. Still, the mean FTO was close to 0,
suggesting that the model still performs well with
variable input.

-120

Floor Transfer Offset (ms)

]

Subset 3

]

Subset 5

—=
Subset 2

Subset 1 Subset 4

Utterance Subset

Figure 5: Floor Transfer Offset for correct predictions
in each utterance subset. N = 340

4.2.3 H3: Robustness to Disfluency

To evaluate H3, which involved the robustness of
the algorithm to disfluency in the input, we ana-
lyzed all of the disfluency cases in which a correct
prediction was made (Subsets 2-5; N = 272). As
expected, a key factor in correct timing here had
to do with whether the prediction was made be-
fore or after the filler. This was confirmed with an
independent-samples t-test, which found a signifi-
cant difference between FTOs for predictions made
after the filler (M = -2.4 £ 0.12 ms) compared to
those made before the filler (M = -188.1 £+ 0.17
ms), #(127) = 44.6, p < .001. Predictions made
before the filler were most common in Subset 4
(making up 69% of the examples) and predictions
made after the filler were made up entirely of Sub-
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Figure 6: Robot performing a situated interactive task
involving dialogue.

sets 2, 3, and 5. In Figure 5, we show the mean
FTO for each of the utterance subsets.

4.3 Demonstration

To supplement the evaluation and show a real-
world use-case, we ran the framework on a
PR2 robot using real speech input (see Fig-
ure 6). A video of the interaction is available at
https://vimeo.com/410675260. This video com-
pares our baseline (non-incremental) system to the
system running our turn-entry timing framework,
and demonstrates that a robot can reliably make
predictions about ongoing utterances using speech
input, and that it can initiate actions and responses
early.

5 Discussion

5.1 Contributions

Overall, we found support for HI, H2, and partial
support for H3.

For HI, we demonstrated that our system was
able to take a turn significantly faster than a non-
incremental version of the same architecture. This



is not surprising, as the advantages of incremental
processing are well known (Baumann et al., 2017).
However, the comparison quantifies the amount of
time that our approach saves.

H2 was also supported in that the system was
able to hit the TRP very accurately for correct and
actionable predictions (see Figure 3 A). Moreover,
those actions were initiated on average 635 ms
before the TRP, providing further support for H2.
For un-actionable predictions, interjacent overlap
was produced on average 709 ms before the TRP,
suggesting very early turn entry (see Figure 4).

Finally, H3 was partially supported in that
fillers that were processed before a prediction (i.e.,
utterance-initial fillers) had their duration added to
the overall utterance duration, but fillers towards
the end of an utterance (after the prediction) were
not detected in time. In these latter cases, the sys-
tem came in earlier than expected (40 - 191 ms
early), which would be a last-item overlap, and
would likely not require repair (see Figure 5).

Overall, our domain-independent framework can
be integrated into various SDSs in order to support
responsive dialogue behavior and early actions, as
well as to enable certain kinds of overlap that would
not be achievable in other approaches.

5.2 Limitations and Future Work

One limitation is that the evaluation involved text
rather than real speech and only considered simple
directives. More work is clearly needed to evaluate
the accuracy of the proposed approach with respect
to variable speech input. Nevertheless, state-of-the-
art ASRs can display very low recognition latency
(e.g., Baumann et al. (2009)), suggesting that this
would not significantly change our results.
Another limitation is that a fixed syllable dura-
tion was used to estimate timing, which was the
same duration used in the input text. Since syllable
length is a parameter in the model, this can be ad-
justed as needed to better estimate spoken syllable
length. We have shown in a supplementary analy-
sis on 10 utterances that the approach works rea-
sonably well with variable syllable length. Future
work will test other methods of estimating utter-
ance length, including the clever duration modeling
technique used in Baumann and Schlangen (2011)
involving the ASR and TTS modules. The current
results can be thought of as a best case scenario,
and we expect that with more accurate duration
estimates of real speech, system performance will

94

approach this upper bound.

Recovering from incorrect predictions is an im-
portant area for future work. Currently, when the
system makes a prediction it cannot change it, even
if new input comes in that contradicts the predic-
tion (this is because the timing is very tight). In
future work, it should be possible for the TEM to
be updated if the prediction changes. This will
support the handling of utterances such as those in
Subset 4 which were characterized by late pauses.

Finally, the prediction model itself can be im-
proved, perhaps through the use of a neural ap-
proach (Maier et al., 2017) or one that incorporates
syntactic or prosodic features (Ward et al., 2010).
Though we focus on lexico-syntactic cues for pre-
diction, future work could leverage recent findings
suggesting that prosody is more important to end-
of-turn projection than previously thought (Barthel
et al., 2016; Bogels and Torreira, 2015).

6 Conclusion

We have introduced a framework for turn-entry tim-
ing in human-robot dialogue which enables a situ-
ated agent to make incremental predictions about
an ongoing utterance and time its turn to hit a vari-
ety of entry points. We implemented the framework
in a robotic architecture and evaluated it on a corpus
of human-robot directives from a situated interac-
tive task. The system integrating our framework
is significantly faster than a non-incremental sys-
tem, and can produce fluid responses and various
types of overlap, as well as execute actions preemp-
tively. Moreover, the approach is robust to several
forms of disfluency in the input. This framework
offers a number of benefits for situated dialogue
agents, including better responsiveness, the ability
to produce various types of overlap (interjacent,
last-item, backchannels, and collaborative comple-
tions), and preemptive action execution. These
interactive capabilities are a step toward more nat-
ural and flexible turn-taking for situated dialogue
agents.
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Abstract

In working towards accomplishing a human-
level acquisition and understanding of lan-
guage, a robot must meet two requirements:
the ability to learn words from interactions
with its physical environment, and the ability
to learn language from people in settings for
language use, such as spoken dialogue. In a
live interactive study, we test the hypothesis
that emotional displays are a viable solution to
the cold-start problem of how to communicate
without relying on language the robot does
not—indeed, cannot—yet know. We explain our
modular system that can autonomously learn
word groundings through interaction and show
through a user study with 21 participants that
emotional displays improve the quantity and
quality of the inputs provided to the robot.

1 Introduction

In any first language acquisition task, three ques-
tions must be resolved:

1. What kinds of words to be learned?
2. How to model those words’ semantics?
3. How to overcome the cold-start problem?

To answer the first question, we note that co-
located spoken dialogue interaction is the funda-
mental setting of first language acquisition for hu-
mans (Fillmore, 1981; McCune, 2008) and that
children generally tend to focus on physical objects
first, as evidenced by age-of-acquisition datasets.
For this reason, concrete words that denote physi-
cal objects are learned earlier than abstract words
(Kuperman et al., 2013). This informs the answer
to the second question: the model of semantics
should be able to connect language with the phys-
ical world, which is part of the goal of grounded
semantics (e.g., grounding a color word like green
with visual information).
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This still leaves the third question: how can a
system learn word groundings in a physical, co-
located setting without using words it has yet to
learn? In answering this, there is evidence that
having a physical body is a requirement for boot-
strapping semantic learning of concrete word deno-
tations (Smith and Gasser, 2005; Johnson, 2008).
Therefore, a system that can use extra-linguistic
cues through physical signals can potentially over-
come the cold-start problem and learn words with-
out uttering words it has never heard.

In this paper, we test the hypothesis that emo-
tional displays, specifically confusion and under-
standing displays performed by an embodied robot,
are a viable solution to the cold-start problem. Our
reasons are two-fold: emotional displays can relate
the robot’s state to its human teacher, and emo-
tional displays are developmentally appropriate for
the most common language acquisition setting (i.e.,
an adult teaching a child) (Adolphs, 2002), and
would therefore not lead a human user to make in-
correct assumptions regarding the robot’s level of
comprehension.

In an interactive study with 21 participants, our
robot independently and autonomously explored
a physical setting and elicited relevant word refer-
ences and feedback from the participants, who were
tested both with a robot that displayed emotions
and a robot that did not. For grounded semantics,
we opted for a model that is incremental (i.e., op-
erates at the word level), that can map individual
words to physical features, and that can learn a
mapping between a word and physical features us-
ing only a few examples—the words-as-classifiers
model (WAC) (Kennington and Schlangen, 2015).
In the WAC model, each word is represented by
its own classifier trained on “not / is” examples
of real-world referents. The WAC model has been
used in interactive dialogue scenarios with robots
before (Hough and Schlangen, 2017). Importantly,
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our system not only learned word groundings as it
interacted with participants, it also incorporated a
reinforcement learning model to learn from positive
or negative participant feedback which emotional
valence (either understanding or confusion) to dis-
play. Analyzing the results from the surveys and
the learned WAC classifiers, we discovered that the
use of emotional displays improved the quantity
and quality of the inputs provided to the robot, with
the effect modulated by the valence and frequency
of the emotional displays.

2 Background & Related Work

It has been shown that people assign anthropomor-
phic characteristics, social roles and models when
interacting with robots (Kiesler and Goetz, 2002),
which has implications for the kinds of settings
and tasks that robots can carry out with human
collaborators. One dimension that people anthro-
pomorphically assign to robots is emotion. We
cannot prevent users from making emotional judge-
ments of a robot’s behavior (Novikova et al., 2015).
Instead, if a robot’s behavior were designed to
take these emotional judgements into account, the
robot could be made more predictable and more
interpretable by humans in a complex environment
(Breazeal, 2005). Indeed, emotional features can
make a robot appear more lifelike and believable to
humans, thereby making humans more prone to ac-
cept and engage with them (Cafiamero, 2005). Of
course, the choice of emotions must be taken with
care; Claret et al. (2017) showed that happiness and
sadness emotional displays during primary tasks
(e.g., such as transporting an object) could confuse
human interlocutors as robot actions (e.g., jerki-
ness, activity, gaze), and robot movement are also
emotionally interpreted.

Similar to conversational grounding, Jung
(2017) explained how affective grounding—the co-
ordination on content and process of affect—occurs
between robots and human users. We handle this
particular phenomenon by only considering a posi-
tive and negative valence of a single affective type
(i.e., confusion vs. understanding), and by estab-
lishing through an evaluation that they are indeed
interpreted the way we expect before we use them
in a language learning task.

Robots have been used in many language ground-
ing tasks; Matuszek (2018) gives an overview of
the recent literature. In some cases the cold-start
problem is handled by Wizard-of-Oz paradigm
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studies where a robot that knows no word deno-
tations interacts with human participants, but the
robot is in fact being controlled by a confederate.
In this paper, our robot is fully autonomous and
has no pre-programmed language production capa-
bilities; that is, the robot will never utter words it
hasn’t encountered within an interaction.

Beyond word learning, our approach attempts
to ground language and learn which emotions to
display. This work builds on Ferreira and Lefevre
(2015) which outlined the approach we take for a
reinforcement-learning based on “polarized user
appraisals gathered throughout the course of a vo-
cal interaction between a machine and a human”.
Their work outlined the design of a hypothetical
experiment; we have taken this a step further by
actually implementing this design in a live interac-
tive study. We take user feedback to be the explicit
reward signal (those user inputs that match the ex-
plicit positive or negative feedback). Like their
work, our approach does require a lengthy explore
phase at the outset.

3 System

In this section we explain our choice of robot, and
how we modeled the dialogue for language learning
with integrated robot modules.

Choice of Robot: Anki Cozmo Cozmo is small,
has track wheels for locomotion, a lift, and a
head with and OLED display which displays its
eyes. The head has a small camera and a speaker
with a built-in speech synthesizer (with a “young”-
sounding voice). With a Python SDK, we can eas-
ily access Cozmo’s sensors and control it. Impor-
tantly for our study, we will make use of Cozmo’s
camera for object detection, human face recogni-
tion, and locomotion functionality for navigation
between objects. Cozmo does not have an internal
microphone—we make use of an external one.

The choice of robot affects how humans will
treat it, and it is important for our study that users
perceive the robot as a young language learning
child. We opted for the Anki Cozmo robot because
Plane et al. (2018) showed that participants in their
study perceived Cozmo as young, but with potential
to learn. Cozmo’s affordances are likewise consis-
tent with this perceived age and knowledge-level.
Cozmo is also a good option for this work because
it has been recently demonstrated that humans per-
ceive the same emotions and positive or negative
valences from Cozmo’s over 940 pre-scripted be-



haviors (McNeill and Kennington, 2019). Taken
together, these studies show that (1) we can safely
assume that human participants will treat Cozmo at
an appropriate age level, and (2) we can assume that
human participants will properly interpret Cozmo’s
behaviors as displays of emotion.

Indicating Objects If Cozmo is to learn deno-
tations for physical objects, then objects must be
present in the environment that Cozmo and a person
share. Also, the person needs to be able to identify
the object that Cozmo is attending to. Once these
requirements are met, then Cozmo can learn the
correct denotations for objects. Noting that Ma-
tuszek et al. (2014) has been able to successfully
use deictic gestures to isolate objects, we assume
participants will denote objects that the robots are
already attending to, which is what adults do for
children learning their first language (Hollich et al.,
2000) (that is, the perspective Cozmo takes is ego-
centric). More practically, Cozmo is small, which
places its camera very low to the surface of the
shared environment. Therefore, Cozmo must be
very close to objects to “see” them through its cam-
era, which effectively isolates objects without the
need for deictic gestures from the robot. When
Cozmo does need to indicate an object, Cozmo
moves its lift up and down while directly in front
of the object of intended reference.

Social Conventions Motivated by Michaelis and
Mutlu (2019), Cozmo needs to exhibit minimal
“socially adept” behaviors if language learning is
going to take place. We identify two behaviors
that we incorporate into Cozmo: (1) eye contact;
that is, in certain states (e.g., Cozmo is looking
for feedback from the user) Cozmo looks up and
turns in place until it finds a face, and (2) motion;
that is, Cozmo must nearly always be moving—for
several reasons, first to signal to an interlocutor
that Cozmo is still functional and second, children
who are learning language rarely sit still. These
random motions occur outside of the task actions
(explained below) and give priority to those task
actions when they occur.

Learning To answer the question can emotions
serve as scaffolding to solve the cold-start lan-
guage learning problem?, we take a reinforcement
learning (RL) approach. Given a dialogue state and
a robot state, the RL regime learns which emotional
valence to display: confusion or understanding.
This learning takes place at the same time that the
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robot is learning grounded word meanings using
WAC as it interacts with a person and its environ-
ment.

3.1 System Modules

For the balance of this section, we describe the
modules that make up our word learning dialogue
system and how they are integrated with the Cozmo
robot. The modules include:

Visual Perception

Object Detection

Feature Extraction

Automatic Speech Recognition
Grounded Semantics

Action Management

e Navigation

SR e

e Emotional Displays
e Word proposals
7. Emotion Management

Visual Perception The Visual Perception mod-
ule handles the event of a new image being captured
by Cozmo’s camera. Cozmo’s camera produces a
color image at 30 frames per second (320x240 pix-
els). The output of this module is a single frame
image.!

Object Detection This module uses the Mask
RCNN graph (He et al., 2017) adapted taken from
the tensorflow library. We used a model pre-trained
on a dataset of sixty separately labeled grocery
items from the MVTec D2S dataset (Follmann
et al., 2018). We apply this configuration of the
Mask RCNN model for drawing bounding boxes
around objects in images received from the Visual
Perception module. We discard the labels and only
make use of the bounding box information. The
output of this module is the bounding box informa-
tion of all detected objects in view.

Feature Extraction The Feature Extraction
module contains an image classification model
built on the Keras implementation of VGG19 (Si-
monyan and Zisserman, 2014) which is trained
using the ImageNet (Deng et al., 2009) corpus
weights.> This module takes an image and bound-
ing box information, extracts each sub-image con-
taining each object, then passes those through the
Keras model, thereby extracting features. We use
the second-to-last (i.e., £c2) layer as the feature

"For our system, we only considered three frames per
second and dropped the rest.

2We tested on more recent and principled models such as
efficientnet (Tan and Le, 2019), but found the simpler Keras
model to work better for our task.



representation of each object, which is a vector that
represents the object. This model outputs a vector
for each detected object.

We motivate this approach of using an existing
object detector only for bounding box information
and another model for object representation be-
cause pre-linguistic children can already detect iso-
lated objects before they learn denotative words for
those objects—our downstream Grounded Semantic
module learns the mappings between words and
objects. Moreover, this allows word learning to
occur without relying on the limited vocabulary
of any given object detector—those trained on ima-
genet only have a vocabulary of 1000 words, and
those words are generally nouns, whereas attributes
such as color and shape (i.e., adjectives) should be
allowed.

Automatic Speech Recognition The Automatic
Speech Recognition (ASR) module transcribes user
speech. This module then categorizes user speech
according to three exclusive dialogue acts:

e positive user feedback (e.g., yes)
e negative user feedback (e.g., no)
e object denotations (all other words)

The positive and negative feedback dialogue acts
are used as environment signals to our reinforce-
ment learning regime and are identified by simple
word spotting. All other utterances are regarded
as object denotations for the Grounded Semantic
module.

Grounded Semantic Module The Grounded Se-
mantic Module is tasked with learning word denota-
tions as well as determining which word to utter in
certain states. As noted above, for this we leverage
WAC. This module takes in transcribed speech from
the ASR module and the top (i.e., most confident)
object feature representations from the Feature Ex-
traction module (i.e., one set of object features per
word use). In an explore state, the robot records the
feature representations that it receives and assigns
them as positive examples to words that are heard
within a 10 second window. Negative examples for
words are taken from the largest rectangular area
of the image from outside of the top bounding box.
Anytime a word has been heard three times, the
WAC classifier for that word is trained. The classi-
fiers themselves are scikit-learn logistic regression
classifiers (with 12 normalization).? Trained clas-

3We attempted to use other classifiers, such as multi-layer
perception, as well as other feature representations, such as

sifiers can be improved each time a word is heard
by re-training the classifier given the new training
examples from the interaction.

Action Management For Action Management
(which includes dialogue management), we use

PyOpenDial (Jang et al., 2019). There are sev-
eral navigational actions (the first three make

up explore actions, the latter two exploit ac-
tions): find-object, approach-object,
indicate-object, propose-word, seek—
face. Several state variables are tracked to deter-
mine which of the above actions are taken, includ-
ing the most recent navigation action, if the robot
has found an object, and if the robot has approached

an object. The robot begins in a find-object

state where it does not yet see an object. This

triggers random left and right turning, forward

and backward driving until an object comes into

view (determined by the Object Detection module).
When an object is in view, the robot transitions

to an approach-object state which alternates

turning left and right to keep the object in the cen-
ter of the robot’s camera frame while driving short
distances until the object takes up a specified per-
centage of the camera frame. At this point the
robot transitions to indicate-object which
it accomplishes by moving its lift quickly up and
down multiple times. When the Action Manage-
ment module enacts a propose—word action, the
robot utters a word that it “thinks” it learned (i.e.,
the robot has a trained classifier for the word in
question and it fits above a certain threshold for
the object). After a proposal, the robot enters per-
forms a seek—face action to ground with the
interlocutor that it expects them to give it positive
or negative feedback.

Emotion Management This module is where
the RL (i.e., reinforcement learning) takes place.
The RL model (which leverages PyOpenDial Q-
Learning functionality implemented as a dynamic
Bayesian network with Dirichlet priors and a
Gaussian posterior) tracks just a single variable:
robot-confidence (RC), a number that repre-
sents the robot’s internal confidence that it should
move into a propose-word state. The following
modules affect the RC:

e ASR: if a positive feedback occurs anytime,
the RC increases by 2; RC decreases by 4 if

efficientnet, but found that this model is the most effective for
fast language acquisition in this setting.
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negative feedback is heard.

e Action Manager: if a propose—-word state
is reached (resulting in Cozmo uttering a
word), and there is positive feedback from
ASR, then the confidence increases by 5. If
negative, the confidence decreases by 4.

The emotional displays take place before a
propose—-word action. This module uses RL to
learn whether to display an understanding emotion
or a confusion emotion. The above listed mod-
ules alter the RC dynamically over time (though
the min/max values of RC are -10 and +10 respec-
tively). The reward policy is as follows: if RC is
positive, the policy is rewarded +5 for displaying
understanding, and -5 if it displayed confusion; if
RC is negative, the policy is rewarded -5 for dis-
playing understanding and +5 for confusion. In
this manner, the RL can determine, on its own,
the RC threshold for producing understanding vs.
confusion displays.* We chose confusion and un-
derstanding for two reasons: first, because prior
work has shown that confusion and understand-
ing are opposite valences of the same affect which
are very interpretable, particularly when looking at
Cozmo’s movement and eyes (McNeill and Ken-
nington, 2019); and second, because confusion and
understanding are emotions that lend well to the
language learning task—the robot can display con-
fusion in states where it is unsure how to act, and
understanding in states where it knows how to act.
To determine which behaviors would be perceived
by users as confusion or understanding, we col-
lected Cozmo’s behaviors that were labeled with
high confidence as either of those emotions by the
model in McNeill and Kennington (2019). We
then asked 7 people to watch recorded videos of
Cozmo performing those emotions and rate them
on a 5-point Likert scale. This resulted in 11 highly-
rated behaviors (i.e., lasting from 3-10 seconds) for
confusion or understanding. The Emotion Manage-
ment model randomly selects one of the 11 for each
emotion when producing a display of that emotion.

The full learning pipeline is depicted in Figure 1.
Object detection occurs while users say words that
refer to the objects in Comzo’s view. Object fea-
tures are extracted and used for WAC to learn the

*More principled models of deep reinforcement learning
are available, but we opted for this approach because we
wanted our RL module to learn from minimal real interactions—

deep learning approaches are known to require large amounts
of data.
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Figure 1: Schematic of our system: Visual perception
passes camera frames to an Object Detector, which an-
notates objects with bounding boxes, then the Feature
Extractor represents each of the detected objects as vec-
tors that are passed to the Grounded Semantics module.
The ASR transcribes speech, and passes those strings to
the Grounded Semantics module and to the Reinforce-
ment Learner (i.e., positive or negative feedback dia-
logue acts). Both Object Detection and Grounded Se-
mantics pass their output to the Robot Actions (i.e., Ac-
tion Management) which makes decisions about which
actions to take, then actually performs those actions on
the robot.

fitness between words and objects. If the word fits
above a threshold, then Cozmo proposes that word
to the user.

4 Evaluation

In this section, we explain how we evaluated our
model with real human participants to determine
if emotional displays increase engagement for lan-
guage learning. We used two versions of our sys-
tem: one which only performed the language learn-
ing task, and one which additionally included dis-
plays of emotion—the choice of which emotion was
decided by a RL model. Our evaluation included
objective measures logged by the system, as well
as subjective measures collected using participant
questionnaires.

4.1 Procedure

Study participants agreed to meet in a small room
in the University’s Computer Science building. The
conference room is set up for the participant inter-
action as follows: a table is placed to one side of
the room, with one chair positioned in the middle
of the longer side for the study participant. The
experimenter sits at the head of the table, with a
laptop positioned between himself and the partici-
pant. This laptop is running the robot’s interactive



script and the microphone that feeds the ASR mod-
ule. A container of objects (specifically, pentomino
blocks) is placed on the table; a handful of these
have been randomly scattered on the table before
the participant arrives in the room. The Cozmo
robot is not introduced to the participant until the
participant has signed an informed consent form
and the task has been explained to them.

The experimenter was present to monitor the
state of the robot and the microphone, troubleshoot
any problems that might arise, and answer any ques-
tions the participant might have over the course of
the interaction. The experimenter was permitted
to offer a constrained set of coaching tips to the
participant during the interaction, if the participant
needed a reminder of the task or the initial instruc-
tions. The study participant and the robot were
observed with cameras, which recorded audio and
video from the interaction. Following each inter-
action the user moved to the experimenter’s laptop
and completed a questionnaire. Following the com-
pletion of both interactions and subsequent surveys,
the participant was paid eight U.S. dollars.

We recruited twenty-one study participants to in-
teract with the Cozmo robot for two fifteen-minute
periods over the course of a single session. Study
participants were largely college students recruited
from Boise State University’s Computer Science
department. Participants’ ages range from their late
teens to their forties. Eight of the participants were
women; thirteen were men. Following each fifteen-
minute interaction, the participant was asked to
answer every question of the same questionnaire.
The entire study took approximately one-hour.

We employed a within-group study design,
meaning that each participant went through the
same procedure twice, one time in which the inde-
pendent variable (i.e., with emotional display) was
present, and again when it was absent (i.e., without
emotional display). To mitigate learning effects,
the order in which the test condition was presented
was alternated.

4.2 Task

First, the Cozmo robot was introduced to the par-
ticipant, with an explanation of the following affor-
dances and instructions: (1) Cozmo has a camera
that can see them and the world; (2) Cozmo has a
microphone that can hear them; (3) Cozmo doesn’t
know anything, but is “curious” to learn more about
the world; (4) for the next 15 minutes, it is the par-
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Figure 2: Cozmo looking down at an object (left) and
looking up, seeking a face (right).

ticipant’s job to try to teach Cozmo as many words
as they can, using the objects in the room, what-
ever they have on them, and their imagination; (5)
if Cozmo gets off-track, they are allowed to pick
Cozmo up and move it around; (6) when Cozmo
is looking up, it is looking for their face; (7) when
Cozmo “feels confident” enough, it will guess a
word — if it gets it right, say “Yes.” If not, say, “No.”
This feedback will help Cozmo learn. Figure 2
shows Cozmo in its task setting in two states: ob-
serving an object (left figure) and seeking a face
(right figure).

4.3 Metrics

System Logs We track the number of utterances
(termed “Heard Words) made by the participants,
including positive and negative feedbacks, and the
number of proposals made by the robot which,
taken together, form a proxy for engagement:
higher numbers denote more engagement.

Participant Questionnaires We also evaluate
the robot based on questionnaire responses written
by the study participants following both sessions
of the study. We used the Godspeed Questionnaire
(Bartneck et al., 2009), a likert-scaled questionnaire
with 24 questions ranging from negative to positive
ratings of a robot’s anthropomorphism, animacy,
likeability, perceived intelligence, and perceived
safety. In addition to the Godspeed questions, we
also asked participants the following to ascertain
their perceptions of our system and robot:

How attached to the robot did the user feel?

Were they engaged by the robot?

What did they think the robot wanted?

‘What did they think the robot was trying to do?

Would they like to spend more time with the robot?
Why or why not?

4.4 Results

Table 1 shows the results of the effect that emo-
tional displays had on heard words, positive feed-
backs, negative feedbacks, and proposals (note that



proposals represent trained WAC classifiers that
reached the threshold for being uttered). Compar-
ing the results of the experimental trials in which
the robot displayed emotions to the control trials,
it is apparent that the amount and quality of the
user feedback to the robot improves in the presence
of emotional displays. The sole caveat is negative
feedback, which was offered the most on average
by users interacting with a robot that wasn’t making
emotional displays.

Table 1: The effect of emotional displays on a language-
acquisition task

(Mean / std. dev) | without emotions | with emotions
Heard Words 58.5/69.4 72.9/107.1
Positive Feedbacks 11.9/12.2 16.3/27.5
Negative Feedbacks 7.4/7.0 6.6/6.5
Proposals 78178 9.8/17.5

Exploring the effect of participant learning on
the language-acquisition task in Table 2 shows that
users spoke more words and offered more positive
feedback in the second trial than in the first, on av-
erage. Negative feedback was equivalent between
the two trials, and the robot made more proposals
in first trials, on average. This shows that learning
effects had a minimal impact on user interaction
with the robot.

Table 2: The effect of participant learning on the
language-acquisition task

(Mean / std. dev) first trial | second trial

Heard Words 60.6/70.3 | 64.1/103.3

Positive Feedbacks | 9.8/11.4 | 16.8/26.5
Negative Feedbacks | 6.7/6.9 6.7/6.7
Proposals 9.1/7.8 751176

Next, we analyze the participant surveys to see
if the presence of emotional displays biased the
participant toward higher estimations of robot in-
telligence. For both the control and experimen-
tal trials, the average estimated age of the robot
is two years old, which follows prior work using
Cozmo (Plane et al., 2018) and is an appropriate
assigned age range for this study. Additionally, the
participant surveys reinforce the ambiguous role of
emotion in human estimations of robot intelligence,
irrespective to trial order, as seen in Figure 3.

User engagement also appeared largely uninflu-
enced by the presence of robot emotional displays,
or the trial order, as seen in Figure 4. This is rein-
forced by the high p-value between user responses
to the Godspeed questionnaire and the total number
of emotional displays produced by the robot. As
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WITH EMOTIONS: user ratings, unintelligent (1) to intelligent (5)

WITHOUT EMOTIONS: user ratings, unintelligent (1) to intelligent (5)

FIRST TRIALS: user ratings, unintelligent (1) to intelligent (5)

SECOND TRIALS: user ratings, unintelligent (1} to intelligent (5)

Figure 3: X-axis: Participants’ ratings of robot intel-
ligence from 1: unintelligent to 5: intelligent. Y-axis:
the number of participants who selected that response.
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Figure 4: X-axis: Participants’ responses to the ques-
tion, “Would you like to spend more time with the
robot?” from 1: not at all to 5: very much. Y-axis:
the number of participants who selected that response.

see in 3, there was a weak correlation and weak
evidence to support a relationship between user
interest and engagement with the robot, and the
total number of emotional displays produced by
the robot.

Table 3: Correlations between the total number of emo-
tional displays and the following user questionnaire re-
sponses

correlation | p-value
moves elegantly 0.48 0.03
is nice 0.40 0.09
is interesting to interact with 0.34 0.15
would like to spend more time with 0.17 0.49

In our RL module, the Q-Learning algorithm
learned to put all weight onto one emotional display
to the exclusion of the other for each interaction.
This may have been due to the training batch size
and training time for the Q-Learning algorithm (10
max samples and a 5 ms sample rate, rate to keep
the interaction from slowing down). This did not
have a negative effect on the choice of emotional
displays produced by the robot; to the contrary,
the emotional displays chosen by the RL module
facilitated engagement.

5 Conclusion

We conducted an experiment with twenty-one par-
ticipants who had to rely on the robot’s displays
of confusion and understanding and their own per-
formance in a language acquisition task as context.
We analyzed our results by comparing the partici-
pants’ survey responses and the robots’ Grounded
Semantics classifiers between the experimental and
control trials. We found that a robot that displayed
a combination of confused and understanding emo-
tional displays — positive- and negatively-valenced
emotion — gathered more inputs, and more use-
ful inputs (positive feedback), than a robot that
only engaged in task-specific actions (i.e., orient-
ing to objects; seeking out the user’s face). This in
turn led to the robot making more word proposals,
which did not lead to greater engagement. User
estimations of the robot were generally more posi-
tive estimations, supporting our choice of the Anki
Cozmo robot for this task. Emotional displays
did not incline participants to over-estimate the
robot’s language understanding. We can conclude
that emotion is an important aspect in handling the
cold-start problem where a system can only use
words it has heard.
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In future work, we will test different policies for
the reinforcement learning regime including mea-
sures for novelty rewards (i.e., hearing new words)
as well as repeated words. Another aspect that de-
mands further investigation would be the timing of
emotional displays in the language learning interac-
tion. Importantly, we will go beyond the two basic
emotions explored here and incorporate additional
emotions (e.g., the 8 valence pairs used in McNeill
and Kennington (2019)) as the basis for additional
engagement and perhaps use emotional states as
features for the grounded classifiers.
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Abstract

Reinforcement learning and probabilistic rea-
soning algorithms aim at learning from interac-
tion experiences and reasoning with probabilis-
tic contextual knowledge respectively. In this
research, we develop algorithms for robot task
completions, while looking into the comple-
mentary strengths of reinforcement learning
and probabilistic reasoning techniques. The
robots learn from trial-and-error experiences
to augment their declarative knowledge base,
and the augmented knowledge can be used
for speeding up the learning process in poten-
tially different tasks. We have implemented
and evaluated the developed algorithms using
mobile robots conducting dialog and naviga-
tion tasks. From the results, we see that our
robot’s performance can be improved by both
reasoning with human knowledge and learning
from task-completion experience. More inter-
estingly, the robot was able to learn from navi-
gation tasks to improve its dialog strategies.

1 Introduction

Knowledge representation and reasoning (KRR)
and reinforcement learning (RL) are two impor-
tant research areas in artificial intelligence (Al)
and have been applied to a variety of problems in
robotics. On the one hand, KRR research aims to
concisely represent knowledge, and robustly draw
conclusions with the knowledge (or generate new
knowledge). Knowledge in KRR is typically pro-
vided by human experts in the form of declara-
tive rules. Although KRR paradigms are strong
in representing and reasoning with knowledge in
a variety of forms, they are not designed for (and
hence not good at) learning from experiences of
accomplishing the tasks. On the other hand, RL
algorithms enable agents to learn by interacting
with an environment, and RL agents are good at
learning action policies from trial-and-error expe-
riences toward maximizing long-term rewards un-

107

der uncertainty, but they are ill-equipped to utilize
declarative knowledge from human experts. Moti-
vated by the complementary features of KRR and
RL, we aim at a framework that integrates both
paradigms to enable agents (robots in our case) to
simultaneously reason with declarative knowledge
and learn by interacting with an environment.

Most KRR paradigms support the representation
and reasoning of knowledge in logical form, e.g.,
Prolog-style. More recently, researchers have de-
veloped hybrid KRR paradigms that support both
logical and probabilistic knowledge (Richardson
and Domingos, 2006; Bach et al., 2017; Wang et al.,
2019). Such logical-probabilistic KRR paradigms
can be used for a variety of reasoning tasks. We
use P-log (Baral et al., 2009) in this work to repre-
sent and reason with both human knowledge and
the knowledge from RL. The reasoning results are
then used by our robot to compute action policies
at runtime.

Reinforcement learning (RL) algorithms can be
used to help robots learn action policies from the
experience of interacting with the real world (Sut-
ton and Barto, 2018). We use model-based RL in
this work, because the learned world model can be
used to update the robot’s declarative knowledge
base and combined with human knowledge.

Theoretical Contribution: In this paper, we de-
velop a learning and reasoning framework (called
KRR-RL) that integrates logical-probabilistic KRR
and model-based RL. The KRR component reasons
with the qualitative knowledge from humans (e.g.,
it is difficult for a robot to navigate through a busy
area) and the quantitative knowledge from model-
based RL (e.g., a navigation action’s success rate in
the form of a probability). The hybrid knowledge
is then used for computing action policies at run-
time by planning with task-oriented partial world
models. KRR-RL enables a robot to: i) represent
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the probabilistic knowledge (i.e., world dynamics)
learned from RL in declarative form; ii) unify and
reason with both human knowledge and the knowl-
edge from RL; and iii) compute policies at runtime
by dynamically constructing task-oriented partial
world models.

Application Domain: We use a robot delivery
domain for demonstration and evaluation purposes,
where the robot needs to dialog with people to fig-
ure out the delivery task’s goal location, and then
physically take navigation actions to complete
the delivery task (Thomason et al., 2020; Veloso,
2018). A delivery is deemed successful only if both
the dialog and navigation subtasks are successfully
conducted. We have conducted experiments using
a simulated mobile robot, as well as demonstrated
the system using a real mobile robot. Results show
that the robot is able to learn world dynamics from
navigation tasks through model-based RL, and ap-
ply the learned knowledge to both navigation tasks
(with different goals) and delivery tasks (that re-
quire subtasks of navigation and dialog) through
logical-probabilistic reasoning. In particular, we
observed that the robot is able to adjust its dialog
strategy through learning from navigation behav-
iors.

2 Related Work

Research areas related to this work include inte-
grated logical KRR and RL, relational RL, and
integrated KRR and probabilistic planning.

Logical KRR has previously been integrated
with RL. Action knowledge (McDermott et al.,
1998; Jiang et al., 2019) has been used to rea-
son about action sequences and help an RL agent
explore only the states that can potentially con-
tribute to achieving the ultimate goal (Leonetti
et al., 2016). As a result, their agents learn faster
by avoiding choosing “unreasonable” actions. A
similar idea has been applied to domains with non-
stationary dynamics (Ferreira et al., 2017). More
recently, task planning was used to interact with the
high level of a hierarchical RL framework (Yang
et al., 2018). The goal shared by these works is
to enable RL agents to use knowledge to improve
the performance in learning (e.g., to learn faster
and/or avoid risky exploration). However, the KRR
capabilities of these methods are limited to logical
action knowledge. By contrast, we use a logical-
probabilistic KRR paradigm that can directly rea-
son with probabilities learned from RL.

108

Relational RL (RRL) combines RL with rela-
tional reasoning (DZeroski et al., 2001). Action
models have been incorporated into RRL, result-
ing in a relational temporal difference learning
method (Asgharbeygi et al., 2006). Recently, RRL
has been deployed for learning affordance relations
that forbid the execution of specific actions (Srid-
haran et al., 2017). These RRL methods, includ-
ing deep RRL (Zambaldi et al., 2018), exploit
structural representations over states and actions
in (only) current tasks. In this research, KRR-RL
supports the KRR of world factors beyond those
in state and action representations, e.g., time in
navigation tasks, as detailed in Section 4.2.

The research area of integrated KRR and proba-
bilistic planning is related to this research. Logical-
probabilistic reasoning has been used to compute
informative priors and world dynamics (Zhang
et al., 2017; Amiri et al., 2020) for probabilistic
planning. An action language was used to com-
pute a deterministic sequence of actions for robots,
where individual actions are then implemented us-
ing probabilistic controllers (Sridharan et al., 2019).
Recently, human-provided information has been in-
corporated into belief state representations to guide
robot action selection (Chitnis et al., 2018). In
comparison to our approach, learning (from rein-
forcement or not) was not discussed in the above-
mentioned algorithms.

Finally, there are a number of robot reason-
ing and learning architectures (Tenorth and Beetz,
2013; Oh et al., 2015; Hanheide et al., 2017; Khan-
delwal et al., 2017), which are relatively complex,
and support a variety of functionalities. In com-
parison, we aim at a concise representation for
robot KRR and RL capabilities. To the best of our
knowledge, this is the first work on a tightly cou-
pled integration of logical-probabilistic KRR with
model-based RL.

3 Background

We briefly describe the two most important build-
ing blocks of this research, namely model-based
RL and hybrid KRR.

3.1 Model-based Reinforcement Learning

Following the Markov assumption, a Markov de-
cision process (MDP) can be described as a four-
tuple (S, A, T,R) (Puterman, 1994). S defines the
state set, where we assume a factored space in
this work. A is the actionset. T:S X AXx S —



[0,1] specifies the state transition probabilities.
R: S x A — R specifies the rewards. Solving an
MDP produces an action policy 7 : s — a that maps
a state to an action to maximize long-term rewards.

RL methods fall into classes including model-
based and model-free. Model-based RL methods
learn a model of the domain by approximating
R(s,a) and P(s'|s,a) for state-action pairs, where
P represents the probabilistic transition system. An
agent can then use planning methods to calculate an
action policy (Sutton, 1990; Kocsis and Szepesvari,
2006). Model-based methods are particularly at-
tractive in this work, because they output partial
world models that can better accommodate the di-
versity of tasks we are concerned with, c.f., model-
free RL that is typically goal-directed.

One of the best known examples of model-based
RL is R-Max (Brafman and Tennenholtz, 2002),
which is guaranteed to learn a near-optimal pol-
icy with a polynomial number of suboptimal (ex-
ploratory) actions. The algorithm classifies each
state-action pair as known or unknown, according
to the number of times it was visited. When plan-
ning on the model, known state-actions are mod-
eled with the learned reward, while unknown state-
actions are given the maximum one-step reward,
Ryax. This “maximum-reward” strategy automati-
cally enables the agent to balance the exploration
of unknown states and exploitation. We use R-Max
in this work, though KRR-RL practitioners can use
supervised machine learning methods, e.g., imita-
tion learning (Osa et al., 2018), to build the model
learning component.

3.2 Logical Probabilistic KRR

KRR paradigms are concerned with concisely rep-
resenting and robustly reasoning with declarative
knowledge. Answer set programming (ASP) is
a non-monotonic logical KRR paradigm (Baral,
2010; Gelfond and Kahl, 2014) building on the sta-
ble model semantics (Gelfond and Lifschitz, 1988).
An ASP program consists of a set of logical rules,
in the form of “head :- body”, that read “head is
true if body is true”. Each ASP rule is of the form:

aor ... or b :—- ¢, , d, not e, ..., not f.

where a. . . f are literals that correspond to true or
false statements. Symbol not is a logical connec-
tive called default negation; not 1 is read as “itis
not believed that 1 is true”, which does not imply
that 1 is false. ASP has a variety of applications (Er-
dem et al., 2016).

109

Human

Declarative
knowledge

Figure 1: An overview of KRR-RL for robot learning
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Traditionally, ASP does not explicitly quantify
degrees of uncertainty: a literal is either true, false
or unknown. P-log extends ASP to allow probabil-
ity atoms (or pr-atoms) (Baral et al., 2009; Balai
and Gelfond, 2017). The following pr-atom states
that, if B holds, the probability of a (t) =y is v:

pr(a(t)=y|B)=v.

where B is a collection of literals or their default
negations; a is a random variable; t is a vector of
terms (a term is a constant or a variable); y is a term;
and v € [0,1]. Reasoning with an ASP program
generates a set of possible worlds: {Wy,Wy,---}.
The pr-atoms in P-log enable calculating a prob-
ability for each possible world. Therefore, P-log
is a KRR paradigm that supports both logical and
probabilistic inferences. We use P-log in this work
for KRR purposes.

4 KRR-RL Framework

KRR-RL integrates logical-probabilistic KRR and
model-based RL, and is illustrated in Figure 1. The
KRR component includes both declarative quali-
tative knowledge from humans and the probabilis-
tic knowledge from model-based RL. When the
robot is free, the robot arbitrarily selects goals (dif-
ferent navigation goals in our case) to work on,
and learns the world dynamics, e.g., success rates
and costs of navigation actions. When a task be-
comes available, the KRR component dynamically
constructs a partial world model (excluding unre-
lated factors), on which a task-oriented controller
is computed using planning algorithms. Human
knowledge concerns environment variables and
their dependencies, i.e., what variables are related
to each action. For instance, the human provides
knowledge that navigation actions’ success rates
depend on current time and area (say elevator areas
are busy in the mornings), while the robot must
learn specific probabilities by interacting with the
environment.

Why is KRR-RL needed? Consider an indoor
robot navigation domain, where a robot wants to



maximize the success rate of moving to goal posi-
tions through navigation actions. Shall we include
factors, such as time, weather, positions of human
walkers, etc, into the state space? On the one hand,
to ensure model completeness, the answer should
be “yes”. Human walkers and sunlight (that blinds
robot’s LiDAR sensors) reduce the success rates of
the robot’s navigation actions, and both can cause
the robot irrecoverably lost. On the other hand,
to ensure computational feasibility, the answer is
“no”. Modeling whether one specific grid cell being
occupied by humans or not introduces one extra
dimension in the state space, and doubles the state
space size. If we consider (only) ten such grid cells,
the state space becomes 2'° ~ 1000 times bigger.
As a result, RL practitioners frequently have to
make a trade-off between model completeness and
computational feasibility. In this work, we aim at a
framework that retains both model scalability and
computational feasibility, i.e., the agent is able to
learn within relatively little memory while comput-
ing action policies accounting for a large number
of domain variables.

4.1 A General Procedure

In factored spaces, state variables V =
{Vo,V1,...,Vu—1} can be split into two cat-
egories, namely endogenous variables V¢
and exogenous variables V% (Chermack,
2004), where V' = {V§", V', [fﬁl} and
Ve ={Vgm, Vi, Vo2 b In our integrated KRR-
RL context, V" is goal-oriented and includes
the variables whose values the robot wants to
actively change so as to achieve the goal; and
V¢ corresponds to the variables whose values
affect the robot’s action outcomes, but the robot
cannot (or does not want to) change their values.
Therefore, V" and V** both depend on task 7.
Continuing the navigation example, robot position
is an endogenous variable, and current time is an
exogenous variable. For each task, V = V" UV
and n = p+¢q, and RL agents learn in spaces
specified by V.

The KRR component models V, their depen-
dencies from human knowledge, and conditional
probabilities on how actions change their values, as
learned through model-based RL. When a task ar-
rives, the KRR component uses probabilistic rules
to generate a task-oriented Markov decision pro-
cess (MDP) (Puterman, 1994), which only contains
a subset of V that are relevant to the current task,
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Procedure 1 Learning in KRR-RL Framework

Require: Logical rules Ik, probabilistic rules I1”; random
variables V = {V, V1, ...,V,,_1 }; task selector A; and guid-
ance functions (from human knowledge) of fV (V, 7) and
A7)

: while Robot has no task do

T < A(): a task is heuristically selected

Ve fY(V, 1), and V& Y\ Y

A+ fA(1)

M  Procedure-2(ITL, T17, V" Ve A)

Initialize agent: agent <— R-Max(M)

RL agent repeatedly works on task 7, and keeps main-

taining task model M, until policy convergence

: end while

9: Use M’ to update IT°

N s W

e s}

i.e., V", and their transition probabilities. Given
this task-oriented MDP, a corresponding action pol-
icy is computed using value iteration or policy iter-
ation.

Procedures 1 and 2 focus on how our KRR-RL
agent learns by interacting with an environment
when there is no task assigned.! Next, we present
the details of these two interleaved processes.

Procedure 1 includes the steps of the learning
process. When the robot is free, it interacts with the
environment by heuristically selecting a task?, and
repeatedly using a model-based RL approach, R-
Max (Brafman and Tennenholtz, 2002) in our case,
to complete the task. The two guidance functions
come from human knowledge. For instance, given
a navigation task, it comes from human knowl-
edge that the robot should model its own position
(specified by fV) and actions that help the robot
move between positions (specified by f4). After
the policy converges or this learning process is in-
terrupted (e.g., by task arrivals), the robot uses the
learned probabilities to update the corresponding
world dynamics in KRR. For instance, the robot
may have learned the probability and cost of navi-
gating through a particular area in early morning.
In case this learning process is interrupted, the so-
far-“known” probabilities are used for knowledge
base update.

Procedure 2 includes the steps for building the
probabilistic transition system of MDPs. The key
point is that we consider only endogenous variables
in the task-specific state space. However, when

! As soon as the robot’s learning process is interrupted by
the arrival of a real service task (identified via dialog), it will
call Procedure 2 to generate a controller to complete the task.
This process is not included in the procedures.

2Here curriculum learning in RL (Narvekar et al., 2017)
can play a role to task selection and we leave this aspect of
the problem for future work.
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Figure 2: Transition system specified for delivery tasks, where question-asking actions are used for estimating the
service request in dialog. Once the robot becomes confident about the service request, it starts to work on the
navigation subtask. After the robot arrives, the robot might have to come back to the dialog subtask and redeliver,
depending on whether the service request was correctly identified.

reasoning to compute the transition probabilities
(Line 5), the KRR component uses both IT and
V¢*. The computed probabilistic transition systems
are used for building task-oriented controllers, i.e.,
7, for task completions. In this way, the dynami-
cally constructed controllers do not directly include
exogenous variables, but their parameters already
account for the values of all variables.

Next, we demonstrate how our KRR-RL frame-
work is instantiated on a real robot.

4.2 An Instantiation on a Mobile Robot

We consider a mobile service robot domain where a
robot can do navigation, dialog, and delivery tasks.
A navigation task requires the robot to use a se-
quence of (unreliable) navigation actions to move
from one point to another. In a dialog task, the
robot uses spoken dialog actions to specify se