
PT 3 • • • IWPT·3 • • • IWPT 3 • • • IWPT 3 • • • IWPT

THIRD

INTERNATIO-NAL

WORKSHOP

ON

PARSING

TECHNOLOGIES

Sponsored by ACL/SIGPARSE
Association for Computational Linguistics

Special Interest Group on Parsing

Tilburg (The Netherlands)
Durbuy (Belgium)

August 10 - 13, 1993

- . ·~
. ,,_ ·.

PT 3 • • • IWPT 3 • • • IWPT 3 • • • IWPT3 • • • IWPT

,.

THIRD

INTERNATIONAL

WORKSHOP

ON

PARSING

TECHNOLOGIES

Sponsored by ACL/SIGPARSE
Association for Computational Linguistics

Special Interest Group on Parsing

Tilburg (The Netherlands)
Durbuy (Belgium)

August 10 - 13, 1993

McDonald .. 171
The Interplay of Syntactic and Semantic Node Labels in Partial Parsing

Nederhof - Barbo .. · 187
Increasing the Applicability of LR Parsing

O'Donnell•............................. 203
Reducing Complexity in a Systemic Parser

Oude Luttighuis - Sikkel ... 219
Generalized LR Parsing and Attribute Evaluation

Raaijmakers .. 235
A Proof-Theoretic Reconstruction of HPSG

Schabes - Waters .. 257
Stochastic Lexicalized Context-Free Grammar

Sikkel - op den Akker ... 267
Predictive Head-Corner Chart Parsing

Sleator - Temperley ... 277
Parsing English with a Link Grammar

Strzalkowski - Scheyen .. 293
Evaluation of TTT Parser: A Preliminary Report

Ushioda - Evans - Gibson - Waibel 309
Frequency Estimation of Verb Subcategorization Frames Based on Syntactic

and Multidimensional Statistical Analysis

. Weng .. 319
Handling Syntactic Extra-Grammaticality

Wittenburg ... 333
Adventures in Multi-Dimensional Parsing: Cycles and Disorders

Appendix - Weerasinghe - Fawcett 349
Probabilistic Incremental Parsing in Systemic Functional Grammar

iii

All the presentations in Tilburg will be given in room AZ 9 of the
University.

08.30 hrs - 09.30 hrs

09.30 hrs - 09.45 hrs
09.45 hrs - 10.30 hrs

10.30 hrs - 10.50 hrs

10.50 hrs - 11.25 hrs

11.25 hrs - 12.00 hrs

12.00 hrs - 12.35 hrs

12.35 hrs - 13.40 hrs

13.40 hrs - 14.15 hrs

14.15 hrs - 14.50 hrs

14.50 hrs - 15.25 hrs

15.25 hrs - 15.45 hrs

15.45 hrs - 16.20 hrs

16.20 hrs - 16.55 hrs

16.55 hrs - 17.30 hrs

18.00 hrs

TUESDAY AUGUST 10 .
Registration, Tilburg University, building A, registra­
tion desk
Opening by Masaru Tomita and Harry Bunt
Invited talk: Makato Nagao, Kyoto, Japan. Varieties
of Heurisitcs in Sentence Parsing

coffee/tea

Ralph Ronnquist and Mats Wiren, Saarbriicken, Ger­
many. Fully Incremental Parsing
Rene Leermakers, Eindhoven, The Netherlands. The
Use of Bunch Notation in Parsing Theory
Daniel Sleator and Davy Temperley, Pittsburgh, USA.
Parsing English with a Link Grammar

lunch

Alon Lavie and Masaru Tomita, Pittsburgh, USA.
An Efficient Noise-Skipping Parsing Algorithm for
Context-Free Grammars
Fuliang Weng, Las Cruces, USA. Handling Syntactic
Extra-Grammaticality
Paul Oude Luttighuis and Klaas Sikkel, Enschede, The
Netherlands. Generalized LR Parsing and Attribute
Evaluation

coffee/tea

Mark-Jan Nederhof and J.J. Sarbo, Nijmegen, The
Netherlands. Increasing the Applicability of LR
Parsing
Gennaro Costagliola, Pittsburgh, USA. {Pictorial) LR
Parsing from an Arbitrary Starting Point
Hozumi Tanaka, Takenobu Tokunaga and Michio
Aizawa, Tokyo, Japan. Integration of Morphologi­
cal and Syntactic Analysis Based on the LR Parsing
Algorithm

Reception at Tilburg City Hall

lV

Workshop Chairman: Harry Bunt (ITK, Tilburg)

General Chairman: , Masaru Tomita (CMU, Pittsburgh)

Program Committee: Robert Berwick

Extra referees

Address

Harry Bunt
Ken Church
Aravind Joshi
Ronald Kaplan
Martin Kay
Bernard Lang
Makoto Nagao
Anton Nijholt
Mark Steedman
Henry Thompson
Masaru Tomita
K. Vijay-Shanker
Yorick Wilks
Kent Wittenburg

Steven Abney
Klaas Sikkel
Theo Vosse
Paul Oude Luttighuis

Peggy Bertens
1 IWPT'93 Secretariat
,phone+ 31-13-663113
fax+ 31-13-662537
1email: iwpt©kub.nl

Table of Contents

Programme ... iv

Bod -.. 1
Monte Cado Parsing

Brill ... 13
'Irans�ormation-Based Error-Driven Parsing

Bunt - van der Sloot � 27
Parsing as Dynamic Interpretation

Carpenter · .. 39
Compiling Typed Attribute-Value Logic Grammars

Costagliola ... 49
(Pictorial) LR Parsing from an Arbitrary Starting Point

Ellis � Garigliano - Morgan .. 61
A New 'Iransformation into Deterministically Parsable Form for Natural
Language Grammars

Gar'f!l,an - Martin - Merlo - Weinberg 73
A Principle-Based Parser for Foreign Language Training in German and
Arabic

van der Hoeven .. 89
An Algorithm for the Construction of Dependency Trees

Hozumi - Takenobu - Michio 101
Integration of Morphological and Syntactic Analysis Based on the LR Pars­
ing Algorithm

Kuroh_ashi - Nagao .. 111
Structural Disambiguation in Japanese by Evaluating Case Structures based
on Examples in Case Frame Dictionary

Lavie - Tomita .. 123
An Efficient Noise-Skipping Parsing Algorithm for Context-Free Grammars

Leer;makers ... 135
The Use of Bunch Notation in Parsing Theory

Lutz .. 145
Chart Parsing of Attributed Structure-Sharing Flowgraphs · with Tie-Point
Relationships

11

09.00 hrs - 09.35 hrs
09.35 hrs - 10.10 hrs
10 .10 hrs - 10 .45 hrs
10.45 hrs - 11.05 hrs
11.05 hrs - 11.40 hrs
11.40 hrs - 12.15 hrs
12.15 hrs - 13.30 hrs
13.30 hrs - 15.30 hrs
15.30 hrs
18.00 hrs

WEDNESDAY AUGUST 11 Hideto Tomabechi, Tokushima, Japan. A Soft Graph
Unification Method for Robust Parsing A. Ruvan Weerasinghe and Robin Fawcett, Cardiff, UK. Probabilistic Incremental Parsing in Systemic
Functional Grammar Michael O'Donnell, Sydney, Australia. Reducing
Complexity in a Systematic Parser

coffee/tea
Klaas Sikkel and Rieks op den Akker, Enschede, The Netherlands. Predictive Head-Corner Chart Parsing Bob Carpenter, Pittsburgh, USA. Compiling of Typed
Attribute- Value Logic Grammars

lunch
Visit to ITK (Institute for Language Technology and Artificial Intelligence).
Bus departure to Durbuy
Welcome drinks in conference hotel Le Sanglier des Ardennes, Durbuy

V

All the presentations in Durbuy will ·be given in Le Sanglier des Ardennes.

08 .45 hrs - 09. 20 hrs

09.20 hrs - 09.55 hrs

09.55 hrs - 10.30 hrs

10.30 hrs - 10.50 hrs

10.50 hrs - 11.25 hrs

11.25 hrs - 12.00 hrs

12.00 hrs - 12.35 hrs

12.35 hrs - 14.00 hrs

14.00 hrs - 15.30 hrs

15.30 hrs - 16.05 hrs

16.05 hrs - 16.40 hrs

16.40 hrs - 16.50 hrs

16.50 hrs - 17.25 hrs

17.25 hrs - 18.00 hrs

THURSDAY AUGUST 12
Nigel Ellis, Roberto 1 Garigliano and Richard Mor­
gan, Durham, UK. A New Transformation into De­terministically Parsable Form for Natural Language Grammars
James Rogers and K. Vijay-Shanker, Newark, USA. Towards a Formal Understanding of the Determinism Hypothesis in D-Theory
Stephan Raaijmakers, Tilburg, The Netherlands. A Proof-Theoretic Reconstruction of HPSG
coffee/tea

Tomek Strzalkowksi and Peter Scheyen, New York,
USA. Evaluation of TTT Parser: A Preliminary Report
Gerrit van der Ho even, Enschede, The Netherlands. An Algorithm. for the Construction of Dependency Trees
Joe Garman, , Jeffery Martin, Paola Merlo and Amy
Weinberg, Genev:e, Switzerland and College Park,
Maryland, USA. A Principle-based Parser for Foreign Language Training in German and Arabic
lunch

Discussion time

Sadao K urohashi and Makoto Nagao, Kyoto, Ja pan. Structural Disambiguation in Japanese by Evaluating Case Structures based on Examples in Case Frame Dictionary
Eric Brill, Philadelphia, USA. Transformation-Based Error-Driven Parsing
coffee/tea

Harry Bunt and Ko van der Sloot, Tilburg, The
Netherlands. Parsing as Dynamic Interpretation
David McDonald, Brandeis U., USA. The Interplay of Syntactic and Semantic Node Labels in Partial Parsing

Vl

09.00 hrs - 09.35 hrs

09.35 hrs - 10.10 hrs
10 .10 hrs - 10 .45 hrs
10.45 hrs - 11.05 hrs 11.05 hrs - 11.40 hrs
11.40 hrs - 12.15 hrs
12.15 hrs - 12.30 hrs
12.30 hrs - 14.00 hrs
14.15 hrs

FRIDAY AUGUST 13 Akira 1:Jshioda, Alex Waibel, Ted Gibson and David Evans, Pittsburgh, USA. Frequency Estimation of Verb Subcategorization Frames Based on Syntactic and Multidimensional Statistical Analysis Rens Bod, Amsterdam, The Netherlands. Monte Carlo Parsing Yves Schabes and Richard Waters, Cambridge, MA, USA. Stochastic Lexicalized Context-Free Grammar
coffee/tea Rudi Lutz, Brighton, England. Chart Parsing of At­tributed Structure-Sharing Flowgraphs with Tie-Point Relationships Kent Wittenburg, Bellcore, USA. Adventures in Multi­Dimentional Parsing: Cycles and Disorders
Closing by Masaru Tomita and Harry Bunt
lunch
Bus departures to Tilburg and Brussels

vii

Monte Carlo Parsing

Rens Bod

Department of Computational Linguistics, University of Amsterdam
Spuistraat 134, NL-1012 VB AMSTERDAM

email: rens©alf . let . uva. nl

Abstract

In stochastic language processing, we are often interested in the most probable parse of an input
string. Since there can be exponentially many parses, comparing all of them is not efficient. The
Viterbi algorithm (Viterbi, 1967; Fujisaki et al., 1989) provides a tool to calculate in cubic time
the most probable derivation of a string generated by a stochastic context free grammar. However,
in stochastic language models that allow a parse tree to be generated by different derivations -
like Data Oriented Parsing (DOP) or Stochastic Lexicalized Tree-Adjoining Grammar (SLTAG)
- the most probable derivation does not necessarily produce the most probable parse. In such
cases, a Viterbi-style optimisation does not seem feasible to calculate the most probable parse. In
the present article we show that by incorporating Monte Carlo techniques into a polynomial time
parsing algorithm, the maximum probability parse can be estimated as accurately as desired in
polynomial time. Monte Carlo parsing is not only relevant to DOP or SLTAG, but also provides
for stochastic CFGs an interesting alternative to Viterbi. Unlike the current versions of Viterbi­
style optimisation (Fujisaki et al., 1989; Jelinek et al., 1990; Wright et al., 1991), Monte Carlo
parsing is not restricted to CFGs in Chomsky Normal Form. For stochastic grammars that are
parsable in cubic time, the time complexity of estimating the most probable parse with Monte
Carlo turns out to be O(n3c:-2), where n is the length of the input string and c: the estimation
error. In this paper we will treat Monte Carlo parsing first of all in the context of the DOP
model, since it is especially here that the number of derivations generating a single tree becomes
dramatically large. Finally, a Monte Carlo Chart parser is used to test the DOP model on a set
of hand-parsed strings from the Air Travel Information System {ATIS) spoken language corpus.
Preliminary experiments indicate 96% test set parsing accuracy.

1 Motivation

As soon as a formal grammar characterizes a non­
trivial part of a natural language, almost every input string of reasonable length gets an unman­ageably large number of different analyses. Since most of these analyses are not perceived as plausi­ble by a human language user, there is a need for distinguishing the plausible parse(s) of an input string from the implausible ones. In stochastic language processing, it is assumed that the most plausible parse of an input string is its most prob­able parse. Most instantiations of this idea esti­mate the probability of a parse by assigning appli­cation probabilities to context free rewrite rules (Jelinek et al., 1990; Black et al., 1992; Briscoe

1

- Carroll, 1993), or by assigning combination probabilities to elementary trees (Resnik, 1992; Schabes, 1992).
There is some agreement now that context free rewrite rules are not adequate for estimating the probability of a parse, since they do not capture lexical context, and hence do not describe how the probability of syntactic structures or lexical items depends on that context. In stochastic lex­icalized tree-adjoining grammar (Schabes, 1992), this lack of context-sensitivity is overcome by as­signing probabilities to larger structural units. However, it is not always evident which structures should be considered as elementary structures. In (Schabes, 1992), it is proposed to infer a stochas-

2 Boo
tic TAG from a large training corpus using an by combining other corpus subtrees, for instance: inside-outside-like iterative algorithm.

Data Oriented Parsing (DOP) (Scha, 1990,1992; Bod, 1992,1993), distinguishes itself from other statistical approaches in that it omits the step of inferring a grammar from a corpus. Instead, an annotated corpus is directly used as a stochastic grammar. An input string is parsed by combining subtrees from the corpus. In this view, every subtree can be considered as an _elementary structure. As a consequence, one parse tree can usually be generated by several derivations that involve different subtrees. This leads to a statis­tics where the probability of a parse is equal to the sum of the probabilities of all its derivations. It is hoped that this approach can accommodate all statistical properties of a language corpus.
Let us illustrate DOP with an extremely simple example. Suppose that a corpus consists of only two trees:

NP VP

I �p
John I I

likes Mary

NP VP

I I\
�er

I T
hates Susan

Suppose that our combination operation (in­dicated with o) consists of substituting a subtree on the leftmost identically labeled leaf node of an­other tree. Then the sentence Mary likes Susan can be parsed as an S by combining the following subtrees from the corpus. (For an exact definition of subtree, see section 2.)
s

NP VP

I\
.r hkcs

NP

Mary
Susan

s

NP VP

I /\
Mary I . T

likes Susan

But the same parse tree can also be derived

or

s
NP VP

s

I\
V

r
Susan

NP VP
T

Mary

V

I
likes

VP

I\
I NP

tikl.-s

" NP

I
Susan

Thus, a parse can have several derivations in­volving different subtrees. These derivations have different probabilities. Using the corpus as our stochastic grammar, we estimate the probability of substituting a certain subtree on a specific node as the probability of selecting this subtree among all subtrees in the corpus that could be substi­tuted on that node. The probability of a deriva­tion can be computed as the product of the prob­abilities of the subtrees that are combined. As an example, we calculate the probability of the last derivation. The first subtree S{NP, VP) occurs twice in the corpus among a total of 20 su btrees rooted with an S. Thus, its probability is 2/20. The subtree NP(Mary) occurs once among a to­tal of 4 subtrees that can be substituted on an NP, hence, its probability is 1/4. The probability of selecting the subtree VP(V{likes},NP} is 1/8, since there are 8 subtrees in the corpus rooted with a VP, among which this subtree occurs once. Finally, the probability of selecting NP(Susan) is equal to 1/4. The probability of the resulting derivation is then equal to 2/20 * 1/4 * 1/8 * 1/4
= 1/1280. The next table shows the probabilities of the three derivations given above.

MONTE CARLO PARSING 3

P{lst example) P{2nd example) P{3rd example)
= 1/20 * 1/4 * 1/4

1/20 * 1/4 * 1/2
= 1/320
= 1/160
= 1/1280 = 2/20 * 1/4 * 1/8 * 1/4

This example illustrates that a statistical lan­
guage model which defines probabilities over
parses by taking into account only one derivation,
does not accommodate all statistical properties of
a language corpus. Instead, we define the prob­
ability of a parse as the sum of the probabilities
of all its derivations . Finally, the probability of a
string is equal to the sum of the probabilities of
all its parses.

An important advantage of using a corpus
for probability calculation, is that no training
of parameters is needed, as is the case for other
stochastic grammars (Jelinek et al. , 1990; Pereira
- Schabes, 1992; Schabes, 1992) . Secondly, since
we take into account all derivations of a parse,
no relationship that might possibly be of statis­
tical interest is ignored. Moreover, this approach
does not suffer from a bias in favor of 'smaller'
parse trees, as is the case with stochastic CFGs
where derivations involving fewer rules, generat­
ing 'smaller' trees, are almost always favored re­
gardless of the training material (Magerman -
Marcus, 1991 ; Briscoe - Carroll, 1993) . Finally,
by using corpus subtrees directly as its structural
units, DOP is largely independent of notation sys­
tems.

We will show that conventional parsing tech­
niques can be applied to DOP. However, in order
to find the most probable parse, a Viterbi-style
algorithm does not seem feasible, since the most
probable derivation does not necessarily produce
the most probable parse. We will show that by us­
ing Monte Carlo techniques, the maximum proba­
bility parse can be estimated in polynomial time.

In the following, we first outline the DOP
model in a more mathematical fashion, and pro­
vide an account of Monte Carlo parsing. Finally,
we report on some experiments with a Monte
Carlo Chart parser on the Air Travel Information
System (ATIS) corpus as analyzed in the Penn
Treebank.

2 The Data Oriented Pars­

ing Model

A DOP model is characterized by a corpus of tree
structures, together with a set of operations that
combine subtrees from the corpus into new trees.
In this section we explain more precisely what we
mean by subtree, operations etc. , in order to ar­
rive at definitions of a parse and the probability
of a parse with respect to a corpus.

A subtree of a tree T is a connected subgraph S of T such that for every node in S holds that
if it has daughter nodes, then these are equal to
the daughter nodes of the corresponding node in
T. It is trivial to see that a subtree of a tree is
also a tree. In the following example T1 and T2

are s:ubtrees of T, whereas T3 isn't .

'1' s '1'1 s
�

NP VP NP VP

I �p John

1 1

'1'2 VP

I\
r

NP

likes

likes Mary

'1'3 s

�
NP VP

I I
John NI

V NP

The definition above also includes subtrees con­
sisting of one node. Since such subtrees do not
contribute to the parsing process, we exclude
these pathological cases and consider only the
set of subtrees consisting of more than one node.
We shall use the following notation to indicate
that a tree t is a subtree of a tree in a corpus C: ttC '=def 3T E C : t is a subtree of T, consisting
of more than one node.

4

We will limit ourselves to the basic operation
of substitution. (Other possible operations which
combine subtrees are left to future research.) If t and u are trees, such that the leftmost non­terminal leaf of t is equal to the root of u, then t
o u is the tree that results from substituting this
non-terminal leaf in t by tree u. The partial func­
tion o is called substitution . We will write (tou) ov
as touov, and in general (. . . ((t1 ot2) ot3)0 . . .) otn
as t1 o t2 o t3 o . . . o tn .

Tree T is a parse of input string s with re­
spect to a corpus C, iff theyield of T is equal to
s and there are subtrees t1 , . . . , tn E C, such that
T = t1 o . . . o tn . This definition correctly includes

. the trivial case of a subtree from the corpus whose
yield is equal to the complete input string.

A derivation of a parse T with respect to a
corpus C is a tuple of subtrees < t1 , . . . , tn >
such that t1 , . . . , tncC and t1 o . . . o tn = T.

Given a subtree t1 cC, a function root that
yields the root of a tree, and a node labeled X, the
conditional probability P(t = t1 I root(t) = X)
denotes the probability that t1 is substituted on
X. If root(t1) = X, this probability is 0. If root(t1) = X, this probability can be estimated
as the ratio between the number of occurrences
of t1 in C and the total number of occurrences of
subtrees t' in C for which holds that root (tt) =
X. Evidently, Li P(t = ti I root(t) = X) = 1
holds.

The probability of a derivation < tl , . . . , tn >
is equal to the probability that the subtrees
t1 , . . . , tn are combined. This probability can be
computed as the product of the conditional prob­
abilities of the subtrees t1 , . . . , tn . Let lnl(x) be
the leftmost non-terminal leaf of tree x, then:

P(< t1 , . . . , tn >) = P(t = t1 I root(t) = S)
* IL=2 to n P(t = ti I root(t)

= lnl(t1 o . . . o ti- 1))

The probability of a parse is equal to the prob­
ability that any of its derivations occurs. Since .
the derivations are mutually exclusive, the prob­
ability of a parse is the sum of the probabilities of
all its derivations. The conditional probability of
a parse T given input string s , can be computed
as the ratio between the probability_ of T and the
sum of the probabilities of all parses of s .

The probability of a string is equal to the prob­
ability that any of its parses occurs. Since the
parses are mutually exclusive, the probability of

Boo

a string s can be computed as the sum of the
probabilities of all its parses. It can be shown
that Li P(si) = 1 holds.

3 Monte Carlo Parsing

It is easy to show that in DOP, an input string can
be parsed with conventional parsing techniques,
by applying subtrees instead of rules to the string
(Bod, 1992) . Every subtree t can be seen as a pro­
duction rule root(t) � t, where the non-terminals
of the yield of the right hand side constitute the
symbols to which new rules/subtrees are applied .
Given a cubic time parsing algorithm, the set of
derivations of an input string, and hence the set
of parses, can be calculated in cubic time. In or­
der to select the most probable parse, it is not
efficient to compare all parses, since them can be
exponentially many of them. Although Viterbi's
algorithm enables us to derive the most probable
derivation in cubic time (Viterbi, 1967; Fujisaki
et al. , 1989; Wright et al. , 1991) , this algorithm
does not seem feasible for DOP, since the most
probable derivation does not necessarily produce
the most probable parse. In DOP, a parse can
be generated by exponentially many derivations.
Thus, even for determining the probability of one
parse, it is not efficient to add the probabilities of
all derivations of that parse.

It is an open question, whether there exists an
adaptation of the Viterbi algorithm that selects
the maximum probability parse in cubic time for
DOP. In this paper, we pursue an alternative ap­
proach. In order to estimate the maximum proba­
bility parse efficiently, we will apply Monte Carlo
techniques to the decoding problem. We intend to
show that , with Monte Carlo, the maximum prob­
ability parse can be estimated as accurately as de­
sired, making its error arbitrarily small in polyno­
mial time. Moreover, Monte Carlo techniques can
easily be incorporated into virtually any polyno­
mial time parsing algorithm. Thus, Monte Carlo
parsing may also provide for stochastic CFGs an
interesting alternative to Viterbi, which, in its
current versions (Fujisaki et al. , 1989; Jelinek et
al. , 1990; Wright et al. , 1991) , is restricted to
CFGs in Chomsky Normal Form. We will treat
Monte Carlo parsing first of all in the context
of the DOP model, since it is especially here that
the number of derivations generating a single tree

MONTE C A RLO PARSING

becomes dramatically large.
The esse:µce of Monte Carlo is very simple: it

estimates q, probability distribution of events by
taking random samples (Hammersley - Hand­
scomb, 1964) . The larger the samples we take,
the higher the reliability. Since the events we are
interested in are parses of a certain input string,
we should randomly sample parses of that input
string. The parse tree which is sampled most of­
ten is an estimation of the maximum probability
parse. We. can estimate the maximum probabil­
ity parse as accurately as we want by choosing
the number of randomly sampled parses as large
as we want. The probability of a certain parse T given input string s can be estimated by di­
viding the number of occurrences of T by the
total number of sampled parses N. According
to the (Strong) Law of Large Numbers, the esti­
mated probability converges to the actual prob­
ability. In the limit of N going to infinity, the
estimated probability equals the actual probabil­
ity: P(T I s) = #T / N. From a classical result
of probability theory (Chebyshev's inequality) it
follows that, independently of the distribution,
the time· complexity of achieving a maximum es­
timation ·error e by means of random sampling, is
equal to 'O(c2) .

Let u s now turn to the question of how to
randomly sample a number of parses of an input
string. The most straightforward way seems to be
the following: first the set of parses of an input
string is derived, yielding a shared parse forest.
Next , random samples are taken from this forest,
by randomly retrieving parses. Starting for in­
stance at. the S-node, a random expansion from
the possible expansions is chosen at every node,
taking into account the relative frequencies. The
parse which is sampled most often is an estima­
tion of the maximum probability parse. Given a
cubic time parsing algorithm and assuming that
the construction of a parse forest and the retrieval
and corn paring of parses can be done in cubic time
(Leermakers, 1991) , the time complexity of this
method is O(n3c2) for a string of length n and
an estimation error e.

Depending on the size and the redundancy of
the corpu�, this method is not always the most ef­
ficient one. Instead of applying Monte Carlo tech­
niques after the parsing process, we might also
incorporate them into the parsing process. This

5

second method consists of calculating a random
subset of the parses. Instead of taking into ac­
count all candidates1 at every node in the parsing
process, we take a random sample from the total
number of candidates at every node. In this way,
a set of parses is calculated which is smaller than
the total set of parses of an input string. Repeat­
ing this process allows us to randomly generate as
many parses of a string as desired. If no parses are
found during a round, the samples from the can­
didates may be increased until at least one parse
is generated. If, instead, for a new input string a
large number of parses is found, the current value
of the sample size may be decreased again, and
so forth. In the worst case the sample size equals
100% of the total number of candidates and no
speedup is achieved. However, this can only hap­
pen with non-ambiguous grammars where every
string has exactly one derivation. For an ambigu­
ous grammar, any ambiguous string can always
be parsed by taking samples from the candidates
smaller than the total number of candidates (ex­
cept that taking a sample from 1 candidate must
yield at least that candidate) . In our experi­
ments with the ATIS corpus (see next section) ,
it turned out that taking maximally 5% of the
candidate subtrees, sufficed to calculate at least
one parse for the input string (though often more
were found) .

As to the time complexity of this second
method, it might seem that calculating a sub­
set of exponentially many parses, will yield again
exponentially many parses. And comparing ex­
ponentially many parses takes exponential time.
Nevertheless, by taking the sample sizes relatively
small, a tractable upper bound N can be defined,
which, if exceeded by the number of parses gen­
erated sofar, serves as a stop condition in the re­
peated parsing process. Secondly, N can be made
arbitrarily large, in order to make the estima­
tic;m error e arbitrarily small in, as we have seen,
quadratic time. Hence, given a cubic time pars­
ing algorithm and assuming that the sample sizes
can be made smaller than the total number of
candidates but large enough to generate at least
one parse (as is the case for redundant grammars
like DOP), the time complexity of this method
is· O(n3c2) . Often it suffices to stop repeating
the algorithm if the total number of parses ex-1 I.e. 'predictions' or 'proposed edges' , depending of the kind of parser used.

6

ceeds a pre-determined bound N. The most fre­
quently generated parse is then an estimation of
the maximum probability parse. We shall see in
the next section that for the ATIS corpus it suf­
ficed to limit the number of randomly calculated
parses to 100, in order to get high parsing ac­
curacy. Though such a small sample may yield
inaccurate probabilities for the single parses, it
apparently suffices to determine which parse is
the most probable one.

Although the worst time complexity of this
second method is equivalent to that of the first
one, the actual time cost turns out to be much
lower. This can be explained by the fact that in
the second method only a small part of the ac­
tual grammar is used. Since arbitrary CFGs are
parsable in I G I 2 time, parsing a string 100 times
using 5% of the grammar tends to be more effi­
cient than parsing the same string only once using
the whole grammar. Secondly, it turns out that
the probability estimation of the second method
also converges significantly faster. Thus, it seems
that this method is especially apt to stochastic
parsing with huge amounts of redundant data.

It should be stressed that incorporating Monte
Carlo techniques into a parsing algorithm is only
feasible if the samples from the candidates can
be made much smaller than the total number of
candidates, but still large enough to generate at
least one parse. Secondly, the demanded maxi­
mum error should not be too small, in order to
keep the actual time cost to an acceptable de­
gree. For those interested in the Theory of Com­
putation: the algorithms which employ the Monte
Carlo techniques described here, are probabilistic
algorithms belonging to the class of Bounded er­
ror Probabilistic Polynomial time (BPP) algo­
rithms. BPP-problems are characterized as fol­
lows: it may take exponential time to solve them
exactly, but there exists an estimation algorithm
with a probability of error that becomes arbitrar­
ily small in polynomial time.

4 Experiments

In order to test the DOP-model, in principle any
annotated corpus can be used. This is one of
the advantages of DOP: its independence of a no­
tation system. For our experiments2 , we used

Bon

the naturally occurring Air Travel Information
System (ATIS) corpus (Hemphill et al. , 1990) as
analyzed in the Pennsylvania Treebank (Marcus,
1991 ; Santorini, 1991) . This corpus is of inter­
est since it is used by the DARPA community to
evaluate their gram.mars and speech systems.

We used the standard method of randomly di­
viding the corpus into a 90% training set and a
10% test set . The 675 trees from the training
set were directly used as our stochastic grammar,
from which the subtrees and their relative fre­
quencies were derived..., The 75 part-of-speech se­
quences from the test set served as input strings
that were parsed with the training set using a
Monte Carlo Chart parser (Mijnlief, 1993) . To
establish the performance of the system, the pars­
ing results were then compared with the trees in
the test set . (Note that the "correct" parse was
decided beforehand, and not afterwards .)

To measure accuracy, one often uses the no­
tion of bracketing accuracy, i.e. the percentage
of brackets of the analyses that are not "cross­
ing" the bracketings in the Treebank (Black et
al. , 1991 ; Harrison et al. , 1991 ; Pereira - Sch­
abes, 1992; Grishman et al. , 1992; Schabes et al . ,
1993) . We believe, however, that the notion of
bracketing accuracy is too poor for measuring the
performance of a parser. A test set can have a
high bracketing accuracy, whereas the percentage
of sentences in· which no crossing bracket is found (sentence accuracy) is extremely low. In (Schabes
et al. , 1993), it is shown that for sentences of 10 to
20 words (taken from the Wall Street Journal cor­
pus) , a bracketing accuracy of 82.5% corresponds
to a sentence accuracy of 30%, whereas for sen­
tences of 20 , to 30 words a bracketing accuracy
of 71 .5% corresponds to a sentence accuracy of
6.8%! We shall employ the even stronger notion
of parsing accuracy, defined as the percentage of
the test sentences for which the maximum prob­
ability parse is identical to the test set parse in
the Treebank. It is one of the most essential features of the
DOP approach, that arbitrarily large subtrees are
taken into consideration. In order to test the use­
fulness ·of this feature, we performed different ex­
periments constraining the depth of the subtrees.
The d�pth of a tree is defined as the length of its
longest path. The following table shows the re­
sults of seven experiments. The accuracy refers to

2Some of the experiments reported were published in (Bod, 1993).

MONTE CARLO PARSING

the parsing accuracy at N = 100 sampled parses, and is rounded off to the nearest integer.
I depth I accuracy I � 2 87% � 3 92% � 4 93% � 5 93% � 6 95% � 7 95% unbounded 96%
Parsing accuracy for the ATIS corpus, at N = 100

The table shows that there is a relatively rapid increase in parsing accuracy when enlarging the maximum depth of the subtrees to 3. The ac­curacy keeps increasing, at a slower rate, when the depth is enlarged further. The highest accu­racy is obtained by using all subtrees from the corpus: 72 out of the 75 sentences from the test set are parsed correctly. In the following figure, parsing accuracy is plotted against the number of randomly generated parses N for three of our experiments: the experiments where the depth of the subtrees is constrained to 2 and 3, and the experiment where the depth is unconstrained.
) ()) r-------L----...1.-------..JL._ ___,

75

25

0 -------,-----�----.-----.....J

25 50

N
75

Parsing accuracy for the ATIS corpus, with depth � 2, with depth � 3 and with unbounded depth

100

It might also be interesting to look in detail at some parses derived with different constraints

7

on the depths of the subtrees. Consider the test sentence "Arrange the flight code of the flight from Denver to Dallas Worth in descending or­der" , which corresponds to the p-o-s sequence "* VB DT NN NN IN DT NN IN NP TO NP NP IN VBG NN" . 3 According to the Tree bank, this sentence has the following structure (for a de­scription of the notation system see (Santorini, 1990, 1991)) :
S NP *

VP VB Arrange

NP NP .DT the

NN flight

NN code

PP IN of

NP NP DT the

NN flight

PP PP IN from
NP NP Denver

PP TO to

NP NP Dallas

NP Worth

PP IN in

NP VP VBG descending

NN order

Limiting the depth of the subtrees to 2, the fol­lowing maximum probability parse was estimated for this string (where for reasons of readability the lexical items are added to the p-o-s tags) :
S NP *

VP VB Arrange

NP NP DT the

NN flight

NN code

PP IN of

NP NP DT the

NN flight

PP PP IN from

NP NP Denver

PP TO to

NP NP Dallas

NP Worth

PP IN in

NP VP VBG descending

NN order

In this parse tree, we see that the preposi­tional phrase "in descending order" is incorrectly
3Empty elements, like *, had to be treated as part-of-speech elements, in order to be able to use the training set

directly as a grammar.

8

attached :to the NP · "the flight" instead of to the
ve·ro "arrange"· .. This false attachment might be
explained by the high relative frequencies of the
following subtrees with depth 2 (that appear in
structures of sentences like "Show me the trans­
portation from SFO to downtown San Francisco
in August" , where the PP "in August" is attached
to the NP "the transportation" , and not to the
verb "show") .

NP NP
pp
PP IN

NP

NP NP
pp pp

pp
PP IN

NP

Only if the maximum depth of the subtrees
was enlarged to 4, subtrees like the following
could be sampled, which led to the estimation
of the correct parse tree.

VP VB
NP NP

pp
pp IN

NP VP VBG
NN

It is interesting to note that this su btree oc­
curs only once in the corpus. Nevertheless, it
induces the correct parsing of the test sentence.
This seems to contradict the observation that
probabilities based on sparse data are not reli­
able (Gale - Church, 1990; Magerman - Mar­
cus, 1991) . Since many large subtrees are once­
occurring events (hapaxes) , there seems to be a
preference in DOP for an occurence-based ap­
proach if enough context is provided: large sub­
trees, even if they occur once, tend to contribute
to the generation of the correct parse, since they
provide much contextual information. Although
these subtrees have low probabilities, they tend
to induce the correct parse because fewer subtrees
are needed to construct a derivation, and there­
fore the probability of such a derivation tends to
be higher than a derivation constructed by many
small highly frequent subtrees.

Additional experiments seemed to confirm this
hypothesis. Throwing away all hapaxes, yielded
an accuracy of 92% (without constraints on the
depth of the subtrees and for N = 100) , which is
� d_ecrease of 4 % . . Distinguishing between small
and large hapaxes, showed that the accuracy was

Boo

not affected by filtering the subtrees from hapaxes
smaller than depth 2 (although the convergence
seemed to be slightly faster) . Eliminating the ha­
paxes larger than depth 3, however, decreased the
accuracy. Thus, statistical reliability seems only
to be relevant if not enough contextual informa­
tion is available. In such a case, best guesses must
be as reliable as possible. When much struc­
tural/ contextual information is known, on the
other hand, there tends to be only one choice.
This seems to correspond to the fact that small
parts of sentences tend to have many more real
structural ambiguities (since not enough informa­
tion is known) than longer subsentences or whole
sentences.

Given the high accuracy achieved by the ex­
periments, we might conclude that the ATIS cor­
pus is a relatively large corpus for its small do­
main, where almost all relevant constructions oc­
cur. It seemed interesting to know how much the
accuracy depends on the size of the corpus. For
studying this question, we performed additional
experiments with different corpus sizes. Start­
ing with a corpus of only 50 parse trees (ran­
domly chosen from the initial training corpus of
675 trees) , we increased its size with intervals of
50. As our test set , we took the same 75 p-o-s se­
quences as used in the previous experiments. In
the next figure the parsing accuracy, for N = 100,
is plotted against the corpu� size, using all corpus
subtrees.

100 ,--------------------,

75

::, 50 u

25

0

0 0

0

0 0

0 0
0 (

0 ---.,---,,r------r, --"T,---,--, -----r, -----J
100 200 300 400 500 600

corpus size

Parsing accuracy for the
ATIS corpus,

with unbounded depth.

675

MONTE CARLO PARSING

The figure shows the increase in parsing accu­
racy. For a corpus size of 450 trees, the accuracy
reaches already 88%. After this , the growth de­
creases , but the accuracy is still growing at corpus
size 675 . Thus, we might expect an even higher
accuracy if the corpus is further enlarged.

Finally, it might be interesting to compare our
results with those of others. In (Pereira - Sch­
abes, 1992) , 90.36% bracketing accuracy was re­
ported using a stochastic CFG trained on brack­
etings from the ATIS corpus. As said above, the
notion of bracketing accuracy is much poorer than
that of parsing accuracy. Thus, our pilot experi­
ment suggests that our model has better perfor­
mance than a stochastic CFG. Some work that
achieved high parsing accuracy, though with dif­
ferent test data, are the parsers Pearl and Picky
of (Magerman - Marcus, 1991) and (Magerman
- Weir, 1992) . In their work, a stochastic CFG is
combined with trigram statistics, yielding about
90% parsing accuracy with word sequences as in­
put strings. We do not yet know what accuracy
is achieved if DOP is directly tested on word se­
quences, instead of on p-o-s sequences. It is likely,
that larger corpora are needed for this task.

5 Conclusions

Although a Viterbi-style algorithm provides a
tool to derive in cubic time the most probable
derivation generated by a stochastic context free
grammar, this algorithm does not seem feasible
for stochastic language models that allow a parse
tree to be generated by different derivations (like
DOP or SLTAG) , since the most probable deriva-

9

tion does not necessarily produce the most prob­
able parse.

We showed that, by incorporating Monte
Carlo techniques into a polynomial parsing algo­
rithm, the most probable parse can be estimated
as accurately as desired, making its error arbi­
trarily small in polynomial time. For stochastic
grammars that are parsable in cubic time, the
time complexity of estimating the most probable
parse with Monte Carlo turns out to be O(n3c2) ,

for a string of length n and an estimation error c .
We suggested that Monte Carlo parsing may also
provide for stochastic CFGs an interesting alter­
native to Viterbi, which, in its current versions,
is restricted to CFGs in Chomsky Normal Form.
Nevertheless, Monte Carlo parsing seems espe­
cially apt to stochastic parsing with huge amounts
of redundant data, where one parse is generated
by exponentially many (different) derivations.

A Monte Carlo Chart parser was used to test
the DOP model on a set of hand-parsed strings
from the ATIS corpus. It sufficed to limit the
number of randomly calculated parses to 100,
in order to get satisfying convergence with high
parsing accuracy. It turned out that parsing ac­
curacy improved if larger subtrees were used. Our
experiments suggest that statistical reliability is
only relevant if not enough structural/ contextual
information is available.

Acknowledgements

We thank Remko Scha for valuable comments on
an earlier version of this paper, and Mitch Marcus
for supplying the ATIS corpus.

10

References

Black E. et al. (1991) "A Procedure for Quanti­tatively Comparing the Syntactic Coverage of English". In: Proceedings DARPA Speech and Natural Language Workshop, Pacific Grove , Morgan Kaufmann.
Black E. - J. Lafferty - S. Roukos (1992) "Development and Evaluation of a Broad­Coverage Probabilistic Grammar of English­Language Computer Manuals". In: Proceed­· ings A CL '92 , Newark, Delaware.

Bod , R. (1992) "A Computational Model of Lan­guage Performance: Data Oriented Parsing" . In : Proceedings COLING'92 , Nantes.
Bod , R. (1993) "Using an Annotated Corpus as a Stochastic Grammar". In: Proceedings EA CL '93 , Utrecht.
Briscoe, T. - J. Carroll (1993) "General­ized Probabilistic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars". In: Computational Linguistics 19(1), 25-59.

Fujisaki, T. - F. Jelinek - J. Cocke - E. Black - T. Nishino (1989) "A Probabilistic Method for Sentence Disambiguation". In: Proceed­ings 1st Int. Workshop on Parsing Technolo­gies , Pittsburgh.
Gale, W. - K. Church (1990) "Poor Estimates of Context are Worse than None". In: Proceed­ings DARPA Speech and Natural Language Workshop, Hidden Valley, Morgan Kaufmann.
Grishman, R. - C. Macleod - J. Sterling (1992) "Evaluating Parsing Strategies Using Standardized Parse Files". In: Proceedings ANLP '92 , Trento.
Hammersley, J. M. - D.C. Handscomb (1964) Monte Carlo Methods , Chapman and Hall, London.
Harrison, P. et al. (1991) "Evaluating Syntax Performance of Parser/Grammars". In: Pro­ceedings of the Natural Language Processing Systems Evaluation Workshop , Berkeley.

BOD

Hemphill C. T. - J.J. Godfrey - G.R. Dodding­ton (1990) "The ATIS spoken language sys­tems pilot corpus". In: Proceedings DARPA Speech and Natural Language Workshop, Hid­den Valley, Morgan Kaufmann.
Jelinek, F. - J.D. Lafferty - R.L. Mercer (1990) Basic Methods of Probabilistic Context Free Grammars , Technical Report IBM RC 16374 (#72684), Yorktown Heights.
Leermakers, R. (1991) "Non-deterministic Re­cursive Ascent Parsing" . In: Proceedings EACL '91 , Berlin.
Magerman, D. - M. Marcus (1991) "Pearl: A Probabilistic Chart Parser". In : Proceedings EACL '91 , Berlin.
Magerman, D.- C. Weir (1992) "Efficiency, Ro­bustness and Accuracy in Picky Chart Pars­ing". In: Proceedings A CL '92 , Newark, Delaware.
Marcus, M. (1991) "Very Large Annotated Database of American English" . DARPA Speech and Natural Language Workshop, Pa­cific Grove , Morgan Kaufmann.

Mijnlief, A. (1993) A Monte Carlo Chart Parser for DOP, Dept. of Computational Linguis­tics, University of Amsterdam.
Pereira, F. - Y. Schabes (1992) "Inside-Outside Reestimation from Partially Bracketed Cor­pora". In: Proceedings ACL '92 , Newark.
Resnik , P. (1992) "Probabilistic Tree-Adjoining Grammar as a Framework for Statistical Nat­ural Language Processing". In : Proceedings COLING'92 , Nantes.
Santorini, B. (1990) Part-of-Speec°h Tagging Guidelines for the Penn Treebank Project , Dept. of Computer and Information Science , University of Pennsylvania, Philadelphia.
Santorini, B. (1991) Bracketing Guidelines for the Penn Treebank Project , Dept. of Com­puter and Information Science , University of Pennsylvania, Philadelphia .

MONTE CARLO PARSING

Scha, R. (1990) "Language Theory and Language Technology; Competence and Performance" (in Dutch). In Q.A.M. de Kort & G.L.J. Leer­dam (eds.), Computertoepassingen in de Neer­landistiek , Almere : Landelijke Vereniging van Neerlandici (LVVN-jaarboek).
Scha, R. (1992) "Virtual Grammars and Creative Algorithms" (in Dutch), Gramma/TTT 1 (1).
Schabes, Y. (1992) "Stochastic Lexicalized Tree­Adjoining Grammars". In : Proceedings COL­ING '92 , Nantes.

1 1
Schabes, Y. - M. Roth - R. Osborne (1993) "Parsing the Wall Street Journal with the Inside-Outside Algorithm". In: Proceedi'TJ,gs EA CL '93, Utrecht.
Viterbi, A. (1967) "Error bounds for convolu­tional codes and an asymptotically optimum decoding algorithm". In : IEEE Trans. Infor­mation Theory, IT-13, 260-269.
Wright, J. - E. Wrigley - R. Sharman (1991) "Adaptive Probabilistic Generalized LR Pars­ing". In : Proceedings 2nd lnt. Workshop on Parsing Technologies , Cancun, Mexico.

12 Boo

Transformation-Based Error-Driven Parsing

Eric Brill*

Spoken Language Systems Group
Laboratory for Computer Science, M .I .T.
email: brill©goldilocks . lcs . mi t . edu

Abstract In this paper we describe a new technique for parsing free text: a transformational grammar1 is automatically learned that is capable of accurately parsing text into binary-branching syntactic trees. The algorithm works by beginning in a very naive state of knowledge about phrase struc­ture. By repeatedly comparing the results of bracketing in the current state to proper bracketing provided in the training corpus, the system learns a set of simple structural transformations that can be applied to reduce the number of errors. After describing the algorithm, we present results and compare these results to other recent results in automatic grammar induction.
1 Introduction

There has been a great deal of interest of late in the automatic induction of natural language grammar. Given the difficulty inherent in man­ually building a robust parser, along with the availability of large amounts of training material, automatic grammar induction seems like a path worth pursuing. A number of systems have been built that can be trained automatically to bracket text into syntactic constituents. In [MM90] mu­tual information statistics are extracted from a corpus of text and this information is then used to parse new text . [Sam86] defines a function to score the quality of parse trees, and then uses sim­ulated annealing to heuristically explore the en­tire space of possible parses for a given sentence. In [BM92a] , distributional analysis techniques are applied to a large corpus to learn a context-free grammar. The most promising results to date have been based on the inside-outside algorithm, which can be used to train stochastic context-free gram­mars. The inside-outside algorithm is an ex­tension of the finite-state based Hidden Markov

Model (by [Bak79]) , which has been applied suc­cessfully in many areas, including speech recog­nition and part of speech tagging. A number of recent papers have explored the potential of us­ing the inside-outside algorithm to automatically learn a grammar [LY90, SJM90, PS92, BW92, CC92, SRO93] .
Below, we describe a new technique for gram­mar induction. The algorithm works by begin­ning in a very naive state of knowledge about phrase structure. By repeatedly comparing the results of parsing in the current state to the proper phrase structure for each sentence in the training corpus, the system learns a set of ordered transformations which can be applied to reduce parsing error. We believe this technique has ad­vantages over other methods of phrase structure induction. Some of the advantages include: - the system is very simple, it requires only a very small set of transformations, a high degree of accuracy is achieved, and only a very small training corpus is necessary. The trained transformational parser is completely symbolic and can bracket text in lin­ear time with respect to sentence length. In addi­tion, since some tokens in a sentence are not even *This work was done while the author was at the University of Pennsylvania. This work was supported by DARPA and AFOSR jointly under grant No. AFOSR-90-0066, and by ARO grant No. DAAL 03�89-C0031 PR(1 Not in the traditional sense of the term.

13

14

considered in parsing, the method could prove to
be considerably more robust than a CFG-based
approach when faced with �10ise or unfamiliar in­
put . After describing the algorithm, we present
results and compare these results to other recent
results in automatic phrase structure induction.

2 Transformation-Based
Error-Driven Learning .

UNANNOTATED

TEXT

INITIAL

STATE

TRUTH

Figure 1 : Transformation-Based
Error-Driven Learning.

RULES

The phrase structure learning algorithm is an ap­
plication of a general learning technique called
transformation-based error-driven learning. This
learning paradigm, illustrated in figure 1 , has
proven to be successful in a number of differ­
ent natural language applications. In [Bri93]
(see also [Bri92, BM92b]) , transformation-based
learning is applied to part of speech tagging.
It is shown that the transformation-based ap­
proach outperforms stochastic taggers ([MM91])
when trained on small corpora, and obtains per­
formance comparable to stochastic taggers on
larger corpora. This is significant in light of
the fact that the transformation-based tagger is
completely symbolic. In [BR93] , this technique
is applied to prepositional phrase attachment .
The transformation-based approach is shown to
significantly outperform the t-score technique

BRILL

for prepositional phrase attachment described in
[HR91] .

In its initial state, the transformation-based
learner is capable of annotating text but is not
very good at doing so. The initial state anno­
tator is typically very easy to create. In part of
speech tagging, the initial state annotator assigns
every word its most likely tag in isolation, with
unknown words being assigned a default tag. In
prepositional phrase attachment, the initial state
annotator always attaches prepositional phrases
low. The naively annotated text is compared
to the true annotation as indicated by a small
manually annotated corpus, and transformations
are learned that can be applied to the output
of the initial state annotator to make it better
resemble the truth. The learner learns a set of
ordered transformations from a prespecified set
of allowable transformations. A greedy search
strategy is used to learn transformations: at each
stage of learning, the best scoring transformation
is learned for whatever scoring function is being
used. Four elements must be defined to com­
pletely specify a transformation-based learner:

3

1 . The initial-state annotator.

2. The list of allowable transformations.

3. The scoring function.

4. The search strategy.

Learning Phrase
ture

Struc-

The phrase structure learning algorithm is
trained on a small corpus of partially bracketed
text which is also annotated with part of speech
information. All of the experiments presented be­
low were done using the Penn Treebank anno-:

tated corpus[MSM93] . The learner begins in a
naive initial state, knowing very little about the
phrase structure of the target corpus. In partic­
ular, all that is initially known is that English
tends to be right branching and that final punc­
tuation is final punctuation. Transformations are
then learned automatically which transform the
output of the naive parser into output which bet­
ter resembles the phrase structure found in the
training corpus. Once a set of transformations

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 15

has been learned, the system i s capable of tak­
ing sentences tagged with parts of speech (ei­
ther manually tagged text, or the output of an
automatic part of speech tagger) and returning
a binary-branching structure with nonterminals
unlabelled . 2

3 .1 The Initial State Of The Parser

Initially, the parser operates by assigning a right­
linear structure to all sentences. The only excep­
tion is that final punctuation is attached high. So,
the sentence " The dog and old cat ate ." would
be incorrectly bracketed as :

((The (dog (and (old (cat ate))))) .)

The parser in its initial state will obviously
not bracket sentences with great accuracy. In
some experiments below, we begin with an even
more naive initial state of knowledge: sentences
are parsed by assigning them a random binary­
branching structure with final punctuation al­
ways attached high.

3.2 Structural Transformations

The next stage involves learning a set of trans­
formations that can be applied to the output of
the naive parser to make these sentences better
conform to the proper structure specified in the
training corpus . The list of possible transforma­
tion types is prespecified. Transformations in­
volve making a simple change triggered by a sim­
ple environment. In the current implementation,
there are twelve allowable transformation types:

• (1-8) (Addldelete) a (left lright) parenthe­
sis to the (leftlright) of part of speech tag
X.

• (9- 12) (Addldelete) a (left lright) parenthe­
sis between tags X and Y.

To carry out a transformation by adding or
deleting a parenthesis, a number of additional
simple changes must take place to preserve bal­
anced parentheses and binary branching. To give

an example, to delete a left paren in a particular
environment, the following operations take place
(assuming, of course, that there is a left paren to
delete) :

1 . Delete the left paren.

2. Delete the right paren that matches the just
deleted paren.

3. Add a left paren to the left of the con­
stituent immediately to the left of the
deleted left paren.

4. Add a right paren to the right of the con­
stituent immediately to the right of the
deleted left paren.

5. If there is no constituent immediately to the
right, or none immediately to the left , then
the transformation fails to apply.

Structurally, the transformation can be seen
as follows. If we wish to delete a left paren to
the right of constituent X3 , where X appears in a
subtree of the form:

�
X

� yy z

carrying out these operations will transform this
subtree into:4

� z
/'-.._,

X yy

Given the sentence:5

The dog barked .

this would initially be bracketed by the naive
parser as: 2This is the same output given by systems described in [MM90, Bri92, PS92 , SRO93]. 3To the right of the rightmost terminal dominated by X if X is a nonterminal. 4The twelve transformations can be decomposed into two structural transformations, that shown here and its con­verse, along with nine triggering environments. 5Input sentences are also labelled with parts of speech.

16

· ((The (dog barked)) .)
If the transformation delete a left paren to the right of a determiner is applied, the structure would be transformed to the correct bracketing:

(((The dog) barked) .)
To add a right parenthesis to the right of YY, YY must once again be in a subtree of the form:

� X
/'---.... yy z

If it is , the following steps are carried out to add the right paren:
1. Add the right paren.
2. Delete the left paren that now matches the newly added paren.
3. Find the right paren that used to match the just deleted paren and delete it.
4. Add a left paren to match the added right paren.
This results in the same structural change as deleting a left paren to the right of X in this par­ticular structure. Applying the transformation add a right paren to the right of a noun to the bracketing:

((The (dog barked)) .)
will once again result in the correct bracketing:

(((The dog) barked) .)

BRILL

3.3 Learning Transformations

Learning proceeds as follows. Sentences in the training set are first parsed using the naive parser which assigns right linear structure to all sen­tences, attaching final punctuation high. Next , for each possible instantiation of the twelve trans­formation templates, that particular transforma­tion is applied to the naively parsed sentences. The resulting structures are then scored using some measure of success that compares these parses to the correct structural descriptions for the sentences provided in the training corpus. The transformation resulting in the best scoring structures then becomes the first transformation of the ordered set of transformations that are to be learned. That transformation is applied to the right-linear structures, and then learning pro­ceeds on the corpus of improved sentence brack­etings. The following procedure is carried out repeatedly on the training corpus until no more transformations can be found whose application reduces the error in parsing the training corpus:
1. The best transformation is found for the structures output by the parser in its cur­rent state. 6

2. The transformation is applied to the output resulting from bracketing the corpus using the parser in its current state.
3. This transformation is added to the end of the ordered list of transformations.
4. Go to 1.
After a set of transformations has been learned, it can be used to effectively parse fresh text. To parse fresh text , the text is first naively parsed and then every transformation is applied , in order, to the naively parsed text. One nice feature of this method is that differ­ent measures of bracketing success can be used: learning can proceed in such a way as to try to optimize any specified measure of success. The measure we have chosen for our experiments is the same measure described in [PS92] , which is one of the measures that arose out of a parser evalu­ation workshop [ea91]. The measure is the per­centage of constituents (strings of words between

6The state of the parser is defined as naive initial-state knowledge plus all transformations that currently have been
learned.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 17
matching parentheses) from sentences output by our system which do not cross any constituents in the Penn Treebank structural description of the sentence. For example, if our system outputs:

(((The big) (dog ate)) .)
and the Penn Treebank bracketing for this sen­tence was:

(((The big dog) ate) .)
then the constituent the big would be judged cor­rect whereas the constituent dog ate would not . Table 1 . shows the first ten transformations found from one run of training on the Wall Street Journal corpus, which was initially bracketed us­ing the right-linear initial-state parser.

Left/ Add/ Right
Delete Paren Environment 1 D L Left of NN 2 D L Left of NNS 3 A R Left of , 4 D L Btwn NNP and NNP 5 D L Right of DT 6 A R Left of , 7 D R Left of NNS 8 D R Btwn NN and NN
g D L Btwn JJ and JJ 10 D L Right of $

Table 1 : The first 10 learned transformations.
The first two transformations, as well as trans­formation number 4, 5, 7, 8 and 9 all extract noun phrases from the right linear initial structure. Af­ter bracketing in the initial state, every word will be the leftmost terminal of a phrase containing the entire remainder of the sentence to its right . The first two transformations effectively remove singular and plural common nouns from such a structure and bracket them with the preceding constituent instead. The sentence "The cat me­owed ." would initially be bracketed as:

((Thf;/DT (cat/NN meowed/VBD)) . / .)
Applying the first transformation to this brack­eting (or · the second transformation to the same bracketing with cats replacing cat) would result in:

(((The cat) meowed) .)
If there is a left parenthesis between two proper nouns, then the second proper noun is initially bracketed with constituents that follow it rather than with the preceding proper noun. The fourth transformation fixes this. The sen­tence General Motors is very profitable . would initially be bracketed as:
((General/NNP (Motors/NNP (is (very profitable)))) .)

Applying the fourth transformation would con­vert this structure to:
(((General Motors) (is (very profitable))) .)

The following example demonstrates the in­teraction between transformations. The sentence The fastest cars won . would initially be brack­eted as:
((The/DT (fastest/ JJ (cars/NNS won/VBD))) .)
The first transformation to apply to this sentence would be number 2, resulting in:

((The ((fastest cars) won)) .)
The next applicable transformation is number 5 , whose application results in:

(((The (fastest cars)) won) .)
After this transformation is applied, no other transformations can be applied to the sentence, and the correct structure is produced. Transformation number 10 results from the fact that a number usually follows a dollar sign, and these two lexical items should be bracketed together. Transformations 3 and 6 result from the fact that a comma is a good indicator of the preceding phrase being terminated. Since each transformation is carried out only once per en­vironment, multiple listings of a transformation are required if the transformation is to be ap­plied multiple times to a single environment . The sentence We called them , but they left . would initially be bracketed as:

18
((We/PP (called/VBD (them/PP (,/, (but (they left)))))) .)
The first applicable transformation is number 3 , whose application results in:
((We ((called them) (, (but (they left))))) .)
The next applicable transformation is number 6, whose application results in the correct structure:
(((We (called them)) (, (but (they left)))) .)
4 Results

In the first experiment we ran, training and testing were done on the Texas Instru­ments Air Travel Information System (ATIS) corpus[HGD90].7 In table 2, we compare results we obtained to results cited in [PS92] using the inside-outside algorithm on the same corpus. Ac­curacy is measured in terms of the percentage of noncrossing constituents in the test corpus, as described above. Our system was tested by us­ing the training set to learn a set of transforma­tions, and then applying these transformations to the test set and scoring the resulting output. In this experiment, 64 transformations were learned (compared with 4095 context-free rules and prob­abilities used in the inside-outside algorithm ex­periment). It is significant that we obtained com­parable performance using a training corpus only 21 % as large as that used to train the inside­outside algorithm.
of Method Training Corp Accuracy Sentences Inside-Outside 700 90.4% Transformation Learner 150 91.1%

Table 2: Comparing two learning methods on the ATIS corpus.
After applying all learned transformations to the test corpus, 60% of the sentences had no cross­ing constituents, 74% had fewer than two crossing

BRILL

constituents, and 85% had fewer than three. The mean sentence length of the test corpus was 11.3. In figure 2, we have graphed percentage correct as a function of the number of transformations that have been applied to the test corpus. As the transformation number increases, overtrain­ing sometimes occurs. In the current implemen­tation of the learner, a transformation is added to the list if it results in any positive net change in the training set. Toward the end of the learning procedure, transformations are found that only affect a very small percentage of training sen­tences. Since small counts are less reliable than large counts, we cannot reliably assume that these transformations will also improve performance in the test corpus. One way around this overtraining would be to set a threshold: specify a minimum level of improvement that must result for a trans­formation to be learned. Another possibility is to use additional training material to prune the set of learned transformations.

Q)

Q)

LO
0,

0

LO
CX)

0
CX)

0

0 10 20 30 40 50 60

RuleNumber

Figure 2: Accuracy as a function of transformation number for the ATIS Corpus.

We next ran an experiment to determine what performance could be achieved if we dropped the initial right-linear assumption. Using the same 7In all experiments described in this paper, results are calculated on a test corpus which was not used in any way in either training the learning algorithm or in developing the system.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 19
training and test sets as above, sentences were ini­tially assigned a random binary-branching struc­ture, with final punctuation always attached high. Since there was less regular structure in this case than in the right-linear case, many more transfor­mations were found, 147 transformations in total. When these transformations were applied to the test set , a bracketing accuracy of 87. 1 % resulted.

The ATIS corpus is structurally fairly regular. To determine how well our algorithm performs on a more complex corpus, we ran experiments on the Wall Street Journal. Results from this exper­iment can be found in table 3.8 Accuracy is again measured as the percentage of constituents in the test set which do not cross any Penn Tteebank constituents. 9

Training # of Sent . Corpus Trans- % Length Sents formations Accuracy 2-15 250 83 88. 1 2- 15 500 163 89.3 2-15 1000 221 91 .6 2-20 250 145 86.2 2-25 250 160 83.8

Table 3 : WSJ Sentences
In the corpus we used for the experiments of sentence length 2-15, the mean sentence length was 10.80. In the corpus used for the experi­ment of sentence length 2-25, the mean length was 16.82. As would be expected, performance degrades somewhat as sentence length increases. In table 4, we show the percentage of sentences in the test corpus that have no crossing constituents, and the percentage that have only a very small number of crossing constituents. 10

Training % of % of Sent Corpus 0-error :::;2-error Length Sents Sents Sents 2-15 500 53.7 84.6 2- 15 1000 62.4 87.8 2-25 250 29.2 59.9

Table 4: WSJ Sentences
In table 5, we show the standard deviation measured from three different randomly chosen training sets of each sample size and randomly chosen test sets of 500 sentences each, as well as the accuracy as a function of training corpus size for sentences of length 2 to 20.

Training % Std. Corpus Sents Correct Dev. 0 63.0 0.69 10 75 .8 2.95 50 82. 1 1 .94 100 84.7 0.56 250 86.2 0.46 750 87.3 0.61
Table 5 : WSJ Sentences of Length 2 to 20.
In [SRO93] , an experiment was run using the inside-outside algorithm to train a grammar from the partially bracketed Wall Street Journal cor­pus. As in the experiment with the ATIS corpus, all possible binary context-free rules were initially allowed, and random probabilities were assigned to each rule. A comparison of this approach to the transformation-based approach is shown in tables 6 and 7. The inside-outside experiment was carried out on sentences of length 1-15, and the transformation-based experiment was carried out on sentences of length 2-15 . The inside-outside experiment had a grammar of 4095 probabilis­tic context free rules, which could be trimmed down to 450 rules without changing performan·ce. 221 symbolic transformations were learned in the transformation-based experiment. In table 6, the

8For sentences of length 2-15 , the initial right-linear parser achieves 69% accuracy. For sentences of length 2-20, 63% accuracy is achieved and for sentences of length 2-25, accuracy is 59%. 9In all of our experiments carried out on the Wall Street Journal, the test set was a randomly selected set of 500 sentences.
10For sentences of length 2-15 , the initial right linear parser parses 17% of sentences with no crossing errors, 35% with one or fewer errors and 50% with two or fewer. For sentences of length 2-25, 7% of sentences are parsed with no crossing errors, 16% with one or fewer, and 24% with two or fewer.

20

transformation-based learner is shown to outper­
form the inside-outside algorithm when parsing
accuracy is measured in terms of crossing brack­
ets. In table 7, accuracy is measured as the
percentage of sentences with no crossing bracket
violations. We believe these results are signifi­
cant , considering that the transformation-based
approach is only a weakly statistical learner (only
integer addition and comparison is done in learn­
ing) and is a completely symbolic parser that can
parse in linear time.

Training %
Method Corpus Sents Accuracy
Inside-
Outside 1095 90.2

Transformation
Learner 1000 91 .6

Table 6: Comparison of Two Learning
Algorithms on the Wall Street Journal:

Crossing Bracket Accuracy

Training Sentence
Method Corpus Sents Accuracy
Inside-
Outside 1095 57. 1

Transformation
Learner 1000 62.4

Table 7: Comparison of Two Learning
Algorithms on the Wall Street Journal:

Sentence Accuracy

A graph showing parsing performance for a
WSJ run trained on a 500-sentence training cor­
pus (training and testing on sentences of length
2-15) is shown in figure 3. We also ran an exper­
iment on WSJ sentences of length 2-15 starting
with random binary-branching structures with fi­
nal punctuation attached high. In this exper­
iment , 325 transformations were found using a
250-sentence training corpus, and the accuracy
resulting from applying these transformations to
a test set was 84.7%.

BRILL

co

Q)
0 co

Q)

0 50 1 00 1 50

RuleNumber

Figure 3: Accuracy as a function of
transformation number for the WSJ Corpus.

Finally, in figure 4 we show the sentence length
distribution in the Wall Street Journal corpus.

0
0
0 ,...

0
0 co

0
0 0 u (0

• .!!:
0

<ii 0
"<t

0
0

0

0 20 40 60 80 1 00

Sentence Length

Figure 4: The Distribution of Sentence Lengths
in the WSJ Corpus.

While the numbers presented above allow
us to compare the transformation learner with
systems trained and tested on comparable cor­
pora, these results are all based upon the as­
sumption that the test data is tagged fairly re-

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 21
liably (manually tagged text was used in all of these experiments, as well in the experiments of [PS92, SRO93] .) When parsing free text, we can­not assume that the text will be tagged with the accuracy of a human annotator. Instead, an au­tomatic tagger would have to be used to first tag the text before parsing. To address this issue, we ran one experiment where we randomly induced a 5% tagging error rate beyond the error rate of the human annotator. Errors were induced in such a way as to preserve the unigram part of speech tag probability distribution in the corpus. The exper­iment was run for sentences of length 2-15 , with a training set of 1000 sentences and a test set of 500 sentences. The resulting bracketing accuracy was 90. 1 %, compared to 91 .6% accuracy when using an unadulterated training corpus. Accuracy only degraded by a small amount when training on the corpus with adulterated part of speech tags.
5 Sample Output

Below are ten randomly chosen parses from the Wall Street .Journal. In each case, the output of the bracketing program is listed first, and the Penn Tree bank bracketing is listed second. Cross­ing brackets are marked with a star.
((But (if * ((a raider) * (takes *((over (when ((the stock) (is weak)))) (, ((the shareholder) (never (gets (his recovery))))))*) *)*)) .) ((But (if ((a raider) (takes over (when ((the stock) (is weak)))))) , ((the shareholder) (never gets (his recovery)))) .)
(((The company) (expects (to (resume *((full operations) (by today))*)))) .) (((The company) (expects (to (resume (full operations)) (by today)))) .)
(((" It) * (('s * ((very likely) * ((((the next) (five years)) (will (be (strong (for funds))))) (, ")) *) *) (he says)) *) .) (((" It ('s (very likely ((the next five years) will (be strong (for funds))))) , ") (he says)) .)
(((The (latest report)) (compares (with (((a modest) (9.9 (% increase))) (in *((July (machine orders)) (from ((a year) earlier))

)*))))) .) (((The latest report) (compares (with (a modest 9.9 % increase (in (July machine orders)) (from ((a year) earlier)))))) .)
(((The goal) (was (to (boost ((the cir­culation) (above ((the (500,000 level)) ((considered significant) (by advertisers))))))))) .) (((The goal) (was (to (boost (the circula­tion) (above ((the 500,000 level) (considered significant (by advertisers)))))))) .)
(((Mr. Jones) (ran *((((for (the Senate)) (as (a Democrat))) (in 1986)) (, (but (lost (to ((incumbent Sen.) (Don Nickles)))))))*)) .) (((Mr. Jones) ((ran (for (the Senate)) (as (a Democrat)) (in 1986)) , but (lost (to (incumbent Sen. Don Nickles))))) .)
((Then (((the ((auto paint) shop)) fire) (sent ((an (evil-looking cloud)) * (of *((black smoke) (into (the air)))*)*)))) .) ((Then ((the auto paint shop fire) (sent (an evil-looking cloud (of (black smoke))) (into (the air))))) .)
((He (* (used *(to (be ((a boiler-room) salesman)))*)* (, (peddling (investments (* (in oil)* * (*((and (gas wells)) and)* (rare coins)) *)))))) .) ((He (used (to (be (a boiler-room salesman) , (peddling (investments (in ((oil and gas wells) and (rare coins))))))))) .)
(((The board) (is (scheduled (to (meet Tuesday))))) .) (((The board) is (scheduled (to (meet Tues­day)))) .)
((Ignore (the (preserit condition))) .) ((Ignore (the present condition)) .)

In the first example, there are three brack­eting errors, all arising from the failure to end the clause following if at the comma. The sec­ond sentence has one error, which is a preposi­tional phrase attachment error. The third sen­tence has three bracketing errors, arising from crossing matching quotes. Perhaps a number of meta-rules, either learned or manually coded,

22
such as information about matching parenthe­ses a�d quotes, would significantly improve per­formance. The fourth sentence has one error, which is again a prepositional phrase attach­ment error. The sixth sentence has one error, from attaching the clause following (and includ­ing) the comma to the preposition for instead of the verb ran. The seventh sentence has two errors, both due to prepositional phrase attach­ment . The eighth sentence has five errors, one of which is due to prepositional phrase attach­ment and two arising from a difficult coordinate structure. In addition to meta-rules, postproces­sors addressing particular parsing problems such as prepositional phrase attachment and coordina­tion could lead to significant system performance improvements . Progress has already been made on a transformation-based prepositional phrase attachment program (see [BR93]) .
6 Assiging N onterminal La­

bels

Once a tree is bracketed, the next step is to la­bel the nonterminal nodes. Transformation-based error-driven learning is once again used for learn­ing how to label nonterminals. Currently, a node is labelled based solely on the labels of its daugh­ters. Therefore, an unlabelled tree can be labelled in a bottom-up fashion. Instead of addressing the problem of labelling the unlabelled tree output of the previous section, we have addressed a slightly different problem. The problem is to assign a tag to a node of a properly bracketed tree given the proper labels for the daughter nodes. This prob­lem can be more easily evaluated and solving it is a significant step toward solving the problem of labelling the output of the transformation-based bracketer. The Penn Treebank bracketed Wall Street Journal corpus was used for this experiment. 1 1 Two training sets were used (training set A had 1878 sentences and training set B had 1998) , as well as a test set of 1971 sentences. In the first ex­periment , the initial state annotator assigned the label noun phrase to all nodes. Then, transfor­mations were learned to improve accuracy. The transformation templates are:

BRILL

1. Change the node label to X if Y is a daughter.12

2 . Change the node label to X if Y and Z are adjacent daughters.
Transformations were learned using train­ing set A. A total of 115 transformations were learned. Initially assigning the label noun phrase to all nonterminal nodes in the test set resulted in an accuracy of 44.9%. Applying all learned trans­formations to the test set resulted in an accuracy of 94.3%. Table 8 shows the first twenty learned transformations. Transformations 15 and 18, as well as a number of similar transformations in the entire list capture the general rule X � X and X for coordination. It appears that the transfor- . mation Change a label to S if VP is a daughter is particularly effective, appearing as transforma­tion 2, 9 and 14. After the second transformation is applied, the transformations that follow could undo the second transformation as a side-effect .
Transformation If Daughter Number Tag As Includes 1 pp IN 2 s VP 3 VP VBD 4 VP VB 5 VP VBN 6 VP VBG 7 VP VBZ 8 s , s

9 s VP 10 SBar -NONE- S
1 1 pp TO NP 12 SBar IN S 13 VP VBP 14 s VP 15 s cc s 16 WHNP WDT 17 SBar WHNP 18 VP CC VP 19 WHNP WP 20 ADJP JJR

Table 8: Transformations For Labelling 1 1Thanks to Rich Pito for providing corpus processing tools for running this experiment. 12Y can be a nonterminal or preterminal (and need not be the only daughter).

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 23

Non terminals.
So, this transformation applies a number of times to remedy this . Next, a less naive start state was used. A non­terminal node is assigned the most likely tag for its daughters, as indicated in a second training set (training set B) . Unseen daughter sequences are tagged with a default tag (noun phrase) . Trans­formations were learned after applying the start state annotator to training set A. On the test set , initial state accuracy was 92.6%. Applying the transformations resulted in an accuracy of 95.9%. A total of 107 transformations were learned. We are very encouraged by the accuracy ob­tained using such a simple learning algorithm that only makes use of very local environments with­out recourse to any lexical information. Hope­fully, adding richer environments such as the word X is a daughter, or the nonterminal to the left is Y will lead to an even more accurate nontermi­nal labeller. By first bracketing text and then labelling nonterminals, we can produce labelled parse trees in linear time with respect to sen­tence length. The bracketer runs in O(ln l * ITI) , where ln l is the length of the sentence and IT I is the number of bracketing transformations. The nonterminal labeller also runs in O(ln l * IT I) , as all transformations are tried at every non­terminal node. Therefore, parsing run time is: O (ln l * IT I) + O(ln l * IT I) = O(ln l * IT I) .
7 Conclusions

In this paper, we have described a new approach for learning a grammar to automatically parse text . The method can be used to obtain high parsing accuracy with a very small training set. Instead of learning a traditional grammar, an or­dered set of structural transformations is learned

that can be applied to the output of a very naive parser to obtain binary-branching trees with un­labelled nonterminals. Experiments have shown that these parses conform with high accuracy to the structural descriptions specified in a manually annotated corpus. Unlike other recent attempts at automatic grammar induction that rely heav­ily on statistics both in training and in the re­sulting grammar, our learner is only very weakly statistical. For training, only integers are needed and the only mathematical operations carried out are integer addition and integer comparison. The resulting grammar is completely symbolic. Un­like learners based on the inside-outside algorithm which attempt to find a grammar to maximiz"e the probability of the training corpus in hope that this grammar will match the grammar that pro­vides the most accurate structural descriptions, the transformation-based learner can readily use any desired success measure in learning. The transformation-based learner can easily be extended simply by adding transformation templates. In the future, we plan to experiment with other types of transformations. Currently, each transformation in the learned list is only ap­plied once in each appropriate environment . For a transformation to be applied more than once in one environment, it must appear in the transfor­mation list more than once. One possible exten­sion to the set of transformation types would be to allow for transformations of the form: add/ delete a paren as many times as is possible in a particu­lar environment . We also plan to experiment with other scoring functions and control strategies for finding transformations and to use this system as a postprocessor to other grammar induction sys­tems, learning transformations to improve their performance. We hope these future paths will lead to a trainable and very accurate parser for free text.

24 BRILL

References [ea91] E. Black et al. A procedure for quanti­
tatively comparing the syntactic cover­
age of English grammars. . In Proceed­ings of Fourth DARPA Speech and Nat­ural Language Workshop, pages 306-
311 , 1991 .

[Bak79] J . Baker. Trainable grammars for
speech recognition. In Speech commu­nication papers. presented at the 97th Meeting of the Acoustical Society of America, 1979.

[BM92a] E. Brill and M. Marcus. Automatically
acquiring phrase structure using distri­
butional analysis. In Darpa Workshop on Speech and Natural Language, Har­
riman, N.Y. , 1992.

[BM92b] E . Brill and M. Marcus. Tagging
an unfamiliar text with minimal hu­
man supervision. In Proceedings of the Fall Symposium on Probabilistic Ap­proaches to Natural Language - AAA! Technical Report. American Associa­
tion for Artificial Intelligence, 1992.

[BR93] E. Brill and P. Resnik. A transforma­
tion based approach to prepositional
phrase attachment. Technical report ,
Department of Computer and Informa­
tion Science, University of Pennsylva­
nia, 1993. Forthcoming.

[Bri92] E. Brill. A simple rule-based part
of speech tagger. In Proceedings of the Third Conference on Applied Natu­ral Language Processing, A GL, Trento,
Italy, 1992.

[Bri93] E. Brill. A Corpus-Based Approach to Language Leaming. PhD thesis, De­
partment of Computer and Informa­
tion Science, University of Pennsylva­
nia, 1993.

[BW92] T. Briscoe and N. Waegner. Robust
stochastic parsing using the inside­
outside algorithm. In Workshop notes from the AAA! Statistically-Based NLP Techniques Workshop, 1992.

[CC92] G. Carroll and E. Charniak. Learn­
ing probabilistic dependency grammars
from labelled text - aaai technical re­
port. In Proceedings of the Fall Sym­posium on Probabilistic Approaches to Natural Language. American Associa­
tion for Artificial Intelligence, 1992.

[HGD90] C. Hemphill, J. Godfrey, and G. Dod­
dington. The ATIS spoken language
systems pilot corpus. In Proceedings . of the DARPA Speech and Natural Lan­guage Workshop, 1990.

[HR91] D. Hindle and M. Rooth. Structural
ambiguity and lexical relations. �n Pro­ceedings of the 29th Annual Meeting of the Association for Computational Lin­guistics, Berkeley, Ca. , 1991 .

[LY90] K. Lari and S. Young. The estimation
of stochastic context-free grammars us­
ing the inside-outside algorithm. Com­puter Speech and Language, 4, 1990.

[MM90] D. Magerman and M. Marcus. Pars­
ing a natural language using mutual
information statistics. In Proceedings, Eighth National Conference on Artifi­cial Intelligence (AAA! 90), 1990.

[MM91] R. Weischedel M. Meteer, R. Schwartz.
Empirical studies in part of speech la­
belling. In Proceedings of the fourth DARPA Workshop on Speech and Nat­ural Language, 1991 .

[MSM93] M. Marcus, B. Santorini,

[PS92]

and M. Marcinkiewicz. Building a large
annotated corpus of English: the Penn
Treebank. To appear in Computational
Linguistics, 1993.

F. Pereira and Y. Schabes. Inside­
outside reestimation from partially
bracketed corpora. In Proceedings of the 30th Annual Meeting of the Asso­ciation for Computational Linguistics,
Newark, De. , 1992.

[Sam86] G. Sampson. A stochastic approach
to parsing. In Proceedings of COLING 1986, Bonn, 1986.

TRANSFORMATION-BASED ERROR-DRIVEN PARSING 25

[SJM90] R. Sharman, F. Jelinek, and R. Mer­cer. Generating a grammar for sta­tistical training. In Proceedings of the 1990 Darpa Speech and Natural Lan­guage Workshop, 1990.

[SRO93] Y. Schabes, M. Roth, and R. Osborne. Parsing the Wall Street Journal with the inside-outside algorithm. In Pro­ceedings of the 1993 European A CL, Uterich, The Netherlands, 1993.

26 B RILL

Parsing as Dynamic Interpretation

Harry Bunt and Ko van der Sloat

Institute for Language Technology and Artificial Intelligence ITK
P.O.Box 90153, 5000 LE Tilburg, The Netherlands

email: {bunt I sloot }©kub . nl

Abstract In this paper we consider the merging of the language of feature structures with a formal logical language, and how the semantic definition of the resulting language can be used in parsing. For the logical language we use the language EL, defined and implemented earlier for compu­tational semantic purposes. To this language we add the basic constructions and operations of feature structures. The extended language we refer to as 'Generalized EL' , or 'GEL' . The seman­tics of EL, and that of its extension GEL, is defined model-theoretically: for each construction of the language, a recursive rule describes how its value can be computed from the values of its constituents. Since GEL talks not only about semantic objects and their relations but also about syntactic concepts, GEL models are nonstandard in containing both kinds of entities. Whereas phrase-structure rules are traditionally viewed procedurally, as recipes for building phrases, and a rule in the parsing-as-deduction is viewed declaratively, as a proposition which is true when the conditions for building the phrase are satisfied, a rule in GEL is best viewed as a proposition in Dynamic Semantics: it can be evaluated recursively, and evaluates not to true or false, but to the minimal change in the model, needed to make the proposition true. The viability of this idea has been demonstrated by a proof-of-concept implementation for DPSG chart parsing and an emulation of HPSG parsing in the STUF environment.
1 Discontinuous Phrase

Structure Grammar

1 . 1 Introduction

DPSG, or 'Discontinuous Phrase Structure Grammar' , has been developed over the years in the context of building natural-language un­derstanding systems, such as the TENDUM di­alogue system (Bunt et al. , 1985). It has been applied in experimental systems both for parsing and for generation (see Bunt, 1987; 1991; Bunt - Thesingh - Van der Sloot, 1987) . It has grown out of the tradition of augmented context­free grammars, where the augmentations in the case of DPSG are (1) conditions on features; (2) the formulation of semantic rules coupled to the syntactic rules in a rule-by-rule fashion. The distinguishing property of DPSG is that its rules do not construct ordinary phrase­structure trees, but structures that allow cross-
27

ing branches, called 'discontinuous trees'. Partly inspired by McCawley (1982), these constituents structures have been given a formal definition (Bunt, 1991). The use of discontinuous trees is intended to provide an intuitively appealing and computationally simple treatment of bounded discontinuities. An example is the following:
VP
+-----+

V
+----- 1 ------------+

I I I
I NP I
I +------+ I
I I
VC DET
I I

N PART
I I

Wake your friend up

To generate such a structure DPSG uses rules which, disregarding the augmentations with fea­ture conditions and semantics, look as follows,

28

where square brackets indicate 'internal context'
elements of discontinuous constituents:

VP --> V + NP
NP --> DET + N
V --> VC + [NP] + PART
VC --> wake
DET --> your
N --> friend
PART --> up

For further details see Bunt (1991) , which also
describes a chart parser for DPSG.

1.2 ID-LP separation in DPSG

The above rule format is nowadays obsolete, since
it has been recognized that, by separating consid­
erations of immediate dominance (ID) and lin­
ear precedence (LP) , greater generality can be
achieved. This was first demonstrated in GPSG
(Gazdar et al. , 1985), and has subsequently been
exploited to an even greater degree in HPSG (Pol­
lard - Sag, 1987; forthc .) . It is, of course, also
well recognized in GB theory.

The possibility in principle to apply the ID­
LP separation in DPSG, which may be somewhat
surprising since a discontinuous PS rule by defi­
nition would seem to say something about dom­
inance as well as about precedence, was already
indicated in Bunt (1991) .

A discontinuous rewrite rule like the one used
above - V --> VC + [NP] + PART - is equiv­
alent to the following combination of dominance­
and precedence constraints, where CD stands for
context daughters: 1

ID : V --> {VC . PART}
CD : {NP}
LP : {VC < NP , NP < PART}

The dominance and precedence aspects of the
rewrite rule have been separated here; one can
subsequently consider the possibility to general­
ize the LP part and make it global for the entire
grammar, as GPSG and HPSG are aiming to do,
or for a part of the grammar, as is done in the
latest version of DPSG.

In this example, the ID /LP formulation
clearly has no advantages over the traditional for­
mulation; such advantages can only be expected

B UNT - VAN DER SLOOT

if the same dominance rule allows various prece­
dences. This is precisely what is often the case
with discontinuities; for example, in Dutch an in­
tervening adverb (phrase) can be placed on a va­
riety of positions.

1 .3 Semantics in DPSG

In developing DPSG for implementing natural
language fragments, we have chosen a rule for­
mat somewhat like that of Montague Grammar,
where syntactic phrase-structure rules and fea­
ture conditions are coupled with semantic rules
to build up semantic representations in parallel
with syntactic structures.

For these semantic rules we have chosen the
language EL ('Ensemble Language') , designed
specifically for representing natural language se­
mantics (see Bunt, 1985) . This language com­
bines typed lambda abstraction with concepts
from Ensemble Theory, an extension of classi­
cal set theory developed for dealing with mass
terms (Bunt, 1985; see also Lewis, 1992) and with
data structures and operations known to be use­
ful from computational semantics, such as lists,
list projection, singleton, cartesian product , etc.

2 EL and feature languages

2 . 1 Feature structures as formal-
language expressions

When we regard feature structures, as used for
instance in HPSG, as expressions in a formal lan­
guage, the question arises how this language re­
lates to more traditional formal languages.

Feature structures have three basic ingredi­
ents, not commonly found in the formal languages
of logic:

1 . the pairing of an attribute and a value to
form a feature;2

2. the combination of features into 'bundles ' ;

3 . the use of markers to indicate re-entrancy,
or 'structure sharing' . 1 The rules as given here are, again, extremely oversimplified copared to full-fledged DPSG-rules, which include local and global conditions on features, feature propagation constraints, and semantic composition rules. 2The term 'feature' is sometimes used in the literature for the combination of an attribute and a value, like [case :

genitive] and sometimes for an attribute alone. In this paper we will use the term only in the former sense.

PARSING AS DYNAMIC INTERPRETATION

These three ingredients, plus the possibility to use features nested as attribute values, define the core of the language of feature structures. Additional constructions found in feature structures include lists, sets, negation, disjunction and occasionally others. Syntactically, the core of the language of feature structures can be defined as follows.
1 . If A is an attribute constant and v a value constant or variable, then [A : v] is a feature expression ("atomic feature specification") .
2 . If A i s an attribute constant and f a feature expression, then [A : f] is a feature expres­sion ("complex feature specification") .
3 . If Ji and h are feature expressions, then [Ji , h] is a feature expression ("feature bundle") .
4 . If e is a feature expression and i a structure sharing marker, then (i : e) is a ("marked") feature expression.
5. If A is an attribute constant and i a struc­ture sharing marker, then [A : i] is a feature expression (with structure sharing) .
The heart of the corresponding semantic defi­nition is that of the atomic feature specification. We view feature specifications as descriptions of predicates; regarding, for example, the feature specification [gender : neuter] as denoting the predicate of having neuter gender. The seman­tics of feature bundles is nothing else than the conjunction of the corresponding predicates. The semantics of feature nesting is more complex. To formulate it properly, one must make a 3-way distinction between different kinds of feature at­tributes, exemplified by the attributes gender,

head, and complement-daughters, respectively. Attributes of the first kind, like gender and case, take atomic values to form predicates; one notice­able point is that attributes of the other types cannot have atomic values. Attributes of the sec­ond type, like head and synsem, function merely as labels, allowing one to refer to certain feature complexes (like the head features) in grammat­ical principles like the Head Feature Principle. These attributes are semantically vacuous. At­tributes of the third kind, like head-daughter

29

and complement-daughters are again different , in . that they describe dominance relations be­tween words or phrases, rather than local gram­matical properties. This is reflected in the fact that the values of these attributes must refer to words or phrases, i.e. they must be complex fea­ture structures of which the phonology attributes are fully specified.3 In a model-theoretic seman­tics, the difference comes out in the fact that these attributes denote relations among the words that inhabit the model and the phrases that can be formed from these words. Such a formalization, which we will not make explicit here, does bring out the asymmetry of HPSG that dominance rela­tions are represented within signs, whereas prece­dence relations are not . Depending on how far one wants to go in formalizing the language in which the principles of HPSG are formulated, one niay want to add the precedence relation to an enriched feature language. There is one more important aspect of fea­ture structures that must be dealt with: struc­ture sharing. We do this by interpreting structure sharing markers , introduced in the above syntac­tic rules 4 and 5, as a special kind of variable, and defining the semantics of the expressions in the intuitively obvious way by means of the unifi­cation of the values of the subexpressions marked with the sane marker (see also below) . It is clearly possible to add the above five syn­tactic rules to those of a standard logical lan­guage, such as first-order predicate logic. To the rules defining the correct expressions of predi:.. cate logic we simply add the above rules and we stipulate that feature specifications can be used everywhere where a one-place predicate con­stant is allowed. The resulting language can be used to make statements about linguistic mate­rial. For instance, the following formula expresses that there is a singular noun with neuter gender in the sentence S

(3x) (IN(x, S) & NOUN(x) & [number : sing, gender : neuter] (x))
In this way, feature structures can be added to the EL language. This opens the possibility to formu­late DPSG rules entirely as expressions in Gen­eralized Ensemble Language (GEL) . Evaluating

3If empty nodes are allowed, the phonology attribute should obviously be allowed to have an undefined value - which
would still make the value of the attribute fully specified.

30

�uch GEJ;i-expres�ions then comes down to try­
ing to pr?ye statements about linguistic material
- which is a way of thinking about parsing, as we
know from the parsing-as-deduction paradigm.

2 .2 Grammatical information in
GEL

What do we have to add to EL in order to en­
code grammatical information? We will consider
the case of grammatical information as expressed
in Head-driven Phrase Structure Grammar to an­
swer this question.

In HPSG, the sign is the informational unit .
Signs make up the lexicon, and are used in the
rules of HPSG. A sign is a complex feature struc­
ture with certain particular attributes and classes
of values; a sign is thus readily expressed in GEL,
once the relevant attribute and value constants
have been added to the GEL vocabulary.

Rules in HPSG come in three forms: ID
schemata, LP restrictions, and general princi­
ples (like the Subcategorization Principle and the
Head Feature Principle) . These rules are all state­
ments about signs.

ID schemata describe, in terms of the various
immediate dominance relations distinguished in
HPSG (head - head daughter, head - complement
daughter, head - adjunct daughter, head - marker,
head - filler) the configurations of signs that are
permitted. Since the various dominance rela­
tions are treated in HPSG as feature attributes,
and dominance structures are encoded in fea­
ture structures, this means altogether that ID
schemata are actually constraints on admissible
phrasal signs. Due to the logical power of EL,
these constraints are readily expressed in GEL,
once we are able to represent signs.

LP restrictions are formally different from ID
schemata, since they describe constraints on signs
with linear precedence relations, which are not
treated in HPSG as feature attributes, and not
part of the information in signs, but belong to
the_ metalanguage. For the re-expression of LP
restrictions in GEL we have three options:

1 . we follow the HPSG strategy, leaving the
liriear· precedence relation at the metalan-

BUNT - VAN DER SLOOT

guage and thus outside the . feature formal­
ism;

2 . we add a predicate constant denoting the
LP relation to GEL, and formalize what the
theory says on linear precedence;

3. we introduce a feature attribute 'right
neighbour' , comparable to HPSG's daugh­
ter attributes and treat LP relations as
parts of signs.

To make our implementation close to other
existing implementations (in particular to the
STUF implementation of HPSG, discussed be­
low), we take the first option, although theoreti­
cally one could do better.

General principles, finally, describe how the
values of certain feature attributes depend on
those of the daughters. They can be seen as de­
scribing the propagation of feature values upon
phrase building. These dependencies can be de­
scribed in a first-order language, and are thus eas­
ily expressed in GEL.

The crucial innovative feature needed in GEL
is the possibility to have shared subexpressions
within an expression. To this end a new construct
has been added which employs special variables
('unifiable variable') , binding shared subexpres­
sions. These variables are denoted by an unique
name which starts with '© ' . A simple example of
a GEL expression with shared subexpressions is:

[synsem : [local name : ©1 ,
contents : lambda(_x ,

application(©1 , _x)
)]]

This could be a template for a propername en­
try in a lexicon (see below on the definition and
use of templates) . Whenever ©1 is instantiated,
this information is shared between the name and
the semantic contents. There are no restrictions
on the kind of value that can be assigned to a
unifiable variable; any GEL expression will do.

An important question is, of course, how this
assignment is done. To this end the constructions
'unifiable' and 'unify' are introduced, the use
of which will be illustrated below. A unify con­
struction takes any number of arguments, tries to
unify them in the usual way (see Shieber et al. ,
1983), and delivers the resulting GEL expression

PARSING AS DYNAMIC INTERPRETATION

or NULL, if the unification fails. U nifiability is
defined using unify: unif iable(a1 , . . . , an) re­
turns TRUE if unify(a1 , . . . , an) is succesful, and
FALSE otherwise.

3 GEL semantics and evalu­

ation

The semantics of EL, and that of its extension
GEL, is defined model-theoretically: for each con­
struction of the language there is a rule describing
how its value can be computed from the values of
its constituent expressions, down to the atomic
constituents. Here the recursion ends, and the
values of the atomic constituents are looked up
in the model, which is a structured specification
of these values.

The semantics of GEL is defined model­
theoretically, in the same way as that of EL, but
since GEL talks not only about 'semantic' objects
but also about syntactic objects and their rela­
tions, GEL models contain both linguistic and
nonlinguistic entities.

When defining a formal semantics for the GEL
extension with feature structures, the first thing
to consider is the semantics of a simple feature
specification. We view a feature attribute like
gender as a mathematical function, with entities
like feminine as values. This captures the idea
that an attribute has a value, and a unique one.

Viewing feature attributes as functions raises
the question to what objects these functions ap­
ply: what is their domain? We think this is
fairly obvious: the domain consists of words and
phrases. A feature specification then amounts to
a predicate, which can be used to express a syn­
tactic property of a word or phrase. The seman­
tics of a predicate being a set (or a character­
istic function) , a GEL expression like [gender :
fem] receives as its interpretation the set of those
words and phrases that have feminin gender. 4

To formally interpret a feature specification,
we apparently need a model which includes words
as the 'individuals' to which feature attributes ap­
ply, and which also includes syntactic concepts
like femin in , i nterrogative and mass as individual
objects that may occur as feature values.

I

31

A model for the GEL sublanguage of feature
structures is thus a triple:

M = < W, {AVi , . . . , AVk } , F >

where W is a countable set of words,
{ A Vi , .. , AVk} is a finite collection of finite sets of
objects called 'atomic feature values ' , and F is a
function assigning interpretations to constants. F
assigns atomic feature values to value constants;
to an attribute constant A, F assigns a function
froin W to some value set A¼ . The sets A¼ are
assumed to be disjoint.

If V is the recursive evaluation function assign­
ing interpretations to GEL expressions, we get , in
first approximation, the following semantics for a
simple feature specification:

V([A : v]) = {w in P(W) IF(A) (w) = V(v)} ;
if v is atomic, then V(v) = F(v)

I

where P(W) denotes the set of all phrases (words
and word sequences) that can be formed from W.
4 Parsing as dynamic inter­

pretation

Phrase-structure rules are traditionally viewed

I
procedurally, as recipes for building phrases.
In the parsing-as-deduction approach a rule is
viewed declaratively, as a proposition which is
true when the conditions for building the phrase
are satisfied. A rule expressed in GEL is best
viewed as a proposition in Dynamic Semantics:
it can be evaluated recursively, and evaluates not
to true or false, but to the minimal change in the
model, needed to make the proposition true.

The viability of this idea has been demon­
strated by a proof-of-concept implementation for
DPSG chart parsing and an emulation of the
STUF implementation bf HPSG. We describe
these in the following sections.

4. 1 DPSG rules in GEL

To illustrate the use of GEL in the implementa­
tion of DPSG, we consider a (simplified) DPSG
rule, which combines a central determiner and a

4Treating feature attributes as functions seems to us intuitively more satisfying than treating them as atomic entities, as Gazdar and Pullum (1987) have proposed.

32

NPCENTRE_2
ID rule
CD rule
LP constr
GEL rule

NPCENTRE --> {a : CENTRALDET , b : NOM } ;
{} ;
{a < b} ;
conditional(

BUNT - VAN DER SLOOT

conjunction(eq(Form_of (a) , Form_of (b)) ,
eq(Gender_of (a) , Gender_of (b)) ,
memberof ({ <Mass> , <Ground> , <Coll> } ,

Form_of (a))) ,
unify(Head_Feature_Instantiati�n(b) ,

Form(Form_of (b)) ,
Gender(Gender_of (b)) ,
Person(Person_of (b)) ,
Content (partselection(

Content_of (b) , lambda{_x ,
application(Content_of (a) , _x))))) ,

undef) ;

nominal into an 'npcentre'. To facilitate the reuse of the parsing strategy implemented for the origi­nal DPSG format, the categorial ID-parts as. well as the CD- and LP-parts of the rule have been kept separate from the rule part where the real work is done; this part, specifying the condi­tions and actions- on features as well the semantic composition, is expressed in GEL. The GEL ex­pression is of the form conditional (A , B , C); according to the EL semantics underlying GEL, the interpretation of such an expression gives the value of B if A evaluates to TRUE, and that of C otherwise. In the conjunction describing the conditions for succesfully applying the rule, the equality relation of EL ('eq') is used to test form and gender agreement of the constituents a and b. In the same way we test whether the form of constituent a is a member of an enumerated set, using the relation 'member of ' .
When the parameters a and b in this rule are instantiated by feature structures representing constituents of category CENTRALDET and NOM (the ID-condition), where the central determiner im­mediately (CD-condition) precedes the nominal (LP-condition), then the GEL rule says that if the constraints on form and gender are satisfied, these constituents are the daughters of an NP centre whose head features, form feature, gender feature and person feature are inherited (through unifi-

cation) from the nominal constituent, and whose semantic content is constructed compositionally from the contents of the daughters. 5 Dynamic interpretation of the rule, using the chart as a model, has the effect of creating and NPCENTRE node with these properties. This approach has been implemented succes­fully by extending the implemented machinery for EL evaluation with the GEL augmentations (basically, the representation of complex feature structures and the operations on those), and merging this with the DPSG parser described in Bunt (1991), originally developed by van der Sloot (1990).
4.2 HPSG/STUF emulated in GEL

4.2 .1 The Stuttgart Type Unification
Formallism (STUF)

A second proof-of-concept implementation of the idea of parsing as dynamic interpretation has been made in the form of an emulation of the parser and grammar development environment called STUF (Stuttgart Type Unification Formal­ism), originally developed in the LILOG project (Herzog et al., 1986). STUF is a descendant of PATR-11 (Shieber et al., 1983), providing a formalism and a soft­ware environment for writing grammars of various 5The semantic part says, more specifically, that the NP centre denotes the union of those parts of the denotation of the (mass) nominal's denotation that satisfy the predicate denoted by the cenral determiner. For more explanation see Bunt, 1985.

PARSING AS DYNAMIC INTERPRETATION

kinds. STUF has a much richer language for spec­ifying feature structures, based on Kasper and Rounds' feature logic (Kasper - Rounds, 1986) . In STUF it is possible to directly specify com­plex embedded structures, including disjunctive and negative information. The core of the STUF language is formed by the following definition of the syntax of feature terms:6

atom
_x

atomic value or template
variable

attribute : S feature selection
templ (S1 , . . , Sn) parametrized template
[S1 S2 . .] conjunction
{S1 S2 . . } disjunction
not S negation

Variables are used to describe structure shar­ing. They have the same interpretation as struc­ture indices in the matrix notation used above. Templates are named complex feature terms, used to organize information more compactly. An example is:
intransitive_verb : =

[syntax [value : [syntax : s
semantics : _X]

direction : left
argument : syntax : np]

semantics : _X]

Templates may be functional, having parameters which are substituted by actual values when ap­plied. A simple example is:
invert_boolean(plus) : = minus .
invert_boolean(minus) : = plus .

Lexical entries are simply feature term definitions where the name is interpreted as a word that may appear in an input sentence. Templates make these definitions very simple. Examples:
John : = [syntax : np] .
goes : = intransitive_verb .

The STUF implementation of HPSG is not en­tirely faithful to the theory, in that (1) there is in fact no ID /LP separation in STUF rules, which means that every ID schema has as many LP variants as the LP constraints allow; and (2) the General Principles are instantiated for every ID schema.

33 .
The following elements taken from an imple­mentation of a fragment of English in the PLUS system (Black et al. , 1991 ; Rentier, 1993) il­lustrate the actual use of STUF. In the next subsection we will illustrate the GEL emulation of STUF by describing the corresponding GEL structures.

1 . Some functional templates:
head(X)
maj or(X)
inv (X)

comps (X)
compsO

sat
ssat
unsat

subj (X)
subjO

mod(X)
modO

: = synsem : local : head : X .
: = head(maj : X) .
: = head(maj : X) .

: = synsem : local : comps : X .
: = comps (undef) .

: = subjO , compsO .
: = subjO , compsO , modO .
: = comps (def) .

· = synsem : local : subj : X .
: = subj (undef) .

: = synsem : local : mod : X .
: = mod(undef) .

2. Some nonfunctional templates:
nominal : = maj or(n) , modO .
nphrase : = nominal , ssat .

3. Some General Principles and auxiliary tem­plates:
' Headinherit ' : = mother : head(X) ,

h_dtr : head(X) .
' Contentinherit ' : = mother : content (X) ,

h_dtr : content (X) .
' Compsinherit 1

' Gapinherit '

' Bindinherit '

: = mother : comps (X) ,
h_dtr : comps (X) .

: = mother : gap(X) ,
((nonhead : gapO ,

h_dtr : gap(X)) ;
(h_dtr : gapO ,

nonhead : gap(X))) .
: = mother : bind(X) ,

((nonhead : bindO ,
h_dtr : bind(X)) ;
h_dtr : bindO ,
nonhead : bind(X))) .

6We omit the use of semantic subsorts and paths here. For the original definitions see Dorre - Seiffert, 1991 and Dorre - Raasch, 1991 .

34

' NonLocalinherit � : = ' Gapinherit ' ,
' Bindinherit ' .

' Modinherit ' : = mother : mod(_X) ,

' ModCombine '
h_dtr : mod(_X) .

: = mother : (modO ,
content LX) ,
context LZ)) ,

h_dtr : _Y ,
nonhead : (sat ,

gapO ,
mod(_Y) ,
content LX) ,
context LZ)) .

' Complementation ' : = ' Headinherit ' ,
' Modinherit ' ,
' Contentinherit ' ,
' NonLocalinherit ' .

' Adjunction ' : = ' Headinherit ' ,
' Compsinherit ' ,
' NonLocalinherit ' ,
' ModCombine ' .

4. Some rules (ID schemata with instantiated LP restrictions and General Principles):
' RightComplementation ' : =

mother -> h_dtr , nonhead
' Complementation ' ,
nonhead : (major(not (d))) .

' LeftComplementation ' : =

mother -> nonhead , h_dtr
' Complementation ' ,
nonhead : (major(d)) .

' LeftAdjunction ' : =

mother -> nonhead , h_dtr
' Ad junction ' .

5 . Some lexical entries (slightly simplified):
car : = nphrase ,

form(N) ,
pers (' 3rd ') ,
parm(P) ,
restr1 ((rel : ' CAR ' , argO : P)) .

who : = nphrase ,
det (wh) ,
pers (' 3rd ') ,
gend(not (neut)) ,
case (not (gen)) ,
gapO ,
parm(P) ,
restr1 ((rel : ' WHO ' , argO : P)) .

B UNT - VAN DER S LqOT

4.2.2 STUF emulated in GEL.
To illustrate the emulation of STUF in GEL, we describe the GEL counterparts of the STUF func­tional and other templates, ID rules instantiated for LP rules and for General Principles, and a few lexical entries.
O. We first define an empty sign to get unifi-cations going:
SIGN : = synsem :

[local : [head : [maj ID ,

nonlocal :

aux ID ,
inv ID ,
case ID ,
form ID] ,

comps : ID ,
subj : ID ,
mod : · ID] ,

[bind : ID ,
gap : (D] '

cont :
[parm

[pers : (D ,
gend : (D ,
num : (D] ,

restr : (D]] •

The symbol '©' is to be considered as an anony­mous variable; no two occurrences are taken as identical.
1 . Some functional templates
Head(©X) : = synsem : local : head : ©X .
Major(<OX) : = Head(maj : <OX) .
Inv (©X) : = Head(inv : ©X) .
InvO : = Inv(undef) .
Comps (©X) : = synsem : local : comps : ©X .
CompsO : = Comps (<>) .

Sat : = unify(SIGN ,
SubjO ,
CompsO) .

Ssat : = unify(Sat , ModO) .
Unsat : = Comps (Def) .
Subj (©X) : = synsem : local : subj : ©X .
SubjO : = Subj (undef) .
Mod((OX) : = synsem : local : mod : ©X .
ModO : = Mod(undef) .

PARSING AS DYNAMIC INTERPRETATION

2. Some nonfunctional templates:
Nominal : = unify(SIGN , Major(N) , InvO ,

ModO , SubjO) .
Nphrase : = unify(Nominal , Ssat) .

3. Some General Principles:
Headinherit (©HD) : =

conditional (unifiable (©HD , Head(©X)) ,
Head(©X) ,
undef) .

Contentinherit (©HD) : =

conditional (unifiable (©HD , Content (©X)) ,
Content (©X) ,
undef) .

Comp�Inherit (©HD) : =

conditional (unifiable (©HD , Comps (©X)) ,
Comps (©X) ,
undef) .

Gapinherit (©HD , ©N) : =

conditional (
unifiable (©N , GapO) ,
conditional (

unifiable (©HD , Gap(©G1)) ,
Gap(©G1) ,
undef) ,

conditional (
unifiable (©HD , GapO) ,
conditional (

unifiable (©N , Gap(©G2)) ,
Gap(©G2) ,
undef) ,

undef)) .

Bindinherit (©HD , ©N) : =

conditional (
unifiable (©N , BindO) ,
conditional (

unifiable (©HD , Bind(©G1)) ,
Bind(©G1) ,
undef) ,

conditional (
unifiable (©HD , BindO) ,
conditional(

unifiable (©N , Bind(©G2)) ,
Bind(©G2) ,
undef) ,

undef)) .

NonLocalinherit (©HD , ©N
unify(

SIGN ,

: =

Gapinherit (©HD , ©N) ,
Bindinherit (©HD , ©N)) .

Modinherit (©HD) : =

conditional(unifiable (©HD , Mod(©X)) ,
Mod(©X) ,
undef) .

ModCombine (©HD , ©N) : =

conditional(
unifiable (©N , Sat ,

GapO ,
Mod(©HD) ,
Content (©X) ,
Context (©Z)) ,

unify (SIGN , ModO ,

35

Content (©X) ,
Context (©Z)) ,

undef) .

Complementation(©HD , ©N) · =
unify (

SIGN ,
Headinherit (©HD) ,
Modinherit (©HD) ,
Contentinherit (©HD) ,
NonLocalJnherit (©HD , ©N)) .

Adjunction(©HD , ©N) : =

unify(
SIGN ,
Headinherit (©HD) ,
Subjinherit (©HD) ,
Compsinherit (©HD) ,
ModCombine (©HD , ©N)) .

4. Some rules (ID schemata with instantiated LP restrictions and General Principles) :
RightComplementation(©Head , ©Comp) : =

conditional (
unifiable (©Comp , Maj or(notu(D))) ,
Complementation(©Head , ©Comp) ,
undef) .

LeftComplementation(©Comp , ©Head) : =

conditional (
unifiable (©Comp , Major (D)) ,
Complementation(©Head , ©Comp) ,
undef) .

LeftAdjunction(©Adj , ©Head) : =

Adjunction(©Head , ©Adj) .

36

5. Some lexical entries:

car : = unify(Nphrase ,
Form(N) ,
Pers (3rd) ,
Parm(<D1) ,
Restr([rel : Car ,

argzero : <01])) .

who : = unify (Nphrase ,
Det (Wh) ,
Pers (3rd) ,
Gend(notu(Neut)) ,
Case (notu(Gen)) ,
GapO ,
Parm(<D1) ,
Restr([rel : Who ,

argzero : Gi])) .

Comparing the STUF and GEL descriptions,
we see that , once the necessary functional tem­
plates and other auxiliary structures have been
put in place, a relatively simply pattern of re­
lations emerges. It my be noted that the GEL
emulation has a clearer and more explicit repre­
sentation of HPSG's general principles than the
original STUF implementation, though the STUF
representation is more compact. As a result, the
fact that the theory's General Principles are in­
stantiated in every GEL rule (just like in STUF)
is hardly a drawback, although it is not in ac­
cordance with the theory. The principles are ex­
plicitly available in the implementation, ready
for inspection and modification. Note also that
the lexical representations in STUF and GEL are
identical except for minor notational details; this
is very important in practice, since all that an
HPSG grammar writer is concerned with is the
specification of lexical elements-. · In fact, the cor­
respondence between lexical items in STUF and
GEL is so straightforward that an automatic con­
version from one format to the other would be

' BUNT - VAN DER SLOOT

possible.

4.3 Rule application as evaluation

Since the LP restrictions and General Principles
are instantiated in each ID-rule, application of
STUF HPSG rules simply comes down to the ap­
plication of these ID rules; there are no additional
checks. Therefore, standard parsing procedures
can be applied. We have implemented a sim­
ple chart parser, using the matrix-driven parsing
strategy described in Bunt (1991) ,7 which applies
the ID rules by invoking the implemented 'GEL
machine' to evaluate the GEL rule.

5 Conclusions
work

and future

Where STUF and similar formalisms and imple­
mentations developed in recent years, such as
TFS, CUF and PLEUK, is an advancement com­
pared to PATR-11 because of its more power­
ful language for expressing linguistic information,
GEL offers further extended possibilities to for­
malize grammatical information and represent it
in a computationally attractive form. Not only
ID-schemata and lexical entries can be given a for­
mal representation, but LP-restrictions and Gen­
eral Principles as well. At the same time, GEL
retains the advantages of a fully declarative repre­
sentation and of integrated representation of syn­
tactic and semantic information.

Further work will make clear how attrac­
tive this approach can be for building efficient
parsers and generators that work directly on the
constraint-based representation of rules, rather
than by internally compiling them first into more
traditional formats.

7The implemented parser is simplified in that the particular provisions for dealing with discontinuous constituents have for the moment been left out. The implementation, done in C, is the work of Ko van der Sloot.

PARSING AS DYNAMIC INTERPRETATION

References

Black, W. et al. (1991) "A Pragmatics-vased Language Undrstanding System" . In: Infor­mation Processing Systems and Software: Re­sults of Selected Projects. EC, Esprit, Brus­sels.
Bunt, H. (1985) Mass terms and model-theoretic semantics . Cambridge University Press, Cambridge, England.
Bunt , H. (1987) "Utterance generation from se­mantic representation augmented with prag­matic information" . In G. Kempen (ed.) Natural language generation. Kluwer/Nijhoff, The Hague.
Bunt , H. (1991) "Parsing with Discontinuous Phrase Structure Grammar" . In M. Tomita (ed.) Current Issues in Parsing Technology. Kluwer, Boston.
Bunt , H. - J. Thesingh - K. van der Sloot (1987) "Discontinuities in trees, rules and parsing" . In Proceedings of the Third Confer­ence of the European Chapter of AGL, Copen­hagen.
Dorre, J. - 1. Raasch, (1991) The Stuttgart Type Unification Formalism - User Manual. IWBS Report 168, IBM Scientific Center, Stuttgart.
Dorre, J. - R. Seiffert (1991) Sorted Feature Terms and Relational Dependencies . IWBS Report 153 , IBM Scientific Center, Stuttgart.
Gazdar, G. - E. Klein. - G. Pullum - I. Sag (1985) Generalized Phrase-Structure Gram­mar. Harvard University Press, Cambridge, MA.
Gazdar, G . - G. Pullum (1987) A Logic or Cat­egory Definition. Cognitive Science Research Paper CSRP 072, University of Sussex.

37.'
Herzog, 0. et al. (1986) LILOG - Linguistic and logic methods for the computational un­derstanding of German. LILOG Report lb, IBM Scientific Center, Stuttgart.
Kasper, R. - W. Rounds (1986) "A logical se­mantics for feature structures" . In : Proceed­ings of the 24th Annual Meeting of the A GL. Columbia University, New York.
Lewis, D. (1992) Parts of Classes . Basil Black­well, Oxford and Cambridge, MA.
J. McCawley (1982) "Parentheticals and Dis­continuous Constituent Structure" . Linguistic Inquiry, 13 , 91-106
Pollard, C. - I. Sag (1987) Information-based Syntax and Semantics . Vol I, Fundamentals. CSLI Lecture Notes 13 , Center for the Study of Language and Information, Stanford.
Pollard, C. - 1. Sag (forthc.) Information-based Syntax and Semantics . Vol II. Preliminary version dstributed as 'Topics in Constraint­based Syntactic Theory' , Universitat des Saar­landes, Saarbriicken, 1992.
Rentier, G. (1993) "The PLUS Grammar" . PLUS deliverable D3.2, ITK, Tilburg, May 1993 .
Shieber, S. - H. Uszkoreit - F. Pereira - J. Robinso - M. Tyson (1983) "The formalism and implementation of PATR-11" . In: J. Bres­nan (ed.) Research on Interactive Acquisition and Use of Knowledge. SRI International, Ar­tificial Intelligence Center, Menlo Park, Cal.
Sloot, K. van der (1990) "The TEND UM 2. 7 parsing algorithm for DPSG" . ITK Research Memo, ITK, Tilburg.
Tomita, M.(ed.) (1991) Current Issues in Pars­ing Technology. Kluwer, Boston.

38 BUNT - VAN DER SLOOT

Compiling Typed Attribute-Value Logic Grammars

Bob Carpenter

Computational Linguistics Program, Philosophy Department
Carnegie Mellon University, Pittsburgh, PA 15213

email: carp©lcl . emu . edu

Abstract The unification-based approach to processing attribute-value logic grammars, similar to Prolog interpretation, has become the standard. We propose an alternative, embodied in the Attribute- · Logic Engine (ALE) (Carpenter 1993) , based on the Warren Abstract Machine (wAM) approach to compiling Prolog (Art-Kaci 1991) . Phrase structure grammars with procedural attachments, . similar to Definite Clause Grammars (occ) (Pereira - Warren 1980) , are specified using a typed version of Rounds-Kasper logic (Carpenter 1992) . We argue for the benefits of a strong and total version of typing in terms of both clarity and efficiency. Finally, we discuss the compilation of grammars into a few efficient low-level instructions for the basic feature structure operations.
1 Compiling Type Defini-

tions

The first component of an ALE grammar is a
type specification, which lays out the basic types
of feature structures that will be employed in a
grammar, along with the inheritance relations be­
tween these types and declarations of appropriate
features and constraints on their values. Such a
specification includes declarations such as the fol­
lowing for lists of atoms:

bot sub [atom , list] .
atom sub [a , b] .

a sub [] .
b sub [] .

list sub [ne_list , e_list] .
e_list sub [] .
ne_list sub []

intro [hd : atom , tl : list] .

The idea here is that bot is the most general type,
with two subtypes atom and list. The type atom
has two subtypes, a and b, which are maximally
specific types. The list type also has two sub­
types, ne..list and e_list for non-empty and
empty lists, respectively. Note that the ne..list
type introduces two features, hd and tl, whose
values are required to be atoms and lists. The

39

idea here is that the only type which has a�y ap­
propriate fe�tures is the ne_list type, and it is
appropriate for exactly two features, hd and tl .

Inheritance of appropriateness specifications is
performed on the basis of the type hierarchy. For
instance, consider the following declaration from
HPSG:

sign sub [word ,phrase]
intro [phon : phon_list ,

synsem : synsem_obj ,
qstore : quant_list] .

word sub []
intro [phon : singleton_phon_list] .

phrase sub []
intro [dtrs : dtr_struct] .

Here the type sign introduces three features
and provides value restrictions. The subtype for·
words inherits these features and the associated
value restrictions, imposing the additional condi­
tion that the phonology value be a singleton list .
In addition, the subtype for phrases introduces an
additional features for daughters, which is only
appropriate for phrases. Thus, unlike the case for
order-sorted terms (see, for instance, · Meseguer
et al. (1987)) , not every subtype of a type need
have the same slots for values. This is significant
in terms of implementations, as memory cells are

40

only allocated on a structure for appropriate fea­tures . The initial stage of compilation in ALE in­volves just the type hierarchy. F irst, the tran­sitive closure of subsumption is calculated using Warshall 's algorithm (see O'Keefe (1990)) . Sec­ond, least upper bounds are computed for each pair of consistent types . A condition on type hier­archies is that they form a bounded-complete par­tial order (BCPO) , or in other words, that every pair of bounded (consistent) types, those pairs of types with a common subtype, has a least upper bound . This ensures that the unification of two types always takes a unique value . This reduces non-determinism at run-time, but might require additional types to be declared by the user (see Carpenter (1992)) . Such hierarchies can be com­piled automatically from either systemic networks or ISA/ISNOTA hierarchies, as shown in (Carpen­ter - Pollard 1991), and such a compiler has been developed and will be included in the next re­lease of ALE (Carpenter and Penn forthcoming) . The final stage involves calculating which features are appropriate for each type and their appropri­ate values . This is done by collecting all of the declared features on subtypes and unifying their value restrictions . The second condition on type hierarchies, in addition to their forming a BCPO, is that they introduce each feature at a unique most general type . This, along with the BCPO condition, ensures a unique solution to the type inference problem . If we only knew that a fea­ture f was defined, and nothing else about an object, then if there were two maximally gen­eral types for which f was appropriate, a decision could not be made as to which type it was and non-determinism would be introduced . As with the BCPO condition, this condition can be auto­matically eliminated by introducing a new · type appropriate for the feature which is more general than the two existing ones (see Carpenter (1992)) . We also forbid appropriateness cycles such as:
person sub [mal.e , female] intro [father : male , mother : female] . male sub [] . female sub [] .
We rule out this situation because type inference, as we define it below, can not find most general well-typings in such cases . To be a well-formed

CARPENTER

object of type male, a requirement is that the father feature is defined and filled by another male, leading to a non-halting procedure . Again, if we wish to represent people · with parents, the problem can be solved by adding types which are not required to have parents . During the compilation of the type system, many different kinds of errors are detected, such as: two types which mutually subsume one an­other, violations of the BCPO condition where two types have multiple unifiers, cases where in­consistent constraints are inherited by a feature, where there are appropriateness cycles, where there is no most general type appropriate for a feature, and so on . Other errors such as unde­clared types and multiple declarations are also recognized . In addition, a number of warnings are raised in cases which might not be desirable, such as a type with only one subtype or where dynamic type-inference during unification will be necessary. This latter condition arises when types s and t are both appropriate for f, with value re­striction s ' and t ' , but the unification of s and t, s+t, has a more specific restriction than s ' +t ' . In this case, when an s and t object are unified, additional constraints on their value for a feature must be checked .
2 Compiling Basic Opera-

tions

As with other grammar formalisms based on attribute-value logics, the primary data structure used in ALE is the feature structure. The struc­tures used in ALE are similar to those in other systems, with the primary difference being that they are required to be totally well-typed (see Carpenter (1992)) . In other words, every fea­ture structure must be assigned a type and ev­ery feature appropriate for that type must ap­pear with an appropriate value . This can be con­trasted with sorted, but untyped systems, which allow sorts to label feature structures and partic­ipate in unification, but don't enforce any typing conditions . It can also be contrasted with sys­tems which only perform type inference on val­ues, but do not require every appropriate feature to be present . There are a number of benefits to typing a programming language . Not the least of these benefits is the ability to detect errors at

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 41
compile-time. For instance, rules which can not be satisfied and lexical entries which are not well­typed are flagged as such. Practice has shown that this cuts down on grammar development time significantly, because one of the most preva­lent grammar-writing errors is being inconsistent about which features appear at which level in a structure and how they are bundled together, es­pecially when grammar formalisms approach the 200 node lexical entry level as found in significant fragments of HPSG (see Penn (1993b)) . Ariother significant benefit of employing typed structures is that the features appropriate for a type can be determined at compile time. This has two advantages. First, it allows memory allo­cation and deallocation to be handled efficiently, as the type of ea,<;.h structure is known. Second, it allows unification to be greatly speeded up as there is no need to merge features represented as lists; the positions of relevant features are known at compile time. We consider these two benefits in turn.

ALE is currently implemented in Prolog, though plans are underway to implement it in C, using WAM techniques directly. As things stand, the WAM implementation of Prolog is exploited heavily to develop WAM-like behavior for ALE. Us­ing Prolog for feature structure unification sys­tems has its advantages and drawbacks. The drawback is that there are no pointers in Prolog, and thus path compression during dereferencing can not be carried out efficiently (though it is car­ried out on inactive edges during parsing) . The advantage is that Prolog is very good at struc­ture copying, last call optimization, incremental clause evaluation and search. We will consider all of these topics. But first, we note that the data structure used for feature structures in ALE is:
Tag-foo (V1 , . . . , Vn)

where Tag is a reference pointer, signalling the in­tensional identity of the structure, much as a posi­tion in memory in an imperative language would do, and where foo is the name of the type of the structure, which must be a Prolog atom, of course, and where V1 through Vn are the values for the features F1 through Fn that are appropri­ate for type foo. Given Prolog's compilation to the WAM, this amounts to having the following kind of record structure for feature structures:

I Tag I

o-- 1 --> I foo I

0-- 1 --> V1

0-- 1 --> Vn
Contrast this with a representation such as:

Tag-foo ([F1 : V1 , . . . , Fn : Vn])

where the features are coded explicitly in terms of a list. Here the structure required is as follows (ignoring the tag) :
I foo I

0-- 1 --> I cons I

o--- 1 --> I

I o I
-- 1 ---

1
I

V

I cons I

I F1
0-- 1 --> V1

In general, our representation requires 4 + n cells for a structure with n features, while the usual one requires 4 + 6n cells for the same struc­ture. This constitutes a huge discrepancy when we consider the amount of overhead this induces throughout the grammar in areas such as lexi­cal retrieval and copying edges into the chart. Note that this difference between using record­like structures as opposed to lists of feature-value pairs is Prolog-independent. We have not said much about the tag . . It is based on the same principle as O'Keefe's method

42
of encoding arrays in Prolog using variables, which provides constant time access and update (see the Quintus library). The basic idea is that each slot in an array is associated with a value and a pointer, which is either a variable or a struc­ture consisting of another value and a pointer. Updates are performed by instantiating the vari­able to a new pair consisting of a variable and value. Thus values are found by tracking the pointer until it's a variable. To maintain con­stant time, the entire array must be regularly up­dated. In our case, the tag plays the role of the pointer, and dereferencing is performed by follow­ing the tag value until it is a variable. The num­ber of dereferencing steps needed at any stage is bounded by the depth of the inheritance hierarchy (of course, Prolog does its own internal derefer­encing, so we can not statically bound the total number of dereferencing steps needed during uni­fication). Path compression is then the equivalent of O'Keefe's array updating, and is performed when a completed edge is found during parsing. We will see examples of the use of tags shortly. The second benefit we mentioned for typing structures is that we are able to carry out unifi­cation without merging feature-value lists. The standard method in unifying feature structures is to take two lists of features, find the common elements, unify them, and take both symmetric differences and copy the results of this into the final result. Such tasks are extremely costly, es­pecially as the number of features grows. Instead, our compiler will produce the following kind of code to perform unification (which has been sim­plified here, but will be expanded upon later):
unify (T-ne_list (H , R) , T-ne_list (H2 , R2)) : -

unify (H , H2) , unify (R , R2) .

The positional encoding of feature value_s means that at compile time, we know which features any two types have. Also note that the tags are iden­tified to make sure any update of one structure is felt by the other. Compare the number of op­erations required in the above procedure _ to one that had to look through two lists of feature value pairs, and act conditionally depending on the re­sults of comparisons, and detect termination con­ditions. While our unification in the above case requires only two logical operations in Prolog, the list merging method would require at least two comparisons, a termination test and the same two

CARPENTER

logical operations as our method, more than dou­bling the cost in the best possible instance. Of course, matters are much worse if the features are out of order or don't line up exactly in the two structures. Having motivated our approach, we now con­sider two operations on feature structures which are calculated at compile time. The first of our operations on feature structures involves adding the information that it is of a given type. For in­stance, we might have a list and want to add the information that it is non-empty. In this case, the system produces the following code:
add_to (ne_list , Tag-TVs) : -

add_to_ne_list (TVs ,Tag) .

add_to_ne_list (list , _-ne_list (T1-bot ,
T2-bot)) : ­add_to_atom(bot , T1) ,

add_to_list (bot ,T2) .

Note that to add the information that a struc­ture is a ne-1.ist at the top level, we make the first argument the type-value term. The rea­son for doing this is that the WAM performs first-argument indexing. This means that given the current structure, of type list, hashing is done to find the code to add the fact that it is a non-empty list to it. In fact, the clauses for add_to/2 are never used at run-time, as can be seen from the second of the above clauses, which call add_to_atom(TVs , Tag1) rather than add_to (atom , Tag1-TVs) . At this , stage, we should point out that it would be more efficient to use the following code: -
add_to_ne_list (list , _-ne_list (_-atom , _-list)) .
For completely fresh features such as the head and tail above, there is really no reason to create a structure Tag-bot and then immediately add a type to it. The next release of ALE (Carpenter and Penn forthcoming) will have such an opti­mization, as it is statically computable. On the other hand, consider the effect of adding the type word to the type sign given above:
add_to_word (sign(T1-Phon , SynSem , QSt) ,

_-word (T-Phon , SynSem , QSt)) : ­
add_to_singleton_phon_list (Phon , T) .

COMPILING TYPED ATTRIBUTE-VALUE LOGIC.GRAMMARS 43
Here we see that (pointers to) the feature values for sign are copied over into the new word struc­ture created and the additional constraint that the Phon value be a singleton list must also be resolved. Note that this extra bit of (pointer) copying is something that is usually also done in encodings using feature-value pairs. As we hinted at above, the procedure to per­form unification on two structures is also com­piled before run-time. In particular, consider the code to unify two ne_lists, in its full form:
unify_deref (FS1 , FS2) : -

deref (FS1 , Tag1 , TVs 1) ,
deref (FS2 , Tag2 , TVs2) , (Tag1 == Tag2 , !
; unify (TVs l , TVs2 , Tag1 , Tag2)
)

unify (ne_list (H1 , T1) , TVs2 , Tag1 , Tag2) : ­
unify_ne_list (TVs2 , H1 , T1 , Tag1 , Tag2) .

unify_ne_list (ne_list (H2 , T2) , H1 , T1 , T , T) : ­
unify_deref (H1 ; H2) ,
unify_deref (T1 , T2) .

The strange argument order and extra level of indirection comes about to exploit the first­argument indexing of the WAM . In effect, what happens when unifying two structures is that they are first dereferenced, then two hashings are per­formed, one on each of their types, and finally their shared feature values are unified. This il­lustrates one of the simplest cases of unification. Note that absolutely no type inference is required at run time because the compiler knows that when two structures of the same type are unified, then their features already meet the type con­straints, and hence so will the result of unifying them. Other cases might involve add_to_sort/2 goals being called and tags being instantiated, when unifying the two structures leads to a new structure with a type higher than each of the in­puts. For instance, suppose we have:
b sub [c] intro [f : x , h : u] . d sub [c] intro [g : y , h : v] . c sub [] intro [f : x2 , h : u+v , j : z] .
where u+v is the type unification of u and v. Then we would have:
unify (b (V1 , V2) , TVs2 , Tag1 , Tag2) : -

unify_b (TVs2 , V1 , V2 , Tag1 , Tag2) .

unify_b (d(V3 , V4) , V1 , V2 ,
_-c (Vi , V2 , V3 , T-bot) ,
_-c (V1 , V2 , V3 , T-bot)) : ­

unify_deref (V2 , V4) ,
deref (V1 , Tag1 , SVs1) ,
add_to_x2 (SVs 1 , Tag1) ,
add_to_z (bot , T) .

When unifying structures of type b and d, we must instantiate both of their reference pointers to a new structure of type c, with a new featu.re j , and in addition, perform the extra type inference on the value of f . It is worth noting that all and only the necessary type inference is determined at compile-time. For instance, the fact that the h value of c is required to satisfy the unification of the constraints on h in b and d is enough to let the compiler determine that no additional type inference will be required.
3 Compiling Descriptions

In this section, we consider compiling descriptions taken from ALE's attribute-value logic:
<desc> <type> <var> <feat> : <desc> <desc> and <desc> <desc> or <desc>
As was shown by Smolka (1988) , the lack of vari­ables can lead to a quadratic increase in the size of descriptions using only path equations; with variables, path equations are no longer necessary. A complete proof theory with respect to both an algebraic semantics and a feature-structure based interpretation can be found in (Carpenter 1992) . Descriptions are compiled into the operations of add_to_sort, unify, deref , and a combina­tion of conjunction and disjunction in Prolog. In addition, to handle constraints of the form <feat> : <desc>, which tell us to add the descrip­tion to the value of the feature, we need a proce­dure for extracting a feature's value from a struc­ture. This is done with clauses such as:
f�atval (hd , FS , Val) : -

deref (FS , Tag , TVs) ,
featval_hd (TVs , Tag , Val) .

44

featval_hd (ne_list (H , _) , Tag , H) .

Again, we present the first clause for convenience;
only the second is used at run-time, combined
with the necessary dereferencing. Note that if we
look for the hd value of a structure of type list,
we coerce l ist to ne_list:

featval_hd (list , _-ne_list (T-atom , _-list) ,
T-atom) .

Here we create a new structure of type ne.J.ist,
with a fresh head and tail, and return the fresh
head as the result. In general, this might require
additional type inference, as could be seen by con­
sidering what would happen if we took the value
of the feature j in an object of type d in the above
type system. In this case, the type d object would
be coerced to one of type c, which in turn requires
boosting the type of its h value and adding new
f and j values:

featval_j (d (V1 , T2-TVs2) ,
_-c (T3-bot , V1 , T2-TVs2 , T-bot) ,
T-bot) : -

add_to_u (TVs2 , T2) ,
add_to_x2 (bot , T3) ,
add_to_z (bot , T) .

Again notice that the compiler determines ex­
actly which type inferences to perform as part
of finding a feature's value. Again, in the next
release of ALE, the add_to_sort(bot , T) goals will
be replaced with instantiated feature structures
of type sort.

We are now in a position to see how descrip­
tions get compiled into Prolog clqauses. To add
a description of the sort found on the left to a
dereferenced structure Tag-TVs , the Prolog code
on the right is generated:

sort

V

f : 0

01 and 02

add_to_sort (TVs , Tag)

deref (V , Tag2 , TVs2) ,
unify (TVs1 , TVs2 , Tag1 ,Tag2)

featval_f (TVs ,Tag , Val) ,
deref (Val , Tag2 , TVs2) ,
[add O to Tag2-TVs2]

[add 01 to Tag-TVs] ,
deref (Tag-TVs ,Tag2 , TVs2) ,

01 or 02

CARPENTER

[add 02 to Tag2-TVs2]

([add 01 to Tag-TVs]
[add 02 to Tag-TVs]

)

Sorts are straightforward, and simply invoke the
appropriate add_to goal. Variables are such that
they get instantiated to the feature structures
which they describe. Thus adding a variable to
a structure involves dereferencing the variable,
which is instantiated to the current value it has,
and unifying it with the structure to which it
is being added. All variables are initialized to
Tag-bot at compile-time for compatibility with
the basic operations over feature structures. The
last three cases are recursive. Adding a descrip­
tion to a feature's value requires finding the fea­
ture's value, dereferencing it , and adding the em­
bedded description. Conjunction and disjunction
in descriptions are translated into the correspond�
ing Prolog control structures. In particular, this
means that we treat disjunction in descriptions
as introducing non-determinism in adding a de­
scription. In this way, Prolog backtracking, and
its attendant efficient implementation of search
and variables, will take care of the disjunction
without any need for explicit copying in the pro­
gram. Of course, it's still there - it's just that
Prolog's doing it . In a non-Prolog implementa­
tion of this method, a programmer would have to
be very clever to implement this kind of control
structure, using some kind of lazy copying along
the lines of Tomabechi (1992) or along the lines of
the WAM itself. Conjunction, on the other hand,
is treated as goal sequencing in Prolog.

4 Compiling Grammars
and Programs

This compilation of descriptions into Prolog code
rather than into feature structures is where ALE
departs most radically from other attribute-value­
based parsers of which we are familiar. The tra­
ditional method, say for chart parsing, involves
taking an inactive edge which has just been cre­
ated and trying to unify it with the feature struc­
tures corresponding to the heads of rules in the
grammar. Instead, our system will execute the
Prolog code compiled from the description of the

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 45
head of a grammar rule. There are two princi­pal benefits to our approach. These stem from the fact that we reduce the copying and search methods to those of the WAM itself by compiling the Prolog clauses generated. The first benefit is that early failures in matching a description to a goal do not result in any overcopying - in fact there is really no copying done at all - it's all handled in the heap mechanism of the WAM. The second benefit is that if we have deeply embedded disjunctions in our descriptions, we do not need to expand to a disjunctive normal form or invoke one of the many approaches to disjunctive uni­fication. In particular, if we have a description with an embedded disjunction and the first dis­junct fails, then we only backtrack to the second disjunct, not all the way back to the beginning of the structure. Again, this operation is very effi­cient in the WAM . It should be noted that noth­ing here depends on using a chart parser as the control strategy - similar benefits would accrue to any other parsing strategy. In fact, the same benefits could also be gained by using this kind of strategy in generation, say along the lines of van Noord et al. (1992) . The chart parsing strategy used in ALE is not particularly significant qua parser, as it was pri­marily motivated by Prolog considerations. What is significant is the way in which descriptions are compiled and made available to the parser, a strategy which can be maintained using many different parsers. For instance, we are also work­ing on a left-corner parser which will not require any copying or manipulation of the database. The most significant thing to note about ALE's parser is that it employs a dynamic chart, where inactive edges are asserted into the database, 1 and parses according to a bottom-up strategy, from right to left in the chart, and from left to right through individual rules. Active edges are truly active, being represented only by the current position in a Prolog clause compiled from a rule description. Rules are of the form:
DO ===> D1 , . . . , DN .

the rule/3 predicate. The goal rule (L , R , C) is called whenever an inactive edge C is added from position L to R in the chart , either by the lexicon or by rule/3 itself. The code produced for the above rule is:
rule (C1 , Left , Mid1) : -[add D 1 to C 1] , edge (Mid1 , Mid2 , C2) , [add D2 to C2] ,

edge (MidN-1 , Right , CN) , [add DN to CN] , [add DO to Tag-bot] , fully_deref (Tag-bot , CO) , assert (edge (Left , Right , CO)) , rule (Left , Right , CO) .
When rule (C1 , Left , Mid1) is called, the first thing that happens is the description D1 being added to the feature structure CL Assuming this fails, no other work is done, and . no copy­ing is performed. Instead, the code generated by the description D1 is simply executed, and failure causes Prolog backtracking either to earlier dis­junctions in the description D1 , or to other clauses for rule/3 generated by other rules. Assuming D1 is successfully added to C1 , rule/3 looks for an inactive edge directly to the right of C1 in the chart . The fact that parsing is done right to left ensures that the chart has been completed to the right of any inactive edge which is being consid­ered. If an inactive edge of category C2 to the right is found, rule/3 attempts to add the de­scription D2 to a copy of C2. The current bot­tleneck in this process is the inordinate amount of copying required, especially when many empty categories are present . A better solution would be to add the descriptions in a more lazy fashion without eagerly copying the whole structure, but Prolog does not provide that kind of fine control of its database. This process continues until the right hand side of the rule is completely matched. At this point , the mother category is constructed by adding the compiled description DO to a fresh where DO is the description of the mother category category, fully dereferencing (path compressing) , and the Di are descriptions of the daughter cate- asserting it into the database of inactive edges, gories. The grammar rules are then compiled into and recursively calling rule/3. As there are no

1 Current versions of the wAM in s1cstus and Quint us index asserted clauses, allowing the edges _beginning at a par­ticular position to be easily retrieved by hashi�g - � 1?�thod with explicit copying would most likely be faster than the one with assert, and we plan to explore this poss1b1hty.

46

base cases to rule, it will eventually fail _and back­
track through all of t'he disjunctive choice points
and alternative rules.

The input string is consumed from right to
left , at each step adding inactive edges until no
more edges can be added. This gives the parser
as a whole a mix of breadth-first and depth-first
search, to best exploit the inherent behavior of
the WAM. The top level control strategy is quite
straightforward:

parse (Words , C) : -
reverse (Words , WordsRev) ,
length (Words , N) ,
build_chart (Words , N) ,
edge (O , N , C) .

build_chart (_ , N) : ­
empty (C) ,
assert (edge (N , N , C)) ,
rule (N , N , C) .

build_chart ([] , _) .
build_chart ([W I Ws] , N) : ­

M is N- 1 ,
(lex (W , C) ,

assert (edge (M , N , C)) ,
rule (M , N , C)
build_chart (Ws , M)

) .
The words are reversed and counted, and the
chart is built from the right to left , taking lex­
ical entries for each word and firing rule/3. Be­
fore considering lexical entries, empty categories
are asserted into the chart and processed us­
ing rule/3. All lexical and empty category al­
ternatives will be considered during backtrack­
ing before proceeding leftward to the next word.
We should also mention that lexical entries and
empty categories are fully expanded as path­
compressed feature structures at compile time.

In addition to allowing categories fo a · rule,
ALE also allows definite clause goals to be invoked,
in a way similar to DCG rules such as:

f (Z) ---> h (Y) , g (X) , {foo (X , Y , Z) } , j (Z) .
. . . .

In this rule, as soon as the h (Y) and g (X) · cate-
gories are found, the goal f oo (X , Y , Z) is invoked
and solved before going on to consider j (Z) . The
change to rule/3 is minimal; the code for solv­
ing foo (X , Y , Z) is simply inserted in between the
code generated by the categories g (X) and j (Z) .

CARPENTER

Definite clause programs can be defined in
ALE, where instead of Prolog terms, feature struc-

. ture descriptions are used. For instance, we can
define standard predicates such as:

append (e_list , X , X) if true .

append (hd : X and tl : Xs ,
Ys ,
hd : X and tl : Zs) if

append (Xs , Ys , Zs) .

The logical variables are used as in Prolog, with
the result being an instance of constraint logic
programming over the typed feature structure
logic. This bears a close similarity to the LO­
GIN language of Alt-Kaci - Nasr (1986) , who
point out a number of benefits of using an order­
sorted notion of feature structure for logic pro­
gramming. A general CLP scheme suiting this
application was defined by Hohfeld - Smolka
(1988) and this particular application is det_ailed
in (Carpenter 1992) . The previous two clauses
will translate into the following pieces of code,
following O'Keefe's (1990) meta-interpreters (and
omitting all of the dereferencing) :

solve ([]) .
solve ([G I Gs]) : -

solve (G , Gs) .

solve (append (FS1 , FS2 , FS3) , Goals) : ­
add_to_e_list (TVs 1 , Tag1) ,
unify (FS2 , FS3) ,
solve (Goals) .

solve (append (FS1 , FS2 , FS3) , Goals) : ­
featval_hd (TVs 1 , Tag1 , FS1H) ,
featval_hd (TVs3 , Tag3 , FS3H) ,
unify (FS1H , FS3H) ,
featval_tl (TVs1 , Tag1 , FS1T) ,
featval_tl (TVs3 , Tag3 , FS3T) ,
solve (append (FS1T , FS2 , FS3T) , Goals) .

The coding used, with goals being threaded, is
to ensure that last call optimization takes place.

· While ALE does not perform indexing, it does sup­
port full cuts, disjunctions, negations · by failure
and last call optimization.

Such procedural attachments can be inter­
spersed into rules just as in DCGs. This mech­
anism has been used in ALE grammars for pur­
poses such as quantifier scoping using Cooper

COMPILING TYPED ATTRIBUTE-VALUE LOGIC GRAMMARS 47

Storage , for treating the maximal onset princi­pal in syllabification in attribute-value phonology (Mastroianni 1993), and for implementing princi­ples such as the non-local feature principle (for slashes) and the binding theory of . HPSG (Penn 1993b). Procedures can even be used to postpone some of the unifications in a rule until after all of the categories have been found, thus encoding a form of restriction similar to that used by Shieber (1985). Such procedures will allow general hooks to P rolog in the next release of ALE, and as the definite clause component of a grammar can be arbitrary, can also be used for interleaving on-line semantic processing with syntactic processing as in Pereira - Pollack (1990).
Before concluding, we should also point out that ALE has a number of other useful features. One of the most interesting of these is the use of lexical rules, which are loosely based on those of PATR-11 , in that they map one lexical entry to an­other at compile-time. In ALE, such rules may in­volve procedural attachments just as other rules , and contain a rudimentary morphological com­ponent based on string unification. ALE also fully supports parametric macros which are compiled out statically into the descriptions they abbrevi­ate.
The next release of ALE, scheduled for Summer 1993 , will also include more general constraints on types, following AYt-Kaci (1986) (see also Carpen­ter (1992)), inequations and extensionality (see Carpenter (1992) for theoretical details , and Penn - Carpenter (forthcoming) and Penn (1993a) for implementation details and motivation).

5 Conclusion

We have shown how grammars based on attribute-value logic descriptions can be effi­ciently compiled into low-level Prolog instructions which exploit the inherent efficiency of the WAM . Unfortunately, there are a few inefficiencies stem­ming from this encoding due to Prolog's logi­cal variables and its lack of control over copy­ing structures from the database. The ideal solu­tion will be to build a WAM-like abstract machine language directly for typed feature structures and their associated descriptions . The WAM has proved to be the most efficient architecture yet developed for implementing "unification-based" programs, even though, as we saw , it often re­lies on structure copying and creation rather than unification (the only cases of unification in ALE arise from shared variables in a structure - ev­erything else is structure copying). Current benchmarks, using the standard naive reverse, with just the definite clause component of ALE, place it at roughly 1000 logical inferences per second (LI/s) on a DEC 5100 running s1cstus 2.1 , which is roughly 1.5% of the speed of the s1cstus compiler itself. HPSG grammars where lexical entries run between 100 and 200 words, all of the local principles have been implemented according to Pollard and Sag (in press) , process 15 word sentences, creating 40-50 inactive edges , at times under 2 seconds. ALE Version /3, as described in this paper, is available from the author without charge for re­search purposes. It runs under SICStus and Quin­tus Prologs . It is distributed with roughly 100 pages of documentation and sample grarpmars. Version 1.0 is scheduled for release in August 1993 .

48

'Ai:�-Kaci, -H . (1986a). An algebraic semantics ap-
,

1 1 .proach td the effective resolution of type equa-, , tions.' Th�or�tfcal Computer Science , 45.
r 1 1 1 , , , r 1

"- ! 1 1 , u\i:t�Kaci, H¥san - Roger Nasr (1986) LOGIN: : 1 1 i 1 A : logic, ,progr.amming language with built-in •. : , I •inheritance .. . Journal of Logic Programming 3 .
1Ait�

1

K1aci; 'HMsan (1991) Warren's Abstract Ma-
... I r f , , , 1 1 • , , . , . chin'e'.· A Tutorial Reconstruction. MIT Press.
(. I I (. , I I ' " I ! I . : i 0airpente-r; 1 Bob (1992) The Logic of Typed Fea-
1 1 , • t-ure Structures. Cambridge University Press.
� J I ' I • I I ' I ' I ,Q�rp�nt_e�, . 1Bo� (1993) ALE User's Guide -, , , {3 1 ;£;iaboratory for Computational Linguistics , : ! 1 '.fechn�c�l Report, Carnegie Mellon University, Pittsburgh.
Carpenter·, Bob - Gerald Penn (forthcoming)

'iLE User's Guide Version 1.0. Laboratory for · ' Computational Linguistics Technical Report,
I ' · Carnegie Mellon University, Pittsburgh.
Carpenter, Bob - Carl Pollard (1991) Inclusion, disjointness and choice: the logic of linguistic

1 classification. Proceedings of the AGL.
. · H�hf�ld , 1'4. - Gert Smolka (1988) Definite re­/, . lations over constraint languages. LILOG Re­
, I I i i 1/��t' 53 , tsM,' St'uttgart .
1 1 1 1 , r: 1 1 ' I I I . , , J c J I " ' , . • t lK<a!sp�r, iBo4, ·__w 1BHl Rounds · (1990) The logic of
u,1 1 I uttifltla�idn iiil lgramhia'r. ' Linguistics and; Phi-
· (,dfosdph'.y i131 1 1 , i 1 1 i r , . . . · . • . ,

p l i l i < · r l l 1 c • 1 ' . l i 1 1 1 \ . , ; ; I , , Mastroianni , Michael (1993) Attribute-logic ur iFh6nolog.y'. 1 MS: Thesis, Computational Lin­. ug-uistH::s Program, Carnegie Mellon University, Pittsburgh.
I L , I ' I I I I ! l .

CARPENTER

Meseguer , J. - J. Goguen - G. Smolka (1987) Order-sorted unification. CSLI Report 87-86, Stanford.
O'Keefe, Richard (1990) The Craft of Prolog. MIT Press.
Penn, Gerald (1993a) A utility for typed feature structure-based grammatical theories. MS Thesis. Computational Linguistics Program, Carnegie Mellon University, Pittsburgh .
Penn, Gerald (1993b.) A comprehensive HPSG grammar in ALE. Laboratory for Computa­tonal Linguistics Technical Report. Carnegie Mellon University, Pittsburgh.
Pereira , Fernando - David H. D. Warren (1980) Definite clause grammars for language analy­sis. Artificial Intelligence 13.
Pereira, Fernando - Martha Pollock (1991) Incremental interpretation. Artificial Intelli­gence 50.

Pollard, Carl - Ivan Sag (in press) Head-Driven Phrase Structure Grammar. CSU/University of Chicago Press .
Shieber , Stuart (1985) Using restriction to ex­tend parsing algorithms for complex-feature­based formalisms. Proceedings of the ACL. -
Smolka, Gert , (1988), .A feature , logic .with sub:­sorts. LILOG. rReport 55. IBM, · Stuttgart. , ,
Tomabechi,· Hideto (1992) Quasi-Destructive Unification. PhD Thesis , Computational Lin­guistics Program, Carnegie Mellon University, Pittsburgh.

(Pictorial) LR Parsing from an Arbitrary Starting Point

Gennaro Costagliola

Dipartimento di Informatica ed Applicazioni,University of Salerno
I-84081 Baronissi, Salerno, Italy

email: gencos©udsab . dia . unisa . it

Abstract In pictorial LR parsing it is always difficult to establish from which point of a picture the parsing process has to start. This paper introduces an algorithm that allows any element of the input to be considered as the starting one and, at the same time, assures that the parsing process is not compromised. The algorithm is first described on string grammars seen as a subclass of pictorial grammars and then adapted to the two-dimensional case. The extensions to generalized LR parsing and pictorial generalized LR parsing are immediate.
1 Introduction

This paper introduces an LR algorithm for the
parsing of input whose starting point is not de­
fined. The main motivation behind this comes
from the area of the two-dimensional LR parsing.
Given a two-dimensional pattern it is not always
obvious how to determine the starting point from
which the parsing process should begin. The pro­
posed algorithm avoids this problem allowing any
element of the pattern to be considered as the
starting one and, at the same time, it assures that
the parsing process is not compromised.

The main idea is to create two su bstring LR
parsers, one for the given language and the other
for the "reverse" version of the language. The two
parsers proceed in parallel, scanning the input in
opposite directions, from the designated starting
element . Neither of the two is allowed to reduce
beyond their parser stack. When this is required,
a rendezvous with the other parser must occur
and both must perform the same reduction. The
two parser stacks can be considered as an only
graph stack expanding to the right and to the
left of a starting point.

This paper describes the algorithm on string
grarrimars and then shows an extension to the
case of positional (two-dimensional) grammars.
The algorithm can be easily extended to treat lan­
guages whose LR parsing tables present conflicts.

49

In fact, the use of the graph stack is the same as
the one adopted in Tomita's generalized parser.

Section 2 contains comments on the work re­
lated to this paper; in Section 3, the preliminary
definitions of reverse grammar and of joint graph
are given; Section 4 presents the data structures
and the description of the algorithm; in Section 5
the algorithm is adapted to the two-dimensional
LR parsing after the description of the positional
grammars and positional parsing tables. Section
5 contains the Conclusions.

2 Related work

This section contains two parts: one relates to
the pictorial parsing that is the main motivation
behind this paper and the other relates to island­
driven parsing, since the algorithm presented in
this paper can be considered as a bidirectional LR
parser.

2 . 1 Pictorial parsing

With the introduction of more and more powerful
graphical interfaces, the interest in the study of
pictorial parsing is increasing. At the moment,
many parsers have been designed, each of them
having advantages and disadvantages with rispect
to one another.

50

A recently proposed classification, (Witten­
burg, 1992) , considers two major classes: bottom­
up order-free pictorial parsers (Crimi et al. , 1991 ;
Golin, 1991 ; Helm, 1991 ; Wittenburg, 1991)
and predictive pictorial parsers (Costagliola -
Chang, 1991 ; Wittenburg, 1991) .

The main advantage of an order-free parser
over a predictive one is that it can compose the
input objects in any order and it is not bound to
a mandatory pre-ordered navigation of the input.
This gives great expressive power to the underly­
ing grammar formalisms.

The input data structure for an order-free
parser is made by two sets: a set of objects and
the set of all the relations among them. The
relations must be the same used in the parser.
The parser then proceeds with a purely bottom­
up enumeration.

The predictive pictorial parsers direct the or­
der in which the objects in the input space are
processed by the parser. This limits the expres­
sive power of the underlying grammar formalisms
but still retain expressive power enough to de­
scribe many interesting 2D languages like arith­
metic expressions, lines, document layouts, some
class of graphs, etc.

The input data structure only contains the
set of the objects with their attributes and does
not need to keep information about the rela­
tions among the objects. The relations are em­
bedded in the parser that use them to predict
the attribute values of the next object to parse.
This representation is more space efficient than
the other and does not depend on the particular
parser relations. Moreover, it refers to a relation
only when necessary.

The predictive nature of the parser makes it
more efficient than an order-free bottom-up picto­
rial parser. In particular, for pictorial LR parsing
it is even possible to use tools from string-based
formal language theory like Yacc for the auto­
matic parser generation of a pictorial language
(Costagliola et al. , . 1993) .

However the prediction of the next object in­
duces an order on the visit of the input. The
order can be linear (Costagliola - Chang 1991)
or partial (Wittenburg, 1992) and, in any case,
it forces the parser to begin its processing from
one (linear case) Oi:' multiple (partial case) spe­
cific starting points. If the input is made of a
set of objects with no indication on the starting

COSTAGLIOLA

point, like a scanned document layout , then pre­
dictive parsing becomes inefficient . This paper
attempts to solve this problem by constructing a
bidirectional LR parser that does not need spe­
cific starting points in the input .

2 . 2 Island-driven parsing

Island-driven parsers are generally used for gener­
ating partial interpretations of a spoken sentence
(Stock et al. , 1989; Woods, 1982) . The parsing
starts from words that have higher acoustic evi­
dence and then extends to both directions in the
sentence. Each partial interpretation forms an
"island" . Occasionally, two islands may 'collide'
by proposing and discovering the same word in
the gap among them and may then be combined
into a single larger island.

This can be effectively used in · pictorial par­
sing whenever there are objects of particular se­
mantic relevance, or objects particularly complex
to be combined only when each of them has been
recognized, or, in our case, the starting point is
not easy to find.

Other approaches to bidirectional parsing in­
clude bidirectional chart parsing (Stock et al. ,
1989; Steel - De Roeck, 1987) and some form of
bidirectionality within a tabular approach, such
as Earley's or Kasami-Cocke-Younger's (Bossi et al. , 1983).

3 Some definitions

This section contains two definitions that will be
useful for the presentation of the final algorithm.

Definition 1 (reverse grammar) Given a context-free grammar G = (N, T, S, P), a reverse grammar with respect to G is a new grammar G'
= (N, T, S, P), where P is defined as follows: whenever A := u is in P then A := uR is in P, where uR is the reverse version of u.

In general, the reverse of an LR context-free
grammar is not LR.

For sake of simplicity, this paper considers
only LR context-free grammars whose reverse is
LR, too. The extension to general context free­
grammars can be easily done.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 51
Example 3 . 1 .
The grammar G: (1) S := CC (2) C := cC (3) C := d
The reverse grammar G': (1) S := CC (2) C := Cc (3) C := d

It is assumed that corresponding productions have the same ordering number. Note that if the C 's in the production S := CC are indexed, then the grammar G contains the production S := C1 C2 and the grammar G' contains S := C2C1. To formalize this concept, let us index all the oc­currences of symbols on the right side of the pro­ductions of G such that an into correspondence between occurrences of symbols and indices is cre­ated . After indexing, the grammar G becomes:

(l) S := C1 C2 (2) C := C3C4 (3) C := ds
C1 , an occurrence of C, is now different from the occurrence C2 but

name(C1) = name(C2) = C.
Given an LR grammar G such that its reverse grammar G' is LR, it is always possible to con­struct for each of them the canonical LR(0) col­lection of sets of items through the algorithms

Closure, Goto and Set-of-Items Construction as defined in (Aho et al.,1985). The goto graphs for G and G' are shown in F igure 3 . 1 .
Let us define C 1 = lo', . . . , In the collection of sets of items for G and CR = Ro, . . . , Rm the col­lection of sets of items for G'. In the following, the relation between elements of C 1 and CR is analyzed. It is assumed that no useless symbols or epsilon-productions are in G.

Figure 3.1 Goto Graphs for G and G'
Given a production "A := u Xi v" ' in G with u, v E (N U T)* and Xi E (N U T), there must be a set-of-items Ik reachable after the occurrence Xi has been processed, i .e ., a set-of-items Ik con­taining the item "A := u Xi . v" . If the corresponding production in G' "A := vR Xi uR" is considered, there must exists a set­of-items Rt reachable after the occurrence Xi has been processed, i.e., a set-of-items R1 containing the item "A := vR Xi . uR" . Here vR and uR are again the reverse versions of v and u, respectively
In other words, if Ik is the state reachable af­ter a forward scanning of Xi in the context of u Xi v, then there must exists Rt , the state reach­able after a backward scanning of Xi still in the

-Context Of U Xi V. As an example, the goto graphs above show that l3 and Rs are both reachable through c3 .
Definition 2 (joint graph) Let us consider a
grammar G = (N, T, S, P) with indexing, its
reverse grammar G' = (N, T, S, P) and their
canonical LR{O) sets-of-items · collections C1 =
lo , . . . , In and CR = Ro , . . . , Rm , respectively.

The joint graph for an occurrence Xi of X in N U T is given by:
Jgraph{Xi) = { {Ik , Rt) / there exist A E N,

and u, v occurrences of strings E (N U T) * such
that "A := u Xi . v" E h AND "A := vR Xi .
uR " E Rz }

52
The joint graph for the symbol X in N U T is:

Jgraph(X) = u Jgraph(Xi)
i:name(Xi)=X

Example 3.2.
Considering the grammars in Example 3.1 and looking at the goto graphs above:

Jgraph(c) = Jgraph(c3) = {(l3, Rs) } Jgraph(d) = Jgraph{ds) = {(l4, R3) } Jgraph(S) = Jgraph(So) = {(l1 , R1) } Jgraph(C) = Jgraph(C1) U Jgraph(C2) U U Jgraph(C4) = {(l2, �) } U {(Is, R2) } U U {(la, R2), (la, �) } = = {(l2, R4), (Is, R2), (la, R2), (la, �) }
To parse the string "d' cd" starting from the. symbol "c" , a substring parser based on G will parse "cd" and a substring parser based ·on G' will parse "cd'" . As J graph{ c) = { (l3, Rs) } , the first parser will start from state 13, while the second one will start from ·Rs. To parse the whole string the comple­tion of the substring parser based on G will have to match the parsed part of the reverse substring parser, and vice versa. After reducing the non-terminal C, the states of G to be considered are 12, Is and la while the states of G' are R2 and R4. Note that if the par­sing process starting in � fails, then that starting in h must fail, too, because it has no correspond­ing state � left in Jgraph(C).

4 The Algorithm

The algorithm is based on the concepts of sub­string parsing as presented in (Rekers - Koorn, 1991). In this paper, an algorithm for substring parsing for arbitrary context-free grammars is presented. It is based on the pseudo-parallel par- · sing algorithm of Tomita (Tomita, 1985, 1991), which runs a dynamically varying number of LR parsers in parallel and accepts general context­free grammars. Even though the algorithm can be easily ex­tended to the general case, in this paper it will be limited to accept only LR context-free grammars

C OSTAGLIOLA

whose reverse is still an LR grammar. Informally the algorithm can be described as follow. The input is given by a grammar G and its reverse grammar G', the Jgraph for each symbol of the grammars, the two parsing tables and an input sentence ao . . . an with an index O ::s; i ::s; n from where the parsing process is supposed to start. Jgraph(�) provides the initial states. As seen · before, a J graph contains states (set-of­items) from both the grammar G and its reverse. In the following, a / orward parser is an LR parser for G and a backward parser is an LR parser for G'. Moreover, the opposite parser of a forward parser is meant to be a backward parser and vice versa. Every state Ik in Jgraph(�) (with i being the starting position) becomes the initial state for a forward parser and every state Rz in Jgraph(ai) an initial state for a backward parser. The for­ward parsers interact only with forward parsers in the same way as a generalized LR parser. The same is true for the backward parsers. The excep­tion occurs when a parser tries to reduce a pro­duction "A := u" requiring the stack to pop its initial state. That parser is then blocked waiting for an opposite parser to try the corresponding reduction "A := uR" on the same symbols. If the distance between the two parser stack tops is I u I and the initial states of the two parsers form an edge in Jgraph(ai), then a rendezvous occurs and Jgraph(A) is generated. Jgraph(A) will produce a new set of forward and backward parsers and the process will continue till when ei­ther two opposite parsers have a rendezvous on the action "accept" or no rendezvous is possible and the input has all been consumed.
4.1 Data Structures

The algorithm is based on a graph-structured stack with two types of nodes: joint stack nodes and simple stack nodes and it is able to con­struct a packed shared parse forest, (Tomita, 1985, 1991). A joint stack node is a 5-tuple (Jgraph, X, blast, flast, sLptr) where Jgraph is as defined above; X is either a terminal or a non-terminal; blast and flast point to the last elements visited during the backward and forward parsing of the input, respectively; sLptr is a pointer to a node labeled X in the packed shared parse forest.

{PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 53

A simple stack node is a 4-tuple (state, X,
last, sLptr) where state is the state reached by
the parser and corresponds to a set of items; last
is the last terminal parsed; X and sLptr are as
above.

Note that a joint node ({ . . . , (I, R) , . . . } , X,
blast ,flast, sLptr) represents a graph whose ele­
ments are simple stack nodes of the type (I, X,
£last , sLptr) and (R, X, blast, sLptr) and the
edges are defined in the Jgraph component.

The operations on the graph stack are the
Splitting, Combining and Local Ambiguity Pack­
ing operations, (Tomita, 1985, 1991) , as used in
the definition of the Generalized LR Parser. The
only difference regards the updating of the node
fields £last and blast. The following are the defi­
nitions of two new operations that must be added
to the previous.

BEFORE:

Stack graph Parse forest

----- a ---�

Z .. X .. Y

/ A \
aq •• ab .. ar .. ap

N 1 N2 N3

AFTER:
Stack graph Parse forest

q, A, p

�
n .

/i"'-
z .. X . . Y

/ A \
J ra h(A) aq ap

Figure 4 .1 The Rendezvous Operation

The Rendezvous Operation
A graphical description of the rendezvous op­

eration is given in Figure 4 .1 (pointers from the
stack graph to the parse forest are not shown) .

If there is a joint node:
N2 = ({ . . . (Ik , Rz) . . . } , X, b, f, X_ptr)
and two simple nodes:
N1 = (Rj , Z, q, Z_ptr) and
N3 = (Ii , Y, p, Y_ptr) such that

• N 1 is the active stack top of a backward
parser with initial state Rz in N2

• N3 is the active stack top of a forward parser
with initial state Ik in N2

• the edge (Ik , Rz) is in the J graph of the node
N2 .

• action(Ii , ap+i) = "reduce A:= a:" where
o: = Z . . . X . . . Y

• action(Rj , aq_i) = "reduce A:= o:R"

• pathJength(N2 . . . Ni) + pathJength{N2

· · · N3) - 1 = I O: I

then N1 and N3 are made non-active and a
new active joint stack node (Jgraph(A) , A, q, p,
A_ptr) is created, where A is the left-hand of the
reduced production, q is the pointer to the last
visited token in N 1 , p is the pointer to the last
visited token in N3 and A_ptr is the pointer to a
new shared forest vertex whose children are ver­
tices pointed by stack nodes contained in the path
N1 . . . N2 . . . N3 .

Note that the path N2 . . . N1 represents the
stack nodes of the backward parser while N 2 . . .
N 3 are the stack nodes for the forward parser.

The Accept Operation
If there is a joint node: N = ({ . . . (Ik , Rz) . . .

S , 0, n, S_ptr)
where S is the starting non-terminal, 0 and n are
the positions of the first and last elements of the
input, and

• action(Ik , $) = accept

• action(Rl , $) = accept

then accept the input and return the pointer to
the parse forest, S_ptr.

4.2 The LR parser with an arbi-
trary starting point

Input: An LR grammar G = (N, T, S, P) and its
reverse G' , the Jgraph for every symbol in N U T,
a sentence w = aoa1 • • • an and a starting position
i, with i E {O, .. , n} . Output: The parse forest for w if accepted. Method:

1 . Create the LR parsing tables for G and G'

54·
2. Cre�te the joint node (Jgraph(B.i), 8.i, i, i, ai_ptr) and make it active.
3. For every element I in the Jgraph field of an active joint node N = (Jgraph(X), X, b, f, X_ptr) start a forward generalized LR parf>er with initial node (1, X, f, X_ptr) on inpµt a1+1 • • • an; for every element R ii,. the J gqtph field of N start a backward gene­ralirz;ed LR parser with initial node (It, X, b, �-ptr) on input ab-1 . . . ao. Wheneyer a parser has a reduce action involving its initial node, or has an accept action to per­form, make it wait. All the others will keep processing the input.
4. When all the parsers, both forward and backward, are in the wait state, apply the rendezvous operation wherever p�ssible and go to step 3. If an accept operation is pos­sible then return the corresponding potnter to the parse forest. If no rendezvous or ac­cept operations are possible then the par­sing process halts.
If no parse forest pointer has been returned then the sentence has not been accepted.

Example 4.1

COSTAGLIOLA

On the lookahead symbol ·$, the state R4 of the backward parser built on G', requires the reduc­tion "(1) S := CC". R2 and 15 have no action, on $ and 'd', respectively. At this point, no action is possible without in­volving the joint node. Note that the nodes with states 15 and � meet the rendezvous operation requirements: both of them are active stack tops requiring the same redqce action, the sum of the depths of the stack of the two parsers - 1 = I QC
I = 2 and (h, R4) is an edge in the J graph of the joint node. By applying the rendezvous operation on pro­duction "S := CC" and recalling that Jgraph(S) = { (l1 , Rt)} the foUowing configuration is reached:

Stack graph

O, S, 2

[acc. , $] (�) c$, acc.]

Parse forest
c .,.......

s

\ I '-c C I I
c d d

with the joint node ({ (l1 , Rt)}, S, 0, 2, S_ptr) and 11 and R1 requiring both an accept action. The execution of the �ccept operation will then return the pointer to the final parse.
Given the grammars G and G' of Example 3.1, 5 the �nput string "cdd" with positions 0, 1 and 2 resp�ctively and the starting index 1� after two rendezvous operations the following situation is presented:

Two-dimensional LR par­
sing frolD: an arbitrary
starting point

Stack graph Parse forest

I f
C d

C
I
d

with the joint node ({(I2, R4), (l5, R2), (16, R2), (16 , R4) } , C, 0, 1, C_ptr), the simple node (15', C, 2, C_ptr) and the corresponding (lookahead, ac­tion] pairs. The two nodes point to th� first and the second tree in the parse forest, respectively. On lookahead symbol $, the state 15 in the simple node of the forward parser l?uilt on G, requires a reduce action with production "(1) S := CC" while 16 , on lookahead d in :Rosi­tion 2, r�quires a reduction with "(2) C:= cC".

An LR parser takes in i�put a sequence of tokens and returns a parse tree if the sequence is in the language accepted by the parser. The sequence of tokens are usually extracted from the string data structure. A first generalizatim1, of this model toward 2-D parsing regards the · possibility to have other input data structures different from the string. After all a string can be seen as a set of elem�nts each having an attribute whose value is given by the position of the element in the string. As an
• I example, the strmg "a b c" can be seen as the set {(b 2), (a 1), (c 3)} where each pair represents the element and its attrjbute value. With this new data structure, the LR parser cannot simply require r1 "next" token to the lex­ical analyzer but has also to give indication$ on the position of the token. When this is done, the

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 55
input sequence of tokens to an LR parser can be extracted from any set of tokens with attributes. In the case of two-dimensional symbolic langua­ges these attributes will correspond to Cartesian coordinates but other types of attributes can be thought of. In the case of diagrammatic langua­ges, for example, size, shape, colour, etc. can be considered as attributes. But how is it possible to make an LR parser give indications on the attribute values of the next token to parse? This can only be done by insert­ing appropriate information in the productions of the grammar from which the LR parser is built. In the case of 2-D symbolic parsing this infor­mation is given by spatial operators that take in input the position of the last visited symbol and return the position of the next symbols to parse. Examples of spatial operators are:

"String Concatenation" : i => i + 1 "Up" : (i, j) => (i, j+l) "Left" : (i, j) => (i- 1 , j) "Right" : (i, j) => (i+ 1 , j)
5 .1 Positional grammars

While in the traditional case there is an implicit use of the only string concatenation spatial rela­tion, in the 2-D case many other spatial relations can be used and must made explicit in the gram­mar formalism. In the following, some definitions are re-called, (Costagliola - Chang, 1991) , to define a 2-D grammar formalism and the languages generated by it:

where m � 1, A E N, each Xi is in N U T and each Re� is in POS.
In the following, the words "positional gram­mar" will also refer to a context-free positional . grammar.

Definition 4 (pictorial language) Let PG = (N, T, S, P, POS, PE). A positional sentential form is a string IT such that S =>* II, where =>* has the conventional meaning. A positional sen­tence is a positional sentential form not contain­ing non-terminal symbols. A picture is the evalu­ation of a positional sentence. The pictorial lan­guage defined by a positional grammar L(PG) is the set of its pictures.
Note that if POS contains the only "string concatenation" spatial relation the positional grammar formalism reduces to the traditional context-free grammar formalism.

Example 5 . 1 The following positional grammar generates a simple subset of the arithmetic expressions:
N = {E, S , T, F} T = {+, 1:, (,) , id, num} E is the starting symbol POS = { >, _ } p = { E := E > + > T I T T := s > T I F

s := L - id F := id _ id I num I (> E >) }

Definition 3 (positional grammar) A context- where the characters '> ' and '-' stand for "hor-free positional grammar PG is a six-tuple (N, T, izontal concatenation" and "under concatena-S, P, POS, PE) where: tion" , respectively. A positional sentence is:
N is a finite non-empty set of non-terminal symbols T is a finite non-empty set of terminal symbols N n T = </J S E N is the starting symbol P is a finite set of productions POS is a finite set of spatial relation identifiers PE is a positional evaluator

Each production in P has the fallowing form:

"5 > + > L - i > (> x - i > + > y - i >) "

From its evaluation the particular positional eval­uator PE for this grammar produces the following picture: 5 + 1:/xi + Yi) -A more detailed definition of PE for this type of grammars can be found in (Costagliola et al. , 1992) .
Example 5.2 . The following• positional grammar PG will be used in the following to illustrate the execution of the algorithm.

56

0) S := A Down S (2) S := A
(3) A:= a Right a
A positional sentential form for thts grammar is "A Down a Right a" ; a positional sentence is "a :flight a Down a Right a" ; the corresponding picture is given by the evaluation of the spatial relations in the positional sentence, from left to right:

a a . a a
Very similarly to Definition 1 , the correspond-ing reverse positional grammar PG' i�:

(1) S := S Up A (2) S := A (3) A := a Left a
The positional sentence becomes now "a Left a Up a Left a" and produces the sam� picture as abovestarting from the 'a' in the lower right. Note that to reverse a positional g;rammar, it is not enough to reverse the right side· of the pro­d uctions. Every spatial relation must �so be sub­stituted with a semantically opposite spatial re-­lation. In this example, "Down" becpmes "Up" and "Right" becomes "Left" .

5 .2 Pictorial LR parsing

The generalization of LR parsing tp the two­dimensional case has already been tre,ted in (Co­stagliola et al. , 1991 , 1992, 1993) , where classes of pSLR, pLALR and pictorial generali�ed LR lan-guages have been characterized. The parser generation methodology from posi-
1 tio11al grammars is very similar to the traditional LR technique. The only difference regards the handling of the spatial relations. As an example, the item "A:= a .Left a" means now that a new 'a' is expected tp the left. of the just seen 'a'. The containing set-of-items will then be associated to the spatial rela�ion Left . To handle the positional informatiqn, the final LR parsing table for . a positional grarpmar has a new column named "pos" , besides the traditional "action" and "goto" parts. The underlying au­tomaton will then have a spatial func�ion as�oci­ated to each state in order to predict �he position

of the next symbol to parse.
Example 5.3

COSTAGLIOLA

The parsing table$ for PG and PG' of Example 5.2 are shown in Figure 5 . 1 and 5.2 , respectively.
state action goto pos a $ A s lo s4 2 1 l1 acc. Any 12 s4 r� 2 3 Down l3 rl Any l4 s5 Right Is r3 r3 Down

Figure 5 .1
state action goto pos a $ A s
� s4 . I 5 . 1 R1 s4 a.cc. 2 Up R2 r1 r1 Up R3 r3 r3 Up R4 s3 Left Rs r2 r2 Up

Figure 5 .2
Every spatial relation name in the column "pos" indicates a spatial function that takes in . input a position and returns a terminal, if found, or the end-of-input marker $, otherwise. The only exception is 'Any' that always returns $. The action "accept" is actually a conditional "accept" : if all the symbols of the picture have been processed then accept, otherwise reject . This can be done by marking each visited symbol and looking for unmarked ones. Looking at Figure p. l , if state Is is reached by shifting a terminal 'a' whose position is (i, j) , then the next symbol to process i s the terminal Down(i, j) in positioQ (i, j- 1) . Note that Down is the spatial function associated to Is . In the following, for sake of simplicity, each Cartesian coordinate (i, j) will be associated with a unique index k.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 57

5 .3 The 2-D extension
Definition 2 of "joint graph" applies with no mod­
ification to the case of pictorial LR parsing. In
particular, for the grammars PG and PG' of Ex­
ample 5.2, the Jgraph sets are so defined:

Jgraph(S) = Jgraph(So) U Jgraph(S2) =
={(I1 , R1) , (I3 , Ri) }
Jgraph(A) = Jgraph(A1) U Jgraph(A3) =
= { (I2 , R2) , (I2 , Rs)}
Jgraph(a) = Jgraph(a4) U Jgraph(as) =
= { (I4 , R3) , (Is , R4)}

The LR parser with an arbitrary starting point
algorithm can also be easily adapted to the case
of pictorial languages. The only difference is that
the forward and backward parsers are not gene­
ralized LR parsers as defined in (Tomita, 1991)
but pictorial generalized LR parsers, (Costagliola et al. , 1992) .

Example 5.4.
Let us consider the grammars PG and PG' of

Example 4.2, the input picture
ao a1

a2 a3
a4 a5

where each terminal 'a' has been indexed with its
position, and i = 2 as the starting position; from
the initial stack graph it is possible to reach the
following configuration:

[Up(2)=a. r3)

Stack graph
2, a, 2

[Down(3)==a, r3)

©---@ (Down(2)=$, r3)

Parse forest

with the joint node ({ (I4 , R3) , (Is , R4)} , a, 2 ,
2 , a2_ptr) , the simple node (Is , a, 3, a3_ptr) and
the corresponding [lookahead, action] pairs. The
simple stack node with state Is has just seen the
terminal 'a' in position 3; to take the next action
the associated spatial function Down must be ap­
plied to the position 3. The returned terminal
is 'a' in position 4 and only now the parser can
decide a reduction with "(3) A := a Right a" .
The same explanation can be given for the ac­
tions taken by the parsers in the remaining states
Is and R3 .

The parser with initial state R4 has no action
to take and fails, making the forward parser start­
ing in Is fail, too. The only rendezvous operation
can then be performed between the parsers start­
ing in R3 and Is on production "A:= a Right a" :

Stack graph 2, A, 3
�

Parse forest

where the stack graph reduces to the joint
node ({(I2 , R2) , (I2 , Rs)} , A, 2, 3, A_ptr) . In
two other rendezvous operations the picture will
be eventually accepted with parse tree:

6 Conclusions

This paper has presented an algorithm to allow
LR parsing from an arbitrary starting point of the
input . The algorithm is based on Tomita's algo­
rithm and refers to substring parsing as defined
in (Rekers - Koorn, 1991) . It makes use of two
LR parsing tables, one for the original grammar
and another for its reverse version.

It can be shown that there is a moderate
overhead with respect to the normal parser and
that sentences starting with a token that can ap­
pear in many different context take more time to
parse than sentences starting with a disambiguat­
ing token. With respect to substring parsing,
no overhead is necessary for the completion of
the sentence by any backward or forward parser,
as the completion is always determined by the
rendezvous operation. Further the Jgraph data
structure allows only appropriate reductions cut­
ting on the overhead due to unfeasible reductions.

It is also been showed that , based on the pic­
torial generalized LR parser in (Costagliola et al. ,

58

1992), the extension of the algorithm to the two­dimensional case is -immediate. In this paper, only the simplest form of two­diµiensional parsing, the so-called linear pictorial parsing, is referred to. In this type of pictorial parsing, the spatial relations are defined such that the position of the next symbol only depends on the last symbol processed.

COSTAGLIOLA

More complex forms include the possibility to calculate the next symbol based on the .positions of the elements of the last handle or of the whole input so far visited. 'f hese forms have been fo� vestigated in traditional pictorial generalized par� sing and are currently being investigated iµ the context of LR parsing with an arbitrary starting point.

(PICTORIAL) LR PARSING FROM AN ARBITRARY STARTING POINT 59

References

Aho, A.V. - R. Sethi - J.D. Ullman (1985) Compilers, principles, techniques and tools .
Addison Wesley.

Bossi, A. - N. Cocco - L. Colussi (1983)
"A Divide-and-conquer Approach to General
Context-free Parsing" . in: Information Pro­cessing Letters 16, 203 - 208.

Costagliola, G. - S.-K. Chang (1991) "Parsing
2D Languages with Positional Grammars" .
in : Proceedings of Second Int. Workshop on Parsing Technologies 235 - 243. Cancun,
Mexico, February 13 - 25, 1991 .

Costagliola, G. - S.-K. Chang - M. Tomita
(1992) "Parsing 2D Languages by a Pictorial
GLR parser" . in: Catarci, T. & M.F. Costa­
bile & S. Levialdi, (Eds) : Advanced Visual In­terfaces . 319 - 333. Singapore: World Scien­
tific Publishing.

Costagliola, G. - S. Orefice - G. Polese - M.
Tucci - G. Tortora (1993) "Automatic Parser
Generation for Pictorial Languages" . in: Pro­ceedings of IEEE Symposium on Visual Lan­guages Bergen, Norway, August 24 - 27, 1993,
to be published.

Crimi, C. - A. Guercio - G. Nota - G. Pacini
- G. Tortora - M. Tucci (1991) "Relational
Grammars and their Application to Multi­
dimensional Languages" . in: Journal of Vi­sual Languages and Computing 2, 333 - 346.
Londra: Academic Press.

Golin, E. J. (1991) "Parsing Visual Languages
with Picture Layout Grammars" . in: Journal of Visual Languages and Computing 2, 371 -
393. Londra: Academic Press.

Helm, R. - K. Marriot - M. Odersky (1991)
"Building Visual Language Parsers" . in:
Robertson, S.P. & G.M. Olson & G.S. Olson,
(Eds) : Human Factors in Computing Systems: CHI '91 Conference Proceedings 105 - 1 12 .
Amsterdam: Addison-Wesley.

Rekers, J. - W. Koorn (1991) "Substring Par­
sing for Arbitrary Context-Free Grammars" .
in: Proceedings of Second Int. Workshop on Parsing Technologies 218 - 224. Cancun,
Mexico, February 13 - 15, 1991 .

Steel, S. - A. De Roeck (1987) "Bidirectional
Chart Parsing" . in: Proceedings of AISB-87
Edinburgh: Scotland.

Stock, 0. - R. Falcone - P. Insinnamo (1989)
"Bidirectional Charts: a Potential Technique
for Parsing Spoken Natural Language" in: Computer Speech and Language 3, 1989.

Tomita, M. (1985) Efficient Parsing for Natu­ral Languages Boston MA: Kluwer Academic
Publishers.

Tomita, M. (1991) Generalized LR Parsing . Nor­
well MA: Kluwer Academic Publishers.

Wittenburg, K. (1992) "Earley-style Parsing for
Relational Grammars" . in: Proceedings of IEEE Workshop on Visual Languages Seattle,
USA, September 15 - 18, 1992.

Wittenburg, K. - L. Weitzman - J. Tal­
ley (1991) "Unification-based Grammars and
Tabular Parsing for Graphical Languages" .
in: Journal of Visual Languages and Comput­ing 2, 34 7 - 370. Londra: Academic Press.

Woods, W. A. (1982) "Optimal search strategies
for speech understanding control" . in: Artifi­cial Intelligence 18, 295 - 326.

60 COSTAGLIOLA

A New Transformation into Deterministically Parsable Form

for Natural Language Grammars

Nigel R. Ellis, Roberto Garigliano and Richard G. Morgan

Artificial Intelligence Systems Research Group,
School of Engineering and Computer Science

University of Durham, UK. DHl 3LE
email : {N . R . Ellis I Roberto . Garigliano I R . G . Morgan }©durham . ac . uk

Abstract Marcus demonstrated that it was possible to construct a deterministic grammar /interpreter for a subset of natural language [Marcus, 1980] . Although his work with PARSIFAL pioneered the field of deterministic natural language parsing, his method has several drawbacks: • The rules and actions in the grammar / interpreter are so embedded that it is difficult to distinguish between them. • The grammar / interpreter is very difficult to construct (the small grammar shown in [Marcus, 1980] took about four months to construct) . • The grammar i s very difficult to maintain, as a small change may have several side effects. This paper outlines a set of structure transformations for converting a non-deterministic gram­mar into deterministic form. The original grammar is written in a context free form; this is then transformed to resolve ambiguities.
1 Introduction

The term deterministic grammar is used to re­fer to a grammar which can be parsed deter­ministically using a specific parser. The work of [Marcus, 1980] has been extended in the past [Berwick, 1983, Stabler, 1983] , but both of these still follow the same method in that the deterministic grammar produced is hand written and therefore difficult to generate, expand and maintain. Deterministic parsers have three fundamental features. These features appear as constraints in the parsing mechanism and are part of the parsers' structure. The parser has to have a constrained lookahead facility. It has to be data driven or bottom-up to som·e extent, but also must have the ability to" reflect expectation based upon the constructs already formed. All constructs produced from the input. to the parser must be part of the output; thus no structure is ere-
61

ated and then later destroyed. In a generic non­deterministic parser, when two (or more) gram­mar rules have identical start symbols, a looka­head must be used by the parser to decide which grammar rule to apply. The use of a lookahead relies upon the following principle:
"If there the input matched so far forms part of a rule A then some to­ken a will be present in the input. However if the the input forms part of a rule B, then a token f3 will be present in the input. This process can be extended for similar looking gram­mar rules."

A parser which uses a lookahead scheme will pause at such objects and then use a lookahead to distinguish between them. To do this, a fur­ther stream of symbols is parsed, up to some fixed length (usually denoted by k) . Eventually the

62

parser will reach a point at which it becomes cer­tain of the category of the original symbol. Once this point is reached, the parser will backtrack, allocate this category an_d continue. This means that the parser will generate the structure for sev­eral items more than once, which is an undesir­able feature.
2 State of the Art

2 . 1 Marcus Parsers

2 .1 .1 PARSIFAL

The major work in the field of deterministic natu­ral language parsing is PARSIFAL which is based upon a psychological model of how humans parse language and Marcus' determinism hypothesis. 1 PAR SIFAL has two major data structures - a stack called the active node stack and a lookahead buffer containing 5 cells (of which only 3 cells can be accessed at any time), which is used to hold grammatical constituents. The lookahead buffer processes words in the first input cell based upon the contents of the remaining two cells and there­fore can deduce what type of language component it has found. The use of these two data struc­tures ensures that PARSIFAL operates in both a top-down and bottom-up fashion. The stack has parents looking for children - a top-down pro­cess; the buffer has children looking for parents - a bottom-up process. PARSIFAL 's grammar was designed to cap­ture the generalisations of generative grammar and the structure of constructs which come from Chomsky and Winograd 's differing theories of annotated surf ace structure. The grammar con­sists of pattern/ action rules grouped together into units called packets. Each packet of rules repre­sents the structure which the parser is attempting to build . Each rule has a numerical priority which is used to decide between rules when more than one pattern matches. Patterns are matched on cells located in the buffer, the current active node and the current cyclic node. Actions can consist of operations to push or pop nodes from the stack and to activate/deactivate packets of rules. PAR­SIFAL also contains special rules called attention shift rules which are used to shift the context of

ELLIS - GARIGLIANO - MORGAN

the parser from parsing one constituent to parsing another .
2.1 .2 Problems with the Marcus ap-

proach

The main problem with Marcus style parsers is that the grammar is encoded in a procedural form which specifies some actions upon a virtual ma­chine. This makes the grammar harder to under­stand than a grammar written in a declarative manner . Also, because of the procedural form, it is very difficult to expand a grammar, as a change may cause side effects. It is difficult to see the ef­fect of a change in the grammar because the whole of the grammar can have other active packets of rules at the same time as the rule being changed; the recent change may cause some unintential in­teraction between these rules, rendering a mean­ing to the grammar which might have been un­intentional. Another problem with Marcus style parsers is that they are unable to analyse globally ambiguous grammars in a deterministic manner ; when a Marcus parser encounters a fragment of grammar which is globally ambiguous, it marks the built parse tree in a special way. If another interpretation is required for the input sequence, the input has to be completely re-parsed and the initial parse tree is used to guide the parser onto a different interpretation.
2.1 .3 Other Marcus Parsers

Several other parsers have been prodqced as a re­sult of the work of Marcus. However, all of these parsers _ follow the same basic structure as PAR­SIFAL and therefore share all the drawbacks of the approach. These were: ROBIE [Milne, 1986] which looked especially at lexical ambiguity, L. PARSIFAL [Berwick , 1983] which was used for grammar acquisition, YAP [Church, 1980] which was a modified form of PAR SIFAL im­plemented using a finite state machine , PARA­GRAM [Charniak, 1983] which looked . at the parsing of ungrammatical sentences, and FID­DITCH [Hindle, 1983] which was used to inves­tigate the sublanguage of military style speech. 1 Briefly stated, this says : "the syntax of any natural language can be parsed by a mechanism which operates strictly
deterministically· in that it does not simulate a non-deterministic machine."

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 63
2 .2 LR Parsers 2.2 .1 Outline
The term LR(k) [Knuth, 1965) is shorthand form for a parser which performs left-to-right parsing building the right-most derivation in reverse (i.e. bottom-up) using at most k terminal symbols as lookahead. LR(k) parsers can only be con­structed for unambiguous context-free grammars. Although natural language grammars are inherently ambiguous, several attempts have been made to apply LR(k) (and the re­stricted form of LALR) parsing to natural language problems [Shieber, 1983, Pereira, 1985, Briscoe, 1987) . LR parsers are members of the class of shift­reduce parsers [Aho and Johnson, 1974) which are a very general type of bottom-up parser. All shift-reduce parsers incorporate a stack for hold­ing constituents as they are built during the parse and have a shift-reduce table of states and actions for guiding the parser. This table contains two types of actions: the shift operation, which trans­fers the next word from the input buffer onto the stack, and the reduce operation, which replaces several elements on the top of the stack with a new element. Shieber and Pereira's work concen-trated on using the Unix parser generator, yacc [Johnson, 1978) , to produce an LALR parser and to use this for parsing natural language. In order to do this, they created several strategies for converting ambiguous context-free grammars into deterministically parsable form. These strategies were based upon semantic rules which exploit basic properties of the English language such as preferences for propositional attachment. Briscoe has also attempted to use LR(k) parsing for nat­ural language. He has concentrated on producing an interactive deterministic parser which corre­sponds to a specific type of LR(k) parser.
2.2 .2 Problems with this approach
The problem with the LR(k) parsing approach is that in order to make a decision, the parser needs to analyse both the left and the right contexts. For some sentences it may be that the size of left and right contexts required to correctly anal­yse the sentence is as large as the sentence itself.

However, LR(k) parsers are restricted to looking at most k symbols ahead. Therefore an LR(k) parser will not be able to analyse a sentence deter­ministically if the right context required is more than k symbols in length. Also, since the left context is encoded deter­ministically into a parse table, any grammar rule which matches the same left hand context and lookahead will cause a shift-reduce conflict. This renders pure LR(k) parsing impossible. Shieber and Pereira introduce two rules to solve this prob­lem:
1 . Resolve shift-reduce conflicts by shifting.
2. Resolve reduce-reduce conflicts by perform­ing the longer reduction.
Although these rules solve many of the prob­lems, Shieber and Pereira admit that there are several cases in which their parser will not pro­duce an evaluation. For example, the sentence

The horse raced past the barn fell.
causes a reduce-reduce error before the last word.2 The parser of [Briscoe, 1987] employs a different approach because it can interact with a semantic component which decides which action to perform when facing with a reduce-reduce or shift-reduce conflict. The success of this method relies heavily upon the amount of semantic knowl­edge recovered from the successfully parsed input . Although each of these methods partly solves the problem of ambiguity, it should be noted that the action of either parser could at some stage degenerate into an ad-hoe strategy. The parser would then no longer operate in strictly deter­ministic manner and may have to backtrack.
3 A new approach

The introduction of our transformation algorithm provides the facility for the automatic generation of a deterministic parser from a source grammar given in context free form. A grammar descrip­tion written in a context free form is far easier to maintain and understand than one written in a procedural format such as Marcus' parser PAR­
SIFAL (written in the language PIDGIN). The

2This is because the finite verb form of 'raced' will be chosen in preference to the participle form.

64
presence of commands like create, drop, etc. in a PIDGIN grammar make it very difficult to see ex­
actly what language the grammar defines. More­
over, such parsers are difficult to write, maintain
and expand, as the effect of making a change in
one portion of the grammar may affect another.
The results of changes cannot be realized until the
parser is thoroughly tested. 3 LR(k) style parsers
are also unable to deal with the type of ambigu­
ity present in natural language grammars. Al­
though several extensions to the basic parsing al-:­
gorithm have been proposed, none of these com­
pletely solve the problem.

In the our approach, when some changes are
required to the grammar, the original source form
is modified and transformed again to produce a
new version of the parser. Working in this way
ensures that the maintenance and expansion of
the grammar does not suffer from the disadvan­
tages of the Marcus system. The transformation
system also has the advantage over LR(k) style
parsers in that no lookahead is required to parse
such grammars; the parser only needs to examine
the current input symbol in order for a decision
to be made.

4 Notation

In this section, the notation used in the remainder
of the paper is introduced.

4.1 Trees

Each tree diagram presented in this paper will
consist of a combination of and and or nodes. And nodes will be labelled with a category, or
nodes (marked with a '+') will remain unlabelled.

A
I\
a b

Fig. 1 : An and node.

ELLIS - GARIGLIANO - MORGAN

+

I\ b A
Fig. 2: An or node.

Figure 1 shows a sample and node labelled A for
the symbols a and b which represents the produc­
tion rule A --+ a b, and Figure 2 shows a sample or node for the symbol b or the symbol A rep­
resenting the production rule O --+ b I A. If any
tree diagram has a label of the form nt = N,
then this represents a node in the tree with name
N, which can be referenced by the unique non­
terminal name nt. If the name of a node is re­
peated and appears as a leaf node in a tree, this
represents a cycle or repetition of some previously
shown item.

4.2 Message passing

If a grammar contains local ambiguity, a parser
will normally have to look ahead a number of
symbols in the input stream to decide which pars­
ing rule to apply. Rather than using a lookahead,
a dummy value will be allocated for the name of
the parsing rule applied, until more of the input
has been parsed and the correct name of the rule
determined. Dummy nodes are represented as D
in the tree diagrams. Whenever the name of an and node has been replaced by a dummy node,
the name is moved and attached to the righthand
descendant of the node. For example, consider
the following grammar G1 :

S1 --+ A I B
A --+ a b
B --+ a c

This grammar is shown in tree form in Figure 3
and in an equivalent transformed form in Figure
4. Note the messages within the square brackets
attached to the nodes b and c. 3This task alone may be hard as there is no formalism available for Marcus parsers, so no formal testing methods can be applied.

A NEW TRANSFORMATION INTO D ETERMINISTICALLY PARSABLE FORM 65
+

A A B
I\ I\

a b a c

Fig. 3: Tree for grammar Gi .
Di

I\
a +

A
b[B] c[C]

Fig . 4: Transformed version of Gi .
When the parser encounters a dummy node in the grammar, it cannot be sure of the real name of the node, as this node represents some am­biguity which existed in the original grammar. The parser proceeds to match the input symbols against the grammar. When a node is matched which contains messages, the messages are passed back up the built parse tree until a dummy node is found. This dummy node is then replaced by the message at the front of the list of messages found. The search is then continued with the re­maining list of messages.

4.3 Gated or nodes
When two grammar rules have been unified by a transformation, a single grammar rule is pro­duced which will have a chain of dummy nodes corresponding to the names of the and nodes in the two original grammar rules. This new grammar rule preserves the struc­ture of the original two grammar rules by using a special type of or node called a gated or node. These nodes prevent the parser from following a path in the new rule which is a mixture of the original two grammar rules. Consider the right child of Di shown in Fig­ure 6. This type of or node will be referred to as a gated or node. The values in the braces are tests on the name of the left child of Di . For example, if the parser had matched the input se­quence ab, then the dummy node D2 would have been replaced by the message A and the parser

would choose the path below the gated node {A} . Likewise, if the parser had matched the input se­quence ac, the dummy node D2 would have been replaced by the message B and the parser would choose the path below the gated node {B} .
S2 -+ E I F A -+ a b B -+ a c E -+ A d F -+ B e
Fig . 5 : An example grammar G2 •

Di

D2 {A} + {B}
/\ A a + d[E] e[F]
A

b[A] c[B]

Fig . 6: Transformed version of grammar G2

4.4 Special gated or nodes

In order that the structure of the grammar is pre­served when the parser is following a cycle in the transformed grammar, it must have some method of recording the name of the cycle which it has followed previously. This mechanism is imple­mented by the use of cycle markers and special gated or nodes.

Fig. 7: Grammar G3

Cycle markers are represented by angled brackets e.g. (Ci) _and special gated or nodes represented by double braces e.g. {{Ci }}. When the parser encounters a special gated or node, the

66

name of the current cycle being followed is com­pared with the values contained in the node. If a mfl,tch is found, then the parser continues by following the descendants of the gated node. An exa:rpple of a gated or node and a cycle marker may be found in Figure 7 (taken from Figure 12) . 'fhere will always be one value D in a collec­tion of special gated or nodes which represents the path the parser should follow if it has not already followed a cycle.
5 Transformation Meth�d
The transformation into deterministic form is performed by the ·algorithm given in this section. The transformation is divided into three stages: pre-transformation, main transformation and post-transformation. The pre-transformation stage prepares the grammar for processing by the main transformation by removing any pre­vious unification from the source grammar. The main transformation unifies any ambiguity which may exist in the source grammar and the post­transformation tidies the transformed grammar making it suitable for input into the parser. A de­tailed example of the transformation is also given.
5 . 1 Pre-Transformations

The pre-transformation unpacks any unification which may exist in the source grammar.

ELLIS - GARIGLIANO - MORGAN

leave t1 in the or node and repeat the procedure for the rest of the descendants. The comparison process is as follows:
5.2.1 Comparison between two graph seg­

ments:

1. For each tree ti and ti , list the sequences L1 and Li of leftmost nodes from the root node to the leftmost terminal node;
2. If no common nodes are found in the lists, the two trees cannot be unified by this al­gorithm;
3 . If a common node c is found, mark it ;
4. Count the number of nodes n1 and ni from the first node to the common node c in L1 and Li ;
5 . If n1 -=/ ni , add dummy and nodes to the top of the shortest tree (t1 or ti) - The ex­isting tree is the left child, and an empty node is the new right one. A dummy mes­sage is then added to the empty node. Any messages carried by the previous node are passed to the new one. When two trees are unified, the resulting tree must be complex enough to accommodate the more complex of the two, so the shorter tree must be bal­anced to match the larger one.

1 . Lift the left-most or nodes above the and 5.2.2 Make the unified tree: nodes, removing any empty nodes which may be present . This step continues the unpacking of any previous unification.
2. Flatten any chains of or nodes into one or node.
3. Repeat steps 1 to 2 on whole graph until the transformations can not be applied.

5 . 2 Main Transformation

For each or node O in the grammar with descen­dants t1 . . . tn , do the following: Take the first descendant t1 and compare it with all the others. If a matching descendant ti (1 < i � n) is found (following the method below), unify the two and start again comparing the re­sulting tree to the rest. If no match is found,

Given two balanced trees t1 and ti with a com­mon node c in the list of nodes from the root to the leftmost node, do the following:
1 . Take the number of nodes above c and cre­ate that number of dummies. Each of these dummies will have an or branch gate as the right child.
2. Put c as the leftmost of the chain. This is done because the node c represents the common elements of both trees.
3. Put a special gated or node, S, as the sib­ling of c. This node represents the first node of each of the trees being unified, and is an

or node because all structures above this node are different.

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 67

4. Attach to S a gated node with the name D.
Add to it an or node containing the siblings
of c in each of the two trees t1 and ti . These
represent the possibilities which can follow
from c in the two trees being unified before
the name of any cycle has been resolved.

5. For each cycle C in t1 or ti attach to S a
special gated node with name C. Add to
this node, the siblings of c from the tree
the cycle appears in. These nodes repre­
sent the choices available in the grammar if
the parser is following a specific cycle name.

6. If any gated nodes are repeated in S, re­
move the duplicates, adding the possibili­
ties below each duplicate to the remaining
node in S.

7. Add the name of the parent of the siblings
in each of the original trees to the message
list of each sibling. This allocates the mes­
sages which will be passed to the dummy
nodes.

8. Add to each branch gate (sibling node of
the dummy chain) the name of the origi­
nal left sibling (if more than one) and the
possible choices which follow from it . This
ensures that the messages passed up to the
dummy nodes are used to lead the parser to
the correct possibility at an or node.

9. Repeat this transformation on the new or
node, after having flattened it .

5 .3 Post-transformations

The post-transformation tidies the transformed
grammar to make it suitable for input to the
parser.

1. Flatten the chain of ors which do not carry
messages;

2. Unify the same gates under an or, thus mak­
ing the gates disjoint; If there is a gated or node which has two (or more) gates
which contain the same message, the com­
mon message is removed from each gate
and a new gate with this message is formed
which has an or node as its child. This or
node has each of the common possibilities
as children.

3. If an or node contains an empty node as a
descendent, then place this node at the end
of the list of descendents. This ensures that
there is no backtracking.

5.4 Example

An example application of the transformation al­
gorithm to the grammar G3 is shown in Figures
9 - 12 on the next page

68

S3 -+ B I E
A -+ a 01
B -+ A C
C -+ a d
E -+ C 02
01 -+ b I A
02 -+ e I E

Fig.8: Grammar GJ

Fig.10: Mark cycles.

a +

{D]t {C2]t {C1]t
I I I

+ + d[C)

� �
b[A] d[C) C2 [A] (C2) b[A) C2 [A] (C2)

ELLIS - GARIGLIANO - MORGAN

83= +

�
B E

/\ A
A C C +

I\ I\ I\
a + a d e E

I\
b A

Fig.9: Start grammar G3.

Fig.11 : Unify: build dummy chain and special gated nodes.

a +

Fig.12: Unify: build gated or nodes.

{A} + {C}

c[B) +

�
{C1]t d(E) C1 [E] (C1)

d[C)

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 69

5 .5 Parsing method
Initially the parser operates in a top-down fash­ion, matching the input from left to right. The parser checks the first input symbol against all of the possibilities below the top or node in the transformed grammar. If a match is found, then the parser proceeds to match the input seqence by following that possibility. The parser contin­ues in this way for each or node encountered in the grammar until one of the following possibili­ties occurs :

• The parser matches a node which con­tains messages. These messages are then passed back up the parse tree to replace the dummy nodes encountered whilst building the tree.
• The parser encounters a dummy node which has an empty node as its right child. The parser then replaces the dummy node and right child with the left child. This situa­tion occurs when a tree has been balanced for unification.
• The parser reaches a gated or node. The parser then follows the possibilities below the gated node which contains the name of the message which replaced the dummy sib­ling node of the gated or node (gated or nodes always appear as a sibling node to a dummy node in the transformed grammar).
• The parser encounters a special gated or node. If the parser has not yet resolved the name of any cycles, the path below the dummy gate is followed. If the name of the cycle has been resolved, the path below the gate containing the cycle name is fol­lowed. Cycle names are resolved by nodes with angle brackets. For example, the node C1 (m1 . . . mn] (R) , represents a cycle named C1 with messages m1 . . . mn whose real cy­cle name has been resolved to the R.

Below is an example parse of the transformed grammar G3 shown earlier in Figure 12. The grammar G3 presented earlier can match the in­put sequences anbc and (ad)ne where n > 0. If the input given to the parser is adade (for n = 2) , then the following actions will be performed (the

symbol I represents how far the input has been parsed) .
Input: ladade Action: Match symbol a, build chain of dummy nodes.

a
Input: aldade Action: Cycle name is unresolved, so follow the path below the dummy gate {D} (sibling of a) . Match the symbol d.

Input: adlade Action: Pass message C back up to replace the dummy node D2 .
Di

C

/\ a d
Input: adlade Action: Match the gated node { C} as its sibling node is now C. No symbol e, so follow the cycle C1 with message E and cycle name resolved to C1 . Now match the symbol a.

a
Input: adalde Action: The cycle name has been resolved to C1 , so follow the path below the special gated node { C1 } . Match the only possibility of d with message C.

70

Input: adadle

Di
C D3(E] (Ci)

/\ /\ a d D4
a d[C]

Action: Pass message C back up to replace the
dummy node D4 .

Input: adadle

Di
C D3 (E] (Ci)

/\ I\ a d C
/\ a d

Action: follow the path below the gated node { C} as
its sibling node is C. Match the input sym'bol e with
message E.

Input: adadel

Di
C D3 (E] (Ci)

/\ A a d C e[E]
/\
a d

Action: Pass message E back to replace dummy node
D3 and the second message E to replace the dummy
node Di .
Parse is now finished. E

C E

/\ I\ a d C e
/\
a d

ELLIS - GARIGLIANO - MORGAN

6 Improvements

Several improvements are planned to the trans­formation algorithm. These include adding a fa­cility to deal with homonymy.4 In addition looka­head gates can be added to and nodes under an or node to prevent the parser needlessly descending a chain of nodes to match the left-most symbol. Other imp.rovements which could be made involve expanding the algorithm to deal with features.
7 Conclusion

In this paper, we have outlined a transformation for converting a non-deterministic context free grammar into deterministic form. A complete for­malism of the transformation algorithm has been produced. This is discussed in [Ellis et al. , 1993] . Work is also in progress to produce a method for transforming globally ambiguous grammars. The transformation outlined has been implemented in the lazy functional lan­guage Miranda5 and has been applied to the large natural language processing system LOLITA [Garigliano et al. , 1993] . LOLITA is a general natural language (English) tool which has been under development at the University of Durham for the last four years. The LOLITA system is built around a large semantic network which holds knowledge that can be accessed, modified or expanded using natural language in­put and has a grammar of some 1600 rules. The system can parse complex text (such as news­paper articles) , semantically and pragmatically analyse its meaning and add relevant informa­tion to the network. The system can also answer natural language interrogations about the knowl­edge held in the network by generating natural language from the network representation.
Acknowledgements

The authors would like to thank Greg Lee of the University of Hawaii for the production of the tree drawing package used in the production of this report. Nigel R. Ellis is supported by a grant supplied by the Science and Engineering Research Council of Great Britain. 4For example, the word 'bank' is homonymous as it can represent either a noun or a verb. If the transformation can be extended .to deal with homonymous words such as this then the parsing of transformed grammars can be made more efficient. 5Miranda is a trademark of Research Software Ltd.

A NEW TRANSFORMATION INTO DETERMINISTICALLY PARSABLE FORM 71
References

A. Aho and S. Johnson, "Programming Util­ities and Libraries; LR Parsing" , Computing Surveys, 4(6) :99 - 124, June 1974.
R. Berwick, "A deterministic parser with broader coverage" , in Proceedings of the st,h In­ternational Joint Conference on Artificial In­telligence, pages 710-712, 1983.
E. Briscoe, Modelling Human Speech Compre­hension, Series in Computer Science, Ellis Hor­wood, 1987.
E. Charniak, "A Parser with Something for Ev­eryone" , in M. King, editor, Parsing Natural Language, chapter 7, pages 1 1 7-149, Academic Press, London, 1983.
K . Church, "On memory limitations in natural language" , Unpublished Masters thesis, Labo­ratory for Computer Science, MIT, 1980.
N. Ellis, R. Garigliano, and R. Morgan, "A Transformation Algorithm for Converting Non-Deterministic Grammar into Determinis­tic Form" , Technical Report 4/92, Artificial In­telligence Systems Research Group, School of Engineering and Computer Science, University of Durham, UK, 1992.
N. Ellis, R. Garigliano, and R. Morgan, "A Language for defining transformations on graph grammars: definition and use." , Tech­nical Report ? /93, Artificial Intelligence Sys­tems Research Group, School of Engineering and Computer Science, University of Durham, UK, 1993.

R. Garigliano, R. Morgan, and M. Smith, "The LOLITA System as a Contents Scanning Tool" , in Proceedings of the 1 :f-h International Con­ference on Natural Language Processing, Avi­gnon, France, May 1993.
D . Hindle, "Deterministic parsing of syntactic non-fluencies ." , in Association for Computer Linguistics, pages 123 - 128, June 1983.
S . Johnson, "yacc: Yet another compiler­compiler" , Technical report, Bell Laboratories, Murray Hill, New Jersey, USA, July 1978.
D . Knuth, "On the translation of language from left to right" , Information and Control, 8(1) :607-639, 1965 .
M. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT Press, 1980.
R. Milne, "Resolving lexical ambiguity in a deterministic parser" , Computational Linguis­tics, 12(1) : 1-12, 1986.
F. Pereira, "A new characterization of attach­ment preferences" , in D. Dowty, L. Kartunnen, and A. Zwicky, editors, Natural language pars­ing: psychological, computational and theoret­ical perspectives, pages 307-319, Cambridge University Press, 1985.
S . Shieber, "Sentence disambiguation by a shift-reduce parsing technique" , in Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics, pages 1 13-1 18, Cambridge, Mass. , June 1983.
E. Stabler, "Deterministic and Bottom-up Parsing in PROLOG" , American Association for Artificial Intelligence, 1983.

72 ELLIS - GARIGLIANO - MORGAN

A Principle-based Parser for Foreign Language 'Training in

German and Arabic*

Joe Garman* Jeffery Martin* Paola Merlo t Amy Weinberg*

* Dept. of Linguistics and Institute for Advanced Computer Studies
University of Maryland at College Park, u .S .A.

email: {garman l jeffmar l weinberg}<Oumiacs . umd . edu

t Dept. of Linguistics and Dept. of Psychology
University of Geneva, Switzerland
email: merlo<Odivsun . unige . eh

Abstract In this paper we discuss the design and implementation of a parser for German and Arabic, which is currently being used in a tutoring system for foreign language training. Computer-aided language tutoring is a good app�cation for testing the robustness and flexibility of a parsing system, since the input is usually ungrammatical in some way. Efficiency is also a concern, as tutoring applications typically run on personal computers; with the parser sharing memory with other components of the system. Our system is principle-based, which ensures a compact repre­sentation, and improves portability, needed in order to extend the initial design from Getman to Arabic and (eventually) Spanish. Currently, the parser diagnoses agreement errors, case errors, selection errors, and some word order errors. The parser can handle simple and complex declara­tives and questions, topicalisations, verb movement, relative clauses - broad enough coverage to be useful in the design of real exercises and dialogues.
1 Introduction

This paper describes the design and implementa­tion of a parser for German and Arabic, which is currently being · used in a tutoring system for foreign language training. Computer-aided lan­guage tutoring is a good application for testing the robustness and flexibility of a parsing system, since the input is usually ungrammatical in some way. The system is portable in that we extend the initial design for German to handle Arabic and (eventually) Spanish. Efficiency is also a concern, since tutoring applications typically run on per­sonal computers, with the parser sharing memory with other components of the system. Our sys­tem is principle-based, which ensures a compact

representation. Robustness is required because the system must be able to parse incorrect input. Since the user is not a native speaker · of the language, the system must handle spelling errors such as (la) as well as grammar errors, as in (lb).
{1) (a) Der FluP ftest au/ Westen The river flows to west

{b) Der FluP ftieften au/ des The river flow. pi to the Westen west.gen 'The river flows to the west'
*The names of the authors are in alphabetical order. This paper is the result of cooperative work in all its stages.

However, as far as legal requirements are concerned, Paola Merlo takes responsibility for sections 4 and 5.

73

74

(2) (a) at-tariiqu taqa9u road.sg.def locate.3.f.sg
(b) a T- Tariiqu . taqa9aayna road.sg.def locate.3.f. pl 'The road is there.'

The system niust be flexible because it must· be able to handle different levels of ill-formedness. For example, it must be .able to detect the differ- . ence between (la) and (lb): · In the former the verb ftieftt is incorrectly typed, while in the sec­ond sentence the verb is incorrectly inflected and th� wrong case is selected for the prepositional phrase , which should be auf Westen. The sen­tences in (2) illustrate a similar pair from Arabic. In (2a) the word for road should have an emphatic consonant (signified by a capital letter). In (2b), there is an· agreement error (the subject is third feminine singular , while the verbis third feminine plural) . . The former type of mistake must be cor.­rected for the parser to succeed. '.!'his correction is done by an interaction with the user. The latter type of error is bypassed by a special mechanism of defaults that enable the parser to analyse some kinds of incorrect ·input. , · Portability in a language processor means that th� design can be reused for different languages without fundamental changes. The dictionaries and some of the grammatical information will be different·, but it is desirable to desigri the Nat- . ural Language Processing (NLP) component in the most general way.1 Arabic and German are good bounding cases to test the portability of . the design. The languages are similar . in having rich inflectional_ morphology and in having vari­ous forms of grammatical agreement. They are · different enough to �onstitute a · fair test of the · portability of the system. For instance, they .have different word orders: German is basically verb­final, with movement of the verb in second posi­tion in main clauses, while Arabic has SVO word · order, with VSO occurring frequently in surface order. · Grammatical subjects are usually dropped . in Arabic and expressed by agreement with the verb, while in German null-subject sentences are not grammatical. Small clauses are .extremely common in Arabic,. and usually copular verbs are not expressed, while German sentences present a clear distinction . between predicate� (verbs) and

· GARMAN·- _ MARTIN - MERLO - WEINBERG

arguments (nouns) . . Thus, for a parser to be ap­plicable to both languages, it must make use of very abstract properties of the grammar. Finally, the system must be effi,cient. Ideally, ·it.must be able to parse a sentence, detect the er­rors arid produce an output in the same amount of tinie it would take a human tutor to perform the same task, otherwise the time lag would decrease the student's attention and motjvation. Compu­tational efficiency must not be bought_ at the ex­pense of space .compactness thougij, because the • system must fit on a PG with many other pro"'. grams running at the same time. . The principle-based approach to parsing al­lowed us to meet all of these requirements. Pre­vious formalisms, for example, the ·EST -version of generative grammar (Chomsky 1965, 1973 , 197'7 among othe·rs) assumed that every construction of a language was syntactically represented by a grammatical rule. Thus big, monolithic gram­mars needed to be stored and consulted for any parser with reasonably wide linguistic coverage. Recent developments in grammaticaLtheories, in many different frameworks, . �ave succeeded · in · identifying the unifying principles of many, ap­. parently unrelated, ·linguistic phenomena. The Government-Binding · (GB) frame-· work (Chomsky 1981) provides construction­independe�t principles that are grouped into . interacting modules. �he modules are pararri­eterised, so that by modifyin·g them to a srhp,ll degree, one can generate the patterns associated with a variety of langu·ages. The modularity of the grammar makes it easy to relax certain con­straints and thereby obtain a parse for various _types of ungrammatical input: Because language­dependent information is separate from language­independent information, the same parsing design is valid across languages. F inal_ly, the factoriza­tion into modules makes .the grammar · compact , and consequently storage needs are minimised . Our implementation 'provides experimental answers to the issues of parsing ill-formed in­put, generalisation across languages, and corn;; · pactness of representation. It addresses the prob­lems of qiodularisation, how much compilation across principles is necessary, and how various principles can be efficiently interleaved'.- The fol­lowing sections discuss the actual implementa-. tion, illustrate the design criteria, and finally .
1 In the best case the design is explicitly parameterised so that it specifies a family of parsers.

A P RINCIPLE-BASED PARSER FOR FOREIGN LANGUAGE TRAINING 75
evaluate the performance of the parser. The part
of this research which addresses issues related to
foreign language training and tutoring systems is
mentioned only in discussing the constraints on
parsing design imposed by the application. Sec­
tion 2 provides an overview of the NLP system,
while sections 3, 4, and 5 illustrate the routines
for the recovery of phrase structure, feature an­
notation, and error detection, respectively. Eval­
uation and illustration of coverage are presented
in section 6, followed by concluding remarks in
section 7.

2 Overview

The Input/Output The input to the parser
is an unannotated German or Arabic sentence.
Currently the Arabic is in phonetic transcrip­
tion, but an interface allowing the use of Arabic
script is being developed. The output consists of
a parse tree which encodes the hierarchical and
linear relations between the elements of the sen­
tence (which is passed to a semantic analyser) ,
and a (possibly empty) list of errors in the sen­
tence, which is passed to the tutor. The follow­
ing examples show sentences with various errors
which illustrate the input/output of the parser
(omitting the parse trees) .

(3)
==> Das frauen gestern hat in des berges
geblieben .

Errors : (1) The article "das " does not
agree with "frauen" . (2) Word Order : The
verb "hat " should be in second position .
(3) There is a case selection error between
"geblieben" and "in des berges" . The verb
"geblieben" is a state verb and takes dative
case . (4) Wrong auxiliary : "hat " . The verb
"geblieben" takes sein . (5) The subj ect "das
frauen" does not agree with the verb "hat " in
person or number .

(4)
==> ayna aqa9u mintaqati d-dibdibbatu ?

Errors : (1) Spelling error : emphatic/non-em­
phatic substitution in "mintaqati" (2) Case
error between "minTaqati" and "d-dibdibbatu"
(3) Verb/Subj ect agreement error between
"aqa9u" and "minTaqati d-dibdibbatu"

These examples show a simple Prolog inter­
face; the tutor interface on the PC is written in an
authoring language which is not discussed here.
The parse trees are not displayed to the student .

The Components The main components of
the parser are a morphological analyser, a syn­
tactic parser, and an error handling facility. The
general overview of the system is shown in Figure
1 . The parser receives the input sentence and it
sends it to an interactive preprocessor which ex­
pands possible contractions, such as zum into zu dem, and checks if the input is correctly typed.2

Parsing and morphological analysis perform a
single pass on an input sentence. The parser calls
the morphological analyser to place words on the
parser's buffer stack. Each call to the morpho­
logical analyser returns a set containing all the
analyses of the next input word, as it may not be
possible to determine which among them is cor­
rect at the point where the morphological anal­
yser is called. If only one analysis is selected, it
may cause the parser to fail in a later state, and
require backtracking. The morphological analy­
sers for German and Arabic are somewhat differ­
ent owing to the differing morphological features
of the two languages.

When the morphemes are correctly identified,
the word is passed to the syntactic processor. Be­
fore entering this stage, each token is projected
to its categorial node; for instance, the verb form fiiejlt is projected to V. The shift-reduce parsing
algorithm operates on a small set of context-free
rules, which store only a very limited amount of
hierarchical information. Other kinds of informa­
tion to build the right parse tree and annotate it
correctly are stored in a set of constraints that
must be satisfied before a rule can apply. We
discuss the rules and constraints in the next two
sections.

2This is the _level at which misspellings are corrected. For more details on the preprocessor, routines on lexical search and morphological analyser, see Azadegan et al. {forthcoming).

76 . GARMAN - MARTIN -,- MERLO - WEINBERG

PARSER

Shift-reduce

Parser

Constraints Actions

X Rules

Node

Attachment

Parse Tree

Feature

Matching

l .. n mo,pholo,Y

MORPHOLOGICAL ANALYSER

Error
Analysis

t ••• of ••loUono

Root and

Affix

Lexicons

Search Trie
Phonological

Analysis

Morpheme

Unification

Morpheme

Projection

Figure 1: Main Blocks in the Natural Language System

3 The Recovery of Phrase
Structure

The parser builds structure by using an aug­mented shift-reduce method (Aho and Ullman 1972) modified to be more suitable for natural language parsing. Two main modifications are used. First, the X system of our grammar frame­work is minimal. Most of the work in parsing consists in constraint checking rather than ma­nipulating X rules. Thus, these rules constitute a context-free backbone anchor:ing a set of grammar constraints, similar to implementations based on unification grammars, such as PATR-II (Shieber 1986) . To separate constraints from phrase struc­ture, we use rules of the following form:
(5) X � Y Z {:} f (X, Y, Z)

The lefthand side is an X production, while the predicate f (X, Y, Z) on the righthand side represents a conjunction of -grammar constraints on the features of the nonterminals which must be satisfied to license the production: The form of these constraints and the way they are applied is discussed in the section on constraints .
Second, it is necessary to express movement rules, which relate overt categories to empty cat­egories (also called gaps) in a different position. Our design separates movement rules from X rules. For this purpose a move-x operation is introduced in the parse cycle. The use of gaps achieves a greater degree of generalisations in the treatment of superficially different constructions, for instance relative clauses and questions. In order to maintain a limited number of X rules, however, the computation of gaps is performed

A P RINCI P L E- BASED PARSER FOR FOREIGN LANGUAGE TRAINING 77

on-line, by specific routines, rather than precom­piled into the rules. These two features of the parser are presented in more detail below.
3 .1 The X Rules
X theory is intended to capture universal proper­ties of phrase structure by means of a very small set of rules, which define the phrasal projections and their parts, distinguishing heads from non heads, the latter including complements, speci­fiers, modifiers, and adjuncts. The X rules re­fer only to the bar level of the phrase; they do not refer to other grammatical features (Chom­sky 1970, Jackendoff 1977, among others) . X rules are maximally binary in our system (Kayne 1984) . Although they refer to phrases of a specific level, they do not refer to the specific category or features of the phrases. The complete X system employed by the German parser is given by the set of Prolog clauses in (6) . The rules for Ara­bic are given in (7) . It is evident from (6) and (7) that very similar sets of rules can handle both languages.
(6) GERMAN :

x (2 , C)==> [x (2 , C1) , x (1 , C) ,prespecifier] .
x (1 , C) ==> [x (O , C) , x (2 , C1) ,postcomplement] .
x (1 , C) ==> [x (2 , C1) , x (O , C) ,precomplement] .
x (1 , C) ==> [x(2 , C1) , x (1 , C) ,premodifier] .
x (1 , C) ==> [x (1 , C) , x (2 , C1) ,postmodifier] .
x (2 , C) ==> [x (2 , C1) , x (2 , C) ,preadjunct] .
x (2 , C) ==> [x(2 , C) , x (2 , C1) ,postadjunct] .
x (1 , C)==> [x (O , C) ,unary1] .
x (2 , C) ==> [x (1 , C) ,unary2] .

(7) ARABIC :

x (2 , C) ==> [x (2 , C1) , x (1 , C) , specifier] .
x (1 , C) ==> [x (O , C) , x (2 , C1) , complement] .
x (1 , C) ==> [x (1 , C1) , x (1 , C) ,premodifier] .
x (1 , C) ==> [x , (1 , C) , x (1 , C1) ,postmodifier] .
x (2 , C)==> [x(2 , C1) , x (2 ,C) ,preadjunct] .
x (2 , C) ==> [x (2 , C) , x (2 , C1) ,postadjunct] .
x (1 , C) ==>{x (O , C) ,unary1] .
x (2 , C) ==> [x (1 , C) , unary2] .

A term x (Level , Category) represents a phrasal projection, where Level is the X level taking the values {0, 1 ,2} , and Category takes as its value an atomic category symbol from the set {N,V,A,P,Adv,Det ,Infl,Comp,Conj} . For exam­ple, x (N , 2) is an NP, and x (V , 1) is the first pro-

jection of V. In X theory, the non terminal do­main is restricted to projections of the atomic category symbols. This restriction holds in (6) and in (7) since the category of a projection is not instantiated in any of the clauses; all catego­rial information in the system comes from lexical entries themselves. Each righthand side contains a head, which shares the category variable with the lefthand side; a label, which is used to index constraints and tree-building predicates; and pos­sibly a satellite, which is a specifier, complement, adjunct , or modifier.
This design allows no compilation of bar level and category type, at this stage. Berwick (1991) suggests that this organisation slows down the parser, as found experimentally by Dorr (1987) . However, we differ from Dorr in two main re­spects: the rule set we use is much smaller, and the flow of control is serial. Assuming that the average number of conflicts in a compiled gram­mar is a good indicator of the amount of non­determinism that a shift-reduce parser has to face, Merlo (1992) reports comparisons of LR ta­bles derived from grammars which differ only in the instantiation of the X rules. Rules like those in (6) and (7) are compared to rules of identical format, where the head of the rule is instanti­ated, for instance, in our notation, x (2 , N) ==> [x (2 , C1) , x (1 , N)] . Merlo finds that instantia­tion of heads expands the grammar, of course, but does not reduce the number of conflicts.3 This leads us to think that non-determinism is not affected by adding category information to the rules, unless filtering constraints, such as co-coccurrence restrictions, are also added. Co­occurrence restrictions, however, and their linear order, are language-specific. Therefore, we have chosen to check category information on-line, at the same time as categorial co-occurrence.
From the point of view of grammar engineer­ing, this choice has the advantage of keeping the basic types of information distinct: topological (configurations) , lexical, and long distance rela­tions� thus reflecting the information structure of the t11eory more directly. 3In fact the number of conflicts per state increases from an average of 4.2 for X grammars, to 10.3 for instantiated grammars.

78

3.2 The Shift-Reduce Algorithm
The parser uses three primary data structures: a
main stack, a buffer stack, and a hold store which
contains copies of moved phrases. In addition, it
takes a token stream (the input) and outputs an
annotated tree. The recursive parse procedure
thus has five arguments:

(8) parse(Stack, Buffer, Hold, Tree, Stream)

A parse configuration consists of a 4-tuple (Stack, Bu J fer, Hold, Stream). Since the tree is
used only for output, it is not included in the
configuration. Various operations including re­
ductions, movement rules, shift, and accept, are
used to go from one configu·ration to the next.
It is common in shift-reduce parsing to enter a
configuration from which several operations are
possible. Our algorithm chooses one operation
among those available by giving priority to some
operations over others. To choose which opera­
tion to apply in a given configuration, the algo­
rithm uses Prolog's control strategy (depth-first
search) to select the first operation that matches
the configuration. Each operation is implemented
by a Prolog clause, and the clauses are ordered as
in (9) .

(9) 1 . morphological analysis
2 . accept
3. attention shift
4. move-x
5. reduce X = Y Z (binary reductions)
6. reduce X = Y (unary reductions)
7. pop
8. shift
9. fail

Nondeterminism caused by lexical and struc­
tural ambiguity is handled in the current system

. by backtracking. Despite the worst case time
complexity, we have found that this approach
gives gqod performance in practice. We are cur­
rently experimenting with the use of a graph­
structured stack (Tomita 1985), which allows all
parser operations to be computed in parallel.

The parser accepts sentence fragments (NP's,
VP's, PP's, and so forth) as well as full
sentences. 4 The movement clause determines
whether a movement rule should apply in a con­
figuration. This operation is discussed in more

GARMAN - MARTIN --· ·- MERLO -- WEINB ERG

detail in the next subsection. Binary reductions
are performed by the clause in (10) . In this
clause, the parser attempts to match the top two
elements on the stack with the righthand side of
a binary rule of the form:

(10) x (L , C) ==> [x (L1 , C1) , x (L2 , C2) , Rule]

The name of a rule, here indicated by the pa­
rameter Rule, is used to index the constraints
which must apply to the feature sets of the el­
ements on the stack if the rule is to succeed. If a
rule matches but the constraints for that rule fail,
then ali attempt is made to match other rules.
If the constraint succeeds, tree-building actions
are performed and the parse continues with the
reduced phrase on top of the stack. An uncon­
ditional shift simply moves the top element from
the buffer onto the main stack.

3 .3 The Move-x Component

Two basic types of movement rules are imple­
mented. The first involves movement of a max­
imal projection. The most common instance of
this type is movement of a question phrase to
the sentence-initial position, as in the German
example (l la) , and in the Arabic example (l lb) ,
where the question word (ayna) is also moved to
the front of the sentence. This type of movement
can also generate topicalisations, clefts, and some
relative clauses in both Arabic and German.

(1 1)
(a) In welcher Richtung fiieftt die

In what direction flows the Donau?
Danube
'In which direction does the Danube flow? '

(b) Ayna taqa9u maHaTTatu sh-shurTati
where located station police nisbatan li T- Tariqi
relation to road.clef
'Where is the police station in relation to
the road?'

4This is needed for exercises where the appropriate response is a sentence fragment.

A P RINC I PLE- BASED PA RSER FOR FOREIGN LANG UAGE TRAIN ING 79

The second type of movement involves move­ment of a level 0 phrase (a head) , which occurs in the yes/no question in (12) , where the verb darf (must/may) has moved.
(12) Darf ich hier bleiben? may I here stay 'May I stay here? '

Following Thiersch (1978) , the underlying po­sition of the verb in German is the sentence-final position. This is the position occupied by the verb in a subordinate clause, as in (13) .
(13) Ich weiss nicht ob ich hier bleiben I know not if I here stay darf. might 'I don't know if I may stay here. '

To form a yes-no question, the verb is first moved to second position, and from there to the clause-initial position. This type of movement is also used frequently in Arabic, where along with the standard Subject Verb Object word order, the Verb Subject Object order is obtained by moving the verb to the front of the sentence. An example is given in (14) .
(14) Taqa9u maHaTTaatu shurTati located station police d-dibdibbati 9alaa Tariiqin def.Dibdibba on road 'The Al-Dibdibba police station is located on a road . '

The parser uses the two steps in (15) to relate the surface position of a phrase to its underlying position.
(15) • Stack-to-Hold Rules: put a trace of the antecedent onto the hold store • Hold-to-Stack Rules: move a trace from the hold store onto the stack.

Each type of movement rule uses a data struc­ture called the Hold Store (Wanner and Marat­sos 1978) , which is used for temporary storage of the moved element. The Hold Store contains two cells, one for level 2 phrases (X2HOLD) and one for level 0 phrases (X0HOLD) . The use of a Hold store has been criticised from a psycholinguistic

and linguistic point of view (Berwick and Wein­berg 1984, among others) . However, recent work on the connectivity of natural languages (Sta­bler 1993) suggests that allocating a (small) finite number of memory registers to each type of lin­guistic entity that undergoes long-distance rela­tions captures a wide-spread generalisation, both in syntax (questions, causatives) and morphology (applicatives, datives) . For the Stack-to-Hold operation, we must identify when a phrase is not in its underlying po­sition; i .e . we must locate the antecedent . Since the type of positions to which a phrase may move is limited and predictable, the parser consults a table of move-x configurations to determine that a phrase is not in its underlying position. For instance, the rule applies in a configu­ration where the stack contains the single wh­phrase in welcher Richtung ('in what direction') and where the buffer contains the verb ftieflt ('flows') . In such a configuration, a trace of in welcher Richtung is placed on the X2 hold store. The trace is identical to the antecedent in all fea­tures except the spelling, since the trace does not appear in the surface form. For the Hold-to-Stack operation, we must find the underlying position of the trace on the hold stack. Again the parser consults a table of con­figurations which determines whether the trace should be moved from the buffer to the stack. For instance, this rule would apply in a configu­ration where the verb ftieflt is on top of the stack, and the trace of the phrase in welcher Richtung is in the X2 hold store. There is a condition on the rule which requires that the moved phrase be a possible complement of the verb. In this in­stance, the condition on the rule is satisfied, since in welcher Richtung is a possible complement of the verb ftieflen. In this configuration, the trace is moved from the hold store to the second posi­tion on the stack. It is moved to second position because corn plements in German occur on the left of the verb. We should underline once again that we have adopted a direct implementation of the princi­ples of the grammar. Other approaches (Dorr 1993, Fong 1991) precompile the possible posi­tions where an empty category can occur. Using slash rules (Gazdar et al . 1985) , in the X schema would amount to the same compilation. Clearly, our approach can lead to frequent postulation of

80

empty categories in many positions that are not licensed by the grammar. 5 Thus, this method of recovering phrase structure information must be coupled with filtering constraints that weed out incorrect derivations as soon as possible. We il­lustrate the solution adopted for this problem of interleaving the principles in the next section.
4 Constraints
As a result of using an X backbone to parse, most of the feature percolation and feature annotation that could be encoded in the nonterminals is per­formed in this system by constraints on attribute annotation associated with each X rule. The set of constraints is partitioned into (non disjoint) subsets that are indexed to each rule, and must be satisfied for the rule to apply. For instance, the following rule is indexed into the set of con­straints by the index postcomplement .
(16) x (1 , C) ==> [x (O , C) , x (2 , C1) ,postcomplement] .

The index postcomplement selects a subset of the pool of constraints that can apply to X rules, some of which are shown in Figure 2, in Prolog­like pseudo code.
constraint(+lndex,+Head,+Satellite,-MotherNode)
% right compl of preposition constraint(postcomplement, Head, Satellite, MotherNode) -

Head has-category prep, Head = MotherNode.
% right complement of adj , n, adv. constraint(postcomplement, Head, Satellite, MotherNode) -

Head is lexical, thetamark(Head, Satellite, Mother Node) .
Figure 2: The constraints indexed to the postcomplement rule

GARMAN - MARTIN - MERLO - WEINBERG

Constraints can be divided logically into two groups depending on their function in the parser. Some constraints can affect the way the parser at­taches nodes to the already built structure, i .e . they can affect the shape of the tree. Other con­straints do not : they simply annotate the nodes of a tree already built. Categorial restrictions on the cooccurence of phrases can affect the shape of the phrase marker. On the other hand, mor­phological feature annotation and feature perco­lation from the head of the phrase to its maximal projection do not really affect structure-building . decisions during the parse. We take advantage of this fact by disas�ociating feature checking that affects structure-building operations from feature percolation.
On one hand, the separation of rules from con­straints has two main advantages. Firstly, it en­genders a succinct grammar, because it reduces the number of X rules. We obtain the multiplica­tive effect of several interacting principles, while only using memory resources which correspond to the sum of the sizes of the principles. Moreover , this design achieves language-independence, since it uses highly abstract rules. The same system of constraints, appropriately modified, is used in the Arabic parser as well. For instance, Arabic also has a rich agreement system and the parser uses the same agreement checking mechanism.
On the other hand, since category-neutral rules are used, the parser can generate many structural hypotheses which need to be filtered out . This ap­proach raises the so-called interleaving problem, for both Arabic and German: how are the con­straints and the phrase structure rules going to be coupled? There are three possible options:
1. All possible phrase structure rules are used, constraints are applied to a forest of trees. This approach is adequate, but it is · very space intensive, a forest of hundreds of trees can be built for even small grammars, and it is not very explanatory, in that the entire search space is visited. 5Interestingly, an approach where empty categories are postulated as soon as possible, with a partially top-down procedure, has also been used by Crocker (1993). With this design, German and English can be parsed by the same algorithm.

A P RINCIPLE-BASED PARSER FOR FOREIGN LANGUAGE TRAINING 81

2. All constraints apply at every reduction.
This approach is also adequate, but it is not
explanatory or efficient , because it applies
many constraints in configurations where
they are vacuously true.

3. Only a subset of the constraints applies to
every rule.

In this system we have adopted the third ap­
proach. We have implemented a linking mech­
anism based on the syntactic configuration. In
our system, configurations are partitioned into
four main types (following Kornai and Pullum
1990) : complement, specifier, adjunct and modi­
fier. Each configuration can appear in two linear
orders. A subset of the constraints is indexed to
each rule, and must be satisfied for the rule to
apply.

While this approach has the problem of not
being sufficiently general, since careful tailoring of
the interleaving of structure, category and other
principles was needed, it is of interest because we
found that it eliminates non-determinism more
than other approaches. For example, our algo­
rithm to insert empty categories, which relies on
structural licensing and theta assignment, is able
to eliminate incorrect empty categories as soon as

RULE CONSTRAINT prespecifier categorial selection agreement 0-marking feature percolation postcomplement categorial selection lexical/functional selection conjunction of likes 0-marking feature percolation precomplement categorial selection 0-marking feature percolation premodifier categorial selection feature percolation postmodifier categorial selection feature percolation preadjunct categorial selection feature percolation postadjunct categorial selection feature percolation
Table 1 : Interleaving of Rules

and Constraints

they are postulated, thus it never incurs the ex­
plosion, found for example, in principle-based
parsers which use functional determination of
empty categories (Fong 1991) . Also, this ap­
proach does not reach the level of specificity that
would confine its applicability to only one lan­
guage. Although we are not able to propose an
algorithm to compile automatically the interleav­
ing of principles and rules, we propose a schema
that works for such different languages as German
and Arabic.

To illustrate, the complete set of X rules and
the main constraints indexed into each rule are
shown in Table 1 . Table 2 shows what features
are manipulated by each constraint. Finally, the
entire pool of constraints is shown in Table 3.

CONSTRAINT FEATURES agree number of head and sister person of head and sister nominative case for sister categorial category of head selection and sister lexical/ category of node functional 0-marking obligatory case and 0-role or optional case and 0-role 0-grid: 0-roles and case conjunction category of conjunct of likes feature number of head and sister percolation gender of head and sister person of head and sister wh-feature
Table 2: Constraints and their

Range of Features

5 Error Handling

Since the parser described so far is to be used
for tutoring, one very important module of the
system is the error handler which detects and di­
agnoses mistakes. Error tolerance is important
to avoid aggravating situations in which the stu­
dent interacts with a system which is not suffi­
ciently flexible, since the typical user of this sys­
tem is likely to produce ill-formed input of sev­
eral kinds: misspellings, agreement errors, (such
as wrong declension for nouns and adjectives or
wrong conjugation for verbs) , syntactic mistakes,
(such as putting words in the wrong order, in Ger-

82

CONSTRAINT FUNCTION
agree • checks case as-

signment and person
and number agree-
ment between verb
and subject • percolates inter-
section of features to
mother node

categorial • checks that category
selection of head and sister are

compatible • percolates category
of head

lexical • checks member-
ship of node to lexical
categories

functional • checks membership
of node to functional
categories

0-marking • checks availability of
0-role for sister • assigns a 0-role • modifies the 0-grid of
the head

conjunction of checks categories of
likes conjuncts
percolate • checks

number, gender, and
person features • percolates features to
mother node

Table 3: The Constraints
man, e.g. failing to put the verb at the end of an embedded clause) and also incorrect choice of words semantically, using for instance a move­ment verb like legen instead of the static verb liegen to mean being located. The parser must also detect and identify the .error, while being able to proceed with the analysis. Because error detec­tion is used to build a model of the student and to determine the sequence of learning activities, the diagnostic messages must be accurate, rather than generic. Accuracy is furthermore crucial in choosing the correct default substitute value for a piece of information, which is missing because the input is incorrect. Finally, the system must be flexible, namely detect and diagnose errors at different levels of restrictiveness. To meet these criteria we have built an er­ror handling facility which is constituted of three logical components. One component performs er-

GARMAN - MARTIN - MERLO - WEINBERG

ror detection and produces default values for the mother node if feature matching fails. Upon re­duction of a rule, some constraints must be met . One of the tasks of these constraints is to com­pute the feature set to be assigned to the node that results from the reduction. For example, upon reducing the rule prespecifier shown in (17) a constraint on agreement must be satisfied.
(17) x(2 , C) ==> [x(2 , C1) , x (1 , C) ,prespecifier] .

The constraint states that when reducing a verb and a subject , they must agree in person and number and the subject is assigned nomina­tive case. If agreement succeeds then the re�ult of the unification is used to annotate the mother node, while the error list is empty. If it does not succeed, then the feature to annotate the mother node are determined by default (usually the fea­tures of the head are simply copied) , and the er­ror list will contain an error code used to diagnose what kinds of errors have occurred . A second component of the error handler pro­duces messages, based on the code passed by the parser, and retrieves the lexical items which caused the error, by traversing the subtrees in the tree stack. If the error list contains more than one error code then more than one message is gener­ated. The third component is a set of control switches, which determine how restrictive the parser is going to be in diagnosing errors and reporting them to the tutoring module. Upon detection of a mistake, the error handler checks whether the switch for that particular kind of er­ror is on; if it is, an error message is produced, otherwise the parse proceeds silently. The use of constraints which are separate from phrase structure rules is crucial in supporting er­ror tolerance. As discussed above, some of the constraints for feature assignment are not needed to determine the shape of the tree. Thus even if such features are missing, the parse tree can be constructed for semantic analysis. At present the error handler in the German parser can detect the following types of errors:
(18) • Subject verb agreement • Noun-adjective agreement • Case errors

• Complement selection errors

A PRINCIPLE-BASED PARSER FOR FOREIGN LANGUAGE TRAINING 83
• Preposition selection errors
• Errors in selection of auxiliary by verbs
• Word order errors
• Spelling errors

The Arabic error handler uses the same mech­anisms to handle a variety of errors, mainly in in­volving agreement in nominal phrases, which can be classified as follows:
(19) • Plural formation errors

• Agreement within noun construct errors
• Adjective-noun agreement errors
• Subject-verb agreements errors

6 Evaluation

In this section we assess how the initial design goals of robustness, flexibility, portability, and ef­ficiency have been met . There are two sides to the definition of how robust the system is. First, how wide the linguis­tic coverage of the natural language processing system is, and second, how tolerant the system is to incorrect input . We have already discussed the error handling ability in some detail. As far as coverage is concerned, the Ger­man parser handles declarative, imperative, and subordinate clauses, wh-questions and yes-no questions, topicalizations , inversions, conjunc­tions, constructions with multiple verbs and with modals. The Arabic parser handles simple · declara­tive sentences with differing word orders, imper­atives, subjectless sentences, wh-questions and yes/no questions, simple relative clauses, noun construct constructions, clitic constructions, sim­ple embeddings, and sentences with unexpressed verbs, which are very common in Arabic, and must be distinguished from fragments. Table 4 shows the percentages of success and failure of the parser on a batch of 205 test sen­tences for German, which were designed by a team of educators for foreign language training (which did not include any of the authors.) Batch test suites are being constructed for the Arabic

parser. The German parser is already support­ing prototype lessons. Both the Arabic and the German error sets, which are incorporated in the test sentences, were influenced by an analysis of the needs and by real errors made by foreign lan­guage students at the intermediate level. In both parsers there is a good fit between the errors diag­nosed, the constructions handled, and the needs imposed by the tutoring application. In the Ap­pendix we exemplify some constructions that the parser can handle.
Flexibility is a different way of looking at the features that support robustness. Our parsing system is flexible in the sense that it is modu­lar and that some modules (the feature annota­tion constraints) may or may not be incorporated in the parser. For example, we can support two versions of this NLP system: a restrictive and a permissive version. In the latter, feature agree­ments may be ignored, thus partly ill-formed sen­tences can still be produced by the student with­out penalty, while in the former version all the errors are detected.
Thirdly, the portability of the design is very satisfactory. Because we make use of a modu­lar design and a theory of grammar that encodes universal principles, we believe that many parts of this implementation could be used for other languages. Of course, the stored words would be different , but the same design and indeed entire pieces of software could be simply incorporated in the parser for a new language. Merlo (1992) has kept several features of this design in an LR parser for English. The adaptation of the entire system to two very different language, German and Arabic, is done. Work is underway to adapt the system to Spanish.
The system is very compact: the German lex­icon contains 5000 roots and the Arabic lexicon contains 500 roots. Since both languages have very productive morphological system, this cor­responds to sufficiently large vocabularies. The German parser amounts to 1632 lines of Prolog code, while the Arabic parser to 1736 lines. The system fits on a PC platform with all the soft­ware necessary to run the lesson, i .e. the tutor­ing system and the software for the multi-media interface, which includes some very large audio files. The system is able to provide feed-back to

84 GARMAN - MARTIN - MERLO - WEINBERG

the student at the same speed of a human tutor. 6 We have discussed the issues related to in-correct incorrect total input 141 .0 64.0 205 parsed 135.0 61 .0 196
% 96.4 95.3 95.6

Table 4: Percentage of Successful
Parses on Batch Sentences

7 Conclusions
This paper has presented the design and imple­
mentation of a parser for German and Arabic,
currently used in a tutoring system for computer­
aided foreign language training. This is a good
application to test the robustness and :flexibility
of a parsing sytem, since the input is often ill­
formed. Moreover, reusability for different lan­
guages imposes a portable design. We have illus­
trated how to adopt a principle-based approach,
where linguistic theory is used as directly as pos­
sible.

teraction of principles, recovery of phrase struc­
ture using X theory, and recovery of long dis­
tance dependencies, showing that a principle­
based approach provides an interesting experi­
mental answer. We have illustrated the differ­
ent design choices by several linguistic examples,
which cover an interesting range of constructions
in German and Arabic.

Acknowledgements
This work was supported by research grant No.
920427-7519 "New Cognitive Technologies to Im­
prove Foreign Language Training" froni the Army
Rese�rch Institute to the University of Maryland
and MicroAnalysis and Design, and also by grant
No. 15-890071-62 "Applications of AI to Foreign
Language Training" to the University of Mary­
land and SAIC . Thanks also to the Academic So­
ciety of the University of Geneva.

6Preliminary measures on the two parsers for an uncompiled (interpreted) version on a SUN workstation have given an average speed of 14 words/second for German and 27 words/second for Arabic.

A P RINCIPLE-BASED PARSER FOR FOREIGN LANGUAGE TRAINING 85

References

Aho, A.V. - J.D. Ullman (1972) The Theory of Parsing, Translation and Compiling. Engle­
wood Cliffs, NJ: Prentice-Hall.

Azadegan, S. - J. Martin - P. Merlo -
A. Weinberg (forthcoming) A Government­Binding Parser for Foreign Language Train­ing. UMIACS-TR, College Park, MD: UMCP.

Berwick, R. (1991) "Principle-Based Parsing" .
In : Sells P. & S.M. Shieber & T. Wasow
(Eds .) : Foundational Issues in Natural Lan­guage Processing . 115-226. Cambridge, MA:
MIT Press .

Berwick, R. - A. Weinberg (1984) The Gram­matical Basis of Linguistic Performance .
Cambridge, MA: MIT Press.

Chomsky, N. (1965) Aspects of the Theory of Syntax . Cambridge, MA: MIT Press.

Chomsky, N. (1970) "Remarks on Nominal­
ization" . In: Jacobs R. & P. Rosenbaum
(Eds .) : Readings in Transformational Gram­mar. 184-221 . Waltham, MA: Ginn & Co.

Chomsky, N. (1973) "Conditions on Transforma­
tions" . In: Anderson S. & P. Kiparsky (Eds.) : A Festschrift for Morris Halle . 232-286. New
York, NY: Holt, Reinhart and Winston.

Chomsky, N. (1977) "On Wh-movement" . In:
Culicover P. & T. Wasow & A. Akmajian
(Eds .) : Formal Syntax . 71-132. New York,
NY: Academic Press.

Chomsky, N. (1981) Lectures on Government and Binding. Dordrecht: Foris.

Crocker, M.W. (1993) "Properties of the
Principle-Based Sentence Processor" . In: Proceedings of the 15th Annual Cognitive Sci­ence Society . Boulder, CO.

Dorr, B.J. (1987) UNITRAN: a Principle-based Approach to Machine Translation: Ms Thesis,
MIT. Cambridge, MA.

Dorr, B.J. (1993) Machine Translation: A View from the Lexicon . Cambridge, MA: MIT
Press.

Fong, S. (1991) Computational Properties of Principle-based Grammatical Theories . Ph.D.
Dissertation, MIT. Cambridge, MA.

Gazdar G. - E.Klein - G.Pullum - I.Sag
(1985) Generalized Phrase Structure Gram­mar. Oxford: Blackwell.

Jackendoff, R. (1977) X Syntax: A Study of Phrase Structure . Cambridge, MA: MIT
Press.

Kayne, R. (1984) Connectedness and Binary Branching . Dordrecht: Foris.

Kornai, A. - G. Pullum (1990) "The X-bar The­
ory of Phrase Structure" . In: Language 66, 24
- 50.

Merlo, P. (1992) On Modularity and Compilation in a Government and Binding Parser. Ph.D.
. Dissertation, University of Maryland at Col­
lege Park. College Park, MD.

Shieber, S. (1986) An Introduction to Unification-Based Approaches to Grammar.
Chicago, IL: University of Chicago Press.

Thiersch, C. (1978) Topics in German Syntax,
Ph.D . Dissertation, MIT. Cambridge, MA.

Tomita, M. (1985) Efficient Parsing for Natural Language. Ringham, MA: Kluwer.

Wanner, E. - M. Maratsos (1978) "An ATN
Approach to Comprehension" In: Halle M. &
J. Bresnan & G.A. Miller (Eds .) : Linguistic Theory and Psychological Reality . 119-161 .
Cambridge, MA: MIT Press.

86

Appendix

Simple Locative
(1) 1hr liegt im Sueden you.pi lie in the.dat South 'You are in the South'
(2) Der Berg liegt Suedlich der the mountain lies south the.gen Stadt Lauterbach in H essen city Lauterbach in Hessen 'The mountain is south of the city of Lauterbach in Essen'
(3) Yuujadu maa un fii l-mityaahati there be a water in the Mityaha 'There is water in Al-Mityaha'
Simple Predicative
(4)

(5)

1hr frau ist klug your. pl wife is smart 'Your wife is smart'
Al-Mityaahatu laysat Al-Mityaahatu not be 9alaa Tariiqin on the road 'Al-Mityaha is not on a road '

Simple Transitive
(6) /eh habe die Antwort gefunden

(7)
I have the answer found 'I have found the answer'
Man hat einen guten Rundblick in one has a good view in das Tal hinunter the valley below 'One can have a good view of the valley below'

Simple Intransitive
(8) Links neben dem Bach befindet left near the.dat stream finds sich die Eisenbahnlinie itself the railway-track 'To the left of the stream finds itself (lies) the railway-track'

GARMAN - MARTIN - MERLO - WEINBERG

Conjunctive Phrases (9) Ich blicke nach links, nach I look toward left toward Norden und nach Osten north and toward east 'I look to the left, to the North and to the East'
(10) Sahraawiyyatin wa . Hajariyyatun desertlike and stony 'desertlike and stony '
Simple Questions
(1 1) Wo stehen wir? where stand we 'Where are we standing? '
(12) In welche Richtung waechst die in which ·direction grows the modeme Stadt Lauterbach? modern city Lauterbach 'In which direction is the modern city of Lauterbach?'
(13) Maa huwa 9adaddu T- Turuqi What he number the roads l-mawjuudaati fii d-dibbati the found in Al Dibdibba 'How many road are found in Al-Dibdibba? '
Imperatives
(14) Beschreiben Sie die describe.pi you.formal the Umgebung der Stadt sorroundings the.gen city 'Describe the sorroundings of the city '
(15) Sifa l-buyuuta fii d-dibdibbati Describe the houses in the AlDibdibba 'Describe the houses in Al-Dibdibba'
(16) da9naa nufakkiru bi mandharin we will consider conj land Tabii9iyyin namuuthajiyyin fii gharbi nature typical in west l-bilaadi the country 'Let's consider a typical landscape in the West of the country '

A PRINCIPLE-BASED PARSER FOR FOREIGN LANGUAGE TRAINING 87

Modals

(17) Was what von of
kann man auf dieser Skizze can one on these sketches Lauterbach erkennen? Lauterbach recognize

'What can one recognise in these sketches of Lauterbach? '

(18) Man kann ein Burg erkennen one can a fort recognise
'One can recognise a fort'

Inversion

(19) Oestlich von east of Angersbach Angersbach
Lauterbach liegt Lauterbach lies

'East of Lauterbach lies Angersbach'
Embedded Constructions

(20) Ich denke, daft Peter und Hans I think that Peter and Hans nach Deutschland gegangen sind towards Germany gone are 'I think that Peter and Hans have gone to Germany '

88 GARMAN - MARTIN - MERLO - WEINBERG

1

An Algorithm for the Construction of Dependency Trees

Gerrit F. van der Hoeven

University of Twente, Department of Computer Science, Section SETI
P.O. Box 217, 7500 AE Enschede, The Netherlands

email: vdhoeven©cs . utwente . nl

Abstract

A casting system is a dictionary which contains information about words, and relations that can exist between words in sentences. A casting system allows the construction of dependency trees for sentences. They are trees which have words in roles at their nodes, and arcs which correspond to dependency relations. The trees are related to dependency trees in classical dependency syntax, but they are not the same. Formally, casting systems define a family of languages which is a proper sub�et of the contextfree languages. It is richer than the family of regular languages however. The interest in casting systems arose from an experiment in which it was investigated whether a dictionary of words and word-relations created by a group of experts on the basis of the analysis of a corpus of titles of scientific publications, would suffice to automatically produce reasonable but maybe superficial syntactical analyses of such titles. The results of the experiment were encouraging, but not clear enough to draw firm conclusions. A technical question which arose during the experiment, concerns the choice of a proper algorithm to construct the forest of dependency trees for a given sentence. It turns out that Earley's well-known algorithm for the parsing of contextfree languages can be adapted to construct dependency trees on the basis of a casting system. The adaptation is of cubic complexity. In fact one can show that contextfree grammars and dictionaries of words and word-relations like casting systems, both belong to a more general family of systems, which associate trees with sequences of tokens. Earley's algorithm cannot just be adapted to work for casting systems, but it can be generalized to work for the entire large family.
Associating

sentences

trees with title gets a tree structure.
The words of the title are the nodes of the

This paper is about formal systems which asso­
ciate trees with sequences of symbols. Most of the
contents of the paper deal with definitions, the
formal properties of the systems defined, common
generalizations of new and well-known systems,
and finally parsing problems. First however, we
will describe an experiment which gave rise to the
formalisms we introduce here. The experiment is
as follows.

tree, the arrows connecting mothers and daugh­
ters in the tree stand for: 'in some sense related' .
Such an analysis applied to the title of this paper
might yield a tree like the one in figure 1. There is
one restriction concerning word order the experts
must obey in drawing their trees. The restriction
is, that if they relate word b to word a, then no
word c which is at the other side of a than b is in
the textual order, can be related to b.

The second step is, to ask the experts to mo­
tivate their tree constructions. The motivation
must take a specific form. They are asked to
give a name to the lines connecting mother- and
daughter-words in their trees, in a consistent way
for all titles. In this way they are supposed to
make explicit which relations between words they

A group of experts is given a set of titles of
scientific publications in their field of expertise.
As a ·first step, they are asked to give a structural
analysis of the titles. More precisely: their task
is to draw lines between related words in each of
the titles of the corpus, in such a way that every

89

90

algorithm
� · an for

VAN DER HOEVEN

� construction
th0 of

� trees
/ dependency

Figure 1: A tree for the title
L : algorithm

S : an S : for
� L : construction

� S : the S : of
� L : trees
/ S : dependency

Figure 2: An attributed tree for the title
consider important. Moreover, they are asked to name the characteristics of the individual words in every tree. Thus it is made explicit what the properties of the individual words are that make them fit in a particular relationship to one an­other. The final step would be, to redraw the trees in such a way that the relation names assigned to lines connecting mothers and daughters, are now assigned to the daughters, together with the characteristics of the daughter words. From this second representation, the original one can be easily reconstructed, since there is al­ways only one line in the tree to which the rela­tion component in the dressing of a daughter can belong. This final tree translation does not affect

the structure of the trees nor does it contribute to the insight into their structure. It is relevant for technical purposes: now we have trees in which only the nodes have attributes, instead of both nodes and arcs.
A schematic representation of a final result tree (with just two simple attributes L and S, where a real tree would have more and more com­plex ones) is the tree in figure 2.
The outcome of such an experiment could be interesting for all sorts of reasons. Our interest is simply to use the trees, the word characteristics and the relations between words as indicated by the experts, to construct similar trees for titles of · publications that the experts did not consider .

AN ALGORITHM FOR THE CONSTRUCTION OF DEPENDENCY TREES 91

The basic idea for extrapolation of the results
of the experiment is to abstract from the trees
that are delivered, and to concentrate on word profiles that can be derived from the trees. A
word profile is roughly a triple consisting of an
attribute, and two sets of attributes. A profile for
a word can be derived from a set of trees by first
collecting all trees in which the word has the same
attribute. Next the set of attributes assigned to
daughters of that word in any of the trees are col­
lected. Finally this set of daughter attributres is
split in two, possibly overlapping, subsets. One
has the attributes assigned to daughters which
occur to the left of the given word, and the other
has the attributes assigned to words which occur
to the right . Note that a word can occur with dif­
ferent attributes, and that therefore a word can
have more than one profile. The formal notion
of a casting system introduced below, gives the
precise elaboration of this idea.

Before we turn to the formal definitions and
their properties, a few remarks are in order. The
first remark concerns the experiment described
above. It was never properly conducted. There
have been experts drawing trees for titles of scien­
tific publications, but they were the same group
as the ones who used the resulting trees for
the analysis of new titles . Although it was not
known beforehand to which new titles the anal­
ysis method would be applied, the experts mak­
ing the original analyses were clearly aware of the
ways in which their results would be used. Their
discussions therefore concentrated not so much
on the actual analyses they made, but more on
the generality of the relations between words and
the characteristics of individual words they intro­
duced. Moreover, the corpus of titles they consid­
ered was too small to draw any firm conclusions
from the outcome of the experiment anyway. But
the results were not discouraging.

The second remark concerns the kind of trees
we consider and the notion of word profile. In
shape, the trees are very much like dependency
trees. What we ask the experts to do, could
rightly be called dependency analysis. The syn­
tactical claims in our approach however, are far
from classical dependency syntax. In fact, we will
present a system that is capable of assigning trees
to well-formed utterances, but that will assign
trees just as easily to many ill-formed utterances.

The question what makes a sentence or phrase
correct, let alone the explanation of correctness at
any level of adequacy, does not interest us. What
we want, is to have a tree shaped representation
of an utterance which organizes the information
in that utterance in a way that is both manage­
able and acceptabie to a human reader or hearer
of the utterance.

As for the word profiles, if one thinks of the
attributes for words as semantic categories , and
omits the left-of/right-of distinction, a word pro­
file bears some resemblance to a case frame. In
fact , it seems that the analysis we consider here
could just as well be performed on the basis of
a dictionary of case frames, as on the basis of a
dictionary of word profiles that are derived from
a corpus of handmade analyses.

1 . 1 Casting systems and depen-
dency trees

A casting system is nothing but the formal de­
scription of a dictionary of word profiles, as intro­
duced informally above. There is a slight change
of terminology however. What we called 'words'
above, are 'actors' in the formal representation,
and what we called 'attributes ' , are now 'roles ' . A
casting system tells which actors can play which
roles, and what supporting roles the actors in
their roles expect to their left and to their right.

Strictly formal, a casting system is a seven
tuple of sets, symbols and relations. It fixes a
relation between sequences of 'actors' and depen­
dency trees. It is a dictionary of words, word
roles, and co-occurrence relations between words
and roles.

Definition 1 A casting system r is a seven tuple
with the following components:

• A, the actor set of r. A is a finite alphabet .
Its elements are actors.

• P, the set of roles of r. P is a finite set .

• L, the set of leading roles of r. L is a subset
of P.

• t, the invisible role of r. l is a distinguished
element of P.

• D : □, the can-be-played-by relation of r. It
relates roles and actors. If p is a role and

92 VAN DER HOEVEN

Actors Roles { an, algorithm, for, the, construction, dependency, . . . } {L, S, i} Leading roles {L}
l The invisible role Can-be-played-by L : algorithm, L : construction, . . .

Can-be-combined-left Can-be-combined-right Combine-with-t
S : an, S : for, S : the, S : dependency, . . . S\L : algorithm, S\L : construction, . . . L : algorithm / S, S : for / L, . . . S : an / i, S : dependency / i, . . . i\S : an, i\S : for

Figure 3 : A simple casting system
a is an actor then we write p : a to express that p can be played by a.

• D\D : □ , the can-be-combined-left relation of r. It relates roles with actors and roles . If p and q are roles, and a is an actor , then we write q\p : a to express that a in role p can play together with any actor in role q to its left.
• D : D/D, the can-be-combined-right relation of r. The counterpart of the previous rela­tion in the following sense: we write p : a/q to express that a in role p can play together with any actor in role q to its right.
It should be obvious that the can-be-played­by, can-be-combined-left and can-be-combined­right relations give us the ingredients of a word profile. The special status of the set of leading roles is , that it contains the roles that can appear at the root of a well-formed tree. The invisible role is important in the 'combine' relations. Pos­sibility of combination with the invisible role in­dicates that an actor can occur without support of other roles, i.e . without daughters in a depen­dency tree. An example of a small casting system, corre­sponding to the dependency tree shown earlier for the title of this paper, is in figure 3 .
A casting system is just the rules of the game. The rules can be derived from a given set of trees. But the game is the inverse: to associate trees with sequences of actors. That is what the fol­lowing definition is about.

Definition 2 Let r be a casting system with ac­tor set A, and let u be a string of actors . A casting tree or a dependency tree for u w.r .t .
r is a directed graph T. The nodes of T are pairs
(p, a), with p a role of r, and a an occurrence of an actor of r in u. The graph T has the following properties:

• it is a tree,
• the role of every node can be played by the actor of the node;
• if (q, /3) is a successor of (p, a) and the oc­currence /3 is to the left of the occurrence a, then q\p : a, where a· is the actor of which

a is an occurrence; if /3 is to the right of a, then p : a/q;

• if node (p, a) has no successors (q, /3) with /3 to the left of a, then i \p : a; if there are no successors (q, /3) with /3 to the right of
a, then p : a/i;

• with every node there is a segment v of u, which consists of the actors in the node and in its descendants. In particular , the root node corresponds to the entire sequence u.

A casting system has an associated formal lan­guage. The existence of a dependency tree w.r .t . the casting system determines whether or not a string of actors belongs to the formal language .
Definition 3 Let r be a casting system, with ac­tor set A. The language associated with r is the set of actor sequences in A* which have a depen­dency tree w.r.t. r. We call this language £r .

AN ALGORITHM FOR THE CONSTRUCTION OF DEPENDENCY TREES 93

�

Li_� ,(_ ;J" � Adopt:

Figure 4: Where t adopts s

The family of casting languages has some pe- 2
culiar properties. We mention the following facts
without proof.

Parsing: the construction
of a dependency tree for a
given sentence

Fact 1 If r is a casting system, £r is the asso­
ciated language, a and b are actors, and ab is a
string in £r , then abn or anb is in £r for every
n > 0. More general, in every string in £r with
two or more actors, there is at least one actor
which can be repeated arbitrarily often, and the
resulting string will again be in £r .

Fact 2 If r is a casting system, and £r is the
associated language, then £r is contextfree.

Fact 3 There are regular languages £, for which
no casting system r exists such that £ = £r .

Fact 4 There are casting systems r which have
an associated language £r which is not regular.

Fact 1 shows that casting systems are not the
proper systems to distinguish between ill- and
well-formed phrases of a natural language. Fact 3
is an immediate consequence of fact 1 . From facts
2 to 4 we see that casting languages do not have
a proper place in the Chomsky hierarchy, but are
'somewhere in between regular and contextfree' .

There are quite a number of open problems
concerning casting systems. E.g. is it decidable
whether two casting systems have the same asso­
ciated language or not?

We will not go into formal properties of casting
systems here, nor will we further pursue the ques­
tion of their suitability for the description or the
processing of natural language. The second half
of this paper deals with the parsing problem cast­
ing systems pose, and the solution to that prob­
lem which is found in a common generalization of
casting systems and contextfree grammars.

In this section we discuss the problem of con­
structing dependency trees for sentences on the
basis of a casting system r. But what we shall do
is not to present a parsing algorithm for casting
languages. Our approach is to consider the as­
sociation of analysis trees with sequences of sym­
bols in general terms, independent of whether the
associated trees are dependency trees or e.g. con­
textfree parse trees. First we will show that such
a general approach, of which dependency trees
and contextfree parse trees are both an instance,
indeed exists. Then we consider the parsing prob­
lem for the generalized notion of tree association.
We conclude that the generalized notion has such
characteristics that it allows an Earley-like pars­
ing strategy. It follows that dependency trees can
be constructed by an Earley-like algorithm. To
obtain the actual Earley algorithm for contextfree
languages from the generalized version, optimiza­
tions are needed which are typical for the con­
textfree case. We shall not go into these opti­
mizations.

The kernel of the generalized notion of tree
association, is the notion of FB-system. Strictly
formal, an FE-system is a seven tuple of sets and
relations. It fixes a set of colored trees, and a
relation between colored trees and sequences of
symbols.

A colored tree is a tree with a mapping from
its nodes into a set of colors. The set of colors is
just an arbitrary finite set .

In the sequel we shall work with three basic
tree forming operations. They are: Single, Adopt,
and Recolor, and they are defined as follows:

94 VAN DER HOEVEN

a A /4
:;,es� LL_�

F(a, b, c) : Li_�
LL� represents v

represents uv

Figure 5: Forward adoption

a A ·
/1't � ::.��

B(a, b, c) :
��

represen s u ��
represents uv

Figure 6: Backward adoption

A
Li_�
represents u

L(a, b) : j
�
represents u

Figure 7: Lift

Single takes a color, and yields a tree consist­
ing of just a single node, which has this color. Adopt takes two trees, which it turns into one
by making the root of the second tree a daughter
of the root of the first one (cf. Figure 4) . Recolor finally, takes a tree and a color and
'changes' the root of the given tree to have the
given color.

We shall use the phrase: the color of a tree to
mean the color of the root of the tree. We shall
denote this color of t by ,(t).

With these preliminaries we are now able to
give a precise definition of an FE-system, and to
give an interpretation to this formal definition.

Definition 4 An FE-system is a seven tuple IP
with the following components:

• C, the alphabet of colors of IP .

• CR, subset of C with the admissible root colors.
• S, the alphabet of symbols of IP. S and C

are disjoint.

• R, the representation relation of IP, a re­
lation on C x S. R(c, s) indicates that
the color c 'represents' the symbol s. A
color which represents a symbol is a termi­nal color.

• F, the forward relation of IP, a relation on
C x C x C. F(co , c1 , c) indicates that a
tree with color Co can adopt one with color
c1 , to form a new tree of which the root is
(re)colored by c. If c is terminal, then so is
Co . If both are terminal, then they represent
the same symbols.

AN ALGORITHM FOR THE CONSTRUCTION OF DEPENDENCY TREES 95

• B, the backward relation of <I?, a relation on S x S x S. B(eo , c1 , c) indicates the same as F (c0 , c1 , c) , except that now c1 adopts c0 • If c is terminal, then so is c1 . If both are terminal, then they represent the same symbols.
• L, the lift relation of <I>, a relation on S x S.

L(c0 , c1) indicates that a tree wit_h color Co can be adopted by a single node tree with color c1 . c1 can not be a terminal color.
FB-systems are named after their characteris­tic forward- and backward-relations. An FB-sys­tem is just a formalism which fixes the rules of the game. The game is to build colored trees, and to associate such trees with sequences of symbols. The next definition (with pictures) tells us how to interpret the contents of an FB-system.

Definition 5 The set of admissible trees T� over an FB-system <I> is a set of colored trees. Every tree in T� is an analysis tree for a sequence of symbols. The set T� and the analysis tree relation are ind11ctively defined by the following four clauses:
1 . If s is a symbol and the color c represents s , then Single(c) is an admissible tree, it is an analysis tree for s .

{d, n , p} { NP, PP } NP

2. If t with ,(t) = a is an analysis tree for u, and t' with ,(t') = b is an analysis tree for v, and F(a, b, c) holds, then Recolar(Adopt(t, t') , c) is an admissi­ble tree, it is an analysis tree for uv (forward adoption, cf. figure 5) .
3 . If t with ,(t) = a i s an analysis tree for u, and t' with ,(t') = b is an analysis tree for v, and B(a, b, c) holds, then Recolar(Adopt(t' , t) , c) is an admissi­ble tree, it is an analysis tree for uv (back­ward adoption, cf. figure 6) .
4. If t with ,(t) = a is an analysis tree for u, and L(a, b) holds, then Adopt(Single(b) , t) is an admissible tree, it is also an analysis tree for u (lift , cf. figure 7) .

2 .1 A contextfree grammar as an
FB-system

To illustrate the concept of FB-system and the as­sociation of analysis trees with sequences of sym­bols, we will present a simple contextfree gram­mar as an FB-system, and show how the parse tree of a simple sentence can be obtained as an analysis tree according to the foregoing definition.
Terminals Non-terminals Start symbol Rules NP --+ d n, NP --+ NP PP, PP --+ p NP Colors
Root colors Symbols Represent Forward

Backward Lift

{ d --+ d, n --+ n, p --+ p , NP --+ d n, NP --+ NP PP , PP --+ p NP, NP --+ d, NP --+ NP PP --+ p} { NP --+ d n, NP --+ NP PP } {d, n ,p} R(d --+ d, d) , R(n --+ n, n) , R(p --+ p, p) (Fl) F(NP --+ d, n --+ n, NP --+ d n) (F2) F(NP --+ NP, pp --+ p WP, NP --+ NP pp) (F3) F(PP --+ p, NP --+ d n, PP --+ p NP) (F4) F(PP --+ p, NP --+ NP PP, PP --+ p NP) empty (Ll) L(NP --+ d n, NP --+ NP) (L2) L(NP--+NP PP, NP --+ NP) (L3) L(d --+ d, NP --+ d) (L4) L(p --+ p, PP --+ p)
Figure 8: The example grammar and the corresponding FB-system

96

Step 1 : representation.
p -+ p

n --+ n d --+ d n --+ n
n p ;.z n

NP --+ d
ld

d

VAN DER HOEVEN

Step 2: L3,L4,L3. pp --+ p
/ P/ NP -> d p

--+/. n --+ n : d --+ d n --+ n
n p ;.z n

Step 3: Fl ,Fl . pp --+ p
NP -, � / PAP -, dn /. >.. p --+/. .� d --+ d n --+ n : d --+ d n --+ n

;.z Step 4: Ll , F3. NP -+ NP
/ PP --+ p NP

NP -, � � NP -, dn /. >.. p ;� d --+ d n --+ n · d --+ d n --+ n

;.z n p d n

n p d n Step 5: F2. NP -+ NP PP
- - � PP --+ p NP

NP -, ✓ � NP -> dn /. >.. p ;� d --+ d n --+ n · d --+ d n --+ n

d n p d n

Figure 9: The construction of an analysis tree for dnpdn
The simple grammar we consider is shown in the top half of figure 8 . The corresponding FB­system is shown in the bottom half of the same figure. Its set of colors contains an element x --+ x, for every terminal x of the grammar. It contains also all production rules of the grammar. Finally it contains the 'partial' rules x --+ u, which are such that x --+ uv is a rule of the grammar (both u and v not empty) . The set of root colors of the FB-system con­tains the colors that are production rules for the start symbol. Its symbols are the terminals of the grammar. The representation relation R contains three pa!rs, one for every symbol. The idea behind the forward relation F and the lift relation L of the system is, that an analy­sis tree will always have a color indicating a par-

tially recognized production. The F rules state how to extend partial recognition, the L rules tell how a terminal or a completely recognized non­terminal can be the leftmost symbol in a partially recognized other non-terminal. The five pictures in figure 9 show the step-by­step construction of an analysis tree for the se­quence dnpdn. The analysis tree is a parse tree. The steps are:
1 . single node trees representing the symbols,
2. three admissible lifts (L3,L4,L3) ,
3. two admissible forward adoptions (twice Fl) ,
4 . an admissible lift (Ll) , and a forward adop­tion (F3) ,
5. an admissible forward adoption (F2) .

AN ALGORITHM FOR THE CONSTRUCTION OF DEPENDENCY TREES 97

Actors
Roles

{d, n , p} {D, N, P, t}
Leading roles {N}

I, The invisible role
Can-be-played-by
Can-be-combined-left
Can-be-combined-right

D : d, N : n , P : p D\N : n , t\D : d, t\P : p
D : d/t, N : n/P, N : n/t, P : p/N

Colors
Root colors
Symbols
Represent
Forward

{D : d, •N : n , N : n , P : p• , P : p}
{N : n} {d, n , p} R(D : d, d) , R(•N : n, n) , R(P : p• , p)
(Fl) F(•N : n , P : p, •N : n) ,
(F2) F(N : n , P : p, N : n) ,
(F3) F(P : p•, N : n , P : p) ,
(F4) F(P : p, N : n , P : p)

Backward (Bl) B(D : d, •N : n , N : n) ,
(B2) B(D : d, N : n , N : n)

Lift empty

Figure 10: The example casting- and the corresponding FE-system

2 .2 A casting system as an FB-
system

In a similar way as the contextfree grammar
above, we can present a casting system as an
FE-system, and show how the analysis tree con­
struction yields a dependency tree. We take the
casting system of the top half of figure 10 as an
example.

The corresponding FE-system is in the second
half of the same figure.

Its set of colors contains all possible role-actor
pairs according to the can-be-played-by relation.
Role-actor combinations which cannot do with­
out support, i.e. which cannot be combined with
the invisible role, also appear 'dotted' in the color
set . The dot marks the side at which support is
obligatory.

There is one admissible root color, correspond­
ing to the leading role.

The symbols are, as before, the actors of the
casting system.

The representation relation R contains three
pairs, one for every symbol.

F has four triples, B has two, and L is the

empty relation, no color can be lifted to another.
Note that F and B correspond to the can­

be-combined relations. Note also that a dot dis­
appears in recoloring whenever a dotted color
adopts a color at the side of the dot .

Note finally that the absence of Lift here and
the importance of Lift in the case of contextfree
grammars reflect the fact that every node in a
dependency tree represents a symbol, whereas in
parse trees the internal nodes are representatives
of constituents.

The four pictures in figure 1 1 show the step­
by-step construction of an analysis tree for the
sequence dnpdn. The resulting analysis tree is a
dependency tree for the sequence. The steps in
its construction are:

1 . single node trees, representing the individ­
ual symbols,

2. two admissible backward adoptions (twice
Bl) ,

3 . a forward adoption (F3) ,

4. a forward adoption (F2) .

98

Step 1: representation.
•N : n

D : d P : p•
•N : n

D : d

d n P d n

Step 3 : F3.

�:(�:_, p
. . . N : n

: : : d :

d n p d n

VAN D ER HOEVEN

Step 2: Bl ,Bl.
N : n

/ / P : p•

d n p

/ N/ n
1J : d .
d n

Step 4: F2.

0�:_, p . . . N : n
: : : d :

d n P d n
Figure 1 1: The construction of an analysis tree for dnpdn

2 .3 Recognizing sequences which
have an analysis tree

The two examples are of course not a proof of the fact that every contextfree grammar and ev­ery casting system can be represented as an FB­system. Such a proof can be given, it is in fact not difficult. But it is tedious, and we shall not present it here. Hopefully, the examples are enough to suggest the general techniques appli­cable for translating the one formalism into the other. The goal of the introduction of FB-systems was to come to a uniform approach to parsing. It is parsing we shall now concentrate on. That is to say, the actual problem of parsing is to construct an analysis tree , if any, or even better, . all anal­ysis trees for a given sequence of symbols w .r.t. a given F B-system. What we present here is a strategy for recognition. Strictly speaking, the algorithm we present (not in full algorithmic de­tail) , is capable only of deciding whether a given

sequence has an associated analysis tree or not, and it does not produce the trees . But it is a well-known technique, and a minor adaptation to the algorithm, to keep track of the ways in which items are combined during recognition. Such ad­ditional information is sufficient to produce all analysis trees.
The central notion in the recognition algo­rithm is the notion of an item.

Definition 6 An item for a given FB-system <I> is an element of the Cartesian product N x C, in which N is the set of positive natural numbers and C is the color set of <I>.
The overall structure of the recognizer is as follows. The recognizer R w.r.t. <I> is an algorithm which expects an input sequence (a1 , . . . , an) which consists of symbols ai of <I>. As a result it produces a sequence of item sets

(lo , . . . , In) .

AN ALGORITHM FOR THE CONSTRUCTION OF DEPENDENCY TREES 99
lo is empty. Every next Jk+1 is computed from the sym­bol ak+l and the preceding initial segment (10 , • • • , Ik) of the result sequence. The computation of h+i will yield a set of items (m, c) in which m ::; k + l . The interpretation of (m, c) E Ik is: there is an analysis tree t for the segment (am , . . . , ak) , with -y(t) = c . Recognition i s expressed as: the last item set in the sequence produced, i.e. In , contains an item (1 , c) in which c is an admissible root color of <p _
3mm To be precise: the construction of the next item set h+i from the previous ones (lo , . . . , h) and the next symbol ak+I proceeds as follows: It starts with the set
K = { (k + 1 , c) IR(c, ak+l) } Of this set , the completion is constructed. The completion of K is the smallest set J satisfying:
• K � J
• If (j+l , d) E J and (i , c) E Ij and F(c, d, c') , then (i , c') E J
• If (j + 1 , c) E J and (i , d) E IJ and B(d, c, c') , then (i , c') E J
• If (j + 1 , c) E J and L(c, c') then (j + 1 , c') E

J.

This completion is h+1 • For the complexity of the construction of the completion, the following is relevant:

every set Ij has a number of elements bounded by C x j, where C is the number of colors, to construct Jk+1 , all sets Ij , j < k + l , must be traversed, every item in these previous sets must be matched against at most C items already in h+1 , and for every item newly constructed at most C lifts must be added. It follows that the number of steps in the con­struction of Jk+1 is bounded by C2 k2 . The recognition algorithm is of cubic complex­ity.

3 Conclusions

The creation of dependency trees for utterances on the basis of a dictionary of word profiles, i .e. a casting system, derived from the handmade anal­ysis of a restricted set of utterances, is an inter­esting approach to structural analysis. To assess the full merits of the approach, further research is necessary however. The parsing problem for the construction for dependency trees is in many respects the same as that for contextfree derivation trees. In fact , the general notion of FE-system seems to cover all methods of associating trees with sequences which are local, i.e. all methods where the well­formedness of the associated tree is determined by restrictions on the structure of the nodes, and not on the tree as a whole. An Earley-like algorithm of cubic complexity applies to every association of trees to sequences on the basis of such a general FE-system.

100

References
(1] Earley, J. (1970), "An efficient contextfree parsing algorithm". Communications of the A CM 13, 90-102.
(2] F ilmore, C. (1968), "The case for case". In: Bach, E. & R. Harms, (Eds.): Universals in Linguistic Theory, 1-68. New York : Holt, Reinhart and Winston.
(3] Hoeven, G.F. van der (1992), "An experi­ment in the syntactical analysis of English noun phrases" . Memoranda lnformatica 92-24, 34pp. Enschede, The Netherlands : Uni­versity of Twente, Department of Computer Science.

VAN DER HOEVEN

(4] Hoeven, G.F. van der (1992), "An algo:­rithm for the construction of dependency trees" , Memoranda Informatica 92-39, 29pp. Enschede, The Netherlands : University of Twente, Department of Computer Science.
(5] Hopcroft, J.E. - J.D. Ullman (1979), In­troduction to Automata Theory, Languages and Computation. Reading, Massachusetts: Addison-Wesley.
(6] Schubert, K. (1987), Metataxis-Contrastive Dependency Syntax for Machine Transla­tion. Dordrecht, Providence R.I. : Foris Pub­lications

Integration of Morphological and Syntactic Analysis Based on

LR Parsing Algorithm

Tanaka Hozumi, Tokunaga Takenobu And Aizawa Michio

Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama Meguro Tokyo 152 Japan

email: take©cs . t i tech . ac . j p

Abstract Morphological analysis of Japanese is very different from that of English, because no spaces are placed between words. The analysis includes segmentation of words. However, ambiguities in segmentation is not always resolved only with morphological information. This paper proposes a method to integrate the morphological and syntactic analysis based on LR parsing algorithm. An LR table derived from grammar rules is modified on the basis of connectabilities between two adjacent words. The modified LR table reflects both the morphological and syntactic constraints. Using the LR table, efficient morphological and syntactic analysis is available.
1 Introduction
Morphological analysis of Japanese is very differ­ent from that of English, because no spaces are placed between words. This is also the case in many Asian languages such as Korean, Chinese, Thai and so forth . In the Indo-European family, some languages such as German have the same phenomena in forming complex noun phrases . Processing such languages requires the identifica­tion of the boundaries of words in the first place. This process is often called segmentation which is one of the most important tasks of morphological analysis for these languages . Segmentation is a very important process, since the wrong segmentation causes fatal errors in the later stages such as syntactic, semantic and contextual analysis. However, correct segmenta­tion is not always possible only with morphologi­cal information. Syntactic, semantic and contex­tual information may help resolve the ambiguities in segmentation. Over the past few decades a number of studies have been made on the morphological and syntac­tic analysis of Japanese . They can be classified into the following three approaches:
Cascade: Separate the morphological and syn-

101

tactic analysis and execute them in a cas­cade manner . The morphological and syntactic constraints are represented sepa­rately.
Interleave: Separate the morphological and syntactic analysis and execute them inter­leavingly. The morphological and syntactic constraints are represented separately.
Single Framework: Represent both the mor­phological and syntactic constraints in a single framework such as context free gram­mars (CFGs) and make no distinction be­tween the two analysis .

Representing the morphological and syntacti­cal constraints separately as in the first two ap­proaches, Cascade and Interleave, makes main­taining and extending the constraints easier. This is an advantage of these approaches . Many natu­ral language processing systems have used these two approaches. For example, Mine proposed a method to represent the morphological con­straints in regular grammar and the syntactic constraints in CFG, and interleave the morpho­logical and syntactic analysis (Mine et al., 1990) . Most other systems use a connection matrix in­stead of a regular grammar (Miyazaki et al., 1984;

102

Sugimura et al., 1989). The main drawbacks of these approaches are as follows:
• It may require two different algorithms for each analysis.
• It must retain all ambiguities from the mor­phological analysis until the syntactic anal­ysis begins. This wastes memory space and computing time.
On the other hand, from a viewpoint of pro­cessing, it is preferable to integrate the morpho­logical and syntactic analysis into a single frame­work, since some syntactic constraints are useful for morphological analysis and vice versa. The last approach fulfills this requirement. There have been several attempts to develop CFG that covers both the morphological and syntactic constraints (Kita, 1992; Sano-Fukumoto, 1992). However , it is empirically difficult to describe both constraints by using only CFG. The diffi­culty arises due to the timing of connectability checks , but also increases the number of CFG rules. For example, in figure 1, in order to check the connectability between adjacent words, Wi and Wi+i , the morphological attributes of each word should be propagated up to their mother nodes B and C, and the check is delayed until the application of the rule A ---➔ B C. Therefore , problems such as the possibility of delays in con­nectability checking and propagation of morpho­logical attributes to upper nodes make the algo­rithm of connectability checking more complex and can cause difficulties in representing morpho­logical and syntactical constraints by CFG. However , by using connection matrices for morphological analysis as in the Cas­cade /Interleave approaches, connectability checks between adjacent words is performed very easily. Therefore, it is desirable to represent the morphological and syntactic constraints sepa­rately as in Cascade/Interleave, and to integrate the execution of both analysis into a single pro­cess as in Single Framework. In our method, we have captured these advantages by represent­ing the morphological constraints in connection matrices and the syntactic constraints in CFGs, then compiling both constraints into an LR table (Aho et al. , 1986). The already existing, effi­cient LR parsing algorithms can be used with

TANAKA - TOKUNAGA - AIZAWA

minor modifications, enabling us to utilize both the morphological and syntactic constraints at the same time.

Fig. 1 Connectability check by CFG_
In the next section, we first give a brief intro­duction to Japanese morphological analysis using an example sentence. In section 3 , we describe the method of generating an LR table from a connec­tion matrix and CFG rules, then in section 4 we explain the detail of our method based on gen­eralized LR parsing algorithm with an example. Our algorithm is principally the same as Tomita's generalized LR parsing algorithm (Tomita, 1986), but the input is not a sequence of preterminals , but a sequence of characters .

2 Morphological analysis of
Japanese

A simple Japanese sentence consists of a sequence of postpositional phrases (PPs) followed by a predicate. The PP consists of a noun phrase (NP) followed by a postposition which indicates the case role of the NP. The predicate consists of a verb or an adjective, optionally followed by a sequence of auxiliary verbs (Morioka, 1987). We illustrate the Japanese morphological analysis with an example sentence "KaORuNi­AIMaSu (meet Kaoru)." 1 We use a simple Japanese dictionary shown in figure 2, and a con­nection matrix shown in figure 3 which gives us the connectabilities between adjacent morpholog­ical categories (meat). For example in figure 3 , the symbol "o" at the intersection of row 2 (p1) and column 3 (vs4k) indicates that the morpho­logical category vs4k can immediately follow the morphological category p 1. 1 Each capitalized one or two character(s) corresponds to a single Japanese character (Kana character) .

INTEGRATION OF MORPHOLOGICAL AND SYNTACTIC ANALYSIS 103
entry cat meat meaning R I G H T KaO n n1 face V V KaO vs vs4r smell sweet V e

V V e Ru ve ve4r3 (connect to nominal) v v v e 4 e e 4
s s s 4 k 4 4 w a a KaORu n n1 person's name n P 4 4 4 k 2 r w 2 x x Ni p p1 (dative) 1 1 k r w 2 i 3 2 t 1 2 $ A VS vs4k open nl 0

A vs vs4w meet p1 0 0 0 0 Ki ve ve4k2 (connect to verb) L vs4k 0 0

I ve ve4k2i (connect to verb) vs4r 0

I ve4w2 (connect to verb) E vs4w 0 0
ve ve4k2 0
ve ve4w2t (connect to verb) F ve4k2i 0 MaSu ax ax1 (polite form) ve4r3 0 Ta ax ax2 (past form) T ve4w2 0 n: noun, p: case marker, vs : verb stem, ve4w2t 0 ve : verb ending, ax: aux verb ax1 0

ax2 0

Fig. 2 A simple Japanese dictionary Fig. 3 An example of connection matrix
Using only the dictionary, we can obtain the 3

. following twelve candidates of segmentation for
Generating A Modified

LR Table the sentence "KaORuNiAIMaSu."

KaO Ru Ni A I MaSu
(1) n1 ve4r3 p1 vs4k ve4k2i ax1
(2) n1 ve4r3 p1 vs4k ve4w2 ax1
(3) n1 ve4r3 p1 vs4w ve4k2i ax1
(4) n1 ve4r3 p1 vs4w ve4w2 ax1
(5) vs4r ve4r3 p1 vs4k ve4k2i ax1
(6) vs4r ve4r3 p1 vs4k ve4w2 ax1
(7) vs4r ve4r3 p1 vs4w ve4k2i ax1
(8) vs4r ve4r3 p1 vs4w ve4w2 ax1

KaORu Ni A I MaSu
(9) n1 p1 vs4k ve4k2i ax1

(10) n1 p1 vs4k ve4w2 ax1
(1 1) n1 p1 vs4w ve4k2i ax1
(12) n1 p1 vs4w ve4w2 ax1

By also referring to the connection matrix, we
can filter out illegal segmentations. From the
examples above, we find (1)-(4) violate the
connectability between "KaO (n1)" and "Ru
(ve4r3)" , and that (5)-(8) violate the con­
nectability between "Ru (ve4r3)" and "Ni (p1) ."
Also (9) and (1 1) violate the connectability be­
tween "I (ve4k2i)" and "MaSu (ax1)" , and (11)
violates the connectability between "A (vs4w)"
and "I (ve4k2i) ." Thus by process of elimination
we obtain the morphologically correct candidate,
(12) . However, a long input sentence generally
gives many more ambiguities which need to be
resolved· in later stages using syntactic, semantic
and contextual information.

Connection matrices and CFG rules have been
used for morphological analysis and syntactic
analysis respectively by most Japanese process­
ing systems. Because CFG rules were mainly used
for syntactic analysis and connection matrices for
morphological analysis, they have been developed
independently of each other.

In this section, we propose a method to inte­
grate morphological and syntactic constraints in
the framework of LR parsing algorithm, and thus
capturing the advantages of Cascade/Interleave
and Single Framework described in section 1 .

In order to combine connection matrices and
CFG rules, the first step we have to take is to
extend the CFG rules by relating the syntactic
categories in the CFG rules with the morpholog­
ical categories in a connection matrix. This is
realized by adding CFG rules called morphologi­cal rules each of which is a unit production rule
with a syntactic category in the LHS and a mor­
phological category in the RHS.

From the dictionary shown in figure 2, we can
extract a set of new CFG rules as shown in fig­
ure 6, which are simply added to the CFG rules
in figure 4 to get an extended set of CFG rules
with morphological constraints.

s ---+ v ax (1) v ---+ vs ve (3)
s ---+ pp s (2) pp ---+ n p (4)

Fig. 4 A simple set of CFG rules for Japanese

104 TANAKA - TOKUNAGA - AIZAWA

A C T I O N G O T O
V V

s V e
V V e t V V V

e 4 e e 4
a 8 8 8 4 k 4 4 V a a t n p 4 4 4 k 2 r V 2 X X
e 1 1 k r V 2 i 3 2 t 1 2 $ 8 v ax pp vs ve n p
0 sh6 sh7 sh8 sh9 1 2 3 4 5
1 ace
2 sh11 sh12 10
3 sh6 sh7 sh8 sh9 13 2 3 4 5
4 sh15 sh16 sh17 sh18 sh19 14
5 sh21 20
6 re5
7 re7 re7 re7• re7• re7•
8 re8• re8• re8 re8• re8•
9 re9• re9• re9• re9 re9

10 re1
1 1 re15
12 re16
13 re2
14 re3 re3
15 re10 re10•
16 re11• re1 1
17 re12• re12•
18 re13 re13•
19 re14• re14•
20 re4 re4 re4 re4
21 re6 re6 re6 re6 Fig. 5 LR table generated from rules (1)-(16)

n � n1 (5) ve � ve4k2i (1 1) p � p 1 (6) ve � ve4r3 (12)
vs � vs4k (7) ve � ve4w2 (13)
vs � vs4r (8) ve � ve4w2t (14)
vs � vs4w (9) ax � ax1 (15) ve � ve4k2 (10) ax � ax2 (16) Fig. 6 A morphological rules derived from the dictionary in Fig. 2
We can generate an LR table as shown in figure 5 from the extended CFG rules (1) through (16) from figure 4 and 6. Note that the extended CFG rules do not include any in­formation about connectability represented in the connection matrix in figure 3. For exam­ple, rules (3) , (8) and (13) allow the struc­ture "v (vs (vs4r) , ve (ve4w2)) " which violates the connectability between vs4r and ve4w2 as shown in figure 3 .

For each reduce action A with a morphological rule in each entry of LR table { if (Not Connect(RHS(Rule(A)) , LA(A)) { delete A from the entry;

}
} where each function is defined as follows: Rule : action - rule; returns a rule used by the reduce action. LA : action - symbol; returns a look ahead symbols of the action. Connect : symbol x symbol - {T, F} ; returns true or false with respect to the connectability of the two symbols. RHS : rule - symbol; returns a right hand side symbol of the rule. Fig. 7 A procedure to modify an LR table

The second step is to introduce the constraints on connectability into the LR table by deleting il­legal reduce actions. This is carried out by mod­ifying the LR table with the procedure shown in figure 7. Deleting reduce actions by applying the above procedure prohibits the application of morpho­logical rules which violates the connectability be­tween two adjacent words, namely the current scanned word and its lookahead word. Note that

INTEGRATION OF MORPHOLOGICAL AND SYNTACTIC ANALYSIS 105

given an LR table and a connection matrix, this
procedure can be performed automatically with­
out human intervention.

It is possible to incorporate this procedure into
the LR table generation process, however, it is
better to keep them separate. Since this proce­
dure is applicable to any type of LR table, sepa­
rating this process from LR table generation en­
ables us to use the already existing LR table gen­
eration program.

For example, in figure 5, the reduce action re7
in row 7 and column ve4r3 is deleted, since the
connection between vs4k, the RHS of rule (7) ,
and ve4r3, the lookahead preterminal, is prohib­
ited as shown in the connection matrix in figure 3.
Similarly, reduce action re7 in row 7 and column
ve4w2 will be deleted and so forth. These dele­
tions are marked with asterisks (*) in figure 5.

(1) initialize stack (2) for CS = 0 . . . N { (3) for each stack top node in stage CS { (4) Look-aheads = lookup-dictionary (CS) ; (5) for each look ahead preterminal LA in Look-aheads { (6) do reduce while "reduce" is applicable; (7) if "shift" is applicable { (8) do shift creating a new node
(9)
(10) '
(11)
(12) }
(13) }
(14) }

in stage (CS + length(LA)) ;
} if "ace" { accept } if no action { reject }

Fig. 9 Outline of our parsing algorithm
The overview of generating a modified LR table 4
is shown in figure 8.

Algorithm for Integrating
Morphological and Syn­
tactic Analysis

syntactic rules (CFG)
I dictionary I

modified LR table

connection matrix

Fig. 8 Outline of generating a modified LR table
Generally speaking, the size of the LR table is

on the exponential order of the number of rules
in the grammar. Introducing the morphological
rules into the syntactic rules can cause an increase
in the number of states in LR table, thereby ex­
ponentially increasing the size of the overall LR
table in the worst case. In our method, the in­
crease of the number of states is equal to that of
the morphological rules introduced. Suppose we
add a morphological rule X -. x to the gram­
mar. Only the items in the form of [A -. a: · X ,B]
can produce a single new item [X -. ·x] from
which only a single new state { [X -. x ·] } can be
created. Thus the increase of the number of the
states is equal to that of the morphological rules
introduced, and the size of the LR table will not

"'-'
grow exponentially.

The LR parsing algorithm with the modified LR
table is principally the same as Tomita's gener­
alized LR parsing algorithm. The only difference
is that Tomita's algorithm assumes a sequence of
preterminals as an input , while our algorithm as­
sumes a sequence of Kana characters2 • Thus the
dictionary reference process needs to be slightly
modified. Figure 9 illustrates the outline of our
parsing algorithm.

In figure 9 the stage number (CS) indicates
how many Kana characters have been processed.
The procedure begins at stage O and ends at stage
N, the length of an input sentence. In stage 0, the
stack is initialized and only the node with state 0
exists (step (1)) . In the outer-most loop (2)-(14) ,
each stack top in the current stage is selected and
processed. In step (4) , the dictionary is consulted
and look-ahead preterminals are obtained. An
important point here is that look-ahead pretermi­
nals may have different Kana character lengths.
A new node is introduced by a shift action at step
(8) and is placed into a stage which is ahead of
the current stage by the length of the look-ahead
word.

The following example well illustrates the al-
gorithm in figure 9. The input sentence is 2We assume the input sentences consist of only Kana characters for brevity. Other types of characters, such as Kanji, can be also handled.

106

"KaORuNiAIMaSu$ (meet Kaoru)." and we as­sign position numbers between adjacent Kana characters. Input: Position: Ka O Ru Ni A I Ma Su $ 0 1 2 3 4 5 6 7 8 9
In the following trace, the numbers in circles denote state numbers, and the numbers in squares denote the subtree number shown below the di­agrams. The symbols enclosed by curly brackets denote a look ahead preterminal followed by the next applicable action, separated by a slash (/). The stage numbers are shown below the stacks.

Current stage: 0 Dictionary reference: n1("KaO") at 0-2 vs4r("KaO") at 0-2 n1("KaORu") at 0-3 We find three look ahead preterminals, n1, vs4r, and n1 by consulting the dictionary in figure 2. A shift actions is applied for each of them according to the LR table in figure 5.
@ {n1/sh6 , vs4r/sh8 , n1/sh6}

After the shift actions, three new nodes are cre­ated at stage 2 or stage 3 depending on the length of look ahead words. At the same time subtrees 1-3 are constructed. The current stage is updated from O to 2, since there is no node in stage 1 . The look ahead preterminals are unknown at this mo­men t.
� g�
� {?}
IOI] I 2 I 3 I

1 : nl ("KaO")
2 vs4r ("KaO")
3 nl ("KaORu")

Current stage: 2 Dictionary reference: ve4r3("Ru") at 2-3 Dictionary reference gives one look ahead preter­minal from position 2. Since the current stage number is 2, only the first two stack tops are con­cerned at this stage. No action is taken of the first stack, because the LR table has no action in the entry for state 6 and a look ahead preterminal ve4r3. As the result, the first stack is rejected. The reduce action (re8) is taken for the second stack.

TANAKA - TOKUNAGA - AIZAWA

IQ I] I 2 I 3 I

{ve4r3/err}
{ve4r3/re8}

{?}

After re8, a shift action (sh17) is carried out for the first stack.
©.-fil--@ {ve4r3/sh17} --

� {?}
IQ I] I 2 I 3 I

4 : vs (2)

After sh1 7, we can proceed to stage 3.
®-rffi--©--ffi- {?} --

� {?}
IQ I] I 2 I 3 I

: ve4r3 ("Ru")

Current stage: 3 Dictionary reference: p1("Ni") at 3-4

5

We obtain preterminal p1 by ' consulting the dic­tionary. Because the first stack can take no more action, it is rejected. The reduce action (re5) is then applied to the second stack.
®-rill--©---(I] {pl/err}
- � {p1/re5}

IQ I] I 2 I 3 I

The shift action (sh21) is applied to the following stack.
�

{p1/sh21}

6 : n(3)

After the shift action (sh21), new nodes are cre­ated in stage 4.
� {?}

7 : pl ("Ni")

Current stage: 4 Dictionary Reference:
vs4k("A") 'at 4-5
vs4w("A") � 4-5

Dictionary reference provides two look ahead preterminals for the next word.

INTEGRATION OF MORPHOLOGICAL AND SYNTACTIC ANALYSIS 107

{ vs4k/re6 } � vs4v /re6

After the two reduce actions (re6), we get two
nodes with the same state 20, but they are not
merged as the look .ahead preterminals are differ­
ent each other. See stage 5 for the reason.

rill--@ {vs4k/re4} - {vs4v/re4}
IQ I] I 2 I 3 I 4 I

8

9

p(7)
p(7)

The process in stage 4 continues as follows.

10
1 1

pp(6 , 8)
pp(6 , 9)

rfilHD--@--(D {?}
®--------4ill-- {?}
1Q1J 1 2 1 3 1 4 1 5 I 12 : vs4k("A") 13 : vs4w("A")
Current stage: 5
Dictionary Reference:

ve4k2i("I") at 5-6
ve4w2("I") at 5-6

We have two look ahead preterminals and two
stack tops. The reduce actions (re7 and re9) are
performed.

{ ve4k2i/re7 }

=
3 12 7 ve4v2/err

{ ve4k2i/err } 00 1 121 �
ve4v2/re9

Note that we can not merge the stack tops with
the same state 4 since the look ahead pretermi­
nals are different (ve4k2i/ve4w2) . 3

rlIB----®--@-© {ve4k2i/sh16}
®----YTI]----@- {ve4v2/sh18}
1 Q 1] 1 2 1 3 1 4 I 5 I

14 : vs (12)
15 : vs (13)

After the shift actions (sh16 and sh18) , we pro­
ceed to stage 6.

� {?} ffil � {?}] I 2 I

16 : ve4k2i ("I")
1 7 : ve4v2 ("I")

Current stage: 6
Dictionary reference:

ax1("MaSu") at 6-8

The process in stage 6 proceeds as follows.

18 : ve (17)

� J 12 13�
{ ax1/sh1 1 }

1 9 v (1 5 , 18)

20 : ax1 ("MaSu")
Current stage: 8
Dictionary reference:

"$" at 8-9

�] 12 13�
{$/re15}

� J 1 2 1 3 �
{$/re 1 }

21 : ax (20)

ffil Mi----,�
{$/re2}

J 1213 51617

22 : s (19 , 21)

The input sentence is automatically segmented
and accepted, giving a final parse result 23 as
shown in figure 10.

� J 12 131415161 7 �
{$/ace}

23 : s (1 1 , 22)

3If two stack tops are merged and then different shift actions (sh16 and sh18) are carried out, we might have invalid combinations of structure such as (14, 17) and (15 , 16).

108

5 Conclusion

We have proposed a method representing the morphological constraints in connection matrices and the syntactic constraints in CFGs, then com­piling both constraints into an LR table. The compiled LR table enables us to make use of the already existing, efficient generalized LR pars­ing algorithms through which integration of both ·morphological and syntactic analysis is obtained . Advantages of our approach can be summa­rized as follows:
• Morphological and syntactic constraints are represented separately, and it makes easier to maintain and extend them.
• The morphological and syntactic con­straints are compiled into a uniform rep­resentation, an LR table. We can use the already existing efficient algorithms for gen­eralized LR parsing for the analysis .

TANAKA - TOKUNAGA - AIZAWA

• Both the morphological and syntactic con­straints can be used at the same time during the analysis.
We have implemented our method using the EDR dictionary with 300,000 words (EDR, 1993) from which 437 morphological rules are derived. This means only 437 new states are introduced to LR table and this does not cause an explosion in the size of the LR table.

� �

1
1

Pr v0ie i

x

n1 p1 vs4w ve4w2 ax1
I I I I I KaORu Ni A I MaSu

Fig. 10 An analysis of "KaORuNiAIMaSu"

INTEGRATION OF MORPHOLOGICAL AND SYNTACTIC ANALYSIS 109
References

Aho, A.V. - Sethi,R. - Ullman, J.D. (1986) Compilers Principles, Techniques, and Tools. Massachusetts: Addison-Wesley.
Japan Electronic Dictionary Research Institute (1993) EDR Dictionary Manual.
Kita, K. (1992) A Study on Language Modeling for Speech Recognition. PhD thesis, Waseda University.
Mine,T. - Taniguchi , R. - Amamiya, M. (1990) "A parallel syntactic analysis of context free grammars." pp. 452-453. the 40th Annual Convention IPS Japan.
Miyazaki, M. (1984) "An Automatic Segmenta­tion Method for Compound Words using De­pendency Analysis." Transactions of Infor-

mation Processing Society of Japan. Vol. 25, No. 6, pp. 970-979
Morioka, K. (1987) Formation of a Vocabulary. Meiji-Shoin.
Sano, H. - Fukumoto, F. (1992) "On a Gram­mar Formalism, Knowledge Bases and Tools for Natural Language Processing in Logic Pro­gramming." in Proceedings of FGCS92.
Sugimura,R. - Akasaka, K. - Kubo, Y. - Mat­sumoto, Y. (1989) "Logic Based Lexical Ana­lyzer LAX." Logic Programming '88 (Lecture Notes in Artificial Intelligence). pp. 188-216. Springer-Verlag.
Tomita, M. (1986) Efficient Parsing for Natu­ral Language: A Fast Algorithm for Practical Systems. Boston: Kluwer Academic Publish­ers.

1 10 TANAKA - TOKUNAGA -:- AIZAWA

Structural Disambiguation in Japanese

by Evaluating Case Structures

based on Examples in a Case Frame Dictionary

Sadao K urohashi and Makoto Nagao

Dept. of Electrical Engineering, Kyoto University
Yoshida-honmachi, Sakyo, Kyoto, 606 , Japan
email: {kuro I nagao }©kuee . kyoto-u . ac . j p

Abstract

A case structure expression is one of the most important forms to represent the meaning of
a sentence. Case structure analysis is usually performed by consulting case frame information
in verb dictionaries and by selecting a proper case frame for an input sentence. However, this
analysis is very difficult because of word sense ambiguity and structural ambiguity. A conventional
method for solving these problems is to use the method of selectional restriction, but this method
has a drawback in the semantic marker (SM) system - the trade-off between descriptive power
and construction cost.

This paper describes a method of case structure analysis of Japanese sentences which overcomes
the drawback in the SM system, concentrating on the structural disambiguation. This method
selects a proper case frame for an input by the similarity measure between the input and typical
example sentences of each case frame. When there ar� two or more possible readings for an input
because of structural ambiguity, the best reading will be selected by evaluating case structures in
each possible reading by the similarity measure with typical example sentences of case frames.

1 Introduction

Representing a sentence with a case structure is a basic form for dealing with its meaning. There­fore, transforming a sentence into a case struc­ture expression is one of the most important tech­niques in natural language processing, and it is needed for machine translation, knowledge acqui­sition in which various expressions with the same content must be converted into the same repre­sentation, and so on. Case structure analysis is usually performed by consulting case frame information in verb dic­tionaries. The dictionary describes what kind of cases each verb has and what kinds of noun can fill a case slot with what kind of case marker (in Japanese, postpositions (POs) function as case markers). However, this analysis is very difficult because of word sense ambiguity (a verb often has
1 1 1

two or more meanings and case frames are pre­pared for the respective meanings) and structural ambiguity. A conventional method for solving these problems is selectional restriction (Katz - Fodor, 1963), where the category of the nouns which are able to fill in the case slot is specified by semantic markers (SMs), such as hu­man, animate, action, and so on. However this method has the following weak points.
• The SM system with tens of SMs is too coarse to distinguish every case frame for a verb, which is the case with most electronic dictionaries and systems at present, such as LDOCE (Longman, 1978), the Mu system (Nagao et al ., 1985), IPAL (IPA, 1987), ·and most of commercial ma­chine translation systems.

112 KUROHASHI - NAGAO

HAIRU
Sub-entry 1
Meaning : Enter from the outside to the inside. < Case markers> <SMs> <Examples> <Deep cases> agent Nl-GA (HUM/ORG/ ANI/PRO] he party cat ship N2-KARA* (LOC] window rear-gate locational source N3-NI/E (LOC] classroom kitchen port locational goal / directional
Sub-entry 2
Meaning: Added to food or drink. <Case markers> <SMs> Nl-NI (PRO] <Examples> coffee cake <Deep cases> non-locational goal obje_ct N2-GA (CON] sugar milk cheese poison
Sub-entry 3
Meaning: Be reflected. < Case markers> <SMs> <Examples> <Deep cases> non-locational locative object Nl-NI [PRO/ABS] N2-GA [MEN) work report proposal thought opinion arbitrariness A Case component marked with '*' is optional.

Table 1 : Examples of case frames for HAffiU in IPAL.

• On the other hand, it is quite expensive and
time consuming to prepare a detailed SM
system which has enough descriptive power
to discriminate every usage of each verb,
and which may require thousands of SMs
(Ikehara et al. , 1991) . A further difficulty
is to improve the SM system when needed.

In order to overcome the drawbacks in the
SM method - the trade-off between descrip­
tive power and construction cost, we have
developed a method of case structure anal­
ysis of Japanese sentences based on exam­
ples in a case frame dictionary. We pub­
lished some parts of our analysis system
already elsewhere (Kurohashi - Nagao, 1992)
(Nagao, 1992) . Therefore, this paper con­
centrates on the structural disambiguation in
Japanese complex sentences through the case
structure analysis process.

This method uses a case frame dictionary that
has some typical example sentences for every case
frame. When an input is a simple sentence with­
out structural ambiguity concerning case compo­
nents, a proper case frame is selected for the verb
in the input sentence by matching the input sen­
tence with the examples in the case frame dictio­
nary. When an input is a complex sentence, there
would be several verbs to which the nouns in the
sentence cannot be linked uniquely by unique case

assignment. The important point is that the best
matching score, which is utilized for selecting a
proper case frame for a verb in a sentence, can
be considered as the score for the case structure
of the verb and its case components. The best
reading (the correct reading or the most plausible
reading) of a complex sentence is the one where
all verbs in the sentence govern appropriate case
components and their case structures have high
scores. Therefore, the best reading of a sentence
can be selected by checking all the possible case
structures of all the verbs and by evaluating ev­
ery possible reading according to the sum of the
scores for the case structures in it . When an input
is a compound sentence, we can detect the scopes
of coordinate structures beforehand, so that we
can limit the possible readings to the extent that
we can evaluate all of them.

From the viewpoint of an example­
based method, there are several research
activities for solving structural ambiguity
(Inagaki et al. , 1988) (Nagao, 1990) . Our
method has the following characteristics in con­
trast with them.

• While their methods match an input sen­
tence with examples basically in blocks of
two words being in a governor/ dependent
relation, our method matches them in

STRUCTURAL DISAMBIGUATION IN JAPANESE

blocks of a case structure. We can say in general that the wider range of components a method checks, the more reliable it be­comes.
• They use texts from their target domain as their main knowledge base. If limiting the text domain, it may be possible and use­ful, but it is very difficult to cover general domains. On the other hand, we use exam­ples in the case frame dictionary, which can cover wider domains according to entries of the diction�ry. Because in compiling a dictionary, lexicographers consult example sentences in which an entry word is used, it is a reasonable assumption that we can use examples in a dictionary in the computer analysis of natural language sentences.

2 Selecting a Proper Case

Frame

2.1 Japanese Electronic Dictionar­
ies

In this paper, we use the basic verb dictio­nary which was constructed by the Information-

CON (concrete)

1 13
technology Promotion Agency, Japan (here­after, this dictionary is referred to . as IP AL) (IPA, 1987) . In IPAL, 861 basic verbs are entries, and each entry has sub-entries according to the difference in the meaning and the syntax. Case frame information is given at each sub-entry. The sub-entries total up to 3379 so that the average number of sub-entries and thus the average num­ber of case frames for a verb is 3.9. As shown in Table 1, a set of case frame information consists of the meaning of a verb, its case markers , SMs, examples and correspondences to deep cases for each case slot. SMs restrict the category of the nouns that can fill in the case slots. IPAL uses 19 different SMs which have the tree structure shown in Figure 1. However, our method does not use this SM system because of its coarseness. We use a· thesaurus dictionary, 'Bunrui Goi Hyou' (ab­breviated as BGH) (NLRI, 1964) for calculating the similarity values between words. BGH has a tree of six layer abstraction hierarchy and more than 60,000 words are assigned to the leaves of the thesaurus tree.

ANI (animal) - HUM (human) ORG (organization) PLA (plant) PAR (parts) NAT (natural) PRO (products)
DIV (diverse) PHE (phenomenon) ACT (action)

ABS (abstract)
MEN (mental) LIN (linguistic products) CHA (character) REL (relation) LOC (location) TIM (time) QUA (quantity)

Figure 1 : The set of SMs in IPAL.

1 14

2.2 Case Structure Analysis by
Case Frames

Case structure analysis is usually performed by
consulting case frames in a dictionary. Because
the correspondence of each case component to a
deep case is listed in the case frame, we can get
deep cases for case components when we find a
proper case frame for an input sentence and the
correspondence of case components in the sen­
tence to those in the case frame. In other_ words,
case structure analysis is regarded as a selection
of a proper case frame for an input sentence.

2 .3 Selecting a Proper Case Frame

A conventional method for selecting a proper case
frame is selectional restriction by SMs. However,
the SM system with tens of SMs, such as IPAL, is
too coarse to select a proper case frame for an in­
put sentence. For instance, in selecting a proper
case frame for the example sentence (ESl) :

KISHA-GA
(train)
[PRO]

TON'NERU-NI
(tunnel)

[LOC/PRO]

HAIRU.
(enter)

out of the case frames in Table 1, while sub­
entry 3 can be removed by comparing the SM
[PRO(product)] of 'KISHA(train) ' with the SM
[MEN(mental)] of case slot 'N2-GA' , the incor­
rect case frame, sub-entry 2, is selected together
with the correct case frame, sub-entry 1 . On the
other hand, it is quite expensive and ·time con­
suming to prepare a detailed SM system which
has enough descriptive power to discriminate ev­
ery usage of each verb.

In order to overcome this drawback in the SM
method, we have developed a method for case
structure analysis of Japanese sentences based on
examples in a case frame dictionary. In brief, this
method selects the case frame whose example is
the most similar to the input sentence. Because

KUROHASHI - NAGAO

ESl above is much more similar to examples of
sub-entry 1 , "(he party cat ship)-GA (classroom
kitchen port)-NI" , than to examples of sub-entry
2, "(coffee cake)-NI (sugar milk cheese poison)­
GA" , the correct case frame, sub-entry 1, can be
selected.

The similarity score between an input sentence
and examples of a case frame is calculated by the
following algorithm. The algorithm assumes that
case components depending on a verb are already
known, as in the case of processing a simple sen­
tence.

1 . Matching case components.
First, case components of the input sen­
tence and those of a case frame are matched
by the equality of POs. A noun modified by
a clause sometimes becomes a case compo­
nent for the verb of the modifying clause.
In this case, the modified noun can corre­
spond to case slots followed by PO 'GA',
'WO' , 'NI' or 'DE'.

2. Calculating the score of a matching
case component.

3.

A score of matching case components is de­
fined as the greatest similarity value be­
tween a noun of the _ input sentence and
exam pie nouns assigned to a case slot in
the case frame dictionary. The similarity
value (SV) between two nouns is given ac­
cording to the most specific common layer
(CL) between them in BGH, as follows: 1

CL 0 1 2 3 4 5 6 exact
match

sv 0 0 5 7 8 9 10 1 1

Calculating the score of a matching
pattern.
It is assumed that the matching pattern be-
tween an input sentence and a case frame is
given as follows: 1 This way of correlating the most specific common layer (CL) with the similarity value has the following basis (sv(i) means the similarity value between two nouns whose CL is i). (a) Since the first layer of BGH consists of four classes: nouns, verbs, adjectives and the others, sharing the first layer of two nouns does not indicate that they are similar. Therefore, we let sv(l) 'O' . (b) The greater the CL between two nouns is, the more similar they are. Furthermore, by studying BGH, we con­cluded that sharing the general layer (except the first layer) has more effect on the similarity between two nouns than sharing the specific layer. For this reason, sv(i) is designed to simulate a convex and monotone increasing function.

. STRUCTURAL D ISAMBIGUATION IN JAPANESE

1=2
� · · · · · · · "I, ' ' . .

An input sentence : 0GA 0KARA •D DE •

lt-�c.f:+ i
A case frame : 0GA 0KARA * 0 E • Owo : = .. :

m=3

(* is attached to optional components)

n : the number of matching components.
l : the number of matching or obligatory

case components in the input sen­
tence. Case components followed by
PO 'GA', 'WO' , 'NI' , 'E' or 'YORI' ,
are regarded as obligatory case com­
ponents.

m : the number of matching or obligatory
case slots in the case frame. Obliga­
tory case slots are specified in IPAL. totaLscare : the sum of scores of matching
case components.

The simplest way is to regard the total ..scare as the score of this matching
pattern. However, we need to take more
factors into consideration. We give the fol­
lowing score to this matching pattern:

{
if l > n 0
otherwise totaLscare x (¼) 112 x (;i)

1 12

We let the score 'O' when l is greater than
n, because the obligatory case components
cannot remain unmatched in the sentence
for its proper case frame. We include
(n/m) 1 12 in the above formula in order to
give priority to case frames with the higher
ratio of matching case components to the
total number of case components. We also
include (1/n)112 because it is preferable not
only that there are many matching compo­
nents but also that the scores of match­
ing components are big. The exponents
of (n/m) 112 and (1/n) 112 were determined
empirically.

1 15

Matching calculation is performed for all the
matching patterns between the input sentence
and all case frames, and then the case frame
whose matching pattern has the greatest score is
selected as the final result.

The experiment of comparing the example
based method with the SM method in IP AL, and
the discussion about the validity of the example
based method were reported in (Nagao, 1992) .

3 Structural Disambigua-
tion using Case Structure
Score

3 .1 Outline of the Method

In the preceding section we described a method
of analyzing the case structure for an input sen­
tence when case components depending on a verb
are already known, as in the case of a simple sen­
tence. This section introduces the way of extend­
ing the method to process complex or compound
sentences.

Japanese sentences can best be explained
by "Kakari-uke" , which is essentially the gover­
nor/ dependent relation between bunsetsus. 2 A
bunsetsu depends on, that is, modifies another
bunsetsu to its right (not necessarily the adjacent
bunsetsu) . Sometimes a bunsetsu can depend
on two or more bunsetsus, which creates struc­
tural ambiguity and makes case structure analy­
sis hard. Other work concerning structural dis­
ambiguation (Inagaki et al. , 1988) (Nagao, 1990)
solves this problem locally, that is, they try to
determine the governor of each bunsetsu indepen­
dently. However, in order to improve the preci­
sion of analyzing sentences, the ambiguity of the
governor of a bunsetsu must be processed simul­
taneously with the ambiguity of the governors of
other bunsetsus and with the word sense ambigu­
ity.

2Bunsetsu is the smallest meaningful block consisting of an independent word (nouns, verbs, adjectives, etc.) and accompanying words (POs, auxiliary verbs, etc.) .

1 16 KUROHASHI - NAGAO

·············� ·······························-� /-1··QI , "' -
ES2: KAZE-NI NOTTA KODOMO-TACHI-NO UTAGOE-GA WATASHI-NO MIMI-MADE TODOITA.

(on the wind) (be carried) (of children) (voices) (my) (ear) (reach)

··················::::::::·· ••······ ·································• ... � � ············, -
ES3: BASU-NI NOTTA KODOMO-TACHI-NO UTAGOE-GA WATASHI-NO MIMI-MADE TODOITA.

(a bus) (take) (of children) (voices) (my) (ear) (reach)

Figure 2: Need for a global disambiguation.
The ambiguity in example sentences in Fig­ure 2 makes this problem clear. In ES2, the meaning of the verb 'NOTTA' is 'be car­ried (on the wind)', and 'KAZE-NI(on the wind)' depends on 'NOTTA(be carried)' and 'NOTTA(be carried)' depends on 'UTAGOE­GA(voices)'; whereas, in ES3, the meaning of the same verb 'NOTTA' is 'take (a bus)', and 'BASU­NI(a bus)' depends on 'NOTTA(take)' and 'NOTTA(take)' depends on 'KODOMO-TACHI­NO(of children)'. This means that whether 'NOTTA' depends on 'KODOMO-TACHI-NO(of children)' or 'UTAGOE-GA(voices)' can not be determined independently of the structural am­biguity of other case components of the verb 'NOTTA' and its word sense ambiguity. For such a global disambiguation, we can use

the best matching score which is utilized for se­lecting a proper case frame for each verb. The best matching score between an input sentence and a typical exam pie for the usage of a verb can be considered as the appropriateness (score) for the case structure of the verb and its case com­ponents. When there are two or more readings (dependency structures) for a sentence because of structural ambiguity, the best reading (the cor­rect reading or the most plausible reading) is the one where all verbs in the sentence govern appro­priate case components and their case structures have high scores. This means that the best read­ing of a sentence can be selected by evaluating the sum of the scores for the case structures of all verbs in a sentence (Figure 3).

,(�;········· �� ,,-:.l .. , � / �,,
Nl Vl N2 N3 V2

score1 + score2
r ········· -...,

score2_ ... �► V2 ·· ...
/ / \ \

.. ·k:°N£': N3)
,•· /' •.. J•• •· . .

:1 Vl ,/ . , · { N{-: score1
\..._ \.. __ .-··

• •

score1 ' + score2'
r

score2' . �
···

··--
... •···· V2 •··· .•.

..... �" \ (.Nt .. / N2 ·: N3 .)
·- ·/···/··· _; {. Vl ,/

······�· score1 ' � \..

F igure 3 : Outline of the method.

STRUCTURAL DISAMBIGUATION IN JAPANESE 117

1 Key bunsetsu of coordi- Bunsetsu which indicates the existence of a coordinate structure, such
nate structure (KB) as " . . . SHI" , and " . . . TO" . This type is treated as depending on the

last bunsetsu in the coordinate structure.
2 PB depending on PB PB in a kind of subordinate structure, such as " . . . SURE-BA (if . . . V)" ,

" . . . SITA-NODE (because . . . V)" .
3 NB depending on PB Case components, such as " . . . GA" , " . . . WO" .
4 PB depending on NB PB in a clausal modifier, such as " . . . SITA (which . . . =V)" . A gover-

nor of this type of a bunsetsu may become a case component for the
bunsetsu.

5 NB depending on NB NB, such as "A-NO" in the noun phrase "A-NO B" .

Table 2: Dependent types.
In order to evaluate all the possible readings, it is necessary to expand all the structural am­biguity for a sentence. However, before entering this analysis stage, we detect the scope of coordi­nate structures in the sentence by using another method (Kurohashi - Nagao, 1992) to avoid the combinatorial explosion problem. The main rea­son that a sentence becomes long, particularly in Japanese, is that two or more matters are ex­pressed in a sentence, that is, a sentence has co­ordinate structures. Therefore, by detecting the scopes of coordinate structures beforehand, the possible readings are limited to the extent that we can evaluate all of them.

3.2 Calculation of the Possible De-
pendency Matrix (PDM}

For evaluating each possible dependency struc­ture, we first get all the possible gover­nor/ dependent relations between two bunsetsus. These relations are expressed in the form of a triangular matrix A = (%) (Figure 4), called possible dependency matrix (PDM), whose diag­onal element aii is the i-th bunsetsu (hereafter expressed as Bi) in a sentence and whose element aij (i < j) expresses whether Bi can depend on Bj ('1 ' means yes). As a governor, each bunsetsu is classified into one of two types according to parts of speech; nominal bunsetsu (abbreviated as NB) and pred­icative bunsetsu (abbreviated as PB). As a de­pendent, each bunsetsu is classified into one of five types in Table 2 according to its PO or con­jugation. We will explain this method in detail in the following subsections.
,6,-··-·· ·-··---,

KAZE-Nl I O O O O (�) (on d1e wind) ''-.
N01TA I I I I O (becarricd) Showing lhal "KAZE-Nl"can

KODOMO-TACHI-NO I I I I (of children) depend on ,-ooorrA·.
UTAOOE-OA O O I (�Ices)

WATASHI-NO I I (my)

� i':rr'. :\ �
KAZE-NJ (D O O O O I KAZE-Nl (D O O O O I KAZE-NI I O O O O CD KAZE-NI I O O O O CD

NOITA (D I I I O NOITA I (D I I O NOITA (D I I I O NOTTA I (D I I 0
KOOOMO-TAOMIO CD I I I KOOOMO-TAOII-NO CD I I I KOOOMO-TAOII-NO CD I I I l(OIJOMO-TAOl�NO CD I I I

UTAOOE-GA O O CD UTAOOE-GA O O CD UTAGOE-OA O O CD UTAOOE-GA O O CD
WATASHI-NO(D I WATASHI-NO CD I WATASHI-NOCD I WATASHI-NOCD I

MIMI-MADl!(D MIMI-MADE(!) MIMI-MADE CD MIMI-MADE CD
TOOOITA. TODOITA. TODOITA. TOOOITA.

Figure 4: Making the possible dependency structures by consulting the PDM (ES2).

1 18

The way of determining an element aii is
rather simple. The value of element aii is ad­
justed to ' 1 ' when Bi is type 2 or type 3 (which
can depend on PB) and Bj is a PB, or when Bi is
type 4 or type 5 (which can depend on NB) and
Bi is a NB.

3 .3 Masking the PDM by the
Scope of the Coordinate Struc­
ture

When an input sentence contains a key bun­
setsu of coordinate structure (abbreviated as KB)
which indicates the existence of a coordinate
structure, we detect its scope by the method
in which the two most similar series of bun­
setsus on the left and right side of the KB
are detected and are regarded as the scope of
the coordinate structure concerning the KB (see
(Kurohashi - Nagao, 1992) for details) .

After detecting the scopes of coordinate struc­
tures in a sentence, the following two operations
are performed on the PDM (Figure 5).

• Setting the governor of a KB: A KB is
treated as depending on the last bunsetsu
of a coordinate st-ructure. When Bi is a KB
and Bj is the last bunsetsu of its scope, the
value of the PDM element aij is adjusted to
' l ' .

KUROHASHI - NAGAO

• Masking the PDM: Because the prior and
the postedor parts of a coordinate structure
have their own consistent structures and
meanings, they are parsed independently
into dependency structures. Therefore, the
bunsetsu in a coordinate structure does . not
depend on or become governor of any bun­
setsu outside its scope, except the last bun­
setsu of the coordinate structure which has
governor/ dependent relations to bunsetsus
outside its scope. In order to express these
characteristics, the value of the PDM ele­
ments on the upper and right side of a co­
ordinate structure are set to 'O' .

As a result of this process, the number of possi­
ble dependency structures of a sentence can be
reduced drastically.

3.4 Making the Possible Depen-
dency Structures

Next, we expand the ambiguities of the case
components of an input sentence and make the
possible dependency structures by consulting the
PDM. Because governor/dependent relations do
not cross each other in Japanese, no-cross condi­tion can be set as follows: when Bi depends on
Bj , Bk (k < i) cannot depend on bunsetsus from
Bi+l to Bj-1 · For the following explanation, we

Not masked because outside bunsetus can depend on
the last bunsetsu in the coordination, B9.

The scope of the
coordination

MASKING AREA /

"i"1 1
I j 0
1 ! 0

Setting the governor
of the KB

Figure 5: Masking the PDM.

STRUCTURAL DISAMBIGUATION IN JAPANESE

define a dependency set as a set of a bunsetsu con­
sisting of bunsetsus on which the bunsetsu can de­
pend. This set is fixed dynamically by the PDM
and the no-cross condition.

The governor is determined for each bunsetsu
from right to left . When a bunsetsu concerning a
case component (type 3 or type 4 in Table 2) has
the possibility of depending on two or more bun­
setsus (that is , its dependency set consists of two
or more bunsetsus) , two or more partial depen­
dency structures are made according to the va­
rieties of its governor, and the structures on the
left side of each partial structure are analyzed.
On the other hand, when a bunsetsu, not con­
cerning case compop.ents (type 2 or type 5) , can
depend on two or more bunsetsus, its governor is
determined uniquely to be the nearest bunsetsu
in its dependency set , because a bunsetsu usu­
ally depends on the nearest bunsetsu in Japanese
(of course, this heuristic rule sometimes makes a
mistake. We will deal with this problem in future
work) .

In the case of ES2 (Figure 4 on page 117) ,
because 'NOTTA (be carried) ' can depend on
either 'KODOMO-TACHI-NO (of children) ' or

Our method MT systems

0 o x

0 X X

X 00
X ox

0 00
X X X

II

II
II
II

119
'UTAGOE-GA (voices) ' and 'KAZE-NI (on the
wind) ' can depend on either 'NOTTA (be car­
ried) ' or 'TODOITA (reach) ' , four possible de­
pendency structures are created.

3.5 Evaluation of Possible Depen-
dency Structures

Case frame selection is performed for all verbs in
each possible dependency structure which is made
in the above-mentioned processes. Of all possi­
ble dependency structures, we select the structure
which has the maximum sum of the best matching
scores for all verbs in the sentence. In the case of
ES2, the correct structure, the second one form
the left in Figure 4, is selected by this method,
selecting proper case frames for verbs 'NOTTA'
and 'TODOITA' (the sub-entry whose meaning is
"be carried" is selected for 'NOTTA' correctly) .

If there are two or more structures which have
the maximum score, the structure which is most
similar to the default dependency structure is se­
lected. . Here, a default dependency structure is
that in which each bunsetsu depends on its near­
est bunsetsu in its dependency set .

Type3 Type4 Total

56 12 68
23 15 38
5 0 5
6 0 6

104 6 110
2 4 6

Table 3: Comparison between our method and commercial MT systems.

4 Experiment

We report a experiment which illustrates the ef­
fectiveness of this method for solving structural
ambiguity. This method limits the possible read­
ings by detecting coordinate structures before­
hand; the validity of the method for detecting
coordinate structures has already been reported
in (Kurohashi - Nagao, 1992) . After detecting
coordinate structures, the remaining problem is

the ambiguity in a complex sentence. Therefore,
in this paper, we show an experiment of analyzing
complex sentences.

We had a language-trained person compose
a set of about 450 complex test sentences · each
of which includes one or more clausal modifier.
Then we analyzed these test sentences by our
method and evaluated the analysis results from
the viewpoint of structural disambiguation ac­
cording to the following structural types of sen-

120 KUROHASHI - NAGAO

IMA-MADI!

�
(lilllhll timc)

HUNH-DI!
(by fcny)

� (apcrformanc:e)
Correct gov'"""!"--- ENGi-GA

�

WATATrll-lTA □
(croa)

KAWA-N
(across a rivcr) =l

BASHI-WO

ow <�1 ,

Bp,J��>I
(a bride)

KAKHTA­
(build)

MAKU-WO
(acwtlin)

HIITA.
(draw)

(b) Typc3 - oomct (c) Typc3 - illC<llffl:t

govemor..-KYOURI-NI

�

; (home)
TODOMATrA --, (llay ll) I

HAHA-KARA
(form bil malber)

TEOAMI-OA
(a lctla)

TODOITA.
(bcrocicvcd)

, KANOJO-�.!)

�

BOUSHI-NO
� (ofa bll)
IRO- 0

(color)

(lllh��Tl
KITB-IRU

(wearing)--,
HUKU-NI
(loclolbcl)

AWASl!TA.
(fit) (d) Typcl - incon-ccl

(c) 'fypo4 - c:om:cl

Figure 6: Examples of detecting dependency structures.
tences.
Type 1 : A sentence which has no structural ambiguity concerning case components.
Type 2 : A sentence which has two or more cor­rect dependency structures.
Type 3 : A sentence which has two or more pos­sible dependency structures and whose cor­rect dependency structure is its default de­pendency structure.
Type 4 : A sentence which has two or more pos­sible dependency structures and whose cor­rect dependency structure is not its default dependency structure.
The left part of Table 4 shows its results. This table shows that the success ratio of getting a cor­rect dependency structure by this method is very high. Examples of correct and incorrect analysis are shown in Figure 6. The reasons of incorrect analysis are listed below.

• Inadequacy of the case frame dictionary IP AL regarding surface cases, distinction between obligatory case and optional case, and category specification for case slots (which means oversight of examples) .
• Inadequacy of the thesaurus dictionary BGH. This problem is closely related to

the method for correlating the level of most specific common layer with their similarity value. Generally speaking, however, BGH is not reliable enough to calculate an accu­rate similarity value between words.
• Insufficiency of examples in the case frame dictionary. Some case slots have only one or two examples. This problem can be solved simply by adding the wrongly analyzed sen­tences as new examples of their proper case frames.
In order to see how well these test sentences are analyzed by conventional SM methods, we translated test sentences of type 3 and 4, which have structural ambiguity, by two commercial machine translation (MT) systems. The commer­cial MT systems have a lot of heuristic rules, but they are thought to be based on tens or hundreds of SMs. We evaluated their outputs based on whether the syntactic analysis of Japanese sen­tences is correct or not (in the right part of Table 4) . Furthermore, we compared the analysis re­sults by our method with those by commercial MT systems (Table 3) . We can see that the dis­ambiguation of such complex sentences are fairly difficult for conventional SM methods and that our example-based method is significantly better at structural disambiguation than conventional SM methods.

STRUCTURAL DISAMBIGUATION IN JAPANESE 121

Our method MT system I MT system II correct incorrect sr* correct incorrect sr* correct incorrect sr* Type 1 219 0 100% - - - - - -Type 2 12 0 100% - - - - - -Type 3 183 13 93% 133 63 68% 147 49 75% Type 4 33 4 89% 12 25 32% 12 25 32% Type 3 and 4 216 17 93% 145 88 62% 159 14 I 68% *success ratio
Table 4: Results of experiments.

5 Concluding Remarks

We have proposed a method that detects the case
structure not only for a simple sentence, but also
for a compound or a complex sentence. In this
method, word ambiguity for verbs and structural
ambiguity are solved simultaneously. The basis of
this method is the process of selecting a proper
case frame for the input sentence by matching
it with example sentences in the case frame dic­
tionary. We have reported experiments showing
this method's superiority over the conventional,
coarse-grained SM method.

The remaining problems are:
• In this paper we have hardly discussed the

concept of thesaurus. Not only case struc­
ture analysis but also many other kinds of
natural language processing depend on the
accuracy of the thesaurus employed. We

need to do research on the framework of a
thesaurus where the relations of words are
handled in various aspects and also research
on a method for automatic construction of
such a thesaurus.

• At present we first detect the scope of the
coordinate structure and then detect the
case structure of a sentence. However, it is
desirable that the coordinate structure and
the case structure of a sentence are evalu­
ated by one combined measure as a whole.
In order to do this without the combina­
torial explosion of ambiguities , we need to
devise a data structure and a search method
for handling these problems together, or
need to devise a method for judging dy­
namically which information is the most re­
liable.

122

References
[1] Katz, J. - Fodor, J . (1963) "The struc­

ture of a semantic theory" . In: Language
39, 1 70-210.

[2] Longman Group Ltd. (1987) Longman Dic­tionary of Contemporary English.
[3] Nagao, M et al. (1985) "Outline of Machine

Translation Project of the Science and Tech­
nology Agency" . In: J.IPS Japan Vol.26,
No. 10 (in Japanese) .

[4] Information-technology Promotion Agency,
Japan (1987) IPA Lexicon of the Japanese Language for computers /PAL (Basic Verbs). (in Japanese) .

[5] Ikehara, S et al. (1991) "Semantic Analysis
Dictionaries for Machine Translation" . In: IPSJ-NLP 84-13 (in Japanese) .

[6] Kurohashi, S � Nagao, M (1992)
0

"Dy­
namic Programming Method for Analyzing

KUROHXSHI - NAGAO

Conjunctive Structures in Japanese" . In: Proc. of the 1,4.th International Conference on Computational Linguistics.
[7] Nagao, M (1992) "Some Rationales

and Methodologies for Exam pie-based A p­
p roach" . In: Proc. of Workshop on Fu­ture Generation Natural Language Process­ing. UMIST, Manchester.

[8] Inagaki, H et al. (1988) "Modification Anal­
ysis using Semantic Pattern" . In : IPSJ­NLP 67-5 (in Japanese) .

[9] Nagao, K. (1990) "Dependency Analyzer
: A Knowledge-Based Approach to Struc­
tural Disambiguation" . In: Proc. of the 13th International Conference on Computational Linguistics.

[10] National Language Research Institute
(1964) Word List by Semantic Principles.
Syuei Syuppan (in Japanese) .

1

GLR* -

An Efficient Noise-skipping Parsing Algorithm

For Context Free· Grammars

Alon Lavie and Masaru Tomita

School of Computer Scienc�, Carnegie Mellon University
5000 Forbes- Avenue, Pittsburgh, PA 15213

email: lavie©cs . emu . edu

Abstract

This paper describes GLR*, a parser that can parse any input sentence by ignoring unrec­ognizable parts of the sentence. In case the standard parsing procedure fails to parse an input sentence, the parser nondeterministically skips some word(s) in the sentence, and returns the parse with fewest skipped words. Therefore, the parser will return some parse(s) with any input sentence, unless no part of the sentence can be recognized at all. The problem can be defined in the following way: Given a context-free grammar G and a sentence S, find and parse S' - the largest subset of words of S, such that S' E L(G) . The algorithm described in this paper is a modification of the Generalized LR (Tomita) parsing algorithm [Tomita, 1986] . The parser accommodates the skipping of words by allowing shift operations to be performed from inactive state nodes of the Graph Structured Stack. A heuristic similar to beam search makes the algorithm computationally tractable. There have been several other approaches to the problem of robust parsing, most of which are special purpose algorithms [Carbonell and Hayes, 1984) , [Ward, 1991] and others. Because our approach is a modification to a standard context-free parsing algorithm, all the techniques and grammars developed for the standard parser can be applied as they are. Also, in case the input sentence is by itself grammatical, our parser behaves exactly as the standard GLR parser. The modified parser, GLR*, has been implemented and integrated with the latest version of the Generalized LR Parser/Compiler [Tomita et al. , 1988] , [Tomita, 1990] . We discuss an application of the GLR* parser to spontaneous speech understanding and present some preliminary tests on the utility of the GLR* parser in such settings.
Introduction and practically unimportant.

In this paper, we introduce a technique for sub­stantially increasing the robustness of syntactic parsers to two particular types of extra- gram­maticality: noise in the input, and limited gram­mar coverage. Both phenomena cause a common situation, where the input contains words or frag­ments that are unparsable. The distinction be­tween these two types of extra� grammaticality is based to a large extent upon whether or not the unparsable fragment, in its context, can be considered grammatical by a linguistic judgment. This distinction may indeed be vague at times,

Our approach to the problem is to enable the parser to overcome these forms of extra­grammaticality by ignoring the unparsable words and fragments and focusing on the maximal sub­set .of the input that is covered by the gram­mar. Although presented and implemented as an enhancement to the Generalized LR parsing paradigm, our technique is applicable in general to most phrase- structured based parsing for­malisms. However, the efficiency of our parser is due in part to several particular properties of GLR parsing, and may thus not be easily trans-
123

124

£erred to other syntactic parsing formalisms.
The problem can be formalized in the follow- ,

ing way: Given a context-free grammar G and a
sentence S, find and parse S' - the largest subset
of words of S, such that S' E L(G) .

A naive approach t o this problem i s t o exhaus­
tively list and attempt to parse all possible sub­
sets of the input string. The largest subset can
then be selected from among the subsets that are
found to be parsable. This algorithm is clearly
computationally infeasible, since the number of
subsets is exponential in the length of the input
string. We thus devise an efficient method · for
accomplishing the same task, and pair it with
an efficient search approximation heuristic that
maintains runtime feasibility.

The algorithm described in this paper, which
we have named GLR*, is a modification of
the Generalized LR (Tomita) parsing algorithm.
It has been implemented and integrated with .
the latest version of the GLR Parser/Compiler
[Tomita et al. , 1988) , [Tomita, 1990) .

There have been several other approaches to
the problems of robust parsing, most of which
have been special purpose algorithms. Some
of these approaches have abandoned syntax as
a major tool in handling extra-grammaticalities
and have focused on domain dependent seman­
tic methods [Carbonell and Hayes, 1984] , [Ward,
1991] . Other systems have constructed grammar
and domain dependent fall-back components to
handle extra-grammatical input that causes the

LAVIE - TOMITA

main parser to fail [Stallard and Bobrnw; 1992] ,
[Seneff, 1992).

Our approach can be viewed as an attempt
to extract from the input the maximal syntactic
structure that is possible, within a purely syn­
tactic and domain independent setting. Because
the GLR* parsing algorithm is an enhancement
to the standard GLR context-free parsing algo­
rithm, all of the techniques and grammars devel­
oped for the standard parser can be applied as
they are. In particular, the standard LR parsing
tables are compiled in advance from the grammar
and used "as is" by the parser in runtime. The
GLR* parser inherits the benefits of the original
parser in terms of ease of grammar development,
and, to a large extent, efficiency properties of the
parser itself. In the case that the input sentence
is by itself grammatical, GLR* behaves exactly
as the standard GLR parser.

The remaining sections of the paper are or­
ganized in the following way: Section 2 presents
an outline of the basic GLR* algorithm itself, fol­
lowed by a detailed example of the operation of
the parser on a simple input string. In section 3
we discuss the search heuristic that is added to
the basic GLR* algorithm, in order to ensure its
runtime feasibility. We discuss an application of
the GLR* algorithm to spontaneous speech un­
derstanding, and present some preliminary test
results in section 4. Finally, our conclusions and
further research directions are presented in sec­
tion 5.

(1) S --+ NP VP
(2) NP --+ det n
(3) NP --+ n

2

(4) NP, --+ NP PP
(5) VP --+ v NP
(6) PP --+ p NP

Figure 1 : A Simple Natural Language Grammar

The GLR* Parsing Algo­

rithm

the Universal Parser Architecture developed at
CMU [Tomita, 1986) . This implementation in­
corporates an SLR(0) parsing table.

The GLR* parsing algorithm is an extension of
the Generalized LR Parser, as implemented in The parser accommodates skipping words of

G LR * - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG 's 125
the input string by allowing shift operations to be performed from inactive state nodes in the Graph Structured Stack (GSS) . Shifting an in­put symbol from an inactive state is equivalent to skipping the words of the input that were en­countered after the parser reached the inactive state and prior to the current word being shifted. Since the parser is LR(O) , reduce operations need

Reduce Shift State det n V 0 sh3 sh4 1 2 sh7 3 sh9 4 r3 5 rl 6 r4 7 sh3 sh4 8 sh3 sh4 9 r2 10 r5 1 1 r6

not be repeated for skipped words (the reductions do not depend on any lookahead) . Information about skipped words is maintained in the symbol nodes that represent parse sub-trees. An initial version of the GLR* parser has been implemented in Lucid Common Lisp, in the inte­grated environment of the Universal Parser Ar­chitecture.
Goto p $ NP VP pp s

2 1 ace sh8 5 6

10 1 1
sh8 6 sh8 6

Table 1 : SLR(O) Parsing Table for Grammar in Figure 1
2 . 1 An Example

To clarify how the proposed GLR* parser actu­ally works, in lieu of a more formal description of the . algorithm itself, we present a step by step runtime example. For the purpose of the exam­ple, we use a simple natural language grammar that is shown in Figure 1 . The terminal sym­bols of the grammar are depicted in lower-case, while the non-terminals are in upper-case. The grammar is compiled into an SLR(O) parsing ta­ble, which is displayed in Table 1 . Note that since the table is SLR(O) , the reduce actions are inde­pendent of any lookahead. The actions on states 10 and 1 1 include both a shift and a reduce. To understand the operation of the parser, we now follow some steps of the GLR * parsing al­gorithm on the input x = det n v n det p n. This input is ungrammatical due to the second
"det" token. The maximal parsable subset of the

input in this case is the string that includes all words other than the above mentioned "det" . In the figures ahead, which graphically display the GSS of the parser in various stages of the pars­ing process, we use the following notation:
• An active (top level) state node is repre­sented by the symbol "©" , with the state number indicated above it . Actions that are attached to the node are indicated to the right of the node.
• An inactive state node is represented by the symbol "*" . The state number is indi­cated above the node and actions that are attached to the node are indicated above the state number.
• Grammar symbol nodes are represented by the symbol "#" , with the grammar symbol itself displayed above it .

126

0
<O sh3

after initialization
(and empty reduce phase)

LAVIE - TOMITA

Figure 2 : Initial GSS
sh4
0 det 3
•---#---© sh9

after first shift phase
(and empty reduce phase)

Figure 3: GSS after first shift phase

The parser operates in phases of shifts and reductions. We follow the GSS of the parser fol­lowing each of these phases, while processing the input string. Reduce actions are distributed to the active nodes during initialization and after each shift phase. Shift actions are distributed after each reduce phase. Note that the GLR* parsing algorithm distributes shift actions to all state nodes (both active and inactive) , whereas the original parser distributed shift actions only to active nodes. Reduce actions are distributed only to active state nodes. Figure 2 is the initial GSS, with an active state node of state 0. Since there are no reduce ac­tions from state 0 , the first reduce phase is empty. With the first input token being "det" , the shift action attached to state node O is "sh3" . Figure 3 shows the GSS after the first shift phase. The symbol node labeled "det" has been shifted and connected to the initial state node and to the new active state node of state 3. Since there are no reduce actions from state 3, the next reduce phase is empty. The next input token is "n" . Shift actions are distributed by the · algo­rithm to both the active node of state 3 and the inactive node of state 0, as can be seen in Fig­ure 3 . Figure 4 shows the GSS after the next shift phase. The input token "n" was shifted from both state nodes, creating active state nodes of states 9 and 4. The shifting of the input token "n" from state 0 corresponds to a parsing pos­sibility in which the first input token "det" is skipped. Reduce actions are distributed to both of the active nodes. The following reduce phase reduces both

branches into noun phrases. The two "NP"s are packed together by a local ambiguity packing pro­cedure. Using information on skipped words that is maintained within the symbol nodes, the am­biguity packing can detect that one of the noun phrases (the one that was reduced from "det n") is more complete, and the other noun phrase is discarded. The resulting GSS is displayed in Fig­ure 5 . Shift actions with the next input token "v" are then distributed to all the state nodes. However, in this case, only state 2 allows a shift of "v" into state 7. Figure 6 shows the GSS after the third shift phase. The state 7 node is the only active node at this point. Since no reduce actions are specified for this state, the fourth reduce phase is empty. Shift actions with the next input token "n" are distributed to all state nodes, as can be seen in the figure. Figure 7 shows the GSS after the fourth shift phase and Figure 8 after the fifth reduce phase. Note that there are no active state nodes after the fifth reduce phase. This is due to the fact that none of the state nodes produced by the reduce phase allow the shifting of the next input token
"det" . The original parser would have thus failed as this point. However, the GLR* parser succeeds in distributing shift actions to two inactive state nodes in this case.

For the sake of brevity we do not continue to further follow the parsing step by step. The final GSS is displayed in Figure 9. Several different parses; with different subsets of skipped words are actually packed into the single "S" node seen at the bottom of the figure. The parse that corre-

GLR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FQR CFG 's 127
sponds to the maximal subset of the input is the skipped.
one in which the second "det" is the only word

O det 3 n 9 after second shift phase
•---#---•---#---© r2
I n 4
1 -----#--------© r3

Figure 4: GSS after second shift phase

2 .2 Efficiency of the Parser

Efficiency of the parser is achieved by a number of
different techniques. The most important of these
is a sophisticated process of local ambiguity pack­
ing and pruning. A local ambiguity is a part of
the input sentence that corresponds to a phrase
(thus, reducible to some non-terminal symbol of
the grammar) , and is parsable in more than one
way. The process of skipping words creates a large
number of local ambiguities. For example, the
grammar in Figure 1 allows both determined and
undetermined noun phrases (rules 2 and 3). As
seen in the example presented earlier, this results
in the creation of two different noun phrase sym­
bol nodes for the initial fragment "det n" . The
first node is created for the full phrase after a
reduction according to the first rule. A second
symbol node is created when the determiner is
skipped and a reduction by the second rule takes
place.

Locally ambiguous symbol nodes are detected
as nodes that are surrounded by common state
nodes in the GSS. The original GLR parser de­
tects such local ambiguities and packs them into
a single symbol node. This procedure was ex-

0 det 3 n 9
•---#---•---#---•

n 4
1 ----#--------•

I NP 2
1 -------#-------© sh7

tended in the GLR* parser. · Locally ambigu­
ous symbol nodes are compared in terms of the
words skipped within them. In cases such as the
example described above, where one phrase has
more skipped words than the other, the phrase
with more skipped words is discarded in favor of
the more complete parsed phrase. This subsum­
ing operation drastically reduces the number of
parses being pursued by the parser.

Another technique employed to increase the
efficiency of the parser is the merging of state
nodes of the same state after a reduce phase
and after a shift phase. This allows the pars­
ing through the GSS to continue with fewer state
nodes.

2.3 Selecting the Best Maximal
Parse

An obvious and unsurprising side effect of the
GLR * parser is an explosion in the number of
parses found by the parser. In principle, we are
only interested in finding the maximal parsable
subset of the input string (and its parse) . How­
ever, in many cases there are several distinct max­
imal parses, each consisting of a different subset

after third reduce phase

Figure 5: GSS after third reduce phase

128

sh4 sh9 after third shift phase

LAVIE - TOMITA

0 det 3 n 9 (and empty fourth reduce phase)
•---#---•---#---•

I n 4
1 ----#--------•

I NP 2 v 7
1 -------#-------•---#---© sh4

Figure 6: .GSS after third shift phase
after fourth shift phase

0 det 3 n 9
•---#---•---#---•

I I n 9
I 1 -----------#-------© r3
I n 4
1 ----#--------•

I NP 2 v 7
1 -------#-------•---#---•-\ n 4
I 1 --#---© r2
1 -------------------------/

Figure 7: GSS after fourth shift phase
after f ifth reduce phase

sh3
0 det 3 n 9
•---#---•---#---•

I n 9
1 -----------#-------• n 4

----#--------• sh3
NP 2 v 7

-------#-------•---#---•---\ n 4
I I 1 --#---•

--------------- 1 ------- 1 ---/

I I NP 10
I 1 -------#---•

I VP 5
1 -----------#-------•

S 1
------------------------------#----•

NP 2
------------------#----------------•

Figure 8: GSS after fifth reduce phase

GLR* - AN EFFICIENT No1sE-SKIPPING PARSING ALGORITHM FOR CFG 's

after final reduce phase

0 det 3 n 9
•---#---•---#---*

I n 9
1 -----------#-------*
1 --\ n 9 n 4

----#-----*
1 --#---*

--/
NP 2 v 7

-------#-------*---#---*---\ n 4
I I 1 --#---*

--------------- 1 ------- 1 ---/
I I NP 10
I 1 -------#--�*---- I
I I VP 5 I
l -----�- 1 ---#-------* I
I I s 1 I

------------- . - 1 ------- 1 ------#----* I
I I I
I 1 --\ det 3 I
I I I ---#---*----+------

--------------- 1 ------- 1 --/
I I NP · 2 1 ---\ p 8

--------------- 1 ------- 1 ----#------*---- I ---- I -#---*---\ n 4
1 ------- 1 ----------- 1 ---- 1 ---/ I 1 --#---*

--------------- l ------- 1 ----------- 1 ---- 1 ---------- I ---/
I I I I I NP 1 1
I I I I 1 ------�#---*
I I I I NP 2 ·

--------------- l ------- l ----------- 1 ---- 1 ------#---------------*
I I I I
I I I 1 --------\ PP 6
I I 1 -------------- 1 --#---------*
1 ------- 1 ---------------------�---/

I I NP 10
I 1 ----------------------------#----------*
I w 5
1 -------- --------#-----------------------------*

S 1
--------------------------#------------------------------------©

Figure 9: GSS after final reduce phase

129

130

of words of the original sentence. Additionally, there are cases where a parse that is not maximal in terms of the number of words skipped may be deemed preferable. To select the "best" parse from the set of parses returned by the parser, we use a scoring procedure that ranks each of the parses found. We then select the parse that was ranked best. 1
Presently, our scoring procedure is rather simple. It takes into account the number of words skipped and the fragmentation of the parse (i.e. the num­ber of S-nodes that the parsed input sentence was divided into). Both measures are weighed equally. Thus a parse that skipped one word but parsed the remaining input as a single sentence is pre­ferred over a parse that fragments the input into three sentences, without skipping any input word. On the top of our current research goals is the enhancement of this simple scoring mecha­nism. We plan on adding to our scoring func­tion several additional heuristic measures that re­flect various syntactic and semantic properties of the parse tree. We will measure the effectiveness of our enhanced scoring function in ranking the parse results by their desirability.
3 The Beam Search Heuris­

tic
Although implemented efficiently, the basic GLR* parser is still not guaranteed to have a fea­sible running time. The basic GLR * algorithm described computes parses of all parsable subsets of the original input string, the number of which is potentially exponential in the length of the in­put string. Our goal is to find parses of maximal subsets of the input string (or almost maximal subsets). We have therefore developed and added to the parser a heuristic that prunes parsing op­tions that are not likely to produce a maximal parse. This process has been traditionally called "beam search" . A direct way of adding a beam search to the parser would be to limit the number of active state nodes pursued by the parser at each stage, and continue processing only active nodes that

LAVIE - TOMITA

are most promising in terms of the number of skipped words associated with them. However, the structure of the GSS makes it difficult to asso­ciate information on skipped words directly with the state nodes. 2 We have therefore opted to im­plement a somewhat different heuristic that has a similar effect. Since the skipping of words is the result of per­forming shift operations from inactive state nodes of the GSS, our heuristic limits the number of in­active state nodes from which a input symbol is shifted. At each shift st�ge, shift actions are first distributed to the active state nodes of the GSS. This corresponds to no additional skipped words at this stage. If the number · of state nodes that allow a shift operation at this point is less than a predetermined constant threshold (the "beam­limit"), then shift operations from inactive state nodes are also considered. Inactive states are pro­cessed in an ordered fashion, so that shifting from a more recent state node that will result in fewer skipped words is considered first. Shift operations are distributed to inactive state nodes in this way until the number of shifts distributed reaches the threshold. This beam search heuristic reduces the run­time of the GLR* parser to within a constant fac­tor of the original GLR parser. Although it is not guaranteed to find the desired maximal parsable subset of the input string, our preliminary tests have shown that it works well in practice. The threshold (beam-limit) itself is a param­eter that can be dynamically set to any constant value at runtime. Setting the beam-limit to a value of O disallows shifting from inactive states all together, which is equivalent to the original GLR parser. In preliminary experiments that we have conducted (see next section) we have achieved good results with a setting of the beam­limit to values in the range of 5 to 10. There exists a direct tradeoff between the value of the beam-limit and the runtime of the GLR* parser. With a set value of 5, our tests have indicated a runtime that is within a factor of 2-3 times that of the original GLR parser, which amounts to a parse time of only several seconds on sentences that are up to 30 words long. 1 The system will display the n best parses found, where the parameter n is controlled 1:>y the user at runtime. By default, we set n to one, and the highest ranking parse is displayed. 2This is due to the fact that state nodes are merged, so that a state node may be common to several different parses, with different skipped words associated with each parse.

G LR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG 's 131

Robust Parser
number (and percent)

Parsable 99
Unparsable 1
Good/Close Parses 77
Bad Parses 22

Table 2: Performance of the GLR* Parser on Spontaneous Speech

4 Parsing of Spontaneous
Speech Using GLR*

4.1 The Problem of Parsing Spon-
taneous Speech

As a form of input, spontaneous speech is full of
noise and irrelevances that surround the meaning­
ful words of the utterance. Some types of noise
can be detected and filtered out by speech rec­
ognizers that process the speech signal. A parser
that is designed to successfully process speech rec­
ognized input must however be robust to various
forms of noise, and be able to weed out the mean­
ingful words from the rest of the utterance.

When parsing spontaneous spoken input that
was recognized by a speech recognition system,
the parser must deal with three major types of
extra-grammaticality:

• Noise due to the spontaneity of the speaker,
such as repeated words, false beginnings,
stuttering, and filled pauses (i.e. "ah" ,
"um" , etc.) .

• Ungrammaticality that is due t o the lan­
guage of the speaker, or to the coverage of
the grammar.

• Noise due to errors of the speech recognizer.
We have conducted two preliminary exper­

iments to evaluate the GLR* parser's abil­
ity to overcome the first two types of extra­
grammaticality. We are in the process of experi­
menting with the GLR* parser on actual speech
recognized output, in order to test its capabilities
in handling errors produced by the speech recog­
nizer.

4.2 Parsing of Noisy Spontaneous
Speech

The first test we conducted was intended to evalu­
ate the performance of the GLR * parser on noisy

sentences typical of spontaneous speech. The
parser was tested on a set of 100 sentences of tran­
scribed spontaneous speech dialogues on a con­
ference registration domain. The input is hand­
coded transcribed text, not processed through
any speech recognizer. The grammar used was
an upgraded version of a grammar for the con­
ference registration task, developed and used by
the JANUS speech-to-speech translation project
at CMU [Waibel et al. 1991] . Since the test sen­
tences were drawn from actual speech transcrip­
tions, they were not guaranteed to be covered by
the grammar. However, since the test was meant
to focus on spontaneous noise, sentences that in­
cluded verbs and nouns that were beyond the vo­
cabulary of the system were avoided. Also pruned
out of the test set were short opening and closing
sentences (such as "hello" and "goodbye") . The
transcriptions include a multitude of noise in the
input. The following example is one of the sen­
tences from this test set:

"fckn2_10 /ls/ /h#/ um okay {comma}
then yeah I am disappointed {comma}
pause but uh that is okay {period} "

The performance results are presented in Ta­
ble 2. Note that due to the noise contaminating
the input, the original parser is unable to parse
a single one of the sentences in this test set . The
GLR* parser succeeded to return some parse re­
sult in all but one of the test sentences. How­
ever, since returning a parse result does not by
itself guarantee an analysis that adequately re­
flects the meaning of the original utterance, we
reviewed the parse results by hand, and classi­
fied them into the categories of "good/close" and
"bad" parses. The results of this classification are
included in the table.

132

4.3 Grammar Coverage

We conducted a second experiment aimed ex­clusively on evaluating the ability of the GLR* parser to overcome limited grammar coverage. In this experiment, we compared the results of the GLR* parser with those of the original GLR parser on a common set of sentences using the same grammar. We used the grammar from the spontaneous speech experiment for this test as well. The common test set was a set of 1 17 sen­tences from the conference registration task of the JANUS project. These sentences are simple syn­thesized text sentences. They contain no spon­taneous speech noise, and are not the result of any speech recognition processing. Once again, to evaluate the quality of the parse results re­turned by the parser, we classified the parse re­sults of both parsers by hand into two categories: "good/close parses" and "bad parses" . The re­sults of the experiment are presented in Table 3. The results indicate that using the GLR * parser results in a significant improvement in per­formance. The percentage of sentences, for which the parser returned good or close parses increased from 52% to 70%, an increase of 18%. Fully 97% of the test sentences (all but 3) are parsable by the GLR* parser, an increase of 36% over the origi­nal parser. However, this includes a significant increase (from 9% to 27%) in the number of bad parses found. Thus, fully half of the additional parsable sentences of the set return with parses that may be deemed bad. The results of the two experiments clearly point to the following problem: Compared with the GLR* parser, the original GLR parser, al­though fragile, returned results of relatively good quality, when it succeeded in parsing the input. The GLR* parser, on the other hand, will sue-

LAVIE - TOMITA

ceed in parsing almost any input, but this parse result may be of little or no value in a significant portion of cases. This indicates a strong need in the development of methods for discriminating between good and bad parse results. We intend to try and develop some effective heuristics to deal with this problem. The problem is also due in part to the ineffectiveness of the simple heuristics currently employed for selecting the best parse re­sult from among the large set of parses returned by the parser. As mentioned earlier, . we intend to concentrate efforts on developing more sophis­ticated and effective heuristics for selecting the best parse.
5 Conclusions and Future

Research Directions

Motivated by the difficulties that standard syntactic parses have in dealing with extra­grammaticalities, we have developed GLR * , an enhanced version of the standard Generalized LR parser, that can effectively handle two particular problems that are typical of parsing spontaneous speech: noise contamination and limited gram­mar coverage. Given a grammar G and and input string S, GLR* finds and parses S' , the maximal subset of words of S, such that S' is in the language L(G) . The parsing algorithm accommodates the skip­ping of words and fragments of the input string by allowing shift operations to be performed from inactive states of the GSS (as well as from the ac­tive states, as is done by the standard parser) . The algorithm is coupled with a beam-search­like heuristic, that controls the process of shift­ing from inactive states to a limited beam, and
Original Parser Robust Parser number percent number percent Parsable 71 61% 1 14 97% Unparsable 46 39% 3 3% Good/Close Parses 61 52% 82 70% Bad Parses 10 9% 32 27%

Table 3: Performance of the GLR* Parser vs. the Original Parser

GLR* - AN EFFICIENT NOISE-SKIPPING PARSING ALGORITHM FOR CFG's 133

maintains computational tractability.
Most other approaches to robust parsing have

suffered to some extent from a lack of general­
ity and from being domain dependent. Our ap­
proach, although limited to handling only certain
types of extra-grammaticality, is general and do­
main independent. It attempts to maximize the
robustness of the parser within a purely syntac­
tic setting. Because the GLR* parsing algorithm
is a modification of the standard GLR context­
free parsing algorithm, all of the techniques and
grammars developed for the standard parser can
be applied as they are. In the case that the in­
put sentence is by itself grammatical, GLR* be­
haves exactly as the standard GLR parser. The
techniques used in the enhancement of the stan­
dard GLR parser into the robust GLR* parser are
in principle applicable to other phrase-structure
based parsers.

Preliminary experiments conducted on the
effectiveness of the GLR* parser in handling

noise contamination and limited grammar cover­
age have produced encouraging results. However,
they have also pointed out a definite need to de­
velop effective heuristics that can select the best
parse result from a potentially large set of possi­
bilities produced by the parser. Since the GLR*
parser is likely to succeed in producing some parse
in practically all cases, successful parsing by it­
self can no longer be an indicator to the value
and quality of the parse result . Thus, additional
heuristics need to be developed for evaluating the
quality of the parse found.

We intend to concentrate on developing such
effective heuristics that will complement the
GLR* parser, and boost its performance in han­
dling spontaneously spoken input . We plan to
conduct extensive experiments with speech rec­
ognized input to evaluate our system and guide
its further development . We also plan to investi­
gate the potential of the GLR * parser in several
other application areas and domains.

134

References

[Carbonell and Hayes, 1984) J . G. Carbonell and
P. J. Hayes. Recovery Strategies for Parsing
Extragrammatical Language. Technical Report
CMU-CS-84-107, 1984.

[Seneff, 1992) S . Seneff. A relaxation method for
understanding spontaneous speech uttera nces.
In Proceedings of DARPA Speech and Natural
Language Workshop, pages 299-304, February
1992.

[Stallard and Bobrow, 1992] D. Stallard
and R. Bobrow. Fragment processing in the
DELPHI system. In Proceedings of DARPA
Speech and Natural Language Workshop, pages
305-310, February 1992.

LAVIE - TOMITA

[Tomita et al. , 1988) M. Tomita, T. Mitamura,
H. Musha, and M. Kee. The Generalized LR
Parser/Compiler - Version 8 . 1 : User's Guide .
Technical Report CMU-CMT-88�MEMO, 1988.

[Tomita, 1986) M. Tomita. Efficient Parsing for
Natural Language. Kluwer Academic Publish­
ers, Hingham, Ma. , 1986.

[Tomita, 1990] M. Tomita. The Generalized LR
Parser/Compiler - Version 8.4. In Proceed­
ings of International Conference on Computa­
tional Lingui sties (COLING-90}, pages 59-63,
Helsinki, Finland, 1990.

[Ward, 1991] W. Ward. Understanding spon­
taneous speech: The Phoenix system. In
Proceedings of IEEE International Con/ ere nee
on Acoustics, Spee eh and Signal Processing
(ICASSP), pages 365-367, April 1991 .

The Use of Bunch Notation in Parsing Theory

Rene Leerll1!akers

Institute for Perception Research
P.O. Box 513, 5600 MB EINDHOVEN

email: leermake©prl . philips . nl

Abstract Much of mathematics, and therefore much of computer science, is built on the notion of sets. In this paper it is argued that in parsing theory it is sometimes convenient to replace sets by a related notion, bunches. The replacement is not so much a matter of principle, but helps to create a more concise theory. Advantages of the bunch concept are illustrated by using it in descriptions of a formal semantics for context-free grammars and of functional parsing algorithms.
1 Introduction

The semantics of a context-free grammar can be given in a number of ways. In the three most important interpretations, a grammar is viewed as a rewriting system, or as a set of inequalities, or as an abstract program. The latter two in­terpretations are discussed in this paper, using a variant of set notation, called . bunch notation. Subsequently, a new Earley-like recursive-ascent parser is formulated with the same notation. There are two major differences between sets and bunches. One difference is that a bunch with one element is identified with that one element (the singleton property). Moreover, a function or operator that is defined on some domain may be
applied to a bunch of elements that belong to that domain. Such an application, say J(X) , causes the function f to be applied to each separate el­ement of the bunch X, after which the results are combined in a bunch, which is the result of J(X) . This is called the distributivity property of bunches. To define bunch-valued expressions, a variant of the notation of (Norvell - Hehner, 1992) is used. A language can be defined as a bunch of strings rather than as a set of strings. Then, both the singleton and · distributivity properties of bunches simplify the formalization of the nat-

ural interpretation of context-free grammars, in which grammar rules are seen as constraints on the possible assignments of languages to nonter­minals.
Multiple-valued (recursive descent and ascent) parsing functions can be defined as bunch-valued functions. Again, both the singleton and distribu­tivity properties have advantages. The singleton property smoothes the transition from parsing al­gorithms for general grammars to deterministic algorithms for LL(k) and LALR(k) grammars . The distributivity property makes it possible to write succinct formulae in bunch notation, that 'blow up' if translated into set notation. Finally, Norvell - Hehner's (1992) bunch notation has an advantage over standard set notation when it comes to defining functional algorithms, in that it resembles traditional notation for specifying pro­grams. In particular, the definition of recursive parsing algorithms is in terms of a construct akin to Dijkstra's guarded commands (Dijkstra, 1976).
The paper starts with an introduction to bunch notation. The first application of the nota­tion is a reformulation of the natural semantics of context-free grammars. Subsequent sections give functional definitions of known recursive descent algorithms and a new recursive ascent recognition algorithm.

135

136

2 Bunch notation
In standard mathematics, a (total) function f A 1-+ B associates one element of B with each element of A. A function is a special case of a relation, which may associate any number of ele­ments of B with each element of A. Conversely, each relation can be seen as a special kind of a function too: a set-valued function that, if ap­plied to a E A, yields the set of elements of B associated with a by the relation. Alternatively, a relation may be viewed as a nondeterministic function: of all elements of B related to some el­ement a E A, the nondeterministic function arbi­trarily picks one. The set-valuedness of functions associated with a relation has one peculiar consequence. Take a function f : A 1-+ B, and view it as a rel�tion with the special property that it relates only one element of B to each element of A. Next, use the mapping from relations to set-valued or nondeterministic functions to view the relation as a function again. Then one would expect to re-obtain the original function f. If the relation is mapped to a nondeterministic function, this is indeed the case: the function happens to be deterministic and is equal to f. Using standard sets, however, the set-valued function associated with the relation associated with f, produces a set with exactly one element (a singleton) where
f produces that element. This suggests that it is better not to see relations as set-valued functions, but rather as bunch-valued functions. A bunch is a set with some non-standard properties, so that it can be interpreted in an alternative way: a bunch is also a process that nondeterministi­cally produces one of its values. The alternative interpretation implies the following three proper­ties of bunches:

1. The process that corresponds to a bunch with one value (a singleton) is determin­istic: it can only produce that one value. Therefore: a singleton is identified with its only element.
2. The process that corresponds to a bunch produces definite values. Therefore: ele­ments of bunches can not be bunches with cardinality f:. 1.
3. If f is a function and x is a bunch that can produce the values e1 ... ek, then f(x)

LEERMAKERS

can take the values f(e1) ... f(ek)- There­fore: functions distribute over bunches.
With these properties, a bunch simultaneously al­lows two interpretations. In the set-valued inter­pretation it is just a collection of values. In the nondeterministic interpretation one value is ran­domly taken out of this collection. Bunches are the result of bunch expressions. Given two bunch expressions x and y, their bunch union xly denotes a process that could either pro­duce a value of x or a value of y. Bunch union has the same properties as set union: it is · asso­ciative, commutative and idempotent. The main difference with sets is that a bunch is not 'one thing' if it has more than one element. This is why a bunch with many elements cannot be one element of another bunch: it can only be many elements of another bunch. This is also why a bunch with many elements cannot be passed to a function or operator as one thing. Here are a few examples of equalities for bunch expressions that illustrate the above:

3 + (1 12) = 4 15 (3 14) + (1 12) = 4 15 1 5 16 = 4 15 16
cos(1rlO) = -1 1 1 (1 12) > 3 = false lfalse = false

If e is one of the values a bunch expression x can take, we write e � x. Here and henceforth, e is a definite value or, what is the same, a singleton bunch. As definite values are also bunches, and elements of bunches cannot be bunches with car­dinality unequal to one, the distinction between E and � is no longer needed: if, for all e, e � x implies e � y then we write x +-'- y. In words, x is a sub-bunch of y, or, x is smaller than y. Bunch expressions can be simple or com­plex. The simplest simple bunch expression is the empty bunch null. It is the identity of bunch union. Other simple bunch expressions are enu­merations. The following is a formal definition of simple bunch expressions with elements from a (possibly infinite) set of definite values:
1. null is a simple bunch expression;
2. if e is a definite value then e is a simple bunch expression;
3. if x and y are simple bunch expressions then xly is a simple bunch expression.

THE USE OF BUNCH NOTATION IN PARSING THEORY 137

A simple bunch expression may be rewritten
into an equivalent simple bunch expression using (x jy) j z = x j (y j z) = x jy jz , x jy = y jx, x jx = x
and x lnull = x . Assuming some ordering on the
set of definite values, it is not difficult to define
a canonical form for each simple bunch expres­
sion, which may serve as a unique representation
of the bunch denoted. The bunch expression all
denotes the smallest bunch such that e +- all for
all definite values e .

Complex bunch expressions are constructed
with variables. Unless stated otherwise, variables
have types that consist of definite values only.
Such variables are called definite; they cannot
be bound to bunches with cardinality unequal to
one. Given a proposition P and bunch expres­
sions x and y, the expression

if P then x else y (I)

is a complex bunch expression. I t contains free

variables if P, x, or y contain free variables (non­
tri vial P do) . It will be clear that for each as­
signment of values to the variables the complex
expression (I) is equivalent to x if P is true and to
y otherwise. Free variables in bunch expressions
can be bound by A-abstraction. If i is a variable
and x is a bunch expression, then

Ai . X

is a bunch-valued function. For any definite value
e,

Ai • x(e) di Substitute e for free variables i ev­
erywhere in x .

This definition holds only for definite values e .
Note, therefore, that i t i s important to distin­
guish between functions and expressions. In ex­
pression x in Ai · x, variable i may occur more
than once. If function Ai · x is applied to a
bunch y, then the distributivity of functions over
bunches means that the function applies to each e +- y separately. That is, if x = mult(i , i) then Ai · x(2 13) = mult(2, 2) l mult(3, 3) ; mult(2,3) is
not included. In jargon, our functional language
is characterized as having a semantics such that
functions are not unf oldable: a function invoca­
tion cannot be textually replaced by the expres­
sion that defines the function, if function parame­
ters are not definite (Sondergard - Sesoft , 1990).

This is practically all we need to know about
bunches. Let us just add some notations:

P t> x di if P then x else null
. def .

let i · x = Ai · x(all)
The bunch all will in general be infinite, so that
a function that distributes over it might produce
an infinite bunch as well. In our application, how­
ever, the structure of bunch expressions will be
such that let's produce only finite bunches.

The following laws are useful for manipulating
bunch expressions:

(Pi V A) t> x = (Pi t> x) l (P2 t> x) , (3)
let i · (i +- x t> l(i)) = l(x) . (4)

In (4) it is assumed that i does not occur free in x. These laws are easy to prove: the first two
follow from the definition of t> , and the third
follows from the distributivity of function appli­
cation over bunches.

Normally, set-valued functions are defined us­
ing set comprehension according to the schema

l(X) = {A(X, Y) l3zP(X, Y, Z) } , (5)

where P is a predicate, A is a function and

X, Y, Z are variables or sets of variables. Now let
us define a related bunch-valued function, called
lb :

lb = AX · (letY · (letZ · (P(X, Y, Z) t> A(X, Y))))
(6) It follows that 1 and lb are equivalent if the latter

is interpreted as producing a set . A nice aspect of
(6) is that its algorithmic content is more explicit
than the algorithmic content of (5); because let
is defined as a function application to all, it is
explicit that (6) involves searching over all values
of Y, Z.

In this paper we will use a notational conven­
tion that removes the Ns and the let 's from def­
initions such as (6) . Instead of (6) we write

lb(X) = P(X, Y, Z) t> A(X, Y) . (7)

138 LEERMAKERS .

So >i.X • has changed into a formal argument on sult" :
the left-hand side and we adopt the convention that free variables at the right-hand side (here Y,Z) are bound by let 's. The scope of such an implicit let is in practice always clear: it is from the first occurrence of the variable usually until
" I '' , or else until the end of the bunch expression. Thus, whenever an expression P t> x is encoun­tered in this paper, with some free variables, its meaning is that all possible values of the free vari­ables must be tried to make the guard P true and all results x must be combined in one bunch. Lastly, note that (7) is equivalent to

fb(X) = 3z (P(X, Y, Z)) t> A(X, Y) .
That is, both functions produce the same bunch for every X. The algorithmic interpretation ·of both formulae is not exactly the same, however (see below). Therefore, if a variable appears only in a guard, like Z in (7), it is implicitly subject to existential quantification.

Algorithmic interpretation

J(X) = result :=null; for all Yi such that Pi (X, Yi) do result:=result I A1 (X, Yi) od; for all � such that P2 (X, Y2) do result :=result I A2(X, Y2) od;

for all Yk such that Pk (X, Yk) do result:=result I, Ak (X, Yk) od; return result
The invocations Ai (X, Yi) and function applica­tions inside Pi are to be computed in the same vein. In this algorithmic interpretation, a func­tion may or may not terminate. If it does not ter� minate, J(X) does not define an algorithm. This may happen if the definition of J(X) is circular, i.e. if the' computation of some Pi or Ai involves J(X) again. The above func�ion f is deterministic if for each X at most one proposition Pi(X, �) can be true, for only one value of �, and function Ai is deterministic.

In what follows, bunch-valued functions are either known computable functions, or their definitions 3 have the following general format: The natural semantics of

grammars

J(X) = Pi (X, Y1) t> A1 (X, Y1) I P2(X, Y2) t> A2(X, Y2) I

where X is a collection of input parameters and Yi are collections of variables subject to let quantifi­cation. Pi are predicates and Ai are bunch-valued functions. Both Pi and Ai may involve other applications of bunch-valued functions. The in­tention is that bunches are interpreted as collec­tions: bunch-valued functions produce all their results simultaneously. Function f then has a simple algorithmic (imperative) interpretation, which makes use of a bunch-valued variable "re-

Within the family of rewriting systems, context­free grammars have a distinguishing property : they have a declarative meaning. This means that a grammar can be understood not only by pro­ducing a sample of trial sentences with it, but also by viewing it as a collection of static statements about the language to be defined. This is the un­derlying reason for their intelligibility and their usefulness. In the natural interpretation, gram­mar symbols are seen as variables over languages and grammar rules as stipulations of relations be­tween these variables. A grammar, in this view, is analogous to a collection of arithmetic inequal­ities with variables. Take, for instance, the fol­lowing inequalities:
k � l + 3, l � 5.

THE USE OF BUNCH NOTATION IN PARSING THEORY 139

A formal interpretation of this is that there are two symbols k and l here, that there is some as­signment function h from these symbols to num­bers, and that the inequalities restrict the possi­ble values of h, via
h(k) � h(l) + 3, h(l) � 5.

Of course, there are still many functions h that satisfy these constraints but there is one that as­signs the smallest possible numbers to the sym­bols: h(k) = 8, h(l) = 5.
Notation
A context-free grammar is a four-tuple G = (VN , Vr , P, S), where S is the start symbol, VN is the bunch of nonterminals, Vr is the bunch of terminals. Furthermore, V = V N IVr is the bunch of grammar symbols. Relating to grammar symbols, the following typed variables are used: x, y .- Vr , �, TJ, p, (.- Vr , A, B .- VN , X, Y .- V , et., /3, 1, 8, µ, v .- V *. Lastly, P is the collection of grammar rules. A grammar rule for nonterminal A, with right-hand side et., is denoted as A --+ et.. If /3 can be derived from et. in any number of steps, we write a � /3.
Languages
A language is a bunch of strings of terminals, i.e. a subbunch of v,; . Concatenation is an operation that is defined for (pairs of) strings. Therefore, it distributes over languages L and M, if these are concatenated:

LM = � .- L A p.- M t> �P- (8)

This equation is referred to as the definition of language multiplication, although it is not really a definition: it follows from the distributivity prop­erty.
The interpretation
A nonterminal can be seen as a variable of type language (like k, l are variables of type integer) , a terminal is a constant language (like 3,5 are con­stant integers) . Just like in the arithmetic exam­ple, we assume an assignment function that per­forms the mapping from symbols to their inter­pretation. This function is called La, as its value will be determined by the grammar G. Take, for

example, the grammar rule A --+ xBy. In the natural interpretation this rule means
xLa(B)y .- La(A).

That is, the grammar rule is a constraint on La . In principle, La need only apply to nonterminals, but it is convenient to extend it , via
La(x) = x, for all x .- Vr,

to all grammar symbols. Moreover, we further ex­tend it to arbitrary strings of grammar symbols, via La(a/3) = La(a)La(/3), La(€) = €,
so that the following equalities hold true:

(9)

xLa(B)y = La(x)La(B)La(y) = La(xBy).
Equation (9) states that La not only maps grammar-symbol strings into languages: it also maps an operation on its input objects (concate­nation) to an operation on its output objects (lan­guage multiplication) . In other words, the ex­tended La is a homomorphism. The interpretation of any grammar rule A --+ et. now reads

La(et.) .- La(A).
In other words, the language assoc�ated with A and the language associated with et. are related: the latter is a sub-bunch of the former. Just like in the arithmetic example, a collection of such in­equalities does not define the assignment function uniquely. There is one La, however, that assigns the smallest possible languages to grammar sym­bols. This smallest homomorphism is what the grammar is intended to define. Inspired by the arithmetic analogue one may write X instead of La(X) and insist that A --+ et. means et. .- A: et. is a sub-bunch of A. Rules A --+ et.1 , . . . ,A --+ Ct.k , for the same non terminal, are often abbreviated to A --+ et.1 1 - - - let.k . This is very natural here; it means that et.1 1 - - - lak is a sub­bunch of A. A rule A --+ et.1 1 - - - let.k involves a list of alterna­tive strings. For completeness, and for later ref­erence, let us give the formal semantics of more general rules A --+ a, with a denoting arbitrary regular expressions. As above, this semantics is La(a) .- La(A), where the application of La to

140
regular expressions is defined by (a, b are regular expressions)

(concatenation) (alternation) (optionality) (iteration)
La(ab) = La(a)La(b) , La(alb) = La(a) I La(b) , La((a)) = f I La(a) , La({a}) = f I La({a})La(a) , . (10) where the brackets () �ere used for optionality instead of the more usual [] to avoid confusion later on.

4 General recursive descent

parsing

Given some input string { of terminal symbols, a grammar determines for each string of grammar symbols a whether or not { can be derived in any number of steps from a, i.e. whether a � {. Also, for each substring 1/ of { it may be deter­mined whether or not a � 1/· Let us define for each a a bunch-valued recognition function [a] from Vr to Vr , as follows:
[a]({) = a � 1/ I\ ! = 1/P t> p. (11)

Stated differently, this defines a function [·] that operates on two strings of grammar symbols, such that [·](a, !) = [a](!). Similar recognition func­tions, with lists instead of bunches, were intro­duced in (Wadler, 1985). Note that f � fS] (!) , equivalent to S � !, means that ! is a correct sentence. In (1 1), the argument is split into two parts, the first of which is derivable from a. The second part is output by the function. It follows, for all a and /3, that
[a/3](!) = a/3 � 1/ I\ ! = 1/P t> P

= a � 1/1 A ! = 1/1 Pl A /3 � 1/2 /\ Pl = TJ2P t> p
= a � 1/1 A ! = 1/1 Pl t> (/3 � 1/2 /\ Pl = 1/2P t> p)
= Pl � [a](!) t> [,8](p1)
= [,B]([a]({)).

Here (2) and (4) were used in the second and fourth transitions, respectively. Thus, [a,8] = [a] [/3], where [a] [/3] is the composition of func­tions [a] and [,B], defined by
(Jg) (!) = g(J(!)) . (12)

LEERMAKERS

In other words, a = X1 • • • Xk implies [a] . = [X1] .. . [Xk] and [€]({) = !- In algebraic terms, the mapping [·] is a homomorphism from V* to a function space of bunch-valued functions. As the functions [a] are compositions of functions [X], an implementation for the latter implies an im­plementation of the former. Now,
[X] (!) = X � 1/ I\ ! = 1/P t> p

= ((X � Vr I\ X = 11) V (X -+ /3 A /3 � 11)) A ! = TJP t> P = (X � Vr " e = Xp t> p) I (X -+ /3 A /3 � 1J I\ ! = 1/P t> p)
= (X � Vr " e = Xp t> p) I

(X -+ /3 t> (,8 � 1/ I\ ! = 1/P t> P))
= (X � Vr A ! = Xp t> p) I · (X -+ ,8 t> [,B]({)).

Here (3) was used to eliminate the disjunction V and (2) to eliminate a conjunction A. To summa­rize, we have, for terminals x and nonterminals A: [x](!) = ! = xp t> p, [A]({) = A -+ a t> [a](!), [XY/3]({) = [Y,B]([X](!)), (13)
[f](e) = e.

Note the use of the distributivity property of bunches in the third line. If rules have regular expressions at their right-hand sides, all this is easily extended (compare with (10)):
[x](!) = ! = xp t> p, [A](!) = A -+ a t> [a](!), [ab] (!) = [b]([a](!)), [alb]({) = [a]({) I [b]({), (14) [(a)](e) = e I [a](!), [{a}]({) = e I [{a}]([a](e)), [f](e) = e.

The right-hand sides of lines three to six in (14) depend on a, b only via the functions [a] and [b]. For this reason, these definitions are sometimes seen as applications of combinators, i.e., higher­order functions. With f, g denoting arbitrary bunch-valued functions from some domain (e.g.,
v;) to itself, {!}, [!], f ig are other such func­tions, defined by

(J ig)(!) = !(!) I g(!) , (alternatives f, g) UHe) = e I {f}(J(e)), (iterative f)
UH e) = e I f (e). (optional f)

THE USE OF BUNCH NOTATION IN PARSING THEORY 141
It follows that [al b] = [a] l [b] , [{a}] = { [a] } , and [(a)] = ([a]) . Finally, [ab] = [a] [b] , where [a] [b] is the functional composition of [a] and [b] , defined in (12) . In other words, the recognition function [a] for regular expression a can be obtained by replacing every grammar symbol X that occurs in it by its function [X] and interpreting all con­structors in the regular expression (alternation, concatenation, iteration, optionality) as combi­nators of recognition functions. For a detailed exposition of combinator parsing, see (Hutton, 1992) . (Norvell - Hebner, 1992) issued a warn­ing that higher-order programming with bunch­valued functions may lead to paradoxes that were noted by (Meertens, 1986) in the case of nonde­terministic functions. The above combinators do not suffer from problems of this kind.
5 Deterministic recursive

descent parsing

The singleton property of bunches is notation­ally convenient if one applies a general parsing technique to grammars for which the technique happens to provide a deterministic recognizer. If the general technique is defined with set-valued recognition functions, in the deterministic case all these functions produce sets with at most one value. If a function produces the empty set , this means that an error has been detected. If one works with bunch-valued functions instead, in a deterministic recognizer these produce null if an error has occurred and definite values otherwise. There is a standard method to make parsing algorithms more deterministic: the addition of look-ahead (Aho - Ullman, 1977) . The applica­tion of look-ahead techniques to recursive descent parsing involves two functions, first and follow:

first(a) = x � Vr I\ a � x/3 t> x,
follaw(X) = A � o:X/3 t> Jirst(/3) I A � o:X/3 A /3 � f t> follaw(A).

Although follow not necessarily terminates if it is interpreted as an algorithm, it uniquely de­fines a smallest bunch follow(X), for every X. It is convenient to add to each grammar the rule S' � S ..L, where S' and ..L are new symbols which appear only in this rule. S' is the new start sym­bol and ..L is formally added to Vr. Of course, any

correct input must now end with ..L. The above then implies that .1� follow(S), and it is guar-anteed that follow(X) =I- null if :30,0 (8 � aX {3). If X is one of the added symbols S' , ..L then follow(X) = null. It is not difficult to verify that if for A =I- S' function [A] is redefined as
[A](e) = A � a " e = XTJ " (x � first(a) V (a � f A x � follaw(A))) t> [a](e),

the result of [S'] (e) is not affected. If for all A =I- S' and every x at most one a exists that makes the guard true, the choice of grammar rule is always unique. This is the case for LL(l) gram­mars. For such grammars, the look-ahead tech­nique makes each invocation [A] (e) produce either null if an error in the input string has been en­countered, or a string of terminals that still have to be parsed; the general algorithm specializes to a fully natural deterministic recognizer.
6 Recursive ascent parsing

Bunch notation is equally useful for bottom-up parsing. To illustrate this, let us start from the following specification of an Earley-like parser (o � (v; ivNv;)) =
[A � a · {31(8) = 8 � v; " /3 � f t> A8 I (15) 8 = X(I\ /3 � XTJ I\ (= TJP t> Ap.

If applied to a string e of terminal symbols, this specification reduces to

This means that, after adding a rule S' � S to the original grammar, it follows that
s' � [s' � -s] (e)

if and only if e is a correct sentence. The in­tuition behind this is that a function invocation [A � a · {3](8) investigates ,which prefixes of 8 can be rewritten to /3, in a bottom-up way (using grammar rules from right to left) . If a non-empty prefix can be found, this corresponds to a part of the input sentence, which is a string rewritable to the first symbol of 8 (i.e. X) followed by the remainder of the prefix (which are terminals) . If

142
/3 � f, the prefix may be empty. Assuming that the function is invoked only if a directly preced­ing part of the input sentence was rewritable to et , it is deduced that this preceding part, followed by the part that corresponds to the found prefix of 8 , "can be rewritten into A. The function thus returns A, followed by the part of the input sen­tence that has not yet been parsed. If more than one prefix can be found, the function delivers a bunch. We strive for an implementation of (15) of the recursive ascent type. To this end, we note that f3 � X 1/ means that either X is introduced by a grammar rule B -+ µXv, with µ � f, or X is already in /3: f3 = µXv, with µ � €:

[A -+ a · {3) (8) = o +- v,;. " /3 � € t> Ao I 8 = X (A /3 = µXv A µ � € A v � 1/ A
' = 1/P t> Ap I 8 = X' " f3 � B111 " B -+ µXV " µ � € /\ V � 1/2 I\ (= 1/21/lP t> Ap.

After a few elementary rewriting steps using (15), one finally obtains
[A -+ a · /3](8) = o +- v,;. " f3 � € t> Ao I 8 = X (A /3 = µXv A µ � € t> [A -+ aµX · v](() I (16)

* X * 8 = X (A /3 -+ B1 A B -+ µ v A µ -+ € t> [A -+ a · f3]([B -+ µX · v](()).
The conciseness of the last line is due to the dis­tributivity property of bunches. In deriving (16) a critical need is that not B +- VT, in other words, that terminals and nonterminals are disjoint. Note that if a function [A -+ a · /3] is invoked by another function, then its argument 8 is in v,;. . It may recursively call itself with rewritten ver­sions of this 8, i.e. , with prefixes of 8 replaced by some non terminal B, until this B appears in /3 in such a way that the symbols before B (in /3) may derive the empty string. The recognizer terminates for all non-cyclic grammars. Note that the conditions

/3 � € /3 = µXv i\ µ � f 37(/3 � B1) A B -+ µXv A µ � €
are independent of the input string, and for ev­ery /3, X the values of µ, v, B that make them

LEERMAKERS

true can be computed· before parsing. To get an efficient implementation such pre-computation is to be compounded with function memoization (Leermakers, 1992; 1993). In the case of a grammar without €-rules, (16) becomes even simpler:
[A -+ et · /3)(8) = 8 +- v,;. " /3 = f t> Ao I 8 = X(A /3 = Xv t> [A -+ aX - v](() I 8 = X (A /3 � B1 A B -+ Xv t> [A -+ et · /3]([B -+ X · v](()).
As far as I know, the recognizer of this sec­tion is a new variant of Earley-like parsing. In (Leermakers, 1992) a closely related algorithm was given, with two functions per dotted rule, instead of one. The functional parsing algorithm given in (Matsumoto et al. , 1983) is also quite similar to ours, even though it does not involve dotted rules. For a discussion of the relation of the above algorithm with the standard Earley ., parser , see (Leermakers, 1993). An analogous LR parser, with one function for each state (and, of course, without a parse stack), is also constructed in (Leermakers, 1993).

7 Conclusions

This paper should serve two purposes. F irstly, it should show the beauty of functional parsing the­ory. Secondly, the paper is meant to establish, by way of illustrative examples , that the bunch con­cept is a mathematical notion as respectable as sets and lists. The reader is invited to translate any of the sections into set notation and observe the notational burden that he/she has to add . One could argue that almost the same con­ciseness can be obtained using normal sets and an extra ('map') operator to distribute functions over sets. However, one should keep in mind that the bunch notion is more primitive than its set relative: a bunch is an aggregation, a set is an en­capsulated aggregation (Hebner, 1993). It is the encapsulation aspect of sets that leads to concep­tual problems, to students (a set that contains nothing is not nothing) as well as to scientists (the set that contains everything, including itself, leads to a paradox). Being essentially simpler ,

THE USE OF BUNCH NOTATION IN PARSING THEORY 143
bunches are not troubled by such intricacies. In practice, it is fine to implement bunches with sets, as long as one keeps in mind the difference be­tween a notion and its implementation. After all, the possibility of implementing sets in terms of lists does not mean that sets can be dispensed with. One distinguishing aspect of bunch-valued functions, which goes beyond notational issues, is that normal functions are embedded in them. "The conciseness of bunch notation is not its only virtue. Functions defined with bunch nota­tion look more 'algorithmic' than their transla­tion into set notation, which is not unimportant if one wants t.o define an algorithm, if only for pedagogical reasons. The notion of bunches has been introduced in (Hehner, 1984). Sets with nondeterministic in­terpretation, like bunches, were also proposed in (Hughes - O'Donnell, 1990). In (Wadler, 1992) a kind of bunch-valued lambda-calculus is dis­cussed. Bunch-valued functions also appear in (Meertens, 1986; Bauer et al., 1987; Norvell -Hehner, 1992), as nondeterministic specifications of programs. I refer to (Hehner, 1993) for further elabora­tions on the bunch theme, and many other ap­plications. This work also proposes to make a distinction between strings and sequences, which also exists between bunches and sets: strings have the singleton property, but sequences do not. As is apparent from the notation for elements of V *, it is natural to make no distinction between gram­mar symbols and elements of V* that have length

one. Thus, elements of V * are strings , not se.: quences. In (Leermakers, 1993) bunch notation is adopted as a tool for the formulation of parsing theory, in the spirit of this paper. In this book, bunches are also used in the theory of attribute grammars. In conventional attribute grammars, each attribute has an associated function that computes its value in terms of the values of other attributes. It is very natural to take such an at­tribute function to be bunch-valued. If the func­tion produces null, this means that the computa­tion of its attribute fails. If it produces a bunch with more than one element, attribute computa­tion is ambiguous. Bunch-valued attribute func­tions are particularly apt for natural-language parsing, since both failure and ambiguity of at­tribute computation are natural phenomena in this application of attribute grammars.

Acknowledgement

I thank Theo Norvell for his useful comments on the first draft of this paper , and Lex Au­gusteijn, Paul Jansen, Frans Kruseman Aretz and Mark-Jan Nederhoffor their constructive remarks about the second draft. Triggered by (Norvell - Hehner , 1992), it was Lex Augusteijn who in­spired me to use bunches for the kind of parsing algorithms we are both engaged in.

144

References

Aho A.V. - J.D. Ullman (1977) Principles of Compiler Design. Reading, MA: Addison­
Wesley.

Bauer F .L. - H. Ehler - A. Horsch - B.
Moller - H. Partsch - 0. Puakner - P. Pep­
per (1987) The Munich Project GIP: Volume II: The Program Transformation System CIP­
S. Lecture Notes in Computer Science 292.
Berlin: Springer-Verlag.

Dijkstra E.W. (1976) A Discipline of Program­ming. London: Prentice Hall.

Hehner E.C.R. (1984) The Logic of Program­ming. London: Prentice-Hall.

Hehner E.C.R. (1993) a Practical Theory of Pro­gramming. Berlin: Springer-Verlag.

Hughes J. - J. O 'Donnell (1990), "Express­
ing and reasoning about non-deterministic
functional programs" . In: K. Davis and
J. Hughes (Eds) , Functional Programming.
Berlin: Springer-Verlag.

Hutton G . (1992) "Higher-order functions for
parsing" . In: Journal of Functional Program­ming 2(3) , 323-343.

LEERMAKERS

Leermakers R. (1992) "A recursive ascent Earley
parser" . In: Information Processing Letters
41 , 87-91 .

Leermakers R. (1993) The Functional Treatment of Parsing. Amsterdam: Kluwer Academic
Publishers.

Matsumoto Y. - H. Tanaka - H. Hirakawa -
H. Miyoshi - H. Yasukawa (1983) "BUP: a
bottom-up parser embedded in Prolog" New Generation Computing 1 (2) .

Norvell T.S. - E.C.R. Hehner (1992) "Logical
Specifications for Functional Programs" . In: Proceedings of the Second International Con­ference. on the Mathematics of Program Con­struction. Oxford: Oxford University Press.

Sondergard - Sesoft (1990) "Referential Trans-.
parency, Definiteness and Unfoldability" . Act a Inf ormatica 27, 505-51 7.

Wadler P. (1985) "How to replace failure by a list
of successes" . In: Conference on Functional Programming Lang;uages and Computer Ar­chitecture (Nancy, France) ; LNCS 201 . Berlin:
Springer-Verlag.

Wadler P. (1992) "The essence of functional pro­
gramming" , In: 19th Annual Symposium on Principles of Programming Languages Santa
Fe.

Chart Parsing of Attributed Structure-Sharing Flowgraphs

with Tie-Point Relationships

Rudi Lutz

School of Cognitive and Computing Sciences, University of Sussex
Falmer, Brighton BNl 9QH, England

email: rudil©cogs . susx . ac . uk

Abstract

Many applications make use of diagrams to represent complex objects. In such applications it
is often necessary to recognise how some diagram has been pieced together from other diagrams.
Examples are electrical circuit analysis, and program understanding in the plan calculus (Rich,
1981} . In these applications the recognition process can be formalised as flowgraph parsing, where
a flowgraph is a special case of a plex (Feder 1971} . Nodes in a flowgraph are connected to each
other via intermediate points known as tie-points. Lutz (1986, 1989} generalised chart parsing of
context-free string languages (Thompson - Ritchie, 1984} to context-free flowgraph languages,
enabling bottom-up and top-down recognition of flowgraphs. However, there are various features
of the plan calculus that complicate this - in particular attributes, structure sharing, and relation­
ships between tie-points. This paper will present a chart parsing algorithm for analysing graphs
with all these features, suitable for both program understanding and digital circuit analysis. For
a fixed grammar, this algorithm runs in time polynomial in the number of tie-points in the input
graph.

1 Introduction and Motiva­

tion

Many applications make use of diagrams to repre­sent complex objects, and we often need to recog­nise how some diagram has been constructed. Ex­amples are electrical circuit analysis, and pro­gram understanding in the plan calculus (Rich, 1981), in which programs are represented by data­and control- flow graphs, and stereotypical pro­gramming techniques and algorithms (plans) are represented similarly. Understanding how a pro­gram has been built up then amounts to treat­ing plans as forming a grammar, and the under­standing process as parsing. Ignoring control flow connections enables us to formalise this as flow­graph parsing. Nodes in a flowgraph consist of labelled boxes with distinguished input and out­put attaching points (ports), and input ports are connected to output ports via intermediate points known as tie-points, with the restriction that a
145

port is only ever connected to a single tie-point, although fan-out and fan-in is allowed at .tie­points. Lutz { 1986, 1989) generalised chart pars­ing of context-free string languages {Thompson - Ritchie, 1984) to context-free flowgraph lan­guages, enabling bottom-up and top-down recog­nition of flowgraphs. However, there are features of the plan calculus that complicate this:
1. Attributes - control flows in the plan cal­culus are treated as attributes of the gram­mar which are propagated during parsing.
2. Data Plans and Overlays - Some plans in the plan calculus allow the introduction of new tie-points not in the input graph. These tie-points either represent aggregate data structures corresponding to collections of other tie-points , or represent a more ab­stract view of some tie-point (e .g . viewing a list as implementing a set), and act as inputs or outputs of "higher-level" opera­tions. Dealing with this involves using a

146
second chart storing information about data objects.

3. Structure Sharing � when one component feeds one or more of its · outputs to more than one other component (fan-out). In this situation the source component can be viewed as playing more than one role in the structure, and could have been dupli­cated so that separate copies of the com­ponent were responsible for each of these roles. This leads to no change in function­ality, although there may be a loss in effi­ciency as measured by the number of com­ponents (digital circuits), or computational effort and code size (plan calculus).
This paper will present a parsing algorithm for analysing graphs with these features, noting that we permit structure sharing, but do not enforce it. For a fixed grammar, this algorithm runs in time polynomial in the number of tie-points in the input graph. We will begin by discussing simple flowgraphs, and then progressively deal with the above features.

2 Notation and Definitions
Flowgraphs and flow grammars are special cases of plex languages and plex grammars (Feder, 1971). A plex consists of labelled nodes having an arbitrary number, n, of distinct attaching points, used to join nodes together. Such a node is called an n-attaching point entity (NAPE). Attaching points of N APEs do not connect directly, but via intermediate points known as tie-points. A single tie-point may connect two or more attach­ing points. If the direction of the connections is important then the plex is said to be directed. Many types of graph structure (e.g. webs (Pfaltz - Rosenfeld, 1969; Rosenfeld - Milgram, 1972), directed graphs, and strings) are special cases of directed plexes. We will consider the special case of directed plexes in which each NAPE's attach­ing points (from now on called ports) are subdi­vided into two mutually exclusive groups, known as input ports (restricted to only have incom­ing connections) and output ports (restricted to only have outgoing connections). We further re­strict ourselves to . the case in which each port of a NAPE is only cortnected to a single tie-point.

LUTZ

This type of plex will be called a flowgraph and is a generalisation of Brotsky 's (1984) use of the term. See Figure 1 (top) for a simple example. A production in a string _grammar specifies how one string may be replaced ·by another. How­ever, with flowgraph grammars we encounter a difficulty (due to their 2-dimensional nature) not apparent in the string case. In the string case a production A ==> aXYb
applied to a string

. . . dAe . . . (say)

results in the string
. . . daXYbe . . .

and the question of how the replacement string is embedded in the host string never arises because there is a single obvious choice i.e. whatever is to the left of A in the original string is to the left of the replacing string, and similarly on the right. With flowgraphs we no longer have this simple ordering on the NAPEs and embedding becomes much more complicated. Most of the discussion of this is in the web and graph grammar litera­ture (e.g. (Pfaltz - Rosenfeld, 1969; Rosenfeld - Milgram, 1972)), but most of it also applies to flowgraphs. Our approach is to specify with each production which tie-points on the left cor­respond to which tie-points on the right and then connect everything connecting to one of these left hand tie-points (from the surrounding subgraph) to its corresponding right-hand tie-point. We define a flowgraph grammar to be a 4-tuple (N,T,P,S) where:
N is a finite non-empty set of NAPEs known as nonterminals.
T is a finite non-empty set of NAPEs known as terminals.
P is a finite set of productions.
S is a special member of N known as the ini­tial, or start, NAPE

where the intersection of N and T is empty. If we arbitrarily order the input and output ports of a NAPE then each NAPE in a flowgraph can be represented as a triple
(NAPE - label , inputlist, outputlist)

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 147
where NAPE-label is the label on the NAPE, and input list is a list in which the ith entry is the tie­point to which the i th input port is connected. Similarly the output list specifies to which tie­point each of the output ports is connected. Using this convention a flowgraph G can be represented as a set Ge (the component set) of such triples. With the above conventions the productions in a flowgraph grammar have the general form

ALiLo ==> CRiRo
where

A is known as the left-side structure, repre-

one can arrive at the notions of context-sensitive , context-free, and regular grammars (Ehrig, 1979).
In particular, restricting the productions to have a single NAPE in their left-side structure gives us a context-free flowgraph grammar, and we will restrict ourselves to these from now on. In this case we no longer need to store Li and L0 since the input and output lists of the single triple on the left of the production already specify this in­formation. See Figure 1 for an example of the notation and of rewriting process.

sented as a component set 3 Chart Parsing of Context­
free Flowgraphs C is known as the right-side structure, repre­sented as a component set

Li is the left-side input tie-point list
Ri is the right-side input tie-point list
L0 is the left-side output tie-point list, and
R0 is the right-side output tie-point list.

Li and Ri must be of the same length, as must L0 and R0 , and specify how an instance of the right­side structure is to be embedded into a structure
W containing an instance of the left-side struc­ture which is being rewritten according to the production. We define the arity of the left side of the rule to be the ordered pair (ILi l , IL0 1) and the arity of the right side of the rule to be the or­dered pair (IRi l , IR0 1). So this requirement simply states that the left- and right-side arities must be the same. The rewriting and embedding is done as follows : The instance of the left-side structure is re­moved from W and replaced by an instance of the right-side structure. Now, for each tie-point X in Li any previous connections from N APEs in W to X are replaced by connections from the same attaching points of the same N APEs to the corresponding tie-point in Ri . The same is done for tie-points in L0 and R0 • One can eliminate the need for explicit storing of Ri and R0 by using the same variable names on the left and right hand sides of the production to denote corresponding tie-points. · Just as in the string case, by considering re­strictions on X and Y in a production of the form:

X ==> Y

In a chart parser, assertions about what has been found by the parser are kept in a "database" known as the chart. Such assertions will be called patches , and are of two kinds - complete patches and partial patches. A complete patch asserts that a complete grammatical entity (correspond­ing to some terminal or non-terminal symbol of the grammar) has been found. Partial patches are assertions that part of some grammatical en­tity has been found, and about what needs to be found to complete it. One can think of a patch as being a closed loop drawn round some sub­graph of the flowgraph, indicating that this sub­graph corresponds to all or part · of some gram­matical entity. Regarding the right-side struc­tures of rules as uninstantiated templates, · then complete patches with non-terminal labels corre­spond to the occurrence of an instantiation of the right-side structure of some rule, thus forming an occurrence of the left-side structure of the rule. Partial patches correspond to partially instanti­ated instances of the right-side structure of some rule, and thus to partially recognised instances of the left-side structure. Each patch A contains the following information :
l. label{ A) - the name (one of the terminal or non-terminal symbols) of the grammati-cal entity corresponding to the patch. · ·
2. inputs(A) - a set of input tie-points for the patch.

148 ·
3. outputs(A} - a set of output tie-points for the patch.
4. components(A) - a list of the patches in­volved in making up this patch.
5. needed{A) - what else needs to be found to complete the patch. For complete patches this will be empty, and for partial patches this will be a flowgraph structure, repre­sented as a list of triples.
For a partial patch, the input and output tie­points (i.e. those by which the patch connects to the surrounding flowgraph) are each subdivided into two categories - the set of active tie-points where the patch still needs other components to attach to these tie-points, and the set of inac­

tive tie-points which are those which would be in­puts or outputs of the patch were it complete. A NAPE needed by a partial patch will be called im­
mediately needed if any of its tie-points are active. The components entry of a patch lists (instanti­ated versions of) those NAPEs in the right-side structure of the rule which have been completely instantiated, and the needed entry lists uninstan­tiated (as yet) parts of the rule. Note that some of the tie-points in the needed entry may be in­stantiated. These are where the needed NAPEs connect to the ones already found. We will say that a partial patch A is extendible by a com­plete patch B (or that B can extend A) in the case where A immediately needs a patch of the same type as B and the instantiated tie-points in this needed patch do not conflict with any instan­tiations actually occurring in B.

The essence of the chart parsing strategy can then be stated as follows: Every time a corn plete patch is added to the chart a search is made for any partial patches im­mediately needing a patch like the one just added. For each of these partial patches a new patch is made extending it by the complete one, and this new patch is then added to an agenda of patches to be processed at some appropriate time. Sim­ilarly, every time a partial patch is added to the chart a search is made for complete patches which can extend the partial patch just added, and if any are found new patches are made extending the partial one, and these are added to the agenda to be processed when appropriate. Note that

LUTZ

patches are only ever added to the chart. They are never removed, thus avoiding duplication of previous effort. The basic operation of the algorithm is joining a complete patch to a partial patch to make a new enlarged patch. F igure 2 shows a partial patch being joined to a corn plete patch to make a new patch (the enclosing box). The resulting patch has the same items in its components entry as the original partial patch plus the complete patch. Its
needed entry is equal to that of the original partial patch minus the needed patch corresponding to the complete patch. Note that the matching of a needed patch to an actual complete patch may in­troduce further instantiations of tie-points in the
needed entry of the new patch. On connecting the two patches all the inactive tie-points of the partial patch remain inactive. Some of its active tie-points will correspond to tie-points of the com­plete patch (this is where the two patches actually join). Other active tie-points remain active in the new patch since it is still looking for other patches to attach to them. Of the complete-patch's (input and output) tie-points some have : already been mentioned Le. those connecting directly to the partial patch. Others will become new inactive tie-points of the resulting patch since it will not be looking for anything to attach to them. How­ever other (input and output) tie-points of the complete patch may now become active (viewed as belonging to the new patch) since it may now expect other patches to attach to them in order to complete itself. Provided all these distinctions are kept clear there is no great difficulty in imple­menting the joining operation. With this joining operation a limited type of structure sharing happens automatically. This is illustrated in F igure 3. If we wish to prevent this, then, when trying to extend a partial patch P by a complete patch C, the parser must check (recur­sively !) that none of the components of P have any sub-components in common with C, thus pre­venting structure sharing at any level. This check will be referred to as the no-sharing check.

The initialisation of the agenda will now be de­scribed. Initially a complete patch is added to the agenda for each of the terminal N APEs in the original graph. If the algorithm is to run top­down then an additional step is needed in which partial patches with empty components entries

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS .149
are made for every rule in the grammar whose
left-side structure is labelled by the start sym­
bol of the grammar. Each such rule· leads to
several such empty patches, one for each per­
mutation of the input tie- points of the input
graph. The inactive-inputs and active-outputs

entries for these patches are the permuted in­
puts. The needed entry is the right-side structure
of the rule with appropriate instantiations of the
tie points occurring in it . These patches are also
added to the agenda. The complete algorithm is
shown below:

initialise chart and agenda ;
until the agenda is empty do

pick a patch A from the agenda ;
unless A is already in the chart then

add A to the chart ;
if A is complete then
for each partial patch B in chart extendible by A do

else

make a new patch extending B with A and put on agenda ;
endfor ;
if bottom-up then

for each rule R in P such that rhs (R) has an input NAPE labelled by
label (A) do

for each such NAPE X in R do
make new empty patch B with label (B)=lhs (R) and

needed(B)=rhs (R) with instantiations dependent on match between
X and A and

inputs (B) =inputs (A) and
active-outputs (B)=inputs (A) ;

add B to agenda ;
endfor ;

endfor ;
endif ;

for each complete patch B in chart which can extend A do
make a new patch extending A with B and put on agenda ;

endfor ;
if top-down then

for each object C immediately needed by A do
for each rule R in P with lhs (R)=label (C) do

endfor
endfor

endif

make new empty patch B with label(B) =label(C) and
needed(B) =rhs (R) with instantiations dependent on match

between C and lhs (R) and
inputs (B) =inputs (C) and
active-outputs (B)=inputs (C) ;

add B to agenda ;

endif
endunless

enduntil ;

1 50 LUTZ

{ = . AN - 1 if patch is already present in the chart
AN+l � AN - 1 + AQTK+ M-l + QR if patch partial and not in chart

_ ·� AN � l + (K + M) · R2QTK+ M+A-l if patch camplete and not in chart

CN+l { :
CN if patch chosen is already present in the chart
CN if patch chosen is partial and not in the chart
CN + l if patch chosen is camplete and not in the chart

PN+l { :
PN if patch chosen is already present in the chart
PN + l if patch chosen is partial and not in the chart
PN if patch chosen is camplete and not in the chart

F igure 14 : The top-down case, the N + 1 th iteration
On termination the parsing is successful if the chart contains a complete patch for S whose in­

puts and outputs entries are the input and output tie-points of the input graph.
How can we organise the chart for efficient searching? The chart is divided into two parts, one for complete patches, and one for partial. The part for complete patches is organised as two ar­rays, one for indexing each patch by its inputs, and one for indexing by its outputs. So each com­plete patch is entered several times into the chart, once for each of its inputs and outputs. For fur­ther efficiency each of the elements in these ar­rays is a hash table and the patches are actu­ally entered into these hashed by their label. So the entries in the hash table are actually lists of patches with the same label which share a given input or output tie-point. This enables efficient retrieval of all patches with a particular label at a particular tie-point. The treatment of partial patches is slightly more complicated. For each of their immediately needed N APEs partial patches are entered into their part of the chart indexed by the active inputs and outputs of the needed NAPE, and hashed by the labels of each of these N APEs. This structure for the chart enables a complete patch to easily find partial patches im­mediately needing it, and enables partial patches to easily find complete patches that they imme­diately need.
A similar technique can be used to store the grammar rules in order to enable efficient retrieval of appropriate rules.

4 Complexity Analysis

4.1 A Polynomial Bound

In this section a relatively informal argument will be given to show that, for a fixed grammar, the al­gorithm runs in time polynomial in the number of tie-points T of the input graph (if the grammar is allowed to vary and is therefore regarded as part of the input to the parsing problem, then Wills (1992) has shown that the problem becomes NP­complete). We will not give a tight upper bound on the running time, but simply show that it is polynomial. Let:
G =number of NAPEs in the graph
T =number of tie-points in the graph
K =maximum number of inputs to a NAPE
M =maximum number of outputs from a NAPE
L =number of possible labels
R =number of rules in the grammar
Q =maximum number of NAPEs in the right­side structure of a rule
A =maximum possible number of active tie-points in a partial patch.

Note that K, M, L, R, Q, and A all depend on the grammar, and are independent of the input graph.

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 151

A < AN - l + A • Q • TK+M-l if patch partial and not in chart { = AN - l if patch chosen is already present in the chart N+ l < AN - l + (K + M) . R2QTK+ M+A-l + QR if patch complete and not in chart
CN+I { : CN if patch chosen is already present in the chart CN if patch chosen is partial and not in the chart CN + l if patch chosen is complete and not in the chart

PN+I { : PN if patch chosen is already present in the chart PN + l if patch chosen is partial and not in the chart PN if patch chosen is complete and not in the chart
Figure 15 : The bottom-up case, the N + 1 th iteration

For the purposes of adding new patches to the chart , patches are only distinguished according to some of the information contained in them, rather than strict equality being necessary. Complete and partial patches will be dealt with separately. Complete patches are distinguished which dif­fer in at least one of their input tie-points, their output tie-points, or their label. The maximum number of inputs and outputs in a patch is de­termined by the grammar, as is the number of possible labels. So the number of possible com­plete patches in the chart is bounded above by the product of L and the number of possible ways of selecting at most K out of T tie-points, and the number of possible ways of choosing at most M out of T tie-points. This gives us O(L · TK+ M) complete patches altogether. A similar argument shows that at a given set of K (input) tie-points, there are at most O(TM) complete patches with a given label. Partial patches are distinguished which differ in at least one of their inactive input tie-points, their inactive output tie-points, their label, or in what they need in order to complete themselves (their needed entry) . Now, a partial patch repre­sents the partially recognised right side structure of a rule. The rule used determines the label, and there are at most 2Q subsets of the (at most) Q NAPEs in the rule that could still be needed. Each such subset determines a set of (at most) A active tie-points for the patch. So there can be at most O(R · 2Q · TA · TK · TM) = O(R · 2Q · TA+K+ M)
partial patches altogether. In fact there will be

very much less than this , as this includes com­plete patches with nothing needed, and (more im­portantly) ignores completely any additional con­straint� implied by the connectivity of the graph. Since the basic operation of the chart pars­ing algorithm involves extending partial patches by complete ones, we need to know, for a given partial patch, the largest number of complete patches that could possibly extend it . A par­tial patch can be extended at any of its (at most) A active tie-points, and any complete patch which could extend it must join at least one of these tie-points, and must share a label with at least one of the NAPEs immediately required by the partial patch. So there are at most O(A . Q . TK+ M-l) such complete patches. Sim­ilarly, given a complete patch, there are at most O((K +M) · R · 2Q · TK+ M+A-l) possible match­ing partial patches. We can use these upper bounds to demon­strate that the algorithm terminates, and does so in polynomial time. Let N denote the number of iterations of the main loop of the algorithm while it is running, and let :
CN =number of complete patches in the· chart after iteration N
PN =number of partial patches in the chart after iteration N
AN =length of agenda after iteration N

152

Then in the top-down case we have: 1

Ao = G + Rs · Pa
Co = 0
Po 0

The equation for the (N + l)th iteration is in Fig­
ure 14. In the bottom-up case we have

Ao = G
Co = 0
Po = 0

and for the (N + l)th iteration see Figure 15.

So, in both the bottom-up and top-down cases,
C N and PN are monotonic functions of N. As dis­
cussed earlier both are bounded above. There­
fore after some number of iterations they must
both have reached their maximum value (nor­
mally much less than the crude estimates above) .
Once this happens all patches on the agenda
must be already present in the chart and AN de­
creases by one on each subsequent iteration until
it reaches O (an empty agenda) , and the algorithm
terminates. Now on each iteration it can be seen
that either:

1. both C N and PN remain constant (in which
case AN decreases) , or

2. PN increases by 1, and items are possibly
added to the agenda, or

3. CN increases by 1 , and items are possibly
added to the agenda.

From the above, at most O(L • TK+M) itera­
tions involve adding a complete patch to the chart
and add some items to the agenda, and at most
O(R . 2Q • rA+K+M) iterations involve adding a
partial patch to the chart and add some items to
the agenda. All other iterations simply remove
items from the agenda. So how many items get
added to the agenda?

This is given by:

(no. of items in initial agenda)
+(no. added for complete patches)
+(no. added for partial patches)

In the top down case this bounded by

A0 + O(L · TK+M) · O((K + M) · R ·

LUTZ

2Q . rK+M+A-1) + O(R . 2Q . rA+K+M) .
(O(A . Q . rK+M-1)) + Q . R

and in the bottom-up case this is bounded by

A0 + O(L · TK+M) · (O((K + M) · R ·
2Q . rK+M+A-1) + Q . R) + O(R • 2Q .
rA+K+M) . O(A . Q . rK+M-1)

which are both clearly polynomial.
So, in both cases the number of items added

to the agenda, which is the same as the number
of iterations performed, is polynomially bounded.
How much work is done on each of these itera­
tions? The cost of seeing if a patch is already in
the chart can be done in polynomial time. This
is because (even with no clever indexing) there
are at most a polynomial number of patches · in
the chart that need to be checked. If the no-shar­
ing check is included then the cost of checking if
one patch is extendible by another can be done
in time at worst O(G) since both the partial and
complete patches are each ultimately made up of
at most G NAPEs (at lowest level) , and check­
ing for inter�ection of these two sets can be done
in linear time. If the no-sharing check is omitted
then the cost of checking if one patch is extendible
by another can be done in constant time (since
it depends on checking that the instantiated tie­
points of the patches are compatible with each
other, and the number of tie-points involved de­
pends on the grammar) , as can the cost of making
a new patch. All the costs involved in checking
rules etc. are purely a function of the grammar.
So the total cost of the algorithm is easily seen
to have an upper bound which is a polynomial
function of T.

4. 2 Finding All Parses

Athough the algorithm performs flowgraph recog­nition in polynomial time, it does not find all parses in polynomial time. This is because for
some flowgraphs and some grammars there may
well be an exponential number of parses (this
is even true of Earley's algorithm operating on
strings!) . The algorithm will however find a parse
if one exists. If an application requires all possi­
ble parses, then the algorithm can be modified to 1 Rs is the number of rules for S (the start symbol); Pa is the number of permutations of inputs of graph.

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 153
store any complete patch which is equal to one already in the chart in terms of its inputs, out­puts, and label, but not equal in terms of its com­ponents , in an auxiliary data structure. At the end of the parsing there is then enough informa­tion around in the chart and the auxiliary data structure to easily compute additional parses, by simply adding all the patches in the auxiliary structure to the agenda, and letting the pars­ing continue with the test for equality of patches now being strict equality (i.e. all the components must be equal as well) rather than just the partial equality used earlier.

5 Dealing With Attributes

As stated earlier graphs and rules in the plan calculus also have a second type of connection between NAPEs - control flow arcs. These are handled as attributes of the graphs, where the attribute for a non-terminal NAPE is calculated from the attributes of its components. Details of this method of handling the control flows can be found in Wills (1986, 1990, 1992) , and a general­isation can be found in Lutz (1992) . For our pur­poses we will assume that each NAPE in the orig­inal graph is annotated with initial values for the attributes, and we will also assume that each rule has annotations describing how each attribute for the left-hand side of the rule is computed from the attributes of the NAPEs on its right-hand side. These annotations have the general form:

where Aths represents an attribute of the left hand side of the rule, f Rule represents the rule specific computation, and A1 , . . . , Ak represent the attributes of the NAPEs on the right . Computing the attributes is straightforward. Each patch is given an extra field for each of its attributes. When a complete patch (correspond­ing to some rule of the grammar) whose compo­nents have attributes A1 , . . . , Ak , is added to the chart, f Rule (Al , . . . , Ak) is computed, and stored in the appropriate field for the attribute in the patch. The initial patches receive their attribute values from the original graph.

6 Dealing With Tie-Point

Relationships

In order to capture implementation decisions, and data abstractions, the plan calculus contains what Rich (1981) calls data plans and data over­lays. So far as the grammatical formalism is con­cerned, these 'can be viewed as allowing rules to express named functional relationships that hold between tie-points. To handle these our gram­matical formalism is extended to allow annota­tions (following the keyword where) of the form:
ti = F(tji , . . . , tjk) Jar k 2:: 1

where ti represents either any of the tie-points occurring in the N APEs of the rule, or an ad­ditional new tie-point, tj1 , • • • , tjk represent any of the tie-points occurring in the NAPEs of the rule or any new tie-points mentioned on the left of other relationships in the rule (this must be non-recursive!) , and F is the name of the func­tional relationship involved. The set of these will be referred to as the tie-point relationships of the rule. We will only discuss the changes to deal with tie-point relationships for the parser running in bottom-up mode. Dealing with them in top-down mode is rather complicated and will not be de­scribed further in this paper. Conside the rules bump+update and bump+update->push (Figures 4 and 5) , which cause problems for the algorithm. Flowgraph grammar rules as described earlier have the same arities for their left- and right-hand sides, and this is true for bump+update. However, the left­hand side of bump+update->push has arity (2 , 1) , while the right hand side has arity (3,2) . Further­more, although the tie-point t3 occurs as input on both sides of the overlay, this is not true of t6 and any tie-point of the bump+update plan. It does not even correspond to the compound object (the upper-segment) represented by t1 and t2. It corresponds to the upper-segment viewed as a list (via a function upper-segment-> list) . To cope with these features the basic bottom-up chart parser presented earlier is modified as follows:
1 . The rule format is modified to include the left-hand side inputs and outputs, since these may now be distinct from those on the right. Correspondingly, each patch now

154
has two extra fields - left-hand-ins, and left-hand-outs , in addition to the two fields inputs and outputs (corresponding to in­puts and outputs of the right hand side of the rule). Complete patches are stored in the chart indexed by their left-hand-ins and left-hand-outs , rather than by their inputs and outputs as before. Partial patches are stored as before.

2. A second chart is added. This chart (the tie-point chart) stores the functional rela­tionships between tie-points discovered dur­ing parsing. It contains entries with the form: T = F(S1, . . . , Sk)
. where T and S1 , . . . , Sk are known (i.e. in­stantiated) tie-points. This chart is or­ganised similarly to the earlier (complete) chart, in that it is split into two parts, one used for storing relationships indexed by the left hand side tie-point (T) and by the relationship name (F), and the other used for storing the relationships indexed by the right-hand side tie-points (S1, . . . , Sk), and by the relationship name.

3. Two new fields are added to each patch. These are:
(a) relations-needed - When an empty patch is created this is initialised to the set of tie-point relationships of the rule involved in creating the patch. (b) relations-found - When an empty patch is created this is initialised to empty.

4. When a new patch is created, either by ex­tending a partial patch, or by creating a new empty patch for some rule, any instan­tiations for the tie-point variables occur­ring in the patch are also propagated into the relations-needed entry. The following is then repeated until there is no change to the patch:
(a) If some relationship in the relations­needed entry is fully instantiated (i.e. no tie-point variables occur on either its left or right hand sides) then it is moved from the relations-needed entry to relations-found.

L UTZ

(b) If -some relationship in the relations­needed entry has a fully instantiated right-hand side _i.e. is of the form:
V = F(S1, . . . , Sk)

where V is a tie-point variable, and S1, . . . , sk are all known tie- points, then the tie-point chart is consulted to see if there is an entry of the form:
T = F(S1 , . . . , Sk)

where T must be a known tie-point.
If there is, then V is instantiated to
T, and this instantiation is propagated throughout the patch (including its relations-needed entry). If not, then a new tie-point T is created, the asser­tion: T = F(S1 , . . . , Sk)
is added to the tie-point chart, V is in­stantiated to T, and this instantiation is ·. propagated throughout the patch (including its relations-needed entry).

(c) If some relationship in the relations­needed entry has an instantiated left­hand side i.e. is of the form:

where S is a known tie-point, and T1 , . . . , Tk are either known tie-points or tie-point variables, then the tie­point chart is consulted to see if there is an entry of the form:
S = F(S1, . . . , Sk)

where S1, . . . , sk are all known tie­points. Matching T1 , . . . , Tk against S1, . . . , Sk either succeeds, in which case any variables in T1, . . . , Tk get instantiated, and these instantiations are propagated throughout the patch.
If the match fails (because two dif­ferent known tie- points are being matched against each other) · then· . the whole patch is invalid, and is rejected (i.e. is not added to the chart).

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 155

5 . A patch is only considered complete if both
its needed entry and its relations-needed en­
try are empty. If they are, then the patch
is added to the chart as normal. If not ,
then the patch is considered partial, and is
stored in the chart indexed as before, but
also indexed by the relationship names and
instantiated tie-points of any immediately
needed (in the obvious generalised sense
of the term) relationships in the relations­
needed entry.

6. When a relationship is added to the tie­
point chart , the (patch) chart is consulted
to see if there are any partial patches wait­
ing for a tie- point relationship compatible
with the one just added. If so, the patch is
extended by the relationship, and added to
the agenda.

Figure 6 illustrates this for the above rules.

Now consider rules like those in Figure 7, which
includes a rule (for A) with a "straight-through"
arc, and a graph like that in Figure 8. This can
be recognised as forming an S, by the following
sequence of events:

1 . The N APEs labelled b and c in Figure 8
are recognised as forming a partial A, which
still has:

tl = iteratar(l , t4)

t2 = iteratar(3, t4)

in its relations-needed entry.

matching this one. The partial A discovered
earlier is found, and on matching

8 = iteratar(3, 4)

and
t2 = iteratar(3, t4)

t4 gets instantiated to 4, and t2 gets instan­
tiated to 8. The patch is therefore extended,
and it now has only the single relationship:

tl = iteratar(l , 4)

in its relations-needed entry. This causes
the creation of a new tie-point 10 to which
t1 is instantiated, and an assertion:

10 = iteratar(l , 4)

is added to the tie-point chart. As a re­
sult of all this we now have a complete A
patch (with input 10 and output 8) which
gets added to the chart. This causes the
creation of an empty S patch (with input
10) immediately needing an A (with input
10) to be added to the chart .

4. This patch is extended first by the A patch,
and then again by the B patch, giving us a
complete S patch with input 10 and output
9, where:

10 = iteratar(l , 4)

and
9 = iteratar(6, 7)

This illustrates very nicely the role of the second
chart .

2. The NAPEs labelled d and e in Figure 8 are
recognised as forming a complete B, with 7 input given by a em new tie-point 8, and
output given by a new tie-point 9, satisfy-

Chart Parsing of Structure­

Sharing Flowgraphs
ing:

8 = iteratar(3, 4)

9 = iteratar(6, 7)

These relationships are added to the tie­
point chart .

3. When the relationship 8=iterator(3, 4) is
added to the tie- point chart, the main chart
is ' consulted to see if there are any partial
patches immediately needing a relationship

As stated earlier we are also interested in the case
where structure sharing is allowed. However, for
reasons discussed in Lutz (1992) , we do not want
to allow any two NAPEs sharing the same inputs
to be collapsed, but only NAPEs with appropri­
ate labels. To make this more precise we define a
slightly more general notion:

A restricted structure sharing fiowgraph gram­
mar (RSSFG) is a 5-tuple (N, T, P, S, R) where N, T, P, S are the same as for ordinary context

156
free flowgraph grammars, and R � N U T. R is the set of NAPEs for which collapsing is allowed. Such a grammar has an additional rewriting rule which will be described below. We define a re­lation R-collapses on the set of flowgraphs over N U T by:

G2 R-collapses Gl iff Gl and G2 are flowgraphs, and G 1 c contains two triples of the form Tl = (A, (t1 , . . . , tn), (x1 , . . . , xm)) and T2 = (A, (t1 , . . . , tn), (y1, • • • , Ym)), where A E R and G2c can be ob­tained from Gl c by removing these two triples and replacing them by a single triple of the form T3 = (A, (t1 , . . . , tn), (z1, . . . , Zm)) and then replacing all occurrences of x1 , . . . , Xm and Y1, . . . , Ym by z1, . . . , Zm re­spectively throughout the remaining triples.
In other words, G2 R-collapses Gl iff G 1 contains two instances of some NAPE A (whose label is in R) which have the same inputs, and G2 is iden­tical to G 1 except that the two in­stances of A have been replaced by a single instance of A (with the same inputs) and all NAPES which origi­nally connected to the outputs of one or other of the two instances of A now connect to the single instance (in G2). This amounts to identifying the two instances of A and their correspond­ing tie-points.

The reflexive, transitive, symmetric closure of
R-collapses is then an equivalence relation (R­share-equivalence) on the set of flowgraphs, and we want any parsing algorithm which can recog­nise some graph G to also be able to recognise any flowgraphs R-share-equivalent to G. We also want the grammar to be able to generate not only the flowgraphs derivable directly from the gram­mar, but also all R-share-equivalent flowgraphs. This can be done if we allow at any point in the generation of a flowgraph the replacement of the graph so far generated (Gl) by any graph G2 for which either Gl R-collapses G2 or G2 R-collapses G 1. If R = 0 then the grammar is an ordinary flowgraph grammar, and if R = N U T then we

LUTZ

get a (full) structure sharing flowgraph grammar as defined in Lutz (1989). F igure 9 illustrates several phenomena that can occur with RSSFGs, and which motivated the above definition. To see how the parsing algorithm can be mod­ified to cope with RSSFGs it should first be noted that for any flowgraph G there is a smallest flow­graph Gmin which is R-share-equivalent to G. Secondly, the right-side structure of any rule in an RSSFG can be replaced by any flowgraph R­share-equivalent to it without altering the gen­erative capacity of the grammar. We therefore define a canonical form for an RSSFG in which each rule of the form:
A ==> B

has been replaced by the rule:
A ==> Bmin

So the first change to the algorithm is to put the grammar into canonical form. The second change is to the action of adding a complete patch to the chart. Previously the only check that was done was to see if the patch was already in the chart. Now the algorithm must additionally check if the label of the patch is in R and if there is an­other patch in the chart with the same label and the same inputs. If so, the algorithm must col­lapse the new patch and the one already present into a single patch, by identifying the output tie­points of the two patches. Provided tie- points in the various triples making up the patches are represented as pointers to pointers to tie-points (rather than storing the tie-points directly in the triples) then simply changing the values of the second set of pointers will implement the identi­fication universally throughout all patches in the chart. This can lead to "chains" of pointers which need to be fully dereferenced in order to actually access the tie-points themselves (this is similar to the way variables are handled in many implemen­tations of Prolog). After collapsing an additional step is needed since there may be patches in the chart indexed by the tiE�-point which has been effectively removed by the identification. These patches must now be stored in the chart indexed by their new output tie-points. If the informa­tion that collapsing has been done is needed by an application the algorithm can make a note this fact either by annotating the tie- points involved

C HART PA RSING OF ATTRIBUTED STRUCTU RE-S HARING FLOWGRAPHS 1 57
or by an assertion held separately. Finally, the no-sharing check must be omitted. If the grammar also has attributes, then we need to specify how to compute the attribute Ares of a NAPE resulting from collapsing two patches with attributes A1 and A2 • This specification takes the form (for each attribute) :

where !collapse is a function which computes the value of the attribute for the new patch from the values for the two collapsed patches. Two NAPEs are only collapsed when an attempt is made to add a complete patch P2 (with attribute A2) to the chart, and there is already a patch Pi (with attribute A1) present in the chart with the same label and inputs. In this . case Pi is left in the chart (i.e. it is the output tie-points in P2 which are identified with those in Pi) . Pi then has the value of its attribute set to fcollapse (A1 , A2) . If this new value for its attribute is different from its previous value, then any complete patches in the chart which have Pi as one of their compo­nents must also have their attributes recalculated, and any of these patches whose attributes change must also have their attributes recalculated, and so on recursively. To facilitate this, each com­plete patch P needs an extra field partof which holds a list of all corn plete patches of which P is a component . To maintain this field, whenever a complete patch P is added to the chart, P is added to the partof field of each of its compo­nent patches. The initial patches (corresponding to the original graph) all have this field initially set to empty.
8 Applications

The algorithm just described forms the basis of the program understanding process described in Lutz (1989b, 1991 , 1992) . However, there are other domains, in particular digital circuit analy­sis, in which a similar ability to parse flowgraphs is useful. Consider Figure 10 which shows a cir­cuit for addition of 3-bit numbers. The grammar shown in Figure 1 1 is capable of generating this circuit. Adding a rule like that shown in Figure 12 enables the parser to recognise the circuit in Figure 10 as being equivalent to Figure 13 i.e. to recognise the circuit as adding two numbers, with

the tie-point chart holding information about how the numbers have been "implemented" .
9 Conclusions

This paper has presented a polynomial time chart parsing algorithm for context-free flowgraph lan­guages, capable of handling all the features of the plan calculus (Rich, 1981) , and which is also ap­plicable to digital circuit analysis. Although there is a large literature on the gen­erative abilities of various types of graph gram­mar formalisms (see e.g. (Ehrig, 1979; Feder , 1971 ; Fu, 1974; Gonzalez - Thomason, 1978; Pfaltz - Rosenfeld, 1969; Rosenfeld - Milgram, 1972)) , there is relatively little on parsing strate­gies, except for restricted classes of graph and web grammars (e.g. Della Vigna - Ghezzi (1978)) . In its top-down strictly left-to-right form chart pars­ing of context-free string languages corresponds to Earley's algorithm (Earley, 1970), which was generalised by Brotsky (1984) to parsing flow­graphs of the kind described here, except that his algorithm could not cope with fan-out at tie­points, or with tie-point relationships. However the approach taken here can also run bottom­up, which is particularly useful in applications in which we want to recognise as much as possible even though full recognition may be impossible (because of errors in the graph, or because the grammar is necessarily incomplete) . Wills (1986, 1990) modified Brotsky's algorithm to cope with fan-out , but her algorithm only runs in a pseudo­bottom-up fashion by starting it running top­down looking for every possible non-terminal at every possible place in the graph. More re­cently, Wills (1992) developed an algorithm heav­ily based on the chart parsing algorithm described here and in (Lutz, 1986, 1989) , which is also capa­ble of dealing with attributes and tie-point rela­tionships. However her algorithm and graph rep­resentations make no mention of tie-points, but deal directly with the edges connecting N APEs. This makes it harder to deal elegantly with the tie-point relationships. More recently there have been several pa­pers in the visual language literature which have adopted a chart parsing approach. In particu­lar, Wittenburg et al. (1991) and Golin (1991) have both developed bottom up parsers for 2-

158
dimensional languages, while O'Gorman (1992), Costagliola et al. (1991), and Wittenburg (1992) have developed top-down parsers. This work is all similar in spirit to that presented here, al­though differences in representation, and appli­cation, make it very different in detail. Indeed this seems to be a general problem with work on 2-dimensional languages - there is no known general method suitable for conveniently repre­senting all the different classes of language, and this leads to algorithms for one domain being very different from those in another. Of course, some kind of definite clause encoding could be used for all of these, but this is not always natural, and does not always lend itself to the development of efficient algorithms. In this connection it should be noted that the flowgraph languages discussed in this paper can be encoded in the Datalog for-

LUTZ

malism (Abitoul - Vianu, 1988) for which it is known that parsing can be performed in polyno­mial time. However, a special-purpose algorithm like the one presented can be particularly efficient and adaptable (cf. the control of structure shar­ing). A particular advantage of a chart parser is that it keeps a record of all partial patches. This is useful when we do not just wish to analyse how some graph has been generated, but also to make suggestions based on "near-miss" informa­tion about how to correct the graph. As such this algorithm is being used as the basis of · an intelligent debugging system for Pascal programs (Lutz, 1992). The algorithms described in this paper have been implemented in Pop-11, running under the POPLOG™ system.

.CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 159

Referenc_�s

Abitoul, S. - ·v. Vianu (1988) "Data.log Ex­tensions for Database Updates and Queries". I.N.R.I.A. Technical Report No. 715
Brotsky, D.C. (1984) "An Algorithm for Parsing Flow Graphs". AI-TR-704. MIT Artificial In­telligence Laboratory.
Costagliola , G. - M. Tomita - S.-K. Chang (1991) "A Generalised Parser for 2-D Lan­guages" In: Proceedings of IEEE Workshop on Visual Languages 98 - 104.
Della Vigna, P. - C. Ghezzi (1978) "Context Free Graph Grammars". In: Information and Control Volume(37), 207 - 233 .
Earley, J. (1970) "An Efficient Context-Free Parsing Algorithm". In : Communications of the ACM Volume(13), 94 - 102.
Ehrig, H. (1979) "Introduction to the Algebraic Theory of Graph Grammars (A Survey)". In: Claus, V. & H. Ehrig & G. Rozenberg, (Eds): Graph Grammars and their Application to Computer Science and Biology Lecture Notes in Computer Science. Springer-Verlag.
Feder, J . (1971) "Plex Languages". In: Informa­tion Sciences Volume(3) 225 - 241.
Fu, K.S. (1974) Syntactic Methods in Pattern Recognition New York : Academic Press.
Golin, E.J . (1991) "Parsing Visual Languages with Picture Layout Grammars" In: Jour­nal of Visual Languages and Computing Vol­ume(2), 371 - 393 .
Gonzalez, R.C. - M.G. Thomason (1978) Syn­tactic Pattern Recognition: An Introduction Addison-Wesley.
Lutz, R.K. (1986) "Diagram Parsing - A New Technique for Artificial Intelligence". CSRP-054. School of Cognitive and Computing Sci­ences, University of Sussex.
Lutz, R.K. (1989a) "Chart Parsing of Flow­graphs". In: Proceedings of 11th Joint Inter­national Conference on AI, Detroit, USA

Lutz, R.K. (1989b) "Debugging Pascal Programs Using a Flowgraph Chart. Parser". In: Pro­ceedings of 2nd S�andinavian conference on AI, Tampere, F inland.
Lutz, R.K. (1991) "Plan Diagrams as the Ba­sis for Understanding and Debugging Pascal Programs". In: Eisenstadt, M. & T . Rajan & M. Keane, (Eds) Novice Programming Envi­ronments London: Lawrence Erlbaum Asso­ciates.
Lutz, R .K. (1992) "Towards an Intelligent De­bugging System for Pascal Programs: On the Theory and Algorithms of Plan Recognition in Rich's Plan Calculus". Ph.D. Thesis The Open University, Milton Keynes, England.

O'Gorman, L. (1992) "Image and Document Pro­cessing Techniques for the RightPages Elec­tronic Library System" In: Proceedings 11th !APR International Conference on Pattern Recognition Volume(2), 260 - 263.
Pfaltz, J.L. - A. Rosenfeld (1969) "Web Gram­mars" . In: Proceedings of 1 st International Joint Conference on AI 609 - 619.
Rich, C . (1981) "Inspection Methods in Pro­gramming" . AI-TR-604 MIT Artificial Intel­ligence Laboratory.
Rosenfeld, A. - D.L. Milgram (1972) "Web Au­tomata and Web Grammars". In: Meltzer, B. & D. Michie (Eds): Machine Intelligence 7, 307 - 324. Edinburgh University Press.
Thompson, H. - G. Ritchie (1984) "Implement­ing Natural Language Parsers" . In: O'Shea, T. & M. Eisenstadt (Eds) Artificial Intelli­gence: Tools, Techniques, and Applications 245 - 300 Harper and Row.
Wills , L.M. (1986) "Automated Program Recog­nition". MSc Thesis . MIT Electrical Engi­neering and Computer Science.
Wills, L.M. (1990) "Automated Program Recog­nition: A Feasibility Demonstration". In: Ar­tificial Intelligence Volume(45), 1 13 - 171.
Wills , L.M. (1992) "Automated Program Recog­nition by Graph Parsing" . Ph.D. Thesis. MIT, Boston, Mass.

160

Wittenburg, K. (1992) "Earley-style Parsing for Relational Languages" In: Proceedings of IEEE Workshop on Visual Languages 192 -199.

LUTZ

Wittenburg, K. - L. Weitzman - J. Tal­ley (1991) "Unification-based Grammars and Tabular Parsing for Graphical Languages" In: Journal of Visual Languages and Computing Volume(2), 347 - 370.

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS

Uepolnt

\ 3
non�tnal NAPE terminal NAPE

5 � 6 A Plex, before
A 1--,11--� 1--.-.----11► production below

applied

((c (1)13)) (c (2)14)) (A (3 4)15)) (c (5)16)) I

IA rr1 T21117JJ --=> I la rr21rf3 T5JJ lb rri T3Jrr4JJ lc rr4IIT611 lb rra T5111711 I

Plex after production
--�- 10

applied

((c (1)131) (c (2)14)) (a (4)17 9)) (b (3 7)18)) (c (81(1 01) (b (10 9)15)) (c (51(61) I

Fi�ure 1 . Simple Flow�ra,ph and Rules

Old
Inactive
Ins

Ftwre 2 The Joinin� Operation

161

162

Some
Rules

_ Graph being parsed

"X' Patch

ftwre 3
Occurence of Structure Sharin� Without No Shartn� Check

LUTZ

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS

l6

l3

bump
+update

push

�· t6=upper-segment(tl ,t2) and
t7 =upper-segi.nent(t4, t5)

Fi�ure 4
Bump+update

where
t6=upper-segment->list(t8) and
t7=upper-segment->list(t9) and

t8=upper-segment(tl , t2) and
t9=upper-segment(t4, t5)

Fi�ure 5
Bump+update->push

bump
+update

t4

t5

163

164

I
2
3

8

3

Graph to he parsed

Patch added
to chart

5
bump+update 4

push 9

newtenn

De-point
�

(6 = upper-segment(l ,2))
(7 = upper-segment(5,4))

De-Point Chart

(6 = upper-segment(l ,2))
(7 = upper-segment(5,4))

(8 = upper-segment->list(6))
(9 = upper-segment->list(7))

fieure 6
Use ofTie-potnt Chart

LUTZ

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS

where tl=iterator(t3, t4) and t2=iterator(t6, t4)

where tl=iterator(t3, t4) and t2=iterator(t6, t7)

fteure Z
Some Rules (with a "straieht-throueh" arcl

Fteure 8
Graph to be Parsed

165

166

Two
Possible
Graphs

Some Rules

Two Possible Graphs

Ft�ure 9 Structure Sharin� and Collapsin� Phenomena

LUTZ

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS 167

F1gure 10
A 3-Btt Addition Circuit

168

B

�=>
B C

Cin� => A FA
B Cout

3-Bit
Add

Cm S

�t
B

Sl

S3 =>
C S2

S3

C

Fi"ure 1 1 Addition Circuit Grammar

LUTZ

CHART PARSING OF ATTRIBUTED STRUCTURE-SHARING FLOWGRAPHS

where
Binary1=3-bits(Al .A2.A3) and
Binary2=3-bits(B1 ,B2,B3) and

Binary3=4-bits(S 1 ,S2,S3, C) and
N1=3-bits->integer(Binaryl) and
N2=3-bits->integer(Binary2) and

N3=4-bits->integer(Binary3)

Figure 12
Inte�er Addition Rule

where

3-Bit
Add

Binary 1 =3-bits(Al ,A2,A3) and
Binary2=3-bits(B1 ,B2,B3) and

Binary3=4-bits(S l ,S2,S3, C) and
N1=3-bits->integer(Binaryl) and
N2=3-bits->integer(Binary2) and

N3=4-bits->integer(Binary3)

Fi�ure 13
Hi@-Level Description of Fi�ure 10

S1
S2
S3
C

169

170
LUTZ

The Interplay of Syntactic and Semantic Node Labels in Partial

Parsing

David D. McDonald

Dept. of Computer Science, Brandeis University
14 Brantwood Road, Arlington MA 02174, USA

email: mcdonald©chaos . cs . brandeis . edu

Abstract

Our natural language comprehension system, "Sparser" , uses a semantic grammar in conjunc­tion with a domain model that defines the categories and already-known individuals that can be expected in the sublanguages we are studying, the most significant of which to date has been articles from the Wall Street Journal's "Who's News" column. In this paper we describe the systematic use of default syntactic rules in this grammar: an alternative set of labels on consitu­tents that are used to capture generalities in the semantic interpretation of constructions like the verbal auxiliaries or many adverbials. Syntactic rules form the basis of a set of schemas in a Tree Adjoining Grammar that are used as templates from which to create the primary, semantically labeled rules of the grammar as part of defining the categories in the domain models. This design permits the semantic grammar to be developed on a linguistically principled basis since all the rules must conform to syntactically sound patterns.
1 Partial parsing and se­

mantic grammars

The rate-limiting step in advancing how much
machines can understand from a natural language
text is the size and thoroughness of the seman­
tic models used to make sense of the information
the texts contain. At the same time, the state
of the art in parsing and information extraction
mandates that the texts being analyzed can no
longer be artificial - made up by linguists to
test their grammatical theories - but should be
actual texts written by people for other people;
indeed, the right kind of test corpus today will be
downloaded from an online service on the day of
the test .

To accomodate this combination of unre­
stricted sources and limited semantic compe­
tence, one focuses on sublanguage analysis (in
the sense of Kittredge & Lehrberger 1982) . This
may be simply a restriction in the source of one's
texts to just one topic and register, such as in the
present instance single paragraph articles taken

171

from the "Who's News" column of the Wall Street
Journal, which contain almost nothing beyond
announcements of the promotions or retirements
of executives in commercial businesses. It may
more broadly be a concentration on a given kind
of information and its standard sublanguage but
with no constraint on the sources in which it
appears, e.g. extracting executive job change
information in articles of any length appearing
anywhere in the Journal or other business news
sources available online, while at the same time
functioning robustly dispite the unknown words
and unparseable constructions in other portions
of the texts.

This then is the sence in which the "par­
tial parsing" of this paper's title should be un­
derstood: the parses the system makes, and its
comprehension of the parsed segments, should
be both complete and thorough, but those seg­
ments will typically constitute only a portion of
the whole text being analyzed. Since the intru­
sion of off- topic segments can be at any granu­
larity - apposatives or adjuncts within clauses,

172
modifiers within NPs, etc. , a partial parser in this sense will incorporate some heuristic techniques for compensating for such gaps in its analysis, but for the most part its parsing machinery can be conventional and its only substantial differences from a parser intended to always parse every part of its text will lie in its grammar. In order to constrain the grammar to only those topics and sublanguages within the corpus that the system's semantic models will under­stand , one is naturally drawn to the use of se­mantic grammars. Here the grammar will only provide an analysis if the model will comprehend it - no parse node will be allowed to be formed if it does not also have a semantic interpretation. No effort is wasted in trying to make sense of portions of the text not on the target topic since the grammar will leave them unanalyzed and no interpretations will be initiated. Introduced originally by Dick Burton as the basis of the natural language interface to the So­phie ICAI system (Burton 1976; Burton & Brown 1975) and later used for the interfaces in Lad­der (Hendrix et al. 1978) , Planes (Waltz et al. 1976) , and many other systems, semantic gram­mars have the advantage of high specificity, easy, almost common-sense definition, and extremely low run-time ambiguity. At the same time, they also suffer from brittleness, minimal carryover and significant effort in extending them to other domains, and a striking lack of ability to appre­ciate linguistic generalizations. In this paper we will describe a version of se­mantic grammar that addresses these problems while retaining the formalism's strengths. We provide a systematic basis for relating the seman­tic categories used by the parser to the categories and representational structures used in the se­mantic model that provides the text's interpre­tation. We also provide the parser with a paral­lel set of standard syntactic categories shadowing the semantic categories and providing the basis of domain-independent default rules with a common semantics. This is all brought together in a set of general schemas, derived from a Tree Adjoining Grammar, that allow the definition of the gram­mar to b� done as part of the definition of the se­mantic model, ensuring consistency and reducing much of the labor of writing semantic grammars in the process. We will begin by motivating the way in which

McDONALD

we link parsing rules to their interpretations, and with that introduce the notion of schemas that are used to define the two simultaneously. We will then describe the 'form' rules that provide the syntactic defaults, and present the algorithm for checking for possible constituent combinations in some detail since it is the means by which the two kinds of rules are interleaved.
2 Parsing to objects

What is the goal of a parser? The customary an­swer is that it is to determine the form of a text -its decomposition into constituents and the gram­matical relations among them, which is to then serve as the basis of its semantic interpretation - the recovery and representation of its mean­ing. The line between form and interpretation begins to blur, however, once one adopts a seman­tic grammar as the basis of the analysis of text form. A constituent in a semantic grammar has a label that reflects its category when taken as an thing or event-type in the world: 'person' rather than NP, 'elect' or 'get-position' rather than verb. Given a multi-level analysis by the parser, with transformations or their equivalent to render a surface-level representation into a canonical form, such a choice of categorizations will yield a repre­sentation not too disimilar from some conceptions of logical form, with the constituent labels pro­viding the predicate names applied to variables introduced by the transformations. The present work, however, employs a denota­tional rather than descriptive notion of semantic interpretation. Here the process of parsing a text incrementally accesses or contructs a set of unique semantic entities - individuals in a model of the world and the ongoing discourse as represented in the mind (code) of the language user. The inter­pretation function is applied rule by rule as the parse proceeds, rather than having to wait for it to end. Many of the individuals and all of the base types of this model will exist before the text is processed, and the task of the language under­standing system is taken to be to recover from its analysis of the text the objects representing these individuals, and to add to the model any newly established individuals and any new relations or properties over them and pre-existing individuals. As a parser then, the Sparser system does re-

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 173

cover a phrase structure-based analysis of a text's
form. But this form is only a means to an end,
namely to project from the words of the text, as
channeled by the constituent structure, directly
to the objects in the world/discourse model with­
out any interveening intermediate level of repre­
sentation of the meaning as another expression
such as a logical form. Since this projection hap­
pens incrementally as the parse proceeds from be­
ginning to end in one pass through the text, the
parser may as well be said to be parsing to objects
(in something of the manner of Reis beck and Mar­
tin 1985) , since it will not complete a constituent
without also recovering that constituent 's coun­
terpart in the model.

This being the case, and given the goal of
a partial parser to tightly coordinate what the
parser's grammar is able to analyze with what its
semantic model is able to understand, a natural
way to proceed is to have the rules of the gram­
mar written as a side-effect of defining the types
of the model. What this means is that when one
defines, say, a category of event like 'confirm-in­
posi tion' , that definition should include the def­
inition of the rules needed to parse texts about
that event-type. (Confirm-in-position is intended
here as the denotation of the verb "confirm" as
used in a sentence like "J. Gordon Strasser, act­ing president and chief executive officer of this gold mining company, was confirmed in the posts
. . . " , which is typical of the "Who's News" texts
we have worked with.) Concombinantly, the pars­
ing rules created by this definition should spell
out not only how the constituents of the text com­
pose, but also how those compositions should be
projected to the discourse model to incrementally
construct an individual to represent the confirma­
tion event rule by rule as the parse progresses.

Let us consider what has to go into these def­
initions so that establishing 'confirm-in-position'
as an event-type in the model will at the same
time provide the rules that the grammar needs to
handle a sentence like the example. For its own
purposes, the semantic definition of an event or
other relations will specify a set of necessary and
optional participants , including value restrictions
constraining what categories of individuals those
participants can be. For 'confirm-in-position' ,
as evidenced by news articles in the Wall Street
Journal, the agent that causes a confirmation can
be either a company or its board of directors; the

participant who gets confirmed is a person; and
that person is confirmed to some position. We
can use these categories directly to provide the
labels for the corresponding constituents in the
semantic grammar, where they take on the force
of selectional restrictions.

Beyond the selectional restrictions on the par­
ticipants, the definitions must supply the words
that have the intended meaning as one of their
senses (i.e. the semantic object under definition)
as well as the syntactic su bcategorization frames
that the words take. Given the choices of lexical
realization, syntactic information is then needed
to spell out the phrasal patterns corresponding to
the subcategorizations and how the participants
project onto them.

With few exceptions, the subcategorization
frames are shared by a great many words, and
consequently can be schematized and shared
among the definitions (e.g. transitive verb, in­
transitive, noun taking quantification of number,
noun holding a position in a sequence, etc.) . The
patterns of verbs especially are most naturally
given in terms of syntactic phrasal categories , and
can thus also provide the default syntactic cat­
egories that are provided with the rules of the
semantic grammar, as we shall see.

We fill the requirement to fit all of the partic­
ipants of a relation to a single sharable syntac­
tic schema by adopting Lexicalized Tree Adjoin­
ing Grammars as the linguistic formalism (Joshi
1985; Shabes, Abeille & Joshi 1988) . TAG's ex­
tended domain of locality allows the configura­
tional and grammatical relations of all of a lexi­
cal head's arguments to be given at once, which
is important here since the semantic relationship
of each argument to its matrix relation must be
specified in the schema, and this is easier to do
if all of the participants of a domain relation can
be paired with their syntactic counterparts in one
statement. The schemas we adopt are a nota­
tional variant on the TAG Tree Families of Abeille
1988, which give all of the transformational vari­
ations of a subcategorization frame in one struc­
ture. The particulars are described in section five.

To summarize the framework so far, we are
employing in the Sparser system a grammar of
rules of syntactic form which employ semantic
categories as their primary labels, with standard
syntactic labels provided with them as defaults.
Each rule has an accompanying semantic inter-

174 McDONALD.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(1 1)

(12)

(13)

j ob-event -> board-of-directors j ob-event\agent
j ob-event -> company j ob-event\agent
j ob-event -> j ob-event in-position
j ob-event -> j ob-event as-position
j ob-event -> person conf irm-in-position+passive

j ob-event -> person+pos conf irm-in-position+nominalization
j ob-event -> conf irm-in-position+nominalization of-person
j ob-event\agent -> conf irm-in-position person

conf irm-in-position -> " conf irm"
conf irm-in-position -> " confirms "
conf irm-in-position -> " conf irmed"
conf irm-in-position -> "conf irming"
conf irm-in-pos ition+nominalization -> " confirmation"

Figure 1: Semantically labeled rules
pretation function that will find or construct the denotation of the constituent it creates. The grammar rules and the set of model-level object types are created at the same time by definitions that recruit the value restrictions on the partic­ipants in a relation to supply the semantic la­bels on the grammar's rules, where they implicitly serve the role of selectional restrictions ensuring that the rules cannot complete unless their con­stituents will make sense to the world model. The set of rules created by a type definition is deter­mined by instantiating the TAG tree family(s) corresponding to the subcategorization frames of the word or words that can realize the relation­type in a text . The effect on the final grammar is as though we had taken a conventional syntactic grammar that used syntactic preterminal categories and performed two multiplications: the first takes its preterminal categories for content words and mul­tiplies them across all of the lexical choices spec­ified by the definitions of the model's domain­specific types. The second takes the rules com­posing normal syntactic nonterminals and multi­plies them across all of the sets of selectional re­strictions dictated by the semantic categories of the individuals that can participate in the domain relations. The resulting grammar is dramatically larger than the original, but it will show a equally

dramatic increase in runtime efficiency because of its minimal ambiguity and its immediate and in­cremental connection to the semantic interpreta-. tion, which, after all, is the ultimate purpose of the grammar in the first place.
3 Integrating rewrite rules

and denotations

Before introducing the notation and mechanisms of the model-level definitions and the subcatego­rization schemas, we should look at some exam­ples of the grammar rules - productions - that Sparser uses. We will start with some semanti­cally labeled rules based on a type definition -the output of a schema, and then look at the syn­tactically labeled rules that complement it . We start with the set of rules produced for 'confirm­in-position' , all of which are listed just in terms of their semantic labels in figure 1 We will then look at the details of what is represented in one of these rules and show how the syntactic and denotational information is represented and put to use. We will end the section by sketching how the rules are used in a parse of a text that is com­pletely within the job-change sublanguage so that one can get a sense of the interplay between form and denotation in the Sparser system.

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 175

#<phrase-structure-rule psr11
: lefthand-side #<category conf irm-in-position>
: righthand-side (#<word ' ' conf irmed ' ' >)
: syntactic-form #<category verb+ed>
: referent #<category conf irm-in-posit ion> >

Figure 2: Rewrite rule 1 1

#<edge e22 ; ; a designator to use as the edge ' s name
: starts-at #<position 18>
: ends-at #<pos ition 19>
: category #<category conf irm-in-position>
: left-daughter #<word ' ' conf irmed ' ' >
: right-daughter : unary-rule , , i . e . only the ' left ' daughter matters
: used-in nil ; ; later points to the edge this is a daughter of
: form #<category verb+ed>
: referent . #<category conf irm-in-posit ion> >

Figure 3: An edge in the chart

This rule set (Figure 1) consists of five unary
lexical rules (9 - 13) , and eight binary rules over
non-terminals corresponding to the conventional
rules: S -> NP VP, VP -> VG NP, S -> NP
VG, S -> S PP, and two NP rules for nominaliza­
tions. These semantically labeled rules are com­
plemented by a set of generically applicable syn­
tactically labeled 'form rules ' , e.g. for the "be +
ed" of the passive, other auxiliaries and standard
adverbs, and for the definite or indefinite articles
that can occur with the nominalizations. We take
these up in a moment. 1

In parsing our example, "J. Gordon Strasser, acting president and chief executive officer of this gold mining company, was confirmed in the posts" , the instantiation of a model-level
'confirm-in-position' event will start when the
word "confirmed" is scanned, firing rewrite rule
11 (figure 2) . That rule has the internal repre­
sentation shown below. The '#<>' notation indi­
cates pointers to objects, with the first term in
the brackets indicating the object's type and the

rest a summarizing print form, typically the sym­
bol or string used to name it .

Note that the 'referent' given with the rule
is a pointer directly into the system's semantic
model. It is available as part of the statement of
the rule because the rule is created as a side-effect
of defining that event-type. Notice also that the
rule also indicates the default syntactic label (cat­
egory) that is to be given to the constituents it
forms, i .e. verb+ed, complementing the primary
semantic label given as the rule's lefthand side.

When completed, this rule creates a nonter­
minal node - an edge in Sparser's chart - as
shown in figure 3. For purposes of illustration we
have the example text start at chart position zero,
which puts the word "confirmed" between posi­
tions 18 and 19. (In the actual text, this was the
first clause of the first sentence of a one paragraph
article, with an extensive set of headers and with
the name and location of the company where the
change was going on announced in a dateline just 1 There are not as many phrasal rules in this set as one might expect for a transitive verb given the notion of a transformation family. This is because Sparser handles the relative pronouns of relative clauses by rewriting them with the semantic label of their NP head, making them equivalent here to rules 2 and 5, and it treats other WH constructions using 'form rules' as described below. Other predictable constructions such as it-clefts or topicalization have not yet occured anywhere in the studied portions of the Who's News corpus and have been omitted just because we have not had the examples to study for their semantic analysis.

176

before the sentence started - all of which was
also entered into the chart and processed.)

Note that the edge essentially just carries over
the information given in the rule. The category
given as the 'lefthand-side' of the rule becomes
the edge's 'category' - it is this semantic label
which will be the primary label used the course
of parsing. The category given as the 'syntactic­
form' of the rule becomes the edge's 'form' - its
syntactic label, which will be used only if the se­
mantic label cannot participate in a composition
with any of the neighbor edges, i .e. it is the de­
fault .

The semantic analysis at work here holds that
content words (nouns, verbs, adjectives) name
categories of individuals in the semantic model.
The denotation of "confirmed" is, as shown, the
category ascribed to events of that type (which we
also use as the semantic label on its edge, a com­
mon but not universal practice in this grammar
since particularities of subcategorization and ap­
plicable substitution contexts can override it and
call for more specific labelings) . The denotation
of the word "company" in the example is the cat­
egory used for all individuals representing compa­
nies and similar enterprises; "posts" denotes the
category for positions, specialized in this case to
note that more than one title and/or company is
involved; and so on.

The composition of modifiers onto a head con­
stituent may specialize the category of the head
to one of its subcategories (as done implicitly with
the plurality of "posts") , or may predicate at­
tributes to an individual. The composition of
some discourse anchor - tense for verbs or de-

McDONALD

terminers for nouns - will change the denotation
to now pick out some individual fitting the cate­
gory of the phrase accumulated on the headline to
that point . This happens when "was" and "con­firm" are composed, where we will establish an
individual of domain-type (category) 'confirm-in­
position' . This involves a 'rule of form' which we
take up in the next section.

In the interests of space we will jump ahead
to the point when the major constituents of the
example have been formed so that we cari con­
centrate on how the rules for confirm-in-position
are applied and how they take the new individual
in the model - an instance of this event-type -
and fill its participant roles with the individuals
denoted by those constituents.

Below (figure 4) is a vertical presentation of
that chart state, followed by a list of the edges
with their semantic and syntactic labels and their
denotations. A compact notation is used here
for illustration purposes. The edges names, e.g. ,
'e23' , reflect the order in which the edges were
formed. The numbers around the excerpted texts
are the chart positions.

At this point SPARSER will apply rule 5 from
the set above to combine edges e20 and e23 to
form a clause ('S ') labeled 'job-event ' from posi­
tion 1 to position 20, edge e30. When that edge
is formed, the denotations of its daughter edges
are combined following the interpretation func­
tion given with the rule (see section 5) . The re­
sult , the denotation of e30, will be the same in­
dividual denoted by e23, but now that individual
is augmented by having its 'agent ' role bound to
the person pointed to by the subject edge e20 .

e20 1 J . Gordon Strasser I of this gold mining company 18
e23 18 was conf irmed 20
e29 20 in the posts 23

[e20 : person , np , #<individual : person Strasser>]

[e23 : conf irm-in�position+passive , vg , #<individual : confirm-in-position>]

[e29 : in-position , pp , #<individual : position : collective President I>]

Figure 4: Chart state and list of edges

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 177

#<edge e31
: starts-at #<position 1>
: ends-at #<position 23>
: category #<category j ob-event
: left-daughter #<edge 30>
: right-daughter #<edge 29>
: used-in nil
: form #<category S>
: referent

#< individual
: type (conf irm-in-position past get-posit ion j ob-event

transition-event)
: bindings (#<binding person = #<individual : person Strasser>>

#<binding position =

#<individual : position : collective President I>>) >>

Figure 5: Edge e31

This new edge, e30, will then be combined
with the pp-adjunct edge e29 using rule 3 with
a similar result. Another edge, e31 , is formed as
shown in figure 5. Its referent is again the same
individual that was instantiated when the verb
group edge was formed (i.e. the individual repre­
senting this instance of confirm-in-position) . Now
it gets its 'position' role bound to the individual
of type position denoted by e29.

The parse is now finished syntactically since
we have recovered a grammatically complete unit ,
a sentence. Semantically it is still incomplete,
since the text did not explicitly give the agent
that did the confirming and so the event-type is
not yet saturated. In this genre it would be safe
to infer that the agent is the company where the
person now holds the position.

4 Form rules

The preponderance of the syntactic (surface
form) rewrite rules in Sparser's grammar will have
words or semantic categories on their righthand
sides resulting from the application of some TAG
schema during the definition of a domain-specific
type in the world model; when the distinction
must be made we will refer to them as 'semanti­
cally characterized rules' . There are also rewrite
rules whose categories are taken from the conven­
tional syntactic vocabulary and consequently are

shared across all of the semantic domains; we call
these 'form rules' because they make reference to
general aspects of surface form rather ideosyn­
cratic aspects that apply to only certain domains
of discourse and their sublanguages. Form rules
are the subject of this section. We will look at an
example of a form rule and the rationale behind
its use, and then go through the 'Check' algo­
rithm that coordinates the selection of semanti­
cally characterized or form rules.

A form rule combines a word or occasionally
a semantically labeled edge - call it the 'literal'
- with the form category of another edge - call
that edge the 'head' . The head edge will always
lie on the headline of the final tree; the literal will
always be a specifier, an auxiliary, or a modifying
adjunct or adverb. The purpose of a form rule is
to capture a general fact about phrase formation
in the language, one whose implications for the
semantics of the resulting phrase - its denota­
tion - is the same regardless of the domain. ·

The implementation of form rules in Sparser
allows them to be transparent to the rest of the
rules in the grammar. The new edge created
by composing the literal and the head edge will
have the same category (or some linguistically
principled projection of it) as that of its head
edge - any semantically characterized rules that
might eventually apply to the head edge will ap­
ply transparently to the new edge as though the

1 78 McDONA LD

#<form-rule fpsr1
: righthand-side (#<word ' ' was ' ' > #<category verb+ed>)
: new-category : passive
: syntactic-form #<category verb-group>
: referent (: head : right-edge

: subtype #<past>) >

Figure 6: The applicable form rule for "was confirmed"
#<edge e21

: starts-at #<position 17>
: ends-at #<position 18>
: category #<word ' ' was ' ' >
: left-daughter #<word ' ' was ' ' >
: right-daughter : literal-in-a-rule
: used-in nil
: form #<category verbal-auxiliary>
: referent nil >

Figure 7: The edge that spans the word "was"
literal had not been there. The observent reader will already have noticed that the set of rules above was missing the cases needed to" cover many likely texts: " . . . will be confirmed Wednesday in Seattle" , ". . . has been confirmed" , etc. All such combinations - with time and place adjuncts, with complex verbal auxiliaries - are handled uniformly throughout the grammar by form rules. The exceptions to this uniformity come when there needs to be a domain-specific, semantic (de­notational) consequence to a particular combina­tion , as when a verb subcategorizes specifically for a location. In such cases the grammar will simply include a semantically characterized rule for that combination, and the parser will look for that rule in preference to the form rule, as de­scribed in section 4.1. The form rule that applies in the case of "was confirmed" is shown in figure 6. (Note that the referent in this rule is not a direct pointer into the model as before but a schematic func­tion. It will take the edge on the right of the

two constituents - edge-22 denoting the category 'confirm-in-position - and look in the model for one of its specializations (one of its subtypes) that represents the event having occurred in the past, which will then become the denotation of the new edge.) Informally speaking, this rule applies in the present example because the word "was" is ad­jacent to edge-22 which has the form category 'verb+ed' , and because there is no semantically characterized rule that combines "was" and edge-22's primary category, 'confirm-in-position '. The new edge formed by the completion of the rule will have the label 'confirm-in-position+passive' , as dictated by the form rule's 'new- category ' field in coordination with the schema that de­fined confirm-in-position and made provisions for that projection from the original category over the verb. (Had there been no new-category field in the rule, then by default the new edge would have taken the same label as the one on the head edge - edge-22.)

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 179
Before we can go into the formal algorithm for checking whether edges combine and coordi­nating the two kinds of rules, we must also show the edge that spans the word "was" and discuss its possibly unusual aspects (figure 7) . Note that the label on this edge (its 'cate­gory' field) contains a word rather than a cate­gory. There are two reasons for this . The first is that allowing words as nonterminals permits an elegant treatment of abbreviations: One can simply rewrite the combination of the abbrevi­ation and its period as the full, unabbreviated word; thereby avoiding any need to redundantly extend grammar to include combination rules for the abbreviation as well as for the full word (e.g. "Company" -> "Co" ".") . If the same abbrevi­ation has several expansions then multiple edges will be put into the chart.

The second reason is to simplify the implemen­tation of the parsing algorithm so that it needs to manipulate only a single data type - edges -when looking for rule applications, rather than both edges and words. Any word that is men­tioned in a rewrite rule will be covered with an edge when it is scanned, the label on that edge being the word itself. This also permits a simple way to discriminate between known and unknown words in the course of a parse. A known word (one with rules in the grammar) will always have one or more edges over it, if only a trivial edge labeled with that word; unknown words will not have edges, leaving a gap among the preterminal edges of the chart , which can be used to trigger heuristics for dealing with unknown words when they appear in certain contexts. We should also note that all of Sparser's ac­tions are taken over unary" or binary rules. Rules with more than two terms on their righthand sides are converted to a set of rules in Chomsky Nor­mal Form, using a dotted-rule convention to pro­vide names for the intermediate non-terminal la­bels created in the process. Also, in describing the Check algorithm we will not go into any de­tail about the larger aspects of the parsing algo­rithm that determines when or whether two ad­jacent edges will be checked. Basically the parser operates bottom up and left to right, forming constituents from their heads outwards; however, overlaying that conventional traversal of the space

of possible constituents is a moderately complex control structure that reduces the search to a de­terministic algorithm, in the sense that every edge formed will be part of the final analysis and every edge will have a unique parent edge in the tree. For some of the particulars see McDonald 1992.
4.1 The algorithm that coordinates

checking for both kinds of rules

We can define Sparser's Check operation - its algorithm for seeing whether there is a rule in the grammar that combines two particular adjacent edges - as follows: Consider two adjacent edges which we will call "Left" and "Right" . Left ends at some position p in the chart, and Right begins at this same po­sition p. Left is said to be earlier in the chart -closer to the beginning of the text - because it begins at some position p' (p' being strictly less that p) and because Right ends at some position p" (p" being strictly greater than p) . Positions are indexed numerically starting with zero before the first word of the text and increasing in a pos­itive direction, one position between each word. The position at which an edge begins always has a lower numerical index than the position at which it ends; no edge can begin and end at the same position. Only adjacent edges can be combined to form a new edge. The new edge will start at position p' and end at p" . The possibility of two adjacent edges combining is function of their labels, where a label is a word or category in the 'category' field of an edge, or one of a specially designated set of 'form categories' pointed to from the 'form' field of an edge. The form field may be empty.
The Check operation is based on a table com­piled from the labels of the rules of the grammar. All rules are binary. The table will associate the righthand sides of those rules , taken as ordered pairs of labels, with the rules themselves. We use the table at runtime by forming an index from the labels of the adjacent constituents and look­ing the index up in the table to see if that pair of constituents was one of the ones defined by the grammar. If it is, we return the rule located at that index in the table; if it is not , there will be

180

no rule at that index and we return nil indicat­ing that the edges do not combine. We presently implement the table as a hash on the numerical index; it would lend itself to a hardware imple­mentation as will be clear from its definition.
We form the table as follows. For each rule consider the two labels on its righthand side; call them LL and RL for the first and second (left and right) labels respectively. The rules are taken one at a time in some order: the textual order of their definition in the files of the grammar suffices. We assign each label two unique numbers. One num­ber stands for the label when it appears as the left label of a binary rule (LL) ; the second stands for when it appears as the right label of a rule (RL) . If a label never appears on one of the sides we assign it nil for that component. Numbers for RL labels are assigned starting at 1 and increasing by one with each successive RL up to some 'middle number' choosen to be well above the number of labels ever to appear in the grammar. Numbers for LL labels are assigned starting at that middle number plus one and adding that middle num­ber to the prior LL index for each successive LL. The numbers are then stored with their labels for access during the Check operation. Entries in the table are formed by adding the numbers for the two righthand side labels of each rule and assigning the rule to the table entry with that numerical index. This sum is guarenteed to be unique by the apt choice of the middle num­ber that divides the two number sequences. It is chosen on the model of adding the two halves of a machine word on a computer. For a 32 bit word length we would select as the middle number 65,536 (two to the sixteenth) , giving us a maxi­mum of 64k labels. All of the LL labels will have zeros in their lower sixteen bits; all of the RL la­bels will have zeros in their upper sixteen bits; combining them with a logical AND will yield a new number unique to that combination of its two halves. Adding the two numbers in software has the same effect . In checking whether two adjacent edges com­bine we first check whether their two semantic labels combine; then only if those labels do not combine will we go further and check for the pos­sible combination of one or the other of the se­mantic labels with the other constituent 's form label. To facilitate this, the index assignment

McDONALD

algorithm is complicated slightly: In iterating through the grammar's rules we distinguish· be­tween regular, semantically charactedzed rules and form rules. A pair of indexes is stored with each label for each direction. The first number in the pair is used for combinations with a seman­tic label, the second with a form label. The first numbers are established by iterating through the semantically characterized rules. The second by iterating through the form rules.
Given all this, the Check algorithm proper is the following. Given edges Left and Right as de­fined above, compute the index in the table of the combination's semantic labels (the 'category' fields of the two edges) . For Left , retrieve the right-looking number that was assigned to it -the one it was given for when it appeared as the left of the two labels in a binary rule. Do the op­posite for Right. Now add the two numbers, and use the sum as an index into the table. A rule will be returned if the two edges compose, and this rule is used as the basis of the new edge spanning them. If that index into the table is nil, indicating that no semantically characterised rule applies to that edge pair, then go on to check for combi­nations involving form rules. In the present ex­ample there will be no semantically characterised rule for "was" plus 'confirm-in-position' , so we will move on to check form rules. There will always be two possible form rules to check for: one combining the category field la­bel of Left and the form field label of Right ; the other combining the form label of Left and the category label of Right . Only one of these two pairs will have an index defined for it because of the requirement on form rules that one of the two labels on their righthand sides be either a literal word or a semantic category. We start by com­puting the table index for the first case, and only if that lookup into the table fails to return a rule do we try the second. If one or the other label fails to have a form option in its stored pair of index numbers then that case is undefined. If neither succeeds, then the two adjacent edges do not compose.
This completes the description of Sparser's Check algorithm. It can be summarized as fol­lows: Its purpose is to determine whether two adjacent edges can be composed to form a new

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 181
edge. This is allowed in any of three cases: first if the semantic categories of the two edges match the righthand side of some rule in the grammar; failing that if either the semantic category of the first and the form category of the second corre­spond to some form rule in the grammar, or visa versa. The test is made by adding numbers that were assigned to the labels as the grammar rules were defined, and using that index as the key into a table that records which pairs correspond to rules. The prohibition on having a form rule based on a pair of form labels is there to rule out the possibility of ever writing a conventional syntac­tic grammar in this formalism. We rule this out for two reasons. The first is that allowing "pure" form rules would re-introduce to the grammar the massive ambiguities that syntactic grammars are prone to. The second is that doing so would miss the point of this grammar design, namely that the purpose of a grammar is to facilitate the map­ping between form and meaning - between the edges formed over words or phrases and their de­notations in the system's world model. We only allow form rules to be used if we are already con­structing the projection to some individual in the model, i.e. if the combination is between an edge on the head .line which will have a projection and one of its adjuncts (broadly construed) . We have presented the Check algorithm in this much detail because we have seldom seen the rule­lookup algorithms of other parsers described and feel that this kind of information should be added to the literature. In the present case, the very high efficiency of this constant-time lookup oper­ation is especially important because of the very large number of rewrite rules in the grammar. A lookup algorithm that was sensitive to the size of the grammar (or for that matter the presence of any 'order of the size of the grammar' operation within the parser) would strongly penalize the use a s.emantic grammar. Optimizing algorithms for speed is important even with today's processors because of the ever growing volume of text that

must be processed.2

5 Defining parsing rules as a
side-effect of defining a do­

main object type

As already discussed, the Sparser language com­prehension system works in close consort with a universe of individuals and categories (the indi­vidualsU types) that supply the denotations of the words and phrases it parses: This model of the system's world (the topic domains it is compe­tent in) and of the ongoing discourse is based on a set of type definitions, and we are using those def­initions as the source of the semantically labeled rewrite rules that Sparser uses. In this section we will look at one such definition and the TAG schema that it uses to create the rules. We begin with a discussion of the schem�, shown in figure 8 on page 182. The 'binding-parameters' and 'labels' fields hold sets of symbols that will be substituted for when the schema is applied to the type-definition: The labels are used to define the rewrite patterns of the individual rewrite rules given in the 'cases' field; the parameters are placeholders for the def­inition's participant roles. The initial terms in each case (e.g. :subject) are just indicators used by the grammar writer to help organize the cases. The parenthesized expressions following the indicators are the schematic form of the rules; left and righthand sides are indicated in the obvious way. The :head and : binds indicators after the syntactic part of each rule give its semantic in­terpretation function. They indicate which of the two edges is the head and what role is filled by the denotation of the other edge. The label symbols on the lefthand sides of the rules (e.g. S, VP, VG) designate the form labels that are to accompany the corresponding seman­tic labels that are substitued for them to con­struct the rules. An example of the final form of one of these rules was given earlier.

2One day of the Wall Street Journal averages about half a megabyte. It is available online at about six o'clock in the morning. We will want the results of our information extractions and their pragmatic analysis on the desks of clients when they come in three hours later, and it is only one of any number of online text-based information services that might be used. Sparser processes the sublanguage-rich portions of a text at about 20 words a second (Mac-II, 68020, 15 .7mhz); off-topic portions run at about 100 words/sec.

182 McDONALD

(define-exploded-tree-family transitive/passive
: binding-parameters (agent patient)
: labels (s vp vg np-subj ect np-obj ect)
: cases

((: subj ect (s (np-subj ect vp)
: head right-edge
: binds (agent left-edge))

(: direct-obj ect (vp (vg np-obj ect)
: head left-edge
: binds (patient right-edge)))

(: passive (s (np-obj ect vg+passive)
: head right-edge
: binds (patient left-edge)))

(: pos-nominalization (s (np-obj ect+pos vg+nominalization)
: head right-edge
: binds (patient left-edge)))

(: of-nominalization (s (vg+nominalization of+np-obj ect)
: head left-edge
: binds (patient right-edge)))))

Figure 8: TAG schema for rule creation
Space does not permit a full explication of the relationship between this set of independent context-free rule schemas and the full clausal trees of the corresponding TAG tree family (but see McDonald, to appear) . Briefly, we independently have an extensive TAG grammar, organized as tree families, that .for for many years we have been using in our work on language generation . Here · what we have done (by hand at the moment) is take those trees and decompose each of them into their layers of context- free rules, avoiding dupli­cates since many trees have identical sentential forms at some layer such as S -> NP VP . The connectedness that characterizes the lev­els of immediate constituents in a TAG tree is obviously not present in the schema. It is re­constituted when the schema is applied: generic labels like VP that appear in all clauses syntac­tically and so can provide no connection across the cf rules . are replaced during the application with unique semantically characterized labels like confirm-in-position+passive . These create a con­nection within the instantiated set of cf rules not unlike the quasi-nodes of Vijay Shankar (1993) . Moving on now, consider the definition of the domain-specific model-level type 'confirm-in-

position ', shown in figure 9 below . The represen­tation langu&ge being used is called KRISP, and is described in McDonald (in press); it is a near cousin of Krypton in the Kl-One family, with spe­cial features that make it especially well suited as a source representation , for language generation , and some efficient data storage and indexing fea­tures that suit it to language comprehension .
The first several fields of confirm-in-position are what you would expect in a modern frame lan­guage. The category 's position in the taxonomic specialization hierarchy is given by its 'special­izes' field. Its 'binds' field lists the participants that are specific to this event-type; although an individual instance can have additional partici­pants like time ·and place by warrant of inherit­ing from the category TeventU . The participants ' value-restrictions are indicated by the :v /r flag. The 'instantiates' field indicates which category above it in the hierarchy an instance should be indexed under in the discourse history ; thus for purposes of searching the discourse history, a con­firm event is taken to be equivalent to any other job-event, e.g. elect, appoint, resign, etc . The 'index' field specifies how individuals are stored .

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 183

(def ine-category conf irm-in-position
: instant iates j ob-event
: specializes get-position
: binds ((agent (: v/r : or board-of-directors company))

(person (: v/r person))
(position (: v/r position)))

: index (: temporary : list)
: realization

(: tree-family transitive/passive
: mapping ((agent . agent)

(patient . person)
(s . j ob-event)
(np-subj ect . (board-ef-directors company))
(vp . j ob-event\agent)
(vg . : main-verb)
(np/obj ect . person)

: main-verb ' ' conf irm ' '
: saturat ion (agent person position)
: addit ional-rules

((: adj unct (j ob-event (j ob-event in-position)
: head left-edge
: binds (position right-edge))) �

(: adjunct (j ob-event (j ob-event as-position)
: head left-edge
: binds (position right-edge))))))

Figure 9: The domain-specific model-level type 'confirm-in-position'

The 'realization' field is the basis for instan­
tiating the category's portion of the semantic
grammar. The rules constructed from it will rec­
ognize phrases denoting instances of individuals
with this category in a text, and will guide the
semantic interpretation to instantiate them and
populate their participant roles. The field indi­
cates which syntactic rule schema should be used
in this case the tree-family 'transitive/passive:
shown just above. In its 'mapping' field it in­
dicates the correspondences between the roles of
the category and the substitution variables in the
schema. The 'main-verb' field (vs. 'head-noun' in
other cases) indicates what word should be used
as the lexical head of the tree family; its mor­
phological variants are calculated automatically,
though if it were irregular the special cases would
be given explicitly here. The 'saturation' field in­
dicates · that those three roles must be given in
a text before an individual of this type is fully

defined.

When this form is executed to define the cat­
egory, its realization field is interpreted and the
syntactic schema (tree family) it indicates is ap­
plied to the parameters given in the field. Each
of the rule cases of the schema is taken up in
turn and the corresponding rewrite rule created
by making the substitutions called for by the
mapping field. Notice that there are two addi­
tional cases given in this category's realization
field. They identify how the category's 'position'
role is filled, namely with either of two different
adjunct prepositional phrases, one using "in" , the
other "as" . (They are analyzed here as attaching
to the sentence rather than the verb phrase for
compatibility with the way nominalizations are
treated.) This kind of local augmentation of the
general syntactic schemas (the set of tree fami­
lies) is convenient for specifying the often ideosyn­
cratic way that individual verbs can subcategorize

184

for optional complements.

Let us look at one case, the first one in the
schema that specifies S -> NP-subject VP. (The
NP is annotated as the subject to distinguish it
among the substitution variables from the other
NP, the direct object .) Looking to tlie mapping
specification we see we have to make two rules
because the subject np can take either of two
values. We form the lefthand side of the both by
substituting the category 'job-event ' for S. We
form the righthand side of one by substituting the
category 'board-of-directors' for the variable 'np­
subject ' and substituting 'job-event\agent' for
'vp' ; the other rule gets 'company' substituted
for its np-subject.

The rule must also have a syntactic-form cat­
egory, which will be the form label of the edge
created when the rule completes. It takes this
from the syntactic category (substitution vari­
able) given as the rule's lefthand side in the
schema (i.e. S) . The rule .talso must have a ref­
erent, which it gets from the corresponding part
of the case in the schema, subsituting its role 'per­
son' for the symbol 'patient' given in the schema,
again as indicated by t;h� mapping field.

1 . •• ,

We should note in•· closing this section that a
number of largely arbitrary decisions were made
in the writing of this grammar, which is to say in
the selection of what semantic categories to use
in stating the correspondences between semantic
labels and syntactic labels in the mapping field of
a definition like this. For example we have made a
generalization about the semantic interpretations
of a whole semantic class of verbs by deciding to
specify the VP label as 'job-event\agent' rather
than, say, 'confirm-in- position' (which would be
as specific as we would be able to be) . By choos­
ing the more general category (which should be
read as in a categorial grammar: look to compose
with an agent to the left of this constituent and
label the new edge 'job-event ') , we are saying that
all the verbs in this family (or rather their model­
level denotations) make the same interpretation
of their subject NP, i.e. they all map it to their
equivalent of the agent role. This points out that
linguistic generalizations can be made in the se­
mantic realm as well as the syntactic, and that by
using a semantic grammar we are able to express
this in a very direct fashion.

McDONALD

6 Concluding remarks

Two substantive complaints have been made
against semantic grammars in the literature (e.g.

. Wallace 1984) . One is that they cannot be easily
extended as one moves from one domain to the
next, while a thorough syntactic grammar can be
taken over unchanged. This observation misses
a crucial point, however, namely that to under­
stand a text one must find the correspondence
between the structural analysis provided by the
syntax and the individuals and domain-types in
the world model of the application system that
is going to use the information given in the text.
There is no question that the world model of the
first domain that one works with will have to be
extended when one moves to the next - the next
domain will involve new kinds of objects and new
types of relations, and these will have to be added
to the model if texts in the new domain are to be
understood. There is no other possibility and the
fact that there may be no change in the syntactic
grammar is besides the point because it is not the
whole story.

By using a semantic grammar and having it
constructed directly from the world model as
done here with Sparser, we will able to keep
the grammar in step with the extensions to the
model. In particular, we will be continually re­
minded, as we work on the model, that we need
to work out the words and syntactic construc­
tions used to talk about the new concepts, since
each domain type should have a realization field
to indicate this information.

The second substantive complaint is that se­
mantic grammars are incapable of capturing lin­
guistic generalizations, and so one cannot take
advantage of these uniformities when writing the
grammar, and one may be tempted to write rules
that would be unreasonable from a linguistic per­
spective and so likely to be brittle in practice
(e.g. defining constituents that combine an np
with a following preposition, leaving the prepo­
sition's complement stranded) . This is the more
legitimate of the two complaints, but it is also
specifically what the present system was designed
to address.

By keeping the grammarian (domain modeler)
from writing rules directly except in the most
ideosyncratic cases (e.g. for dates written as
"3/31/93") , and instead forcing them to work by

THE INTERPLAY OF SYNTACTIC AND SEMANTIC NODE LABELS IN PARTIAL PARSING 185
way of some well-crafted syntactic schemas, we have imposed a discipline on the grammar, forc­ing it to fit our conception of properly analyzed linguistic structure as captured in the schemas. At the same time we have reduced the overall ef­fort required, since it is markedly more dispatch­ful to copy and specialize the realization fields of a set of related domain-type definitions than to write out the rules individually. We have been using semantic grammars in the Sparser system since its inception three years ago. Form rules were introduced after the experiences with its first major grammar, and had a signif­icant effect in simplifying the effort to develop new vocabulary since they allowed whole sets of rules for generic constructions to be used just by giving new semantic categories in the grammar the appropriate syntactic labels. The use of re-

alization fields on model-level definitions and the development of the 'exploded tree families' used as schemas is comparatively recent, and we have only now redone the original grammar for the Who's News domain in its terms. The proof of the pudding, as it were, will come as the models and grammars for the next topic domains are added in the coming months (these will be for joint­ventures and quarterly earnings) . If the effort to make these extensions is dramatically smaller than when the original grammars were developed by hand we will judge the design a pragmatic suc­cess. If a large family of syntactic schemas, espe­cially for noun phrases, can be developed that addresses the bulk of the construction-types that we see in the business texts we work with then we will have gotten a long way towards solving the problem of extending grammars to new domains.

186
References

Abeille, A. (1988) A French Tree Adjoining Grammar. technical report. Department of Computer & Information Science, University of Pennsylvania.
Burton, R. (1976) Semantic Grammar: An En­gineering Technique for Constructing Natu­ral Language Understanding Systems . Report No. 3453, Bolt Beranek and Newman Inc, Cambridge, MA.
-- - J. S. Brown (1975) "Multiple Repre­sentations of Knowledge for Tutorial Reason­ing", In: Bobrow & Colins (eds.) Represen­tation and Understanding. New York : Aca­demic Press.
Hendrix, G. - E. Sacerdoti - D. Sagalowicz, - J. Slocum (1978) "Developing a natural language interface to complex data" ACM TODS. 3(2), 105 - 147.
Joshi, A .. K. (1�85) "How much context­sensitivity is· required to provide reasonable structural description_s: tree adjoining gram­mars". In: Dowty, . D.R., L. Kartutunen, A.M. Zwicky (eds) Natural Language Process­ing . Cambridge, U.K.: Cambridge University Press.
Kittredge, R. - J. Lehrberger (1982) Sublan­guage:' Studies of Language in Restricted Se­mantic domains . Berlin: de Gruter.
McDonald, D. (1992) "An Efficient Chart-based Algorithm for Partial-Parsing of Unrestricted

McDONALD

Texts". In: Proceedings of the 3d Confer­ence on Applied Natural Language Processing (ACL). Trento, Italy. April 1992. 193 - 200.
-- (to appear) "Reversible NLP by Linking the Grammar to the Knowledge Base". In Strzalkowski, T. (ed), Reversible Grammar in Natural Language Processing. Kluwer Aca­demic.
-- (in press) "KRISP: a representation for the semantic interpretation of real texts" . Mind and Machines .
Riesbeck, C. - C.E. Martin (1985) "Direct Memory Access Parsing" . technical report DCS/RR 354. Department of Computer Sci­ence, AI Group. Yale University.
Schabes, Y. - A. Abeille - A.K. Joshi (1988) "Parsing Strategies with 'Lexicalized ' Gram­mars: Application to Tree Adjoining Gram­ma!s". In : Proceedings of Coling-88 , Bu­dapest, Hungary.
Vijay-Shanker, K. (1993) "Using Descriptions of Trees in a Tree Adjoining Grammar". Com­putational Linguistics . 18(4), 481 - 517.
Wallace, M . . (1984) Communicating with databases in natural language. Chichester, U .K.: Ellis Horwood .
Waltz, D. - T. F inin - F. Green - B. Goodman - G. Hadden (1976) The PLANES system: Natural language access to a large database. Report T-34. Department of Computer Sci­ence, University of Illinois.

Increasing the Applicability of LR Parsing

Mark-Jan Nederhof * Janos J. Sarbo

University of Nijmegen, Department of Computer Science
Toernooiveld, 6525 ED Nijmegen, The Netherlands

E-mail: { markj an , j anos }©cs . kun . nl

Abstract
In this paper we describe a phenomenon
present in some context-free grammars, called
hidden left recursion. We show that ordinary
LR parsing according to hidden left-recursive
grammars is not possible and we indicate a
range of solutions to this problem. One of
these solutions is a new parsing technique,
which is a variant of traditional LR parsing.
This new parsing technique can be used both
with and without lookahead and the nondeter­
minism can be realized using backtracking or
using a graph-structured stack.

1 Introduction .
The class of LR parsing strategies constitutes
one of the strongest and most efficient classes
of parsing strategies for context-free gram­
mars. LR parsing is commonly used in com­
pilers as well as in systems for the processing
of natural language.

Deterministic LR parsing with lookahead
of k symbols is possible for LR(k) gram­
mars. Deterministic parsing according to
grammars which are not LR(k) can in some
cases be achieved with some disambiguating
techniques. (Important progress in this field
has been reported by Thorup (1992)) . How­
ever, these techniques are not powerful enough
to handle practical grammars for e.g. natural
languages.

If we consider LR parsing tables in which
an entry may contain multiple actions, then
we obtain nondeterministic LR parsing. We • Supported by the Dutch Organisation for Scientific Research (NWO), under grant 00-62-518

will refer to realizations of nondeterministic
LR parsing as generalized LR parsing. The
most straightforward way to obtain general­
jzed LR parsing is by using backtracking (Nils­
son, 1986) .

A more efficient kind of generalized LR pars­
ing has been proposed by Tomita (1986) . The
essence of this approach is that multiple parses
are processed simultaneously. Where possi­
ble, the computation processing two or more
parses is shared. This is accomplished by us­
ing a graph-structured stack.

Although generalized LR parsing can handle
a large class of grammars, there is one phe­
nomenon which it cannot handle, viz. hidden
left recursion. Hidden left recursion, defined
at the end of this section, occurs very often in
grammars for natural languages.

A solution for handling hidden left-recursive
grammars using Tomita's algorithm was pro­
posed by Nozohoor-Farshi (1989) . In that
paper, the ordinary acyclic graph-structured
stack is generalized to .allow cycles. The re­
·sulting parsing technique is largely equivalent
to a parsing technique which follows from a
construction defined earlier by Lang (1974) ,
which makes use of a parse matrix. As a con­
sequence, termination of the parsing process
is always guaranteed. This means that hidden
left-recursive grammars and even cyclic gram­
mars can be handled.

However, cyclic graph-structured stacks
may complicate garbage collection and cannot
be realized using memo-functions (Leermakers
et al. , 1992) . Tomita's algorithm furthermore
becomes very complicated in the case of aug­
mented context-free grammar (e.g. attribute
grammar, affix grammar, definite clause gram-

187

188

mar, etc .) . In this case, different subparses
almost always have different attribute values
(or affix values, variable instantiations, etc.)
and therefore sharing of the computation of
context-free parsing would obstruct the cor­
rect computation of these values (Nederhof -
Sarbo, 1993a) .

In this paper we discuss an alternative ap­
proach of adapting the (generalized) LR pars­
ing technique to hidden left-recursive gram­
mars.

Our approach can be roughly described as
follows. Reductions with epsilon rules are no
longer performed. Instead, a reduction with
some non-epsilon rule does not have to pop
all the members in the right-hand side off
the stack; only those which do not derive the
empty string must be popped, for others it is
optional. The definition of the closure func­
tion for sets of items is changed accordingly.
Our approach requires the inspection of the
parse stack upon reduction in order to avoid
incorrect parses.

The structure of this paper is as follows.
In the next section we give an introduction
to the problem of LR parsing according to
hidden left-recursive grammars. We give two
naive ways of solving this problem by first
transforming the grammar before constructing
the (nondeterministic) LR automaton. (These
methods are naive because the transforma­
tions lead to larger grammars and therefore
to much larger ·1R automata.) We then show
how the first of these transformations can be
incorporated into the construction of LR au­
tomata, which results in parsers with a fewer
number of states. We also outline an approach
of adapting the LR technique to cyclic gram­
mars.

In Section 3 we prove the correctness of
our new parsing technique, called t:-LR pars­
ing. Efficient generation of t:-LR parsers is dis­
cussed in Section 4. We conclude in Section 5
by giving some results on the comparison be­
tween the number of states of various LR and
t:-LR parsers.

We would like to stress beforehand that
grammars with nontrivial hidden left recur­
sion can never be handled using deterministic
LR parsing (Section 2.5) , so that most of the
discussion in this paper is not applicable to

NEDERHOF - SARBO

deterministic LR parsing. We therefore, con­
trary to custom, use the term "LR parsing" for generalized LR parsing, which can at will be
realized using backtracking (possibly in combi­
nation with memo-functions) or using acyclic
graph-structured stacks. Where we deal with deterministic LR parsing, this is indicated ex­
plicitly.

The notation used in the sequel is for the
most part standard and is summarized below.

A context-free grammar G = (T, N, P, S)
consists of two finite disjoint sets N and T
of nonterminals and terminals, respectively, a
start symbol S E N , and a finite set of rules
P. Every rule has the form A � a, where the
left-hand side (lhs) A is an element from N
and the right-hand side (rhs) a is an element
from V * , where V denotes (NUT) . P can also
be seen as a relation on N x V * .

We use symbols A, B , C, . . . to range over N, symbols X, Y, Z to range over V, symbols
a, /3, ,, . . . to range over V * , and v, w, x, . . . to
range over T*. We let t: denote the empty
string. A rule of the form A � € is called
an epsilon rule.

The relation P is extended to a relation E+
on V * x V * as usual. We write � for E+ when G is obvious . . The transitive closure of � is de­
noted by � + and the reflexive and transitive
closure is denoted by � * .

We define: B L A if and only if A � Ba for
some a. The transitive closure of L is denoted
by L + .

We distinguish between two cases of left re­
cursion. The most simple case, which we call plain left recursion, occurs if there is a nonter­
minal A such that A L + A. The other case,
which we call hidden left recursion, occurs if A � Ba, B �* t=, and a �* A/3, for some A,
B, a, and /3; the left recursion is "hidden" by
the empty-generating nonterminal. (An equiv­
alent definition of hidden left recursion is due
to Leermakers et al. (1992) .)

A grammar is said to be cyclic i f A � + A
for some nonterminal A.

A nonterminal A is said to be nonfalse if A �* €. A nonterminal A is called a predicate
if it is nonfalse and A � * v only for v = t:. 1

1 The terms "nonfalse" and "predicate" seem to

INCREASING THE APPLICAB IL ITY OF LR PARSING 189

We call a non terminal A reachable if S � *
aA.B for some a and ,B. We call a grammar reduced if every nonterminal is reachable and
derives some terminal string. Where we give
a transformation between context-free gram­
mars, we tacitly assume that the input gram­
mars are reduced and for these grammars the
output grammars are guaranteed also to be re­
duced.

2 Hidden left recursion
and LR parsing

The simplest nontrivial case of hidden left re­
cursion is the grammar G1 given by the fol­
lowing rules.

A A � BAc
� a

B �
B

b

In this grammar, non terminal A is left­
recursive. This fact is hidden by the pres­
ence of a nonfalse nonterminal B in the rule
A � BAc. Note that this grammar is ambigu­
ous, as illustrated in Figure l . This is typically
so in the case where the one or more nonfalse
nonterminals which hide the left recursion are
not all predicates.

A A
/ I "' / I "'

B A C B A C

I I I \ I / I \
f. B A C b B A C

I I I I
b a f. a

Figure 1 : Two parse trees with the same yield,
showing ambiguity of G1 .

have been used for the first time by Knuth (1971) and Koster (1971), respectively, although in a slightly dif­ferent meaning.

2 . 1 Generalized LR parsing and
hidden left recursion

We now discuss informally how (generalized)
LR parsing fails to terminate for the above
grammar. We assume that the reader is famil­
iar with the construction of (nondeterministic)
LR(0) automata. Our terminology is taken
from Aho et al. (1986) .

A pictorial representation of the LR(0) pars­
ing table for G1 is given in Figure 2. LR
parsing of any input w may result in many
sequences of parsing steps , one of which is il­
lustrated by the following sequence of config­
urations.

Stack contents Inp. Action
Qo w red(B � €)
Qo B Q1 w red(B � E)
Qo B Q1 B Q1 w red(B � E)
Qo B Q1 B Q1 B Q1 w red(B � E)

The sequence of parsing steps illustrated
above does not terminate. We can find a
non-terminating sequence of parsing steps for
the LR(0) automaton for every hidden left­
recursive grammar. In fact , this is even so for
the LR(k) , LALR(k) , and SLR(k) automata,
for any k. Hidden left recursion has been iden­
tified by Soisalon-Soininen - Tarhio (1988) as
one of two sources, together with cyclicity, of
the looping of LR parsers.

Various other parsing ·techniques, such as
left-corner parsing (Nederhof,· 1993a) and can­
cellation parsing (Nederhof, 1993b) , also suffer
from this deficiency.

2 .2 Eliminating epsilon rules

We first discuss a method to allow LR parsing
for hidden left-recursive grammars by simply
performing a source to source transformation
on grammars to eliminate the rules of which
the right-hand sides only derive the empty
string. To preserve the language, for each rule
containing an occurrence of a nonfalse non­
terminal a copy must be added without that
occurrence. Following Aho - Ullman (1972) ,
this transformation, called f- elim, is described
below. The input grammar is called G.

1 . Let G0 be G.

190 NEDERHOF - SARBO

A

A' -+ .A Qo A -+ B.Ac Qi

A -+ .BAc B A -+ .BAc A
A -+ .a A -+ .a
B -+ .b B -+ .b
B -+ • B -+ • C

A -+ BAc. Qs

Figure 2: The LR(0) automaton for G1 .

2. Remove from (10 all rules defining predi- In this paper, an expression of the form [B]
cates in G and remove all occ_urrences of in a rhs indicates that the member B has been
these predicates from the rules in G0 • eliminated by the transformation. It is for rea­

sons of clarity that we write this expression
3. Replace every rule of the form A -+ instead of just leaving B out.

o:0B1 0:1 B2 . . . Bmam in Go , m � 0, An item of the form A -+ [ao]X1 [o:1) . . .
where the members which are non- [o:i-i)•Xi . . . Xm [o:m] is said to be derived
false in G are exactly B1 , . . . , Bm , by from the basic item A -+ o:0X1 o:1 . . .
the set of rules of the form A -+ O:i-i •Xi . . . Xmo:m .2 According to the conven­
o:o/31 0.i/32 . . . f3mam , where /3i is either Bi
or € and o.o/310:1/32 . . . /3mO:m =/-· €. Note
that this set of rules is empty if m = 0
and a.0 = E, in which case the original
rule is just eliminated from Go .

tion mentioned above, A -+ o:0X1 0:1 . . . Xmo:m

is a rule in G, and A -+ X1 . . , Xm is a rule in t:-elim(G) . The item of the form st -+ • which
may be introduced by t:-elim will be regarded
as the derived item st -► [S) • .

4 . If S i s nonfalse in G, then add the rules Example 2 . 1 Let the grammar G2 be <le­
st -+ s and st -+ € to Go and make fined by the rules
st the new start symbol of Go . (In the
pathological case that S is a predicate in
G, st -+ S should of course not be added
to Go .)

5 . Let E-elim(G) be G0 •

A
B
B
C
D
D

-+ BCD
-► €

-► b
-+ €

-► €
-+ d

Note that for every rule A -► o: such Step 2 of t:-elim removes the rule C -► €
that o: contains k occurrences of nonfalse defining the only predicate C. Also the occur-
non-predicates, the transformed grammar may 2We avoid writing dots in dotted items immediately
contain 2k rules. to the left of eliminated members.

INCREASING THE APPLICABILITY OF LR PARSING 191

rence of C in A -+ BCD is removed, i.e. this rule is replaced by A -+ B [CJD. Step 3 removes all rules with an empty rhs, viz. B -+ f and D -+ E, and replaces
A -+ B[C]D by the set of all rules which re­sult from either eliminating or retaining the nonfalse members, _viz. B and D (C is · not a member anymore!), such that the rhs of the resulting rule is not empty. This yields the set of rules

A -+ B[C]D
A -+ B[CD]
A -+ [BC]D

Step 4 adds the rules At -+ A and At -+ f. The new start symbol is At . We have now obtained E-elim(G2) , which is defined by
At -+ A
At -+ f

A -+ B[C]D
A -+ B[CD]
A -+ [BC]D
B -+ b
D -+ d □

Note that in the case that E-elim introduces a new start symbol st , there is no need to aug-. inent the· grammar (i.e. add the rule S' -+ st and make S' the new start symbol) for the pur­pose of constructing the LR automaton. Aug­mentation is in this case superfluous because the start symbol st is not recursive. In the case of Gi , the transformation yields the following grammar.
· A -+ BAc
A -+ [B]Ac A -+ a B -+ b

The LR(O) table for this grammar is repre­sented in F igure 3. Together with the growing number of rules, the above transformation may also give rise to a growing number of states in the LR(O) automaton. In the above case, the number of states increases from 7 to 8, as indicated by F igures 2 and 3 : As Gi is only a trivial grammar, we may expect that the increase of the number of states for practical· grammars is much larger. Tangible results are discussed in Section 5.

2 .3 A new parsing algorithm

To reduce the number of states needed for an LR automaton for E-elim(G) , we incorpo­rate the transformation in the closure func­tion . . This requires changing the behaviour of the LR automaton upon reduction. This approach can in a different way be ex­plained as follows. Items derived . from the same basic item by E-elim are considered the same. For instance, the items A -+ BAc. and
A -+ [B]Ac. in F igure 3 are considered the same because they are derived from the· same basic item A -+ BAc • . All items are now represented by the ba­sic item from which they are derived. For instance, both items in Q5 in F igure 3 are henceforth represented by the single basic item
A -+ BAc • . The item A -+ [B]Ac. in state Q7 is now represented by A -+ BAc • . As a result, some pairs of states now consist of identical sets of items and may therefore be merged. For the example in F igure 3, the new collection of states is given in F igure 4. It can be seen that states Q5 and Q7 are merged into state Q5;7. In the resulting LR table, it is no longer in­dicated which derived items are actllally repre­sented. Correspondingly, the bel!aviour of the new automaton is such that upon reduction all possibilities of derived items are nondetermin­istically tried. For instance, consider the parsing · of bacc using the LR(O) automaton in F igure 4. The first sequence of parsing steps is without com­plications: Stack contents Inp. Action Qo bacc shift Qo b Q3 ace red(B -+ b) Qo B Qi ace shift Qo B Qi a Q2 cc red(A -+ a) Qo B Qi A Q4 cc shift Qo B Qi A Q4 c Q517 C red(?)

Now there are two ways tc:> perform a reduc­tion with the item A -+ BAc • . . One way is to pretend that B has been eliminated from this rule. In other words, we are dealing with the derived item A -+ [B]Ac •. In this case we remove two states and grammar symbols from the stack. The sequence of configurations from here on now begins with · ·

192

A' -+ .A Qo A -+ .BAc A -+ [B].Ac A -+ .a B -+ .b

B
A -+ B.Ac Q1 A -+ .BAc A -+ [B].Ac A -+ .a B -+ .b

A

A A -+ BA.c Q4 A -+ [B]A.c
C

A -+ BAc. Qs A -+ [B]Ac.

NEDERHOF - 8ARBO

A' -+ A. Q5 A -+ [B]A.c
C

Figure 3: The LR(O) automaton for t-elim(Gt) .
A

A' -+ .A Qo A -+ B.Ac Qi A -+ .BAc B A -+ .BAc A A' --+ A. Q5 A -+ B.Ac A -+ .a A -+ BA.c
A -+ .a B -+ .b

Figure 4: The optimised LR(O) automaton for t-elim(G1) with merged states.

Qo B Q1 A Q4 c Qs/1 C red(A -+ [B]Ac) and we obtain
Qo B Q1 A Q4 C

Qo B Q1 A Q4 c Qs/1 C red(A -+ BAc)
Qo 'A Q6 C shift

The other way to perform reduction is by
Qo A Q5 c Q517 red(?)

taking off the stack all the members in the We are now at an interesting configuration.
rule A -+ BAc and the same number of states, We have again the choice between reducing

INCREASING TIIE' APPLICABILITY OF LR PARSING 193
with A --. (B]Ac or with the unaffected rule A --. BAc. However, it can be established that reduction with A --. BAc is not possible, be­cause there is no B on the stack to be popped. At this point, the main difference between traditional LR parsing and the new parsing technique we are developing becomes clear. Whereas for traditional LR parsing, the gram­mar symbols on the stack have no other pur­pose except an educational one, for our new parsing technique, the investigation of the grammar symbols on the stack is essential for guiding correct parsing steps. In general, what happens upon reduction is this. Suppose the state on top of the stack contains· an item of the form A --. a., then reduction with this item is performed in the following steps.

1. The parser nondeterministically looks for some sequence of grammar symbols X1 , . .. , Xm such that there are ao, ... , am with
• a = aoX1a1 ... Xmam • ao --.• f /\ . . . /\ am --.* f • The top-most m grammar symbols on the stack are X1 , . . . , Xm in that order, i.e. X 1 is deepest in the stack and Xm is on top of the stack. • m = 0 => A = S'

In words, a is divided into a part which is on the stack and a part which consists only of nonfalse nonterminals� The part on the stack should not be empty with the exception of the case where A --. a is the rule S' --. S.
2. The top-most m symbols and states are popped off the stack.
3. Suppose that the state on top of the stack is Q, then

• if A = S' , then the input is ac­cepted, provided Q is the initial state and the end of the input ha.s been reached; and • if A f. S' , • th�n A and su bse­quently goto (Q, A) are pushed onto the stack, provided goto (Q, A) is de­fined (otherwise this step fails).

The way the reduction is handled above corresponds with the reduction with the rule A --. [ao]Xi (a1] ... Xm [am] in the original LR(0) parser for f -·elim (G). Incorporating the transformation f-.-elim into the construction of the LR table can be seen a.s a restatement of the usual closure func­tion, a.s follows.
closure (q) = {B --. 8.(} I A --. a./3 E q I\ {3 �• B, I\ B --. 80 I\

u

3v[v -=I- .f /\ 80 --.* v] I\ 8 �· f}
{A � a8.{3 I A � a.8{3 E q 1\ .8 �• f}

Note that the expressiqn {3 �• B, allows nonterminals to be rewritten to the · empty string. Also note that 3v [v . -=I- .. f /\ 8(} . � * v] excludes rules of which the rhs can only derive f. Efficient calculation of the closure function is investigated in Section 4. i. Leermakers (1992) . proposes simjlar changes to some functions in th� ,re�ursive a.scent Ear­ley parser in order to allow hiddeµ)ef� r�cur­sion. Similar changes were made by Graham et al. (1980) in order to improve the efficiency of Earley parsing. '. We -have recently learned that a parsing technique very •similar to ours is suggested by Leermakers (1993) , · , The investigation of the grammar symbols on the stack for the purpose ofguiding correct parsing steps is reminiscent of Pager (1970), who proposed a general method for the com­pression of parsing tables by. means of merging states. If the full stack may be investigated upon reduction, then the need for states in the traditional sense is even completely eradi­cated, a.s shown by Fortes Galves (1992).3

In Section 3 . we prove the correctness of the new parsing technique, which we call f-LR parsing.
3It is interesting to note that various degrees of sim­plification of the collection of sets of items are possible. For example, one could imagine an approach half-way between our approach and the one _by Fortes, according to which items consist only of the parts which occur normally after the dots. This leads to even more merg­ing of states but requires more effort upon reductions.

194
2 .4 Dealing with : · cyclic , gram­

mars

If needed, f-LR par�ing can be further refined to handle cyclic grammars. The starting-point is again a transformation on grammars, called C-elim, which eliminates all unit rules, i.e. all rules of the form A --+ B. This transformation consists of the following steps.
1. Let G0 be G.

2. Replace every non-unit rule A --+ a in Go by the set of rules of the form B --+ a such that B E.• A and either B = S or B has an occurrence in the rhs of some non-unit rule.
3. Remove all unit rules from Go.
4. Let C-elim(G) _be Go.
Terminatio_n of LR parsing according to :C-elim(f--elim(G)) is guaranteed for any G. If ·we ·incorporate C-elim into the behaviour of our f-LR parsers, then reduction with A --+ a is performed by the following steps.

1. The parser nondeterministically looks for some · sequence of grammar symbols X 1, -... , Xm such that there are ao, ... , am with .
• a = aoX1a1 ... Xmam • ao --+ * f A ... A am --+ * f

• The top-most m grammar symbols on the s_tack are X1, ... , Xm.
• m = 0 => A = S'

• m = 1 => (X1 E T V A = S')
2. The top-most' m symbols and states are popped off the stack.
3. Suppose that the state on top of the stack is Q, then

• if A = S'; then the input is ac­cepted, provided Q is the initial state . and the . end of the input . has been reached; and

: , ,:NEDERHQR.::c S_ARBO

• if A i S', then the parser: nc;mde­terministically looks for _some non­terminal B such that . B --+ * A and goto (Q, B) is defined, and then
B and subsequently goto (Q, B) are pushed. onto the stack.

Note that the parser which performs reduc­tion in this way, using the parse tables from the f-LR parser, may go into unnecessary dead alleys of length one. This may be avoided by reformulating the closur� function such that rules containing a single non-predicate in 'their right-hand sides are left out. How to avoid reductions with unit rules (unit reductions) in the case of deterministic LR parsing has been investigated in a number of papers (e.g., Heilbrunner, 1985). Our par­ticular technique of avoiding unit reductions is reminiscent of an optimization of Earley's algorithm (Graham et al., 1980). In the remaining part oHhis· paper, the term "E-LR parsing" will not include the ·extra ex­tension to f-LR parsing _described in this sec­tion.
2.5 Applicability of E-LR parsing

In the same way as generali�ed LR(0) pars­ing can be refined . to generalized SLR(k), LALR(k), and LR(k) parsing (k > 0) we · can also refine f-LR(0) parsing to f-SLR(k), f-LALR(k), and f-LR(k) parsing. The con­struction of f-LR tables for these parsing strategies can be adopted from the construc­tion of their LR counterparts in a reasonably straightforward way. We have shown that f-LR parsing can be used for hidden left-recursive grammars, which cannot be handled using ordinary · LR pars­ing. The variants of f-�R parsing .which ap­ply lookahead are useful for making the pars­ing process more deterministic, i.e. to reduce the number of entries in the parsing table that contain multiple actions. However, adding lookahead cannot yield completely deterministic parsers in the case of hidden left recursion where at least one of the hiding nonterminals is not a pr�dicate. This is _because - such a gr,�;mmar is ambiguous, as dis­cussed earlier. (Ifall hiding non terminals are

INCREASING THE APPLICABILITY OF LR PARSING 195
predicates, then we are dealing with a trivial form of hidden left recursion, which can easily be eliminated by eliminating the hiding non­terminals.) Also in the case of grammars without hidden left recursion, €-LR parsing may have an ad­vantage over ordinary (generalized) LR pars­ing: the parsing actions corresponding with subtrees of the parse tree which have empty yields are avoided. For these grammars, the application of lookahead may serve to con­struct deterministic f-LR parsers. Nederhof (1993a) describes how subtrees which have empty yields can be attached to the complete parse tree without actually pars­ing the empty string.
2 .6 Specific elimination of hid-

den left recursion

For the sake of completeness, we describe a way of getting rid of hidden left recursion with­out using epsilon rule elimination. The idea is that we selectively remove occurrences of non­false nonterminals which hide left recursion. In case of a nonfalse non-predicate A, we re­place the occurrence of A by an occurrence of a new non terminal A' . This A' is constructed so as to derive the same set of strings as A does, with the exception of f. The transformation, constructing grammar
HLR-elim(G) from grammar G, consists of the following steps.

1. Let Go be G.

2. For every rule A -+ Ba in G0 which leads to a hidden left-recursive call (i.e. a E.• A/3 for some /3, and B E.* f) , replace the rule by A -+ a, and also add A -+ B' a

• A' -+ x:xi+i . . . Xn if a E.• e, where a = X1 . . . Xn , and Xi is not a predicate.
4. Remove from Go all rules A -+ a such that A was rendered unreachable . by the elimination of rules in step 2 .
5 . Let HLR-elim(G) be G0 •

Example 2.2 Let the grammar G3 be de­fined by
A -+ ABAa A -+ AAB
A -+ e B -+ e

The grammar HLR-elim(G3) is given by A -+ Aa A -+ A'BAa A -+ AB A -+ A'AB A -+ € A' -+ Aa A' -+ A'BAa A' -+ A'B A' -+ A'AB B -+ € D

The transformation HLR-elim is very of­ten incorporated in the construction of parsers which can deal with hidden left recursion. An example is the variant · of backtrack left-corner parsing as applied in Programmar (Meijer, 1986) . See also Nederhof (1993a) . The size of the grammar resulting from the application of this transformation is much smaller than that in the case of e-elim. In fact it is only quadratic in the size of the· original grammar. to Go provided B is not a predicate in G. Repeat this step until it can no longer be 3 applied. Correctness
parsing

of E-LR

3. For every new nonterminal A' introduced in G0 in step 2, or by an earlier iteration of step 3, and for every rule A -+ a in Go , add to Go the rule
• A' -+ a if not a E.• e, or rules of the form

A formal derivation of e-LR(O) parsing is given by Nederhof - Sarbo (1993b) . In this sec­tion we prove the correctness of €-LR parsing by assuming the correctness of (nondetermin­istic) LR parsing, which has already been· es­tablished in literature.

196
In Section 2.3 we derived the new parsing technique of f-LR parsing. We showed that this kind of parsing is based on traditional LR parsing, with the following differences:
• Instead of using the original grammar G, the transformed grammar f-elim(G) is used.
• No distinction is made between items de­rived from the same basic item. This can be seen as merging states of the LR au­tomaton of f-elim(G) .
• Because considering derived items as the same leads to a loss of information, a new mechanisms is introduced, which checks upon reduction whether the members of the applied rule are actually on the stack and whether the goto function is defined for the lbs and the state which is on top of the stack after the members are popped.
Because the transformation f-elim preserves the language and because we assume the cor­rectness of LR parsing, the correctness of f-LR parsing can be proved by mentioning two points:
• The symbols on the stack and the remain­ing input together derive the original in­put, which can be proved by induction on the length of a sequence of parsing steps. This argument shows that no incorrect derivations can be found.
• For every sequence of parsing steps per­formed by an LR parser (LR(k), SLR(k), etc.) for f-elim(G) there is a correspond­ing sequence· of parsing steps performed by the corresponding type of f-LR parser (f-Lll,(k), f-SLR(k), etc.) for G. This proves that f-LR parsing cannot fail to find correct ,del'.ivations by the as­sumption that LR parsing according to f-elim(G) does not fail to find correct derivations.
In case of f-LR(O) and f-SLR parsing it can also be shown that the set of sequences of parsing steps is isomorphic with the set of sequences of the LR(O) or SLR parsers for f-elim(G) , and that the corresponding se­quences are equally long. It is sufficient to

NE_DERHOF - SARBO

prove that if a reduction can be successfully performed in an f-LR parser, then it . can be performed in an LR parser .in the correspond­ing configuration. For this purpose, suppose that in an f-LR parser some reduction is possible with the item A -+ aoA1 a1 ... Amam • E Q.m such th�t
• ai -+* f for O ::; i ::; m,
• the topmost 2m + 1 elements of the stack are QoA1Q1 ... AmQm ,
• the goto function for Q0 and A is defined,
• in the corresponding configuration in the LR parser, the states corresponding with Qi are called Q�.
From the fact that the goto . function is de­fined for Q0 and A we know that it is also defined for Q� and A and that the item A -+ [ao].Ai [a1] ... Am [am] is in Q�. This implies that A -+ [ao]A1 [a1] ... Ai [ai] •... Am [am] is in Q� because Q� is goto (Q�_ 1 , Ai) , for 1 ::; i ::; m. Therefore, in the corresponding LR parser a reduction would also take place according to the item A -+ [ao]A1 [a1] ... Am [am) •. Regrettably, an isomorphism between se­quences of parsing steps of f-LR parsers and the corresponding LR parsers is not possible for f-LR(k) and f-LALR(k) parsing, where k > 0. This is because merging derived items causes loss of information on the lookahead of items. This causes the parser to be sent up blind alleys which are not considered by the corresponding LR parser. Because f-LR parsing retains the prefix­correctness of traditional LR parsing (that is, upon incorrect input the parser does not move its input pointer across the first invalid sym­bol), the blind alleys considered by an f-LR parser but not the corresponding LR parser are of limited length, and therefore unimpor­tant in practical cases. Theoretically however, the extra blind al­leys may be avoided by attaching_ the looka­head information not to the state on top of the stack before reduction . but to the state on top after popping m states and grammar symbols off the stack (m as in Section 2.3). This means that we have lookahead (a set of

INCREASING THE APPLICABILITY OF LR PARSING 197

strings, each of which not longer than k sym­
bols) for each state q and non terminal A such
that goto (q, A) is defined.

In the cases we have examined, the number
of pairs (q, A) for which goto (q, A) is defined is
larger than the total number of items A -. a.
in all states (about 4 to 25 times as large) , so
this idea is not beneficial to the memory re­
quirements of storing lookahead information.
In the case of €-LR(k) parsing (k > 0) , this
idea may however lead to a small reduction of
the number of states, since some states may
become identical after the lookahead informa­
tion has been moved to other states.

4 Calculation of items

In this section we investigate the special prop­
erties of the closure function for €-LR pars­
ing. First we discuss the closure function for
f-LR(k) parsing and then the equivalent no­
tion of kernel items in €-LR parsing.

4. 1 The closure function for
€-LR(k) parsing

If w is a string and k a natural number, then
k : w denotes w if the length of w is less than
k, and otherwise it denotes the prefix of w of
length k. We use lookaheads which may be
less than k symbols long to indicate that the
end of the string has been reached.

The initial state for f-LR(k) parsing (k > 0)
is Qo = closure ({ [S' -. .S, €] })
The closure function for €-LR(k) parsing is

closure (q) =
{ [B -. 8.0, x) I

[A -. a.,B, w) E q A f3 -.* B7 A
B -. 80 A
3v[v -f:. f A 80 -. * v) A
8 --.* f A
3y b -. * y A x = k : yw) }

u
{ [A -. a8.f3, w] I

[A -. a.8,B, w] E q A 8 -.* €}

4.2 The determination of small-
est representative sets

In traditional LR parsing, items are divided
into kernel items and nonkernel items. Kernel
items are S' -. .S and all items whose dots
are not at the left end. The nonkernel items
are all the others. (At this stage we abstain
from lookahead.)

As we will only be looking in this section at
sets of items which are either Q0 or of the form goto (q, X) , which result after application of
the closure function, we have that the kernel
items from a set of items q are a representative subset of q. This means that we can

• construct the complete set of items q by
applying the closure function to the rep­
resentative subset, and

• determine whether two sets of items are
equal by determining the equality of their
representative subsets.

Because the set of kernel items from a set q
is in general much smaller than q itself, kernel
items are very useful for the efficient genera­
tion of LR parsers.

Regrettably, in the case that the grammar
contains many epsilon rules, the set of kernel
items from a set q may not be much smaller
than q itself. Therefore, kernel items are not
very useful for generation of €-LR pars�rs.

Another approach to finding representative
subsets for traditional LR parsing can be given
in terms of the stages in which the goto func­
tion is executed. According to this principle,

· the representative subset of goto (q, X) is

K(q, X) = {A -. aX.,BIA -. a.X/3 E q}

and other items in goto (q, X) are obtained by
applying the closure function to K(q, X).

In the case of traditional LR parsing,
K computes exactly the kernel items in goto (q, X), and therefore the two methods for
finding representative subsets are equivalent .
That this does not hold for €-LR parsing can
be easily seen by investigating the definition of closure in Section 2.3: according to the second
part

{A -. ac5.{3 I A -. a.8{3 E q A 8 -.* €}

198

in this definition ,. the dot can be shifted over
nonfalse members and therefore new items can
be added whose dots are not at the left end.
Therefore, some · kernel items may not be in K(q, X) .

I t turns out that we can also not use K for
finding representative subsets in the case of
f-LR parsing. The reason is that K does not
provide a well-defined method to find repre­
sentati ve subsets. I.e. for some grammars we
can find sets of items q1 and q2 and symbols X and Y such that goto (q1 , X) = goto (q2 , Y)
but K(q1 , X) f K(q2 , Y) .

The solution that we propose is more refined
than the methods in traditional LR parsing.

First, we determine the equivalence rela­
tion of mutually left-recursive nonterminals,
whose classes are denoted by [A] . Thus, [A] =
{B IA �• Ba I\ B �• A,B} .

A nice property of these classes is that A �
.a E q and B E [A] together imply that B �
./3 E q for every rule B � /3. Using this fact,
we can replace every item A � .a in q by [A]
without loss of information.

We define the set Z to be the union of the set
of all items and the set of equivalence classes
of mutually left-recursive nonterminals. The
variables E, E' , . . . range over elements from
z.

Our goal is to find a representative set q' �
Z for each set of items q.

First, we define the binary relation induces
on elements from Z such that

• induces (I, J) for items I and J

NEDERHOF - SARBO

1. Determine q1 � Z by replacing in q every
item A � .a by [A] .

2. Let q2 be the subset of q1 which results
from eliminating all items I such that induces (E, I) for some equivalence class
E E Ql •

3. Determine the set repr (q) defined by
{E E Q2 l,3E' E q2 [induces (E' , E)} .

The reason that no information is lost in
step 3 is that the relation induces -restricted to
Q2 is not cyclic.

That repr (q) is the smallest set q' � Z rep­
resenting q can be formalized by stating that
it is the smallest subset q' of Z such that closure (q') = q, where the ,definition of clo­sure is redefined to

closure (q) =
{B � 8.0 I (A � a.(3 E q I\ /3 �• B, V

u

[A] E q /\ A �• B,) I\ B � 80 I\
3v[v f f /\ 80 �• v] I\
8 �· f}

{A � 08./3 I A � a.8,B E q I\ 8 �• f}

It is self-evident that repr must be calcu­
lated from Q0 and K(q, X) instead of from
their closures if efficient parser construction is
required. The appropriate restatement · of the
algorithm calculating repr is straightforward.

if and only if I = A � a.B/3 and J = 5
A � aB.(3 and B �• f

Memory requirements

• induces (I , E) for item I and class E
if and only if I = A � a.B /3 and B E E

• induces (E, E') for classes E and E'
if and only if E f E' and there are A E E
and B E E' such that A � aB /3 and
Q �· f

• induces (E, I) for class E and item I
if and only if there is A E E such that
I = A � a.,B and a �• f

The smallest set repr (q) � Z representing
a set of i terns q can now be determined by the
following steps:

In this paper we have described three m�thods
of rnaking the (generalized) LR parsing tech­
nique applicable to hidden left-recursive gram­
mars:

1 . Apply f-elim to the grammar before con­
structing the LR automaton.

2. Apply HLR-elim to the grammar before
constructing the LR automaton.

3. Construct the f-LR automaton as op­
posed to the LR automaton.

The last method above is derived from the
first one in the sense that an f-LR automaton

INCREASING THE APPLICABILITY OF LR PARSING 199

can be seen as a compressed LR automaton
for the transformed grammar t::-elim(G) . The
second method is independent from the other
two methods.

To investigate the static memory require­
ments of these methods, we have determined
the number of states of the resulting automata
for various grammars.

We first investigate the number of states for
three kinds of characteristic grammars:

For every k � 0 we have the grammar Gf
defined by the rules

S -+ B1 . . . Bkc
B1 -+ t::
B1 -+ b1

Bk -+ f

Bk -+ bk

For every k � 1 we have the grammar G�
defined by the rules

s
s
B1
B1

-+
-+
-+
-+

B1 . . . BkSc
d
f

b1

Bk -+ f

Bk -+ bk

For every k � 2 we have the grammar G�
defined by the rules

S -+ B1 . . . Bkc
B1 -+ t::
B1 -+ S

Bk -+ f

Bk -+ s
The grammars of the first group contain no

left recursion. The grammars of the second
group contain one occurrence of hidden left
recursion, and there are k nonfalse nontermi­
nals hiding the left recursion. The grammars
of the third group contain k - 1 occurrences of
hidden left recursion, the j-th one of which is
hidden by j - 1 nonfalse nonterminals.

Figure 5 shows the numbers of states of var­
ious automata for these grammars. It also
shows the numbers of states of the LR(0)

automata for the original grammars. This
kind of a.utomaton does of course not termi­
nate in the case of hidden left recursion, ex­
cept if the nondeterminism is realized using
cyclic graph-structured stacks, against which
we raised some objections in Section 1 .

These results show that the number of states
is always smallest for the t::-LR(0) automata. A
surprising case is the group of grammars G� ,
where the number of states of t::-LR(0) is 6, re­
gardless of k, whereas the numbers of states
of the LR(0) automata for t::-elim(G) and
HLR-elim(G) are exponential and quadratic
in k, respectively.

In the above grammars we have found some
features which cause a difference in the num­
ber of states of the automata constructed by
the mentioned four methods. The results sug­
gest that f-LR parsing is more efficient in
the number of states for grammars containing
more hidden left recursion.

The number of states of LR and f-LR au­
tomata is however rather unpredictable, and
therefore the above relations between the num­
ber of states for the four methods may deviate
dramatically from those in the case of practical
grammars.

Practical hidden left-recursive grammars do
however not occur frequently yet in natural
language research. The reason is that they
ar� often considered "ill-designed" (Nozohoor­
Farshi, 1989) as they cannot be handled using
m�t parsing techniques.

Fo:rtunately, we have been able to find a
praGtical grammar which contains enough hid­
den left recursion to perform a serious compar­
ison. This grammar is the context-free part of
the Deltra grammar, developed at the Delft
University of Technology (Schoorl - Belder,
1990) . After elimination of the occurrences
and definitions of aH predicates, this grammar
contains 846 rules and 281 nonterminals, 120
of which are nonfalse. Hidden left recursion
occurs in the definitions of 62 nonterminals.
Rules are up to 7 members long, the average
length being about 1 .74 members.

The numbers of states of the automata for
this grammar are given in Figure 5. These
data suggest that for practical grammars con­
taining much hidden left recursion, the rela­
tion between the numbers of states of the four

200 NEDERHOF - 8ARBO

Method of construction GHk � 0) G� (k � 1) G� (k � 2) Gneltra
LR(0) for G 2 · k + 3 2 · k + 5 2 · k + 2 855
LR(0) for €-elim(G) 2k+1 + k + l 3 · 2k + k + l 2k+l + 2 1430
LR(0) for HLR-elim(G) 2 · k + 3 l · k2 + 41 · k + 3 2 2 l · k2 + 21 · k + l 2 2 1477
€-LR(0) for G 2 · k + 3 k + 6 6 709

Figure 5 : The numbers of states resulting from four different methods of constructing LR and €-LR automata.
different automata is roughly the same as for the three groups of small grammars Gt , G�, and G� : the LR(0) automata for €-elim(G) and HLR-elim(G) both have a large number of states. (Surprisingly enough, the former has a smaller number of states than the lat­ter, although €-elim(G) is about 50 % larger than HLR-elim(G), measured in the number of symbols.) The €-LR(0) automaton for G has the smallest number of states, even smaller than the number of states of the LR(0) au­tomaton for G. Although these results are favourable to €-LR parsing as a parsing technique requir­ing small parsers, not for all practical gram­mars will €-LR automata be smaller than their traditional LR counterparts. Especially for grammars which are not left-recursive, we have found small increases in the number of states. We consider these grammars not characteristic however because they were developed explic­itly for top-down parsing.
Conclusions

We have described a solution to adapt (gener­alized) LR parsing to grammars with hidden left recursion. Also LR parsing of cyclic gram­mars has been discussed. We claim that our solution yields smaller parsers than other solu­tions, measured in the number of states. This has been corroborated by theoretical data on small grammars and by an empirical test on a practical grammar for a natural language.

Our solution requires the investigation of the parse stack. We feel however that this does not lead to deterioration of the time complex­ity of parsing: investigation of the stack for each reduction with some rule requires a con­stant amount of time. This amount of time is linear in the length of that rule, provided investigation of the symbols on the stack is implemented using a finite state automaton.
The results of our research are relevant to re­alization of generalized LR parsing using back­tracking (possibly in combination with memo­functions) or using acyclic graph-structured stacks. Furthermore, various degrees of looka­head may be used.
We hope that our research will convince lin­guists and computer scientists that hidden left recursion is not an obstacle to efficient LR parsing of grammars. This may in the long term simplify the development of grammars, since hidden left recursion does not have to be avoided or eliminated.

Acknowledgements

We received kind help from Job Honig, Theo Vosse, John Carroll, and Hans de Vreught in finding a practical grammar to test our algo­rithms on. We acknowledge valuable corre­spondence with Jose Fortes and Rene Leer­makers.

INCREASING THE APPLICABILITY OF LR PARSING 201
References

Aho, A.V. - R. Sethi - J.D. Ullman (1986). Compilers: Principles, Techniques, and Tools. Addison-Wesley.
Aho, A.V. - J.D. Ullman (1972). Pars­ing, The Theory of Parsing, Translation and Compiling, volume 1. Prentice-Hall .
Fortes Galves, J. (1992). Generating LR(l) parsers of small size. In: Compiler Construction, 4th International Conference, LNCS 641 , 16-29, Springer-Verlag.
Graham, S.L. - M.A. Harrison - W.L. Ruzzo (1980). An improved context-free recognizer . ACM Trans. Prag. Lang. Syst. 2(3), 415-462.
Heilbrunner , S. (1985). Truly prefix-correct chain-free LR(l) parsers. Acta Inf. 22, 499-536.
Knuth, D.E. (1971) . Top-down syntax analy­sis. Acta Inf. l , 79-110.
Koster, C.H.A. (1971). Affix grammars. In: Peck, J.E.L. (Ed): ALGOL68 Implemen­tation, 95-109. North Holland Publishing Company.
Lang, B . (1974). Deterministic techniques for efficient non-deterministic parsers. In: Au­tomata, Languages and Programming, 2nd Colloquium, LNCS 14, 255-269, Springer­Verlag.
Leermakers, R. (1992). A recursive ascent Earley parser . Inf. Process. Lett. 41(2), 87-91 .
Leermakers, R. (1993). The Functional Treat­ment of Parsing. Kluwer Academic Publish­ers. To appear.
Leermakers, R. - L. Augusteijn - F .E.J. Kruseman Aretz (1992). A functional LR parser . Theoretical Comput. Sci. 104, 313-323 .
Meijer, H . (1986). Programmar: A Translator Generator. PhD thesis , University of Nij­megen.
Nederhof, M.J . (1993a). Generalized left­corner parsing. In: Sixth Conference of

the European Chapter of the Association for Computational Linguistics, 305-314.
Nederhof, M.J. (1993b). A new top-down parsing algorithm for left-recursive DCGs. In: Programming Languages Implemen­tation and Logic Programming, Interna­tional Workshop, LNCS, Tallinn, Estonia . Springer-Verlag.
Nederhof, M.J . - J.J. Sarbo (1993a). Effi­cient decoration of parse forests. In : Trost , H. (Ed): Feature Formalisms and Linguistic Ambiguity. Ellis Horwood Limited.
Nederhof, M.J . - J.J . Sarbo (1993b). Increas­ing the applicability of LR parsing. Techni­cal report no. 93-06, University of Nijme­gen, Department of Computer Science .
Nilsson, U. (1986). AID: An alternative imple­mentation of DCGs. New Generation Com­puting 4, 383-399.
Nozohoor-Farshi, R. (1989). Handling of ill­designed grammars in Tomita's parsing al­gorithm. In: International Workshop on Parsing Technologies, 182-192.
Pager, D. (1970). A solution to an open prob­lem by Knuth. Inf. and Contr. 17, 462-473 .
Schoorl , J .J. - S. Belder (1990). Computa­tional linguistics at Delft: A status report. Report WTM/TT 90-09 , Delft University of Technology, Applied Linguistics Unit.
Sippu, S. - E. Soisalon-Soininen (1990). Parsing Theory, Vol. II: LR{k} and LL{k) Parsing. Springer-Verlag.
Soisalon-Soininen, E. - J. Tarhio (1988). Looping LR parsers . In/. Process. Lett. 26(5), 251-253 .
Thorup, M. (1992). Controlled grammatic ambiguity. Technical Report PRG-TR-2-92, Programming Research Group of Oxford University.
Tomita, M. (1986). Efficient Parsing for Nat­ural Language. Kluwer Academic Publish­ers.

202 NEDERHOF - SARBO

Reducing Complexity in A Systemic Parser

Michael O'Donnell

Department of Linguistics,
University of Sydney
email: mick©isi . edu

Abstract

Parsing with a large systemic grammar brings one face-to-face with the problem of unifica­tion with disjunctive descriptions. This paper outlines some techniques which we employed in a systemic parser to reduce the average-case complexity of such unification.
1 Introduction

Systemic grammar has been used in several text generation systems, such as PENMAN (Mann - Matthiessen 1985), PROTEUS (Davey, 1978), SLANG (Patten, 1986), GENESYS (Fawcett -Tucker, 1990) and HORACE (Cross, 1991). Sys­temics has proved useful in generation for sev­eral reasons: the orientation of Systemics towards representing language as a system of choices, the strongly semantic nature of the grammar, and the extensive body of systemic work linking dis­course patterns and grammatical realisation (e.g., Halliday, 1985; Halliday - Hasan, 1976; Martin, 1992). Parsing with systemic grammar has not, how­ever, been as successful. To date, there have been six parsing systems using systemic gram­mar: Winograd (1972), McCord (1977), Cum­mings - Regina (1985), Kasper (1988a, 1988b, 1989), O 'Donoghue (1991a, 1991b) and Bateman et al. · (1992). However, each of these systems has been limited in some way, either resorting to a simplified formalism (Winograd - Cummings - Mc Cord), or augmenting the systemic analysis by initial segmentation of the text using another grammar formalism (Kasper: Phrase Structure Grammar; Bateman et al. : Head-driven Phrase Structure Grammar; O 'Donoghue: his 'Vertical Strip Grammar' (VSG)). There has not so far been a parser that parses using the full systemic formalism, without help from another formalism. The reasons for this failure relate to those rea-

sons which favour generation. Firstly, the orien­tation of systemic grammar towards choice means that the grammar is organised into a form full of disjunctions, which leads to complexity problems in parsing. Secondly, the strongly semantic con­tent of systemic grammars (including roles such as Actor, Process and Circumstance in the gram­mar) leads to a structural richness which adds to the logical complexity of the task. One result of the work in Systemic generation has been the availability of a large computational generation grammar using the systemic formal­ism - the Nigel grammar (Matthiessen - Mann, 1985, Matthiessen - Bateman, 1992). As this resource is available, it is desirable to use it for parsing. However, complexity problems have so far made this impossible, except by pre-parsing with another formalism. In the last few years, we have developed a parser for Systemic grammar, particularly for use with the Nigel grammar. The parser han­dles the full Systemic formalism, and does not depend on another formalism for segmentation. The parser uses a bottom-up, breadth-first algo­rithm. A chart is used to handle some of the non-determinism. This paper focuses on some methods we have used in the parser to reduce the complexity prob­lems associated with using the Nigel grammar. In particular, we focus on the means used to make disjunctive unification more efficient. Section 2 discusses the problem of disjunc­tive expansion, and some means of making it
203

204

more efficient at a general level. Before becom­
ing more specific, the Systemic formalism is intro­
duced (section 3) . Section 4 explores one method
of avoiding complexity - reducing the size of
the disjunctive description by working with sub­
descriptions rather than the whole description.
Section 5 presents three ways of making expan­
sion, when necessary, more efficient . We conclude
the paper with a brief summarisation of our work.

2 Unification with Disjunc­
tive Descriptions

Parsing with a systemic grammar involves much
unification of disjunctive descriptions. The usual
way to unify such is as follows:

1 . Expand out the disjunctive descriptions
to Disjunctive Normal Form (DNF) - a
form with all disjunction at the top level
of the description - a disjunction of non­
disjunctive forms.

2 . Unify each term of the first DNF form with
each term of the other.

DNF expansion of a description is however
an expensive task - the process takes exponen­
tial time in the worst case (Kasper - Rounds,
1986) . Space is also a problem - DNF expansion
is a transformation whereby a disjunctive descrip­
tion is replaced with a set of descriptions each of
which contains no disjunction. For a description
containing a high level of disjunction, the size of
the DNF form can be excessive.

Space has not however been a problem in our
processing, but time has. Systemic parsing is very
slow. We thus focus on means for speeding up, or
avoiding, the unification process.

2 . 1 A voiding Expansion

There have been proposals for unification with­
out DNF expansion. Karttunen, for instance, has
proposed an algorithm which "uses constraints on
disjuncts which must be checked whenever the
disjunct is modified" (Kasper, 1987, p81) . How­
ever, as noted by Kasper (1987, p61) , Karttunen's
unification algorithm works only for a limited
type of disjunctive description, and not for gen­
eral disjunction as is needed in the present work.

O 'DONNELL

Kasper has proposed a method of re­
representing disjunctive descriptions which in
some cases avoids the need for expansion. His
approach separates a disjunctive description into
two parts - a definite component (which con­
tains no disjunction) , and an indefinite compo­
nent (containing the disjunctive information of
the description) . A unification process can first
check whether the definite components of two de­
scriptions unify, and only proceeds to unify the
indefinite components if the definite components
unify successfully. The unification of the indefi­
nites is avoided if the unification of the definites
fails .

2 .2 Delaying disjunctive expansion
until necessary

The Kasper-Rounds form also allows us to de­
lay expansion until a later time. When two de­
scriptions are unified, only the definite compo­
nents need to be checked for compatibility. The
result of a Kasper-Rounds unification contains
the indefinite descriptions from both descriptions
without expansion. At some point in the pro­
cessing it may be necessary to resolve the indefi­
niteness, and the disjunctive components are then
expanded. However, in many cases, the definite
component of the description may become incon­
sistent before this is necessary, expansion is thus
avoided.

2 .3 When expansion is necessary,
expand efficiently

If DNF-expansion is required, then it should be
performed as efficiently as possible. We here dis­
cuss some methods to achieve this goal:

1 . Reducing the disjunctiveness of the
description: By reducing the extent of the
description, we reduce the amount of dis­
junction to be expanded, and thus speed up
the expansion process. We use two methods
to reduce the size of descriptions:

(a) Extracting descriptions for special­
purpose: we segment the grammar de­
scription into sub-descriptions for par­
ticular purposes. We found that dif­
ferent parsing processes drew upon

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

only subsets of the grammar. Rather than working with the full grammar, sub-descriptions tailored for particular purposes can be compiled-out . These sub-descriptions are less complex to expand than the full description
{b) Register Specific Pruning: parts of the grammar which are not expected to be used in a particular set of target texts are 'pruned-out' before processing be­gins.

2. Expanding Disjunctions Efficiently: a disjunctive description may contain a num­ber of disjunctions. Ordering the expansion of these disjunctions in particular ways can result in improved expansion times:
(a) Multiplying together disjunctions with high likelihood of inconsistency first ,

205

grammar as a precompilation step, we avoid doing that calculation during the parsing of a sentence.

3 A Systemic Grammar

3 .1 Type and Role Logic

Systemic grammar, in distinction to value­attribute grammars, distinguishes type logic (the classes of units) and role logic (the constituency and dependency relations between units) . The type logic is expressed in a network, called a sys­tem network . The role logic is expressed as a set of constraints on the types of the grammar.

thus reducing the number of terms 3.2 System Networks which we continue with.
{b) Spotting inconsistent unifications with minimum of work e.g. , checking for in­consistencies between single terms be­fore checking for inconsistencies be­tween combinations of terms. (c) Using some form of structure sharing in the expansion process: in the expan­sion process, the same terms may be multiplied together a number of times. A form of structure-sharing, such as a parse chart, can reduce the redun­dancy in the expansion process.

2.4 Caching and precompilation:
avoiding repeating the same ex­
pansion.

The parser makes extensive use of caching - when any expansion is calculated which is likely to be used again, the result is stored away for later re­use. Precompilation has also been a useful tech­nique to improve parsing efficiency. Precompila­tion is basically a pre-caching of all the values which might be used in the parsing process. By performing most of the DNF expansion of the

Systemic grammar (e.g. , Halliday, 1985, Hudson, 1971 , Matthiessen - Mann, 1985) uses an in­heritance network to organise grammatical types (or 'feature' in Systemics1), and their structural consequences. A Systemic inheritance network is called a system network. A system network is used to organise the co­occurrence potential of grammatical types, show­ing which types are mutually compatible, and which are incompatible. It consists of a set of sys­tems , which are sets of mutually exclusive types . There is also a covering relation between the types of a system, meaning that if the entry con­dition of the system is satisfied, then one of the types in the cover must be selected. Figure 1 shows a system network for a sim­ple grammar of English. It includes 1 1 systems, representing various grammatical distinctions, for instance, between clause and word, between tran­sitive and intransitive clauses, or between nomi­native and accusative pronouns. Each type inherits the properties of types to its left in the network. Note that the system net­work may be logically complex, since entry con­ditions {the logical condition on a system) may consist of conjunctions and disjunctions of types. 1 Note that the term 'feature' is used distinctly from its use in most unification paradigms. In Systemics, a feature is what Functional Unification Grammar would call a value, e.g., active, transitive and noun are features.

206

{ wh-

{

interrogative

{
indicative yeS/no

declarative imperative
clause { active { transitive passive intransitive { single-subject plural-subject

{verb word
pronoun

{ nomina�ive accusative
{ singular plural
{human nonhuman

Figure 1 : A partial Systemic network
3 .3 Structural Templates

Types of the system network are associated with structural realisations - the structural conse­quence of the type. Figure 2 shows the realisa­tions of the types in Figure 1 .
clause :

declarative :
yes-no :
transitive :

active :

passive :

intransitive :

Subject : nominative
Actor : human
Finite : finiteverb
Pred : lexical-verb
Subj ect AFinite
FiniteASubject
Object : accusative
Actee = []
Pred . . . Obj ect
Subject/Actor
Obj ect/Actee
Finite/Pred
Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM = "by"
Finite/Pass
Pred : en-verb
Pass APred
AgentWObject
Subject/Actor
Finite/Pred

O 'DONNELL

single-subj :
plural-subj :

Subj ect : singular
Subject : plural

Figure 2: Realisation Rules
This grammar deals mainly with some sys­tems involving the Subject and Object , what types of units fill these roles, and how these roles conflate with two other roles: Actor and Actee. The grammar assumes that both roles are filled by pronouns, which are either [nominative] or [accusative] , [singular] or [plural] , and [human] (e.g. , "I" , "you" , "he") or [nonhuman] (e.g. , "it" , "that") . Only [human] pronouns can fill the Ac­tor role of a clause. The realisation operators used in the formal­ism are as follows:
Insert e.g. , Finite = [J: indicates that the function Finite must be present in the structure.
Conflate e.g. , Modal/Finite : indicates that the two functions Modal and Finite are filled by the same grammatical unit .
Order e.g. , Subject " Finite : indicates the se­quencing of functions in the surface structure. In this example, the Subject is sequenced directly before the Finite . Any number of elements can be sequenced in a single rule.
Partition e.g. , Thing . . . Event . . . End: An­other sequence operator, specifies that the appear in this order, but not necessarily immediately ad­jacent (linear precedence) .
Preselect e.g. , Subject: nominal-group : indi­cates that the Subject element must be filled by a unit of type nominal-group.
Lexify e.g. , Deict = "the " : used to assign lex­ical items directly to elements of structure. Note that lexify overrides any preselect which may ap­ply to the same element of structure.

3.4 Logical Expression
Grammar

of the

For the purposes of the expansion of this gram­mar, we re-express it in a logical formalism. Fig­ure 3 shows Logical Form I of this grammar, in­cluding the structural constraints embedded in the form. Note that :xor indicates exclusive dis­junction.
(: xor
(: and clause

Subj ect : nominative

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

Actor : human
Finite : finite-verb
Pred : lexical-verb
(: xor

(: and declarative
Subject -Finite)

(: and yes-no
Finite-Subj ect))

(: xor
(: and transitive

Obj ect : accusative
Actee = []
Pred . . . Obj ect
(: xor

(: and active
Subj ect/Actor
Obj ect/Actee
Finite/Pred
(: and passive

(: and intransitive
Subj ect/Actor
Fin/Pred))

Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM= "by"
Pred : en-verb
Finite/Pass
Pass-Pred
AgentWObj ect))

(: xor (: and single-subj ect
Subject : singular))

(: and plural-subject
Subj ect : plural))))

(: and word
(: xor (: and pronoun

(: xor nominative
accusative)

(: xor singular
plural)

(: xor human
nonhuman))

(: and verb . . .))))

Figure 3 : Logical Form I of the Grammar
4 Extracting Sub-Gram-

mars for particular Pars­
ing Tasks

Rather than expanding out the whole grammar, it is more efficient to extract out subsets of the

207
grammar, to be used for particular tasks in pars­ing. In our systemic parser, the description is used for three purposes:

1 . Path Unification: checking that two type­paths can unify,
2. Predicting What Comes Next: seeing which function-bundle(s) can come next in the structure e.g. , we have just anal­ysed Subject/ Actor A Fin/Mod, and want to predict what function-bundle can occur next in the structure.
3 . Function-Bundle Assignment: seeing what function-bundle a given constituent can fill, e.g. , we have just parsed a nominal group, and want to see what function-bundles it can be the filler of.
Each of these uses makes only partial use of the grammar description. Thus, rather than ex­panding out the entire grammar, we can simplify the process by extracting out sub-grammars, one for each of these applications. Since the size of each sub-grammar is smalle_r, the complexity problem is reduced. This section looks at these three sub-descriptions in more detail.

4. 1 Separating Type Logic from
Role Information

It has proved useful to separate the type logic component of the grammar from the role logic. The two logic components have different patterns of use - type logic is used to test whether two par­tial type-paths can unify. We never try to unify a partial type description with the type grammar as a whole. The type-logic component of the gram­mar thus does not need to be DNF-expanded. The role logic, on the other hand, does need to be expanded. We expand the role-logic compo­nent to produce a set of non-disjunctive structure rules which can be applied during parsing (some­times termed 'chunking') .

208

(: and
; 1 . Type Logic Component
(: xor (: and clause

(: xor declarative yes-no)
(: xor (: and transitive (: xor active passive))

intransitive)
(: xor single-subj ect plural-subject))

(: and vord
(: xor (: and pronoun (: xor nominative accusative)

(: xor singular plural)
(: xor human nonhuman))

(: and verb . . .))))

; 2 . Role Logic Component
(: and (: implies clause (: and Subj ect : nominative

Actor : human
Finite : finite-verb
Pred : lexical-verb))

(: implies declarative Subj ect -Finite)
(: implies yes-no Finite-Subj ect)
(: implies transitive (: and Obj ect : accusative

Actee : []
Pred . . . Object))

(: implies active (: and Subject/Actor
Obj ect/Actee
Finite/Pred))

(: implies passive (: and Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM= "by"
Pred : en-verb
Finite/Pass
Pass-Pred)
AgentM-Object))

(: implies intransitive (: and Subject/Actor
Fin/Pred))

(: implies single-subj ect Subject : singular)
(: implies plural-subj ect Subj ect : plural)))

Figure 4: Logical Form II of the Grammar

role logic.

O 'DONNELL

Thse two components of the description have different properties: type logic is acyclic, while role logic is potentially cyclic. Type logic is con­strained such that types are always in disjoint coverings (which allows efficient negation) , while role logic doesn't have this constraint. 4 .1 . 1 Unification of Type Descriptions
Because of these differences in properties and uses, it has proved efficient to treat these two logics separately. Logical Form I of the sys­temic grammar provided in Figure 3 can be re­represented in the equivalent Logical form II · shown in Figure 4, separating out the type and

The parser uses the type-logic component of this grammar without fully expanding it . Partial ex­pansion, however, is performed, whereby the type­path (the logical-entailment of a system, i .e . , the logical expression of types leading back to the

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

root of the network)2 is pre-compiled for each system.3 The negation of each type in the system is also pre-compiled, which speeds up unification involving negation of types. Type-paths are represented in the form pro­posed by Kasper (1987), and his unification al­gorithm is used when two type-paths are uni­fied. The main use of the type-logic component is checking the compatibility of two types or type­paths. Type logic has thus been simplified using three strategies:
1 . Separating from Role Logic
2 . Using Kasper's 'delayed expansion' tech­nique.
3. Precompiling each system's logical entail-ment , and the negation of types.

Because of these methods, unification of type­paths using even quite complex grammars oper­ates quite quickly.
4.2 Function Assignment

Another use made of the grammatical description in parsing is to assign a set of structural roles to a unit . The set of roles a unit fills is called in Systemics the function-bundle of the unit . The systemic formalism allows each unit to be as­signed multiple functions. For instance, using the NIGEL grammar, 'the cat' in "the cat scratched the woman" would be assigned the function­bundle . Subject/ Agent/ Actor/Theme. The pos­sibility of a unit serving multiple functions is a major source of complexity in systemic parsing.
Assigning function-bundles to a unit is one of the tasks in systemic parsing. For instance, as­sume we have just parsed a pronoun "he" , as­signing it a type-path:

(: and vord : pronoun : nominative : human : singular)

Now, we wish to find what function-bundles the pronoun can serve at a higher level. One result could be:

[pronoun]
I

"he"

[clause : transitive]
______ I ___ . . .

=> I
Subj ect/Actor

[pronoun]

209

This process draws upon three parts of our grammar:
• Preselection and Lexify rules: used to dis­cover what functions different units can fill.
• Conflation rules: used to discover which functions a unit can serve simultaneously, and thus, which of the preselection and lex­ify rules can combine.
• The Type Logic: to show which of these preselection, lexify and conflation rules are systemically compatible.

Since we have already set up the type-logic for path unification, we can draw upon that re­source as needed. We do not need to include the type-logic in the sub-description for the function­assignment process.
4.2.1 Extracting the relevant description
For the function-assignment process, we do not need all of the role logic description. We can se­lect out only those rules involving preselection, lexify, and conflation. See Logical Form III in Figure 5 .
(: and (: implies clause

(: and Subject : nominative
Actor : human
Finite : finite-verb
Pred : lexical-verb))

(: implies transitive
Obj ect : accusative)

(: implies active
(: and Subject/Actor

Object/Actee
Finite/Pred))

(: implies passive
(: and Subject/Actee

Object/Actor
Pass : be-aux 2Note that since entry conditions of systems can be logically complex, the path itself can contain disjunctions and conjunctions. · 3Paths are stored with systems rather than types, since the path of all types in a system are identical.

210
AgentM= "by"
Pred : en-verb
Finite/Pass))

(: implies intransitive
(: and Subj ect/Actor

Fin/Pred))
(: implies single-subject

Subj ect : singular)
(: implies plural-subject

Subj ect : plural)))

Figure 5 : Logical Form III: The Function Assignment Sub-Description
4.2 .2 Implications Out
We next put this description into a form more suitable for DNF-expansion. Note that implica­tion can be re-expressed using disjunction, con­junction and negation:
(: implies a b) is-equivalent-to

(: xor (: and a b) (: not a))

Using this rule, we can re-express the logical form III as Logical Form IV, as shown in Figure 6.
(: and (: xor (: and clause

(: xor

(: xor

(: xor

(: xor

(: xor

(: not
(: and

(: not
(: and

(: not

Subj ect : nominative
Actor : human
Finite : finite-verb
Pred : lexical-verb)
clause))
transitive
Obj ect : accusative)
transitive))
active
Subj ect/Actor
Obj ect/Actee
Finite/Pred))
active))

(: and passive
Subj ect/Actee
Obj ect/Actor
Pass : be-aux
AgentM : "by"
Pred : en-verb
Finite/Pass)

(: not passive))
(: and intransitive

Subj ect/Actor
Fin/Pred)

(: not intransitive))
(: and single-subject

O 'D ONNELL

Subj ect : singular)
(: not single-subj ect))

(: xor (: and plural-subj ect
Subj ect : plural)))

(: not plural-subj ect)))

Figure 6: Logical Form Form IV: The Function Assignment
4.2.3 Expansion to DNF
Simple algorithms exist to expand Logical Form IV into DNF (see section 5 . 1) . A small part of the result appears in Logical Form V of the grammar, shown in Figure 7.
(: xor

(: and clause transitive active
single-subj ect
Subj ect/Actor : (: and nominative

human singular)
Obj ect/Actee : accusative
Finite/Pred : (: and verb finite-verb

lexical-verb))
(: and clause transitive

etc . . .

active plural-subj ect
Subj ect/Actor : (: and nominative

human plural)
Object 1 Actee : accusative
Finite/Pred : (: and verb finite-verb

lexical-verb))

Figure 7: Logical Form Form V: The Function Assignment Sub-Description in DNF
The order of worst-case complexity of the ex­pansion to DNF is easily calculated - it is simply two to the power of the number of disjunctions, which is equal to the number of types which have realisation rules of type conflation, insertion, or preselection. By opting to expand only subsets of the whole grammar, we have reduced the complexity of the description, since the size of n for this sub­description is smaller than for the whole descrip­tion. However, for a real-sized grammar such as NIGEL, the size of n is still large.

4.2.4 Re-expression in terms of Function Bundles
From the DNF-form of this description, we can extract out partial-descriptions for each function bundle. We now re-express this logical form in

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

terms of the type constraints on each function­
bundle, including both the constraint on the
type of unit the function-bundle can be part
of (the 'parent-constraint ') , and the constraint
on the filler of the function-bundle (the 'filler­
constraint ') . We show this as a set of triplets,
of the form:

(<parent-types>
<function-bundle>
<child-types>)

1 . { { : and clause transitive
active single-subject)

Subj ect/Actor
(: and nominative human singular)))

2 . ((: and clause transitive
active single-subj ect)

Obj ect/Actee
accusative)))

3 . ((: and clause transitive
active plural-subject)

Subj ect/Actor
(: and nominative human plural)

4 . ({ : and clause transitive

5 .

active plural-subject)
Obj ect/Actee
accusative)

(: and clause transitive
active singular-subj ect

Finite/Pred
(: and verb finite-verb lexical-verb))

etc

This representation can now be used to assign
function-bundles A unit can take on a function­
bundle if it can unify with the filler-constraint on
the function-bundle.

For the instance we started with, "he" ,
with types: (: and pronoun nominative human
singular) , only one triplet would unify. We
could thus posit structure for our unit :

[clause : transitive : active : single-subj ect]
. . __________ ! __________ . . .

I
Subject/Actor

I
[pronoun : nominative : human : singular]

I
"he"

211

Note that we have also gained information
about the types of the parent-unit of which the
unit is a constituent.

4.2.5 Reducing the number of Rules

Note that there is another simplification we can
make to the triplet list. We can take all triplets
with identical function bundle and child-type
specification, and join them. The parent-types
slot is replaced with the disjunction of the two
parent-type slots. Thus, elements 2 and 4 above
become a single item. This process reduces the
number of rules to apply:

2 , 4 . ((: and clause transitive active)
Obj ect/Actee
accusat ive)))

4.3 Predicting What Comes Next

Another process we use in parsing involves the
prediction of what function-bundles can come
next in a partially completed structure. With a
systemic grammar, this process requires:

• Ordering and Partition rules: to see which
function can come next.

• Conflation rules: to see which functions can
conflate with the function predicted to come
next.

• The type logic: to show which of these or­
dering, partition and conflation rules are
systemically compatible.

The processing of this sub-description, and any
others, is exactly the same as for function­
assignment .

1 . Extract from the role logic description the
relevant realisation rules;

2. Replace implications with disjunction and
negation;

3. Expand out the grammar;

4. Index the rules in a form useful for the pro­
cessing.

212
4.4 Register Restriction

Another means of reducing the overall complexity of the descriptions involves eliminating from the grammar parts which are unlikely to be utilised in the target texts. In systemic terms, we apply register restrictions to the grammar. For example, in a domain of computer manu­als, the description of interrogative structures is not likely to be drawn upon.4 By eliminating this sub-description, we reduce the degree of disjunc­tion in the whole description, and thus speed up the parsing of the forms which do appear in the text . The method of deriving the register­restrictions was as follows:
1 . We parsed by hand5 a chapter of the com­puter manuals we were attempting to parse, building up a register-profile of our target texts.
2 . An automatic procedure then extracted out all the grammatical types which occur in these sentences.
3. The process used this information to dis-

O 'DONNELL
5 Improving the Efficiency

of Expansion

Section 4 has proposed techniques which reduce the size of the description which needs to be ex­panded. However, for large-sized descriptions, the expansion is still complex. This section briefly explores two methods which increase the effi­ciency of the expansion process. If we can't avoid full expansion, then at least we can make the ex­pansion process more efficient .
5 . 1 "Structure Sharing" in Expan­

sion

This section assumes a disjunctive description of the following form:
(: and (: xor A B) (: xor C D) (: xor E F))

Logical form V introduced above was of this form. Much of the pre-processing in the parser in­volves the DNF-expansion of disjunctions in this form.
cover the types not occurring in the sample. 5 1 1 Full E . . xpans10n

4. The process then eliminated these types and their realisations from the description.
We were thus left with a restricted grammar which was capable of parsing the sentences in the sample, and also parsing many which were not in the sample (under the assumption that the gram­matical forms in the sample were representative of the forms found in the manual as a whole) . We reduced the size of the grammar by approxi­mately 60% using this method.
4.5 Summary

By extracting out sub-descriptions from the full description, we reduce the complexity of the description-to-be-expanded.

The brute force method for expanding this form involves :
1 . Find all combinations of terms, taking one term from each disjunction.
2 . Test compatibility of each combination, eliminating combinations which are inter­nally inconsistent.

Step 1 of this process produces the following DNF form:
(: xor (: and A C E) (: and A C F)

(: and A D E) (: and A D F)
(: and B C E) (: and B C F)
(: and B D E) (: and B D F)) 4Note that some of the forms we restrict through register restriction may actually appear in any one text, although quite rarely. We are trading off between speed for the majority of sentences, and ability to parse all sentences in a text. 5The hand-parsing is really computer-assisted, - a tool was developed to traverse the system network for each sen­tence (and each constituent of the sentence) asking the human which feature was appropriate for the target string. This process guaranteed that the human-analysis conformed to the computer grammar.

REDUCING C OMPLEXITY IN A SYSTEMIC PARSER

The problem with this approach is with the
incompatibility checking - the same checks will
be repeated over and over again. For instance,
the incompatibility check between A and C is re­
peated twice: (:and A C E) and (:and A C F) .
This repetition occurs for every pair of terms in
the conjuncts. The- problem gets worse exponen­
tially as we add more disjuncts.

To avoid this redundancy, we need something
like a chart in parsing, a method to record the re­
sults of each unification and thus avoid repeating
any unification.

Unfortunately, DNF expansion is not quite
like parsing. We can test the consistency between
any two pairs of terms (for instance A and C
in the above), but we also need to know about
the consistency of terms in combination e.g. , the
pairs: A&C, A&E and C&E may be consistent,
but the combination A&C&E may not be.

The rest of this section describes two tech­
niques which allow some redundancy reduction,
sometimes known as structure-sharing.

5 . 1 .2 Tree Organisation of Expansion

The disjunctive description above can easily be
re-represented in the form below:

(: and (: and (: xor A B)
(: xor C D))

(: xor E F))

The process here involves expanding out the
first two disjunctions, eliminating inconsistent re­
sults, and then expanding the result out with the
next disjunction. The incremental expansion is
illustrated il

l
Figure 8.

a&c&e

a&c&f
<

a&c <

/

a
a&d--- a&d&e

--- a&d&f
"- b . b&c&e

"'- b
<

&c
< b&c&f <b&d&e b&d

Figure 8: Tree expansi8���thod

This method is more efficient than the full ex­
pansion method, since: •

• Some terms, such as a&c, a&d etc. are uni­
fied only once. However note that terms e
and f are still involved in multiple products.

213

• the failure of a combination of terms early
in the unification process eliminates a large
number of expansions by the end of the pro­
cess.

5 .1 .3 Binary Organisation of Expansion

A third approach aims at maximising the degree
of 'sharing' unifications in the expansion. The
disjunctions in the description are split into pairs,
and unified. The results of these unifications are
then unified in the same pair-wise manner. This
expansion for a conjunction of four disjunctions
is shown in Figure 9.

AvB> A&C A&D A&C&E&G B&C A&C&E&H CvD B&D > A&C&F&G A&C&F&H A&D&E&G EvF > E&G A&D&E&H E&H A&D&F&G F&G A&D&F&H GvH F&H et<;
Figure 9: Binary expansion method

The advantage of this approach is that we are
maximising the amount of structure-sharing in
the unification.

5 .1 .4 Comparison of Expansion Ap-
proaches

We compared the number of unifications which
take place using each of these methods for vari­
ous numbers of disjunctions (all disjunctions hav­
ing two disjuncts).

One can see from Table 1 that the worst-case
score for the full expansion method is far worse
than the other methods. It is not a practical
method.

Comparing the worst-case for the 'tree' and
the 'binary' expansion method, we see that the bi­
nary method clearly comes out better, by around
50%.

We also did a simulation to check an aver­
age case score, since the worst-case score doesn't
take into account that many later unifications are
avoided when early unification proves inconsis­
tent. We found that while the binary method
still seems superior, in some instances the tree
method requires fewer unifications. More work is
needed here.

214

N Full Tree Binary
1 1 20480 4092 2364
12 45056 8188 4424
13 98304 16380 8448
14 212992 32764 16780
15 458752 65532 33236
16 983040 131068 66144
17 2097152 262140 133528
18 4456448 524284 266660
19 9437184 1048572 526956
20 19922944 2097148 1053304

Table 1: Worst-case comparison
5 .2 Ordering Incompatible Dis-

junctions First

When using either the Tree or Binary expansion methods, fewer unifications will be required if we place the disjunctions with the greatest chance of inconsistency first. In a sense, we are pruning in­consistent branches of the expansion tree 'at the root'. In the systemic parser , several heuristics have been used to group disjunctions which are most likely to produce the fewest cross-products, and perform these first. One possible method for utilising this phe­nomenon is :
1 . Separate the disjunctions into sub-sets which maximise likelihood of incompatibil­ity between rules inside the sub-expressions.
2. Expand out the disjunctions inside each sub-set. The results of each sub-set are cached so they need only be expanded once.
3. Expand out the results of (2) against each other.

5 .3 Avoiding Expansion of Incom-
patible Terms

Sometimes, it is possible to tell without full uni­fication that a set of rules will not unify with an­other set . For instance, assume a larger gram­mar than the one we have been using, a grammar which includes clauses, nominal-groups6 , prepo­sitional phrases, adverbial phrases and words.

O 'DONNELL

These categories are all types in the system net­work, just like any other types. Since these types won't unify with each other, we can also know that types which inherit from one of these basic types will not unify with the the sub-types of another basic type. We thus do not need to try to unify descriptions which differ in their basic type . If we split any disjunctive de­scription into sub-components for each basic type, we know a priori that there is no unification be­tween these sub-components. Before trying any of the expansion techniques outlined in this paper , the whole grammar is segmented into sub-descriptions, one for each of these basic types. The complexity of the expan­sion of each of these sub-grammars is less than for the grammar as a whole. Other principles can be used to locate sets of rules which will not unify. These can be applied also.
6 Conclusion

While the techniques outlined here have been ap­plied in ways particular to a systemic grammar, and for a particular implementation, there are principles behind the re-representations which are general to all implementations :
1 . Avoid DNF-expansion where possible, as in Kasper 's unification algorithm.
2. Delay expansion to a later time - informa­tion gained later may show the description to be inconsistent in the definite compo­nent.
3. When expansion is necessary,

(a) Try to extract out sub-descriptions which can be used , rather than ex­panding the entire grammar.
(b) Expand out first disjunctions which are most likely to conflict, since this will reduce the total number of terms which will n�ed to be multiplied .
(c) A void expanding terms that can be known to be incompatible. 6Systemics prefers the term 'nominal-group' over the equivalent term 'noun-phrase' .

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

As a result of the application of these techniques (and others not here mentioned) , we have been able to implement a parsing system which parses using a large systemic grammar.
1. We start with the Nigel grammar, as used in the Penman Generation System, slightly modified for parsing purposes.
2. This grammar is then reduced by applying register-restrictions, leaving a less complex grammar, but a grammar which still han­dles the bulk of the phenomena in the target texts.
3. Sub-descriptions of the grammar tailored for particular processes are then extracted, and expanded out as a precompile step, pro­ducing a set of 'chunks' which can be used in parsing. This expansion takes approxi­mately 2 minutes using Sun Common Lisp on a Sun Spare II.
4. The 'chunked' grammar is then used to parse sentences. On the above-mentioned platform, parsing a sentence like "A user­password is a character string consisting of a maximum of eight alpha-numeric char­acters." took 35 seconds to parse7 • This parser is slow, compared to most non­systemic parsers, but is far faster than the

215

parser would be without the methods out­lined here.
Future work will attempt to reduce this parsing time. Three directions are being followed:

• Streamlining the parsing process to further reduce the parsing time.
• Moving more processing to the pre­compilation stage.
• Reducing the complexity of the description without reducing its coverage.
• Incorporating heuristics to resolve ambigu­ities without full expansion.

Acknowledgements

The parser discussed in this paper was partially developed in the Electronic Discourse Analyser project , funded by Fujitsu (Japan) . The devel­opment was aided by discussions with the mem­bers of that project: Christian Matthiessen, John Bateman, Zeng Licheng, Guenter Plum, Arlene Harvey and Chris Nesbitt. Thanks to Cecile Paris for profuse comment­ing on this paper, and teaching me Latex, and to Vibhu Mittal, who solved the trickier Latex bugs.

7Note that when the parser is given a less complex systemic grammar, the parsing time is under two seconds for this sentence.

216

References

Bateman, John - Martin Emele - Stefan Momma (1992) "The non directional repre­sentation of Systemic Functional Grammars and Semantics as Typed Feature Structures" in Proceedings of COLING-92 , Volume III, Nantes, France, 916-920.
Benson, J. - W. Greaves (eds.) (1985) Sys­

temic Perspectives on Discourse , Volume 1. Norwood: Ablex.
Cross, Marilyn (1991) Choice in Text: A

Systemic-Functional Approach to Computer
Modelling of Variant Text Production, Ph.D. thesis submitted June 1991, Macquarie Uni­versity.

Cummings, Michael - Al Regina (1985) "A PROLOG parser-generator for Systemic anal­ysis of Old English Nominal Groups", in Ben­son and Greaves, 1985.
Davey, Anthony (1978) Discourse Production:

a computer model of some aspects of a
speaker, Edinburgh: Edinburgh University Press. Published version of Ph.D. disserta­tion, University of Edinburgh, 1974.

Fawcett, Robin P. - Gordon H. Tucker (1990) "Demonstration of GENESYS: a very large se­mantically based Systemic Functional Gram­mar". In Proceedings of the 13th Int. Conf.
on Computational Linguistics (COL/NG '90) .

Halliday, M. A. K. (1985) Introduction to Func­
tional Grammar, London: Edward Arnold.

Halliday, M. A. K. - R. Hasan (1985) Cohesion
in English , London: Longman.

Hudson, R.A. (1971) English Complex Sentences, North-Holland.
Kasper, Robert (1986) "Systemic Grammar and Functional Unification Grammar" In Benson, J. and Greaves, W., Selected Papers from the

12th International Systemics Workshop, Nor­wood, N.J: Ablex.
Kasper, Robert (1987a) Feature Structures: A

logical Theory with Application to Language

O 'DONNELL

Analysis , PH.D. dissertation, University of Michigan
Kasper, Robert (1987b) "A Unification Method for Disjunctive Feature Descriptions" in Pro­

ceedings of the 25th Annual Meeting of the As­
sociation for Computational Linguistics , held July 6-9, 1987 Stanford, California.

Kasper, Robert (1988a) "An Experimental Parser for Systemic Grammars", Proceedings
of the 12th Int. Conf. on Computational Lin­
guistics , Budapest: Association for Computa­tional Linguistics.

Kasper, Robert (1988b) "Parsing with Systemic Grammar", Mimeo.
Kasper, Robert (1989) "Unification and Classifi­cation: An Experiment in Information-Based Parsing" In Proceedings of the International

Workshop on Parsing Technologies , pages 1-7, CMU, Pittsburgh.
Kasper, Robert (1990) "Performing Integrated Syntactic and Semantic Parsing Using Classi­fication" paper presented at Darpa Workshop on Speech and NL Processing, Pittsburgh, June 1990.
Kay, Martin (1979) "Functional Grammar" in

Proceedings of the Fourth Annual Meeting of
the Berkeley Linguistics Society .

Kay, Martin (1985) "Parsing In Functional Unifi­cation Grammar" in Dowty D., L. Karttunen , and A . Zwicky, (Eds): Natural Language
Parsing , Cambridge University Press, Cam­bridge, England.

Mann, W. C. and C. I. M. Matthiessen (1985) "Demonstration of the Nigel Text Generation Computer Program". in Benson and Greaves, 1985
Martin, James (1992) English Text: System and

Structure , Amsterdam: Benjamins.
Matthiessen, C. I. M. and W. C. Mann (1985) "NIGEL: a Systemic Grammar for Text Gen­eration" in Benson and Greaves, 1985
Matthiessen, C. I. M. and J. Bateman (1992)

Text Generation and Systemic Functional
Linguistics: Experiences from English and
Japanese. London: Pinter Publishers.

REDUCING COMPLEXITY IN A SYSTEMIC PARSER

McCord, Michael (1977) Procedural Systemic Grammars in Int. J. Man-Machine Studies, 9, 255-286, London: Academic Press.
Mellish, Chris (1988) "Implementing Systemic Classification by Unification" , Computational Linguistics , Vol. 14, Number 1 , Winter 1988.
O'Donoghue, Tim F. (1991a) "The Vertical Strip Parser: A lazy approach to parsing" Research Report 91 . 15 , School of Computer Studies, University of Leeds, Leeds, UK.
O 'Donoghue, Tim F. (1991b) "A Semantic Inter­preter for Systemic Grammars" in Proceedings of the AGL Workshop on Reversible Gram­mars , University of California at Berkeley,

217
June 1991 .

Patten, Terry and Graeme Ritchie (1986) "A formal model of Systemic Grammar" , paper presented at 3rd International Workshop on Language Generation, Nijmegen, August 19-23, 1986.
Patten, Terry (1986) Interpreting Systemic Grammar as A Computational Representa­tion: A Problem Solving Approach to Text Generation, Ph. D. dissertation, University of Edinburgh.

Winograd, Terry (1972) Understanding Natural Language . New York: Academic Press.

218 O �D0NNELL

Generalized LR parsing and attribute evaluation

Paul Oude Luttighuis and Klaas Sikkel

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE, Enschede, the Netherlands

email: { oudelutt I s ikkel }©cs . utwente . nl

Abstract

This paper presents a thorough discussion of generalized LR parsing with simultaneous at­tribute evaluation. Nondeterministic parsers and combined parser/evaluators are presented for the LL(O) , LR(O) , and SKLR(O) strategies. SKLR(O) parsing occurs as an intermediate .strategy between the first two. Particularly in the context of simultaneous attribute evaluation, generalized
SKLR(O) parsing is a sensible alternative for generalized LR(O) parsing.

1 i Introduction

Natural language theory and programming lan­guage theory have a common foundation in formal language theory. In particular, context-free gram­mars find broad application in both fields. Yet, whereas programming language theory allows for restriction of the class of applicable grammars in order to obtain more efficient parsers, natural language theory typicaly demands parsing algo­rithms for general context-free grammars. Semantic issues are generally handled by dif­ferent . formalisms in both theories. While at­tribute grammars (AGs) are widely used in pro­gramming language circles, natural language se­mantics are dealt with by e.g. feature-structure grammars. A well-known problem in program­ming language theory is the evaluation of the at­tributes of an AG during parsing. Attribute eval­uation during parsing allows for refraining from storing the parse tree and can therefore be space efficient. Moreover, attribute values, which have been computed during parsing, .may be used to control the parser, for instance by (partly) resolv­ing parsing conflicts. This paper reports on such attribute evalua­tion during parsing. The parsing algorithm used, however, is a typical natural language parsing algorithm: generalized LR parsing, also called Tomita's algorithm. By combining Tomita's al­gorithm with simultaneous attribute evaluation,

programming language theory may benefit from the virtues of Tomita's algorithm, while natural language theory may benefit from the efficient techniques for simultaneous attribute evaluation, found in programming language theory. Tomita's algorithm provides . a clever deter­ministic implementation of the nondeterminism occurring in parsing non-LR grammars in an LR fashion. Attribute evaluation during determin­istic LR parsing is a non-trivial problem and has raised considerable interest in literature on programming language implementation. On the other hand, attribute evaluation during determin­istic LL parsing is simple, provided ' we restrict ourselves to the use of L-attributed AGs only, which is what we will do in the entire paper. L­attributed AGs are such that dependencies be­tween attribute values do not flow but from left to right in the parse tree. Because of this observation, we structured our paper as follows. We start with ' discussing non­deterministic LL parsing. By means of an inter­mediate step (yielding a technique called SKLR parsing) , this is transformed into LR parsing. Then, the nondeterministic LL parser is enhanced with simultaneous attribute evaluation and the same transformation steps are used to obtain at­tribute evaluation during nondeterministic LR parsing. The most severe difficulties occur in the first transformation step. The following principles characterize our dis-
219

220

cussion.
• Generality. No determinism is required be­forehand.
• Finiteness. Except for the attribute do­mains, the data and control structures of our algorithms must be finite.
• Static evaluation. There must be no need at all to check at evaluation time whether an attribute instance has been evaluated yet. An attribute instance must be evaluated at the moment the parser enters the state with which the instance is associated.

Within the bounds of these principles, we push the combination of attribute evaluation and pars­ing to its very limits. Efficiency is not our first concern. We refrain from using dynamic evalu­ation techniques, by which the evaluation of at­tribute values can be postponed. Efficiency con­siderations may afterwards be used to obtain ef­ficient implementations.
2 Context-free grammars

and attribute grammars

We assume that the reader is familiar with context-free grammars (CFGs). The CFGs in this paper always have a production of the form S -► #X$ such that S does not occur in any . other production. Left-recursive CFGs have a nonterminal A and a string a of grammar sym­bols for which A ⇒;t Aa. Hidden-left-recursive CFGs have a non terminal A and a strings a, /3 of grammar symbols for which A ⇒;t aA/3 and a ⇒;t c. We will not present a formal definition of at­tribute grammars (AGs). An AG is based on a CFG. Every grammar symbol carries a series of attributes of a certain type. In a parse tree, there­fore, instances of these attributes occur. The at­tribute instances in one production in the parse tree are functionally dependent on one another. In the AG, this dependence is specified by a set of semantic rules , associated with that produc­tion. The function of an attribute evaluator is to assign values to the attribute instances according to these semantic functions.

0UDE LUTTIGHUIS - SIKKEL

We distinguish two kinds of attributes: syn­thesized and inherited ones. Synthesized at­tributes of a symbol depend on other attributes in the production below that symbol, whereas inher­ited attributes depend on attributes in the pro­duction above it. In order to simplify the discussion, we use a special form of AGs, caled untyped L-attributed A Gs, or ULA Gs. In fact, an ULAG is an AG,
• which is L-attributed. This means that in­herited attribute occurrences of right-hand side symbols cannot depend on synthesized attribute occurrences of right-hand symbols to their right.
• in which all attributes have the same type;
• in which every symbol has exactly one inherited and exactly one synthesized at­tribute.
• in which any attribute occurrence depends on all used attribute occurrences to its left in that production.
The first restriction is the most severe of all. The other three are easily dealt with by simple rewrites of the AG.

3 LL(O) and LR(O) parsers

This section present a nondeterministic LL(0) parser and transform it, via an SKLR(0) parser into an' LR(0) parser.
3 . 1 · L-parsers

This subsection gives a short description of the parser model, called L-parser, used in this paper, without presenting a formal definition. The core of an L-parser is a transition relation between instantaneous descriptions. Such an in­stantaneous description consists of a stack con­tents, which is a string of states, and a (remain­ing) input, which is a string of grammar symbols. Operation starts with a special stack contents, consisting of a special state, the initial state and the input string. This instantaneous description may be turned into other ones by means of the transition relation. Operation stops if the top of the stack is another special state, the final state.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 221

As opposed to more common parser models,
an L-parser is allowed to pre-append symbols to
the remaining input during reduction steps. Our
reduction steps are such that they pre-append the
lhs of the associated production to the input, in­
stead of shifting it immediately. This shift is per­
formed by a compulsory subsequent shift step.
Advantages are that

• It simplifies the description of parsers.

• It facilitates the definition of attribute eval­
uation during parsing.

• It enables parsing of arbitrary sentential
forms, instead of just terminal strings.

• It nicely generalizes to parsers for context­
sensitive grammars.

3 .2 Dotted rules

LR parsing was introduced by Knuth (1965) . Al­
though LL and LR parsing can be elegantly de­
scribed as being each other's duals (Sippu and
Soisalon-Soininen, 1990), they can both be seen

as (implicitly) performing a depth-first left-to­
right walk over the (virtual) parse tree.

Positions in this walk are indicated by dotted rules . In essence, a dotted rule is a production to­
gether with some position in its rhs. This position
is rather between symbols that at them. A dotted
rule [A ---+ X1 . . . Xi • Xi+i . . . Xnl , where n 2'.: 0
and O � i � n , indicates that the parser's cur­
rent position during the tree walk is in an appli­
cation of A ---+ X1 . . . Xn at the position between
Xi and Xi+1 . Dotted rules of the form [A ---+ •a]
are called starting dotted rules, others are called proper dotted rules.

During a tree walk, three kinds of steps oc­
cur: production steps, shift steps, and reduction
steps. Production steps are steps down in the
parse tree. They always leave from a dotted rule
of the form [A ---+ a1 • Ba2] and arrive at a dot­
ted rule of the form [B ---+ •,BJ . Shift steps are
steps to the right, leaving from a dotted rule of
the form [A ---+ a1 • X a2] and arriving at one of
the form [A ---+ a1X • a2) . Finally, reduction-shift
steps are steps up in the parse tree and they leave
from a dotted rule of the form [B ---+ ,B•] to arrive
at one of the form [A � a1B • a1] . See Figure 1 .

Figure 1 : Production, shift , and reduction-shift steps in a parse tree.

3 .3 LL(O) parsers

Dotted rules are the states of our LL(O) parsers.
The initial state is [S ---+ # • X$] , the final one
[S ---+ #X$•] . At any moment, the LL(O) parser
may perform

• a production step. In this case, the current
state must be of the form [A ' -+ a1 • Ba2] .
Any dotted rule of the form [B � •,B] , can
be the next current state, and hence be

pushed onto the stack. The remaining input
is not changed;

• a shift step, in which case the current state
must be of the form [A ---+ a1 • X a2] and
the remaining input must start with an X.
The new current state is [A ---+ a1X • a2]
and is pushed onto the stack. The X lead­
ing the remaining input is removed;

222

• a red.tiction-shift step. In this case,
the current state must be of the form
[A ...:..+ X1 . . . Xn•] . Now, by the nature of
the algorithm, the topmost n + 2 elements
of the stack1 are

[B � /31 • A/32] [A � •X1 . . . Xn]
. . . [A � X1 . . • Xn•]

The topmost n+ 1 of these are popped. A is
pre-appended to the input . Finally, a shift
step is performed.

Nondeterminism only occurs in two cases.

• If the current state is of the form
[A � a1 • Ba2] and there is more than one
rule with B at its lhs, different production
steps are possible. This is called a produce­produce conflict.

• If the current state is of the form
[A � a1 • Ba2] , both a shift step and at
least one production step is possible, pro­
vided the remaining input is headed by B.
This is called a produce-shift conflict.

3.4 SKLR(O) parsers
For most CFGs the LL(O) parser is very nondeter­
ministic. As soon as a nonterminal occurs as the
lhs of more than one production, nondeterminism

Uniting states is a technique, taken from LR
parsing, for increasing determinism. The trans­
formation from LL to LR parsing can be seen to
consist of two subsequent steps, which we will call production step elimination and determinization.

A glance at the LL(O) parser shows that non­
determinism occurs at production steps. The first
transformation step, production step elimination,
consists in eliminating explicit production steps
by uniting those dotted rules into one state that
are interrelated by such a step.

Hence, in singleton-kernel LR(O) parsing, or SKLR(O) parsing, states are sets of dotted rules.
Every state contains one proper dotted rule, its kernel. The other dotted rules in a state are those
that can be obtained from the kernel by means of
one or more production steps.

For an SKLR(O) parser, being in some state
implies that the parser is, in the virtual parse tree, simultaneously at all positions that are indicated

0UDE LUTTIGHUIS � SIKKEL

by a sequence of dotted rules in this state, that
starts with the kernel and of which every follow­
ing dotted rule can be reached from the preceding
one by means of a production step.

Let us discuss some differences with LL(O)
parsers.

• First of all, there are no production steps
here. This is the very essence of our first
transformation step. A sequence of consec­
utive production steps is made at once upon
entering a new current state.

• Therefore, states changed from being dot­
ted rules to sets of dotted rules.

• A reduction step involves popping n ele­
ments from the stack, rather than n + 1 ,
because a production step does not cause a
push any more.

Nondeterminism occurs in an SKLR(O) parser
in the following cases .

• If some state contains two different dot­
ted rules of the form [A � a1 • X a2] and [B � /31 • X /32] , a shift step leaves the
next current state not uniquely determined.
This is a shift-shift conflict,

• If some state contains a dotted rule of the
form [A � a • X /3] and a dotted rule of the
form [A � a•] , so that both a shift and a
reduction step are possible (a shift-reduce conflict) ,

• If some state contains more than one dot­
ted rule of the form [A � a•] , so that more
than one different reduction step is possible
(a reduce-reduce conflict).

As opposed to the LL(O) parser, the SKLR(O)
parser applies to at least some left-recursive
grammars. Though nondeterministic, SKLR(O)
parsers are terminating for a reasonable class of
left-recursive CFGs. An advantage of SKLR(O)
parsers over LR(O) parsers is that the parsing ta­
bles are more space efficient, in the worst case.
Any SKLR(O) parser will have a number of states
that equals the sum of the lengths of the rhss.
However, SKLR(O) parsers are more nondeter­
ministic than LR(O) parsers. 1 When writing down stack contents as a string, the top will be at this string's right.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 223

3.5 LR(O) parsers

As mentioned, three kinds of nondeterminism oc­cur in SKLR(O) parsers. The second transforma­tion step, determinization, completely abolis�es the shift-shift conflicts. Wherever such a conflict may occur, all possible next current states are taken together to form a new state. So, states in LR(O) parsers will be unions of SKLR(O) parser states. Unfortunately, shift-reduce and reduce� reduce conflicts remain, and generally even grow in number. Hence, in LR(O) parsers,
• states are unions of SKLR(O) states, and
• there are no shift-shift conflicts.
Nondeterminism occurs in LR(O) parsers only as shift-reduce or reduce-reduce conflicts.

4 Extending parsers with

attribute evaluation

In this section, we add attribute evaluation to the LL(O) parser and present transformations of this attributed parser, via an attributed SKLR(O) parser to an attributed LR(O) parser. It appears that production step elimination causes problems related to attribute evaluation. Remember that the discussion is restricted to ULAGs.
4. 1 L-parser/evaluators

This · subsection presents L-parser/evaluators. They form the basis for the parser/evaluators of this section. When attribute evaluation is performed dur­ing parsing and the parse tree should not be stored, entirely nor partially, the attribute val­ues should be calculated at the moment that the parser, during its walk through the virtual parse tree is at the corresponding node. The attribute valu�s are kept within the states on the stack. First of all, we must capture the fact that the lexical analyzer yields, instead of a string of al­phabet symbols, a string of pairs, each pair con­sisting of a symbol and a synthesized attribute value associated with the symbol. This also en­ables us to pre-append the lhs of a production, after a reduction step, to the remaining input; together with its synthesized attribute value.

Also, we have to be careful with the defini­tion of the states of a parser/evaluator. In some way, the attribute values must be attached to the states. However, at parser/evaluator-generation time attribute values are not known yet . They ' are calculated at run time. Therefore, we make a distinction between static and dynamic states. Dynamic states are those entities that occur on the stack during an actual run of the parser/eval­uator. Static states underlie dynamic states. Static states are constructed at parser/ evaluator­generation time. Obviously, the only part of a dynamic state that cannot be calculated at parser/ evaluator-generation time concerns the ac­tual attribute values.
4.2 LL(O) parser/ evaluators

This subsection introduces the LL(O) parser/eval­uator. Within states of the form [A -+ a1 • X a2] , the value of the inherited attribute occurrence of X is kept. Within states of the form [A -+ a1 X • a2] , the value of the synthesized attribute occurrence of X is kept. Notice that in most states, being those that have at least one symbol (say Y) fol­lowing and one symbol (say X) preceding the dot , carry a value of the inherited attribute occurrence of Y as well as the value of the synthesized one of X. Yet, the synthesized attribute occurrence of X is evaluated earlier than the inherited one of Y. Now let us consider the three kinds of steps ' of the LL(O) parser.
• Consider the production steps. A new state of the form [B -+ •.B] is pushed. If ,B -I c, the inherited attribute value of the first symbol of ,B, say X, must be calculated. By the L-attributedness of the AG, it can only depend on the inherited attribute oc­currence of B, of which the value can be found in the state [A -+ a1 • Ba2] , below the current one on the stack.
• Consider the shift steps. A new state of the form [A -+ X1 . . . XnX • a] is pushed. We have two cases.

- If a -:j; c, this state must contain the synthesized attribute value of X and the inherited attribute value of

224
the first symbol of a, say Y. The synthesized attribute value of X is copied from the remaining input. It has been put there by the lexical an­alyzer or by the preceding reduction action. The inherited attribute value of Y must be calculated. Because of the L-attributedness of the AG, it only depends on the synthesized attribute occurrences of X1 , . . . , Xn , X and on . the inherited attribute occurrence of A. The synthesized attribute value of X is taken from the stack. The oth­ers can be found at a distance from the stack's top that equals the position number of their corresponding symbol in the string Xn . . . X1A.

- If a = c:, it suffices to copy the synthe­sized attribute value from the remain­ing input .
• Consider a reduction step with A � X1 . . . Xn as the production involved. No new states are pushed. However, A is pre-appended to the remaining input. It must be accompanied by its synthesized at­tribute value. This value is calculated by using the values of the synthesized attribute occurrences of X1 , . . . , Xn and the inher­ited attribute of A. These can be found at a distance from the stack's top that equals the position number of their corresponding symbol in the string Xn . . . X1A. Also, a reduction step is only made if the semantic condition associated with the production evaluates to TRUE.
A dynamic state must contain an inherited and a synthesized attribute value. The function needed to calculate the inherited attribute value {rom another one is determined by the dotted rule it�e.lf. This is not the case for the synthesized att,ribute since its corresponding function is de­termined by the production applied beneath the dotted rule's production. Now, suppose we have the dotted rule [A � X1 . . . Xm • Y1 . . . Yn] as the state's core. If m > 0, the synthesized attribute value of Xm is simply copied into the synthesized attribute 'slot ' of the state. If n > 0, we must cal­culate the inherited attribute value of Y1 , which

0UDE LUTTIGHUIS - SIKKEL

depends on m + 1 other values, being the inher­ited attribute value of A and the m synthesized ones of X1 , . . . , Xm . If n = 0, we do not have to calculate an inherited attribute value. A static state in our LL(0) parser/evaluator is a dotted rule, extended with the function that cal­culates the inherited attribute of this dotted rule. This is called an extended dotted rule. An ex­tended dotted rule contains a string of functions2 instead of just one. This is to prepare for future transformations. Extended dotted r·ules are de­noted by [A � a • ,B lcp] . A static attributed LL(0) state is an extended dotted rule. A dynamic attributed LL(0) state is a triple consisting of the associated static state, and the associated synthesized and inherited at� tribute value, respectively. An LL(0) parser/evaluator is as (non)deterministic as its underlying LL(0) parser.
4.3 SKLR(O) parser/ evaluators

This subsection will present SKLR(0) parser/evaluators and the problems involved in their definition. Basically, two main techniques are used. First, we use string rewrite systems in order to capture semantic knowledge of the semantic functions. We need this knowledge in order to keep our states finite, but they also help decreasing nondeterminism. Second, the problem of how to address the proper inherited attribute value in a state is solved by including a kind of place marker in the dynamic states.
4.3.1 Production step elimination

Let us first consider which attribute values are as­sociated with an SKLR(0) state. First of all, we have the inherited and synthesized attribute value of the kernel of the state. Also, we have the in­herited attributes of the other dotted rules. They have no synthesized attributes because they are starting dotted rules. So, every SKLR(0) state contains exactly one synthesized _attribute value, but generally more than one inherited attribute value. Hence, in order to extract an inherited at­tribute value from a state, one needs more argu­ments than just the state itself. A first guess, of course, is that the additional argument should be 2Concatenation is this string denotes function composition.

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 225

the dotted rule with which the intended value is
associated. Unfortunately, this has two problems.

• Inherited attribute values (of a nontermi­
nal A) are needed only when a shift or
reduction-shift step is made according to a
production that has A as its lhs. Therefore,
at the moment of extracting the value, the
only information available is the symbol im­
mediately following the dot in the intended
dotted rule (being A) , and not the entire
dotted rule. In general, the same symbol
may immediately follow the dot in more
than one dotted rule in one state.

• Generally, even the entire dotted rule is not
sufficient to uniquely identify an inherited
attribute value. More than one inherited
attribute value may be associated with the
same dotted rule in the same state.

In an elegant definition, a static attributed
SKLR(O) state would be a set of extended dot­
ted rules, being the closure, with respect to some
relation, of some kernel element. A first concern
is whether the function, kept within the extended
dotted rule, should denote the function needed to
calculate the associated inherited attribute value
from the one immediately preceding it (with re­
spect to that relation) , or the function needed to
calculate the associated inherited attribute value
from the inherited attribute value of the kernel.
In this last case, we have a string of functions,
which denotes composed functions, inside the ex­
tended dotted rule. We have decided for the sec­
ond alternative.

Unfortunately, such a definition yields static
states with infinitely many extended dotted rules
in case of left-recursion. A partial solution to this
problem may be obtained as follows.

In most of attribute grammar theory, the se­
mantics of the semantic functions is not taken
into account. Only attribute dependencies are
important. Evaluator implementation is based on
the a priori availability of implementations of the
semantic functions. If we persist in this princi­
ple here, we cannot but forbid ULAGs with left­
recursive underlying CFGs. However, being able
to handle left-recursive grammars is a major ad­
van�age of LR parsing over LL parsing. It is not
desirable to let the addition of simultaneous at­
trf�ute evaluation nullify this. So, we are forced

to pay attention to the semantics of the semantic
functions.

There are many formalisms by which we might
do this. Without indulging to elaborate discus­
sions of this area of computer science, we present
one solution, which enables to handle at least the
most practical cases. This solution uses string
rewrite systems.

4.3.2 String rewrite systems

A string rewrite system is a special kind of rewrite system. A (general) rewrite system contains an
arbitrary set of objects and a binary relation =>
on this set. A rewrite step transforms an object
into another one according to a rewrite rule. An
object that can be obtained from another object
by a (possibly empty) sequence of rewrite steps,
respectively one rewrite step, is called a descen­dant, respectively a direct descendant, of that ob­
ject. An object is called irreducible if no rewrite
rule can be applied to it any more. If an object
can be rewritten into an irreducible object, this
irreducible object is called a normal form of the
original one. If no infinite sequences of rewrite
steps can occur, the system is called terminating.
The system is called confluent if any two differ­
ent descendants of the same object have a com­
mon descendant . The system is called complete
if it is both terminating and confluent. Complete
rewrite systems implement a total function yield­
ing the (unique) normal form for any given object.

A string rewrite system (or semi- Thue system,
or STS, shortly) is a special kind of rewrite sys­
tem. The objects are strings over some set of
symbols. A rewrite rule here is a pair of strings.
An application of such a rewrite rule to a string
consists in substituting a substring, that matches
the lhs of the rule, by the rhs of the rule. A finite
STS has finitely many string rewrite rules.

Now, STSs are used in the following way.
When constructing a static state, which consists
of extended dotted rules, the function strings in
these extended dotted rules are first subjected to
the STS. Using STSs is only a partial solution to
the problems mentioned: particular ULAGs will
still have to be rejected, because they yield infi­
nite static states even after the use of the STS.

226

4.3-.3 · . High-lig·hts ·, , 7;· • • .:· t :

As mentioned earlier, we also need to include, in our dynamic states, an · indication that allows us to extract the proper inherited attribute value from it , the next time such a value is requested. For sake of brevity, the complicated discussion of these high-lights is omitted. We restrict ourselves to mentioning that, in principle , extended dotted rules suffice as high-lights. However , more sophis­tication, that is , using so-called extended symbols or even extended sets as high-lights decreases the amount of nondeterminism. Also , high-lights ap­pear to have syntactical consequences: a particu­lar high-light in a dynamic state res�ricts the set of possible steps. For instance, a certain high­light may forbid a shift of some symbol a, even when the underlying static state allows such a shift step. Unlike LL(O) parser/evaluators, SKLR(O) parser/evaluators may show more nondetermin­ism than their underlying parser. One can distin­guish syntactic conflicts form semantic conflicts. Semantic conflicts may occur when high-lights are changed and the next high-light is not uniquely determined .
4.4 LR(O) parser/evaluators

States in LR(O) parsers are unions of SKLR(O) parser states. Analogously, static attributed
LR(O) states are unions of static attributed
SKLR(O) states . This causes a technical prob­lem; . . because the static states may now con­tain multiple kernel elements. The solution in­volves the introduction of so-called selection func­tions . These form the most important differ­ence between LR(O) and SKLR(O) parser/eval­uators. However , we will refrain from discussing this problem here.
4.5 Examples of practical string

rewrite systems

In this subsection, we present some examples of STSs that are applicable to frequently appearing semantic functions in attribute grammars. First of all, copy rules often occur. A copy rule occurs when an attribute evaluation function is the identity function. For the identity function, say I , we have a simple rule.

0UDE LUTTIGHUIS - SIKKEL

I -+ c
In other words, the identity function can simply be removed from any string of functions . . A second class of functions suitable for rewrit­ing is formed by the constant functions. Let c : A -+ B be any constant function and f : B -+ B any function. Then, the rule

cf -+ C

can be added . It expresses that any function ap­plied before the constant function is superfluous. Finally, we notice that another rule can be used when f is , for instance, the logical negation, or a function, taking and yielding pairs, that ex­changes the pair's first and second constituent. This rule is

5 Implementing· parsers

In this section, we discuss implementation issues of the nondeterministic parsers as presented in Section 3 . A main problem here - is that the con­ceptual nondeterminism must be implemented on a deterministic machine. k first remark is that all parsers discussed here can be made table-driven in the usual way.
5 . 1 LL(O) parsers

In LL(O) parsers, a production step is performed as follows. Conceptually, the parser initiates a new parser for every possible new state to be pushed. A shift step is performed as follows. Suppose the current state is [A -+ a1 • X a2] and Y heads the remaining input. If X = Y, [A -+ a1X • a2] is pushed and Y is removed from the remaining input . If X f= Y, no shift step can be performed. A reduction step is performed as follows. If the current state is not of the form [A -+ X1 . . . Xn•] , no reduction step can be performed. If it is , n + l elements are popped from the stack and A is pre­appended to the input. After that, a compulsory shift step follows. If no production step, as well as no shift nor reduction step is possible, the parser dies. If more than one kind of step is possible, new parsers are initiated for both alternatives . In LL(O) parsers

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 227

this can occur with production and shift steps (a
produce-shift conflict) . If a reduction-shift step is
possible, no other steps are.

5.2 SKLR(O) parsers

In SKLR(O) parsers, a shift step is performed as
follows. Suppose X heads the remaining input.
Then, the set of all dotted rules in the current
state of the form [A --+ a1 • X a2] is determined.
For every such dotted rule, a new parser is initi­
ated, which pushes the state with [A --+ a1X • a2]
as its kernel.

A reduction step is performed as follows.
The set of all dotted rules of the form
[A --+ X1 . . . Xn•] in the current state is deter­
mined. For every such dotted rule, a new parser is
initiated, ·which pops n elements from the stack. If no shift nor reduction step is possible, the
parser dies. If both shift and reduction steps are
possible, new parsers are started for both.

5 .3 LR(O) parsers

In LR(O) parsers, a shift step is performed as
follows. Suppose X heads the remaining input.
Then, the set of all dotted rules in the current
state of the form [A --+ a1 · • X a2] is determined. If this set is empty, the parser dies. If not, a new
state is pushed with this set as its kernel set.

Reduction steps are performed as in SKLR(O)
parsers. If no shift nor reduction step is possible,
the parser dies. If both shift and reduction steps
are possible, new parsers are started for both.

· 5 .4 Handling nondeterminism: a
simple approach

Our parsers contain a possibly huge amount of
nondeterminism. Because our strategy is to try
out all possibilities in case of nondeterminism, we
must have a way to implement this. A simple ap­
proach is the following: a parser first determines
which production, shift and reduction steps are
possible. Suppose there are n different possible
next steps. Then the parser copies its instan­
taneous description n times, yielding one copy
for every possible step. Then, for every copy, it
performs the associated · step and initiates a new
parser to continue parsing with the resulting new

instantaneous description. After that , it dies. If
n = 0, the parser dies without initiating new ones.

A parser stops (successfully) when its instan­
taneous description has the final state qp as its
current state.

For the time being, a sequential implementa­
tion is intended. Words like 'parallelism', 'syn­
chronization' , and different 'parsers' are used in
a conceptual sense.

5.5 Sharing instantaneous descrip-
tions

There is a lot of unnecessary copying of instanta­
neous descriptions in the simple approach. Ma­
jor portions of the copies will coincide. Sharing
these coinciding parts may substantially increase
efficiency.

A parser can be seen to move on a tape that
is formed by the stack and the remaining input.
Upon a nondeterministic choice, originally, the
tape was copied several times before the step.
However, major parts of the tape are the same for
all copies. These parts, a bottom part (prefix) of
the stack and a suffix of the remaining input can
be shared by all alternatives. This yields a data
structure which we will call a graph-structured in­stantaneous description.

Basically, this is a directed acyclic graph, with
one source (the bottom of the stack) and one sink
(the end of the input) . It is maintained in such a
way, that every path from the source to the sink
corresponds to a single instantaneous description.
On every such path, there is one current position,
which marks the border between the stack and
the input of the corresponding. instantaneous de­
scription. Obviously, maximal sharing is reached when no parent has different but equally labeled
children (at the stack side) and no child has dif­
ferent but equally labeled parents (at the input
side). This technique will save space, and may
cost time (because of the additional problems of
manipulating shared data) , but it may save much
more (because instantaneous descriptions will not
be exhaustively copied) .

Though this graph-structured instantaneous
description may seem symmetric, there is an
asymmetry to be found in that the stack part of
an instantaneous description is both growing and
shrinking during a run, whereas the input part
only shrinks (after initialization) . Therefore, re-

228
maining inputs of two different parsers will always be such, that one is a suffix of another. So, · at the remaining-input side, it is very easily assured that no parser destroys other parsers' data. This is dif­ferent at the stack side. There, a reduction step, causing stack elements to be popped, endangers other parsers' data. In this case, the instanta­neous description should be partially copied (that is , the endangered part only) before the step is ac­tually performed. The partial copy is connected with the original at the border of the endangered part . There is no reason, other than for efficiency, to decrease the amount of sharing used. One might even refrain from sharing data at one of both sides of the shared instantaneous description. In this case, our shared data structure has the struc­ture of a tree. Two possibilities occur. The first is when the input side lacks all sharing. This yields a tree-structured instantaneous description, which has one source (the bottom of the stack) and many sinks, indicating the end of the remain­ing input for every separate parser. The other possibility occurs when the stack side lacks all sharing. This causes a data structure with many sources and one sink. We will call this a funnel­structured instantaneous description . We refrain from giving technical details.
5 .6 Synchronizing the parsers

Additional efficiency may be gained by requiring parallelism to be synchronous, or, even stronger: by demanding synchronization on shift steps. To see this, notice that the shift step is the only step in which the input is affected (because of the combined reduce-shift step) . Then, if all parsers remove the same symbol from the input at the same time, they all will always have the same remaining input, which therefore can be fac­tored out of the graph-structured instantaneous description. This technique will save space, but cost time, since parsers may have to wait for syn­chronization. Because the remaining input is no longer part of the graph-structured instantaneous descrip­tion, it is rather a tree-structured stack, which has one source and multiple sinks, one for the top of the stack of every single parser. Now, be­cause the steps of the parser depend on the cur­rent state only, we know that all branches of this

0UDE ' LUTTIGHUIS - 8IKKEL

tree-structured stack, that . have the same state at their leaves, will have identical tree-structured substacks originating · from them in the future. Therefore, it might be advantageous to unify these leaves into one. This will save space, as well as time and/or processors, simply because iden­tical subruns will be performed only once. How­ever, it may also cost time, because searching for identically labeled leaves takes time. This data structure is called a graph-structured stack . It has one source and, at any moment, generally multi­ple sinks, one for every state occurring at the top of a stack at that moment. The idea of a graph-structured stack is not new. It originated from Tomita (1985) , in which, however, it is only used in the context of gen­eralized LR parsing. However, graph-structured stacks were introduced differently. There is no notion of asynchronous (pseudo-)parallelism nor . of graph-structured instantaneous descriptions. Moreover, the concept of a tree-structured stack is different , in that the sharing is the other way around: the tree has the current state at its root, and the stack bottom (or rather bottoms) at its leaves . We automatically arrived at the reverse notion of tree-structured stacks by not presupposing shift synchronization. In order to stay consistent with earlier terms, we use the name funnel-structured stack for Tomita's notion of tree-structured stacks.
5 . 7 Tree- and graph-structured

stacks in detail

A detailed discussion of the use of tree- and graph-structured stacks in generalized LL(O) ,
SKLR(O) , and LR(O) parsing is given in · Oude Luttighuis and Sikkel (1992) , but omitted here for brevity's sake.
5.8 Parallelism in parsers

Here, we will discuss ways to actually implement the defined parsers and parser/evaluators in par-allel. The parallelizations of these algorithms can be classified according to which data structure(s) is (are) distributed over different processors. By this distribution, we do not · necessarily mean physical distribution, but rather conceptual dis­tribution. Of course, parallelism may also be ob-

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 229

tained by distributing control structure, but in
our algorithms, control structure is captured in a
data structure.

The only data structure maintained in our
parsers and parser/evaluators is the (possibly
tree- or graph-structured) instantaneous descrip­
tion. Yet , it consists of the (remaining) input and
the stack part.

Because activity only occurs at the top of the
stack and the head of the input , it seems unprof­
itable to cut them into subsequent pieces and as­
sign these to processors. So, the only fruitful par­
allelism may be found in the pseudo-parallelism
already present. Different processors simply pro­
cess the different alternatives originating from
nondeterministic decision points.

5.8.1 Dividing multiple linear stacks and
tree-structured stacks

Parallel implementation of Tomita's algorithm
can be found in (Tanaka and Numazaki, 1989;
Numazaki and Tanaka, 1990) . Both divide the
different alternatives occurring at nondeterminis­
tic decision points over the processors. The first
uses no sharing whatsoever of the instantaneous
description: several different copies of (linear)
stacks are processed by different processors. The
second one uses the tree-structured stack.

5 .8.2 Dividing graph-structured stacks

Graph-structured stacks were introduced, be­
cause tree-structured stacks show many identical
activities, because many top nodes may be la­
beled with the same state. As discussed earlier,
sharing is best applied immediately after the shift
steps that start a tst-step.

What we might do is take a processor for ev­
ery state in the parser3 • Its task is to perform one
tst-step to the (shared) wait node that is labeled
with its associated state.

Because all shift steps shift the same symbol,
the maximum number of wait nodes resulting is
the maximum number of states that can occur af­
ter a shift of a particular symbol. So, if we choose
to assign a processor to all parser states, many of
them will be inactive at some time. This can be
improved by partitioning the parser states into a

set of blocks. Every block corresponds to a gram­
mar symbol X and contains those states that can
become current state after a shift of X. Now, we
take a number of processes such that , to each of
them, (at most) one state in every block is as­
signed. This calls for a number of processors that
equals the maximum block size.

5.8.3 Dividing the input

There exist other parallelizations of Tomita's al­
gorithm. In (Lankhorst and Sikkel, 1991) the
PBT (Parallel Bottom-up Tomita) algorithm is
presented. In this algorithm, the input is di­
vided over processors such that every processor
processes one input symbol. The processors op­
erate in a pipeline, communicating marked sym­bols from the end to the beginning of the string.
A marked symbol consists of a grammar sym­
bol (terminal or nonterminal) and two numbers,
which indicate the left and right border of a sub­
string of the input string, that is derivable from
that grammar symbol. Actual recognition of a
new marked symbol with left border i is done by
the processor associated with the ith input sym­
bol.

It was stated in the beginning of this section
that it seems unprofitable to cut the input (or the
stack) into subsequent pieces and assign these to
processors, because activity only occurs at the
head of the input (and the top of the stack).
Yet , this holds only for true parallelizations of
Tomita's algorithm. PBT is rather another al­
gorithm than Tomita's. The facts that PBT re­
quires different table construction and different
manipulation of the graph-structured stack sup­
port this view. A,lso, whereas Tomita's algorithm
cannot handle h.idden-left-recursive CFGs, PBT
can.

6 · Implementing parser/ eval­
uators

This section discusses implementation issues of
the nondeterministic parser/ evaluators as pre­
sented in section 4. The underlying syntactic part

3That is, a processor is associated with every parser state, not with every instance of a state on the graph-structured
stack.

230

can be made table'"driven in the usual way. Ad­ditionally, · in SKLR(O) and LR(O) parser/evalua­tors, high-lights have to be taken into account as well in the parser tables.
6 . 1 Calculating attribute values

Attribute values are computed upon syntactical steps. The (candidate) steps to be taken are chosen on purely syntactical grounds . In reduc­tion steps, the semantic condition may prohibit the step . In other cases, the calculation of at­tribute values simply follows syntactical process­ing. The argument values are extracted from the other states on the stack (and copied from the remaining input, in case of a shift step).
6 .2 Handling nondeterminism

In the parser/evaluators presented, attribute evaluation can influence parsing in two ways. First, a reduction step will be prevented if the se­mantic condition evaluates to FALSE. Second, the high-lights have syntactical consequences. Yet, the techniques of handling nondeterminism, as mentioned for parsers, can in principle all be used for parser/evaluators as well. However, imple­menting a graph-structured stack will not be as profitable for parser/evaluators as it is for parsers . This has two reasons.
• As opposed to the steps of the parsers, the steps of the parser/evaluator are not completely determined by the current state only. For the evaluation of attribute val­ues, argument values are needed that re­side in states further down in the stack. This causes complications when, somewhere within the sequence of states from which attribute values must be extracted, shar­ing has been applied, so that a new kind of semantic nondeterminism occurs. In other words, because more than one stack is asso­ciated with a top node in graph-structured stacks, different attribute values may be ex­tracted from states deeper in the stack.
• States may only be shared if they are iden­tical. Since dynamic states now include at­tribute values, these have to be identical as well. It is doubtful whether the time saved by sharing identical states outweighs the

0UDE LUTTIGHUIS - SIKKEL

time lost in verifying that states are identi­cal, given the dynamic nature of attribute values.
Both tree- as well as graph-structured stacks suf­fer from the fact that a larger portion of the stack is inspected for each step. This may cause more read conflicts in a parallel implementation. Still; a tree-structured stack seems feasible.
6.3 Parallel parser/ evaluators

This section will discuss ways to implement the defined parser/ evaluators in parallel. Because parsers are the skeleton of our parser/evaluators, we review the opportunities for parallelism, which are present in our parsers, and discuss whether they can be applied to parser/evaluators as well. Division of multiple linear stacks and tree- and graph-structured stacks can be carried over to parser/ evaluators. However, there are two dif­ficulties .
• Graph-structured stacks are hardly useful for parsing/ evaluation (as discussed ear­lier) . Therefore, the parallel parsing tech­nique for dividing the graph-structured stack over a (statically bounded) number of processors is not applicable.
• In tree-structured stacks (as well in graph­structured stacks) the sharing of parts of the data structure introduces the possibil­ity of read conflicts.
Unfortunately, dividing the input seems un­suitable as well, because the L-attributedness of ULAGs imposes a very sequential nature on at­tribute dependencies . Only when a left-to-right dependency is absent, possibilities for parallelism appear. This occurs, for instance, in case there are no inherited attributes, but only synthesized ones . However, if we allow ourselves to use dy­namic evaluation techniques, this changes, be­cause we may postpone evaluation . This is the subject of the next subsection .

6.4 Dynamic attribute evaluation

Although dynamic attribute evaluation is not a main topic of this paper, we will spend some re­marks on it .

GENERALIZED LR PARSING AND ATTRIBUTE EVALUATION 231
Dynamic attribute evaluation abandons the need to (completely) evaluate attribute values be­fore they are used. Generally, a directed graph is maintained in which nodes are labeled with se­mantic functions and have outgoing arcs to all their arguments. Let us call such a graph an at­tribute graph. This graph can essentially be han­dled by two techniques.
• The first technique calculates an attribute value in the attribute graph only when all its argument values are completely evalu­ated. Let us call this the evaluation-before­use technique.
• In the other technique, the attribute graph is viewed as a syntactic description of a value. Rewrite rules are applied to it when­ever this is possible. A rewrite rule may, in principle, be performed to any part of the graph. This is the graph-rewriting tech­nique.

In both techniques, the attribute graph grows whenever the parser enters a new state and shrinks whenever a new attribute value is calcu­lated, or a rewrite rule has been applied. Dynamic evaluation may be helpful in pars­ing/evaluation in two ways. First, it allows for postponing (complete) evaluation of attribute values. Second, related with that, it allows for a less rigid approach to infinity problems in case of left recursion. Apparently, a combination of gen­eralized parsing/ evaluation techniques and dy­namic evaluation may be desirable. The fact that dynamic evaluation partly frees attribute evaluation from problems caused by syntactical processing also offers new possibilities for parallelism. For a more elaborate discussion, see Oude Lut­tighuis and Sikkel (1992) .
7 Related approaches

The only GLR parser generator that we know of is the incremental parser generator IPG (Heering et al. , 1990; Rekers, 1992) , from the ESPRIT project GIPE (generation of interactive programming en­vironments) . They chose Tomita's algorithm as a starting point for their incremental parser gener­ation because it provides a good mix of generality and efficiency. One of the reasons for · accepting

arbitrary context-free languages is that the gram­mar is allowed to be modular, and none of the classes of LR-grammars is closed under compo­sition. Rekers' thesis does not discuss attribute evaluation in the incremental parser generator. Affix Grammars over a Finite Lattice (AGFLs) (Weijers, 1986) are a sub-class of affix grammars specifically designed for natural lan­guages. The formalism can be located some­where between attributed grammars and feature­structure grammars (Shieber, 1986) . There are two basic ways to parse an AGFL: (1) Evaluate the affix values on-the-fly during the construc­tion of the parse forest, or (2) compute a parse forest according to the underlying context-free grammar and decorate it with affix values after­wards. Koster (1991) claims that the first ap­proach is more practical, provided that his "Re­cursive Backup" algorithm (Koster, 1975) is used, rather than an Earley or Tomita parser (despite the exponential worst-case complexity of the Re­cursive Backup algorithm) . Nederhof and Sarbo (1993) claim the reverse, however. They discuss how ambiguity can be handled practically in an interactive environment. A generalization of an LC parser, - based on the recursive backup method mentioned above, is used for the closely related formalism of Extended Affix Grammars in (Meijer, 1986) . A generalized LR parser for a query language for logical databases is described in (Lang, 1988) .
8 Conclusions

Contributions of this paper are
• a systematic treatment of generalized LL and LR parsing,
• the description of SKLR parsing as an in­termediate form of these,
• a correspondingly systematic treatment of attribute evaluation during LL, SKLR, and

LR parsing, with a precise identification of problematic issues in the case of SKLR and
LR parsing,

• (partial) solutions to these problems, viz. high-lights, string rewrite systems, and se­lection functions,

232

• · the technique of attribute evaluation during
generalized SKLR parsing, which is to be
preferred to evaluation during generalized

· LR parsing, because it avoids some techni­
cal complications while nondeterministism
is only marginally increased.

Future work may be done on the following
problems.

• What can be gained by adding the use of
look-ahead information to SKLR parsing?

OUDE LUTTIGHUIS - SIKKEL

• What is the relation�hip between SKLR
and LG parsing?

• Can our evaluation techniqll,es be efficiently
combined with dynamic evaluation tech­
niques?

• Is the use of string rewrite systems a real
gain in practice?

GENERALIZED LR PARSING 'AND ATTRIBUTE EVALUATION 233
References

Heering, J . - P. Klint - J. Rekers (1990) . In­cremental generation of parsers. IEEE Trans­actions on Software Engineering, SE-16:1344-1351 .
Knuth, D .E . (1965) . On the translation of lan­guages from left to right. Information and Control, 8:607-639.

Koster, C.H.A. (1975) . A technique for parsing ambiguous grammars. In D. Siefkes, editor, GI - 4. Jahrestagung. Lecture Notes in Computer Science 26.
Koster, C.H.A. (1991) . Affix grammars for natural languages. In H. Alblas and B. Melichar, editors, Proceedings of the Inter­national Summer School on Attribute Gram­mars, Applications and Systems (Prague, Czechoslovakia, June 4-13, 1991}, pages 469-484, Berlin, Germany. Springer-Verlag. Lec­ture Notes in Computer Science 545.
Lang, B . (1988) . Datalog automata. In Proceed­ings of the 3rd International Conference on Data and Know ledge Bases: Improving Us­ability and Responsiveness (Jerusalem, Israel, 1988 }, pages 389-404.
Lankhorst , M. - K. Sikkel (1991) . PBT: A parallel bottom-up Tomita parser. Memo­randa Inforinatica INF 91-69, Department of Computer Science, University of Twente, En­schede, The Netherlands, September.
Meijer, H. (1986) . Programmar: A Transla­tor Generator. PhD thesis, University of Ni­jmegen, Nijmegen, The Netherlands.
Nederhof, M.-J. - J.J . Sarbo (1993) . Efficient decoration of parse forests. In H. Trost, editor,

Feature formalisms and linguistic ambiguities, pages 95-109, Chicester, U.K. Ellis Horwood.
Numazaki, H. - H. Tanaka (1990) . A new par­allel algorithm for generalized LR parsing. In Proceedings of the 13th International Confer­ence on Computational Linguistics (Helsinki, Finland, 1990} (Vol. 2}, pages 304-310.
Oude Luttighuis, P. - K. Sikkel (1992) . At­tribute evaluation during generalized parsing. Memoranda Informatica 92-85, Department of Computer Science, Enschede, The Nether­lands.
Rekers, J. (1992) . Parser Generation for Interac­tive Environments. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands.
Shieber, S.M. (1986) . An introduction to unification-based approaches to grammar. CSLI Lecture Notes 4, Center for the Study of Language and Information, Stanford Uni­versity, Stanford, California, USA.
Sippu, S. - E. Soisalon-Soininen (1990) . Parsing Theory, volume II LR(k) and LL(k) Parsing. Springer-Verlag, Berlin, Germany.
Tanaka, H. - H. Numazaki (1989) . Gener­alized LR parsing based on logic program­ming. In Proceedings of the International Workshop on Parsing Technologies (Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1989}, pages 329-328.
Tomita, M. (1985) . Efficient Parsing for Natu­ral Language. Kluwer Academic Publishers, Boston, Massachusetts, USA;
Weijers, G .A.H. (1986) . Affix grammars over finite lattices. Report No. 94, Department of Computer Science, University of Nijmegen, Nijmegen, The Netherlands.

234 0UDE LUTTIGHUIS · - SIKKEL

1

A Proof-Theoretic Reconstruction of HPSG *

Stephan Raaijmakers

Institute for Language Technology and Artificial Intelligence ITK
· P.O.Box 90153, 5000 LE Tilburg, The Netherlands

email: stephan©kub . nl

Abstract

A reinterpretation of Head-Driven Phrase Structure Grammar {HPSG) in a proof-theoretic context is presented. This approach yields a decision procedure which can be used to establish whether certain strings are generated by a given HPSG grammar. It is possible to view HPSG
as a fragment of linear logic (Girard, 1987) , subject to partiality and side conditions on inference rules. This relates HPSG to several categorial logics (Morrill, 1990) . Specifically, HPSG signs are mapped onto quantified formulae, which can be interpreted as second-order types given the Curry-Howard is.omorphism. The logic behind type inference will, aside from the usual quanti­fier introduction and elimination rules, consist of a partial logic for the undirected implication connective. It will be shown how this logical perspective can be turned into a parsing perspective. The enterprise takes the standard HPSG of Pollard - Sag {1987) as a starting point, since this version of HPSG is well-documented and has been around long enough to have displayed both . merits and shortcomings; the approach is directly applicable to more recent versions of HPSG, however. In order to make the proof-theoretic recasting smooth, standard HPSG is reformulated in a binary format.
Introduction • The parser should have reasonable time/space complexity. The main concern of this paper lies in building a parser for HPSG. The result of the enterprise should meet the following desiderata: Existing parsers for HPSG do not obey these demands; e.g., the Popowich/Vogel parser (Popowich - Vogel, 1990) violates the second, fourth and fifth demand; the LiLog STUF en­vironment (Dorre - Raasch, 1991) violates - the first, third, and fifth. For a full comparison, see Raaijmakers (forthcoming).

• The parser should interpret the original grammatical theory, or as close a dialect as possible.
• The parser should separate grammatical theory from parsing issues.
• The parser should make an operationalisa­tion of the grammatical theory explicit, as declaratively as possible.
• It should be easy to alter the grammatical theory.

In the parsing-as-deduction field, several pars­ing routines have arisen from proof-theoretic investigations (Moortgat, 1988; Konig, 1989). While these routines are not all among the most efficient, once a proof-theoretic formulation of HPSG has been made, one can benefit from these results. *This research was carried out within the framework of the research programme 'Human-Computer Communica­tion using natural language' (MMC). The MMC programme is sponsored by Senter, Digital Equipment B.V., SUN Microsystems Nederland B.V. and AND Software.
235

236

Some terminological remarks: we refer to
HPSG of Pollard - Sag (1987) with '(classi­
cal) HPSG', and to its type-theoretic (deductive)
equivalent with 'V-HPSG'.

2 An overview of HPSG
HPSG is a lexicalist , feature-based formalism ror
syntactic and semantic analysis of natural lan­
guage. HPSG puts all relevant linguistic infor­
mation in the lexicon, and has general rules and
principles governing the construction of phrases
from subphrases.

As a syntactic formalism, HPSG divides the
labour of tree construction into separate processes
of mobile construction and mobile ordering. A
mobile is a tree-like structure with unordered
trees; actually, a mobile can be interpreted as a
description of a set of trees.

Socalled immediate dominance (ID) rules
build these mobiles, which are then turned into
trees by linear precedence (LP) principles. HPSG
is a feature-based formalism, employing various
feature mechanisms transporting feature informa­
tion through feature structures. In HPSG, lex­
emes are bundles of so-called attribute-value pairs

where Aj is a certain linguistic (phonologi­
cal/syntactic/semantic) property taking its speci­
fication from a set of values containing l7i. These
bundles are called signs. The reader is referred
to Pollard - Sag (1987,1992) for a full overview
of the various attributes and their values. The
generic structure of main signs in HPSG is

[

phon . . · i
syn . . .
sem . . .
dtrs . . .

where the phon, syn, sem and dtrs values de­
scribe respectively the phonological, syntactic, se­
mantic and configurational properties of the sign.

Attributes take either atomic or complex val­
ues; an attribute like person ranges over the
set {f irst, second, third} , whereas an attribute
like dtrs (describing daughters of phrases) takes

RAAIJMAKERS

full signs as values. The notion of head is a central
concept in HPSG. Basically, a head of a phrase is
a subphrase determining the relevant combinato­
rial properties of the sign . . Heads can be phrasal
or lexical; lexical heads are simply signs having
no daughters. For instance, the head of a VP sees
Mary is the verb sees; The grammatical proper­
ties of sees determine the properties (viz. agree­
ment) · of the VP as a whole, and not those of
the direct object Mary. The head of the sentence
John sees Mary is the VP sees Mary.

HPSG heavily leans on the notion of unifica­
tion (Shieber, 1986) . Simplifying matters some­
what, two signs S1 and S2 are unifiable with each
other, written S1 U S2 , if for any attribute they are
both specified for, they bear non-conflicting val­
ues. Further, any fully disjunct parts of two signs
(consisting of different attribute-value pairs) of
the two signs can be combined directly. So,

[number
person

sg l u f irst [

gender fem l
case dative =

[

number
person
gender
case

Likewise,

sg l f irst
fem

dative

[

syn l loc I head I maj n

]

.

a r [gender fem l U g number sg
[gender fem l = person 2

[

syn l loc I head I maj

agr [::::: !;
m

]
person 2

But of course the following Jails:

[

number sg l U [b . num er person first plur]

2 .1 Immediate dominance
rules

(ID}

ID rules describe admissible dominance struc­
tures, which can be interpreted as mobiles: tree­
like structures with unordered branches. The

A P ROOF-THEORETIC RECONSTRUCTION OF HP SG 237

rules themselves take the form of (partially speci­fied) signs (just like HPSG's principles), applying as felicity constraints to signs to be combined.
Rule 1 (Rl)
[

syn j loc I subcat ()

]
dtrs

[headdtr I syn I loc I lex - 1
compdtrs (-d)

Rule 2 (R2)

[

syn I loc I subcat (..s) . ·
[[head I inv - 1

dtrs headdtr I syn I loc
lex + .

Rule 3 (R3)
·

head inv + [
syn I loc I subcat ()

dtrs [beaddtr I syn I loc [lex 1 l
l]
l]

Rule 1 licenses signs having a non-lexical (i.e. phrasal) head daughter and being fully saturated, that is, signs having a subcat(egorisation) list of length zero (written as ()). There is one com­plement daughter (indicated with the variable ' _d'); an example would be an S having a VP as head daughter and a subject as only complement daughter. The loc attribute is used to describe "local" properties of a sign, such as lexicality and subcategorisation demands; this contrasts with the bind attribute, describing anaphoric links . over signs. Rule 2 caters for instance for VP 's, which have a lexical head daughter (the verb), and are one short of becoming saturated: they subcategorise for a subject. Rule 3 admits of saturated signs with a lexical, inverted head daughter, like in Is John sleeping?, the head daughter of which is the finite auxiliary Is, which subcategorises for both an infinitival VP and a nominative NP.
2 .2 Linear Precedence (LP) princi-

ples

LP principles turn mobiles into genuine trees by imposing order on sister nodes.
Constituent Order Principle
[

phon order - constituents([])
], ··

dtrs [I
Linear Precedence Constraint 1 (LPl)
head [lex +] < []

Linear Precedence Constraint 2 (LP2)
complement < < complement [lex -]

The operation order-constituents gives the disjunction of all permutations of the phonology of the daughters. · At least one of these permu­tations will have to be consistent with the con­straints of order expressed by the LP principles, which are specific for English (and related lan-guages): · ·
LP l says that lexical heads precede all their sisters (the empty sign O acts _like a ''�ildc�rd" symbol here, unifying with every sig�). _ LP2 says that less oblique complements precede more oblique phrasal sisters; < < is precedence between oblique elements, where obliqueness corresponds · inversely to degree of obligatoriness. Subjects, for instance, are in Germanic languages less oblique than direct objects, which means they ·are more obligatory: they cannot be omitted, in general.

John eats.
sJteats an apple.

The degree of obliqueness is mirrored (in reverse) by the order of complements on the subcat list of signs: the less oblique elements follow the more oblique elements.
2.3 Feature transport principles

Various principles take care of the distribution of feature information in a feature structure, defin­ing the paths along which information percolates upwards. The concept of reentrancy expresses the sharing of information by several attributes across a sign, using· boxed integers to identify attributes.
Head Feature Principle
[syn I loc I head IT] l dtrs I headdtr I syn I loc I head [I]

Subcat(egorisation) Principle
[

, syn I loc I subcat [!]
] dtrs [headdtr I syn I loc I subcat IT]+[!] l compdtrs IT] · (Ll+L2 is the concatenation of the two lists LI. and L2.)

238
Semantics principle (simplified)
[

sem [cont s - c - s ([I], [II
�

] [headdtr I sem I cont 1 l dtrs compdtrs I sem I cont 2
The HFP enforces identity between the head fea­tures of the head daughter and the mother sign. The subcat principle decomposes the subcat list of a head daughter in two parts of arbitrary •· (non-empty) length: the first part should corre­spond to the value of compdtrs, the second part becomes the value of the subcat attribute of the mother sign. The semantics principle states that the seman­tics of a mother sign must consist of the com­bination of the semantics of the head daugh­ter and the complement daughters (the opera­tion successively-combine-semantics, abbre­viated as s-c-s, does just this.)

J s

(maj n] [maj v n] , (maj n])] subcat ((maj
t

det

RAAIJMAKERS

2 .4 Sample derivation

The derivation in figure 1 shows the operation of the various principles and rules. Notice that HPSG as presented in Pollard - Sag (1987) as­sumes that nouns are heads selecting for deter­miners. Also, Pollard and Sag assume that heads themselves participate in the obliqueness hierar­chy : they are more oblique than all their comple­ments. Thus, LP2, once formulated as
complement < < complement [lex -]

Pollard - Sag (1987: 176) orders phrasal heads after their complements (for instance VP 's after subjects). In order to derive the order 'the cat' rather than 'cat the', Pollard and Sag assume that the head noun 'cat ' becomes phrasal by the fact that Rule 2 is applicable to it as a lexical sign (cf. op.cit. p.153); so, rule application turns [lex +] into [lex -] .
C

[
maj n] lex + subcat (det) [R2]

[
maj n] lex -subcat (det)

[maj n] Subcat,Rl,LP2]
subcat () Subcat,R2,LP1]

[maj v subcat ((maj n])] [Subcat,Rl,LP2]
[

maj v] subcat ()
F igure 1 : John sees the cat.

2 .5 Tree arity

Classical HPSG is not strictly binary-branching: the Subcat principle allows for the combination of an n-ary functor with n-1 arguments at once; e.g. the combination of a ditransitive verb tak­ing three NPs (two complements and one subject) with two of its complements. Classical HPSG is non-monotonous: as men-

tioned in the previous section, Rule 2 is able to change the lexicality of a sign by vacuously ap­plying to that sign. This underdocumented fea­ture of HPSG has several drawbacks, most signifi­cantly, the fact that the operation is not structure preserving: usually, signs evolve from subsigns under unification; here, a + value becomes a -value, which unification cannot possibly account

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 239

for. Conceptually, the lexicality feature seems
to be derivable, since, oniy those signs are non­
lexical (phrasal) which carry at _least .one daugh­
ter.

The HPSG theory as originally put forward by
Pollard - Sag (1987) does not lend itself directly
to a proof-theoretic reconstruction. The theory,
being declarative in a strong sense, has obscure
operational aspects. Also, mainly for practical
(but possibly also for theoretical) reasons, it ap­
pears to be desirable to have a version of HPSG
building binary branching syntax trees. So, as a
first step we present a binary version of HPSG.

3 Binary-Branching HPSG

We start off by presenting a binary version of
HPSG which removes some of the unattractive
features of classical HPSG. Most significantly,
this version makes no use of vacuous application
of rules to signs, and thus allows for signs to
monotonously evolve from lexical to non-lexical
status . The theory remains very close to classical
HPSG in all other aspects. The binarity is mainly
motivated from practical reasons; it facilitates the
linking of HPSG to a logical type calculus. Bina­
rity is by no means a, strong c9mm.itment, how­
ever. Focus is on the desire to analyse a fragment
of Dutch declarative main-clauses, although some
examples illustrate the applicability of the binary
apparatus on fragments of English as well.

First, we . qefine lexic,ajity, in terms of daugh­
ters, using; common predkate notation.

• lexical(Sign) · if dtrs(Sign)= () ,
parafrased as : Sign is lexical if Sign has
zero daughters.

We then define:

• argsn(Sign) if length(subcat(Sign))=
n , n � l, parafrased as: Sign wants n argu­
ments if the subcat list of Sign has length n (an empty list has length zero) .

We refer to a functor :F with argsn as :Fn .

The crucial observation for languages like
Dutch and English is that the aniourit of satu­
ration together with the lexicality of a functor (a
sign with non-empty subcat list) determines the
position of the functor with respect to its argu­
ment. A post-modifier like with pictures, mod­
ifying a noun like book, follows the noun: it is
non-lexical, and has args1 . Similarly, intran­
sitive verbs - assuming they are lexicalised as
VP's, i.e. non-lexical, verbal args 1 functors -
follow their subjects. Semi-saturated verbal func­
tors like gives John precede their objects: they
are args2 functors. We can capture the order
determiner-noun by assuming that determiners
subcategorise for non-maximal noun projections
(like book, little bo_ok with black cover) , so they
are args1 ; they are lexical, and precede their ar­
gument. This contrasts with the view of Pollard
- Sag (1987) , which analyses nouns as subcate­
gorising for determiners. 1 So, the generalisation
seems to be that :

1 . Ordering effects triggered by the lexicality
of functors come into play only for :F1 func­
tors: a lexical :F1 is ordered before its argu­
ment; a non-lexical :F1 is ordered after its
argument .

2. A functor :Fn where n > l is ordered before
its argument.

The following LP principles mak� this precise:2

(BLPl) [
lex + l < a args1 r • � ., , •

(BLP2) a < [lex
a�gs1 - l

(BLP3) [argsn] ' < a

To i,ee how these principles work, consider the
derivation in figure 2.

. , . , · ..

1 We shall neglect the question on how to encode (non)-maximality of phrases'here; a bar-'level along the lines C�oper (1990) suggests may be necessary here. 2The signs in these principles are only partly specified.

240 RAAIJMAKERS

J g M a b w p

[Fo] [le;/] [Fo] [19;1 +] [Fo] [le;/] [:Fo]
BLP3) BLP3]

[le;2 -] [le;1 -]
BLP2]

[le;0 -]

[BLPl]

[le;0 -]

BLP3]

[le;1 -]
[BLP2]

[19;0 -] ; ��� ;

Figure 2: Sample derivation for 'John gives Macy a book with pictures' .

We also need the regular LP principle for inverted
phrases:

(BLP4) [inv +] < er I

This all works fine for concatenative phenom­
ena, i.e. the combination of two phrases under
adjacency. Certain adjuncts appear to be non­
concatenative, however. In Dutch, one observes:

• Jan geeft met plezier Marie een boek.
John gi'lies eagerly Mary a book.

• Jan geeft Marie met plezier een boek.

• Jan ge�ft Marie een boek met plezier.

This suggests- that the phonological operation as­
sociated with certain adverbial modifiers sh�uld
not be concatenation but jn�f.#ion. '};�pe
(1990) has made similar remarks concer�ing-'semi­
free word order phenoinena. We then arrive a:t the
following LP principf� ·· _ _ �; _

··

(BLP5) [ADVHOD] .JJ. a

where A .JJ. B says that (the phonology of) A
is infixed into (the phonology of) B. The non­
concatenative connective ! was introduced in cat­
egorial grammar by Moortgat (Moortgat, 1988)
for similar purposes; an expression of type A ! B
infixes into expressions of type B to form an
expression of type A (see section 4.4.2 below).
ADVHOD describes the ·sign for a VP-level adver­
bial modifier, which is a sign subcategorising for
a VP to yield a VP: it inherits the NP argument
{the subject) its argument VP is still incomplete
for. There is a little snag here: mere infixation of
the adverbial phonology into the VP phonology
:w,gq.ld result in ill-formed strings where the ad­
v�r�1 penetrates into one of the verbal arguments.
Fo� �n�tance,

*Jan geeft de graag man een boek
John gives the with-pleasure man a book

·This problem cannot be fixed ·by letting

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 241
phonology-values be - nested lists (lists of lists) rather than fiat lists, for instance

[Jan, [[geeft , [de,man]] , [een,boek]]]
The infixation of graag into the VP _ phonology [[geeft , [de,man]] , [een,boek]] will be possible only for

• graag geeft de man een boek
• geeft de man graag een boek
• geeft de man een boek graag

Deriving the well-formed
• Jan geeft graag de man een boek

now becomes hard: a rebracketing of
[[geeft , [de,man]] , [een,boek]]

to
[[geeft] , [[de,man] , [een,boek]]]

will be necessary. So, it is not entirely clear whether . the phonological operation of adverbial modifiers is not beyond simple infixation. For the moment , we leave the topic. Complement order needs no longer be stipu­lated as a separate LP principle: functors now combine with one argument at a time, and the order of arguments is expressed by the order on the Su beat - list. The ID rules of original HPSG must be adapted as well; while Rules 1 and 3 can be kept, Rule 2 must now be altered to cater for gener­alised incompleteness: a sign having more than one item on its subcategorisation list is a well­formed sign as well.
4 Deduction for HPSG
With the binary version of HPSG we are set to give HPSG a deductive basis. First, we show that it is possible to reinterpret signs as types. Then we introduce a deductive apparatus performing type-deduction with these derived types. This calculus builds binary proof trees (proof terms) , which are orthogonal to (binary-) · HPSG deriva­tion trees.

4.1 Signs as Formulae

We propose to view signs as types, or, with the Curry-Howard isomorphism in mind, . as formu­l�e of a certain logic. Ideas in this spirit can al­ready be found in work of Blackburn (interpret­ing signs as modal formulae) , Morrill and others. The concept of types has many interpretations, but one particularly apt for linguistics is that a type is a set of expressions, or, in more tradi­tional terms, a category. Together with a set of combinatorial principles, types form an alge­bra of expressions over a certain domain: a type system. Essentially, these combinatorial princi­ples constitute a derivabzlity relation between se­quences of types '-+' : A -+ B saying that from the type sequence A the type sequence B can be derived. An example of a type system would be any syntactic algebra consisting of a set of type formation rules (e.g. the prod uctio� ' rules in a rewrite system) and a set of syntactic - categories (types) containing expressions over some alpha­bet of strings. More fine-grained type systems ·. make a distinction · between atomic and complex types: atomic types being . monadic 09jects and corn plex types being made up from . (atomic or complex) subtypes with the rise of so-ca:Ifod type­forming connectives which serve to expre�s com­binatorial properties. Typ�-forming connectives are relations over the set of type_ symbols; a famil­iar example are the slashes from categorial gram­mar /, \ : a functor type X/Y combines with a type Y to its right to form a �ype X; a fandor type Y\X combines ·with a t'ype Y_ to _ its l�1t io form an X. There is a nice interpretation . of lin� guistic types as propositional formul� ill a lo.gic: atomic types T correspond to formulae T; com­plex types like A\B correspond to A =}l B, with =?l a left-oriented version of the implication ar­row =? of propositional logic. The combination of a type A with a type A =} B to a type B then becomes an instance of Modus Ponens, of which we now have two versions: A, A =}1 B -+ B and A =}r B, A -+ B. This, in fact, is an operational­isation of the slogan parsing as deduction, and is basically the central theme of categorial deduc­tion as in Lambek calculus (Moortgat, 1988) .
The intuition that signs can be interpreted as types arises from the functionality expressed by the subcat feature: essentially, this feature

242

e�a�esses fha:.t a certain sign is functionally {in­
Jt9�pl:ete for one or more other signs. This im­
medfu;t'el� suggests a functional type equivalent (a
functor) for these signs. Saturated signs then can
be interpreted to correspond to saturated func­
tors, or atomic types, i.e. types not being made
up from a type-forming connective and one or
more subtypes. HPSG's Subcat principle, which
allows for the combination of a non-saturated sign
with a subset o(the signs it subcategorises for
should then correspond to a combinatorial rule of
type formation, i.e. an inference rule in a type
calculus.

When we want to make a correspondence be­
tween the signs of HPSG and types of a certain
kind, we immediately notice that HPSG signs en­
code much more information than the monadic
categories of simple type systems like produc­
tion grammars. A category like S, for instance,
is represented· in lIPSG as a fine-grained spec­
ification of a verbal projection having various
properties among which is an empty subcate­
gorisation frame. Clearly, we need a more so­
phisticated type language than can be offered
by monadic· cat�gpxi�s alone. Suppose then we
switch from mop_a<;lk�_types to types with inter­
nal structure: predic�tional types in stead of
propositional types. The value of the category­
determining maj (or) ?,ttribute should become
the top-level predicat� con.stant. As in predicate
logic, types (propo�itions)"are made up from such
. a ·predicate constant and terms as arguments of
t'he :-p*�aica,te. , ��i�i\'. �avjng variable values, i.e.
being under$peciµe� J9,'l�certain attributes, corre-
spond to (univer's�ly) ·quantified formulae. E.g. ,
a partial sign like

[
maj or
gender
person

with ..x a variable should correspond to the type

\/(..x). (n(gender(neuter) , persan(_x))] .
The choice between universal and existential

quantification is mainly motivated from consid­
erations regarding the proof terms for quantified
formulae, which will be discussed in the next sec­
tion. A related motivaton is the fact that uni­
versally quantified types have a straightforward
connection with Prolog literals, facilitating imple­
mentation. It is important to notice that there is

RAAIJMAKERS

no deep, 'predicate-lik�' meaning ·behind such a
formula: it is just a description of a certain kind
of category, in the case above having a variable
spot for the person value. Sign-valued attributes,
i.e. attributes taking a full sign as value, or a list
of signs, are treated the same: whenever such an
attribute takes a variable sign as value, univer­
sal quantification over this variable occurs. This
is responsible for the second-order nature of the

. type language we use.

Under the logical interpretation of types as
formulae, types have proof terms associated with
them; these proof terms are the justification for
assuming the formula is true: they correspond
to proofs for the propositions the types express.
These proofs are constructed in a calculus of in­
ference rules, the inference rules constituting a
derivability relation over type sequences (like the
combinatorial rules of production systems) , where
this derivability relation now gets a logical inter­
pretation as well. An alternative, quite common
point of view is that proof terms are a kind of
procedures (or programs) and types are the spec­
ification of what these programs do. For instance,
the formula

\/(_x).(n(gender(masc), number(_x.)-)).
would be a specification of the program recognis­
ing singular and plural ;masculine. µoun phrases
(this basically is what parsing is aboJJ,t}:.;

A concept like reentrancy can easily be en­
coded by means of variab!e sha�ing, for example

'v'(_x). [P1 (Pi (..x)\ . . _ :, . , Pn:(.:t)}]

where each Pi is a predicate symbol.

We now turn to the translation from signs to
types, where we let t(S) yield the formula (type)
e.9-uivalent of the sign S. A few words on notation:
Q denotes a sequence 'v'(_xi) . . . \/(_xn) of quanti­
fiers. The empty quantifier sequence is written as
Qo ; Qo .:F = :F. Further, QQo = Qo Q = Q. We
use the notation

to refer to some sign l: with the sign

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 243

[

ai bi
] an bn

as a subsign. Likewise,

E _ [

ai bi
] an bn

refers to some sign E with the sign

deleted from it . Furthermore, var(X) , atom(X) , number(X) express respectively that X is a vari­
able, an atom or a number.

• t(X) := Qo .X
if var(X) or atom(X) or number(X) or X =
0

• t (E [:r: 0 l)
== Q.M(F)

if t (E _ [::r: 0 l) == Q.F

• t (E [
su�cat (X1 , . . . , Xn) l) := maJ M

Q1 Q2 .A1 => . . . An => M(F)
if t (E - [::r;; (X, , . . . , Xn) l) := Q, .F and t((X1 , . . . , Xn)) := Q2 . (A1 , . . . , An)

• t ([A V]) := \l(V).A(V) if var(V)
• t ([A V]) := Q.A(X1 , . . . , Xn) if t (V) := Q. {X1 , . . . , Xn)
• t((X1 , • • · , Xn)) := Q1 Q2 . (F1 , F2 , . . . , Fn)

if t (X1) := Q1 .Fl and
t((X2 , . . . , Xn)) := Q2 . (F2 , · · · , Fn)

The crucial thing to note is that the subcat
information of a sign is reformulated as the func­
tional demands of a functor type: a subcat list of
length n yields a functor with functional degree n,
where n now indicates the number of arguments
the functor is incomplete for.

The following example illustrates the mapping
from signs to formulae. Variables are prefixed
with a don't care ' _, .

[syn , [[loc , [[head , [[maj , n] , [case , _c] , [nf orm , _n] , [aux , nil] , [inv , nil] , [prd , nil]]] ,

then becomes

[subcat , []] , _ [lex , 1]]] , [bind , _b]]]

\I(_c)\l(_n)\I(_b). [n(syn(loc(head(case(_c) , nform(_n) , aux(nil) , inv(nil) , prd(nil)) , lex(l)) , bind(..b)))]
4.2 Type deduction

Now that we have types, the question arises : what
do we do with these types? In this section we
show how we can interpret the HPSG apparatus
of ID rules and various principles as an inference
mechanism for type deduction. Before we do so,
a few words on type deduction are necessary.

As mentioned in section 4 . 1 , types have a
truth-conditional interpretation: they correspond
to propositions (formulae) . This logical point of
view makes it possible to identify type derivability
relations with logical derivability relations from
proof theory. A statement A � B expressing
the derivability of type sequence B from type se­
quence A is then called a sequent (Gallier, 1986) .
A sequent A1 , . . . , An � B can be interpreted_ as:
the validity of the formulae A1 , . . . , An implies the
validity of B; i.e. , there is no model for the formu­
lae A1 , . . . , An that is not also a model for B. The
sequence A1 , . . . , An is called the antecedent of the
sequent ; the sequence B (in the present case of
length 1) is called the succedent of the sequent.

Th fi . Pi . . . Pn .- d - h e con gurat10n C
1s rea as: t e

conclusion sequent C is valid iff the premise se­quents P1 , . . . , Pn are valid . As an example, here
is a fragment of so-called linear non-commutative propositional logic. 'Linear' (Girard, 1987) means
here that this logic forces 'honest' bookkeeping:
we are not allowed to duplicate nor delete types
during derivation. From a linguistic point of view,
linearity can be used to express the fact that

244
the meaning of an utterance depends· on the lin­ear order of its words. Every r i is a (possibly empty) type sequence; A is a non-empty type se­quence, and X, Y, A are types. The comma ' ,' denotes non-commutative concatenation : I'1 , r2 is the concatenation of the type sequences r 1 and
r 2 • This entails that antecedents are essentially lists of types.

I X -+ X

The £, rules are referred to as the left rules; the n rules as the right rules of the calculus. Here is a proof of the theorem A -+ (A => B) => B.
---I---I A -+ A B -+ B ------£ => A, A => B -+ B --------n => A -+ (A => B) => B

As we alluded to in section 4. 1 , it is possible to associate with deductions proof terms encoding the proofs performed; these terms are A-terms made up from the terms associated with the types in the sequents. The A-terms come in various kinds; the ones we discuss are either application terms t(t') , saying that the functional term t is applied to the term t'; or abstraction terms Av.t, a functional term taking a term v to a term t. Terms are in either normal form or non-normal form; in the latter case, terms contain subterms (Av.t) (t') , so-called redexes. The relation called ,B-reduction allows the simplification of such a re­dex to t [t' /v], which means that in term t, every occurrence of v is replaced by t' . The A-terms for these deductions have the so-called single-bind property : every A-hound variable v su:ch that Av.t

RAAIJMAKERS

occurs exactly once in t; so we do not have terms Av.w where v does not occur in ·w , nor terms like Av. (t (v) (v)) . We then end up with the following rules:
I-t-: X

_-+_t_:_X_
n => r, v : X -+ t : Y

r -+ Av.t : x => Y
n => v : x, r -+ t = Y

r -+ Av.t : x => Y
A -+ t' : X r1 , t(t') : Y, r2 -+ A £, ==>>-----------------------...:,-,:_____;_----,----r 1 , t : � => Y, A, r2 -+ A
A -+ t' : X r1 , t(t') : Y, r2 -+ A £, =>=-------------------r1 , A, t : X => Y, r2 -+ A

The term for �he proof above would be AP.P(t) giving the term t as a proof for A. Once one adds the so-called Cut rule to the calculus:
C r2 -+ A r1 , A, r3 -+ A ut · ·

r1 , r2 , r3 -+ A
A-terms in non-normal - form occur as proof terms. The Cut rule expresses the transitivity of the derivability relation -+. Cut-free sequent calculus for the linear frag­ment of propositional logic has the so-called sub­formula property: premise sequents contain all and only subformulae of the conclusion sequent. Premise sequents have lower degree ih - terms of type-forming connectives: they contain one c_on­nective less than the conclusion ·sequents. From a top-down theorem proving regime, this means a steady reduction of complexity . during deduc­tion: one starts with a 'complex' sequent con­taining a lot of connectives, breaking this sequent down into sequents of smaller degree , until one reaches the axiom sequents of type A -+ A, thus settling the conjecture of the conclusion sequent. In calculi with Cut, the subformula property no longer holds, since A can be any type, possi­bly increasing the degree of the premise sequent r1 , A, r3 -+ A. Fortunately, the Cut elimina­tion theorem (Gentzen's Hauptsatz (Gentzen, 1934)) says that Cut is a derivable rule: every proof with Cut can ·be transformed into a Cut­free proof. Cut-elimination leads to normal-form proof terms.

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 245
Here are the sequent rules for second-order quantifier types (Morrill, 1990) .

£\:/ r1 , t(t') : A[t' / ...x] , r2 � a : X r1 , t : \:/(...x) .A, r2 � a : X
£3 r 1 , 1r2 (t) : A[1r1 (t)/ ...x] , r2 � a : X r1 , t : 3(...x) .A, r2 � a : X

'R\:/ r � t : A r � >....x.t : \:/(...x).A
'R,3 r � t2 : A[t1 / ...x] r � (t1 , t2) : 3(...x).A

For {'R\:/, £3} , the condition is that ...x is not free in r, r1 , r2 ; t[a/ ,B] is the substitution of a for ,B in t and 1ri (t) is the i-th projection of the pair­term t: 1r1 ((a, ,B)) = a; 1r2 ((a, ,B)) = ,B. The func­tional proof terms for \I-types reflect the intuition­istic idea that a proof for a proposition \:/(...x) .A consists of a method for proving the proposition expressed by A. This gives a more plausible in­terpretation of proofs for universal quantification once this quantification ranges over infinite do­mains: a mere truth-value then seems impossible to arrive at. The pair terms for 3-types say that a proof for such a formula consists of an individual (a witness) and a term in which this individual is substituted for the bound variable. As noted earlier. · the intuitionistic quantifier terms have a nice interpretation in our syntactic type calculus: a type V(...x) .II then becomes a specification of a method (proof) recognising all expressions of type II on the basis of any (instantiation of) ...x.
We shall be silent about proof terms from now on, as they do not play an evident role in parsing HPSG. They could be of use in proving meta­results about HPSG parsing, however.
Given the calculus presented above, let us es­tablish the fragment needed to perform deduction for HPSG.

4.3 ID rules as axiom schemata.
HPSG rules describe admissible, i.e. well-formed signs. In a type-theoretic setting, they can be interpreted as type definitions, since here, , signs

become types. A simple way to implement these definitions, is to formulate them as axiom schemata in a type calculus. That is, every rule R defining the sign :E becomes an axiom scheme:
R t (:E) � t(:E)

Every axiom sequent thus becomes an in­stance of an ID rule. This assures that , whenever an axiom schema is used during deduction, the type check is effective. For binary HPSG, this results in the following axiom schemata, where � schematises over types
Q....xi => • • • =>xn, 1 � i � n.

\:/(_cat)\:/(_phan)V(_syn)V(_sem)\:/(_dtr s) [_cat(_phqn , _syn, _sem, _dtrs)] � \:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) [_cat(_phan, _syn, _sem, _dtrs)]
\:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) -� . [_cat(_phan, _syn, _sem, _dtrs)] � \:/(_cat)\:/(_phan)\:/(_syn)\:/(_sem)V(_dtrs) � . [_cat(_phan, _syn, _sem, _dtrs)]
It is not too hard to recognise equivalents of the HPSG rules Rl and R2 in these axiom schemata, once one remembers that functors now combine with their arguments one at a time: in classical HPSG, there were only two kinds of func­tional configurations: a functor having consumed all of its arguments (treated by Rl) and a func­tor having consumed all of its arguments but one (R2) . In 'D-HPSG, many more configurations arise, generally speaking: n - 1 for any n-placed functor. So, where the first axiom schema restores Rl , the second can be seen to be a generalisation of R2 to cover any kind of functional, incomplete­ness. The lexicality demand on the head daughter Rule 2 makes vanishes here; functors consume one argument at a time, and once they have consumed one, they are no longer lexical. 3 There is another option here: the ID-rules could be compiled away by ensuring they are con­sequently applied to every sign and its phrasal subsigns when the lexicon is created. Although this idea entirely hides the important concept of ID rules in the process of lexicon creation, it al­lows for using the regular axiom scheme 3The demand that Rule 2 makes on the non-invertedness of the head daughter is left unexpressed here.

246

I-t-: X_---+_t_: X-
4.4· Principles as inference rules

and conditions

The various principles of HPSG appear to be eas­ily reconciliable with the logical setting proposed. In HPSG, they do not form a homogenous class; some principles govern the flow of information in a feature structure, others create new information (like the LP principles) . This is reflected in their proof-theoretic reconstruction.
4.4.1 Head Feature Principle

The Head Feature Principle of HPSG instantiates the head features of a fresh 'mother sign' to the head features of the head daughter. The necessity for doing so vanishes in the type-theoretic HPSG equivalent . To see this, notice that in the lat­ter, all necessary feature transport is encoded by means of variable sharing in the type assignments for the lexical entries. Where HPSG uses the Subcat Principle to create new sign projections, with new compdtrs and subcat values, V-HPSG never creates new sign projections during analy­sis: types only become gradually more developed in the sense that more and more variable sub­types become instantiated. Therefore, the Head Feature Principle becomes totally redundant: the head features of a functor (a verb, or whatever) are preserved and developed all the way. This makes V-HPSG in a way more lexical than orig-: inal HPSG. The distinction among head daugh­ters and their superordinating signs vanishes as well; one reasonable thing to say is that the head feature principle is 'compiled away' in the lexi­con, making this distinction irrelevant . So, we · can suppress the headdtr attribute in our signs. Another option is to keep the attribute, letting it have as value a sign which has a nil value for
headdtr.

4.4.2 Subcat Principle

The Subcat Principle is the motor behind syn­tactic combination in HPSG. Basically, what it

RAAIJMAKERS

does in original HPSG is to decompose the sub­cat list of a non-saturated sign, transferring a (non-fixed) number of entries on the list to the
compdtrs attribute of a fresh mother sign, thus allowing the combination of the sign with suit­able complements matching the compdtrs value. Unification takes care of making this match by recursively descending into the mother sign. In V-HPSG, the Subcat Principle has a bi­nary shape: it secures the combination of a func­tor A ⇒ B and a (single) argument expression A to a result type B. As A ⇒ B is an undirected functor, combining with an A either to its left or right to form a B, we will need two versions (left and right) of the Subcat Principle. These can be interpreted as in/ ere nee rules, i.e. the left rules for the propositional connective ⇒ for undirected implication we saw earlier. The (type) variable sharing in these rules must now be understood as demands . for unification on type level:

The Subcat principle covers concatenative functors only, i.e. functors which either follow or precede their arguments. For non-concatenative functors, such as the adverbial modifiers of sec­tion 3, we cannot use the concatenative connec­tive ⇒. Borrowing the connective ! from categorial grammar (Moortgat , 1988) , then, A ! B is a ex­pression wanting to penetrate in an expression of type B to form an A. The adverbial adjuncts are typed vp ! vp, where vp is an abbreviation of a formula n(. . .) ⇒ v(. . .) . It turns out to be tech­nically impossible to establish a full logic for this connective under the perspective of antecedents as lists; only the rule £ ! can be formulated.4 See Moortgat (1988, 1990) for discussion resp. a so­lution. For our purposes, this is enough, however: HPSG displays partial logics (left rules only) for functional connectives. The rule becomes:
£ ! r2 , r3 ---+ t' : B r1 , t(t') : A, r4 ---+ A r1 , r2 , t : A ! B, r3 , r4 ---+ �

· r' - 1::i,. • (r) r' 4 A full logic for this connective would make the structural rule of Permutation: r _ f:l. permutation = derivable. This means that antecedents now become treated as multisets (sets with repetition) rather than lists, w,hich is not desirable for linguistic purposes.

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 255
9 References

Cooper, R. (1990): "Specifiers, Complements and Adjuncts in HPSG". Unpubl. ms.
Dorre, J., I. Raasch (1991): The Stuttgart Type Unification Formalism- User Manual. IBM, Stuttgart.
Duffy, D.A. (1991): Principles of automated the­orem proving. Wiley, Chichester.
Gabbay, D. (1991): Labelled Deductive Systems, Oxford University Press, to appear.
Gallier, J. (1986): Logic for Computer Science, Foundations of Automatic Theorem Proving. Harper and Row, New York.
Gentzen, G. (1934): "Untersuchungen iiber das logische Schliessen". In: Math. Z.,39: 176-210, 405-431.
Girard, J .-Y. (1987): "Linear Logic" . In: Theo­retical Computer Science,50:l-102.
Konig, E. (1989): "Parsing as natural deduc­tion". In: Proc. ACL, Vancouver.
Moortgat, M. (1988): Categorial Investigations, logic and linguistic aspects of the Lambek cal­culus. Foris, Dordrecht.
Moortgat, M. (1990): "Discontinuous Type Con­structors" . Paper presented at the workshop Categorial Grammar and Linear Logic, 2nd European Summerschool on Language, Logic and Information.
Morrill, G. (1990): "Grammar and logical types". Unpubl. ms., Edingburgh.

Pollard, C, I.Sag (1987): Information-based syn­tax and semantics, vol.1, CSLI Lecture Notes 13, Stanford.
Pollard, C, I.Sag (1992): Information-based syn­tax and semantics, vol.2, CSLI Lecture Notes, Stanford (forthcoming)
Popowich, F., C.Vogel (1990): "'A Logic­Based Implementation of Head-Driven Phrase Structure Grammar". In: Proc. of the Third International Workshop on Natural Language Understanding and Logic Program­ming. Lidinogo,Stockholm.

Raaijmakers, S. (forthcoming): Parsing HPSG. An evaluation of several parsing strategies . . Ms. , ITK.
Reape, M. (1990): "Getting things in order". Paper presented at the Symposium on Dis­continuous Constituency, Tilburg University, January 25-27th 1990.
Roorda, D. (1991): Resource Logics. Disserta­tion, University of Amsterdam.
Shieber, S. (1986): An introduction to unification-based approaches to grammar, CSLI Lecture Notes 4, Stanford.

van Benthem, J . (1991) : Language in action, Categories, Lambdas, and Dynamic Logic. Studies in logic and the foundations of mathe­matics, vol. 130. North-Holland, Amsterdam.
Wallen, L.A. (1990): Automated proof-search in non-classical logics. MIT Press, Cambridge, Mass.

256 RAAIJMAKERS

A P R0OF.-THEORE'IlIG RECONSTRUCTION OF HPSG; 247

where ri is a type sequence of length � 0, with
the exception that at least one of r 2 , r 3 is non­
em pty. Notice that this rule generalizes over in­
completeness in the following way: if r2 is empty,
! is an instance 9f /; if r3 is empty, ! is an in­
stance of \.

4.4.3 Semantics Principle

The Semantics Principle can be 'compiled away'
as well, by putting in the lexicon the semantics of
a sign as a product of the semantics of its daugh­
ter signs. This makes it possible to incorporate
various kinds of semantics into lexical signs, for
instance, a simple application semantics:

[[phon , . . .]
[syn , . . .

[subcat , [[. . . [sem , X]]]]
. . .]

[sem , f (X)] ,
[dtrs , . . .]]

4.4.4 LP principles

Once a functor combines with one of its argu­
ments to form a mobile the LP principles apply
to order the functor and argument branches by
ordering the respective phon values to arrive at
the phon value of the mother node. LP principles
can address both aspects of argument and func­
tor, . so they must be functions of a pair of types
T to sets of types:

T x T � POW(T)

In case a concatenative functor combines with
its arguments, the string ordering functions
· yield a singleton set of result types; for non­
concatenative functors, this result set often has
an arity greater than one, since there is gener­
ally more than one string position for a non­
concatenative functor, and each separate string
position determines a new sign.

The operationalisation of LP principles in V­
HPSG is as follows. Once a functor has applied to
its arguments, both functor and argument types
are fed to the LP principles, which figure out the
phon value of the range subtype of the functor.
This entails that LP principles in V-HPSG should

operate as side-conditions on inference rules:5

Pi F. ___ C _____ n_if LP i V . . . V LP n

LP principles operate on an argument type and a
functor type. Here are the type-theoretic equiv­
alents of the LP principles of binary HPSG. The
notation (BLPn)A ® B = C says that the result
of applying the LP principle n to argument A and

�
functor B is C. As before, � Y schematises over
types

and
�
X
l Z = X => Z.

Further, inverted(X) says that X is inverted,
ADVM0D(X) that X is an adverbial modifier, and
infix(S2, SI) = S3 that S3 is the infixation
of S2 into SL Uninteresting variables are sup­
pressed with an underscore, and quantifiers · are
omitted. Anticipating on the implementation, we
use (Prolog) difference list notation for list con­
struction: the difference list [a, b, c) - [c) is equiva­
lent to the list [a, b) . This is done to optimise the
expression of list construction: concatenation of
two lists can now be expressed via variable shar­
ing with one unit clause:

conc_dl(A-B ,B-C,A-C) .

For example,

conc_dl([a, blC) - C, [c) - 0 , [a, b, c) - □) .

(BLPl)
�
X n.Y(phon(S2 - S3) , -, -, -)

®
�
X
1 .Z(phon(S1 - S2) , syn(loc(..h, lex(+)) , _b) , _u, _w)

= �
X . .
1 .Z(phon(S1 - S3) , syn(loc(..h, lex(+)) , _b) , _u, _w)

(BLP2)
�
X n.Y(phon(S1 - S2) , -, -, -)

®
�
X
1 .Z(phon(S2 - S3) , syn(loc(..h, lex(-)) , _b) , _u, _w) 5This relates the current enterprise to Gabbay's (Gabbay, 1991) labelled deductive systems, where side-conditions on inference rules occur aa well.

248

= � 1.Z(phon(S1 - S3), syn(loc(..h, lex(-)), -b), _u, _w)

�

(BLP3)
�
f Y(phon(S2 - S3), -, -, -) ®

X 2 � n .Z(phon(S1 - S2), _s, _t, _d)
= �

X 2 � n .Z(phon(S1 - S3), _s, _t, _d

�

(BLP4)
� �.Y(phon(S2 - S3), -, -, -) ®

fh.Z(phon(S1 - S2), _s, _t, _d)
= � rh.Z(phon(S1 - S3), _s, _t, _d) if inverted(Z(phon(S1 - S2), _s, _t, _d))

�

(BLP5)
� fY(phon(S1), -, -, -) ®

rh.Z(phon(S2), _v, _u, _w) =
� rh.Z(phon(S3), _v, _u, _w) if �

X ADVM0D(m.Z(phon(S2), _v, _u, _w)) and infix(S2,Sl)=S3

4.5 Calculus

To summarize, here is the full calculus V-HPSG. LP principles apply as discussed earlier to each in­ference rule as side-condition; they are suppressed below.

RAAIJMAKERS

V(_cat)V(_phan)V(_syn)V(..sem)V(..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)] __. \/(..cat)\/(_phan)V(_syn)V(..sem)V(..dtr s) [_cat(_phan, _syn, ..sem, ..dtrs)]
=> \/(_cat)\/(_phan)V(..syn)V(..sem)V(..dtrs) .:x . [-cat(_phan, _syn, _sem, ..dtrs)] __. 't/(_cat)\/(_phan)V(..syn)V(..sem)'t/(..dtrs) � . [_cat(_phan, ..syn, ..sem, ..dtrs)]

.cv r1, y : A[t' / .:x], r2 __. a : x r1, t : V(.:x).A, r2 __. a[t(t')/y] : X
RV r __. t : A r __. A.:x.t : V(.:x).A

£ ! r2, r3 __. t' : B r1, t(t') : A, r4 __. A r1, r2, t : A ! B, r3, r4 __. tJ.
5 Implementation

5 .1 Design

I Signs->Formulae
i

�\�t\f����t1�:���\\I
�'::::«::� .. ��..::.� ❖::: �:=::».v.�¾»:=»""�

Screen
The lexicon - in the overall design of the imple­mentation pictured above - consists of lexeme­sign pairs. When a sentence _s is entered to

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 249
be analysed, first the lexemes are looked up in the lexicon. The corresponding signs are corn- · piled to a sequence II of formulae according to the map t of section 4 .1 . Then, given the result category _c, which the user is prompted to enter, the sequent II -+ _c(phan(_s) , _syn, _sem, -<ltrs) is formed, with _syn, _sem, _dtr s variables for syn­tactic, semantic and daughter information. The sequent is handed to the theorem prover, which is a meta-interpreter performing sequent deduction. Output is in both Prolog and picture format: the derived type formula for an utterance is printed on screen as a Prolog term; in a separate win­dow the sign equivalent of the formula is drawn in standard HPSG format.
5 .2 Term unification and uniform

signs

Unification is a computationally expensive tool, boiling down to extensive graph inspection and merging. This cost can be saved by adopting one uniform structure for the items to be unified, i.e. signs: if we treat these signs just like rigid term structures, we could directly make use of Prolog's built-in term unification mechanism for unifying them. This idea entails that every lexeme in the lexicon has a fixed sign type, with standard slots and values. The structure of this sign is as fol-lows:
[[phon , _p]
[syn , [[loc , [[head , [[maj , _m] ,

[case , _c] ,
[nf orm , _n] ,
[vform , _ v] ,
[aux , _a] ,
[inv , _i] ,
[prd , _j]]] ,

[subcat , _s] ,
[lex , _l]]] ,

[bind , _b]]] ,
[sem , _t] ,
[dtrs , [[headdtr , _hd] ,

[compdtrs , _cd]]]]]

Lexemes can be unspecified for certain at­tributes; these attributes then carry the atomic value nil. In Prolog, variables occurring in literals are implicitly universally quantified, which means

that qu,antifiers are removed from t.h�m. This makes it :possible to use Prolog's t erm unifica­tion mechanism directly to instantiate· ·values to the variables; see Duffy (1991) for discussion. So, we can simply strip quantifiers from a formula:
Q.:F � :F. It is a well-known fact from the proof-theory of predicate logic that once both kinds of quantifi­cation (universal and existential) are used, deduc­tions are not invariant under permutation of rule application: the application of quantifier elimina­tion rules becomes order-sensitive (Wallen, 1990) . This effect does not take place here, since we only have universal quantification.
5 .3 Calculus in Prolog format

In Prolog format, the axioms and rules of the cal­culus have the following shape:
axiom(Name , Antecedent--->Succedent

rule (Name , Antecedent--->Succedent (if C)

Given a functor type A1 ⇒ . . . An ⇒ B , which is right-associative, i.e. A1 ⇒ (. . . (An ⇒ B) . . .) , it is necessary t o inspect the properties · of the ul­timate range subtype B when applying the LP principles. This would involve descending into the functor type, until one reaches the ultimate subtype B. From a practical point of view, we would like to avoid such descent; we therefore notate such a functor as
(A1 , . . . , An) ⇒ B

where (A1 , . . . , An) is a list of types. For the in­fix types A l B we do likewise; they are usually of the form (A2 ⇒ . . . An ⇒ B) l A1 . To dis­tinguish the first argument from the rest of the arguments, we write

In Prolog, we write B© (..x, . . . , _y) for
B(..x, . . . , _y) . Sequents are written

(Li , . . . , Ln) -+ X,
where each Li is a subsequence (list) of types; type sequences of length 1 are denoted as [T] , with T a type or type variable. Some examples of the· axiom and rule format are then:

250

Ii) COHSOLE

sli,, [Pt-w, (do _, koopt _, book oot plaetJes >]

¥ loc:

I
�: v�ll]

[vfon, fin]

[aux ·]
[Inv ·]

(Prd -]
[SIA>cat l l]
(lox -]

[_bird nil]

[- r [-[-[- [Mt �= �- JJ]JJJJ
c- cdo c- -rn

dtra (!,oaodtr nil]

» Sentence : de 111an koopt een boek met plaatJes.

» Categor11 : v .

» Sentence parsed I
+++++++++++++++++++++++++++++++++++++++

» Parsing took 0 . 683 sec.

RAAIJMAKERS

» Result: v!! (phon< Cde.man. koopt. een.boek.met.plaatJesl-Cl > . syn< loc < head(case<nil >
, vform(fln) ,aux (O) , lnv (O) . prd (O)) , lex(O)) , bind (ni l)) ,se111(kopen(sem(een(se111(met(sem(
plaatJesl . sem(boek> > > > > .se111 (de (se111<111an> > > > > ,dtrs(headdtr <nil > .co111pdtrs<n!! <phon< tee
n,boek.met.plaatJesl-Cl > . s11n< loc (head(case(ni l) .nf'or111(f'ull > .aux< nil >. inv(ni l > . prd(
1 1 > >. lex < O > > , bind (n i l > > ,se111(een<sem<111et(se111 < plaatJes l . se111(boek) > > > > ,dtrs(headdtr(nl
l) ,co111 trs(n!! (hon(Cboek,met, laat esl - C l >.s n(loc(head(case(nil) ,nfor111(norm) , aux

Figure 3: Screendump.

axiom(rule1 , [C© (P , S , B , D)] --->
[C© (P , S , B , D)]) .

rule (subcat_left ,
(T1 , T2 , [[X I T] =>B© (S1 ,

syn (loc (Wl , lex (L)) ,
W2) ,

S , D)] , V) ---> Z
if

T2 ---> [X]
and

{lp (LP_Name ,
X ,
[X I T] =>B© (S1 , syn (loc (W1 , lex (L)) ,W2) ,

S , D) ,
[X I T] =>B© (S3 , syn (loc (W1 , lex(L)) , W2) ,

S , D)) }
and

(T1 , [T=>B© (S3 , syn (loc (W1 , lex (O)) , W2) ,
S , D)] , V)

---> z
) .

Notice how the lexicality value is changed to
0 here, once the functor has combined with its
argument. Above we argued that the lexicality
feature is a derived feature, arising from the ab­
sence or presence of daughters in a tree. Since lex­
ical signs already have (variable) daughters in V­
HPSG, checking for lexicality could (and should)
be implemented here by inspection of the daugh­
ter specifications on the functor type: if the first
daughter entry in the compdtrs attribute list has,
say, a variable phon value, the sign as a whole
can be concluded to be lexical. For reasons of ef­
ficiency, we implement this view on lexicality by
switching to non-lexicality the moment a functor
combines with an argument . The variable L ex­
presses the irrelevance of the (non-)lexicality of
the functor symbol: no matter what value the
functor has for lex, the range type will have the
value - for the attribute lex.

A P ROOF-THEORETIC RECONSTRUCTION OF HPSG 251

5.4 Theorem prover

Various theorem proving techniques can be imple­
mented quite easily in Prolog. As theorem prover,
we use a simple sequent-proving device, imple­
mented as follows: the prover is a set of clauses for
a predicate prove (+Goal , -Rules) , where Goal
is either a sequence of sequents of length mini­
mally 1 , or a structure {G1 , . . . , Gn} with each
Gi (1 ::; i ::; n) a non-sequent goal; Rules is a
list encoding the inference rules and axioms used
for proving Goal. Initially, Goal is the sequent
to be proved. The predicate prove/2 calls a rou­
tine matching the sequent against the database
of inference rules, i .e. if Goal is of the form
X1 , • • • , Xn -+ Y, it tries to match (resolve) the
sequent against the rules and axioms of the cal­
culus, which take the shape of A -+ B (if C) .
Once the match of X 1 , . . . , X n against A and Y
against B has been made, the eventual premises
C are attempted to prove.

prove ({Goals} , []) : - call (Goals) .
prove (A--->B , [Rule l Rules]) : ­

rule (Rule , (X ---> B if Y)) ,
resolve (A , X) ,
prove (Y , Rules) .

prove (A and B , Rules) : ­
prove (A , R1) ,
prove (B , R2) ,
conc (R1 , R2 , Rules) .

prove (A--->B , [Ax]) : ­
axiom(Ax , A1--->B) ,
resolve (A , A1) .

The linear precedence principles are (as
illustrated in section 5.3) encoded as goals
{lpi , . . . , lpn} , to be called before entering the
eventual premise sequents.

5 .5 Principles

Here are some linear precedence principles. They
are written as

lp (Name , Arg , Funct , NewFunct) ,

with Name the name of the principle, Arg ,
Funct , NewFunct types such that NewFunct has
as its phonology value the ordered phonology val­
ues of Arg and Funct . Uninteresting variables are
written as underscores.

lp (lp1 ,
X© (phon (S2-S3) , _ , _ , _) ,
[X© (_ , _ , _ , _)] =>B© (phon (S1-S2) ,

syn (loc (W1 , lex (1)) , W2) ,
S , D) ,

[X© (_ , _ , _ , _)] =>B© (phon (S1-S3) ,

lp (lp4 ,

syn (loc (W1 , lex (1)) , W2) ,
S , D)) .

X© (phon (S2-S3) , _ , _ , _) ,
[X© (_ , _ , _ , _) I T] =>B© (phon (S1-S2) , P , Q , D) ,
[X© (_ , _ , _ , _) I T] =>B© (phon (S1-S3) , P , Q , D))

inverted (B© (_ , P , _ , _)) .

6 Sample lexical entries

Lexical entries are of the form

WORD : = SIGN (+- VAR_CONDITIONS)

with WORD , SIGN resp. a lexeme and its sign rep­
resentation, and the optional <- VAR_CONDITIONS
encoding instantiations of variables mentioned in
SIGN (this is just done to avoid having to type
very corn plex signs) .

Some (partially specified) sample lexical en­
tries are:

loopt : =

[[phon , [loopt l I] -I] ,
[syn , [[loc , [[head , [[maj , v] ,

[case ,nil] ,
[n:f orm , nil] ,
[vform , fin] ,
[aux , 0] ,
[inv , OJ ,
[prd , 0]]] ,

[subcat , [X]] ,
[lex , 0]]] ,

[bind , nil]]] ,
[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , [X]]]]])
<-

X= [[phon , _] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform , _] ,
[vform , nil] ,

252
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 0]]] ,

[bind , _]]] ,
[sem , _] ,
[dtrs , _]] .

de : =

[[phon , [de l I] -I] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform , _] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , [X]] ,
[lex , 1]]] ,

[bind , nil]]] ,
[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , [X]]]]])
<-

X= [[phon , _] ,
[syn , [[loc , [[head , [[maj , n] ,

[case , nil] ,
[nform, _] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 1]]] ,

[bind , _]]] ,
[sem , _] ,
[dtrs , _]] .

man . -
[[phon , [man l I] - I] ,

[syn , [[loc , [[head , [[maj , n] ,
[case , nil] ,
[nform , norm] ,
[vform , nil] ,
[aux , nil] ,
[inv , nil] ,
[prd , nil]]] ,

[subcat , []] ,
[lex , 1]]] ,

[bind , _]]] ,

[sem , _] ,
[dtrs , [[headdtr , nil] ,

[compdtrs , []]]]]) .

7 Performance

RAAIJMAKERS

The following overview lists real-time parsing re­sults for a small set of Dutch sentences. The results were generated by a compiled Prolog ex­ecutable version of the program, running under X-windows on a SUN SPARCstation 1. The sentences and their word-by-word trans­lations are:
1. jan loopt. john walks.
2. de man loopt. the man walks.
3. de man loopt graag. the man walks gladly.
4. jan heeft hard gelopen. john has fast walked.
5. jan slaat de man. john hits the man.
6. john slaat graag de hond. john hits gladly the dog.
7. de man koopt een boek met plaatjes. the man buys a book with pictures.
8. jan geeft marie de hond. john gives mary the dog.
9. jan geeft marie een boek met plaatjes. john gives mary a book with pictures.

10. jan geeft marie graag een boek. john gives mary gladly a book.
11. dat jan de hond slaat. that john the dog hits.

» Sentence :. j an loopt .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 000 sec .

>> Sentence : de man loopt .

A PROOF-THEORETIC RECONSTRUCTION OF HPSG 253

>> Category : v .
> > Sentence parsed !
++++++.+++++++++++++++++++++++++++++++++
>> Parsing took 0 . 000 sec .

>> Sentence : de man loopt graag .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 050 sec .

>> Sentence : j an heeft hard gelopen .
» Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 050 sec .

>> Sentence : j an slaat de man .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 067 sec .

>> Sentence : j an slaat graag de hond .
>> Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 450 sec .

>> Sentence : de man koopt een boek met
plaatj es .

» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 683 sec .

>> Sentence : j an geeft marie de hond .
» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 1 17 sec .

>> Sentence : j an geeft marie een boek
met plaatj es .

» Category : v .
> > Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 2 . 500 sec .

>> Sentence : j an geeft marie graag een
boek .

>> Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
» Parsing took 1 . 316 s'ec .

>> Sentence : dat j an de hond slaat .
>> Category : v .
>> Sentence parsed !
+++++++++++++++++++++++++++++++++++++++
>> Parsing took 0 . 017 sec .

As can be concluded from the output pre­sented in the previous section, perfp:rma_:µce is rel­atively good. Sentences taking a lot qf time (say, over 1 second), invariably contain at least one ad­verbial modifier, or involve an NP closure prob­lem. For instance, in
• John gives Mary a book with pictures

the phrase 'John gives Mary a book' can be er­roneously analysed as a sentence before the PP 'with pictures ' is attached to 'a book'. Once the parser detects the remaining phrase 'with pic­tures', it will have to backtrack and redo a lot of work. The bad performance is a consequence of the sequent formalism: for any configuration
X1 ⇒ X2, X1, X1 ⇒ X1

where each Xi is distinct, the analysis
((X1 ⇒ X2, X1), X1 ⇒ X1)

is tried. One idea would be to employ a well­formed substring table encoding intermediate parsing results, to avoid having to reparse too much once the parser starts backtracking. Generally speaking, weak performance for long sentences is not surprising, since the various inference rules allow for blind alleys in the left premise deduction, by instantiating wrong subse­quences of the antecedent to the factor reducing to an argument type. This is a direct consequence of the non-deterministic nature of the procedure decomposing the antecedent into contexts around a functional type. The problem can be fixed by introducing so-called proof invariants (van Ben­them, 1991) into the theorem prover. Proof in­variants are structural validities for antecedent­succedent pairs, which serve to prune irrelevant options from the search space . The attractive feature of the current setting is that any opti­malisation coming from proof theory can be used to optimise the parser.

254
8 Concluding remarks

We have shown that it is possible to give HPSG a deductive basis. The binary version of HPSG we have proposed, has been demonstrated to corre­spond to a fragment of second-order linear logic. The binarity of this HPSG dialect, which is faith­ful to classical HPSG in all other respects, is mo- . tivated from practical rather than theoretical rea­sons; in fact, the current approach is open to any version of HPSG. The parser we developed is, al­though relatively fast, in need of further optimal­isation; the use of proof invariants may help to reduce the search space. Also, recently developed

RAAIJMAKERS

low-complexity theorem proving techniques such as proof nets (Roorda, 1991), may be of use here. Returning to the five desiderata of section 1, then, the last item, "The parser should have reasonable time/space complexity" has not fully been met yet.
Acknowledgements

I thank my colleagues Rene Ahn, Miriam Mul­ders, Gerrit Rentier and Leon Verschuur for fruit­ful discussion and taking an active interest in the enterprise.

Stochastic Lexicalized Context-Free Grammar

Yves Schabes and Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway, Cambrid�e, MA 02139

email: {schabes I dick}©merl . corn

Abstract Stochastic lexicalized context-free grammar (SLCFG) is an attractive compromise between the parsing efficiency of stochastic context-free grammar (SCFG) and the lexical sensitivity of stochas­tic lexicalized tree-adjoining grammar (SLTAG) . SLCFG is a restricted form of SLTAG that can only generate context-free languages and can be parsed in cubic time. However, SLCFG retains the lexical sensitivity of SLTAG and is therefore a much better basis for capturing distributional information about words than SCFG.
1 Motivation

The application of stochastic techniques to syntax modeling has recently regained popularity. Most of the work in this area has tended to empha­size one or the other of the following two goals . The first goal is to capture as much distributional information about words as possible . The second goal is to capture as many of the hierarchical con­straints inherent in natural languages as possible. Unfortunately, these two goals have been more or less incompatible to date. Early stochastic proposals such as Markov Models, N-gram models [2, 14] and Hidden Markov Models [7] are very effective at captur­ing simple distributional information about adja­cent words. However , they cannot capture long range distributional information nor the hierar­chical constraints inherent in natural languages. Stochastic context-free grammar (SCFG) [1 , 3, 5] extends context-free grammar (CFG) by as­sociating each rule with a probability that con­trols its use. Each rule is associated with a single probability that is the same for all the sites where the rule can be applied . SCFG captures hierarchical information just as well as CFG; however , it does not do a good job of capturing distributional information about words. There are at least two reasons for this . F irst, many rules do not contain any words and

therefore the associated probabilities do not have any direct link to words. Second, distributional phenomena that involve the application of two or more rules do not have a direct link to any of the stochastic parameters of SCFG, because the probabilities apply only to single rules. It has been observed in practice that SCFG performs worse than non-hierarchical approaches. This has lead many researchers to believe that simple distributional information about adjacent words is the most important single source of in­formation. In the absence of a formalism that adequately combines this information with other kinds of information, the emphasis in research has been on simple non-hierarchical statistical models of words, such as word N-gram models . Recently, it has been suggested that stochastic lexicalized tree-adjoining grammar (SLTAG) [8, 9] may be able to capture both distributional and hierarchical information. An SLTAG grammar consists of a set of trees each of which contains one or more lexical items. These elementary trees can be viewed as the elementary clauses (including their transformational variants) in which the lex­ical items participate. The elementary trees are combined by substitution and adjunction. Each possible way of combining two trees is associated with a probability. Since it is based on tree-adjoining grammar (TAG) , SLTAG can capture some kinds of hier-
257

258

archical information that cannot be captured by SCFG. However , the key point of comparison be­tween SLTAG and SCFG is that since SLTAG is lexicalized and uses separate probabilities gov­erning each possible combination of trees, each probability is directly linked to a pair of words. This makes it possible to represent a great deal of distributional information about words. Unfortunately, the statistical algorithms for SLTAG [9] require much more computational re­sources than the ones for SCFG. For instance, the algorithms for estimating the stochastic parame­ters and determining the probability of a string require in the worst case O(n6)-time for SLTAG [9] but only O(n3)-time for SCFG [3]. Stochastic lexicalized context-free grammar (SLCFG) is a restricted form of SLTAG that re­tains most of the advantages of SLTAG with­out requiring any greater computational resources than SCFG. SLTAG restricts the elementary trees that are possible and the way adjunction can be performed. These restrictions limit SLCFG to producing only context-free languages and allow SLCFG to be parsed in O(n3)-time in the worst case. However, SLCFG retains most of the key features of SLTAG enumerated above. In par­ticular, the probabilities in SLCFG are directly linked to pairs of words. SLCFG is a stochastic extension of lexical­ized context-free grammar (LCFG) [12, 13]. The following sections, introduce LCFG, define the stochastic extension to SLCFG, present an al­gorithm that can determine the probability of a string generated by an SLCFG in O(n3)-time, and discuss the algorithms needed to train the parameters of an SLCFG.
2 LCFG
Lexicalized context-free grammar (LCFG) [12, 13] is a tree generating system that is a re­stricted form of lexicalized tree-adjoining gram­mar (LTAG) (4]. The grammar consists of two sets of trees: initial trees, which are combined by substitution and auxiliary trees, which are com­bined by adjunction. An LCFG is lexicalized be­cause every initial and auxiliary tree is required to contain a terminal symbol on its frontier.

SCHABES - WATERS

Definition 1 An LCFG is a five-tuple (E,NT,I, A, S), where E is a set of terminal symbols, NT is a set of non-terminal symbols, I and A are fi­nite sets of finite trees labeled by terminal and non-terminal symbols, and S is a distinguished non-terminal start symbol. The set I U A is re­ferred to as the elementary trees. The interior nodes in each elementary tree are labeled by non-terminal symbols. The nodes on the frontier of each elementary tree are la­beled with terminal symbols, non-terminal sym­bols, and the empty string (c). At least one fron­tier node is labeled with a terminal symbol. With the possible exception of one (see below), the non­terminal symbols on the frontier are marked for substitution. (By convention, substitutability is indicated in diagrams by using a down arrow (l).) The difference between auxiliary trees and ini­tial trees is that each auxiliary tree has exactly one non-terminal frontier node that is marked as the foot. The foot must have the same label as the root. (By convention, the foot of an auxiliary tree is indicated in diagrams by using an asterisk (*).) The path from the root of an auxiliary tree to the foot is called the spine. Auxiliary trees in which every non-empty fron­tier node is to the left of the foot are called
left auxiliary trees. Similarly, auxiliary trees in which every non-empty frontier node is to the right of the foot are called right auxiliary trees. Other auxiliary trees are called wrapping auxil­iary trees.1

LCFG does not allow adjunction to apply to foot nodes or nodes marked for substitution. LCFG allows the adjunction of a left auxiliary tree and a right auxiliary tree on the same node. However , LCFG does not allow the adjunction of either two left or two right auxiliary trees on the same node. Crucially, LCFG does not allow wrapping aux­iliary trees. It does not allow elementary wrap­ping auxiliary trees, and it does not allow the ad­junction of two auxiliary trees, if the result would be a wrapping auxiliary tree.
Figure 1, shows seven elementary trees that might appear in an LCFG for English. The trees containing 'boy ' , 'saw' , and 'left ' are initial trees. The remainder are auxiliary trees.

1 In (13) these three kinds of auxiliary trees are referred to differently a.s right recursive, left recursive, and centrally
recursive, respectively.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 259

s

�
s NPiJ.(+wh) S s

/\ I\ /\
NP NPoJ. VP NPo VP VP N VP NPoJ. VP

I\ I\ I I I\ I\ /\ I\
DJ. N V NP1J. E i V V VP"' A N* VP"' Adv V S 1* NA

I I I I I I I
boy saw left seems pretty smoothly think

Figure 1 : Example LCFG trees.

(a) (b)

(c)

Figure 2: Tree combination: (a) substitution, (b) left adjunction, (c) right adjunction, and (d) wrap­ping adjunction, which is not allowed by SLCFG.

An LCFG derivation must start with an ini­tial tree rooted in S. After that, the tree can be repeatedly extended using substitution and ad­junction. A derivation is complete when every frontier node is labeled with a terminal symbol. As illustrated in Figure 2a, substitution re­places a node marked for substitution with a copy of an initial tree. Adjunction inserts a copy of an auxiliary tree
T into another tree at an interior node T/ that has the same label as the root (and therefore foot) of T. In particular , T/ is replaced by a copy of
T and the foot of the copy of T is replaced by the subtree rooted at T/· The adjunction of a left auxiliary tree is referred to as left adjunction (see Figure 2b). The adjunction of a right auxiliary tree is referred to as right adjunction (see Fig­ure 2c). LCFG's prohibition on wrapping auxiliary

trees can be rephrased solely in terms of elemen­tary trees. To start with, there must be no el­ementary wrapping auxiliary trees. In addition, an elementary left (right) auxiliary tree cannot be adjoined on any node that is on the spine of an elementary right (left) auxiliary tree. Further , no adjunction whatever is permitted on a node 1/ that is to the right (left) of the spine of an elemen­tary left (right) auxiliary tree T. (Note that for
T to be a left (right) auxiliary tree, every frontier node subsumed by T/ must be labeled with c.)

Tree adjoining grammar formalisms typically forbid adjunction on foot nodes and substitution nodes. In addition, they typically forbid multiple adjunctions on a node. However, in the case of LCFG, it is convenient to relax this latter restric­tion slightly by allowing right and left adjunction on a node, but at most once each. (Due to the other restrictions placed on LCFG, this relaxation

260

CFL

PATH SET POWER RL

RL

• LCFG

CFG •
TSG

CFL

LTAG •
TAG

TAL
STRING SET POWER

SCHABES - WATERS

Figure 3: The tree and string complexity of LCFG and several other formalisms

increases the trees that can be generated without
increasing the ambiguity of derivations.)

2 .1 Comparisons
The only important difference between LCFG
and LTAG is that LTAG allows both elementary
and derived wrapping auxiliary trees. The im­
portance of this is that wrapping adjunction (see
Figure 2d) encodes string wrapping and is there­
fore context sensitive in nature. In contrast, left
and right adjunction (see Figures 2b & 2c) merely
support string concatenation. As a result, while
LTAG is context sensitive in nature, LCFG is lim­
ited to generating only context-free languages.

To see that LCFG can only generate context­
free languages, consider that any LCFG G can be
converted into a CFG generating the same strings
in two steps as follows. First , G is converted into
a tree substitution grammar (TSG) G' that gen­
erates the same strings. Then, this TSG is con­
verted into a CFG G" .

A TSG is the same as an LCFG (or LTAG)
exc�pt ' that there cannot be any auxiliary trees.
To create G' first make every initial tree of G be
an initial tree of G' . Next, make every auxiliary
tree T of G be an initial tree of G' . When doing
this, relabel the foot of T with c (turning T into
an initial tree) . In addition, let A be the label of
the root of T. If T is a left auxiliary tree, rename
the root to AL ; otherwise rename it to AR ,

To complete the creation of G' alter every
node TJ in every initial tree in G' as follows: Let A
be the label of T/ · If left adjunction is possible at
T/, add a new first child of T/ labeled AL , mark it
for substitution, and add a tree corresponding to
AL --+ c if one does not already exist. Right ad-

junction is handled analogously by adding a new
last child of T/ labeled AR and insuring the exis­
tance of a tree corresponding to AR --+ c.

The TSG G' generates the same strings as
G, because all cases of adjunction have been
changed into equivalent substitutions. Note that
the transformation would not work if LCFG al­
lowed wrapping auxiliary trees. The TSG G' can
be converted into a CFG G" by flattening each
tree in G' into a context-free rule that expands
the root of the tree into the frontier in one step.

Although the string sets generated by LCFG
are the same as those generated by CFG, LCFG is
capable of generating more complex sets of trees
than CFG. In particular, it is interesting to look
at the path sets of the trees generated. (The path
set of a grammar is the set of all paths from root
to frontier in the trees generated by the grammar.
The path set is a set of strings over � U NT U { c} .)

The path sets for CFG (and TSG) are regu­
lar languages [15] . In contrast, just as for LTAG
and TAG, the path sets for LCFG are context-free
languages. To see this, consider that adjunction
makes it possible to embed a sequence of nodes
(the spine of the auxiliary tree) in place of a node
on a path. Therefore, from the perspective of the
path set , auxiliary trees are analogous to context­
free productions.

Figure 3 summarizes the relationship be­
tween LCFG and several other grammar for­
malisms. The horizontal axis shows the com­
plexity of strings that can be generated by the
formalisms, i.e . , regular languages (RL) , context­
free languages (CFL) , and tree adjoining lan­
guages (TAL) . The vertical axis shows the com­
plexity of the path sets that can be generated.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 261
CFG (and TSG) create context-free lan­guages, but the path sets they create are regular languages. LTAG and TAG generate tree adjoin­ing languages and have path sets that are context­free languages. LCFG is intermediate in nature. It can only generate context-free languages, but has path sets that are also context-free languages.

2 .2 LCFG lexicalizes CFG

As shown in [12, 13] LCFG lexicalizes CFG with­out changing the trees derived. Further, a con­structive procedure exists for converting any CFG
G into an equivalent LCFG G' . The fact that LCFG lexicalizes CFG is signifi­cant, because every other method for lexicalizing CFGs without changing the trees derived requires context-sensitive operations [4] and therefore dra­matically increases worst case processing time. As shown in [12, 13] (and in Section 4) LCFG can be parsed in the worst case just as quickly as CFG. Since LCFG is lexicalized, it is expected that it can be parsed much faster than CFG in the typical case.
3 Stochastic LCFG
The definition of stochastic lexicalized context­free grammar (SLCFG) is the same as the defini­tion of LCFG except that probabilities are added that control the combination of trees by adjunc­tion and substitution.
Definition 2 An SLCFG is an 1 1-tuple (E,NT, I,A,S,P1 ,Ps ,PL ,PNL ,Pn ,PNR) , where (E,NT,I, A,S) is an LCFG and Pi , Ps , PL , PNL , PR, and PN R are statis_tical parameters as defined below. For every root p of an initial tree, P1 (p) is the probability that a derivation starts with the tree rooted at p. It is required that :

Note that P1 (p) # 0 i f and only i f p i s labeled S . For every root p of an initial tree and every node 'TJ that is marked for substitution, Ps(p, 'TJ) is the probability of substituting the tree rooted at p for 'T/· For each 'T/ it is required that:

For every node TJ in every elementary tree, PN L ('TJ) is the probability that left adjunction will not occur on 'T/· For every root p of a left auxiliary tree, PL (p, 'TJ) is the probability of adjoining the tree rooted at p on 'T/· For each 'T/ it is required that :
PNL ('TJ) + L PL (P, 'TJ) = 1

p

PN L ('TJ) = 0 if and only if left adjunction on 'T/ is obligatory. The parameters PNR('TJ) and PR(P, 1J) control right adjunction in an exactly analogous way.
An SLCFG derivation is described by the ini­tial tree it starts with, together with the sequence of substitution and adjunction operations that take place. The probability of a derivation is defined as the product of: the probability P1 of starting with the given tree, the probabilities Ps , PL , and . PR of the operations that occurred, and the probabilities PNL and PNR of adjunction not occurring at the places where it did not occur. The probability of a string is the sum of the probabilities of all the different ways of deriving it . A most likely derivation of a string is a deriva­tion that has as large a probability as any other derivation for the string. The probability of a tree generated by an SLCFG for a string is the sum of the probabilities of every way of deriving the tree. (Unlike in SCFG, in SLCFG there .ean be more than one way to derive a given tree .) A mo_st likely tr.ee generated for a string is a tree whose probability is as large as any other tree generated for the string. (Note that a most likely derivation need not generate a most likely tree.)

4 Parsing SLCFG
Since SLCFG is a restricted case of SLTAG the (6) . ' 0 n -time SLTAG parser [9] can be used for parsing SLCFG. Further, it can be straightfor­wardly modified to require at most O(n4)-time when applied to SLCFG. However, this does not take full advantage of the context-freeness of SLCFG. This section demonstrates that SLCFG can be parsed in O(n3)-time by exhibiting a CKY-style

262
bottom-up algorithm for computing the probabil­ity assigned to a string by an SLCFG. This algo­rithm can be trivially modified to extract a most probable derivation of the given string. More effi­cient SLCFG processors can be based on the Ear­ley style LCF G recognizer presented in [12].
4. 1 Terminology

Suppose that G is an SLCFG and that a1 · · · an is an input string. Let 1J be a node in an elementary tree (identified by the name of the tree and the position of the node in the tree). Label(1J) E E U NT U c is the label of the node. The predicate IslnitialRoot(1J) is true if and only if 1J is the root of an initial tree. Parent(1J) is the node that is the parent of 1J or ..L if 1/ has no par­ent. F irstChild(rJ) is the node that is the leftmost child of 1J or ..L if 1J has no children. Sibling(rJ) is the node that is the next child of the parent of 1J (in left to right order) or ..L if there is no such node. The predicate Substitutable(µ, rJ) is true if and only if 1J is marked for substitution and p is the root of an initial tree that can be substituted for 1/· The predicate Radjoinable(p, rJ) is true if and only if p is the root of an elementary right aux­iliary tree that can adjoin on 1/· The predicate Ladjoinable(p, 1J) is true if and only if p is the root of an elementary left auxiliary tree that can adjoin on 1/· The concept of covering is critical to the bottom-up algorithm shown below. Informally speaking, a node 7J covers a string if and only if the string can be derived starting from 1/· More precisely, for every node 1J in every ele­mentary tree in G, let T' be a copy of the subtree of T that is rooted at 1/· Extend T' by adding a new root whose only child is the original root of
T' . Label the new root of T' with a unique new symbol S' . If there is a node on the frontier of
T' that is marked as the foot, relabel this node with c. This converts T' into an initial tree. Let
a,, be an SLCFG that is identical to G except that .. T' .is�introduced as an additional initial tree and the start symbol of G77 is S' . The probabil­ities associated with the the interior nodes of T' are identical to those for the corresponding nodes in T. The probabilities for the root of T' are Ps = PL = PR = 0, PNL = PivR = 1, and cru.:. dally P1 = 1. P1 = 0 for the other initial trees.

SCHABES - WATERS

The node 1J covers a string a1 · · · an with probability p in G if and only if the probabil­ity of a1 · · · an in G77 is p. The node 1J covers a string a1 · · · an without left (right) adjunction with probability p in G if and only if the proba­bility of a1 · · · an in G77 is p without considering derivations where left (right) adjunction occurs on the original root of T' . (Note that if 1J is a foot node, T' is an empty tree. The only string covered by 1J is the empty string; however, the empty string is covered with probability 1, because the empty string is the only string derived by Gw)
4.2 A bottom-up Algorithm

We can assume without loss of generality that every node in / U A has at most two children. (By adding new nodes, any SLCFG can be trans­formed into an equivalent SLCFG satisfying this condition. This transformation can be readily re­versed after parsing has been completed.) The algorithm stores triples of the form [rJ, code, p] in an n x n array C. In a triple,
code is a set over the universe L (for left adjunc­tion) and R (for right adjunction). The fact that [rJ, code, p] E C[i, k] means that 1J accounts for the substring ai+1 · · · ak with probability p. More precisely, for every node 1J in every elementary tree in G, the algorithm guarantees that when the computation concludes:

• [rJ, 0, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p without left or right adjunction.
• [rJ, {L}, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p without right adjunction.
• [rJ, {R}, p] E C[i, k] if and only if 1J covers ai+1 · · · ak with probability p without left adjunction.
• [rJ, {L, R}, p] E C[i, k] if and only if 1J covers ai+l · · · ak with probability p.

The process starts by placing each foot node and each frontier node that is labeled with the empty string in every cell C[i, i] with probability one. This signifies that they each cover the empty string at all positions. The initialization also puts each terminal node 1/ in every cell C[i, i + 1] where

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR

(a)

a . . . a .
i + I J

a •• • ak j + l
a
i + I

Figure 4 : Sibling concatenation.

& +...i. � &
a

.
.
.

ak
a. ·•• a .A* a ••• ak j + l z + l l i + l (b)

a • • • a .
i + l J

Figure 5: (a) Left concatenation and (b) right concatenation.

Procedure Probability(a1 · · · an)
begin

for i = 0 to n
for all foot nodes </J in A, Add(</J, 0, i , i , 1)
for all frontier nodes rJ in A U J where Label(rJ) = c, Add('f/, 0, i , i , 1)

for i = 0 to n - l
for all frontier nodes rJ in A U J where Label(rJ) = ai+1 , Add(TJ, 0, i, i + 1 , 1)

for d = 0 to n
for i = 0 to n - d

set k = i + d
for j = i to k

for all nodes 'f/ in G
if ['fJ, {L, R} ,P1] E C[i , j] and [Sibling(rJ) , {L, R} , P2] E C[j, k]

then Add(Parent(TJ) , 0, i , k ,p1 x P2)
for all nodes p and 'f/ in G where Ladjoinable(p, rJ)

if [p, {L, R} , pi] E C[i , j] and [rJ , code, p2] E C[j, k] and L rt code
then Add('f/, L U code, i , k ,p1 x P2 x PL (P, rJ))

for all nodes p and 'f/ in G where Radjoinable(p, 'f/)
if [rJ, code, p1] E C[i , j] and R rt code and [p, {L, R} , P2] E C[j, k]

then Add(17, R U code, i , k, p1 x P2 x PR(P, rJ))
p = O
for all nodes p in G where IsinitialRoot(p) and Label(p) = S

if [p, {L, R} , Po] E C[O, n] then p = p + Po x P1 (p)
return p

end
Procedure Add('f/, code, i, k, p)

begin
if [77 , code, p'] E C[i , k] for some p' then update [77, code, p'] in C[i , k] to ['fJ, code, p' + p]
else C[i , k] := C[i , k] U ['fJ, code, p]
if code = {L, R} then

if FirstChild(Parent(rJ)) = 'f/ and Sibling(rJ) = ..L then Add(Parent(rJ) , 0, i, k, p)
for each node </J such that Substitutable(rJ, <P) , Add(</J, 0, i , k, p x Ps(rJ, <P))

if L rt code then Add('f/, L U code, i, k, p x PNL (TJ))
if R rt code then Add('f/, R U code, i , k,p x PNR(rJ))

end

Figure 6: A procedure for computing the probability of a string given an SLCFG.

263

264

1J is labeled ai+l with probability one. The al­
gorithm then considers all possible ways of com­
bining matched substrings into longer matched
substrings-it fills the upper diagonal portion of
the array C[i , k] (0 � i � k � n) for increasing
values of k - i .

Two observations are central to the efficiency
of this process. Since every auxiliary tree (ele­
mentary and derived) in SLCFG is either a left
or right auxiliary tree, the substring matched by
a tree is always a contiguous string. Further,
when matched substrings are combined, the al­
gorithm only has to consider adjacent substrings.
(In SLTAG, a tree with a foot can match a pair
of strings that are not contiguous-one left of the
foot and one right of the foot .)

There are three situations where combination
of matched substrings is possible: sibling concate­
nation, left concatenation, and right concatena­
tion.

As illustrated in Figure 4, sibling concate­
nation combines the substrings matched by two
sibling nodes into a substring matched by their
parent. In particular, suppose that there is a
node 1/o (labeled B in Figure 4) with two chil­
dren 1/i (labeled A) and TJ2 (labeled A') . If
[1J1 , {L, R} , P1] E C[i , j] and [1J2 , {L, R} , P2] E
C[j, k] then [rJo , 0 , P1 x P2] E C[i , k] .

Left concatenation (see Figure 5a) combines
the substring matched by a left auxiliary tree with
the substring matched by a node the auxiliary
tree can adjoin on. Right concatenation (see Fig­
ure 5b) is analogous.

The algorithm (see Figure 6) is written in two
parts: a main procedure Probability(a1 · · · an)
and a subprocedure Add(rJ, code, i , k) , which adds
the triple [TJ, code, p] into C[i , k] .

The main procedure repeatedly scans the ar­
ray C, building up longer and longer matched
substrings until it determines all the S-rooted de­
rived trees that match the input. The purpose
of the codes ({ L, R} etc.) is to insure that left
and right adjunction can each be applied at most
once on a node. The procedure could easily be
modified to account for other constraints on the
way derivation should proceed, such as those sug­
gested for LTAGs [11] .

The procedure Add enters a triple [TJ, code, p]
into C[i , k] . If some other triple [71, code, p'] is al­
ready present in C[i , k] , then the probability p' is

SCHABES - WATERS

updated to p' + p to reflect the fact that an ad­
ditional derivation of ai+l · · · ak has been found.
Otherwise, a new triple [71, code, p] is added to C[i , k] .

The procedure Add also propagates informa­
tion from one triple to another in situations
where the length of the matched string is not
increased-Le. , when a node is the only child of
its parent , when substitution occurs, and when
adjunction is not performed.

The O(n3) complexity of the algorithm fol­
lows from the three nested induction loops on d,
i and j. (Although the procedure Add is defined
recursively, the number of pairs added to C is
bounded by a constant that is independent of sen­
tence length.)

The algorithm does not depend on the fact
that SLCFG is lexicalized-it would work equally
well if were not lexicalized. If the sum p' + p on
the third line of the Add procedure is changed to
max(p' , p) the algorithm computes the probabil­
ity of a most probable derivation. By keeping a
record of every attempt to enter a triple into a
cell of the array C, one can extend the algorithm
so that derivations and therefore the trees they
generate can be rapidly recovered.

5 Training an SLCFG

In the general case, the training algorithm for
SCFG [5] requires O(n3)-time for each sentence of
length n. A training algorithm for SLCFG can be
constructed that achieves these same worst case
bounds.

To start with, since SLCFG is a restricted case
of stochastic lexicalized tree-adjoining grammar
(SLTAG) , the O(n6)-time inside-outside reesti­
mation algorithm for SLTAG [9] can be used for
estimating the parameters of an SLCFG given
a training corpus. Straightforward modifications
lead to an O(n4)-time algorithm for training an
SLCFG. However, this alone does not achieve the
full potential of SLCFG.

The same basic construction that underlies
the algorithm in the last section can be used as
the basis for an O(n3) inside-outside training al­
gorithm for SLCFG. As in the last section, the
key reason for this is that computations involving
SLCFG only require the consideration of contigu­
ous strings.

STOCHASTIC LEXICALIZED CONTEXT-FREE GRAMMAR 265

It should be noted that in the special case of a fully bracketed training corpus, the parameters of an SCFG can be estimated in linear time [6, 10] . It is an open question whether this can be done for SLCFG. However, it should be straightforward to design an O(n2)-time training algorithm for SLCFG given a fully bracketed corpus.

6 Conclusion

The preceding sections present stochastic lexi­calized context-free grammar (SLCFG) . SLCFG combines the processing speed of SCFG with the much greater ability of SLTAG to capture dis­tributional information about words. As such, SLCFG has the potential of being a very useful tool for natural language processing tasks where statistical assessment/prediction is required.

266
References

[1] T. Booth. Probabilistic representation of for­mal languages. In Tenth Annual IEEE Sym­posium on Switching and Automata Theory, October 1969.
[2] F. Jelinek. Self-organized language model­ing for speech recognition. In Alex Waibel and Kai-Fu Lee, editors, Readings in speech recognition. Morgan Kaufmann, San Mateo, California, 1990. Also in IBM Research Re­port (1985) .
[3] F. Jelinek, J. D . Lafferty, and R. L. Mer­cer. Basic methods of probabilistic context free grammars. Technical Report RC 16374 (72684) , IBM, Yorktown Heights, NY, 1990.
[4] Aravind K. Joshi and Yves Schabes. Tree­adjoining grammars and lexicalized gram­mars. In Maurice Nivat and Andreas Podel­ski, editors, Tree Automata and Languages. Elsevier Science, 1992.
[5] K. Lari and S . J. Young. The estimation of stochastic context-free grammars using the Inside-Outside algorithm. Computer Speech and Language, 4:35-56, 1990.
[6] Fernando Pereira and Yves Schabes. Inside­outside reestimation from partially brack­eted corpora. In 20th Meeting of the Association for Computational Linguistics (ACL '92), Newark, Delaware, 1992.
[7] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2) :257-285, February 1989.
[8] Philip Resnik. Probabilistic tree-adjoining grammars as a framework for statistical nat­ural language processing. In Proceedings of

SCHABES - WATERS

the 14th International Conference on Com­putational Linguistics (COLING'92), 1992.
[9] Yves Schabes. Stochastic lexicalized tree­adjoining grammars. In Proceedings of the 14th International Conference on Computa­tional Linguistics (COLING'92), 1992.

[10] Yves Schabes, Michael Roth, and Randy Osborne. Parsing the Wall Street Jour­nal with the inside-outside algorithm. In Sixth Conference of the European Chapter of the Association for Computational Linguis­tics {EACL '93), Utrecht, the Netherlands, April 1993.
[1 1] Yves Schabes and Stuart Shieber. An al­ternative conception of tree-adjoining deriva­tion. In 20th Meeting of the Association for Computational Linguistics (ACL '92), 1992.
[12] Yves Schabes and Richard C. Waters. Lex­icalized context-free grammar: A cubic-time parsable formalism that strongly lexicalizes context-free grammar. Technical Report 93-04, Mitsubishi Electric Research Labs, 201 Broadway. Cambridge MA 02139, 1993.
[13] Yves Schabes and Richard C. Waters. Lex­icalized context-free grammars. In 2ist Meeting of the Association for Computa­tional Linguistics (ACL '93), pages 121-129, Columbus, Ohio, June 1993.
[14] C. E. Shannon. Prediction and entropy of printed english. The Bell System Technical Journal, 30:50-64, 1951 .
[15] J. W. Thatcher. Characterizing deriva-tions trees of context free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences, 5:365-396, 1971 .

Predictive Head-Corner Chart Parsing

Klaas Sikkel - Rieks op den Akker

Dept . of Computer Science, University of Twente
P.O. Box 217, 7500 AE ENSCHEDE

email: { s ikkel , infrieks }©cs . utwente . nl

Abstract Head-Corner (HC) parsing has come up in computational linguistics a few years ago, motivated by linguistic arguments. This idea is a heuristic, rather than a fail-safe principle, hence it is relevant indeed to consider the worst-case behaviour of the HC parser. We define a novel predictive head-corner chart parser of cubic time complexity. We start with a left-corner (LC) chart parser, which is easier to understand. Subsequently, the LC chart parser is generalized to an HC chart parser. It is briefly sketched how the parser can be enhanced with feature structures.
1 Introduction

"Our Latin teachers were apparently right" , Mar­tin Kay remarks in (Kay, 1989). "You should start [parsing] with the main verb. This will tell you what kinds of subjects and objects to look for and what cases they will be in. When you come to look for these , you should also start by trying to find the main word, because this will tell you most about what else to look for".
Head-driven or head-corner parsing has been addressed in several papers. (Proudian and Pol­lard, 1985; Kay· 1989; Satta and Stock 1989; van Noord 1991; Bouma and van Noord 1993). As the head-driven approach is a heuristic , rather than a fail-safe principle, it is important to pay attention to the worst-case behaviour. This is best taken care of in a tabular approach like the bottom­up head-driven parser by Satta and Stock . We enhance the tabular head-driven parser with top­down prediction.
The algorithmic details of the head-corner parser are not easy. Therefore we will make some effort to convey the intuition behind the parser. To that end, we first define a left-corner chart parser in Section 3 and afterwards generalize this to a head-corner parser in 4. A complexity anal­ysis is given in 5. We sketch extension with fea-

ture structures in 6 and briefly discuss related approaches in 7.
2 Chart parsing

Chart parsing, first introduced in (Kay 1980), is a well-known parsing technique in computational linguistics. We will present a conventional Ear­ley chart parser in a slightly unconventional way. Thus the reader who is familiar with the Earley parser will get a feeling for the notation used in this article.
We use the following notational conventions. Nonterminals are denoted by A, B, . . . E N; ter­minals by a, b, . . . E E. We write V for N U E with X, Y, . . . as typical elements. Strings in V* are denoted by a, /3, A context-free grammar G is a 4-tuple (N, "E, P, S) , with P a set of pro­ductions and S the start symbol. The sentence to be parsed is denoted a1 . . . an . We make ex­tensive use of place markers i, j, k . . . , indicating positions in the sentence. The symbol ai is lo­cated between positions i - 1 and i.
A chart parser is characterized by a domain of items , that can be added to the chart by the parser and some operators that specify how com­binations of items on the chart can lead to recog-

267

268

nition of other items . Furthermore, there is an initial chart and initial agenda. At each step some current item is selected from the agenda, and moved to the chart . If the chart contains items that, in combination with the current item, allow recognition of other items not yet present on the chart or on the agenda, these are added to the agenda . This continues until the agenda is empty. A context-free chart parser does not really construct parse trees . But a representation of all parse trees can easily be obtained when items in the chart are annotated with pointers to the items that caused their recognition . Various forms of sophistication can be added by structuring the chart or by providing a strategy to select the next item from the agenda . The Earley chart parser uses two types of items:
[A --+ a.,B, i, j]: Earley items (for A --+ a,B E P and O � i � j � n) , [a, j - 1, j] terminal items representing aj (1 � j � n) .

An Earley item [A --+ a./3, i, j] is to be recognized by the chart. parser iff
a =>* ai+l . . . aj, and S =>* a1 . . . aiA'Y for some 'Y E V * .

The initial chart contains the terminal items rep­resenting the string . When the j-th word belongs to different categories, say a and b, then both items [a, j - 1, j] and [b, j - l , j] are present in the initial chart . The initial agenda contains items [S --+ •'Y, 0, OJ for all productions S --+ 'Y E P . The following operators are defined for the Ear­ley chart parser:
predict: for B --+ 'Y E P:
3 Left-corner chart parsing

We will now specify a Left-Corner (LC) parser as a chart parser, that is to be generalized to

SIKKEL - OP DEN AKKER

[A --+ a.B,B, i , j] I- [B --+ .,y, j, j];
scan:

[A --+ a.b,B, i , j] , [b, j, j+ l] I- [A --+ ab.,B, i, j + l];
complete :

[A --+ a.B,B, i, j], [B --+ 'Y•, j, k] I- [A --+ aB.,B, i, k] .
The turnstyle (1-) notation is a convenient short­hand, meaning that the left-hand side items li­cence the recognition of the right-hand side item . As a running example we will use the sentence the
cat caught a mouse, represented by the lexical categories

*det *n *v *det *n.
The example grammar is

S --+ NP VP, NP --+ *det *n , VP --+ *v NP.
Due to lack of ambiguity, the example will nicely illustrate the difference between the chart parsers that are presented in this paper . Initially, the chart contains { [O, *det, 1], [1, *n, 2], [2, *v, 3], [3, *det, 4], [4, *n, 51 } and the agenda is { [S --+ .NP VP, 0, OJ } . In Figur� 1 the completed chart is shown (excluding terminal items), annotated with how the items were recognized . The items can be seen as the trace of a left-to-right walk through the parse tree . This walk is shown in F ig­ure 2 annotated with the item numbers . (In the general case things are rather more complicated . There could be different parse trees and also par­tial left-to-right walks of valid prefixes than can't be extended to a parse . All trese traces are inter­laced and may partly coincide .)
a head-corner parser in the next section . The deterministic LC algorithm originally stems from (Rosenkrantz and Lewis, 1970) . We describe a generalized LC parser1 for context-free grammars

1 The term "Generalized LC" has been introduced in (Demers, 1977) for a rather different concept. He generalized the notion of Left Corner, deriving a framework that describes a class of parsers and associated grammars ranging from LL{k) via LC{k) to LR{k) . We generalize the LC{O) parser by dropping the restriction that the grammar be LC{O) . The nondeterminism is handled by a dynamic programming technique, as in Generalized LR parsing (Tomita, 1985). Note

PREDICTIVE HEAD-CORNER CHART PARSING 269

item recognized by
0 [S -+ .NP VP, 0, 0] initial
1 [NP -+ • *det *n, 0, 0] predict(0)
2 [NP -+ *det. *n, 0, 1] scan(l)
3 [NP -+ *det *n. , 0, 2] scan(2)
4 [S -+ NP. VP, 0, 2] compl(0,3)
5 [VP -+ . *v NP, 2, 2] predict(4)
6 [VP -+ *v.NP, 2, 3] scan(5)
7 [NP -+ . *det *n , 3, 3] predict(6)
8 [NP -+ *det. *n, 3, 4] scan(7)
9 [NP -+ *det *n. , 3, 5] scan(8)

10 [VP -+ *v NP. , 2, 5] complete(6,9)
11 [S -+ NP VP., 0, 5] complete (4,10)

Figure 1: The final Earley chart

*d *n *v *d *n

Figure 2: The Earley tree walk

that is similar to, but subtly different from the
Earley parser. Scan and complete operations re­
main unchanged, predicting is handled differently.
We start with a predict item [O, S] meaning that
we are to look for a constituent S starting at po­
sition 0. We proceed bottom-up, starting from
[*det , 0, 1] . We can "climb up" from *det to an NP because this moves us nearer to the goal S.
Or, to put it more formally, because a leftmost
derivation

S ⇒* NP, ⇒ *det *wy
exists, we may extend [*det , 0, 1] to [NP -+ *det. *n , 0, 1] .

A few steps later we have recognized [S -+

NP. VP, 0, 2] . Here we set a sub-goal, represented
by the predict item [2 , VP] . In Figure 3 it is
shown how the LC chart parser steps through a
parse tree:

• Steps up correspond to a scan or complete
as in the Earley case.

• Steps down to the leftmost child are skipped
because these are implicitly encoded in the transitive left-corner relation that is encor­
porated in the parser.

• Steps down to non-leftmost nonterminal
children correspond to setting a new s1.1b­
goal.

that the semantic ambiguity of the noun phrase "Generalized LC parsing" duly reflects the syntactic ambiguity: we are concerned with [Generalized [Left-Corner Parsing]] , whereas Demers discussed [[Generalized Left-Corner] parsing] .

270

.. ./
s

�
. . ·/

3 :_Y
P

�
NP f.· � NP

fi ····.t2 ./ 5
/7..

..

. ····.t8 ... 1 ··.. 7 ··
*d *n *v *d *n

Figure 3: The left-corner tree walk

SIKKEL - OP DEN AKKER

In Figure 4 the final chart is shown of the LC
chart parser that will be formally defined next.

Each item on the final chart corresponds to an
arrow in the tree walk.

item recognized by
0 [0, S] initial
1 [NP � *det. *n, 0, 1] le(i) (0)
2 [NP � *det *n., 0, 2] scan (1)
3 [S � NP. VP, 0, 2] le(ii) (0,2)
4 [2 , VP] predict (3)
5 [VP � *v.NP, 2, 3] lc(i) (4)
6 [3, NP] predict (5) 7 [NP � *det. *n, 3, 4] le(i) (6)
8 [NP � *det *n., 3, 5] scan (7)
9 [VP � *v NP., 2, 5] complete (5,9)

10 [S � NP VP., 0, 5] complete (3,9)

Figure 4: The final LC chart

The intuition should be clear now, and we
present the formal definition rather terse. The left corner of a production is the leftmost symbol
in the right-hand side of that production (and c
for an empty production) . We write A >t U if A
has left corner U E (V U { c}) We write >; for the
transitive closure of >t · Hence, in the running
example, we have S >t *det.
The LC chart parser uses the following kinds of

resenting the sentence, the agenda is initialized to
{ [0 , S] } . The operators of the LC chart parser are
defined as follows. We distinguish separate left­
corner (le) operators for left corners a, C, and
€.

lc(i) : for A >t B, B � a/3 E P:

[i , A] , [a, i , i + l] I- [B � a./3, i , i + l] ,

,items: lc(ii) : for A >1 B, B � C/3 E P:

[i , A] predict items, [i , A] , [C � ,. , i , j] 1-- [B � C./3, i, j],
[B � a./3, i , j] : Earley items (but only those lc(iii) : for A >1 B, B � € E P: with a f. € or a = /3 = €) ,
[a, j - 1 , j] terminal items as usual. [i , A] I- [B � . , i , i] ;

The initial chart contains the terminal items rep- predict:

PREDICTIVE HEAD- CORNER CHART PARSING

[B --+ o:.C/3, i , j] r- [j, C];
scan:

[B --+ o:.a/3, i , j] , [a, j, j + l]

271

our example sentence. For a proof of the correct­
ness of the algorithm we refer to a more extensive
technical report (Sikkel and op den Akker, 1992) .

r- [B --+ o:a.{3, i , j + l] ; 4 Head-Corner Chart Pars-
complete :

[B --+ o:.C/3, i , j] , [C --+ ,., j, k] � [B --+ o:C.{3, i, k] .
Thus we have characterized the LC chart parser
by defining the initial chart and agenda and the
operators. The reader may verify that these op­
erators produce the chart shown in Figure 4 for

ing

We introduce the head-corner chart parser by
analogy to the left-corner parser. While the
LC parser makes a left-to-right walk through a
parse tree, the HC parser makes a head-first walk
through a parse tree2 , as shown in Figure 5. With
this very simple idea in mind we can fix the formal
details.

s . . ,6
7// ·-

. .
� // 10 · · · · ·./p �

NP f· � NP

i ····\·
8

/
1

i · ····\·

3
... 9 ·.. : .. · 4 ·

*d *n *v *d *n

Figure 5: The head-corner tree walk

A context-free head grammar is a 5-tuple (N, E, P, S, r) , with r a function that assigns a
natural number to each production in P. Let
IPI denote the length of the right-hand side of p.
Then r is constrained to r(p) = 0 for IPI = 0 and
1 � r(p) � IPI for IPI > 0. The head of a pro­
duction p is the r(p)-th symbol of the right-hand
side; an £-production has head c.

In a practical notation, we give a head gram­
mar as a set of productions with the heads un­
derlined. The head grammar H for our running
example is given by

S --+ NP VP, VP --+ *v NP,
NP --+ *det *n.

The relation > h is defined by A > h U if there is

a production p = A --+ o: E P with U the head
of p; the transitive and reflexive closure of > h is
denoted >ii - In the running example it holds that
S > h *v . For the head-corner parser we distin­
guish the following kinds of items:

[l , r, A] predict items [B --+ o:.{3.,, i, j) : double dotted (DD) items ,
[a, j - 1 , j) terminal i terns.

A predict item [l , r, A] will be recognized if a con­
stituent A is being looked for that must be lo­
cated somewhere between l and r. Such a con­
stituent should either stretch from l to some j (if
we are working to the right from the head of some
production) or from r downto some j (if we are 2In the general case, to be precise, the HC parser makes interlacing and partially coinciding walks through all full parse trees, as well as "valid infixes" starting from a feasible lexical head of the sentence.

272

working to the .left from the head of some pro­duction), with l � j � r. A double dotted item [B --+ a.,B.,, i, j) is recognized if there is a goal [l, r, A] such that with A>;:B, l � i, j � r and ,B =>* ai+1 . . , aj has been established. In (Satta and Stock, 1992) it is remarked that, similar to the "valid prefix property" of the Earley and LC parser, our predictive head-corner parser satisfies a "valid infix property" . As it is hard enough to get an understanding of what is going on, we will not concentrate on the mathematical details. The initial chart contains the terminal items that represent the string as usual; the agenda is initialized with .a single predict item [0, n, S]. If the string is correct, we will be able to derive an item [S --+ .,., 0, n] . The operators, are defined as follows. We distinguish three different head­corner (he) operators for heads b, C and £.
hc(i): for A >;: B, B --+ a.fry E P, l < j � r:

[l , r, A] , [b, j - 1, j) r [B --+ a.b.,, j - 1, j),
hc(ii) : for A >h B, B --+ a.C, E P, l � i � j � r:

[l, r, A] , [C --+ .o. , i, j) r [B --+ a.C.,, i, j),
hc(iii): for A >;: B, B --+ £ E P, l � j � r:

item 0 (0, 5, S]

SIKKEL - OP DEN AKKER

[l , r, A] r [B --+ .. , j, j);
predict: for A >;: B, l � i � j � r:

[l , r, A] , [B --+ aC.,B.,, i , j] r [l , i , C] ,
[l, r, A] , [B --+ a.,B.C,, i, j] r [j, r, C];

scan: for A>;:B, l < j � k � r:
[l , r, A] , [a, j - 1, j), [B --+ aa.,B.,, j, k]

r [B --+ a.a,B.,, j - 1, k) ,
[l , r, A] , [B --+ a.,B.a,, i , j - I) , [a, j - 1, j]

r [B --+ a..,Ba.,, i, j);
complete: for A>;:B, l � i � j � k � r:

[l , r, A] , [C --+ .o. , i , j] , [B --+ aC.,B.,, j, k]
r [B --+ a.C,B.,, i, k] ,

[l, r, A] , [B --+ a..,B.C,, i, j], [C --+ .o. , j, k]
r [B --+ a.,BC •'Y' i, k] .

Head-corner analysis of the example sentence il­lustrates how the chart parser may jump up and down the sentence. The completed HC chart is shown in F igure 6. Each item corresponds to a step in the head-corner tree walk for the parse of our example sentence, cf. F igure 5.

recognized by initial 1 (VP --+ . *v.NP, 2, 3) he(i) (0)

5

2 (3 , 5, NP] predict(!) 3 [NP --+ *det. *n. , 4, 5] he(i) (2) 4 [NP --+ • *det *n. , 3, 5] scan (3) 5 [VP --+ . *v NP., 2, 5] complete (1,4) 6 [S --+ NP. VP., 2, 5] he(ii) (0,5) 7 [0, 2, NP) predict(6) 8 [NP --+ *det. *n. , 1, 2) he(i) (7) 9 [NP --+ • *det *n. , 0, 2] scan (8) 10 [S --+ .NP VP., 0, 5] complete (6,9)
F igure 6: The HC chart

Complexity analysis and

further optimizations

current item is more than linear. The most prob­lematic operation is complete (with scan as a special sub-case) with 5 place markers involved. The number of items that can be recognized now is O(n2) , but the work involved for an arbitrary

PREDICTIVE HEAD-CORNER CHART PARSING

Complete can be reduced to 3 place markers with some special extra bookkeeping. As a conse­
q uence, the number of place markers involved in scan and predict will drop from 4 to 3. We keep a goal table , in the form of a CYK table, for storage of the predicted goals. Whenever an item [l, r, A] is predicted, we write an A in goal table entry (l, r). Furthermore, we write an A in every en­try (i, j) with l ::; i ::; j ::; r in which no A is present . A typical case is presented in Figure 7. A goal [O , 5, A] is to be added, the entry (0,5) is indicated * in Figure 7(a) . One adds A symbols column by column, stopping each time when an A is found. In Figure 7(b) a * indicates the entries where an A is written and + indicates the entries that were inspected but already contained an A. During the course of the algorithm only O(n2) A symbols are written, per A only 0(n) entries are inspected that already did contain A.

0
1
2
3 4
5

(i) 6

0
1

· 2
3
4
5

(i) 6

0 1 2 3 4 5 6 (j)
A A A *

0

A A
A

A A A
A A

A

(a)
1 2 3 4 5 6

A A + * * *
A A * * *

A * * *
* * *

+ + A
A A

A

(b)

(j)

Figure 7: Adding a goal to the goal table
Using the goal table, the place markers l, r in the complete can be replaced by i, k. Using the goal table as explained above one can straightfor­wardly verify that the overall complexity in the length of the sentence is O(n2) space and O(n3) time as usual, assuming that the chart is struc­tured likewise as a triangular matrix. When the size of the grammar is taken into account the analysis gets somewhat more complicated. For

273

the sake of brevity we only state the results. For an optimal worst-case complexity we have to make a small change to the implementation and represent fully completed DD items [A --+ .(3. , i, j] by CYK items [A, i, j] . An Earley chart parser -using the same optimization - has a time com­plexity O(IGln3) , with IG I the number of produc­tions multiplied by the average length of a pro­duction. Without prediction the HC parser has a time complexity of O(IG lrn3) , with r the size of the longest production. This extra factor r is because we use double dotted, rather than sin­gle dotted items. Prediction usually speeds up a parser but may slow it down in pathological cases. In the worst case it adds a factor IN I , the number of nonterminal symbols, yielding a time complexity of O(INI I Glrn3) . The space complex­ity is O(IG lrn2) for the chart and agenda, and O(INl2 x INl l� I) for storage of the >ii relation in tabular form.
The obtained worst-case complexity is opti­mal, in the sense that all complexity factors are properly accounted for (i.e . , the factors r and INI in addition to an optimal Earley parser are ev­idently necessary) . Yet , on a practical level, a large percentage of computing time can be saved by adding some more sophistication to the algo­rithm. We will not formally introduce an opti­mized algorithm, as the definitions grow rather complicated, but simply state some principles that can be implemented straightforwardly.
• When an item [A --+ a.B.;, i , j] has been recognized by the head-corner rule, with a f= c f= ; , it should be expanded either to [A --+ .aB.;, h, j] or to [A --+ a.B,. , i , k] but not both; from either one a completed item [A --+ .aB;., h, k] can be obtained. This idea is taken from (Satta and Stock 1989) .
• A predicted item should fit to the left , fit to the right, or both. This can be ex­pressed by using predict items of the form

[= l, = r, A] , [� l, = r, A] and [= l , ::; r, A] with the obvious interpretation. For ex­ample, if A>hX and X occurs only at the left (i.e . , if A =>* X/3) then [X, i , j] fits to
[= l , ::; r, A] only if i = l . The head-corner operator can be adapted accordingly.

274
If the grammar is limited to Chomsky Normal Form, the first saving doesn't apply but the sec­ond is more effective. Further optimizations are possible, but beyond the scope of this article .
6 Extension

structures

with feature

Feature information according to any unification based grammar can be added to recognized items. For bottom-up composition of constituents this is straightforward. Using feature information for top-down prediction is more subtle, as we can only use so-called transitive features . A feature is transitive if every constituent shares the feature with its head. Hence, a constituent transitively shares such a feature with its lexical head. This is important, because sub-goals are parsed from the lexical head upwards. If, for example, a VP has been found .with agreement 3sg (third person singular), then the NP that is set as a goal must also have agreement 3sg. Because agreement is a transitive feature, only a noun with agreement 3sg can be the lexical head. Practically this works as follows. Double dot­ted items [B � a.,B.,, i, j] are replaced by items [l , r, A; B � a.,B.,, i , j] , with A the predicted goal symbol. The transitive features of A are shared with B. If we have an item [l, r, A; A � .a., l, j] we can unify the predicted and parsed A if the nontransitive features match as well.
7 Related approaches

The left-corner chart parser of Section 3, although rather different in style of presentation, is closely related to the predictive chart parsing framework introduced in (Kay, 1980). F irst ideas of general­ized LC parsing, although not under that name; can be traced back to (Pratt, 1975). A left-corner style parser in Prolog was presented in_ (Mat­sumoto et al, 1983). This BUP parser is iimited to acyclic, e-free grammars. In (Nederhof, 1992)a generalized LC parser is defined by analogy to Tomita's generalized LR parser (Tomita, 1985). Nederhof's parser is more efficient than our LC chart parser, but it doesn't generalize to HC. The head-driven parser in (Satta and Stock, 1989) is similar to ours, but does not make use

SIKKEL - OP DEN AKKER

of prediction. The use of a head-driven approach to enhance the efficiency of prediction was first suggested in (Kay, 1989). The context-free �ead grammars in Section 4 should not be confused with Head Grammars as introduced in (Pollard, 1984). that handle dis.: continuous constituents by means of "head wrap­ping" . (Van Noord, 1991) describes ·a Prolog implementation of a head-corner parser for lan­guages with discontinuous constituents. Bouma and van Noord . have experimented with various parsing strategies for unification grammars (Bouma and van Noord, 1993) and conclude that for important classes of grammars it is fruitful to apply parsing strategies that are sensitive to the linguistic notion of a head.
8 Conclusions

work

and future

We have given a formal treatment of a predictive head-corner parser. The item-based description of (predictive) chart parsers is a useful formal­ism for such a formal treatment. This is exem­plified by the fact that we cover grammars with €-productions with hardly any additional effort, while these are usually left out for the sake of simplicity. Enhancing a head-corner chart parser with prediction is new. It cannot be stated in general that the head­corner approach is more efficient than the (gener­alized) left-corner approach or other parsers. It is indeed a heuristic, that can be expected to be ef­fective when most of the feature information of a constituent is located in the head. Hence, because it is a method based on a heuristic, rather than a fail-safe principle, it is important to consider what happens if the heuristic doesn't pay off. There­fore we have made some effort to make sure that the worst-case behaviour conforms to the usual complexity bounds for context-free parsing algo­rithms: O(n3) time and 9(n2) space. We have indicated how the algorithm can be extended with feature information. An im­plementation of a head-corner chart parser for PATR-like unification grammars is (nearly) fin­ished. It is currently being tested on a natu­ral language grammar developed for a knowledge representation research project at our institute. We intend to make an extensive comparison of

PREDICTIVE HEAD-CORNER CHART PARSING

the efficiency of the head-corner and left-corner parser.

275

Acknowledgements

We are grateful to Anton Nijholt, Mark-Jan Ne­derhof, Gertjan van Noord and Giorgio Satta for constructive comments on earlier drafts and Mar­griet Verlinden for implementing the HC chart parser for PATR.

276
References

Bouma, G. and G. van Noord (1993). Head­driven Parsing for Lexicalist Grammars: Ex­perimental Results . 6th European Chapter of the A CL, 71-80.
Demers, A.J. (1977). Generalized Left Corner Parsing. 4th ACM Symp. on Principles of Prog. Lang. , 170-182.
Kay, M. (1980). Algorithm Schemata and Data Structures in Syntactic Processing. Re­port CSL-80-12, Xerox PARC, Palo Alto, Ca. Reprinted in: GROSZ, B .J . et al. (Eds.), Read­ings in Natural Language Processing, Morgan Kaufmann, Los Altos, Ca. (1982).
Kay, M. (1989). Head Driven Pars-ing. Int. Workshop on Parsing Technologies (IWPT'89) , 52-62.

Matsumoto, Y. , H. Tanaka, H. Hirakawa, H. Miyoshi and H. Yasukawa (1983). BUP: a bottom-up parser embedded in Prolog. New Generation Computing 1 , 145-158.
Nederhof, M.-J . (1993). Generalized Left-Corner Parsing. 6th European Chapter of the A CL, 305-3 14.
Noord, G . van (1991). Head Corner Parsing for Discontinuous Constituency. 29th Ann. Meet­ing of the AGL, 1 14-121 .
Pollard, C. (1984). Generalized Context-

Free Grammars, Head Grammars and Natural

SIKKEL - OP DEN AKKER

Languages . Ph.D. Thesis, Dept. of Linguis­tics, Stanford University.
Pratt, V.R. (1975). LINGOL - A Progress Re­port. 4th Int. Joint Conf. on Artificial Intel­ligence (IJCAI'75) , 422-428 .
Proudian, D. and C. Pollard (1985). Parsing head-driven phrase structure grammar. 23th Ann. Meeting of the AGL, 167-171 .
Rosenkrantz, D.J. and P.M. Lewis (1970). De­terministic Left Corner Parsing. 11th Ann. Symp. on Switching and Automata Theory, 139-152.
Satta, G. and 0. Stock (1989). Head-Driven Bidirectional Parsing: A Tabular Method. Int. Workshop on Parsing Technolo­gies (IWPT'89) , 43-51 .

Satta, G. and 0. Stock (1992). BiDirectional Context-Free Grammar Parsing for Natu­ral Language Processing. Technical Report IRCS-92-13 , Institute for Research in Cog­nitive Science, University of Pennsylvania, Philadelphia . To appear in J. of Artificial Intelligence.
Sikkel, K. and R. op den Akker (1992). Left-Corner and Head-Corner Chart Parsing. Memoranda lnformatica 92-55, University of Twente, Enschede, the Netherlands.

Tomita, M. (1985). Efficient Parsing for Natural Language . Kluwer, Boston, Mass.

Parsing English with a Link Grammar

Daniel D. Sleator* and Davy Temperleyt

* School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
email: sleator©cs . emu . edu

t Music Department
Columbia University
New York, NY 10027

email: dt3©cunixa . cc . columbia . edu

Abstract We define a new formal grammatical system called a link grammar. A sequence of words is in the language of a link grammar if there is a way to draw links between words in such a way that (1) the local requirements of each word are satisfied, (2) the links do not cross, and (3) the words form a connected graph. We have encoded English grammar into such a system, and written a program (based on new algorithms) for efficiently parsing with a link grammar. The formalism is lexical and makes no explicit use of constituents and categories. The breadth of English phenomena that our system handles is quite large. A number of sophisticated and new tecµniques were used to allow efficient parsing of this very complex grammar. Our program is written in C, and the entire system may be obtained via anonymous ftp. Several other researchers have begun to use link grammars in their own research.
1 Introduction
Most sentences of most natural languages have the property that if arcs are drawn connecting each pair of words that relate to each other, then the arcs will not cross [10, p. 36] . This well­known phenomenon, which we call planarity, is the basis of link grammars our new formal lan­guage system. A link grammar consists of a set of words (the terminal symbols of the grammar), each of which has a linking requirement. A sequence of words is a sentence of the language defined by the gram­mar if there exists a way to draw links among the words so as to satisfy the following conditions:
Planarity: The links do not cross (when drawn above the words).
Connectivity: The links suffice to connect all the words of the sequence together.

Satisfaction: The links satisfy the linking re­quirements of each word in the se­quence.

The linking requirements of each word are con­tained in a dictionary. To illustrate the linking requirements, the following diagram shows a sim­ple dictionary for the words a, the , cat, snake , Mary, ran, and chased. The linking requirement of each word is represented by the diagram above the word.
277

278

a the

ran

cat
snake

chased

Mary

Each of the intricately shaped labeled boxes is a connector. A connector is satisfied by match­ing it to a compatible connector (one with the appropriate shape, facing in the opposite direc­tion). Exactly one of the connectors attached to a given black dot must be satisfied (the others, if any, must not be used). Thus, cat requir�s a D connector to its left, and either an 0 connector to its left or a S connector to its right. Plugging a pair of connectors together corresponds to draw­ing a link between that pair of words. The following diagram shows how the linking requirements are satisfied in the sentence The cat chased a snake .

the cat chased a snake (The unused connectors have been suppressed here.) It is easy to see that Mary chased the cat , and the cat ran are also sentences of this gram­mar. The sequence of words: the Mary chased cat is not in this language. Any attempt to sat­isfy the linking requirements leads to a violation of one of the three rules. Here is one attempt:

the Mary chased cat Similarly ran Mary, and cat ran chased are not part of this language. A set of links that prove that a sequence of words is in the language of a link grammar is

DANIEL SLEATOR AND DAVY TEMPERLEY

called a linkage . From now on we'll use simpler diagrams to illustrate linkages. Here is the sim­plified form of the diagram showing that the cat chased a snake is part of this language:
rYs� the cat chased a snake

We have a succinct, computer-readable nota­tion for expressing the dictionary of linking re­quirements. The following dictionary encodes the linking requirements of the previous example.
words formula a the D+ snake cat D- & (0- or S+) Mary 0- or S+ ran s-chased S- & 0+

The linking requirement for each word is ex­pressed as a formula involving the operators &, and or, parentheses, and connector names. The + or - suffix on a connector name indicates the direction (relative to the word being defined) in which the matching connector (if any) must lie. The & of two formulas is satisfied by satisfying both the formulas. The or of two formulas re­quires that exactly one of its formulas be satis­fied. The order of the arguments of an & operator is significant. The farther left a connector is in the expression, the nearer the word to which it connects must be. Thus, when using cat as an object, its determiner (to which it is connected with its D- connector) must be closer than the verb (to which it is connected with its 0- connec­tor).
We can roughly divide our work on link gram­mars into three parts: the link grammar formal­ism and its properties, the construction of a wide­coverage link grammar for English, and efficient algorithms and techniques for parsing link gram­mars. We now touch briefly on all three of these aspects. Link grammars are a new and elegant context­free grammatical formalism1 2, and have a unique combination of useful properties: 1 Link grammars resemble dependency grammars and categorial grammars. There are also many significant differ­ences. Some light is shed on the relationship in section 6. 2The proof of the context-freeness of link grammars is not included in this paper, but appears in our technical

PARSING ENGLISH WITH A LINK GRAMMAR

1. In a link grammar each word of the lexicon is given a definition describing how it can be used in a sentence. The grammar is distributed among the words. Such a system is said to be lexical . This has several important advan­tages. It makes it easier to construct a large grammar, because a change in the definition of a word only affects the grammaticality of sen­tences involving that word. The grammar can easily be constructed incrementally. Further­more, expressing the grammar of the irregular verbs of English is easy - there's a separate definition for each word.
Another nice feature of a lexical system is that it allows the construction of useful prob­abilistic language models. This has led re­searchers to construct lexical versions of other grammatical systems, such as tree-adjoining grammars [13] . Lafferty and the present au­thors have also constructed such a probabilis­tic model for link grammars [1 1] .

2 . Unlike a phrase structure grammar, after pars­ing a sentence with a link grammar words that are associated semantically and syntactically are directly linked. This makes it easy to enforce agreement, and to gather statistical information about the relationships between words.
3. In English, whether or not a noun needs a de­terminer is independent of whether it is used as a subject , an object , or even if it is part of a prepositional phrase. The algebraic notation we developed for expressing a link grammar takes advantage of this orthogonality. Any lex­ical grammatical system, if it is to be used by a human, must have such a capability. In our current on-line dictionary the word cat can be used in 369 different ways, and for time this number is 1689. A compact link grammar for­mula captures this large number of possibil­ities, and can easily be written and compre­hended by a human being.
4. Another interesting property of link grammars is that they have no explicit notion of con­stituents or categories. In most sentences parsed with our dictionaries, constituents can

279
be seen to emerge as contiguous connected col­lections of words attached to the rest of the sentence by a particular type of link. For ex­ample in the dictionary above, s links always attach a noun phrase (the connected collection of words at the left end of the link) to a verb (on the right end of the link) . 0 links work in a similar fashion. In these cases the links of a sentence can be viewed as an alternative way of specifying the constituent structure of the sentence. On the other hand, this is not the way we think about link grammars, and we see no advantage in taking that perspective.

Our second result is the construction of a link grammar dictionary for English. The goal we set for ourselves was to make a link grammar that can distinguish, as accurately as possible, syntac­tically correct English sentences from incorrect ones. We chose a formal or newspaper-style En­glish as our model. The result is a link grammar of roughly eight hundred definitions (formulas) and 25000 words that captures many phenomena of English grammar. It handles: noun-verb agree­ment, questions, imperatives, complex and irreg­ular verbs, many types of nouns, past- or present­participles in noun phrases, commas, a variety of adjective types, prepositions, adverbs, relative clauses, possessives, coordinating conjunctions, unbounded dependencies, and many other things.
The third result described in this paper is a program for parsing with link grammars. The program reads in a dictionary (in a form very similar to the tables above) and will parse sen­tences according to the given grammar. The pro­gram does an exhaustive search - it finds every way of parsing the given sequence with the given link grammar. It is based on our own O(n3) algo­rithm (n is the number of words in the sentence to be parsed) . The program also makes use of sev­eral very effective data structures and heuristics to speed up parsing. The program is comfortably fast - parsing typical newspaper sentences in a few seconds on a modern workstation.
Both our program (written in ANSI-C) and our dictionary are available via anonymous ftp report [14] . Note that context-free systems can differ in many ways, including the ease with which t_he same grammar can be expressed, the efficiency with which the same grammar can be parsed, and the usefulness of the output of the parser for further processing.

280

through the internet.3 Having the program avail­able for experimentation may make it easier to understand this paper.
The organization of this paper
In section 2 we define link grammars more for­mally and explain the notation and terminology used throughout the rest of the paper. In sec­tion 3 we describe the workings of a small link grammar for English. Our O(n3) algorithm is de­scribed in section 4, and the data structures and heuristics that make it run fast are described in section 5. In section 6 we explain the relationship between link grammars, dependency syntax, and categorial grammars. We show how to automat­ically construct a link grammar for a given cate­gorial grammar. This construction allows our ef­ficient parsing algorithms and heuristics to be ap­plied to categorial grammars. Section 7 mentions several other research projects that are based on link grammars. Space limitations prevent us from presenting details of a number of other aspects of our work. The following paragraphs mention a few of these. More details on all of these matters are contained in our technical report [14) . There are a number of common English phe­nomena that are not handled by our current sys­tem. Our technical report contains a list of these, along with the reason for this state of affairs. The reasons range from the fact that ours is a pre­liminary system to the fact that some phenom­ena simply do not fit well into the link grammar framework. Coordinating conjunctions such as and pose a problem for link grammars. This is because in a sentence like The dog chased and bit Mary there should logically be links between both dog and bit and chased and Mary . Such links would cross. We have devised a scheme that handles the vast majority of uses of such conjunctions and in­corporated it into our program. The existence of such a conjunction in a sentence modifies the grammar of the words in it. The same parsing algorithm is then used on the resulting modified grammar. Certain other constructs are difficult to han­dle only using the basic link grammar framework.

DANIEL SLEATOR AND DAVY TEMPERLEY

One example is the non-referential use of it : It is likely that John will go is correct, but The cat" is likely that John will go is wrong. It is possible -but awkward - to distinguish between these with a link grammar. To deal with this (and a num­ber of other phenomena), we extended the ba­sic link grammar formalism with a post-processor that begins with a linkage, analyzes its structure , and determines if certain conditions are satisfied. This allows the system to correctly judge a num­ber of subtle distinctions (including that men­tioned here).
2 Notation and terminology

2 .1 Meta-rules
The link grammar dictionary consists of a collec­tion of entries, each of which defines the linking requirements of one or more words. These re­quirements are specified by means of a formula of connectors combined by the binary associative operators & and or. Presidence is specified by means of parentheses. Without loss of general­ity we may assume that a connector is simply a character string ending in + or -. When a link connects to a word, it is associ­ated with one of the connectors of the formula of that word , and it is said to satisfy that connector. No two links may satisfy the same connector. The connectors at opposite ends of a link must have names that match , and the one on the left must end in + and the one on the right must end in -. In basic link grammars, two connectors match if and only if their strings are the same (up to but not including the final + or -) . A more general form of matching will be introduced later. The connectors satisfied by the links must serve to satisfy the whole formula. We define the notion of satisfying a formula recursively. To sat­isfy the & of two formulas, both formulas must be satisfied. To satisfy the or of two formulas, one of the formulas must be satisfied, and no connec­tors of the other formula may be satisfied. It is sometimes convenient to use the empty formula (" () ") , which is satisfied by being connected to no links. A sequence of words is a sentence of the lan­guage defined by the grammar if there exists a 3The directory is /usr/sleator/public on the host spade . pc . cs . cmu . edu (128.2.209.226). Our technical re­ports [14, 1 1] are also available there.

PARSING ENGLISH WITH A LINK GRAMMAR

way to draw links among the words so as to sat­
isfy each word's formula, and the following meta­rules :
Planarity: The links are drawn above the sen­

tence and do not cross.

Connectivity: The links suffice to connect all
the words of the sequence together.

Ordering: When the connectors of a formula are
traversed from left to right , the words to
which they connect proceed from near to
far. In other words, consider a word, and
consider two links connecting that word to
words to its left. The link connecting the
nearer word (the shorter link) must satisfy
a connector appearing to the left (in the for­
mula) of that of the other word. Similarly,
a link to the right must satisfy a connector
to the left (in the formula) of a longer link
to the right .

Exclusion: No two links may connect the same
pair of words.

2 .2 Disjunctive form

The use of formulas to specify a link grammar
dictionary is convenient for creating natural lan­
guage grammars, but it is cumbersome for mathe­
matical analysis of link grammars, and in describ­
ing algorithms for parsing link grammars. We
therefore introduce a different way of expressing
a link grammar called disjunctive form.

In disjunctive form, each word of the grammar
has a set of disjuncts associated with it . Each dis­
junct corresponds to one particular way of satis­
fying the requirements of a word. A disjunct con­
sists of two ordered lists of connector names: the left list and the right list. The left list contains
connectors that connect to the left of the current
word (those connectors end in -) , and the right
list contains connectors that connect to the right
of the current word. A disjunct will be denoted:

((L1 , L2 , . · · , Lm) (Rn , Rn-1 , · · · , R1))

Where L1 , L2 , • • • , Lm are the connectors that
must connect to the left , and R1 , R2 , . . . , Rn are
connectors that must connect to the right . The
number of connectors in either list may be zero.
The trailing + or - may be omitted from the con­
nector names · when using disjunctive form, since

281

the direction is implicit in the form of the dis­
junct .

To satisfy the linking requirements of a word,
one of its disjuncts must be satisfied (and no links
may attach to any other disjunct) . To satisfy a
disjunct all of its connectors must be satisfied by
appropriate links. The words to which L1 , L2 , • • •

are linked are to the· left of the current word, and
are monotonically increasing in distance from the
current word. The words to which R1 , R2 , • • • are
linked are to the right of the current word, and
are monotonically increasing in distance from the
current word. ·

It is _ easy to see how to translate a link gram­
mar in disjunctive form to one in standard form.
This can be done simply by rewriting each dis­
junct as

and combining all the disjuncts together with the
or operator to make an appropriate formula.

It is also easy to translate a formula into a set
of disjuncts. This is done by enumerating all ways
that the formula can be satisfied. For example,
the formula:

(A- or ()) & D- & (B+ or ()) & (0- or S+)

corresponds to the following eight disjuncts:

((A , D)

((A , D , 0)

((A , D)

((A , D , 0)

((D)

((D , O)

((D)

((D , O)

(S , B))

(B))

(S))

())

(S , B))

(B))

(S))

())

2.3 Our dictionary language

To streamline the difficult process of writing the
dictionary, we have incorporated several other
features to the dictionary language. Examples
of all of these features can be found in section 3-.

It is useful to consider connector matching
rules that are more powerful than simply requir­
ing the strings of the connectors to be identical.
The most general matching rule is simply a ta­
ble - part of the link grammar - that specifies ·
all pairs of connectors that match. The resulting
link grammar is still context-free.

282

In the dictionary presented later in this pa­
per, and in our larger on-line dictionary, we use a
matching rule that is slightly more sophisticated
than simple string matching. We shall now de­
scribe this rule.

A connector name begins with one or more
upper case letters followed by a sequence of lower
case letters or *S. Each lower case letter (or *)
is a subscript . To determine if two connectors
match, delete the trailing + or - , and append an
infinite sequence of *S to both connectors. The
connectors match if and only if these two strings
match under the proviso that * matches a lower
case letter (or *) .

For example, S matches both Sp and Ss , but
Sp does not match Ss . Similarly, D*u, matches
Dmu and Dm, but not Dmc . All four of these con­
nectors match Dm.

The formula " ((A- & B+) or ()) " is satis­
fied either by using both A- and B+, or by using
neither of them. Conceptually, then, the the ex­
pression " (A+ & B+) " is optional. Since this oc­
curs frequently, we denote it with curly braces, as
follows: {A+ & B+} .

It is useful t o allow certain connectors to be
able to connect to one or more links. This makes
it easy, for example, to allow any number of ad­
jectives to attach to a noun. We denote this by
putting an "©" before the connector name, and
call the result a multi-connector.

Our dictionaries consist of a sequence of en­tries , each of which is a list of words separated
by spaces, followed by a colon, followed by the
formula defining the words, followed by a semi­
colon.

3 An example

Perhaps the best way to understand how to write
a link grammar for English is to study an ex­
ample. The following dictionary does not cover
the complete grammar of the words it contains,
�ut it does handle a number of phenomena: verb­
noun agreement, adjectives, questions, infinitives,
prepositional phrases, and relative clauses.

the : D+ ;
a : Ds+ ;
John Mary :

J- or 0- or (({C- or CL-} &: S+) or SI-) ;
dog cat park bone stick :

DANIEL SLEATOR AND DAVY TEMPERLEY

{©A-} &: Ds-
&: {©M+ or (C+ &: Bs+) }
&: (J- or 0- or ({C- or CL-} &: Ss+) or Sis-) ;

dogs cats parks bones sticks :
{©A-} &: {Dm-}
&: {©M+ or (C+ &: Bp+) }
&: (J- or 0 - or ({C- o r CL-} &: Sp+) o r Sip-) ;

has :
(Sis+ or Ss- or (Z- &: B-))
&: (((B- or 0+) &: {©EV+}) or T+) ;

did :
(SI+ &: I+)
or ((S- or (Z- &: B-))

&: (((B- or 0+) &: {©EV+}) or I+)) ;
can may will must :

(SI+ or S- or (Z- &: B-)) &: I+ ;
is was :

(Ss- or (Z- &: Bs-) or Sis+)
&: (AI+ or O+ or B- or V+ or Mp+) ;

touch chase meet :
(Sp- or (Z- & Bp-) or I-)
&: (0+ or B-) &: {©EV+} ;

touches chases meets :
(Ss- or (Z- &: Bs-)) &: (0+ or B-) &: {©EV+} ;

touched chased met :
(V- or M-

or ((S- or (Z- &: B-) or T-) &: (0+ or B-)))
&: {©EV+} ;

touching chasing meeting :
(GI- or M-) &: (0+ or B-) &: {©EV+} ;

die arrive :
(Sp- or (Z- &: Bp-) or I-) &: {©EV+} ;

dies arrives :
(Ss- or (Z- &: Bs-)) &: {©EV+} ;

died arrived :
(S- or (Z- &: B-) or T-) &: {©EV+} ;

dying arriving :
(GI- or M-) &: {©EV+} ;

with in by :
J+ &: (Mp- or EV-) ;

big black ugly :
A+ or (AI- &: {©EV+}) ;

who :
(C- &: {Z+ or CL+}) or B+ or Ss+ ;

3. 1 Some Simple Connectors

We develop an explanation of how this works in
stages. Let 's first restrict our attention to the
following connectors: S, O, A, D. (Imagine the dic­
tionary with all of the other connectors removed.)
The S is used to connect a noun to its verb. The 0
connector is used to connect a verb to its object .
The A connector is used to connect an adjective
to its noun. The D is for connecting a determiner

PARSING ENGLISH WITH A LINK GRAMMAR

to its noun. Notice that this connector is omitted from proper nouns, is optional on plural nouns, and is mandatory on singular nouns. Also notice that the subscripts allow the to act as the de­terminer for both plural and singular nouns, but
a can only work with the singular nouns. Sim­ilarly, the S connector is subscripted to ensure verb-noun agreement . The ordering of the terms in these expressions is often important. For example, the fact that on nouns, the A- occurs to the left of the D- means that the adjective must be closer to the noun than the determiner. Here are some judgements that can be ren­dered by what we have described so far:

lf�s-@ the ugly black dog chased a big cat
rs� dogs died
,s� dogs chase cats
*a dog chase a cat *black the dog died *a/*the Mary chased the cat *a dogs died *dog died

3. 2 Prepositions

The J, M and EV connectors allow prepositional phrases. The J connector connects a preposition to its object . Notice that in nouns, the J- is an alternative to the 0- . This means that a noun cannot both be an object of a verb and of a prepo­sition. The M connector is used when a preposi­tional phrase modifies a noun and the EV connec­tor is used when a prepositional phrase modifies a verb. The following two examples illustrate this:

283

(osyssy-zv��

the dog arrived with a bone

(°�� the dog with a bone arrived
Notice that , as with A- connectors on nouns, a © is used for M- connectors on nouns and EV- con­nectors on verbs, allowing multiple prepositional phrases, such as John chased a dog in the park with a stick.

3.3 Participles

The M- connector on chased allows it to act as a participle phrase modifying a noun, as shown in these examples.

[°•hEV1:� l the dog chased in the park arrived

/°�� l the dog chased in the park arrived
The I connector is used for infinitives, as in :

/SYI� John must meet Mary
Notice that the I connector is an alternative to the S connector on plural verb forms. Thus we take advantage of the fact that plural verb forms are usually the same as infinitive forms, and in­clude them both in a single dictionary entry. In a similar way, the T connector is used for past participles. Past participles have a T-; forms of the verb have have a T+. The GI connector is used for present participles. Present participles have a GI- connector; forms of the verb be have a GI+. The AI connector is used for predicative ad­jectives. Adjectives have a AI - connector; forms of be have a AI+ connector.

284

3.4 Questions

The SI connector is used for questions where there is subject-verb inversion. On nouns SI- is an alternative to S+, and on invertible verbs (is, has, did, must , etc .) SI+ is an alternative to S-. This allows
�x�

did John chase the dog
Wh- questions work in various different ways; only questions involving who will be discussed here. For subject-type questions, where who is substituting for the subject , who simply has an S+ connector. This allows

1
ss� who chased the dog

For object-type questions, where who is sub­stituting for the object , the B connector is used. Transitive verbs have B- connectors as an alter­native to their O+ connectors. Who has a B+ con­nector. This allows

�7 who did John chase
The following incorrect sentences are rejected:

*Did John chase *Who did John chase Mary *John did Mary chase *Chased John Mary
The following incorrect construction is ac­cepted. In our on-line system, post-processing is used to eliminate this .

*Who John chased
3 .5 Relative Clauses

For subject-type relative clauses , where the an­tecedent is acting as the subject of the clause, a B connector serves to connect the noun to the verb of the relative clause. Nouns have a B+ connector. Notice that this is optional; it is also &ed with the

DANIEL SLEATOR AND DAVY TEMPERLEY

S+, SI- , O+, and J+ connectors, meaning that one of these connectors must be used whether or not the noun takes a relative clause. Verbs have a B­connector which is orred with their S- connec­tors; if a verb is in a subject-type relative clause, it may not make an S connection as well. For subject-type relative clauses, the relative pronoun who is mandatory. For this purpose, verbs have a Z- connector anded with their B­connector. Who has a Z+ connector; therefore it can fulfill this need. However, it also has a C­connector anded with its Z+ connector; this must connect back to the C+ connector on nouns. This allows the following:

(°-��� I the dog who chased John died
For object-type relative clauses, the same B+ connector on nouns is used. However, this time it connects to the other B- connector on verbs, the one which is orred with the O+ connector and which is also used for object-type wh- questions. In this case, the relative pronoun who is op­tional. Notice that nouns have optional C+ and CL- connectors which are anded with their S+ con­nectors. These are used when the noun is the subject of an object-type relative clause. When

who is not present, the C+ connector on the an­tecedent noun connects directly to the C- on the subject of the relative clause:

(°"�� the dog John chased died
When who is present, the C+ on the antecedent connects to the C- on who ; this forces the CL+ to connect to the CL- on the subject of the clause:

r°"�Y� I the dog who John chased died
This system successfully rejects the following incorrect sentences:

PARSING ENGLISH WITH A LINK GRAM MAR
*The dog chased cats died *The dog who chase cats died *The dog who John chased cats died *The dog John chased cats died *The dog who chased died

The following incorrect constructions are ac­cepted, but can be weeded out in post-processing:
*The dog did John chase died *The dog who John died Mary chased died

4 The algorithm

Our algorithm for parsing link grammars is based on dynamic programming. Perhaps its closest rel­ative in the standard literature is the dynamic programming algorithm for finding an optimal triangulation of a convex polygon [2, p. 320] . It tries to build up a linkage (which we'll call a so­lution in this section) in a top down fashion: It will never add a link (to a partial solution) that is above a link already in the partial solution.
The algorithm is most easily explained by specifying a data structure for representing dis­juncts. A disjunct d has pointers to two linked lists of connectors. These pointers are denoted left[d] and right[d] . If c is a connector, then next [c] will denote the next connector after c in its list . The next field of the last pointer of a list has the value NIL. For example, suppose the disjunct d = ((D , 0) ()) (using the notation of section 2) . Then left[d] would point to the connector □ , next[left [d]] would point to the connector D, and next[next [left[d]]] would be NIL. Similarly, right [d] = NIL. To give some intuition of how the algorithm works, consider the situation after a link has been proposed between a connector l' on word L and a connector r' on word R. (The words of the sequence to be parsed are numbered from O to N - 1 .) For convenience, we define l and r to be next[l'] and next[r'] respectively. The situation is shown in the following diagram:

285

L R

Here the square boxes above the words L and
R represent a data structure node corresponding to the word. The rectangular box above each of these represents one of the (possibly many) dis­juncts for the word. The small squares pointed to by the disjuncts represent connectors. How do we go about extending the partial so­lution into the region strictly between L and R? (This region will be denoted (L, . . . , R) .) First of all, if there are no words in this region (i. e.
L = R + 1) then the partial solution we've built is certainly invalid if either l =/= NIL or r =/= NIL. If l = r = NIL then this region is ok, and we may proceed to construct the rest of the solution. Now suppose that the region between L and
R contains at least one word. In order to attach the words of this region to the rest of the sen­tence there must be at least one link either from
L to some word in this region, or from R to some word in this region (since no word in this region can link to a word outside of the [L, . . . , R] range, and something must connect these words to the rest of the sentence) . Since the connector l' has already been used in the solution being constructed, this solution must use the rest of the connectors of the dis­junct in which l' resides. The same holds for r' . The only connectors of these disjuncts that can be involved in the (L, . . . , R) region are those in the lists beginning with l and r. (The use of any other connector on these disjuncts in this region 'would violate the ordering requirement .) In fact , all of the connectors of these lists must be used in this region in order to have a satisfactory solu­tion. Suppose, for the moment, that l is not NIL. We know that this connector must link to some disjunct on some word in the region (L, . . . , R) . (It can't link to R because of the exclusion rule.) The algorithm tries all possible such words and disjuncts. Suppose it finds a word W and a dis-

286

junct d on W such that the connector l matches left [d]. We can now add this link to our partial solution. The situation is shown in the following dia­gram.

L w R

How do we determine if this partial solution can be extended to a full solution? We do this by solving two problems similar to the problem we started with. In particular , we ask if the solution can be extended to the word range (L, . . . , W) using the connector lists beginning with next[l] and next[left [d]]. We also ask if the solution can be extended to the word range (W, . . . , R) using the connector lists beginning with right[d] and r. Notice that in the latter case, the problem we are solving seems superficially different: the bound­ary words have not already been connected to­gether by a link. This difference is actually of no consequence because the pair of links (L to R and L to W) play the role that a direct link from
W to R would play : (1) they separate the region (W, . . . , R) from all the other words, and (2) they serve to connect the words W and R together. We need to consider one other possibility. That is that there might be a solution with a link between words L and W and a link between words
W and R. (This results in a solution where the word/link graph is cyclic.) The algorithm han­dles this possibility by also attempting to form a link between right[d] and r. If these two match, it does a third recursive call, solving a third problem analogous to our original problem. In this prob­lem the word range is (W, . . . , R) and the connec­tor lists to be satisfied begin with next[right [d]] and left [r] . A very similar analysis suffices to handle the case when l is NIL. The algorithm described has an exponential worst-case running time as a function of N, the number of words in the sequence to be parsed. This can easily be transformed into an efficient dynamic programming algorithm by using mem­oization ((2, p. 3 12]).

DANIEL SLEATOR AND DAVY TEMPERLEY

The running time is now bounded by the num­ber of different possible recursive calls multiplied by the time used by each call. A recursive call is completely determined by specifying the pointers l and r. (These uniquely determine L and R.) The cost of a given call is bounded by the total number of disjuncts in the sequence of words. If we let d be the number of disjuncts and c be the number of connectors, then the running time is O(c2d) . For a fixed link grammar, d = O(N) and c = O(N), so the running time is O(N3). Our technical reports describe this algorithm in more detail. They contain pseudo-code for the algorithm [14] , an argument for it 's correctness (14] and an elegant recurrence for the number of linkages of a sentence [11] . After the algorithm above was implemented, we were interested in seeing how well it would work on sentences taken from newspapers and other natural sources. It quickly became clear that something else was needed to make the al­gorithm run faster on long sentences.
5 Speeding it up

As pointed out in the introduction, in a link gram­mar dictionary with significant coverage of En­glish grammar the number of disjuncts on many words gets rather large. Thus, the constant d in the analysis at the end of the last section is quite large. We devised and implemented several time­saving schemes that run in conjunction with the algorithm of the previous section.
5 . 1 Pruning

Our first approach is based on the following obser­vation: In any particular sequence of words to be parsed, most of the disjuncts are irrelevant for the simple reason that they contain a connector that does not match any other connector on a word in the sequence . To be more precise, suppose that a word W has a disjunct d with a connector C in its right list. If no word to the right of W has a connector (pointing to the left) that matches C, then the disjunct d cannot be in any linkage. This disjunct can therefore be deleted without chang­ing the set of linkages. Deleting such a disjunct is called a pruning step. pruning consists of re­peating the pruning step until it can no longer be applied.

PARSING ENGLISH WITH A LINK GRAMMAR

The set of disjuncts left (after pruning is com­
plete) is independent of the order in which the
steps are applied. (The pruning operation has the
Church-Rosser property.) We therefore choose an
ordering that can be efficiently implemented. It
would be ideal if we could achieve a running time
for pruning that is linear in the number of connec­
tors. The scheme we propose satisfies no useful
a-priori bound on its running time, but in prac­
tice it appears to run in linear time.

A series of sequential passes through the words
is made, alternately left-to-right and right-to-left .
The two types of passes are analogous, so it
suffices to describe the left-to-right pass. The
pass processes the words sequentially, starting
with word 1 . Consider the situation after words
1 , . . . , W - l have been processed. A set S of
connectors has been computed. This is the set of
connectors that exists on the right lists of the dis­
juncts of words 1 , . . . , W - l that have not been
deleted. To process word W, we consider each
disjunct d of W in turn. For each connector c
on the left list of d, we search the set S to see if
it contains a connector that matches c. If one of

Initial: 3 12 18 391 296 9
after L-+R 3 8 1 1 67 160 6
after R-+L 3 6 5 25 21 3
after L-+R 3 6 5 25 21 3
after R-+L 3 6 5 25 21 3
After P.P. : 2 6 1 13 2 2

287

the connectors of d matches nothing in S, then
we apply the pruning step to d (we remove d).
Each right connector of each remaining disjunct
of W is now incorporated into the set S. This
completes the processing of word W.

The function computed by this left-to-right
pass is idempotent, which is another way of say­
ing that doing the operation twice in a row will
be the same as doing it once. Therefore if (as we
alternate left-to-right and right-to-left passes) a
pass (after the first one) does nothing, then all
further passes will do nothing. This is how the
algorithm decides when to stop.

The data structure used for the set S is sim­
ply a hash table, where the hash function only
uses the initial upper-case letters of the connec­
tor name. This ensures that if two connectors get
hashed to different locations, then they definitely
don't match.

Although we know of no non-trivial bound on
the number of passes, we have never seen a case
requiring more than five. Table 1 shows a typ­
ical example of the reduction in the number of
disjuncts achieved by pruning.

10 3 81 391 20 423 104 391
10 3 81 163 8 381 25 357
3 3 25 25 3 25 4 12
3 3 25 21 3 21 3 8
3 3 25 21 3 21 3 8
2 2 2 6 1 4 2 1

Table 1 : This table shows the number of disjuncts remaining on each word of the sentence Now this vision is secular, but deteriorating economies will Javor Islamic radicalism. (The first number is for the wall which has not been described in this paper. Of course the comma also counts as a word.) The
fourth pass of pruning has no effect , so pruning stops. The last row in the table shows the number of
disjuncts that remain after power pruning.

5 .2 The fast-match data structure

The inner loop in the algorithm described in sec­
tion 4 searches for a word W and a disjunct d
of this word whose first left connector matches l, or whose first right connector matches r. If
there were a fast way to find all such disjuncts,
significant savings might be achieved. The fast­
match data structure, which is based on hashing,
does precisely this. The speed-up afforded by this

technique is roughly the number of different con­
nector types, which is roughly 30 in our current
dictionary.

5.3 Power pruning
Power pruning is a refinement of pruning that
takes advantage of the ordering requirement of
the connectors of a disjunct , the exclusion rule,
and other properties of any valid linkage. It also

288

interacts with the fast-match data structure in a
beautiful way. Unfortunately, these details are
beyond the scope of this paper 4 • Table 1 shows
outcome of pruning and power pruning on a typ­
ical sentence.

Each of the refinements described in this sec-_
tion significantly reduced the time required to do
search for a linkage. The operations of pruning,
power pruning, and searching for a linkage all take
roughly the same amount of time.

6 Dependency and catego-
rial grammars

6 .1 Dependency formalisms

There is a large body of work based on the idea
that linguistic analysis can be done by drawing
links between words. These are variously called dependency systems [5] , dependency syntax [10] , dependency grammar [3, 4] , or word grammar
[6, 7] .

In dependency grammar, a grammatical sen­
tence is endowed with a dependency structure ,
which is very similar to a linkage. This struc­
ture, as defined by Melcuk [10) , consists of a set
of planar directed arcs among the words that form
a tree. Each word (except the root word) has an
arc out to exactly one other word, and no arc may
pass over the root word. In a linkage (as opposed
to a dependency structure) the links are labeled,
undirected, and may form cycles, and there is no
notion of a root word.

Gaifman (5) was the first to actually give a
formal method of expressing a dependency gram­
mar. He shows that his model is context-free.

Melcuk's definition of a dependency structure,
and Gaifman 's proof that dependency grammar is
context free imply that there is a very close re­
lationship between these systems and link gram-­

roars. This is the case.
It is easy to take a dependency grammar in

Gaifman 's notation and generate a link grammar
that accepts the same language. In this corre­
spondence, the linkage that results from parsing a
sentence is the same as the corresponding depen­
dency structure. This means that our algorithm
for link parsing can easily be applied to depen­
dency grammars. The number of disjuncts in the 4 Although they do appear in our technical report (14] .

DANIEL SLEATOR AND DAVY TEMPERLEY

resulting link grammar is at most quadratic in
the number of rules in the dependency grammar.
None of the algorithms that have been described
for dependency parsing [3, 15, 7] seem to bear
any resemblance to ours. It is therefore plausible
to conjecture that our algorithms and techniques
could be very useful for directly parsing depen­
dency grammars.

Gaifman's result shows that it is possible to
represent a link grammar as a dependency gram­
mar (they're both context-free) . But this corre­
spondence is of little use if the parsed structures
that result are totally different.

One problem with constructing a dependency
grammar that is in direct correspondence with
a given link grammar is that a linkage in a link
grammar my have cycles, whereas cycles are not
allowed in dependency grammar. If we restrict
ourselves to acyclic linkages, we run into another
problem. This is that there is an exponential
blow-up in the number of rules required to express
the same grammar. This is because each disjunct
of each word in the link grammar requires a sep­
arate rule in the dependency grammar.

Gaifman 's model is not lexical. The method
classifies the words into categories. One word can
belong to many categories. Roughly speaking, for
each disjunct that occurs in the dictionary, there
is a category of all words that have that disjunct .
The notation is therefore in a sense orthogonal to
the link grammar notation.

We are not aware of any notation for depen­
dency systems that is lexical, or that is as terse
and well suited for a natural language grammar
as link grammars. There has been work on creat­
ing dependency grammars for English [7, 3] , but
we are not aware of an implementation of a de­
pendency grammar for any natural language that
is nearly as sophisticated as ours.

6 .2 Categorial grammars
Another grammatical system, known as a catego­rial grammar [1] bears some resemblance to link
grammars. Below we show how to express any
cat ego rial grammar concisely as a link grammar.
It appears to be more difficult to express a link
grammar as a categorial grammar.

Just as in a link grammar, each word of a cat­
egorial grammar is associated with one or more

PARSING ENGLISH WITH A LINK GRAM MAR

symbolic expressions. An expression is either an atomic symbol or a pair of expressions combined with one of two types of binary operators: / and
\ . A sentence i s in the language defined by the categorial grammar if, after choosing one expres­sion associated with each word, there is a deriva­tion which transforms the chosen sequence of ex­pressions into S, a single expression consisting of a special atomic symbol. The derivation proceeds by combining two neighboring expressions into one using one of the following rules:

e e\f f/e e
f f Here e and f are arbitrary expressions, and

f\e and f /e are other expressions built using e and f. In both cases the two expressions being combined (the ones shown above the line) must be adjacent in the current sequence of expressions. Each combinational operation produces one ex­pression (the one below the line) , and reduces the number of expressions by one. After n - 1 oper­ations have been applied, a sentence of length n has be reduced to one expression. For example, consider the following categorial grammar [9] :
Harry :
likes :

NP , S/ (S\NP)
(S\NP)/NP

peanuts : NP
passionately : (S\NP) \ (S\NP)

Here is the derivation of Harry likes peanuts passionately .
Harry likes peanuts

S/(S\NP) (S\NP) /NP NP

S/NP

s

passionately
(S\NP) \ (S\NP)

S\NP

The set of languages that can be represented by categorial grammars (as they are described here) is the set of context-free languages [1]5 This fact alone sheds no light on the way in which the formalism represents a language. To get a bet­ter understanding of the connection between cat­egorial grammars and link grammars, the follow­ing paragraphs explain a way to construct a link

289

grammar for a given categorial grammar. The re­verse (constructing a categorial grammar from a given link grammar) seems to be more difficult, and we do not know of an elegant way to do this. To simplify the construction, we'll use a mod­ified definition of a link grammar called a special link grammar. This differs from an ordinary link grammar in two ways: the links are not allowed to form cycles, and there is a special word at the beginning of each sentence called the wall. The wall will not be viewed as being part of any sen­tence. Let d be a categorial grammar expression. We'll show how to build an equivalent link gram­mar expression E(d) . If a word w has the set { d1 , d2 , . • . , dk } of categorial expressions, then we'll give that word the following link grammar expression:
E(d1)orE(d2)or · · · orE(dk)

The function E(•) is defined recursively as fol­lows:
E(J /e) = f /e- or f /e+ or (e+ & E(J))

E(e\f) = e\f- or e\f+ or (e- & E(J)) E(A) = A- or A+
Here A stands for any atomic symbol from the categorial grammar, and A, f /e and e\f are con..: nector names in the link grammar formulas. The wall has the formula S+. Here is the link grammar corresponding to the categorial grammar above:
WALL : S+ ;
peanuts : NP+ or NP- ;
Harry :

(NP- or NP+)
or (S/<S\NP>­

or S/<S\NP>+
or (S\NP+ & (S+ or S-))) ;

likes :
<S\NP>/NP- or <S\NP>/NP+
or (NP+ & (S\NP- or S\NP+

or (S- & (NP- or NP+)))) ;
passionately :

<S\NP>/<S\NP>- or <S\NP>/<S\NP>+
or (S\NP- & (S\NP- or S\NP+

or (S- & (NP- or NP+)))) ;

5There are other variants of categorial grammars which are mildly context-sensitive[9] . Of course the construction
presented here does not work for those languages.

290

(Here we have replaced parentheses in the cate­
gorial gramm�r expressions with brackets when
using them inside of a link grammar expression.)

This link grammar gives the following analysis
of the sentence shown above:

(��9
WALL Harry likes peanuts passionately

Notice that in this construction, both the size
of the link grammar formula, and the number of
disjuncts it represents are linear in the size of
the original categorial grammar expressions. This
suggests that a very efficient way to parse a cate­
gorial grammar would be to transform it to a link
grammar, then apply the algorithms and heuris­
tics described in this paper.

6Personal communication.

DANIEL SLEATOR AND DAVY TEMPERLEY

7 Remarks

Link grammars have become the basis for sev­
eral other research projects. John Lafferty [1 1]
proposes to build and automatically tune a prob­
abilistic language model based on link grammars.
The proposed model gracefully encompasses tri­
grams and grammatical constraints in one frame­
work. Andrew Hunt6 has developed a new model
of the relationship of prosody and syntax based on
link grammars. He has implemented the model,
and in preliminary tests, the results are much bet­
ter than with other models. Tom Brehony6 has
modified our parser to detect the kinds of errors
that Francophones make when they write in En­
glish.

PARSING ENGLISH WITH A LINK GRAM MAR

References
[1) Y. Bar-Hillel, Language and information; se­lected essays on their theory and application. Addison-Wesley, 1964.
[2) Cormen, T. H . , C . E. Leiserson, and R. L. Rivest , Introduction to Algorithms, MIT Press and McGraw-Hill, 1990.
[3) Fraser, N. , "Parsing and dependency gram­mar," In: Carston, Robyn (ed.) UCL Work­ing Papers in Linguistics 1 , University Col­lege London, London, 1989 Pages 296-319.
[4) Fraser, N. , "Prolegomena to a formal theory of dependency grammar," In: UCL Working Papers in Linguistics 2, University College London, London, 1990 Pages 298-319.
[5) Gaifman, H., "Dependency systems and phrase-structure systems," Information and Control 8, 1965, Pages 304-337.
[6) Hudson, R . , Word Grammar, Basil Black­well, 1984 .
[7) Hudson, R . , "Towards a computer testable word grammar of English," In: Carston, Robyn (ed.) UCL Working Papers in Lin­guistics 1 , University College London, Lon­don, 1989, Pages 321-339.
[8] Hudson, R . , English Word Grammar, Basil Blackwell, 1990.
[9) Joshi, A. K . , "Natural Language Process­ing," Science , Volume 253 , No. 5025, (Sept. 13 , 1991), Pages 1242-1249.

291
[10] Melcuk, I. A. Dependency Syntax: Theory and Practice, State University of New York Press 1988.
[11] Lafferty, J, D. Sleator , D. Temperley, "Grammatical Trigrams: A Probabilistic Model of Link Grammar," Proc . of the 1992 AAAI Fall Symp. on Probabilistic Ap­proaches to Natural Language, and Techni­cal report CMU-CS-92-181 , School _of Com­puter Science, Carnegie Mellon University, Sept 1992.
[12) Oehrle, R. T . , E. Bach, and D. Wheeler , Ed­itors Categorial Grammars and Natural Lan­guage Structures D. Reidel Publishing Com­pany, 1988.
[13] Y. Schabes. "Stochastic lexicalized tree­adjoining grammars." In Proceedings of COLING-92, Nantes, France, July 1992.
[14] Sleator, D. D. , D. Temperley, "Parsing En­glish with a Link Grammar," Technical re­port CMU-CS-91-196, Carnegie Mellon Uni­versity, School of Computer Science, October 1991 .
[15) van Zuijlen, J . , M. , "Probabilistic methods in dependency grammar parsing," Proceed­ings of the International Workshop on Pars­ing Technologies, Carnegie Mellon Univer­sity, 1989, Pages 142-250.

292 DANIEL SLEATOR AND DAVY TEMPERLEY

1

Evaluation of TTP Parser: A Preliminary Report

Tomek Strzalkowski* and Peter G. N. Scheyen +
* Courant Institute of Mathematical Sciences, New York University

715 Broadway, rm 704, New York, NY 10003
email: tomek©cs . nyu . edu

+ Department of Computer Science, The University of Western Ontario
London, Ontario N6A 5B7

email: scheyen©csd . uwo . ea

Abstract

TTP {Tagged · Text Parser) is a fast and robust natural language parser specifically designed
to process vast quantities of unrestricted text. TTP can analyze written text at the speed of
approximately 0.3 sec/sentence, or 73 words per second. An important novel feature of TTP
parser is that it is equipped with a skip-and-fit recovery mechanism that allows for fast closing
of more difficult sub-constituents after a preset amount of time has elapsed without producing a
parse. Although a complete analysis is attempted for each sentence, the parser may occasionally
ignore fragments of input to resume "normal" processing after skipping a few words. These
fragments are later analyzed separately and attached as incomplete constituents to the main parse
tree. TTP has recently been evaluated against several leading parsers. While no formal numbers
were released (a formal evaluation is planned later this year) , TTP has. performed surprisingly
well. The main argument of this paper is that TTP can provide a substantial gain in parsing
speed giving up relatively little in terms of the quality of output it produces. This property allows
TTP to be used effectively in parsing large volumes of text.

Overview of This Paper 10 to make such a task manageable.
Recently, there has been a growing demand for fast and reliable natural language processing tools, capable of performing reasonably accurate syntactk analysis of large volumes of text within an acceptable time. A full sentential parser that produces complete analysis of input, may be con­sidered reasonably fast if the average parsing time per sentence falls anywhere between 2 and 10 sec­onds. A large volume of text, perhaps a giga­byte or more, would contain as many as 7 million sentences. At the speed of say, 6 sec/sentence, this much text would require well over a year to parse. While 7 million sentences is a lot of text, this much may easily be contained in a fair­sized text database. Therefore, the parsing speed would have to be increased by at · 1east a factor of

In this paper we describe TTP, a fast and robust natural language parser that can . analyze written text and generate regularized parse struc­tures at a speed of below 1 second per sentence. In the experiments conducted on variety of nat­ural language texts, including technical prose, news messages, and newspaper articles, the aver­age parsing time varied .between 0.3 sec/sentence and 0.5 sec/sentence, or between 2500 and 4300 words per minute, as we tried to find an ac­ceptable compromise between parser's speed and precision (these results were obtained on a Sun SparcStation 2) . Original experiments were per­formed within an _information retrieval system with the recall/precision statistics used to mea­sure effectiveness of the . parser. In the second part of the paper, the linguistic
293

294
accuracy of TTP is discussed based on the partial results of a quantitative evaluation of its output using the Parseval method (Black et al, 1991) . This method calculates three scores of "closeness" as it compares the bracketed parse structures re­turned by the parser against a pre-selected stan­dard. These scores are: the crossings rate which indicates how many constituents in the candidate parse are incompatible with those in the stan­dard; recall which is the percentage of candidate constituents found in the standard; and precision which specifies the percentage of standard con­stituents in the candidate parse. Parseval may also be used to compare the performance of differ­ent parsers. In comparison with NYU's Proteus parser, for example, which is on average two levels of magnitude slower than TTP, the crossing score was only 6 to 27% higher for TTP, with recall 13% lower, and approximately the same precision for both parsers. In addition we discuss the relationships be­tween allotted parse time per sentence, the aver­age parsing time, crossings rate, and recall and precision scores.
2 Introduction to Tagged

Text Parser

It has long been assumed that in order to gain speed, one may have to trade in some of the parser's accuracy. For example, we may have to settle for partial parsing that would recognize only selected grammatical structures (e.g. noun phrases; Ruge et al. , 1991) , or would avoid mak­ing difficult decisions (e.g. pp-attachment; Hin­dle, 1983) . Much of the overhead and inefficiency comes from the fact that the lexical and struc­tural ambiguity of natural language input can only be dealt with using limited context infor­mation available to the parser. Partial parsing techniques have been used with a considerable success in processing large volumes of text, for example AT&T's Fidditch (Hindle and Rooth, 1991) parsed 13 million words of Associated Press news messages, while MIT's parser (de Marcken, 1990) was used to process the 1 million word Lan­caster/Oslo/Bergen (LOB) corpus. In both cases, the parsers were designed to do partial process­ing only, that is, they would never attempt a com­plete analysis of certain constructions, such as the

STRZALKOWSKI - SCHEYEN

attachment of pp-adjuncts, subordinate clauses, or coordinations. This kind of partial analysis may be sufficient in some applications because of a relatively high precision of identifying cor­rect syntactic dependencies, for example Church and Hanks (1990) used partial parses generated by Fidditch to study word co-occurrence patterns in syntactic contexts. On the other hand, ap­plications involving information extraction or re­trieval from text will usually require more accu­rate parsers. An alternative is to create a parser that would attempt to produce a complete parse, and would resort to partial or approximate analysis only under exceptional conditions such as an extra­grammatical input or a severe time pressure. En­countering a construction that it couldn't han­dle, the parser would first try to produce an ap­proximate analysis of the difficult fragment, and then resume normal processing for the rest of the input . The outcome is a kind of "fitted" parse, reflecting a compromise between the actual input and grammar-encoded preferences. One way to accomplish this is to adopt the • follow­ing procedure: (1) close (reduce) the obstruct­ing constituent (one which is being currently parsed) , then possibly reduce a few of its par­ent constituents, removing corresponding produc­tions from further consideration, until a produc­tion is reactivated for which a continuation is pos­sible; (2) Jump over the intervening material so as to restart processing of the remainder of the sentence using the newly reactivated production. As an example, consider the following sentence where the highlighted fragment is likely to cause problems, and may be better off ignored in the first pass:
"The method is illustrated by the au­tomatic construction of both recur­sive and iterative programs operating on natural numbers, lists, . and trees, in order to construct a program sat­isfying certain specifications a theo­rem induced by those specifications is proved, and the desired program is ex­tracted from the proof."

Assuming that the parser now reads the arti­cle 'a' following the string 'certain specifications' , i t may proceed to reduce the current NP, then SI -+ to" + V +NP, SI -+ SA, SA -+ NP+ V +NP+SA,

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT 295
until finally S � S+" and" +S is reached on the stack. Subsequently, the parser skips input to find 'and' , then resumes normal processing. The key point here is that TTP decides (or is forced) to reduce incomplete constituents rather than to backtrack or otherwise select an alternative anal­ysis. However, this is done only after the parser is thrown into the panic mode, which in case of TTP is induced by the time-out signal. In other words, while there is still time TTP will proceed in reg­ular top-down fashion until the time-out signal is received. Afterwards, for some productions early reduction will be forced and fragments of input will be skipped if necessary. If this action does not produce a parse within a preset time (which is usually much longer than the original 'regular' parsing time) , the second time-out signal is gener­ated which forces the parser to finish even at the cost of introducing dummy constituents into the parse tree. The skipped-over fragments of input are quickly processed by a simple phrasal ana­lyzer, and then attached to the main parse tree at the points where they were deleted. An example parse structure returned by TTP is shown below. Note (vrbtm X) brackets which surround all un-parsed tokens in the input .
Sentence:

Mrs. Hills said that the U.S. is still concerned about "disturbing developments in Turkey and continuing slow progress in Malaysia."
TTP Approximate Parse:

(sent (np (name mrs
hills)) (vp (verb said) (thats (compl that) (sent (np (t_pos the) (name u.s .))

(vp (verb is (adv still)) (venpass (verb concerned))))) ((vrbtm about) (vrbtm ") (((np (adj disturbing) (n developments))) (pp (prep in) (np (np (name turkey)) and (np (a_pos_v continuing) (adj slow) (n progress)))) (pp (prep in) (np (name malaysia .)))) (vrbtm "))))
As may be expected, this kind of action in­volves a great deal of indeterminacy which, in case of natural language strings, is comp_ound�d by the high degree of lexical ambiguity. If the purpose of this skip-and-fit technique is to get the parser smoothly through even the most com­plex strings, the amount of additional l>ackt!ack­ing caused by the lexical level ambiguity is cer­tain to defeat it . Without lexical disambiguation of input , the parser's performance will det.erio­rate, even if the skipping is limited only to Gertain types of adverbial adjuncts. The most common cases of lexical ambiguity are those of a plural noun (nns) vs. a singular verb (vbz) , a singular noun (nn) vs. a plural or infinitive verb (vbp,vb) , and a past tense verb (vbd) vs. a past participle (vbn) , as illustrated in the following example.

"The notation used (vbn or vbd?) ex­plicitly associates (nns or vbz?) ··a data structure (vb or nn ?) shar�d

296

(vbn or vbd?) by concurrent pro­
cesses (nns or vbz?) with operations
defined (vbn or vbd?) on it."

We use a stochastic tagger to process the in­
put text prior to parsing. The tagger, developed
at BBN (see Meteer et al. , 1991) is based upon a
bi-gram model and it selects most likely tag for a
word given co-occurrence probabilities computed
from a relatively small training set . The input to
TTP looks more like the following:

"The/ dt notation/nn used/vbn
explicitly /rb associates/vbz a/dt
data/nns structure/nn shared/vbn
by /in concurrent/jj processes/nns
with/in operations/nns defined/vbn
on/in it/pp ./ ."

In a 'normal' operation, TTP produces a reg­
ularized representation of each parsed sentence
that reflects the sentence's logical structure. This
representation may differ considerably from a
standard parse tree, in that the constituents get
moved around (e.g. , de-passivization) , and the
phrases are organized recursively around their
head elements. However, for the purpose of the
evaluation with Parseval an 'input-bracketing'
version has been created. In this version the
skipped-over material is simply left unbracketed.

As the parsing proceeds, each sentence re­
ceives a new slot of time during which its parse is
to be returned. The amount of time allotted to
any particular sentence can be regulated to obtain
an acceptable compromise between parser's speed
and accuracy. In our experiments we found that
0.5 sec/sentence time slot was appropriate for the
Wall Street Journal articles (the average length of
the sentence in our WSJ collection is 17 words) .
We must note here that giving the parser more
time per sentence doesn't always mean that a bet­
ter (more accurate) parse will be obtained. For
complex or extra-grammatical structures we are
likely to be better off if we do not allow the parser
wander around for too long: the most likely inter­
pretation of an unexpected input is probably the
one generated early (the grammar rule ordering
enforces some preferences) . In fact, our experi­
ments indicate that as the 'normal' parsing time
is extended, the accuracy of the produced parse
increases at an ever slowering pace, peaking for

STRZALKOWSKI - SCHEYEN

a certain value, then declining slightly to eventu­
ally stabilize at a constant level. This final level­
off indicates, we believe, an inherent limit in the
coverage of the underlying grammar.

3 The TTP Time-out Mech­

anism

The time-out mechanism is implemented using
a straightforward parameter passing and is lim­
ited to only a subset of nonterminals used by the
grammar. Suppose that X is such a nontermi­
nal, and that it appears on the right-hand side of
a production ·s --+ X · Y Z. The set of "starters"
is computed for Y, which consists of the word
tags that can occur as the left-most constituent
of Y. This set is passed as a parameter while the
parser attempts to recognize X in the input. If
X is recognized successfully within a preset time,
then the parser proceeds to parse a Y, and noth­
ing else happens. On the other hand, if the parser
cannot determine whether there is an X in the in­
put or not , that is, it neither succeeds nor fails in
parsing X before being timed out, the unfinished
X constituent is closed (reduced) with a partial
parse, and the parser is restarted at the closest
element from the starters set for Y that can be
found in the remainder of the input . If Y rewrites
to an empty string, the starters for Z to the right
of Y are added to the starters for Y and both sets
are passed as a parameter to X. As an example
consider the following clauses in the TTP parser:

sentence(P) :-
assertion (0 ,P) .

assertion(SR,P) :­
clause(SR,Pl) ,
s_coord(SR,Pl ,P) .

clause(SR,P) :-
sa([pdt ,dt ,cd,pp,ppS,jj ,jjr ,jjs,nn,nns,np,nps] ,P2) ,
subject([vbd,vbz,vbp] ,Pl) ,
verbphrase(SR,Pl ,P2,P) .

thats(SR,P) :­
that ,
assertion(SR,P) .

In the above code, P , Pl , and P2 repre­
sent partial parse structures, while SR is a set
of starter word tags where the parsing will re­
sume should the present nonterminal be timed­
out . First arguments to 'assertion' , 'sa', and 'sub-

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT 297

ject ' are also sets of starter tags. In the 'clause' production above, a (finite) clause rewrites into a left sentence adjunct ('sa') , a 'subject ' , and a 'verbphrase' . If 'sa' is aborted before its eval­uation is complete, the parser will jump over some elements of the unparsed portion of the in­put looking for a word that could begin a sub­ject phrase: a pre-determiner (pdt) , a determiner (dt) ; a count word (cd) , a pronoun (pp,ppS) , an adjective (jj , jjr, jjs) , a noun (nn, nns) , or a proper name (np, nps) . Likewise, when 'subject ' is timed out , the parser will restart with 'verbphrase' at ei­ther vbz, vbd or vbp (finite forms of a verb) . Note that if 'verbphrase' is timed out both 'verbphrase' and 'clause' will be closed, and the parser will restart at an element of set SR passed down to 'clause' from assertion. Note also that in the top­level production for a sentence the starter set for 'assertion' is initialized to be empty: if the failure occurs at this level, no continuation is possible. The forced reduction and skip-over are car­ried out through special productions that are ac­tivated only after a preset amount of time has elapsed since the start of parsing. For example, 'subject ' is defined as follows:
subject(SR,PG) :-timed_out, ! , skip(SR) , store(PG) . subject(SR,P) :­noun_phrase(SR,P) .

When a non-terminal is timed out and the parser jumps over a non-zero length fragment of input , it is assumed that the skipped part was some sub-constituent of the reduced non-terminal (e.g. , subject) . Accordingly, a place holder (PG) is left in the parse structure under the node domi­nated by this non-terminal. This placeholder will be later filled by some material recovered from the skipped-over fragment which is put aside by store(PG) . In the bracketing-only version of TTP unparsed fragments are placed verbatim within the outmost bracket of the timed-out constituent, e.g. ,
(S (NP we) (VP (V receive) (NP more pro letters

(VRBTM than) (VRBTM con))
n

Note that (VRBTM *) brackets are invisible to the 'evaluation program, as will be explained in the next section. There are a few caveats in the skip-and-fit parsing strategy just outlined which warrant fur­ther explanation. In particular, the following problems must be resolved to assure parser's ef­fectiveness:
(a) how to select starter tags for non-terminals, and
(b) how to select non-terminals at which input skipping can occur.

0 bviously some tags are more likely to occur at the left-most position of a constituent than others. Theoretically, a subject phrase can start with a word tagged with any element from the following list (still not a complete list) : pdt (pre­determiner) , dt (determiner) , cd (numerical) , jj , jjr, jjs (adjective) , pp, ppS (pronoun) , nn, nns (noun) , np, nps (name) , vbg, vbn (participle) , rb (adverb) , in (preposition) . In practice, however, we may select only a subset of these, as ·shown in the 'clause' production above. Although we now risk missing the left boundary of the subject phrase in some sentences, while skipping an ad­junct to their left , most cases are still covered and the chances of making a serious misinterpretation of input are significantly lower. On the other hand certain adjunct phrases may be of little interest , possibJy because of their typically low information contents -, and we may choose to ignore them altogether. Thus in the 'ntovo' object string production below (where 'to' is the tag of word 'to') :
ntovo(SR, [P-PSA]) :-subject([to] ,Pl) , sa([to] ,PSA) , tovo(SR,P 1 ,P) .
'sa' (sentential adjunct) material is skipped en­tirely if 'subject ' is timed out . We must note here that this scheme will behave as expected only if there is no other 'to' tag between the skip point and the beginning of 'tovo' phrase, e.g. ,

298

"Financial planners often urge
investors to diversify . . . "

L NTovo -1
N(P) + TO + V(P)

When this is not the case, skipping may have
to be redone. As an example, consider the follow­
ing fragment:

" . . . urge
those flying to New York to take . . . "

I NTOVO ____ �
I NP l to l vP J

If 'subject ' of 'ntovo' is timed-out, the parser
will first jump to "to (New York)" , and only after
failing to find a verb ("New") will redo 'skip' in
order to take a longer leap to the next 'to' . This
example shows that a great deal of indeterminacy
still remains even in the tagged text, and that the
final selection of skip points and starter tags may
require some training.

A related problem is the selection of non­
terminals that can be allowed to time out. This is
normally restricted to various less-than-essential
adjunct-type constituents, including adverbials,
some prepositional phrases, relative clauses, etc.
Major sentential constituents such as subject or
verbphrase should not be timed (though their
sub-constituents can) , or we risk to generate
very uninteresting parses. Note that a timed-out
phrase is not lost, but its links with the main
parse structure (e.g. , traces in relative clauses)
may be severed, though not necessarily beyond
repair. Another important restriction is to avoid
introduction of spurious dummy phrases, for ex­
ample, in order to force an object on a transi­
tive verb. The time-out points must be placed in
such a way that while the above principles are ob­
served, the parser is guaranteed a swift exit when
in the skip-and-fit mode. In other words, we do
not want the parser to get trapped in inadver­
tently created dead ends, hopelessly trying to fit
the parse.

As an additional safety valve, a second time­
out signal can be issued to catch any processes
still operating beyond a reasonable time after the
first time-out. In this case, a relaxed skipping
protocol is adopted with skips to only major con­
stituents, or outright to the end of the input.

STRZALKOWSKI - S_CHEYEN

Dummy constituents may be introduced if neces­
sary to close a parse fast . This, however, happens
rarely if the parser is designed carefully. While
parsing 4 million sentences (85 million words) of
Wall Street Journal articles, the second time-out
was invoked less than 10 times.

4 Parser Evaluation With
Parseval

Parseval is a quantitative method of parser eval­
uation which compares constituent bracketings in
the parse's output with a set of 'standard' brack­
etings. A parse is understood as a system of la­
beled brackets imposed upon the input sentence,
with no changes in either word order or form per­
mitted. Using three separate scores of 'crossings' ,
recall and precision assigned to each parse (and
explained in more detail below) the measure de­
termines parser's accuracy indicating how close
it is to the standard. For the purpose of this
evaluation Penn Treebank bracketings have been
adopted as standard.

In the rest of this section we demonstrate how
Parseval typically processes a sentence. The ex­
ample used here is sentence 337 from Brown Cor­
pus, one of the set of 50 sentences used in ini­
tial evaluation. In this example, the sentence
has been processed with TTP time-out set at 700
msecs.

Sentence 337

"Mr. Nixon, for his part, would
oppose intervention in Cuba without
specific provocation."

TTP PARSE {lispified)

(S
(NP (NAME mr. nixon))
(VP

'
(PP

(PREP for)
(NP (T_pos (POSS his)) (N part)))

'
(VERB would)
(VO

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT 299

.)

(VERB oppose) (NP (N intervention))) (PP (PREP in) (NP (N cu ha))) (PP (PREP without) (NP (ADJ specific) (N provocation))))
The first two steps that the evaluator takes is to delete certain kinds of lesser constituents. This is done because of a great variety of treat­ment of these items across different parsers, and their relatively minor role in deciding correctness of a parse. The first phase deletes the following types of token strings from the parse:
1 . Auxiliaries - "might have been understood" � "understood"
2. "Not" - "should not have come" � "come"
3. Pre-infinitival "to" - "not to answer" � "answer"
4. Null categories - (NP ()) � (NP)
5 . Possessive endings - "Lori's mother" � "Lori mother"
6. Word-ex.ternal punctuation (quotes, com­mas, periods, dashes, etc.)
The revised parse of sentence 337 is shown be­low.

(S (NP (NAME mr nixon)) (VP (PP (PREP for) (NP (T _pos (POSS his)) (N part))) (VERB) (VO (VERB oppose) (NP (N intervention))) (PP / (PREP in) (NP (N cuba))) (PP (PREP without) (NP (ADJ specific) (N provocation))))

Subsequently, certain parenthesis pairs are re­cursively deleted, namely those that enclose ei­ther a single constituent or word, or an empty · string. After this phase, sentence 337 looks like the following:
(S (NP mr nix on) (VP (PP for (NP his part)) (VO oppose intervention) (PP in cuba) (PP without (NP specific provocation))))

Now the parse can be compared against the standard, which is shown below:
(S (NP mr nix on) (PP for (NP his part)) (VP oppose (NP intervention (PP in cuba) (PP without (NP specific provocation)))))

We may note that there are several differences between the two structures, the most apparent is that various PP phrases are made part of VP in one of them while not in the other. In addition, TTP's VO constituent creates a " crossing" fault with respect to the standard, as it eq.compasses neither a subset nor a superset of any:,.:st�ndard bracketing. . · ,/: �> .< ·

. . . (VO oppose intervention) . . .

. . . (VP oppose (NP intervention . . �
Other measures of closeness between these two structures are recall and precision, defined as fol­lows:

ll _ # standard constituents in candidate reca - # . . d d constituents in stan ar
prec = # candidate constituents in standard

constituents in candidate

300
In the current example, both the candidate and the standard parses have 9 constituents. Seven of these constituents are common to one another, and there is one crossing fault. There­fore this TTP parse is evaluated as follows:
crossings = recall = precision =

1 77.78% 77.78%
5 Evaluation ,of TTP

Two sets of evaluations were performed with TTP. In the first set, 50 sentences from Brown Corpus were used. In the series of runs with time­out value ranging from 100 to 2500 msecs, TTP scores varied from average crossing rate of 1.38 (for 100 msec time-out) to 0.82 (at 1700 msec); re­call from the low of 59.37 (at 1800 msec!) to 62.02 (at 500 msec); and precision from 70.52 (at 100 msec) to 77.06 (at 1400 msec). The mean scores were: crossing rate 0.92, recall 60.57% and preci­sion 75.69%. These scores reflect both the quality of the parser as well as the differences between grammar systems used in TTP and in preparing the standard parses. For example, average re­call scores for hand parsed Brown sentences .var­ied from 79%. (for LSP grammar on which TTP is based; Sager, 1981) to 97%, with the average of 94%. We also plotted average parsing time per sentence for various time-out values. This is summarized in the table below (timing values are in milliseconds). These results were obtained on Sun SparcStationELC.
)

T/O C R p TIME
100 1 .38 61 .54 70.52 160
200 1 .24 60. 10 72.05 200
500 1 .00 62.02 75.22 300
600 0.88 62.02 76.33 316

1000 0.90 61 .78 76.49 380
1500 0.86 59.86 75.91 420
2000 0.86 59.37 76.00 460
2500 0.82 60.34 76.76 490

Mean 0.92 60.57 75.69

The second set of tests involved 100 sentences form Wall Street Journal. Since WSJ sentences were usually longer and more complex than the 50 Brown sentences, we used time-outs of 250

STRZALKOWSKI - SCHEYEN

msecs and more. The table below summarizes average crossings, recall and precision scores for TTP. Note that the performance peaks at time-. out 500 and 750 msecs. These results are for a Sun SparcStation2.
T/O C

TOT PER
250 71 2.91
500 70 2.60
600 72 2.68
750 69 2.57

1500 68 2.60
30000 59 2 .17

R P TIME

55.08 61.50 305
55.22 63.16 438
54.20 . 62.51 477
55.22 63.85 540
54.57 64.01 797
51.79 66.26 2930

The above statistics can be compared with those obtained parsing the same set of 100 sen­tences with a 'regular' parser : NYU's Proteus Parser (Grishman, 1990). Both parsers are based on the same grammar system (although Proteus grammar provides a much better coverage of En­glish).
Proteus Statistics

C R P TIME
TOT PER

56 2.34 63.74 62.87 24000

TTP Best Statistics

T/O C R p
TOT PER

T

500 70 2.60 55.22 63.16 438
% change

+25% +11 -13 +0.4
750 69 2.57 55.22 63.85 540

% change
+23% +9.8 -13 +1.5

30000 59 2.17 51 .79 66.26 2930
% change

+5% -7 -19 +5

One should note that the per-sentence crossing ratio and recall score indicate how good the parser is at discovering the correct bracketings (preci­sion is less useful as it already includes crossing errors). Clearly, both the crossing ratio and preci­sion improves as we let the parser take more time to complete its job. On the other hand, the re­call, after an initial increase, declines somewhat for larger values of time-out. This, we believe,

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT 301
points to the limitations of the underlying gram­mar used in these tests: initial correct hypotheses (enforced by preferences within the parser) are re­placed by less likely ones when the parser is forced to backtrack.
6 Conclusions

At present TTP is a part of a natural language in­formation retrieval system. Along with a stochas­tic part-of-speech tagger, morpho-lexical stemmer and phrase extractor, it constitutes the linguistic pre-processor built on top of the statistical in­formation retrieval system PRISE, developed at NIST. During the database creation process TTP is used to parse documents so that appropriate in­dexing phrases can be identified with a high de­gree of accuracy. Both phrases and single-word terms are selected, along with their immediate syntactic context which is used to generate se­mantic word associations and create a domain­specific level-1 thesaurus. For TREC-1 confer­ence concluded last November, the total of 500 MBytes of Wall Street Journal articles have been parsed. This is approximately 4 million sentences, and it took about 2 workstation-weeks to pro­cess. While the quality of parsing was less than perfect , it was nonetheless quite good. In vari­ous experiments with the final database we noted an increase of retrieval precision over the purely

statistical base system that ranged from 6% (no­table) to more than 13% (significant) . Therefore, at least in applications such as document retrieval or information extraction, TTP-level parsing ap­pears entirely sufficient, while its high speed and robustness makes an otherwise impractical task of linguistic text processing, quite manageable, and moreover, at par with other statistical parts of the system. Further development of TTP will continue, es­pecially expanding its base grammar to bring the coverage closer to Sager's LSP or Grishman 's Pro­teus. We are also investigating ways of automated generation of skipping parsers like TTP out of any full grammar parser, a process we call 'ttpiza­tion' . TTP has been made available for research purposes to several sites outside NYU, where it is used in variety of applications ranging from in­formation extraction from text to optical readers.

Acknowledgements

This paper is based upon work supported by the Advanced Research Project Agency under Con­tract N00014-90-J-1851 from the Office of Naval Research, Contract N00600-88-D-3717 from PRC Inc. , the National Science Foundation under Grant IRI-89-02304, and by the Canadian Insti­tute for Robotics and Intelligent Systems (IRIS) .

302
References

Church, Kenneth Ward and Patrick Hanks. 1990. "Word association norms, mutual in­formation, and lexicography." Computational Linguistics, 16(1), MIT Press, pp. 22-29.
De Marcken, Carl G. 1990. "Parsirig the LOB corpus." Proceedings of the 28th Meeting of the ACL, Pittsburgh, PA. pp. 243-251.
Grishman, Ralph. 1990. "Proteus Parser Refer­ence Manual." Proteus Project Memorandum #4-C, Courant Institute of Mathematical Sci­ences, New4-C, Courant Institute of Mathe­matical Sciences, New4-C, Coutant Institute of Mathematical Sciences, New York Univer­sity.
Harrison, P., S. Abney, E. Black, D. Flickinger, C . Gdaniec, R. Grishman, D. Hindle, R. Ingria, M. Marcus, B. Santorini, T. Strza­lkowski. 1991. "Evaluating Syntax Perfor­mance of Parser/Grammars of English." Nat­ual Language Processing Systems Evaluation Workshop, Berkeley, CA. pp. 71-78.
Hindle, Donald. 1983. "User manual of Fidditch, a deterministic parser." Naval Research Lab­oratory Technical Memorandum 7590-142.
Hindle, Donald and Mats Rooth. 1991. "Struc­tural Ambiguity and Lexical Relations." Pro­ceedings of the 29th Meeting of the ACL, Berkeley, CA. pp. 229-236.

STRZALKOWSKI - SCHEYEN

Meteer, Marie, Richard Schwartz , and Ralph Weischedel. 1991. "Studies in Part of Speech Labeling." Proceedings of the 4th DARPA Speech and Natural Language Work­shop, Morgan-Kaufman, San Mateo, CA. pp. 331-336.
Ruge, Gerda, Christoph Schwarz, Amy J. Warner. 1991. "Effectiveness and Efficiency in Natural Language Processing for Large Amounts of Text." Journal of the ASIS, 42(6), pp. 450-456.

Sager, Naomi. 1981. Natural Language Informa­tion Processing. Addison-Wesley.
Strzalkowski, Tomek and Barbara Vauthey. 1992. "Information Retrieval Using Robust Natural Language Processing." Proceedings of the 30th ACL Meeting, Newark, DE, June­July. pp. 104-111.

Strzalkowski , Tomek. 1992. "TTP : A Fast and Robust Parser for Natural Language." Pro­ceedings of COLING-92, Nantes , France, July 23-28.
Strzalkowski , Tomek. 1992. "Natural Lan­guage Processing in Large-Scale Text Re­trieval Tasks." First Text Retrieval Confer­ence (TREC-1), Rockville, Md, November 4-6.

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT 303

Appendix: Example Parses

Produced by TTP

All sentences in the examples below are from Wall
Street Journal sample. Parses obtained at 750
msecs time-out on Sun SparcStation2.

Sentence:

Mr. McGovern, 63, had been under
intense pressure from the board to
boost Campbell's mediocre
performance to the level of other
food companies.

TTP PARSE:

((sent
(np

(name
mr

mcgovern)
(rn

(vp

(((punct ,))
(appos

(np
(count 63)))

,)))

(verb had)
(veno

(verb been)
((pp

(prep under)
(np

(adj intense)

.)

(n pressure))))
((pp

(prep from)
(np

(t_pos the)
(n board))))

(tovo
(prep to)
(tvp

(verb boost)
(np

(t_pos
(poss

((name campbell))
's))

(adj mediocre)
(n performance))

((pp
(prep to)
(np

(Lpos the)
(n level)
(rn

(pp
(prep of)
(np

(adj other)
(n_pos

(np
(n food)))

(n companies))))))))))))

CROSSINGS: 1
86.67%
81 .25%

RECALL :
PRECISION:

304

Sentence:

Any money in excess of $40 million · collected from the fees in fiscal 1990 would go to the Treasury at large.
TTP PARSE:
((sent (np (t_pos any) (n money)) (vp ((pp (prep in) (np (n excess)

(rn (pp (prep of) (np
(n

$
40 million)

(rn
(rn_wh (venpass

.)

STRZALKOWSKI - SCHEYEN

(verb would) (vo (verb go) (pp (prep to) (np (t_pos the)

(verb collected) ((pp (prep from) (np (t_pos the)
(n fees)))) ((pp (prep in) (np (count fiscal 1990)))))))))))))

(n treasury)))) ((pp (prep at) (np (n large))))))
CROSSINGS: 7 RECALL : 50.00% PRECISION: 47.06%

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT
Sentence:

RJR Nabisco Inc . and American Brands Inc. say they have no plans to follow Philip Morris's lead .
TTP PARSE:

((sent (np (np (name rjr nabisco inc .)) and (np (name american brands inc .))) (vp (verb say) (thats (compl ())

(sent (np (n they)) (vp (verb have) (np (t_pos no) (n plans) (rn (rn_wh (tovo (prep to) (tvp (verb follow) (np

.)
CROSSINGS: 0
RECALL : 100%
PRECISION: 100%

(t_pos (poss ((name philip morris)) 's)) (n lead))))))))))))

305

306

Sentence:

The Health Insurance Association of America, an insurers' trade group, acknowledges that stiff competition among its members to insure businesses likely to be good risks during the first year of coverage has aggravated the problem in the small-business market.
TTP PARSE:
((sent (np (t_pos the) (n_pos (np (n health)) (n_pos (np (n insurance)))) (n association) (rn (pp (prep of) (np (name america))) (rn (((punct ,)) (appos (np (t_pos an) (n_pos (poss (n insurers)

') (n_pos (np (n trade)))) (n group))) ,)))) (vp (verb acknowledges) (np (t_pos that) (adj stiff) (n competition)) ((pp (prep among)

STRZALKOWSKI - SCHEYEN

(np (t_pos (poss its)) (n members) (rn (rn_wh (tovo (prep to) (tvp (verb insure) (np (n businesses) (rn (rn_wh ((verb likely))) (rn (rn_wh (tovo (prep to) (tvp (verb be) (objbe ((np (adj good) (n risks))))))))))))))))) ((pp (prep during) (np (t_pos the) (adj first) (n year) (rn (pp (prep of) (np (n coverage) (((vrbtm has)) ((wh_rel (venpass (verb aggravated)))) (((np (t_pos the) (n problem))) ((pp (prep in) (np (t_pos the) (n_pos (np (n small-business)))

EVALUATION OF TTP PARSER: A PRELIMINARY REPORT

(n market))))))))))))))
.)

CROSSINGS:
RECALL :
PRECISION:

Sentence:

13
38.46%
37.04%

All three major creditors - the IRS,
Minpeco and Manufacturers Hanover
- voted against and effectively
doomed a reorganization plan
proposed by Mr. Hunt.

TTP PARSE:

(((np
(Lpos all)
(count three)
(adj major)
(n creditors)))

(vrbtm -)
((np

(t_pos the)
(name irs)))

(vrbtm ,)
((np

(name minpeco)))
(vrbtm and)
((np

(name

manufacturers
hanover)))

(vrbtm -)
(vrbtm voted)
(vrbtm against)
(vrbtm and)
(vrbtm effectively)
(wh_rel

(venpass
(verb doomed)))

((np

.)

(t_pos a)
(n_pos

(np
(n reorganization)))

(n plan)
(rn

(rn_wh
(venpass

(verb proposed)
(pp

(prep by)
(np

(name
mr

hunt))))))))

CROSSINGS: 0
RECALL : 57. 14%
PRECISION: 100.00%

307

308 · STRZALKOWSKI - SCHEYEN

Frequency Estimation of Verb Subcategorization Frames Based

on Syntactic and Multidimensional Statistical Analysis

Akira Ushioda, David A. Evans, Ted Gibson, Alex Waibel

Computational Linguistics Program
Carnegie Mellon University, Pittsburgh, PA 15213-3890

email: aushioda©caesar . lcl . emu . edu

Abstract We describe a mechanism for automatically estimating frequencies of verb subcategorization frames in a large corpus. A tagged corpus is first partially parsed to identify noun phrases and then a regular grammar is used to estimate the appropriate subcategorization frame for each verb token in the corpus. In an experiment involving the identification of six fixed subcategorization frames, our current system showed more than 80% accuracy. In addition, a new statistical method enables the system to learn patterns of errors based on a set of training samples and substantially improves the accuracy of the frequency estimation.
1 Introduction
When we construct a grammar, there is always
a trade-off between the coverage of the grammar
and the ambiguity of the grammar. If we hope
to develop an efficient high-coverage parser for
unrestricted texts, we must have some means of
dealing with the combinatorial explosion of syn­
tactic ambiguities. While a general probabilistic
optimization technique such as the Inside-Outside
algorithm (Baker 1979, Lauri and Young 1990,
Jelinek et al. 1990, Carroll and Charniak 1992)
can be used to reduce ambiguity by providing es­
timates on the applicability of the context-free
rules in a grammar (for example) , the algorithm
does not take advantage of lexical information,
including such information as verb subcategoriza­
tion frame preferences. Discovering or acquiring
lexically-sensitive linguistic structures from large
corpora may offer an essential complementary ap­
proach.

Verb subcategorization (verb-subcat) frames
represent one of the most important elements
of grammatical/lexical knowledge for efficient
and reliable parsing. At this stage in the
computational-linguistic exploration of corpora,

dictionaries are still probably more reliable than
automatic acquisition systems as a source of sub­
categorization (subcat) frames for verbs. The
Oxford Advanced Learners Dictionary (OALD)
(Hornby 1989), for example, uses 32 verb patterns
to describe a usage of each verb for each meaning
of the verb. However, dictionaries do not pro­
vide quantitative information such as how often
each verb is used with each of the possible subcat
frames. Since dictionaries are repositories, pri­
marily, of what is possible, not what is most likely,
they tend to contain information about rare us­
age (de Marken 1992) . But without information
about the frequencies of the subcat frames we find
in dictionaries, we face the prospect of having to
treat each frame as equiprobable in parsing. This
can lead to serious inefficiency. We also know
that the frequency of subcat frames can vary by
domain; frames that are very rare in one domain
can be quite common in another. If we could au­
tomatically determine the frequencies of subcat
frames for domains, we would be able to tailor
parsing with domain-specific heuristics. Indeed,
it would be desirable to have a subcat dictionary
for each possible domain.

309

310

parsing with domain-specific heuristics. Indeed,
it would be desirable to have a subcat dictionary
for each possible domain .

. This paper describes a mechanism for auto­
matically acquiring subcat frames and their fre­
quencies based on a tagged corpus. The method
utilizes a tagged corpus because (i) we don't have
to deal with a lexical ambiguity (ii) tagged cor­
pora in various domains are becoming readily
available and (iii) simple and robust tagging tech-
niques using such corpora recently have been de­
veloped (Church 1988, Brill 1992) .

Brent reports a method for automatically
acquiring subcat frames but without frequency
measurements (Brent and Berwick 1991 , Brent
1991) . His approach is to count occurrences
of those unambiguous verb phrases that contain
no noun phrases other than pronouns or proper
nouns. By thus restricting the "features" that
trigger identification of a verb phrase, he avoids
possible errors due to syntactic ambiguity. Al­
though the rate of false positives is very low in
his system, his syntactic features are so selective
that most verb tokens fail to satisfy them. (For

b: sentence initial maker k: target verb
i: pronoun

n: noun phrase
v: finite verb u: participial verb
d: base form verb
p: preposition

USHIODA - EVANS - GIBSON - WAIBEL

example, verbs that occurred fewer than 20 times
in the corpus tend to have no co-occurrences with
the features.) Therefore his approach is not useful
in determining verb-subcat frame frequencies.

To measure frequencies, we need, ideally, to
identify a subcat frame for each verb token in
the corpus. This, in turn, requires a full parse
of the corpus. Since manually parsed corpora are
rare and typically small, and since automatically
parsed corpora contain many errors (given cur­
rent parsing technologies) , an alternative source
of useful syntactic structure is needed. We have
elected to use partially parsed sentences automat­
ically derived from a lexically-tagged corpus. The
partial parse contains information about minimal
noun phrases (without PP attachment or clausal
complements) . While such derived information
about syntactic structure is less accurate and
complete than that available in certified, hand­
parsed corpora, the approach promises to general­
ize and to yield large sample sizes. In particular,
we can use partially parsed corpora to measure
verb-subcat frame frequencies.

e: sentence final maker
t: "to"

m: modal
w: relative pronoun
a: adverb x: punctuation
c: complementizer "that"
s: the rest

Table 1: List of Symbols/Categories

2 Method
The· procedure to find verb-subcat frequencies,
automatically, is as follows.

1) Make a list of verbs out of the tagged cor­
pus.

2) For each verb on the list (the "target verb") ,

(2 . 1) Tokenize each sentence containing the
target verb in the following way:
All the noun phrases except pro­
nouns are tokenized as "n" by a noun

phrase parser and all the rest of the
words . are also tokenized following the
schmema in Table 1 . For example, the
sentence "The corresponding mental­
state verbs do not follow [target verb]
these rules in a straightforward way"
is transformed to a sequence of tokens
"bnvaknpne" .

(2.2) Apply a set of subcat extraction rules
to the tokenized sentences. These rules
are written as regular expressions arid

FREQUENCY ESTIMATION OF VERB SUBCATEGORIZATION FRAMES 311

they are obtained through the exami­nation of occurrences of a small sample of verbs in a training text.
Note that in the actual implementation of the procedure, all of the redundant operations are eliminated. Our NP parser also uses a fi�ite-state grammar. It is designed especially to support identification of verb-subcat frames. One of its special features is that it detects time-adjuncts such as "yesterday" , "two months ago" , or "the following day" , and eliminates them in the tok­enization process. For example, the sentence "He told the reporters the following day that . . . " is tokenized to "bivnc . . . " instead of "bivnnc . . . " .

3 Experiment on Wall
Street Journal Corpus

We used the above method in experiments involv­ing a tagged corpus of Wall Street Journal (WSJ) articles, provided by the Penn Treebank project. Our experiment was limited in two senses. First, we treated all prepositional phrases as adjuncts. (It is generally difficult to distinguish complement and adjunct PPs.) Second, we measured the fre­quencies of only six fixed subcat frames for verbs in non-participle form. (This does not represent an essential shortcoming in the method; we only need to have additional subcat frame extraction rules to accommodate participles.)
Frame Rule 1 . NP+NP k(i l n)n

2 . NP+CL k(i l n (pn) *) c
k(i l n) (i l n) a* (m l v)

3. NP+INF k(i l n (pn) *)ta*d
4. CL kc

k(i l n) a* (m l v)
5. NP k(i l n) / [-mvd]

#pw(i l n(pn) *) a*m?a*k/ [-t]
6. INF kta*d Notes: NP: noun phrase CL: that-clause with and without the complementizer "that" INF: "to" + infinitive x• matches a sequence of any number of x's including zero x? is either x or empty (x I y) matches either x or y

[�xyz] matches any token except x, y, and z
#x(sequence) matches (sequence) that is not directly pre­ceded by x x/y matches x if x is immediately followed by y Sample Sentences:

Frame 1. " . . . gives current management enough time to work on . . . " --
Frame 2. " . . . tell the people in the hall that . . . " ; " . . . told him the man would . . . "
Frame 3. " . . . expected the impact from the restructuring to make . . . " Frame 4. " . . . think that . . . " ; " . . . thought the company eventually responded . . . "
Frame 5 . " . . . saw the man . . . " ; " . . . which the presi-dent of the company wanted . . . "
but not " . . . saw him swim . . . "; " . . . (hotel) in which he stayed . . . " ; " . . . (gift) which he expected to get . . . " --
Frame 6. " . . . expects to gain . . . "

Table 2: Set of Subcategorization Frame Extraction Rules
We extracted two sets of tagged sentences from the WSJ corpus, each representing 3-MBytes and approximately 300,000 words of text. One set was used as a training corpus, the other as a test corpus. Table 2 gives the list of verb­subcat frame extraction rules obtained (via exam­ination) for four verbs "expect" "reflect" "tell" ' ' ' and "give" , as they occurred in the training cor-pus. Sample sentences that can be captured by each set of rules are attached to the list. Table 3 shows the result of the hand comparison of the automatically identified verb-subcat frames for "give" and "expect" in the test corpus. The tabu­lar columns give actual frequencies for each verb­subcat frame based on manual review and the tabular rows give the frequencies as determined automatically by the system. The count of each cell ([i , j]) gives the number of occurrences of the verb that are assigned the i-th subcat frame by the system and assigned the j-th frame by man­ual review. The frame/column labeled "REST" represents all other subcat frames, encompassing such subcat frames as those involving wh-clauses, verb-particle combinations (such as "give up") , and no complements.

312 USHIODA - EVANS - GIBSON - WAIBEL

Outpput of System
"Give"

Real Occurrences

NP+NP NP+CL NP+INF NP CL INF REST Total
NP+NP 52 0 0 0 0 0 0 52
NP+CL 1 0 0 0 0 0 0 1

NP+INF 2 0 0 0 0 0 0 2
NP 13 0 0 27 0 0 0 40
CL 0 0 .o 0 0 0 0 0

INF 0 0 0 0 0 0 0 0
REST 1 0 0 4 0 0 9 14
Total 69 0 0 31 0 0 9 109

Output of System
"Expect"

Real Occurrences

NP+NP NP+CL NP+INF NP CL INF REST Total
NP+NP 0 0 0 0 0 0 0 0
NP+CL 0 0 0 0 0 0 0 0

NP+INF 0 0 55 1 0 0 0 56
NP 0 0 4 28 0 0 0 32
CL 0 0 0 0 8 0 0 8

INF 0 0 0 0 0 40 0 40
REST 0 0 1 6 0 0 7 14
Total 0 0 60 35 8 40 7 150

Table 3: Subcategorization Frame Frequencies

Despite the simplicity of the rules, the fre­
quencies for subcat frames determined under au­
tomatic processing are very close to the real dis­tributions. Most of the errors are attributable
to errors in the noun phrase parser. For exam­
ple, 10 out of the 13 errors in the (NP,NP+NP]
cell under "give" are due to noun· phrase pars­
ing errors such as the misidentification of a N­
N sequence (e.g . , * "give [NP government officials
rights] against the press" vs. "give [NP govern­
ment officials] [NP rights] against the press") .

To measure the total accuracy of the system,
we randomly chose 33 verbs from the 300 most
frequent verbs in the test corpus (given in Ta­
ble 4), automatically estimated the subcat frames
for each occurrence of these verbs in the test cor­
pus, and compared the results to manually deter­
mined su beat frames.

The overall results are quite promising. The
total number of occurrences of the 33 verbs in

the test corpus (excluding participle forms) is
2,242. Of these, 1 ,933 were assigned correct
subcat frames by the system. (The 'correct'­assignment counts always appear in the diagonal
cells in a comparison table such as in Table 3.)
This indicates an overall accuracy for the method
of 86%.

If we exclude the subcat frame "REST" from
our statistics, the total number of occurrences of
the 33 verbs in one of the six subcat frames is
1 ,565. Of these, 1 ,31 1 were assigned correct sub­
cat frames by the system; This represents 83%
accuracy.

For 30 of the 33 verbs, both the first and the
second (if any) most frequent subcat frames as
determined by the system were correct . For all of
the verbs except one ("need") , the most frequent
frame was correct .

Figure 1 is a histogram showing the number
of verbs within each error-rate zone. In corn-

FREQUENCY ESTIMATION OF VERB SUBCATEGORIZATION FRAMES

acquire
build
close
comment
consider
continue
design
develop
elect

10

N
u
M 8
B
E
R 6

0
F

4

V
E
R
B s

end like
expand need
fail produce
file prove
follow reach
get receive
help reduce
hold see
let sign

Table 4: Verbs Tested

< 5 5-10 10-15 1 5-20 20-25 25-30 30-35 34-40 40-45

ERROR RATE (%)

Figure 1: Distribution of Errors

313

spend
total
try
use
want
work

314

puting the error rate , we divide the total 'off­diagonal'-cell counts, excluding the counts in the "REST" column, by the total cell counts, again excluding the "REST" column margin. Thus, the off-diagonal cell counts in the "REST" row, rep­resenting instances where one of the six actual subcat frames was misidentified as "REST" , are counted as errors. This formula, in general , gives higher error rates than would result from simply dividing the off-diagonal cell counts by the total cell counts. Overall , the most frequent source of errors, again, was errors in noun phrase boundary de­tection. The second most frequent source was misidentification of infinitival 'purpose' clauses, as in "he used a crowbar to open the door". "To open the door" is a 'purpose' adjunct modifying either the verb phrase "used a crowbar" or the main clause "he used a crowbar". But such ad­juncts are incorrectly judged to be complements of their main verbs by the subcat frame extrac­tion rules in Table 2. In formulating the rules, we assumed that a 'purpose' adjunct appears ef­fectively randomly and much less frequently than infinitival complements. This is true for our cor­pus in general; but some verbs, such as "use" and "need" , appear relatively frequently with 'pur­pose' infinitivals. In addition to errors from pars­ing and 'purpose' infinitives, we observed several other, less frequent types of errors. These, too, pattern with specific verbs and do not occur ran­domly across verbs.
4 Statistical Analysis

For most of the verbs in the experiment, our method provides a good measure of subcat frame frequencies. However , some of the verbs seem to appear in syntactic structures that cannot be captured by our inventory of subcat frames. For example, "need" is frequently used in rela­tive clauses without relative pronouns, as in "the last thing they need". Since this kind of rela­tive clauses cannot be captured by the rules in Table 2, each occurrence of these relative clause causes an error in measurement. It is likely that there are many other classes of verbs with dis­tinctive syntactic preferences. If we try to add rules for each such class, it will become increas­ingly difficult to write rules that affect only the

USHIODA - EVANS - G IBSON - WAIBEL

target class and to eliminate undesirable rule in­teractions. In the following sections, we describe a sta­tistical method which, based on a set of training samples, enables the system to learn patterns of errors and substantially increase the accuracy of estimated verb-subcat frequencies.
4.1 General Scheme

The method described in Section 2 is wholly de­terministic; it depends only on one set of subcat extraction rules which serve as filters. Instead of treating the system output for each verb to­ken as an estimated subcat frame, we can think of the output as one feature associated with the occurrence of the verb. This single feature can be combined , statistically, with other features in the corpus to yield more accurate characteriza­tions of verb contexts and more accurate subcat­frame frequency estimates. If the other features are capturable via regular-expression rules, they can also be automatically detected in the manner described in the Section 2. For example , main verbs in relative clauses without relative pronouns may have a higher probability of having the fea­ture "nnk" , i.e., "(NP)(NP)(VERB)". More formally, let Y be a response vari­able taking as its value a subcat frame. Let X1 , X2 , . . . , XN be explanatory variables. Each Xi is associated with a feature expressed by one or a set of regular expressions. If a feature is ex­pressed by one regular expression (R) , the value of the feature is 1 if the occurrence of the verb matches R and O otherwise. If the feature is ex­pressed by a set of regular expressions, its value is the label of the regular expression that the oc­currence of the verb matches. The set of regu­lar expressions in Table 2 can therefore be con­sidered to characterize one explanatory variable whose value ranges from (NP +NP) to (REST). Now, we assume that a training corpus is avail­able in which all verb tokens are given along with their subcat frames. By running our system on the training corpus, we can automatically gen­erate a (N + I)-dimensional contingency table. Table 3 is an example of a 2-dimensional contin­gency table with X = <OUTPUT OF SYSTEM> and Y = <REAL OCCURRENCES> . Using log­linear models (Agresti 1990) , we can derive fitted values of each cell in the (N + I)-dimensional con-

FREQUENCY ESTIMATION OF VERB SUBCATEGORIZATION FRAMES 315
tingency table. In the case of a saturated model, in which all kinds of interaction of variables up to (N + 1)-way interactions are included, the raw cell counts are the Maximum Likelihood solution. The fitted values are then used to estimate the subcat frame frequencies of a new corpus as fol­lows. First , the system is run on the new corpus to obtain an N-dimensional contingency table. This table is considered to be an X1 - X2 - · · · - XN

marginal table. What we are aiming at is the Y margins that represent the real subcat frame fre­quencies of the new corpus. Assuming that the training corpus and the new corpus are homo­geneous (e.g. , reflecting similar sub-domains or samples of a common domain) , we estimate the Y margins using Bayes theorem on the fitted val­ues of the training corpus by the formula given in Table 5.

E(Y = k I X1 - X2 - · · · - XN marginal table of the new corpus)
= LL . . . L Mi i2 . . •iN + P(Y = k l X1 = i1 , X2 = i2 , · · · , XN = iN) i1 i2 iN

where M1 i2 • • •in + is the cell count of the X1 - X2 - · · · - XN marginal table of the new corpus obtained as the system output, and Mii i2 . . . iN k is the fitted value of the (N + I)-dimensional contingency table of the training corpus based on a particular loglinear model.
Table 5: Multidimensional Statistical Estimation of Subcat Frame Frequencies

4.2 Lexical Heuristics

The simplest application of the above method is to use a 2-way contingency table, as in Table 3. There are two possibilities to explore in construct­ing a 2-way contingency table. One is to sum up the cell counts of all the verbs in the training corpus and produce a single (large) general ta­ble. The other is to construct a table for each verb. Obviously the former approach is prefer­able if it works. Unfortunately, such a table is typically too general to be useful; the estimated frequencies based on it are less accurate than raw system output. This is because the sources of errors, viz . , the distribution of off-diagonal cell counts of 2-way contingency tables, differ consid­erably from verb to verb. The latter approach is problematic if we have to make such a table for each domain. However, if we have a training cor­pus in one domain, and if the heuristics for each

verb extracted from the training corpus are also applicable to other domains, the approach may work.
To test the latter possibility, we constructed a contingency table for the verb from the test corpus described in the Section 3 that was most problematic (least accurately estimated) among the 33 verbs-"need" . Note that we are using the test corpus described in the Section 3 as a train­ing corpus here, because we already know both the measured frequency and the hand-judged fre­quency of "need" which are necessary to construct a contingency table. The total occurrence of this verb was 75. To smooth the table, 0 . 1 is added to all the cell counts. As new test corpora, we extracted another 300,000 words of tagged text from the WSJ corpus (labeled "W3") and also three sets of 300,000 words of tagged text from the Brown corpus (labeled "Bl" , "B2" , and "B3") ,

316 USHIODA - EVANS - GIBSON - WAIBEL

W3 NP+NP NP+CL NP+INF NP CL INF REST
Measured 2.4 0.0 10.6 44.7 1 .2 31.8 9.4
By Hand 0.0 0.0 0.0 69.4 0.0 30.6 0.0

· Estimated 0.0 0.0 0.0 66.3 0.0 30. 1 3.6
Total Occurrences: 85

Bl NP+NP NP+CL NP+INF NP CL INF REST
Measured 1.8 0.9 7.9 38.6 1.8 14.9 34.2
By Hand 0.0 0.0 0.0 72.8 0.0 15.8 11 .4

Estimated 0.0 0.0 0.0 76.6 0.0 14.4 9 .1
Total Occurrences: 114

B2 NP+NP NP+CL NP+INF NP CL INF REST
Measured 0.0 1 .4 8.7 40.6 1.4 17.4 30.4
By Hand 0.0 0.0 0.0 73.9 0.0 18.8 7.2

Estimated 0.0 0.0 0.0 76.1 0 .0 16 .4 7.5
Total Occurrences: 69

B3 NP+NP NP+CL NP+INF NP CL INF REST
Measured 3.3 0.0 . 1.7 30.0 3.3 31 .7 30.0

By Hand 0.0 0.0 0.0 60.0 0.0 28.3 11 .7

Estimated 0.0 0.0 0.0 61.4 0.0 29.8 8.8
Total Occurrences: 60

Table 6: Statistical Estimation (Unit = %) for the Verb "Need"

as retagged under the Penn Treebank tagset. All the training and test corpora were reviewed -and judged - by hand. Table 6 gives the frequency distributions based on the system output, hand judgement, and sta­tistical analysis. (As before, we take the hand judgement to be the gold standard, the actual frequency of a particular frame.) After the Y margins are statistically estimated, the least es­ti�ated Y values less than 1 .0 are truncated to 0. (These are considered to have appeared due to the smoothing.) In all of the test · corpora, the method gives very accurate frequency distribution estimates. Big gaps between the automatically-measured and manually-determined frequencies of "NP" and "REST" are shown to be substantially re­duced through the use of statistical estimation.

This result is especially encouraging because the heuristics obtained in one domain are shown to be applicable to a considerably different domain. Furthermore, by combining more feature sets and making use of multi-dimensional analysis, we can expect to obtain more accurate estimations.
5 Conclusion and Future Di­

rection

We have demonstrated that by combining syn­tactic and multidimensional statistical analysis, the frequencies of verb-subcat frames can be esti­mated with high accuracy. Although the present system measures the frequencies of only six sub­cat frames, the method is general enough to be extended to many more frames. Since our current

FREQUENCY ESTIMATION OF VERB SUBCATEGORIZATION FRAMES 317

focus is more on the estimation of the frequen­cies of subcat frames than on the acquisition of frames themselves, using information on subcat frames in machine-readable dictionaries to guide the frequency measurement can be an interesting direction to explore. The traditional application of regular expres­sions as rules for deterministic processing has self­evident limitations since a regular grammar is not powerful enough to capture general linguistic phe­nomena. The statistical method we propose uses regular expressions as filters for detecting specific features of the occurrences of verbs and employs multi-dimensional analysis of the features based on loglinear models and Bayes Theorem. We expect that by identifying other useful syntactic features we can further improve the ac­curacy of the frequency estimation. Such features can be regarded as characterizing the syntactic context of the verbs, quite broadly. The features

need not be linked to a local verb context . For ex­ample, a regular expression such as "w [-vex] •k" can be used to find cases where the target verb is preceded by a relative pronoun such that there is no other finite verb or punctuation or sentence final period between the relative pronoun and the target verb. If the syntactic structure of a sentence can be predicted using only syntactic and lexical knowl­edge, we can hope to estimate the subcat frame of each occurrence of a verb using the context ex­pressed by a set of features. We thus can aim to extend and refine this method for use with gen­eral probabilistic parsing of unrestricted text .
Acknowledgements

We thank Teddy Seidenfeld, Jeremy York, and Alex Franz for their comments and discussions with us.

3 18
References

Agresti, A. (1990) Categorical Data Analysis . New York, NY: John Wiley and Sons.
Baker, J. (1979) "Trainable grammars for speech recognition" . In D.H. Klatt and J.J. Wolf (eds.), Speech Communication Papers for the 97th Meeting of the Acoustic Society of Amer­ica ,pp. 547-550.
Brent, M.R. (1991) "Automatic acquisition of su bcategorization frames from untagged text" . Proceedings of the 29th Annual Meeting of the A GL.

Brent, M.R. and Berwick, R.C. (1991) "Auto­matic acquisition of subcategorization frames from tagged text" . Proceedings of the DARPA Speech and Natural Language Workshop, Mor­gan Kaufmann.
Brill, E. (1992) "A simple rule-based part of speech tagger". Proceedings of the DARPA Speech and Natural Language Workshop, Mor­gan Kaufmann.

USHIODA - EVANS - GIBSON - WAIBEL

Carroll, G. and Charniak, E. (1992) "Learning probabilistic dependency grammars from la­belled text". Working Notes of the Sympo­sium on Probabilistic Approaches to Natural Language, AAAI Fall Symposium Series.
Church, K.W. (1988) "A stochastic parts pro­gram and noun phrase parser for unrestricted text". Proceeding of the Second Conference on Applied Natural Language Processing .
deMarcken, C.G. (1990) "Parsing the LOB cor­pus". Proceedings of the 28th Annual Meeting of the A GL, pp. 243-251.
Hornby, A.S. (ed.). (1989) Oxford Advanced Learner's Dictionary of Current English . Ox­ford, UK: Oxford University Press.
Jelinek, F., Lafferty, J.D., and Mercer, R.L. (1990) Basic Method of Probabilistic Context Free Grammars . Technical Report RC 16374 (72684), IBM, Yorktown Heights, NY 10598.
Lari, K. and Young, S.J. (1990) "The estimation of stochastic context-free grammars using the Inside-Outside algorithm". Computer Speech and Language, 4 , pp. 35-56.

Handling Syntactic Extra-Grammaticality

Fuliang Weng

Computer Science Department and Computing Research Lab
New Mexico State University, Las Cruces, NM 88003

email: f weng©nmsu . edu

Abstract This paper reviews and summarizes six different types of extra-grammatical phenomena and their corresponding recovery principles at the syntactic level, and describes some techniques used to deal with four of them completely within an Extended GLR parser (EGLR) . Partial solutions to the remaining two by the EGLR parser are also discussed. The EGLR has been implemented.
1 Introduction

Extragrammatical phenomena in natural lan­guages are very common and there has been much effort devoted to dealing with them (Car­bonell - Hayes, 1983; DARPA 1991 , 1992) . Al­though (Generalized)LR parsers have many mer­its when applied to NL, most progress with extra­grammatical phenomena has been through rule­based systems, in contrast to the applications of LR parsers in programming languages. In this pa­per some techniques are developed to extend the ability of a (G)LR parser in dealing with extra­grammatical phenomena, though similar tech­niques can also be applied in other parsers. The extended GLR (EGLR) parser is implemented.
In section 2, six types of extra-grammatical phenomena at the syntax level are classified, and then five recovery principles are introduced. Sec­tion 3 then describes the techniques used in the EGLR parser. A correctness theorem is given, and a property is also presented, showing that any sentence can be accepted if the relaxation parameter is set large enough. Section 4 gives some examples to show how the EGLR parser works. Section 5 briefly discusses the sixth type of extra-grammatical phenomenon and relevant issues, and other people's work is also compared.

2 Categorizing Extra-gram­
maticality at the Syntax
Level

Among discussions of extra-grammaticality in natural language processing, (Carbonell -Hayes, 1983) gave a comprehensive and complete overview in this area . Here we try to rephrase these extra-grammatical phenomena from the viewpoint of purely structural possibilities at the syntactic level. Following (Carbonell - Hayes, 1983) , we use extra-grammaticality to refer to phenomena in which sequences of words are not covered by cur­rent grammar rules. In doing so, we try, at this moment, to avoid unnecessary debate about the possibility of drawing a clear line between gram­matical and ungrammatical phenomena. At the end of the paper, we shall show an interesting re­sul t with a deviation degree parameter, produced by our parser that may provide some hint for understanding (un)grammaticality. In what fol­lows, extra-grammatical phenomena contain both ungrammatical and uncovered grammatical phe­nomena. The six types of syntactic extra­grammaticalities are: 1

Phenomenon 1: the absence of a word's cate-1 Phenomenon 1 was discussed in (Tomita, 1985) and might be also considered to be at the lexical level. Phenomena 2, 3 and 4 and the similar recovery principles were also discussed in (Aho - Peterson, 1973; Saito - Tomita, 1991).
319

320

gories. For example, xyz leads arbitrariness. , w9�m xyz is not present in the English dictionary and therefore the sentence is not covered by a grammar.
Phenomenon 2: category switching. For example, The man on the left was talk­ing non-sense. , when in the dictionary en­try, left only has a category ADJ but not N, and therefore the sentence can't be covered by a grammar with only N as its head in NP rules.
Phenomenon 3: ellipses at different levels; a category or a phrasal category is missing with respect to a rule while no other rules can cover such phenomena. For example, He give an apple to _, given the only rule PP +- P NP for PP forma­tion.
Phenomenon 4: redundancy; an extra cate­gory or a phrasal category occurs with re­spect to a rule while no other rules can cover such phenomena. For example, The man lives in in a house. , there is an extra in, given the only rule PP +- P NP for PP formation.
Phenomenon 5: constituent swapping; two constituents swapped their positions with respect to a rule while no other rules can cover such phenomena. For example, He i§. happy ?, given the only rule Q +- AU X NP V P? for question for­mation.
Phenomenon 6: non-extragrammaticality fail­ure: a constituent is covered by rules but not intended by the speaker (or writer) . For example, The man sit on the river bank, given the only rule NP +- Det N for NP formation. In this case, the river will form a NP, instead of the river bank.

We put aside the last phenomenon for a mo­ment since it needs the coordination of multiple levels besides the syntactic one. Corresponding to these phenomena, we pro­pose five principles which try to remedy the fail­ures caused by them. When a parser fails, at a

WENG

point, we hypothesize several alternatives accord­ing to the following five principles, which corre­spond to the first five types of phenomena:
Principle 1 : hypothesizing all the categories as the categories of the absent of the failed word.
Principle 2: hypothesizing the complement of all the categories of the failed word.
Principle 3: hypothesizing a pseudo word which has all the categories.
Principle 4: hypothesizing that the failed word is improperly added.
Principle 5: let xy be two consecutive words (or constituents) in the input sequence that is not parsable with respect to the current grammar, hypothesizing another word (or constituent) order, i.e. , replacing xy by yx in the input sequence.

It can be easily noticed that all the principles try to assimilate abnormal phenomena by using known rules. But the five principles themselves alone do not solve the problem and at least another two issues have to be dealt with:
1. to determine where the failure occurs, since most principles presuppose knowing the ex­act position of the failed word.
2. to determine what type of failure it is , since failure itself does not inform the type of fail­ures the parser is encountering. In the next section, we will present some tech­niques to incorporate the first four principles into an extended GLR parser, and a limited version of the fifth principle can be achieved by setting the relaxation parameter to 2, a number which will be explained later.

3 The

Parser

Extended GLR

The reason we choose GLR parsers as our start­ing point for the extensions is not arbitrary: it is closely related to the purpose of settling the two issues raised at the end of the last section. Like LR parsers, GLR parsers have the ability to de­tect errors in an early phase. We feel comfortable

HANDLING SYNTACTIC EXTRA-G RAMMATICALITY

with the first issue if we can tolerate the locality principle, i .e. the true error position is somewhere close to the place where the parser reports an et­ror. As for the second issue, instead of deciding which type of error it is, we hypothesize all the possible error types and let all the corresponding hypotheses compete so that we can avoid answer­ing which type of error beforehand. Again, GLR parsers provide a good platform for competing alternatives at different levels, although they re­quire that comparisons be over the same input lengths. Like GLR parsers, the extended GLR parser also has a generalized action table, a goto table and a parsing algorithm. The two tables are gen­erated by a compiler generator, given a context­free grammar. Every entry (s, t) in the action ta­ble may either contain a set of actions (i.e. , A(s, t) = { ai}) , where s stands for a particular state, t stands for a particular terminal, and ai stands for actions which could be shifting, reducing or ac­cepting, and A(s, t) can also be empty. The last case (i .e. , A(s,t) is empty) indicates that , in state s, it is impossible to meet terminal t if the input is grammatical: in other words, the parser will report an error if, for any current state s and any category c associated with the current word, A(s, c) is empty. Like the GLR parsers when an input sentence appears, the EGLR algorithm reads one word after another from left to right, goes from one state to another, and does what the two ta­bles specify: reduce, shift , etc. And the actions of the EGLR parser, i.e . , reduce, shift and accept , are very similar to the ones in GLR parsers, ex­cept in places that will be specified later. The main differences between the GLR parsers and the EGLR parser are caused by the additional requirement of EGLR, i.e . , allowing different hy­potheses to compete when an error is detected (or a mismatch occurs) . The realization of different hypotheses is not so direct if we still want to stick to the following idea: allow different principles to compete at a same time, whenever it is possible, since different principles create different new sentence lengths, i.e. principles 1 and 2 do not change the length of the input sentence, principle 3 increases the length by one unit , and principle 4 reduces the

321

length by one unit . The alignment of these length discrepancies and the compensation of its effect are realized as follows (see the next section for examples) :
1 . Creating a special terminal called *Span* ;
2. In the action table, adding an additional column which has *Spall* as its terminal and S i as the value of the row of state i;
3. In the GLR parsing algorithm, the spe­cial terminals *Spall* along any reduce path in the graph-structured stack are ignored when a reduce action is taken.
4. Reconstructing the input sentence in the as­sumed error place cati as follows: . . . {*Span*} U cati , {*Span*} U cati , . . . 2

Among the four steps, the first three are for the parser itself and the fourth is for the input sentence. Since there might be more than one er­ror in an input sentence, the fourth step can be repeated. We use a relaxation parameter to char­acterize the maximum number of times allowed in performing such relaxation. Notice that in the fourth step, the four com­binations of the two successive category sets, i.e. {*Spall*} {*Span*} , cati {*Spall*} , {*Spall*} cati and cati cati , are exactly the first four principles
3 plus the original sentence. Since the original sentence is blocked at that point the reconstruc­tion realizes the first four principles at the same time. The first four principles are all in favor of lo­cal mismatches. In order to accommodate the fifth principle better, which is non-local, simple alignment is not sufficient and a more compli­cated mechanism needs to be used. One method for this is to use the notion of parameterization in a universal grammar. Notice that swapping two linguistic units requires the same underlying mechanism as resetting a parameter in X-bar the­ory (Chomsky, 1980; Gibson, 1989; Nyberg III, 1989) . Although the parser only encoded the first four principles directly, it is not difficult to see that a limited version of the fifth principle, i.e. swapping two adjacent words, is implied by the 2The curly parentheses indicate sets, LJ set union, and the overline on a set refers to the set complement operation w.r.t. the set of all the terminals, terms. 3The first two principles share much in common and are dealt with in a same way.

322
first four principles with the relaxation parame­ter being 2. The details will be illustrated by an example in section 4.

One may not agree with the locality principle, i.e. that the position of real error(s) is not nec­essarily the place where there is no entry in the generalized action table (GAT) , in other words, there are cases that can be characterized by phe­nomenon 6, which we will call extra-grammatical garden path, abbreviated as xgp. Obviously, xgp can also occur in combination with the first 5 types of phenomena. One solution to the xgp problem is to make some changes to cati-I • Here, we can reconstruct the input sentence at cati-I in step 4 of the alignment procedure, instead of cati .
It is not necessary that cati-1 should be mod­ified. In general, as a k-step xgp, cati-k is modi­fied, where k � 1 and the choice of k can be based on knowledge sources at other levels, such as se­mantics and discourse, when wardi-k seem to be a particularly odd fit in the local context.

WENG

in Table 3 . for the set of grammar rules and its GPTs given in Tables 1 and 2.
To conclude this section, a correctness theorem and a property concerning the EGLR parser are presented as follows:5

Theorem 1 . Let inputo = C1 , C2 , . . . , Cn be a sequence of cate­gory sets without *Span* , input1 = C1 , C2 , . . . , Ci-1 , ci+l , . . . , Cn , and input2 = C1 , C2 , . . . , Ci LI {*Span*} , . . . , Cn . Then a GLR parser accepts input0 or input1 with grammar G iff the EGLR parser ac­cepts input2 with the same grammar and relaxation parameter being 0.
Property: Given any sentence and context free grammar, we can always find a value for the relaxation param­eter such that the EGLR parser ac­cepts the sentence based on the four recovery principles. Note too that step 4 in the alignment proce­d ure can be replaced by any reasonable hypothet-ical sequence of categories, including the pseudo- 4 terminal *Span* . We consider the one presented Some Results Produced
by the EGLR here as a good candidate.

One may notice that in the phenomena and the principles enumerated, we not only allow words but also constituents to be manipulated, while up till this moment in the EGLR only words are taken as the basic units. One way to deal_ with constituents is as follows: We introduce a notion called virtual termi­nals, abbreviated as vtm, that contain informa­tion about the corresponding non-terminals; a normal grammar is appended with a set of rules with vtms: A .__ *VtmA , where A E NTM and NT M is the set of non-terminals4 ; since *VtmA will never occur as a category of any word, the parser will not take any path containing *VtmA unless we reconstruct the input category sequence when necessary, which is very much like the case when we deal with word as unit. An example with the extended rules and their GPTs is shown

Like (G)LR parsers, the EGLR parser has two main components: a parsing table generator and a parsing algorithm. The generator takes a context-free grammar as its input and produces an action table and a goto table; while the parsing algorithm takes a sequence of words and a value of the relaxation parameter as its input and pro­duces results, usually with four parts:
1. a sequence of triples, whose first element is the index of the triple in the sequence, whose second element is the set of the cate­gories attached to the word in the input sen­tence, and whose third element is the word itself;
2. the history of the sequences of the triples, whose first element is the index of the triple in the sequence like in part 1, whose second 4Some non-terminals may not be able to derive a string containing only terminals, we can use a standard algorithm to detect them in (Hopcroft - Ullman, 1979) Ch 4.4, and there is no need to have the corresponding rules. 5The proof of the two properties are given in (Weng, 1993).

HANDLING SYNTACTIC EXTRA- GRAMMATICALITY

element is either the same set of the cate­
gories as in part 1 when it is parsed, or the
derived one based on the alignment proce­
dure when a mismatch happens, and whose
third element is also the same as in part 1
except in the case when a mismatch occurs
and then NIL is supplied;

3. (partially) successful hypothesized se­
quences of categories if there are mis­
matches, and the number of times the re­
laxation process is actually performed (i.e. ,
the value of the deviation parameter) ;

4. a shared-packed forest representation for
the sequences in item 3.

Items 2 and 3 will not be present if the original
category sequence is covered by the grammar.

We now present some simple examples in or­
der to explain better to the reader the underlying
ideas, using the grammar and its corresponding
GPTs given in Table 1 and Table 2 .

The grammar in Table 1 does not contain any
rules for pronouns . Assuming that a pronoun oc­
curs in an input sentence and the lexicon does
provide a category (*PRON) for the pronoun (i.e. ,
a case when phenomenon 2 happens) , how will
the parser behave? Example sentence 1 (They read the book.) shows this case, where part 1 con­
tains a sequence of sets of categories attached to
the words in the sentence together with their in­
dices in the sentence. The indices start at 0. 1-st hypothesized sentence line in part 2 gives a guess
when the parser found that the grammar does
not cover *PRON, according to the principles in
section 2. After feeding the new sentence to the
parser internally, the parser returns the successful
category sequence in part 3 and its parsing forest
in part 4. A few more words about the shared­
packed forest representation are given here: each
row in the list is a description of a node in the
forest , and it consists of two parts: the first part
is the index of a node, and the second part is a
tuple; the first argument of the tuple is either a
terminal or a non-terminal; if it is a terminal, a
T and the word6 associated with the terminal are
followed; if it is a non-terminal the follow-up lists

323

include all its child node sets, e.g . , 10 (NP (8 9))
means that node 10 is a NP having nodes 8 and
9 as its children.

Example sentence 1 .

* (understander ' (they read the book))
Part 1 : the indexed sentence =

((0 (*PRON) (THEY O 0))
(1 (*N *V) (READ 1 1))
(2 (*DET) (THE 2 2))
(3 (*N) (BOOK 3 3)))

Part 2 : the history of hypothesized
sentences :

1-st hypothesized sentence :
((0 (*SPAN* *V *PREP *N *DET)

(NIL -1 0))
(1 (*SPAN* *PRON) (THEY -1 1))
(2 (*N *V) (READ 1 2))
(3 (*DET) (THE 2 3))
(4 (*N) (BOOK 3 4))
(5 ($) (NIL NIL 5)))

Part 3 :
The following hypothesized sentences

get parsed :
(((*N (NIL -1 0)) (*V (READ 1 2))

(*DET (THE 2 3)) (*N (BOOK 3 4))))
and the value of the deviation

parameter is 1
Part 4 :

it i s accepted
the root of its parse forest is (12) '

and the forest is :
0 0
1 (*DET T (NIL -1 0))
2 (*N T (NIL -1 0))
3 (*SPAN* T (NIL -1 0))
4 (*SPAN* T (THEY -1 1))
5 (NP (2))

6 (*V T (READ 1 2))
7 (*N T (READ 1 2))
8 (*DET T (THE 2 3))
9 (*N T (BOOK 3 4))
10 (NP (8 9))
1 1 (VP (6 10))
12 (S (5 1 1))
the end of the forest .
NIL
*

Example sentence 2 shows the phenomenon 1
and the result produced by the parser. It is simi­
lar to example sentence 1 , and hypotheses a set of
categories for the unknown word researchers and
produces a parsing forest for that guess.

Example sentence 2 .

* (understander ' (researchers
understand the book))

Part 1 : the indexed sentence =

6NIL is filled if the terminal is from a hypothesized category set

324
((0 NIL (RESEARCHERS O 0))
(1 (•V) (UNDERSTAND 1 1))
(2 (•DET) (THE 2 2))
(3 (•N) (BOOK 3 3)))

Part 2 : the history o f hypothesized
sentences :

1-st hypothesized sentence :

Part 3 :

((0 (•SPAN• •V •PREP •N •DET)
(NIL -1 O))

(1 (•SPAN•) (RESEARCHERS -1 1))
(2 (•V) (UNDERSTAND 1 2))
(3 (•DET) (THE 2 3))
(4 (•N) (BOOK 3 4))
(5 ($) (NIL NIL 5)))

The folloving hypothesized sentences
get parsed :
(((•N (NIL -1 0)) (•V (UNDERSTAND 1 2))

(•DET (THE 2 3)) C•N (BOOK 3 4))))
and the value o f the deviation

parameter is 1
Part 4 :
i t i s accepted
the root of its parse forest is (11) ,

and the forest is :
0 0
1 (•DET T (NIL - 1 0))
2 (•N T (NIL -1 0))
3 (•SPAN• T (NIL -1 0))
4 (•SPAN• T (RESEARCHERS -1 1))
5 (NP (2))
6 (•V T (UNDERSTAND 1 2))
7 (•DET T (THE 2 3))
8 (•N T (BOOK 3 4))
9 (NP (7 8))
10 (VP (6 9))
11 (S (5 10))
the end of the forest .
NIL
*

Example sentence 3 shows a combination of
several possible phenomena. The category set se­
quence derived from sentence the man lives in in the house can not get parsed without relaxation,
and • the parser detects an error at the second in indexed as 4-th in the input sequence. Then
its first hypothesized sequence is proposed and
shown in part 2. Because the default value of the
relaxation parameter is 1 , this relaxation process
is permitted and the indexed sequence is inter­
nally resubmitted to the parser. This time, it
gets parsed. The parsing forest is shown in part
4 and a set of successfully hypothesized sequences
are given in part 3 .

Example sentence 3 .

* (understander ' (the man lives
in in the house))

Part 1 : the indexed sentence =

((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))
(2 (•N •V) (LIVES 2 2))
(3 (•PREP) (IN 3 3))
(4 (•PREP) (IN 4 4))
(5 (•DET) (THE 5 5))
(6 (•N) (HOUSE 6 6)))

Part 2 : the history o f hypothesized
sentences :

1-th hypothesized sentence :
((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))
(2 (•N •V) (LIVES 2 2))
(3 (•PREP) (IN 3 3))
(4 (•SPAN• •V •N •DET)

Part 3 :

(NIL - 1 4))
(5 (•SPAN• •PREP)

(IN -1 5))
(6 (•DET) (THE 5 6))
(7 (•N) (HOUSE 6 7))
(8 ($) (NIL NIL 8)))

The folloving hypothesized sentences
get parsed:
(((•DET (THE O 0)) (•N (MAN 1 1))

(•V (LIVES 2 2)) (•PREP (IN 3 3))
(•N (NIL -1 4)) (•PREP (IN -1 5))
(•DET (THE 5 6)) (•N (HOUSE 6 7)))

((•DET (THE O 0)) (•N (MAN 1 1))
(•V (LIVES 2 2)) (•PREP (IN 3 3))
(•DET (THE 5 6)) (•N (HOUSE 6 7))))

and the value of the deviation
parameter is 1
Part 4 :
i t i s accepted
the root of its parse forest is (20) ,

and the forest is :
0 0
1 (•DET T (THE O 0))
2 (•N T (MAN 1 1))
3 (NP (1 2))
4 (•V T (LIVES 2 2))
5 (•PREP T (IN 3 3))
6 (•DET T (NIL -1 4))
7 (•N T (NIL -1 4))
8 (•SPAN• T (NIL -1 4))
9 (NP (7))
10 (PP (5 9))
11 (VP (4 10))
12 (S (3 1 1))
1 3 (•PREP T (IN -1 5))
14 (•SPAN• T (IN -1 5))
15 (•DET T (THE 5 6))
16 (•N T (HOUSE 6 7))
17 (NP (15 16))
18 (PP (13 17))
19 (PP (5 17) (5 21))
20 (S (12 18) (3 22))
21 (NP (9 18))
22 (VP (4 19))
the end of the forest .
NIL
*

WENG

HANDLING SYNTACTIC EXTRA-GRAMMATICALITY

The above examples only show that if there is one extra-grammatical place in a single sen­tence the parser can deal with it . Actually, the ability of the parser is not limited to this. An op­tional relaxation parameter is offered (default is 1) by the parser. So, if there are multiple extra­grammatical places in one sentence, by setting this relaxation parameter properly the parser can still proceed with various guesses. Example 4 shows this situation. Sentence the man home likes is not covered by the grammar given in Table 1 . When the parser tries to parse the category set sequence derived from sentence the man home likes with the relaxation parameter being 1, it detects an error at the word home indexed as 2-nd in the input sequence. Then its first hypoth­esized sequence is proposed and shown in part 2. Because the value of the relaxation parame­ter is 1 , this relaxation process is permitted and the indexed sequence is submitted internally to the parser. With the reconstruction of the input sequence, the parser proceeds and goes through word likes, and then it detects another error and can not go further because the relaxation param­eter is 1 and no further relaxation is allowed.
A next example is about the same sentence be­ing presented to the parser with the relaxation parameter being 2. The same process as the one in the previous example happens until the parser detects the second error at position 5. This time, another hypothesized sequence gets proposed and allowed to be internally resubmitted to the parser because the relaxation parameter is 2. It gets parsed. The parsing forest is shown in part 4. The two successfully hypothesized sequences in part 3 need a little bit more explanation. The first sequence ((*DET THE) (*N MAN) (*V LIKES) (*N NIL)) is created as follows: after the parser parsed ((*DET) THE) and ((*N) MAN) , it meets ((* ADJ * ADV *N) HOME) and detects an error as described earlier. The parser then uses the four principles to create hypotheses, and after the parser processes ((*V) LIKES) , the deleting principle survives. Since the next symbol in the input sequence is the end of the sequence and the parser detects another error. Further hypotheses are made and the one with *N finally survives. Back linking the *N with the one deleted (i.e. ,

325

HOME) , we actually could realize a limited ver­sion of the fifth principle, i .e . , swapping two adja­cent words, as mentioned before. A finer degree of relaxation related to the fifth principle can also be classified as below, although its usefulness may likely be finally decided through multiple knowl­edge interaction:
1. When the deleted category set (e.g. , cat(HOME) in the current example) has no intersection with the inserted category set (e.g. , (*N) in the current example) , rank it as bad; the relaxation may not be allowed in this case;7

2. When the deleted category set has intersec­tion with the inserted category set , but not inclusion, rank it as acceptable;
3. When the deleted category set is contained the inserted category set , rank it as good;
4. When the deleted category set contains the inserted category set , rank it as good;
The second hypothesized sequence is similar to the first one. The difference between the first hypothesized sequence and the second one is that in the first relaxation, instead of deleting princi­ple, the inserting principle survives. All the rest of the two hypothesized sequences are more or less the same and we are not going to explain further.

Example sentence 4 .

* (understander ' (the man
home likes))

Part 1 : the indexed sentence =
((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))
(2 (•ADJ •ADV •N) (HOME 2 2))
(3 (•V) (LIKES 3 3)))

Part 2 : the history o f hypothesized
sentences :

1-th hypothesized sentence :
((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))
(2 (•SPAN• • V •PREP •DET) (NIL - 1 2))
(3 (•SPAN• •ADJ •ADV •N) (HOME - 1 3))
(4 (•V) (LIKES 3 4))
(5 ($) (NIL NIL 5)))

Part 3 :
and the value of the deviation

parameter is 1
Part 4 :
the grammar does not accept this sentence !
here is a partial result

7If the deleted category set is empty or contains only unrecognized categories, the ranking may be different.

326

0 0
1 (•DET T (THE O 0))
2 (•N T (MAN 1 1))
3 (NP (1 2))
4 (•PREP T (NIL -1 2))
5 (•V T (NIL -1 2))
6 (•SPAN* T (NIL -1 2))
7 (•N T (HOME -1 3))
8 (•SPAN• T (HOME -1 3))
9 (NP (7))
10 (PP (4 9))
1 1 (NP (3 1 0) (1 2))
12 (•V T (LIKES 3 4))
the end of the forest .
NIL
* (understander ' (the man

home likes)
Part 1: the indexed sentence =

((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))

2)

(2 (•ADJ •ADV •N) (HOME 2 2))
(3 (•V) (LIKES 3 3)))

Part 2 : the history of hypothesized
sentences :

1-th hypothesized sentence :
((0 (•DET) (THE O 0))
(1 (•N) (MAN 1 1))
(2 (•SPAN• •V •PREP •DET) (NIL -1 2))
(3 (•SPAN* •ADJ •ADV •N) (HOME -1 3))
(4 (•V) (LIKES 3 4))
(5 ($) (NIL NIL 5)))

2-th hypothesized sentence :
((0 (•DET) (THE O 0))

(1 (•N) (MAN 1 1))
(2 (•SPAN• •V •PREP •DET) (NIL -1 2))
(3 (•SPAN• •ADJ •ADV •N) (HOME -1 3))
(4 (•V) (LIKES 3 4))
(5 (•SPAN* •V •PREP *N •DET)

(NIL -1 5))
(6 ($) (NIL NIL 6)))

Part 3 :
The following hypothesized sentences

get parsed :
(((•DET (THE O 0)) (•N (MAN 1 1))

(•V (LIKES 3 4)) (*N (NIL -1 5)))
((•DET (THE O 0)) (•N (MAN 1 1))
(•PREP (NIL -1 2)) (*N (HOME - 1 3))
(•V (LIKES 3 4)) (•N (NIL -1 5))))

and the value o f the deviation
parameter is 2
Part 4 :

it is accepted
the root of its parse forest is (19) ,

and the forest is :
0 0
1 (•DET T (THE O 0))
2 (•N T (MAN 1 1))
3 (NP (1 2))
4 (•PREP T (NIL -1 2))
5 (•V T (NIL -1 2))
6 (•SPAN* T (NIL -1 2))
7 (•N T (HOME -1 3))
8 (•SPAN• T (HOME -1 3))

9 (NP (7))

10 (PP (4 9))
11 (NP (3 10) (1 2))
12 (•V T (LIKES 3 4))
13 (•DET T (NIL -1 5))
14 (•N T (NIL -1 5))
15 (•PREP T (NIL -1 5))
16 (•SPAN• T (NIL -1 5))
17 (NP (14))
18 (VP (12 17))
19 (S (3 18) (1 1 18))
the end of the forest .
NIL
*

WENG

5 Future Work and Conclu­

sions

As we mentioned above, it is not always suffi­cient by syntactic knowledge alone to determine which k we should take in xgp phenomena, i .e . knowledge sources at other levels are needed in identifying which word(s) contribute to the in­consistency of the local context and/or multi­sentential (global) context . It is further discussed in (Weng, 1993) how to identify a proper k and narrow down the number of alternative interpre­tations while building up the syntactic-semantic structures, based on preference Semantics (Wilks, 1975; Fass - Wilks, 1983; Slater - Wilks, 1990).
It is quite interesting to contrast one of the conclusions made in (Carbonell - Hayes, 83), i.e. error correction in compiled version parsers is not flexible, with what we have done here . We are not claiming that our work completely inval­idates that conclusion, but at least we see some promise in that direction. (Malone - Felshin, 1989; Moore - Dowding, 1991) also express the feeling that it is not easy to change GLR parsers to perform relaxation, while our modification is quite moderate although somewhat tricky.
(Aho - Peterson, 1973) describes an algorithm that parses any input string to completion finding the fewest possible number of errors, by changing the grammar. The algorithm does not require the locality principle . A similar effect can be realized by trying one relaxation for every word parsed when an error message is signalled.
The last point we would like to make concerns the relationship between the criteria for gram-

HANDLING SYNTACTIC EXTRA-GRAMMATICALITY

maticality and the deviation/relaxation param­
eter. The hints provided by our parser seem
to suggest that grammaticality is a graded and
individual-related notion, i.e. it depends not only
on the individual's knowledge about language but
also the ease of absorption of certain phenomena
into her or his knowledge.

327

Acknowledgments

The author would like to express his thanks to
Dr. Y. Wilks for his helpful comments on the
content and presentation of this paper. Thanks
also goes to the anonymous referees for valuable
comments.

328
References

Aho A. - T. Peterson (1972) A Minimum Dis­tance Error-Correcting Parser for Context­Free Languages, SIAM J . Computing, Vol . 1, No.4 .
Aho A . - J . Ullman (1977) Principles of Com­piler Design, Reading (MA): Addison-Wesley.
__ (1986) Compiler: Principles, Techniques, and Tools, Reading (MA): Addison-Wesley.
Berwick R . (1985) The Acquisition of Syntactic Knowledge, Cambridge (MA): MIT Press .
Carbonell J . - P. Hayes (1983) Recovery Strate­gies for Parsing Extragrammatical Language, American Journal of Computational Linguis­tics, Vol 9 (3-4) .
Chomsky N. (1980) Lectures on Government and Binding, Dordrecht: Foris Publications .
DARPA (1991) Workshop on Speech and Natu­ral Language Workshop .
DARPA (1992) Workshop on Speech and Natu­ral Language Workshop .
Fass D . - Y. Wilks (1983) Preference Seman­tics, Ill-Formedness, and Metaphor, American Journal of Computational Linguistics, Vol 9 (3-4) .
Fong S . - R . Berwick (1989) The Computational Implementation of Principle-Based Parsers, 1st International Workshop on Parsing Tech­nologies .
Gibson E. (1989) Parsing with Principles: Pre­dicting a Phrasal Node Before Its Head Ap­pears, 1st International Workshop on Parsing Technologies .
Hopcroft J . - J . Ullman (1979) Introduction to Automata Theory, Languages, and Computa­tion, Reading (MA): Addison-Wesley.
Leung H . - D. Wotschke (manuscript) Tradeoffs in Economy of Description in Parsing.
Malone S . - Sue Felshin { 1989) An Efficient Method for Parsing Erroneous Input, 1st In­ternational Workshop on Parsing Technolo­gies .

WENG

McRoy S. - G. Hirst (1990) Race-Based Pars­ing and Syntactic Disambiguation, in Cogni­tive Science 14 .
Moore R . - J. Dowding (1991) Efficient Bottom­Up Parsing, DARPA Speech and Natural Lan­guage Workshop .
Nyberg E. 3rd (1989) Weight Propagation and Parameter Setting, Ph.D Thesis Proposal, De­partment of Philosophy, CMU.
Passonneau R . et al., (1990) Integrating Natu­ral Language Processing and Know ledge Based Processing, AAAI-90 .
Piaget J . - B . Inhelder (1941) Le Developpement des Quantites chez L 'en/ant, Neuchatel: Delachaux it Niestle . (A Translated Chinese Version) .
Saito H . - M. Tomita (1991) GLR Parsing for Noisy Input, in Generalized LR Parsing, M. Tomita (ed.), Boston: Kluwer Academic Pub­lishers .
Slater B . - Y. Wilks (1990) PREMO: Parsing by conspicuous lexical consumption.
Stallard D. - R . Bobrow (1992) Fragment Processing in the DELPHI System, DARPA Workshop on Speech and Natural Language Workshop .
Tomita M. (1984) Disambiguation by Asking, COLING-84 .

__ (1985) Efficient Parsing for Natural Lan­guage, Kluwer Academic Publishers .
__ (1987) An Efficient Augmented-Context­Free Parsing Algorithm. , Computational Lin­guistics, 13, 3 1-46 .
Weng F . (1993) Handling Extra-Grammaticality at the Syntactic Level in Natural Language Processing, Master Thesis, Computer Science Department and Computing Research Lab, New Mexico State University, Las Cruces, New Mexico, U .S .A .
Wilks Y. (1975) A Preferential Pattern-Seeking Semantics for Natural Language Inference. Artificial Intelligence 6: 53-7 4 .

HANDLING SYNTACTIC EXTRA-GRAMMATICALITY

Table 1: A Set of Grammar Rules.
I Rule-id Rule form used in EGLR CFG Rules (sorted) I 0-th (NP --+ (*DET *N)) NP --+ *DET *N 1-th (NP --+ (*N)) NP --+ *N 2-th (NP --+ (NP PP)) NP --+ NP PP 3-th (PP --+ (*PREP NP)) PP --+ *PREP NP 4-th (S --+ (NP VP)) S --+ NP VP 5-th (S --+ (S PP)) s --+ s pp 6-th (START --+ (S)) START --+ S 7-th (VP --+ (*V NP)) VP --+ *V NP 8-th (VP --+ (*V PP)) VP --+ *V PP

Table 2: The GAT and goto Table
the generalized action table:

I state-id *DET *N *PREP *V $ 0 s3 s4 1 s7 s8 2 s7 a 3 slO 4 rl rl r1 5 r4 r4 6 r2 r2 r2 7 s3 s4 8 s3 s4 s7
9 r5 r5 10 rO rO rO
1 1 r3 s7 r3 r3 12 r8 r8 13 r7 s7 r7 the goto table:

I state-id NP PP S VP 0 1 2 1 6 5 2 9 3 4 5
6 7 1 1
8 13 12 9 10
1 1 6 12 13 6

329

330 WENG

Table 3: The Extended GAT.
the extended generalized action table:

I state id *DET *N *PREP *V $ *SPAN* I 0 s3 s4 s0 1 s7 s8 s1 2 s7 a s2 3 s10 s3 4 rl r1 rl s4 5 r4 r4 s5 6 r2 r2 r2 s6 7 s3 s4 s7 8 s3 s4 s7 s8 9 r5 r5 s9 10 rO rO rO s10 11 r3 s7 r3 r3 s11 12 r8 r8 s12 13 r7 s7 r7 s13 the goto table: I state id NP pp s VP 0 1 2 1 6 5 2 9 3 4 5
6 7 11 8 13 12 9 10 11 6 12 13 6

HANDLING SYNTACTIC EXTRA-G RAMMATICALITY

Table 4: The Extended Grammar.
the extended grammar: I Rule-id Rule form used in EG LR CFG Rules (sorted) I 0-th (NP --+ (*DET *N)) NP --+ *DET *N 1-th (NP --+ (*N)) NP --+ *N 2-th (NP --+ (*VTMNP)) NP --+ *VTMNP 3-th (NP --+ (NP PP)) NP --+ NP PP 4-th (PP --+ (*PREP NP)) PP --+ *PREP NP 5-th (PP --+ (*VTMPP)) PP --+ *VTMPP 6-th (S --+ (*VTMS)) S --+ *VTMS 7-th (S --+ (NP VP)) S --+ NP VP

8-th (S --+ (S PP)) s --+ s pp 9-th (START --+ (S)) START --+ S 10-th (VP --+ (*V NP)) VP --+ *V NP 1 1-th (VP --+ (*V PP)) VP --+ *V PP 12-th (VP --+ (*VTMVP)) VP --+ *VTMVP

331

332 WENG

Table 5: The Extended GPTs.

the extended generalized action table:
I stt-id *DET *N *PREP *V $ *SPAN* *VTMNP *VTMPP *VTMS *VTMVP

0 s3 s4 s0 s5 s6
1 s9 s11 s1 s10 s12
2 s9 a s2 s10
3 s14 s3
4 rl r1 rl s4 rl rl
5 r2 r2 r2 s5 r2 r2
6 r6 r6 s6 r6
7 r7 r7 s7 r7
8 r3 r3 r3 s8 r3 r3
9 s3 s4 s9 s5
10 r5 r5 r5 s10 r5 r5
1 1 s3 s4 s9 s11 s5 s10
12 r12 r12 s12 r12
13 r8 rs s13 r13
14 rO rO rO s14 rO rO
15 r4 s9 r4 r4 s15 r4 s10 r4
16 rll rll s16 rll
17 rlO s9 rlO s17 rlO s10

the goto table:
I state id NP pp s VP

0 1 2
1 8 7
2 13
3 4
5
6
7
8
9 15
10
11 17 16
12
13
14
15 8
16
17 8

Adventures in Multi-dimensional Parsing:

Cycles and Disorders

Kent Wittenburg

Bellcore, 445 South St. , MRE 2A-347,
Morristown, NJ 07962-1910, USA

email: kentw©bellcore . com

Abstract Among the proposals for multidimensional grammars is a family of constraint-based gram­matical frameworks, including Relational Grammars. In Relational languages, expressions are formally defined as a set of relations whose tuples are taken from an indexed set of symbols. Both bottom-up parsing and Earley-style parsing algorithms have previously been proposed for different classes of Relational languages. The Relational language class for Earley style parsing in Wittenburg (1992a} requires that each relation be a partial order. However, in some real-world domains, the relations do not naturally conform to these restrictions. In this paper I discuss motivations and methods for predictive, Earley-style parsing of multidimensional languages when the relations involved do not necessarily yield an ordering, e.g., when the relations are symmetric and/or nontransitive. The solution involves guaranteeing that a single initial start position for parsing can be associated with any member of the input set. The domains in which these issues are discussed involve incremental parsing in interfaces and off-line verification of multidimensional data.
1 Introduction

Relational Languages, those sets of expressions that are generable (or recognizable) by Rela­tional Grammars, are characterized as relations on sets of symbols or , in practice, structured ob­jects (Crimi et al., 1991; Golin - Reiss, 1990; Helm - Marriott, 1986, 1990; Wittenburg et al., 1991 ; Wittenburg, 1992a, 1992b, 1993). Senten­tial forms and elements of derivations are for­mally defined as sets of relations, each of which in turn is a set of ordered tuples, in the symbol (or object type) vocabulary set. This approach to defining multidimensional languages is com­patible with unification-based approaches since the relations can be defined in unification-based grammars as constraints. Constraint Logic Pro­gramming or other approaches that enhance the usual notion of equality as the only structural constraint on terms can be employed in order to express the more free-form constraints required in multidimensional languages (see Crimi et al.,

1991; Helm - Marriott, 1986, 1990; Wittenburg et al., 1991; Wittenburg, 1993). This approach to grammar and language definition generalizes over many other proposals for multidimensional grammars in the literature since arrays, graphs, and specialized spatial data structures can easily be modeled as sets of relational tuples. Various parsers have been previously pro­posed for different classes of Relational languages. Bottom-up algorithms (Golin, 1991; Wittenburg et al., 1991) are the most straightforward and general, although they they are not suited to all applications. More efficient deterministic tech­niques proposed for graph grammars by Flasinski (1988; 1989) have been adapted by Ferrucci et al. (1991) to a constraint-based grammar frame­work, but the restrictions on relations and gram­mar productions make it unclear that the class of languages is widely useful. On the other hand, this algorithm has been shown to have a low poly­nomial bound on complexity. An Earley-style algorithm (Earley, 1970) has been proposed by
333

334
Wittenburg (1992a) for a larger class of nonde­terministic languages whose relations are partial orders.

The limitations of these previously proposed al­gorithms have become evident in two domains for Relational Grammars under current inves­tigation: on-line incremental parsing of visual. language expressions (Wittenburg et al., 1991; Weitzman and Wittenburg, 1993) and off-line verification of multidimensional data. While bottom-up parsing may be employed, there are reasons to consider predictive parsing techiques. In the case of incremental parsing of visual lan­guages consisting of connected diagrams or geo­metric layouts, one might use predictive parsing to detect errors as soon as they occur or to offer incremental directives (e.g., the analogue of com­pletion in command input) to drawing or palette selections. However, to use deterministic algo­rithms one must use grammars that are often not expressive enough for the constraints desired. For example, no non left- or right-unique relations are allowed with the F lasinski approach and yet geo­metric layouts of objects of different sizes invari­ably include relations that, say, have two smaller objects both in some below relation to a larger ob­ject. The Earley-style algorithm of Wittenburg (1992a) is unsuited to incremental interface ap­plications because more flexibility in a parser's scanning order is desired than is afforded by this algorithm. Unlike with one-dimensional text, it is not easy to anticipate in a two- or n-dimensional world exactly what orderings will seem most nat­ural to users. It seems clear that for most dia­gramming languages , for example, interfaces that allow a good deal of flexibility in how users build up diagrams would be preferred over interfaces that insist that users build up diagrams in pre­specified orders that happen to conform, say, to temporal control relations that are reflected in the arcs of the diagrams; Further, many visual languages contain relations that may be symmet­ric or nontransitive, in which case the Witten­burg (1992a) -algorithm is not usable. One set of examples arises with languages whose primitives are directed line segments. Relations between line segments such as head-to-head or tail-to-tail are symmetric, precluding . the use of algorithms de­pending on the intrinsic ordering properties of the relations to direct scanning. Cycles are of �ourse

WITTENBURG

generally common in flowchart diagramming lan­guages to represent control loops.
In the case of off"'.line data verification and cor­. rection, the size of the input sets involved may preclude bottom-up parsing for efficiency reasons. The following scenario from a current Bellcore ap­plication domain is an example of the problem. Suppose one is verifying that all the line segments that comprise the border of each region in a map­ping database in fact enclose that region and that any attributes of the data are in conformance. One approach is to define grammars that inde­pendently combine the line segments surround­ing each region to yield a closed polygon of some form. But blind bottom-up parsing would take each and every line segment to be the start of the polygon constituent, rebuilding it many, many times over. In geographical data sets such as the U.S. Census Bureau's Tiger database , the number of line segments representing the border of a sin­gle state typically reaches into the thousands. It is not hard to see that such a redundant algorithm would be ill-advised. Not only is it inefficient, but the problem of error detection is , at least on the face of it, made more difficult than if the pars­ing enumeration were systematically ordered and based on systematic prediction. The goal addressed in this work is to design a predictive, Earley-style algorithm for Relational Grammars without relying on the relations them­selves to provide scanning orderings. Such an algorithm allows predictive parsing methods to be employed with higher-dimensional languages whose relational graphs contain cycles, i.e., one or more of the relations are not partial orders. To design such an algorithm requires solving the problem of finding a start element for the parser to begin its predict and scan operations. The Wittenburg (1992a) algorithm uses minimal el­ements of the relations to initialize the parser at possibly multiple starting positions. The goal here is to allow the parser to start with a single arbitrary member of the input set and still guar­antee completeness.
The remainder of this paper is structured as .fol­lows. First, as a review and refinement of work to date, a Relational Grammar formalism for prac­tical applications developed and implemented at ·

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 335

Bellcore is summarized, followed by relevant as­
pects of Earley-style parsing from Wittenburg
(1992a) . We then turn to the question of how to
define a suitable subclass of Relational Grammars
for ensuring that parsing may be initiated from
an arbitrary starting point. An Earley-style pars­
ing algorithm and example trace are presented
next. The conclusion includes remarks regarding
the extensions to this work necessary to fully solve
the problems of incremental, predictive parsing
for higher-dimensional languages.

2 A Relational Grammar
Formalism

Relational Grammars are motivated by domains
in which the sets of objects to be generated or
analyzed can not comfortably be represented as
strict linear orders of symbols. Examples include
expressions in 2-D such as mathematics notation,
flowcharts , or schematic diagrams; 2-D or 3-D
graphical layouts and displays, perhaps with time
or additional media as added dimensions; and n­
dimensional data to be found in empirical data
collections or various types of databases. One
must generalize the data type of language expres­
sions from, say, one-dimensional arrays (strings)
to 2-, or perhaps n-dimensional arrays or, more
generally, to graphs of relations where the nodes
represent data in unrestricted formats. Notions
of replacement in derivations have to be gener­
alized also, and, as attested by the literature on
array and graph grammars, there are many varia­
tions on how to define grammar productions and
the notion of replacement (called the embedding
problem in the graph-grammar literature) .

The Relational Language (RL) framework pro­
vides for an abstraction over the particular data
structures used to hold the object sets being pro­
cessed. The grammar productions make mention
of the relations expected to hold in the data but
there is flexibility in choosing exactly how the
data is represented and stored as well as the im­
plementation of how the relations are checked or
queried. Such an approach accommodates many
kinds of data representations, including array or
graph structures, K-D trees, or even commercial
databases in which indexings may be precisely
tuned for efficiency.

Combining input objects during the parsing
process can be characterized neutrally through
set operations - set union then being a very gen­
eral analog of string concatenation. It is natural
to think of a grammar rule as providing a defini­
tion of a composite (nonterminal) object as a set
(usually nonunary) whose type is the symbol on
the left-hand-side of the rule and whose parts are
the union of the parts of the objects whose types
are the symbols on the right-hand-side of the rule.
Derivations are defined as a sequence of replace­
ments that are headed by a type that is a root
symbol of the grammar and terminate in a set of
objects whose types are taken from the vocabu­
lary of terminal symbols. An important charac­
teristic of the RL approach is that derivations are
trees, as is the case in conventional context-free
grammars. An effect of this restriction is that no
object may be used more than once per deriva­
tion.

The most significant new requirement for the
grammar formalism is that it has to provide a
means for specifying possible combining relations
explicitly. Specifying combining relations in Re-.
lational Grammars is done by stating, for each el­
ement in the right-hand-side of a non-unary rule,
what relation it has to stand in with respect to
at least one other right-hand-side element . Oper­
ationally, a parser finds relevant input for combi- ·
nation by executing queries formed from the re­
lational constraints.

Besides the unification-based approaches to Re­
lational Languages mentioned above, a more ef­
ficient grammar compiler has also been imple­
mented (Wittenburg, 1992b) that incorporates a
form of "pseudo-unification" (see Tomita, 1990) .
One may consider the pseudo-unification-based
formalism as syntactic sugar for an underlying
unification system. From this point of view; the
results of this paper generalize to the full fam­
ily of extended unification-based approaches and
thus it is not the case that we are dealing here
with yet another special-case grammar formalism.
Nevertheless, we will use the pseudo-unification­
based formalism in this dicussion since it is less
verbose than the full unification-based specifica­
tion. It also of course affords the possibility that
specialized algorithms may be found that can be
proved more efficient than general unification.

336

Example 1 .

(defrule (Subtree-rule example-grammar)
(0 Subtree)
(1 prim)
(2 Row)
: expanders (below 2 1)
: predicates (centered-in-x 1 2))

Exam pie 1 shows a defining form for a sim pie rule that states that an object of type Subtree can be composed out of two objects of type prim and Row, as long as they stand in the stated be­low and centered-in-x relations. The integers in the textual rule definition act as references to rule elements : the left-hand-side of a rule is conven­tionally marked as b; the one or more right-hand­side elements are numbered 1 . . . n. The backbone of this rule thus could be written as Subtree --+ prim Row. A relational constraint such as {below 2 1) is to be interpreted as a requirement that the object matching rule element 2 {of type Row in this case) must stand in the below relation to the object matching rule element 1 {of type prim) . During parsing, relational constraints either have the effect of generating possible candidates for rule element matches or filtering candidate matches that have been proposed. Relational constraints immediately following the keyword :expanders act as a generators. These relations must be binary, and the parser will execute a query based on these relational expressions as it explores candidates to match rule elements. For example, the query {below :? i) would be exe­cuted when matching rule Subtree-rule in order to expand the match to the second right-hand­side element, assuming i is an index to the input matching the first right-hand-side element . We call the binary, generating relations expander re­lations, since their main role is to expand rule matches. In addition, one may include further relational constraints {of any arity) . These non­initial constraints will be executed as predicates. In Example 1 , (centered-in-x 1 2) is the only pred­icate. Figure 1 shows a graphical depiction of the rule in Example 1 in which composition is repre­sented as spatial enclosure. Thus one sees that the Subtree object is composed of the prim and' Row objects. The arrows represent the required spatial relations.

WITTENBURG

Subtree strim)
centered-in- + below

(Row)

Figure 1 : A sim pie layout rule
At a definitional level, the right-hand-side el­ements of RG rules are unordered - what really matters are the relational constraints, which only partially determine the order in which a parser might match the rule elements. But a parser is going to have to match rule elements in some or­der or other. In bottom-up parsing, it is possible to choose only a single ordering of the right-hand­side elements of each production. Wittenburg et al. {1991) discuss the constraints in choosing such an ordering. The following constraint , which we refer to as the connectedness constraint, must hold of an order for right-hand-side rule elements in RGs:

Restriction 1 . For an ordering of rhs rule ele­ments D1 . . . Dn , there must exist at least one expander constraint between each ele­ment Dj , 1 < j , and an element Di where i < j .

That is, considered as a graph with the ex­pander relations as arcs, the right-hand-side of a rule must be connected and, when ordered, each element in turn must be connected to some other element earlier in the ordering. This requirement implies that this class of Relational Grammars can generate only connected relation graphs since, for every production, we assume that there is at least one ordering that meets this condition. Since the expander constraints are going to pro­vide the parser with a query function that can find the candidates to combine with next at each step, this restriction ensures that an expander query can fire at each stage in the rule match. Once an ordering is found, a grammar compiler can place an expander or predicate expression with the first rule element in which all the argu­ments of the relational expression will be bound.1 1 Ordering the constraints in a ·grammar compiling operation as discussed here obviates the need for residuation in unification operations, the basis for the unification extensions discussed in Wittenburg (1993) .

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 337

In remaining examples in this section, we will as­sume that the rules are ordered as shown, and we will associate the relational constraints with the relevant rule elements rather than list them at the end of the rule definition.
A definition useful in subsequent sections on parsing follows:

Definition 1 . We know, given Restriction 1 , that for every ordered production, an ex­pander constraint of the form (rel x y) must exist for every ordered daughter at position j > 1 where either x or y will be grounded by matching a daughter at position j and either x or y (whichever doesn't satisfy this previous condition) is already grounded by a daughter at a position i < j. These ar­guments are defined as the to-be-bound ar­gument and the already-bound argument, respectively, at position j .

A fundamental issue in Relational Grammar representation is whether to allow nonterminals to appear as direct arguments to relational con­straints. The natural interpretation of a nonter­minal in such a constraint is that it is a reference to the set of input objects in its derivational yield. Let us presume a grammar having the rule in Ex­ample 1 has other rules expanding the nontermi­nal category Row in such a way that a bottom­up parser can build up a horizontally aligned set of primitive objects. Consider the effect of exe­cuting the query (below :? i) , mentioned earlier, when parsing. If this query is executed against the original input only, it will never find a Row object since the existence of such an object is an artifact of parsing. A solution to this problem requires dynamic updating of what we call an ob­ject store, which starts out as a collection of input objects. Composite objects are introduced as the parser finds them through rule matches. A gram­mar thus must define derived nonterminal objects in terms of terminal objects. For example, if in­put data is characterized as rectangular regions (which is reasonable for many graphical applica­tions) , then composites introduced through rule matches might be defined as the summation of the rectangular regions of the rule's daughters. Including relational constraints directly on composites is reasonable when using bottom-up

parsing, but it complicates the definition of Rela­tional Grammars as generative systems since the composition-of relation must in principle be re­versible. Further, significant problems are intro­duced for Earley-style parsing, or any other form of predictive parsing, as discussed in Wittenburg (1992a) . The alternative is to write grammars that state relational constraints only on individu­als in the input set and use feature percolation to pass up bindings of these individuals as attribute values in derivations. We will refer to this latter subclass of Relational Grammars as Atomic Re­lational Grammars (ARGs) , noting that the most significant restriction is that the arguments of re­lational constraints must be atomic. As an illustration, consider Example 2, the rule set of a flowchart grammar fragment. The root symbol for this grammar is Flowchart .
Example 2: Flowchart Grammar.
(defrule (flovchart flovchart-grammar)

(0 Flovchart (setf (in 0) 1
(out 0) 3)

(1 oval)
(2 P-block (connects-to 1 (in 2)))
(3 oval (connects-to (out 2) 3))))

(defrule (conditional flovchart-grammar)
(0 P-block (setf (in 0) 1

(out 0) 3))
(1 diamond)
(2 P-block (Y-connects-to 1 (in 2)))
(3 circle (connects-to (out 2) 3)

(N-connects-to 1 3)))

(defrule (basic-p-block flovchart-grammar)
(0 P-block (setf (in 0) 1

(out 0) 1))

(1 rectangle))

A graphical depiction of the is shown in Figure 2. A visual indication that these relations do not hold of composite sets directly can be seen as the arcs (representing relations) cross the enclosing perimeters of nonterminal objects. All relations in this example are taken as constraints on indi­vidual members of the input set . Consider, for example, the relational constraint (connects-to 1 (in 2)) appearing in rule flowchart . The first argu­ment, 1 , is a direct reference to a terminal object with lexical type oval. The second argument, (in 2) , is an indirect reference to the value of the in

338

attribute of an object of (nonterminal) type P­block . This value will be bound to a terminal ob­ject during parsing. We call the set of attributes expander attributes that appear in any of the ar­guments to expander relations in a grammar. In this grammar, in and out are the expander at­tributes.

P-block

in : � out: @

F igure 2: Graphical views of flowchart productions.
The rules must percolate references to individ­ual members of the input as feature values from the right-hand-side of each rule to its left-hand­side. In the pseudo-unification formalism, assign­ments are made through setf forms. (We will also use forms in the text such as (attrx 0) = (attr11 i) to represent feature percolation. They are in­tended to be operationally equivalent to the setf for�s.) Unlike general attribute passing, we as­sume equality as the only relation between values in feature percolation.2 In the rule basic-p-block, one can see how the values of features in and out are linked directly to terminal input, in this case, an individual input object of lexical category rect­angle.

WITTENBURG
We propose the following restriction for Atomic Relational Grammar productions, whose utility will become most evident when we consider predictive parsing later in this paper:

Restriction 2. Each production must percolate a value for every expander attribute used in the grammar.
In the grammar of Example 2 we can see that this condition is met since in and out are the only expander attributes used in the grammar and every production associates the value of each of these attributes in its left-hand-side with some value on its right-hand-side.

F igure 3: A derivation .
A derivation tree is shown in Figure 3 . The input set is indicated as filled shapes indexed by integers representing binary numbers . Relations between input elements are graphed as arcs. The derivation tree (omitting ordering of daughter el­ements) is shown through the convention of spa­tial enclosure with dominating nonterminals rep­resented as enclosing rounded rectangles.

3 Earley-style Parsing for
Partial Orderings

Wittenburg (1992a) proposes a subclass of Atomic Relational Grammars amenable to Earley-style parsing. The class is called Fringe Relational Grammars (FRGs), where fringes are defined to be the minimal and maximal elements of Relational language expressions. The defini­tion of Fringe Relational Grammars guarantees that any expression generable by the grammar 2This restriction to equality is significant only for expander attributes in percolation statements. The grammar for­malism supports the use of additional features whose values may be tied to arbitrary computation using other features.

ADVENTURES IN MULTI-D IMENSIONAL PARSING: CYCLES AND DISORDERS 339
can be (partially) ordered. The motivation for such a requirement is that if we can partially or­der the input, then starting positions can be de­fined as the minimal elements and the parser can be given a partial order for scanning the input . This is a summary of the restrictions on Atomic Relational Grammars that define the Fringe Relational Grammar subclass.
Restriction 3. Each relation used in an ex-pander constraint in the grammar must in­dependently be a partial order.
Restriction 4. For each expander relation used in the grammar, a pair of minimal/maximal expander attributes must be declared and every production must percolate values to these attributes in a manner that retains the partial orderings.
Restriction 5. Each production in the grammar must have an ordering variant of its right­hand-side such that , for each expander at­tribute, the right-hand-side element perco­lating the value to that expander attribute appears first .

■

l

l
■ ---► ■ ---► ■

■ = id ♦ = above _. = left-of

.-..-..

Figure 4. An expression in L(FRG-gram)
The rule set in Example 3 for the grammar we'll call FRG-gram generates Relational lan­guage expressions such as that graphed in Figure 4.

Example 3: FRG-gram rule set .
(defrule (S-rule FRG-gram)

(0 S (setf (above-min 0) (above-min 1)
(above-max 0) (above-max 1)
(left-of-min 0) (left-of-min 1)
(left-of-max 0) (left-of-max 1)))

(1 Subtree))

(defrule (Subtree-rule FRG-gram)
(0 Subtree (setf (above-min 0) 1

(1 id)
(2 Row)
: expanders

(above-max 0) (above-max 2)
(left-of-min 0) 1
(left-of-max 0) 1))

(above 1 (above-min 2))))

(defrule (Row-rule FRG-gram)
(0 Row (setf (above-min 0) (above-min 2)

(above-max 0) (above-max 2)
(left-of-min 0) (left-of-min 1)
(left-of-max 0) (left-of-max 3)))

(1 Subtree)
(2 Subtree)
(3 Subtree)
: expanders
(left-of (left-of-max 1) (1eft-of-min 2))
(left-of (left-of-max 2) (left-of-max 3)))

(defrule (Basic-subtree FRG-gram)
(0 Subtree (setf (above-min 0) 1

(above-max 0) 1
(left-of-min 0) 1
(left-of-max 0) 1))

(1 id))

The left-of relation is used to compose hori­zontally aligned rows via topmost elements and
above is used to vertically align mother elements with daughter rows via the daughter element at the row's center. It is easy to see that both the left-of and above relations can be defined such that they indepen­dently will be partial orders on any input. This takes care of Restriction 3 for FRGs. As for the Restriction 4, note how each production sets the value of all four expander attributes above-min,
above-max, left-of-min, and left-of-max in its left­hand-side category. The linkings that are defined in all cases are consistent with the partial order­ings that the relations induce on the right-hand­sides of each rule. In order to meet Restriction 5 ,

340

we must spawn ordering variants for some of the rules . Table 1 summarizes such an expanded rule­set that can be generated automatically. Each ordering variant is indicated by rule name and right-hand-side sequence as defined in Example 3 . From Table 1 we can see that three rule vari­ants would need to be added over the orderings implicit in the base grammar of Example 3 . Such a table is used on-line in the parsing algorithm in order to provide a mapping from expander at­tributes (used in prediction) to rule variants that percolate (or bind) that expander attribute first .
Table 1 : Expanded FRG-gram ruleset

Rule Expander RHS
Attribute Ordering S-rule all <1> Subtree-rule above-min < 1, 2> above-max <2, 1> left-of-min <1, 2> left-of-max <1, 2> Row-rule above-min <2, 1, 3> above-max <2, 1, 3> left-of-min <1, 2, 3> left-of-max <3, 2, 1> Basic-su btree all <1>

The intuitive idea of the parsing algorithm is as follows. The parser is initialized in Earley style with dotted productions expanding root symbols of the grammar at each of the minimal elements of the input. Extended predict, scan, and complete steps carry over from Earley 's algorithm, so the parser will build up item sets through enumer­ations of the nodes of the input relation graph originating at the minimal nodes. Note that no matter where the parser starts in the input, a suc­cessful derivation starting from that position will have to visit all the nodes of the input graph at least once . The main goal in designing the algo­rithm is to minimize the number of enumerations while still ensuring completeness. When two or more enumeration sequences converge, the algo­rithm is able to detect when a prediction has been made before so that the same prediction (and all items that ensue) don't have to be re-created. In order to be able to absorb the products of a previ­ous prediction into a converging enumeration se­quence, a fourth step has to be added to Earley 's

WITTENBURG

predict, scan, and complete . It is called inverse­complete . Where complete is given an inactive state and asked to extend active states that end where the inactive state starts, inverse-complete is given an active state and tries to extend it with any inactive states that start where the active state ends . As suggested in the concluding remarks of Wittenburg (1992a), there is still research to be done to minimize enumeration sequences further. One strategy is look for ways of reducing the num­ber of requisite start points. While we address a different problem in the remainder of this paper, the solution is relevant to this question since the parser need only initialize its search at a single . position.
4 Preliminaries to a Parser

Here we present the preliminaries necessary to de­fine an Earley-style algorithm for Atomic Rela­tional Grammars that can be initialized from any start element. As is discussed in the concluding remarks, the parsing algorithm solves only part of the problem for defining incremental, predic­tive parsing for Relational Grammars, but it is of interest in its own right. We begin with the following observations.
The existence of an Earley predictive state (an active state that covers no input) in a parse ta­ble implies that a derivation headed by the non­terminal on the left-hand-side of the dotted rule may "begin" at that positional index . A scan­ning action is valid, given some positional index, only if the terminal symbol at that position is a valid left-corner of a possible derivation subtree predicted to start at that index. For a parser to adquately predict top-down expansions of the grammar's root symbol from any position in the input and only that position, it follows that ev­ery element of any parsable input sets must be a possible left-corner of a valid derivation tree headed by the root symbol . As a condition on a grammar, this implies that for every nonter­minal, there must be variants of any production expanding that nonterminal such that any mem­ber of its terminal yield can be ordered first in the production's right-hand-side. Part of our proposal then is to require order-

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 341

ing variants of the right-hand-sides of every pro­duction so that every rhs-element appears first in at least one variant . It is not hard to see that such a mechanism carried through will satisfy the any-start requirement . Intuitively, if for any lo­cal subtree in a derivation admitted by the base grammar, there exists another derivation subtree reordered such that an arbitrary rhs-element ap­pears first, then, by induction, any derivation tree can be transformed by a series of local reorderings such that an arbitrary terminal node appears as a left-corner in at least one (other) derivation tree.
Then there is the question of remaining order­ing variations once a parser has chosen a start position. Note here that it is not a requirement that once the parser has chosen its first element, that the next choice for scanning may arbitrarily be any of the remaining input elements. A nat­ural requisite for ordering variants once the algo­rithm has been initialized at a start position is to allow for any variations of input elements that are connected through some relation to the input already scanned. Such an approach would be con­sistent with the parsing algorithms discussed pre­viously since queries formed from relational con­straints could serve as the basis for expanding rule matches. To fully realize even this set of order­ing variations would require extensions beyond the scope of the present paper, however. Here we concentrate on the problem of an arbitrary starting point and choose to direct the parser to scan remaining input nondeterministically in or­ders (not necessarily all orders) consistent with the connectedness constraint just mentioned. A simple extension allows for all connected ordering variations within local rules. In Wittenburg (1992a) , the predict subrou­tine makes use of the function F-permute to find all candidate rules for prediction. This function maps from an expander attribute and a predicted nonterminal to rule variants appropriately or­dered that can expand that nonterminal. Appro­priately ordered here implies that the production can provide a possible percolation path such that , as the left-branch of an eventual derivation sub­tree bottoms out , terminal elements scanned at that position can ground the expander attribute used in prediction. Such a mapping is extracted from what was called an F-permute table, as ex­emplified in Table 1 . To get an intuitive grasp

of this relationship of percolation paths and pre­diction, which will be carried over here, consider again the input in Figure 3 with the grammar in Example 2. Assume that an Earley-style parser has scanned the topmost oval, indexed as 1 in the figure. This would imply the existence of an item that incorporated a dotted production of rule Flowchart , repeated here.
[flowchart-1 : Flow -> start . P-block end]

(0 Flowchart (setf (in 0) 1
(out 0) 3)

(1 oval)
(2 P-block (connects-to 1 (in 2)))
(3 oval (connects-to (out 2) 3))

Note now that the expander constraint (connects-to 1 (in 2)) is of relevance in predict­ing the next input to be scanned. Given just this item, only those input elements that are candi­dates to bind the in attribute of a P-block con­stituent need be considered. In particular, we need not consider ordering variants of P-block rules in which the initial right-hand-side element cannot serve to bind this attribute. These obser­vations lead us to the following definition.
Definition 2. A triple < N, attr, P > , N a non-terminal category, 'attr' an expander at­tribute, and P an ordered production of Atomic Relational Grammar g is in the starts-by-binding relation iff the left-hand­side category of P = N and there exists a feature assignment statement of the form (attr 0) = 1 or (attr 0) = (attr' 1) in P.

The starts-by-binding relation forms the ba­sis for precompiling a Prediction Table. A rule variant in the table indexed by some nontermi­nal category X and some expander attribute attr implies that the production expands nonterminal
X and that there is an assignment of the form (attr 0) = . . . 1 . . . in the feature percolations of that production, i .e . , the cover of the first right­hand-side element grounds attr if it is a terminal or it carries an attribute whose value is linked to attr if it is a nonterminal. The derivation of a table representing this re­lation is in two steps. We first generate rule or­dering variants. Here we assume an algorithm that , for each production, forms one. ordering variant per right-hand-side element such that the

342
right-hand-side element is ordered first. Ordering the remaining elements is done arbitrarily sub­ject to the connectedness condition in Restriction 1 . 3 Step two generates a table representing the starts-by-binding relation in the grammar and, in addition , we include in the table the special "at­tribute" start, whose entry includes a set of rule variants such that for each production expand­ing that nonterminal category, there is at least one variant ordering each right-hand-side element first, regardless of feature percolations. Example 4 shows the Atomic Relational Grammar appearing previously in Example 2 with the addition of named ordering variants for non-unary productions.
Example 4: Extended Flowchart grammar.
(defbaserule (flowchart flowchart-grammar)

(0 Flowcart (setf (in 0) (in 1)
(out 0) (out 3)))

(1 start)
(2 P-block)
(3 end)
: expanders
(connects-to (out 1) (in 2))

(connects-to (out 2) (in 3)))

Ordering variants :
flowchart-1 <1 , 2 , 3>
flowchart-2 <3 , 2 , 1>
flowchart-3 <2 , 1 , 3>

(defbaserule (conditional flowchart-grammar)
(0 P-block (setf (in 0) (in 1)

(out 0) (out 3)))
(1 decision)
(2 P-block)
(3 junction)
: expanders
(Y-connects-to (out 1) (in 2))
(connects-to (out 2) (in 3))
: predicates
(N-connects-to (out 1) (in 3)))

Ordering variants :
conditional-1 <1 , 2 , 3>
conditional-2 <3 , 2 , 1>
conditional-3 <2 , 1 , 3>

(defrule (basic-p-block flowchart-grammar)
(0 P-block (setf (in 0) (in 1)

(out 0) (out 1)))

WITTENBURG

(1 procedure))

Table 2: Flowchart-grammar Prediction Table Nonterm Expander Production Attribute Variant Flow in flowchart-I out flowchart-2 start flowchart-I flowchart-2 flowchart-3 P-block in conditional-I basic-p-block out con di tional-2 basic-p-block start conditional-I conditional-2 conditional-3 basic-p-block
Table 2 shows a Prediction Table for the gram­mar in Example 4. We assume the existence of a function starts-by-binding(N, A) that for some Atomic Relational Grammar g . returns the set of production variants in the Prediction Table at nonterminal N an.cl attribute A.

Definition 3. The first-attrs of an ordered pro­duction p in Atomic Relational Grammar g is { attrx } I there exists an assignment state­ment (attry 0) = (attrx 1) in p where attrx ,y are expander attributes.
For example, the first-attrs of ordered pro­duction conditional- I is the set {in}. The first­attrs of ordered production basic-p-block is the set {in out} . The first-attrs of a production are those expander attributes associated with the first rhs element of a production that provide bindings for expander attributes in the left-hand­side. They are used in the recursive predict step of the Earley-style algorithm to follow.

5 Earley-style
for ARGs

Recognition

We now turn to an Earley-style algorithm for the full class of Atomic Relational Grammars in 3If a scanning algorithm is desired that will allow for all orderings consistent with Restriction 1, then more variants can simply be produced here.

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 343

which the starting position is arbitrary. We will summarize the essential points here, and confine our attention to a recognition algorithm.
Definition 4. A multidimensional multiset (md-set) is an n-tuple (I, R1 . . . Rn) such that R1 . . . Rn are binary relations on the multi­set /.

Even though R1 . . • Rn may in general be n­ary, expander relations must be binary and that is all we will concern ourselves with here.
Definition 5. An indexed md-set C is an md­set (I, R1 . . . Rn) and a one-to-one and onto function from the set of integers 1 . . . II I to members of /.

Now we define the states, or items, used in a parse table given an indexed md-set C. Inactive states are representative of completely matched rules and thus they include a category as well as the feature values assocated with the rule's left­hand-side.
Definition 6. Inactive states relative to an in­dexed md-set C are a triple [cat, f, c] where cat is a nonterminal or terminal symbol, f is a vector of features (especially, expander attributes with values in C) , and c is a logi­cal bit vector representing a subset of C (the state's terminal yield, or cover) .

Inactive states will be indexed in the parse ta­ble by every binding of an expander attribute in f (all of which must be individuals in C) . In­tuitively, we consider inactive states to begin as well as end at every terminal that is bound by an expander attribute. However, this parser doesn't make the distinction between beginning and end­ing so we need only a single indexing array. We next turn to active states, which represent partially matched or unmatched rules. We as­sume the Earley algorithm convention of a set of dotted productions, with the dot representing a position in the ordered right-hand-side elements.
Definition 7. Active states are a triple

[p, i, (d1 . . . dn)] where p is a production;

i, the Earley positional dot , is an inte­ger ranging from 1 to the length of the right-hand-side of p representing the next daughter to match; and (d1 . . . dn) is an or­dered list of pointers to inactive states of daughters matched so far.
The cover, or terminal yield, of an active state is derivable from the covers of the inactive states that have already been matched.

Definition 8. The cover of an active state
[p, i, (d1 . . . dn)] is defined to be the union of the covers of the inactive states (d1 . . . dn) -

As with inactive states, active states are in­dexed by individual members of C. The intuition is that active states are indexed by individuals in the input that are candidates to be used in the next advancement of that active state. For any daughters but the first , one can make use of the expander constraint at that positional dot to find such candidates. For active states that have not yet matched any daughters, their input indices are derived from higher predictions, ini­tialized with the input element at the starting position.4

The following definition is useful in the recur­sive predict step of the Earley-style algorithm. It is necessary to pick out the expander attributes that can acquire bindings through matching the next daughter.
Definition 9. The to-be-bound-attrs of an ac­tive state s = [p, i, (d1 . . . dn)] are defined to be first-attrs(p) if i = 1 , else {attrx } where attrx is the attribute of the to-be-bound ar­gument of the expander constraint at posi­tion i .

Agenda items are defined next.
Definition 10. An agenda item is a pair [state, keys] where state is an active or inac­tive state and keys is a set of state indices (individuals in an indexed multidimensional set C) . 4In Wittenburg e t al. { 1991), active states were indexed by the already-bound argument. The change is necessary to make indexing of predictive states (which have no cover, and thus no bound argument) consistent with the indexing of other active states.

344
Agenda items represent states and their in­

dices relative to some input. As in chart parsing,
the agenda will hold a list of items to be poten­
tially added to the parse table. There is flexibil­
ity in its management. Here we assume a FIFO
queue.

Procedure 1 . Advance (a-state , i-state ,
a-index)

Input: An active-state a-state =
[p, i, (d1 , . . . dn)] , and an inactive-state
i-state = [cat, f, c] .5

Output : A list of agenda items, possibly
null, that are the result of advancing
a-state with i-state.

Method:

Case 1: If i = length of rhs of p (new
state will be inactive) , then let c' =
union-covers((d1 . . . dn) , c) and let f'
= percolate(p, (d1 . . . dn) , c, !). Re-
turn an agenda item [i - state' =
[cat' , f' , c'] , keys] where cat' = lhs of
p and keys is the list of inactive state
indices of i-state'.

Case 2: (New state will be active.) Let a­
state' = [p, i + 1 , c' = (d1 , . . . dn , c)] .
Let e = expander-at-position(p, i + 1) .
Let q = query(expander, c' , Q) . If q
is non-null, return an agenda item
[a - state' , q] .

The advance procedure is called by scan, com­
plete, and inverse-complete, to be defined shortly.
As we have pointed out , active states are indexed
at an element in the terminal yield of any poten­
tial next daughters to be matched (rather than
the last one to have been matched) , so they will
be added to the parse table only if some tuple
in the required relation can be shown to exist
in the input . This question is satisfied by the
query(expander, c' , Q) form. Here we assume
that given an expander constraint and the daugh­
ters matched so far, a subroutine can dereference
the arguments to the expander constraint, bind­
ing the already-bound one, and then execute a
query that will return the members of the input
that can bind the to-be-bound argument.

WITTENBURG

Algorithm 1 . Membership in .L(ARG)

Input: An Atomic Relational Grammar = g, an ·
indexed multidimensional set C, and a start­
ing element q that is an arbitrary member
of C .

Output: A parse table of state sets Si .

Auxiliary data structures:

Agenda: a FIFO list of states to process,
initially null.

lnit-states: the set of starting predictive
states, initialized as follows: For every
p in starts-by-binding(S, start) , add a
state [p, 1 , null] to init-states. For ev­
ery state s = [p' , 1 , null] in init-states,
if the rhs symbol X at rhs position 1
of p' . is a nonterminal, then let init­
states = union(init-states, starts-by­
binding(X, start)) .

Parse table: a hash table of state sets Sj ,
where j is an. index to individuals in C.

Method: We initialize as follows:

• For every . s in init-states, add an
agenda item [s, {q}] to the Agenda.

• Until Agenda is empty, do:

- Remove one item = [state, keys]
from Agenda.

- For k in keys, ifan equivalent state
is not already at Sk , add state at
Sk . Then do:
Scanner: If state = [p, i, (d1 . . .

dn)] at k is active and the rhs
symbol x at position i of p is
terminal, if the terminal sym­
bol of input item = y at k
matches x and k does not in­
tersect cover(state) , then add
any item in advance(state, .y ,
k) to Agenda. 5 A variant of this procedure must also accommodate input items from C directly in place of the inactive-state ar­gument when called by the scan procedure. It is straightforward to form a (transient) inactive state from an input item.

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 345
Predictor: If state = [p, i, (d1 . . . dn)] is active and the rhs symbol X at position i of p is a nonterminal, then for every attribute a in to­be-bound-attrs(state), for ev­ery production p' in starts­by-binding(X, a) , add item [state' = [p', 1, null], k] to Agenda.
Completer: If state = [cat, f, c] is inactive, then for every a-state = [p, i, (d1 . . . dn)] in union (S k , ini t - states), if cat matches the rhs symbol at position i of p, the intersec­tion of c and cover(a-state) is null, and k satisfies the ex­pander constraint at position i of p, then add any item in advance(a-state, state, k) to Agenda.
Inverse-completer: If state

[p, i, (d1 . . . dn)] is active, then for every i-state = [cat, f, c'] at
S k, if cat matches the symbol at position i of p, the inter­section of cover(state) and c' is null, and k satisfies the ex­pander constraint at position i of p, then add any item in advance(a-state, state, k) to Agenda.

• If there is an inactive state of the form [X, f, u) in the parse table such that X
= root-category of g and u = C, then succeed. Else fail.

6 Parse trace

The following trace of a parsing run uses the grammar from Example 4 together with the input shown in Figure 3. This trace picks the rectan­gle, indexed as 4, as the start element. Each step of the trace represents a state added to the table and includes the following information:
• <rule> or <category / feature vector>,
• <cover>, <indices>, and

• <source>.
Active and predictive states show the rule-name and dotted production in the form [<rule-name> : <dotted-rule>). Inactive state categories and fea­ture vectors are shown as #S(<cat> :<feat-1> <val-1> . . . :<feat-n> <val-n>). The <cover> is shown as an integer representing a logical bit vector. For example, 15 represents the logical bit vector 1111, which in turn is the union of items indexed with integers 1, 2, 4, and 8. <Indices> is a tist of input covers by which the inactive or active state is indexed in the parse table. The <source> information explains which subroutine produced the state.

1. [flowchart-2: F low -> . P-block start end), 0, (4), init.
2. [flowchart-3 : Flow -> . end P-block start], 0, (4), init.
3. [flowchart-I : Flow -> . start P-block end), 0, (4), init.
4. [conditional- ! : P-block -> . decision P­block junction), 0, (4), init.
5. [conditional-3 : P-block -> . junction P­block decision), 0, (4), init.
6. [conditional-2 : P-block -> . P-block deci­sion junction), 0, (4), init.
7. [basic-p-block : P-block -> . procedure], 0, (4), init.
8. #S(P-block :in 4 :out 4), 4, (4), scan 7.
9. [conditional-2: P-block -> P-block . deci­sion junction], 4, (2), complete 6 with 8.

10. [conditional-2: P-block -> P-block decision . junction), 6, (8), scan 9.
11. #S(P-block :in 2 :out 8), 14, (8 2), scan 10.
12. [flowchart-2: Flow -> P-block . start end), 14, (1), complete 1 with 11.
13. [flowchart-2: F low -> P-block start . end], 15, (16), scan 12.
14. #S(Flow :in 1 :out 16), 3 1, (16 1), scan 13.

346

7 Conclusion

The algorithm presented here is the first predic­tive , Earley-style algorithm that we know of for the full class of Atomic · Relational Grammars. This class of grammars appears to be widely use­ful and is easily implemented through unification­based approaches; more specialized implementa­tions closer in spirit to attribute grammars are also afforded. The primary problem addressed here is allowing for initialization at an arbit.rary starting position in the input. The solution to this problem should carry over to other predictive parsers for multidimensional grammars as, for ex­ample, extended LR algorithms (see Costagliola et al. , 1991). Although the Earley-style algorithm presented here is of interest in its own right, there are re­maining issues in exploring incremental, predic­tive parsing of visual language interfaces. To carry out the goal of providing an analogue of command completion in visual language inter­faces requires at least two extensions beyond the work reported on here. F irst , more variations in scanning order are likely to be desired than what can be provided for here. Note that with the cur­rent algorithm, the ordering variants relative to a single global scanning order are restricted to local permutations within rules. What may be desired is the multidimensional analogue of pre­dictive parsing of free-word-order languages that can scramble not only within grammatical con­stituents but also across constituents (subject to the connectness constraint). Further, algorithms more akin to island-based parsing (from a single island out) are likely to be preferable for interface parsing than the Earley-style algorithm presented here. Note that by following all permitted scan­ning orders reachable from a given start position, the Earley-style algorithm expands multiple is­lands in parallel, each of which may cover only part of the input globally processed so far. Finally, a few short remarks on related lit-

.. WITTENBURG

erature. In the theoretical graph grammar lit­erature, there have been recent results suggest­ing a natural class . for a useful and general class of graph grammars, namely, context-free hyper­graph grammars of bounded degree (Englefreit , 1992). An interesting line of research would be to investigate the relationship between Atomic Re­lational Grammars and Hypergraph grammars. The role of features and percolation in Atomic Relational Grammars seems to be quite similar to hyperedges and hyperedge replacement in Hyper­graph Grammars. Elsewhere in the graph gram­mar literature, an active chart parsing algorithm for flowgraphs has been proposed (Lutz , 1989; Wills 1990) that is related to the parsing algo­rithm discussed here and· in Wittenburg et al. (1991). Again, the exact relationship between flowgraphs and Atomic Relational Languages is worthy of investigation. The most closely related parsing algorithms from the visual language literature are to be found in Tomita (1990) and Costagliola - Chang (1991) , both of which extend Earley-style parsing into multidimensional domains. Although there is commonality at the level of parsing subroutines, indexing methods differ substantively. These dif­ferences arise in part because of different assump­tions regarding the nature of the input and the allowable relations. Both these other proposals assume that the input is held in a grid of some kind with elements of equal size. Relations are defined accordingly. There are no such assump­tions here.
Acknowledgements

This research was carried out in the Bellcore Computer Graphics and Interactive Media re­search group, directed by Jim Hollan. Thanks to Steve Abney, Bernard Lang, David Weir , and Louis Weitzman for discussions related to the topic of this paper.

ADVENTURES IN MULTI-DIMENSIONAL PARSING: CYCLES AND DISORDERS 347

References

Costagliola, G. - S.K. Chang (1991) "Pars­ing 2-D Languages with Positional Gram­mars." In: Proceedings IWPT-91, Second In­ternational Workshop on Parsing Technolo­gies , 13-15 February 1991. 235-243. Pitts­burgh, Pennsylvania: Carnegie Mellon Uni­versity, School of Computer Science.
Costagliola, G. - M. Tomita - S.K. Chang (1991) "A Generalized Parser for 2-D Lan­guages." In: 1991 IEEE Workshop on Visual Languages (Kobe, Japan). 98-104.
Crimi, C. - A. Guercio - G. Nota - G. Pacini - G. Tortora - M. Tucci (1991) "Relation Grammars and their Application to Multi­dimensional Languages." In: Journal of Vi­sual Languages and Computing 2(4), 333 -346.
Earley, J. (1970) "An Efficient Context-Free Parsing Algorithm." In: Communications of the A CM 13, 94 - 102.
Engelfreit, J. (1992) "A Greibach Normal Form for Context-free Graph Grammars." In: Kuich, W. (Ed): Automata, Languages and Programming: 19th International Colloquium, Wien, Austria, July 1991, Lecture Notes on Computer Science 623, 138 - 149. Springer­Verlag.
Ferrucci, F . - G. Pacini - G. Tortora - M. Tucci - G. Vitiello (1991) "Efficient Parsing of Multidimensional Structures." In: 1991 IEEE Workshop on Visual Languages (Kobe, Japan). 104 - 110.
Flasinski, M. (1988) "Parsing of edNLC-Graph Grammars for Scene Analysis." In: Pattern Recognition 21, 623 - 629.
Flasinski, M. (1989) "Characteristics of edNLC­Graph Grammar for Syntactic Pattern Recog­nition." In: Computer Vision, Graphics, and Image Processing 47, 1 - 21.
Golin, E. J. (1991) "Parsing Visual Languages with Picture Layout Grammars." In: Journal of Visual Languages and Computing 2, 371 -393.

I

Golin, E.J. - S.P. Reiss (1990) "The Specifica­tion of Visual Ltanguage Syntax." In: Journal of Visual Languages and Computing 1, 141 -157.
Lutz, R. (1989) "Chart Parsing of Flowgraphs." In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 116 -121.
Helm, R. - K. Marriott (1986) "Declarative Graphics." In: Proceedings of the Third Inter­national Con/ erence on Logic Programming, Lecture Notes in Computer Science 225, 513 - 527. Springer-Verlag.
Helm, R. - K. Marriott (1990) "A Declarative Specification and Semantics for Visual Lan­guages." In: Journal of Visual Languages and Computing 2(4), 311 - 331.
Tomita, M. (1990) "The Generalized LR Parser/Compiler V8-4: A Software Package for Practical NL Projects." In: Proceedings of COLING-90 , Volume 1, 59 - 63.

!Tomita, M. (1991) "Parsing 2-Dimensional Lan­guage." In: Tomita, M. (Ed): Current Issues in Parsing Technology, 277 - 289. Kluwer Academic.
1 Weitzman, L. - K. Wittenburg (1993) "Rela­tional Grammars for Interactive Design." In: Proceedings of 1993 IEEE/CS Symposium on Visual Languages , August 24-27, Bergen, Nor­way.
/ Wills, L. (1990) "Automated Program Recogni­tion: A Feasibility Demonstration." In: Arti­ficial Intelligence 45, 113 - 171.
1

Wittenburg, K. - L. Weitzman - J. Tai-, ley (1991) "Unification-Based Grammars and . Tabular Parsing for Graphical Languages." In: Journal of Visual Languages and Comput­ing 2(4), 347 - 370.
Wittenburg, K. (1992a) "Earley-style Parsing for Relational Grammars." In: Proceedings of the 1992 IEEE Workshop on Visual Languages , Seattle, Washington, Sept 15-18, 1992. 192 -199.

348

Wittenburg, K. (1992b) The Relational Lan­guage System. · Bellcore Technical Memoran­
dum· TM-ARH-022353.

WITTENBURG

Wittenburg, K. (1993) "F-PATR: Functional
Constraints for Unification-based Gram­
mars." In: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics , 216 - 223.

APPENDIX

349

350

Probabilistic Incremental Parsing in Systemic

Functional Grammar

A. Ruvan Weerasinghe*
Robin P. Fawcett

Computational Linguistics Unit , University of Wales College of Cardiff, UK.

July 5, 1993

Abstract
In this paper we suggest that a key feature to look for in a successful parser is its abil­ity to lend itself naturally to semantic inter­pretation. We therefore argue in favour of a parser based on a semantically oriented model of grammar, demonstrating some of the bene­fits that such a model offers to the parsing pro­cess. In particular we adopt a systemic func­tional syntax as the basis for implementing a chart based probabilistic incremental parser for a non-trivial subset of English.
1 Introduction
The majority of the research in the field of Natural Language Understanding (NLU) is based on models of grammar which make a clear distinction between the levels of syn­tax and semantics. Such models tend to be strongly influenced by formal linguistics in the general Chomskyan paradigm, and/ or by mathematical formal language theory, both of which make them conducive to computer im­plementation. Essentially, these models con­stitute an attempt to 'stretch' techniques that

• On leave from the Department of Statistics and
Computer Science, University of Colombo, Sri Lanka.

1

have been applied successfully to parsing arti­ficial (and so unambiguous) languages, in or­der to apply them to natural language (NL) . In recent years, however, models of language that are derived from the text-descriptive tra­dition in linguistics have emerged as poten­tially relevant to NL U. These models empha­size the semantic and functional richness of language rather than its more formal and syn­tactic properties. Such models may challenge widely held assumptions, e.g. that the key notion in modelling syntax is grammaticality, and that this is to be modelled using some ver­sion of the concept of a phrase structure gram­mar (PSG)1 .Since such grammars emerge from use in analysing texts, they have something in common with the sort of grammars that tend to be used in corpus linguistics. To date the strongest influence of these grammars has been in Natural Language Generation (NLG) (Fawcett et al . , 1993 ; Matthiessen, 1991) . The semantic orientation of functional grammars, however, is t o some extent in con­flict with the better understood techniques for parsing syntax. The research described in
1 It is evident, however, that researchers working in

the formal . linguistics paradigm have in recent years
increasingly realized the importance of the functional
aspects of language, e.g. in augmenting their models
with syntactico-semantic features.

Weerasinghe and Fawcett 2

this paper presents a probabilistic approach advantage that it addresses the problems of
to parsing that yields a rich . syntax, using a maintainability and consistency of the gram­
systemic functionaJ gramrp.ar (SFG) .In qoing mar (as used by b.oth the generator . and the
so, however, it also shows how some of the parser) , but it runs into problems of search
techniques used in traditional syntax parsing , space, and suffers from the limitation that the
can be adapted to serve as useful tools for ' information is extracted from artificial random
the problem. It will be shown that our parser generation.
is able to produce richly annotated flat' parse The current parser is an attempt to over­
trees that are particularly well-suited to higher come the latter problem - but not at the ex­
level processing. pense of the former. The major emphases of

The main contributions to the formal spec- the parser therefore can be stated as follows:
ification of SFG, as they affect NL U, have
been by Patten and Ritchie (1986) , Mellish
(1988) , Patten (1988) , Kasper (1987) and
Brew (1991) . These have mainly been con­
cerned with the reverse traversal of system
networks· in order to get at the features from
the items (words) . They all conclude that sys­
temic classification is NP-hard, but seek to iso­
late tractable sub-networks in order to be able
to optimjse reversal. It is thus apparent that
a direct reverse traversal of the networks may
not be the best approach to parsing in SFG.

Work of a more implementational nature is
reported in Kasper (1988) , Atwell et al. (1988)
and Matthiessen (1991) . The common ap­
proach to parsing systemic grammar in these
has been to employ a 'cover grammar' for pre­
processing the syntactic structure of the input
string (instead of attempting to directly re­
verse the networks and realization rules) , and
then , as a second stage, to do the semantic
interpretation by accessing the features con­
tained in the system networks .. O 'Donoghue
(1991b) suggests one possible way to avoiding
this , namely by the use of a 'vertical strips
parser' . This extracts the 'syntax rules' that
are implicit in the grammar through analysing
a corpus of text randomly generated by the
generator (GENESYS2) . His approach has the

2GENESYS is the main generator in the COMMU­
NAL project; It stands for GENErate SYStemically
;COMMUNAL stands for the Convivial Man Machine
. . . Using NAtural Language, and is a DRA sponsored

1 . To maintain a close correspondence be­
tween the syntactic representation and
the semantic representation which is to
be extracted from it (this havi�g implica­
tions for possible interleaved processing) .

2 . To obtain a syntactically and functionally
rich parse tree (even when there is- some
ungrammaticality in the· input) .

3 . To improve efficiency by (a) parsing incre­
mentally and (b) guiding the parsing pro­
cess by probability based prediction and
the use of feature unification.

To this end we reject the strategy of adopt­
ing a PSG-type 'cover grammar' , in the style
of Kasper (1988) and adopt instead a systemic
syntax as the basis of the parser. ·This is stored
in the form of

1 . Componence, filling and exponence ta­
bles, as described in section 2 .3 and

2. The transition probabilities of · the ele­
ments in the componence tables

The output of the parser's incremental eval­
uation of the parse can be exploited by a se­
mantic interpreter of the kind described by
O'Donoghue (1991a, 1993) ; see also Fawcett

project at the University of Wales College of Cardiff,
UK.

Weerasinghe and Fawcett

(1993) . Essentially, this runs the system
networks in reverse to collect the features
required3 .

In the rest of this paper we will introduce
the concept of 'rich syntax' with respect to
SFG (section 2) , and then describe the tech­
niques we adopt for parsing it (section 3) . Fi­
nally, in section ref conclusions we will evaluate
the work done so far and discuss its limitations
and future work envisaged.

2 Parsing for rich syntax

2 . 1 Systemic Functional Gram-
mar

Before we describe the nature of systemic func­
tional syntax, we need to · point out that the
syntactic structures (to be discussed in sec­
tion 2 .2) are not the heart of the grammar,
but the outputs from the operation of the SYS­
TEM NETWORKS and their associated REAL­
IZATION RULES4 .

SFG is a model of grammar developed
from a functional view of language which
has its roots in the work of Firth and the
Prague School ; Its major architect is Halli­
day. The more well known computer imple­
mentations of it have been developed mainly
in the complementary field of Natural Lan­
guage Generation (NLG) . Some of these in­
clude Davy's PROTEUS(1978) , Mann and
Matthiessen's NIGEL(1985) and Fawcett and
Tucker 's GENESYS(1990) . One significant
NL U system based upon systemic syntax is
Winograd's SHRDLU(1972) .

The core of the grammar consists of a great
many choice points, known as systems5 , at

3 An alternative would be to have a separate compo­
sitional semantics component based on the functional
paradigm described in this paper. 4 Readers familiar with how a systemic functional
grammar works may wish to skip this section. 5For these, and for an overview of the role of SFG

3

each which the system must take one path or
another by choosing one of two (and some­
times more) semantic features. Quite large
numbers of such systems combine, using a
small set of AND and OR operators, to form
a large network, as shown in figure 1 . The
big lexicogrammar which the parser described
here is designed to work with has about 600
grammatically realized systems. The network
is traversed from left to right , and each such
traversal generates a 'selection expression ' (i .e .
a bundle) of features. Some of these have at­
tached to them REALIZATION RULES , and it
is these which, one by one , combine to build
the semantically motivated 'syntax' structures
that we shall describe in section 2 .2 .

For example, consider the fragment of a net­
work shown in figure 1 below6 • It shows a sim­
plified version of the current network in the
'midi ' version of the COMMUNAL grammar.
What is not shown here is a detailed formal
specification of the realization rules for the fea­
tures collected by following the various possi­
ble pathways through the network. The first
two realizations are however expressed infor­
mally: i .e . the meaning of [information] plus
[giver] is realized by having the Subject (S) be­
fore the Operator (0) , if there is an Operator,
and if not by having the Subject before the
Main Verb (M) .

It should be noted that in the 'full ' grammar
there are probabilities attached to each sys­
tem (or choice point) . This enables the model
to escape from the conceptual prison of the
concept of grammaticality and enables us to
account for very unlikely, yet possible choices
being made.

in NLG, see Fawcett et al. (1993) .
6 For those familiar with SFL, there may be some

interest in comparing the network given here with the
traditional network for MOOD. It has been made much
more explicitly semantic than the traditional MOOD
network (which begins with [indicative) or . [impera­
tive) , and then, if [indicative), either [declarative) or
[interrogative]) .

Weerasinghe and Fawcett 4

giver • • • • • ••. Ivy has read It.

information - { :=·•······ ··· :.:�:·�,
confirmation-seeker ·· · · · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· · Hasn't Ivy read It?

MOOD
(others) 1 ••---·"' ··· Rad lU

,;

mple-di

, l ,.,....... °" -.. directive addressee-identified ·· · · ·· · · · · ··· · · · · · · · · ··· · · You read it!

proposal for action -{

by-appeal-to-ability • • · • · • · Can/could you read It?

by-appeal-to-willingness · · · ·· ·· · · · · ·· Will/would you read It?
request

indirect-rd

proposal-for-action-by-self-and-addressee ·· ··· ·· · · · · · · · · · · ·· ··· · ·· · · · · · · · ·· · · · ·· Let's read It.

proposal-for-action-by-self ······ · · · · · · · · · · ······ · · · ······· · · · · ·· · · ·· ····· · · · ····· ··· Shall I read It?

(others)

Figure 1 : A simplified system network showing some of the meaning potential for
MOOD in English (excluding much, e.g. POLARITY and realizations in tags and intonation)
2 .2 Semantically motivated sys­

temic functional aspects of
the model

The syntactico-semantic analysis produced by the parser differs from traditional syntactic parse trees in at least the following four im­portant ways .
1 . Firstly, our model of 'syntax' distin­guishes between the relationships of :

(a) COMPONENCE, whereby a particular
UNIT such as a nominal group (a 'full' noun phrase; denoted by 'ngp '

in our systemic syntax) is composed of ELEMENTS (functional categories)
and (b) FILLING , whereby such a UNIT 'ful­fills ' , as it were, the functional role of the element it fills .

So, for instance, a ngp can have (among others) the components deictic deter­miner (dd) , modifier (m) and head (h) . At the same time it will 'fill ' either the element functioning as Subject (S) , a Complement (Cl/2) , a 'Completive' of a prepositional group, or some ' other ele­ment .

Weerasinghe and Fawcett
Together, the two concepts of filling and componence provide for (two types of) re­cursion in this model . Firstly, for exam- · pie, a modifier in a nominal group can itself be filled by, among other things, a nominal group ; this is the SFG approach to the phenomenon known (misleadingly) sometimes as 'noun-noun compounding' , e .g. as in their luxury flat sale, where it is the ngp luxury flat (and not just the no.un flat) that modifies sale. The second type of recursion that is ac­counted for is COORDINATION. In cases such as my brother and his wife (have ar­rived), both nominal groups (my brother and and his wife) fill the role of Agent (which is conflated with the Subject ; see (c) below) ; they are jointly the Agent in the Process of arriving. Without the con­cept of filling, we would be forced to rep­resent this relationship as if it were com­ponence. 2. Secondly, the emphasis on function in the model is evident in the elements which constitute the final non-terminals in the syntax tree, which are categorised in terms of their function in the unit above, rather than as 'word classes' . In this scheme, the term 'noun' for example is a label for one of the classes of words which may expound the head of a ngp. Others may include pronouns, proper names or one(s). Again, very is not treated simply as an­other 'adverb ' (which misleadingly sug­gests that it functions similarly to quickly, etc) , but as a ' temperer ' . This is because it typically 'tempers' a quality of either a 'thing' , as in (lb) below, or a 'situation' , as in (le) . It is thus an element of what is here termed a 'quantity-quality group ' , in which the 'head' element, which expresses the 'quality' , is termed the 'apex' (a) and

5

the 'modifier' element , which 'tempers ' it by expressing a 'quantity' of that quality, is termed a 'temperer ' . This functional enrichment of the syntax provides a nat­ural way to account for the difference be­tween the functions of very and big in sen­tences la and lb .
(la) She noticed the big fat man. (lb) She noticed the very fat man. (le) She ran very quickly to the window.
Finally, also note that , the grammar al­lows some (but not all) elements to be ei­ther 'expounded' by lexical or grammat­ical items or 'filled; by a syntactic unit . For example, consider the quantifying de­terminer (dq) , which is EXPOUNDED in (2) and (3) by the ITEMS a and one, and
FILLED by the nominal group (UNIT) a bag (dq h) in (4) .
(2) He was � very interesting man. (3) I'd like one cabbage, please. (4) I 'd like a bag of potatoes please.
Points 1 and 2 above, reflect and respect a specific commitment to maintaining the closest possible correlation between the units recognized in syntax and those rec­ognized in semantics. Thus, in the un­marked case, a CLAUSE (cl) realizes a SIT­
UATION (= roughly 'proposition') and a
NOMINAL GROUP (ngp) realizes a THING ('object') . Hence our parser produces broad flat trees rather than those with multiple (often binary) branching; the 'work done' in models of the latter sort by the branching is done in our model by richer labelling. ie. Richer labelling re­duces the p.eed to represent relations by

Weerasinghe and Fawcett

distinctive tree· structure variations, thus enabling tis to restrict the branching to the definition of units that are semanti­cally motivated. And this in turn greatly facilitates the transfer of the output from the parse to the next stage of processing.
3. Third, we also consider that the notion of absolute grammaticality, which is in­trinsic to phrase structure type grammars to be fundamentally misleading. Instead, we take a probabilistic approach to the question of what element may (or is un­likely to) follow what other element in a unit . The concept of ungrammatical­ity is thus simply one end of a contin­uum of probabilities from 0% to 100%. In this respect , our parser has characteristics in common with stochastic approaches to parsing, and so embodies, in effect , a hy­

brid model . Hence our parser accommodates some measure of ungrammaticality in the in­put text , and tries to extract whatever functional information it can from it -rather than rejecting it .Consider the ex­ample sentence below.

6

4. Finally we should point out that our parser is helped to build its function­ally rich output using the familiar con­cept of feature unification. · Many other modern parsers use feature unification as a means of constraining the ever-growing parse forest caused by local ambiguity, while then passing up the 'unified fea­tures' for higher semantic processing. In a functionally oriented grammar . such as SFG (in which the system networks from which the structures are generated are themselves entirely made . up of seman­tic features) it is particularly natural to supplement the syntax tree through such 'percolated' features8
• Thus for instance, the features [manner] , [place] and [time] are 'percolated' up from the items unexpectedly, to Cardiff and on

Friday respectively in (6) . (6) He unexpectedly came to Cardiff on Friday.
2 .3 The syntactic coverage of the

parser

(5) Car sales, in spite of the recession, was As will be evident from what has been said so up by more than five per cent . far, there is no set of PSG-type re-write rules The type of unification .parser which en­forces subject-verb agreement would sim­ply return the verdict 'ungrammatical' on encountering such an utterance. Chart based parsers are a slight improvement, in that they would output the 'analysable' fragments of the sentence. Because our parser's goal is to return some semanti­cally plausible interpretation, it returns a well formed parse tree out of such input 7 .

7We take the view that such grammatical features
are in fact not normally of any . great help in dis­
ambiguation, and hence not of much use in further
processing.

that specifies the syntax. Instead there are semantic features whose realization rules , col­lectively, build up syntactic structure. The in­formation that a parser needs to have available to it is only implicitly present in the generator, and it is not in a form that is readily usable by the parser. 0 'Donoghue (1991 b) explores one possible way of overcoming this problem, namely by extracting the 'rules' (or 'legal se­quences') from sentences randomly generated by the generator (GENESYS) . Our approach
8 Note that the use of features for constraining the

parse forrest using for instance number agreement is
not done here.

Weerasinghe and Fawcett

is to extract from the system networks and re­alization rules the information about syntax that is relevant to the work of the parser, and to state it in a form that is more amenable to this task9 • The four major types of units recognized by the parser's syntax are the clause (cl) , the nominal group (ngp) , the prepositional group (pgp) and the quantity-quality group (qqgp) 10 . Of these,four units, the clause has by far the most complex and variable syntax. The ele­ments of the ngp, pgp and qqgp on the other hand can be considered for practical purposes to be fixed, and the presence or absence of el­ements within such groups is reflected in our model in the transition probabilities (see sec­tion 3 . 1) . Because of the fixed sequence of el­ements in these groups, we can at this point use a re-write rule notation to represent these.
ngp -+- dq, vq, dd , m, mth, h, qth, qsit pgp -+- P, CV qqgp -+- t, a, f 1 1

Here , the '-+-' i s used to denote the COM­PONENCE relationship . Thus, for instance, a pgp can be composed of a preposition (p) and a completive (cv) . However, the above specifications have a
9 We hope to be able to device a technique for au­

tomatic extraction of 'rules' from the system networks
in future versions of the parser, but we defer this task
for the present as it has been shown to be possible
(O 'Donoghue, 1991b).

10We should state here that the syntax described
below handles only a subset of the 'midi grammar'
contained in the system networks of GENESYS re­
ferred to above, and that we have nothing to say here
about phenomena such as 'raising' and 'long-distance
dependency' (though many aspects of discontinuity are
already covered within GENESYS, and these types
of phenomena are now being considered in the SFG
framework) .

1 1 The key to the list of elements used in the parser
is given in the Appendix.

7

number of grave limitations. They fail to show
(1) those elements that are optional , (2) the degree of optionality, and (3) the dependen­cies that may hold between them, absolutely and relatively (e.g. there can be no vq if there is no dq, and it is highly unlikely that there will be a dq without an h) . As we shall see, it is the information about probabilities that captures these facts. The most complex of the groups, the clause, has a more variable potential structure which here we denote (for convenience) by the re­write rule12 :

cl -+- B, A* , C2, 0# ,S , 0#, N , I , A* , X* , M , Cm, Cl , C2, Cm, A*
As we shall shortly see, the information about adjacent elements expressed in these specifications, together with other vital in­formation on optionality and probabilities, is made available to the parser in a somewhat different form. A second type of information required by the parser is a set of statements about FILL­ING , i .e . about the elements which units can fill , thus 13 :

cl : A, C2, f ngp : A, Cl , C2 , cv , mth, dq pgp : A, Cl , C2, qth , f qqgp : m, A, C2 , dq
Here , the ' : ' stands for the filling relation­ship . So, for example, the clause (cl) can fill an Adjunct , a second complement (C2) or a finisher (f) . To illustrate the type of syntax tree these two relationships together provide, consider

12 Here, * denotes recursive elements while # denotes
that the Operator element can be 'conflated' with the
functions of X (auxiliary) or M (main verb) .

13 Note that B, 0, N, I, X and Cm are directly ex­
pounded by items.

Weerasinghe and Fawcet t

S/Af

dd h

z
cl

qsit

cl

0 Aref Ama M Apl

pgp

�
p

CV

ngp

I\
dd h

b Q

8

The elements which these units can fill are also explicitly restated in the rules

Figure 2: A Systemic Functional Analysis of a sentence

the typical SFG analysis of a sentence (Z)
shown in figure 2 14 .

Note that in this analysis , the fragment the elements which these units can fill both corre­
sponds to a single nominal group (filling the
element of Subject and the participant role
of Affected) and constitutes a single semantic
'thing' (or 'object ') .

We would argue, with Winograd (e.g.
Winograd, 1972) , that such 'flat ' tree rep­
resentations lend themselves more naturally
to higher level processing than do trees with
many branchings, because each layer of struc­
ture corresponds to a a semantic unit, and ulti­
mately .to a unit in the 'belief' representation.

14 See appendix for 'conflation' abbreviations.

There is no genuine equivalent relationship
to this in a PSG , because such grammars do
not have the 'double labelling' of nodes in the
tree as both element and unit (or , with coordi­
nation, units) described above. That is , there
is no distinction between componence (unit
down to element) and filling (element down
to unit(s)) . From the viewpoint of a parser,
the relationship we are considering here is a
unit-up-to-element table. Here the probabilis­
tic information is extremely valuable; it is use­
ful for the parser to know, for example, that it
is relatively unusual for a clause to fill a Sub­
ject , but that a clause fairly frequently fills a
Complement or Adjunct .

We have been considering the 'unit up to

Weerasinghe and Fawcett

(7) She may not have been seeing them recently.

zl c1 -

s l ngp - h (She

0 < may

N < not

X < have

X < been

M < seeing

C21 ngp - h < them

A l qqgp - a < recently

E (

(8) Two of the very tall men who worked in my office have left.

zl c1 -

s l ngp -

otx < have

M (left

E (

dq (Two

vq (of

dd (the

m l qqgp - t (very

a (tall

h (men

qsit l c1 - s l ngp -

M (worked

Al pgp -

h (who

p < in

cv l ngp - dd (
h <

(9) You and your friend are possibly more committed than us. (10) Will you lend me your car if I come to London?

zl c1 -zl c1 -
s l ngp - h < You

l ngp - & < and

dd < your
h < friend

0/X < are

Al qqgp - a < possibly

9 qqgp - t < more

a < committed

f I pgp - p < than

cv I ngp - h < us

o < Will

S I ngp - h < you

M < lend

c1 l ngp - h < me

9 ngp - dd < your
h < car

Al c1 - e < if

s l ngp - h <

M < come

Al pgp - p < to

my

office

E <
cv I ngp - h < London

E <

Figure 3 : Some examples of the output of the parser

9

Weerasinghe and Fawcett

element ' :relationship . of componence. Finally, there is the similar 'item up to element' rela­tionship of EXPONENCE. This is a list of all the items (roughly, 'words') to be accepted by the parser , with the probabilities - for each sense of each word - of what elements each may ex­pound (placed in order) . The difference from the previous information source is that it is a very large and constantly modifiable compo­nent ; the coverage of the unit up to element tables is in comparison quite limited (and less liable to revision in the light of successfully parsed new texts) . This third component is therefore the equivalent in our parser of what is often termed the ' lexicon' . As is shown by the example in figure 2 , the SFG approach makes possible the output of syntactically rich , semantically oriented 'flat ' tree parse structures. The typical outputs from the parser shown in figure 3 should , it is hoped, give a picture of the kind of data covered by the syntax, and so by the parser1 5 .
3 How the parser works

3 .1 The basic algorithm The fundamental strategy adopted in parsing for the rich functional syntax described in sec­tions 2 .2 and 2 .3 , is an adapted form of bot­tom up chart parsing with limited top down prediction. One of the main reasons for the adaptation of the chart parsing algorithm is to account for some of the context sensitiv­ity exhibited by the SF syntax. For example, the possibility of an 'Operator' occurring after a Subject is dependent on it 's non-occurrence before it. Similarly, certain types of Adjunct are mutually exclusive within a given clause. For this reason , our parser has lists of 'poten­tial structure ' templates (as shown in simpli-
15 Note that at this stage the parser does not yet

assign participant roles.

10

fled form in section 2 .3) instead of the usual CF-PSG type rules. These are' augmented by the element transition probability tables and a probabilistic lexicon, to assist the adapted probabilistic chart parser implemented here. Hence, the chart is composed of edges, each with a list of the elements that can 'poten­tially ' occur following it, together with option­ality and mutual exclusivity constraints, fea­tures associated with the edge and a unique probability score representing its likelihood of occurrence. As in the case of standard 'active' chart parsers, 'active' or hypothesis bearing edges too are maintained in a similar way. The unification of edges is used only to per­form a 'percollatory' function rather than a 'restrictive' one, so as to give less importance to the concept of 'grammaticality' . The aim of this is to allow some 'ungrammaticality' in order to extract at least some meaning from
any utterance. The probabilities themselves are calculated from three sources:

1 . The item probabilities contained m the exponence table (the 'lexicon') .
2 . The filling probabilities for each unit .
3 . The transition probabilities between ele­ments within a unit.
In a given application of the 'fundamen­tal rule' , three component probabilities are used in working out a weighted geometric mean. It is our observation that , as Mager­man and Marcus (1991) point out , joint prob­abilities calculated as products are not accu­rate estimates of such likelihoods owing to the events considered violating the independence assumption. The three probabilities thu� af­fecting the new edge created are :
1 . The probability of the 'active' edge in the 'attachment' .

Weerasinghe and Fawcett

2. The probability of the 'inactive' edge of the 'attachment' .
3 . The probability of the transition of ele­ments involved in the 'attachment ' .
For example, consider the fragment the man shown in figure 4.

ngp -- dd · h

dd h M

1 .0 I 0.9 I I 0. 1

the man

Prob(dd.h) = 0.7
Prob(dd.M) = 0.3

Figure 4 : Edge creation with probabilities
In this situation, the two edges the and man would invoke the hypothesis (using the usual 'chart ' notation) : ngp � dd . h where the ngp is 'looking for' a head. In the ensuing unification of this active edge with h{man) , we consider the probabilities of :
1 . the active edge ngp(dd{ the))
2 . the inactive edge h{man) and
3. the transition (dd,h) .
A geometric mean of the probabilities of 1 and 2 and a weighted 3 is attached to the new (inactive) edge ngp{dd{the) , h{man)) , that is thus formed. The weighting on the third com­ponent makes it favour the transition predic­tions over those of filling and exponence. Subsequently, the filling probabilities of S , C , cv etc. will be considered. In the case

1 1
where the above fragment begins the input string, the clause level transition· probabilities will heavily favour the S to be the element be­ing filled by the ngp (with a high score for the transition ($,S)) than C or cv. Consider the following example sentence to see how such a probabilistic model can assist in arriving at a correct analysis of a clause with lexical ambiguity :

(1 1) Did you notice him?
In this example, though notice could .be both a head (noun) or a verb, the transition prob­ability of head-head is very low . (Noun-noun compounding will not score well as the prob­ability of you being able to fill a modifier is negligible) . On the other hand, the transition probability of S-M is very high and so notice will be parsed as a M in the leading 'theories' . Finally, consider the following 'garden path' type sentence to see how our probabilistic model copes with this type of ambiguity:
{ 12) The cast iron their clothes.
According to the COBUILD dictionary, cast is most commonly a noun(h) or a verb(M) while iron is most commonly a noun(h) , but could also be a verb(M) and more rarely an adjective(a) . A part-of-speech tagger encoun­tering this input string will need to determine which of the transitions (dd,h,h) , (dd,h,a) , (dd,h,M) , (dd,M,h) etc. are more likely. A tagger based on lexical co-occurrences or part­of-speech might well favour (dd,h ,h) , the for­mer as it could have information about cast and iron being able to follow each other in this way and the latter to account for noun-noun compounding. Our parser on the other hand, though ini­tially favouring this theory like the class-based tagger, will also advance the theory contain­ing iron as a main verb{M) . Once a certain

Weerasinghe and Fawcet t

'height ' of the parse tree i s reached ·however, the probability score of theories treating · iron as a noun(h) will diminish while those treating it as a verb(M) will be re-inforced by the high transition probabilities of the higher elements (S ,M) and (M,C) . It is the availability of these 'higher' func­tional syntax level transition probabilities to the parser, that we suspect will enable our parser to perform better than (conventional) pure probabilistic part-of-speech level models.
3 .2 The interactive interface
A major secondary goal of our work is to build a parser which can function as the front end to a complete interactive NLP system (COM­MUN AL) . To this end we have developed an interactive interface to the parser. Incoming items are tagged to focus the search space us­

12
'interpretive' stages of analysis because of the well annotated 'flat ' parse trees produced and their (near) one-to-one correspondence with semantic objects in the SFG adopted. (See Van ·der Linden (1992, p. 225) for reasons why traditional PSG-type grammars cannot in gen­eral be parsed incrementally {n thi� way) . As an example, consider the following sen­tence. (13) The boy with long hair saw Jill in the park. Here, as soon as the user starts to input
Jill, the item saw is tagged, with its syntactic context guiding the decision. Meanwhile, The
boy with the long hair has already been iden­tified as a nominal group (unit) with certain (quite limited) semantic properties, and it is thus ready for verification as, say, {person102) very early in the parse process.

ing a character reading input routine, which is responsible for providing (incrementally) the 4 parser with a 'clean' input by Conclusions

1. Tagging punctuation according to the el­ements they expound.
2. Handling the syntax of large and decimal numbers.
3. Flagging abbreviations appropriately.
4. Signalling unknown words or assigning likely elements which . might expound them
The 'final non-terminals' output by this rou­tine are input to the parser incrementally, while simultaneously accepting further input . Thus by the time the user input is completed (by the tagger encountering an 'Ender ' item) much of it has already been analysed by the parser. The incremental nature of processing at this syntax level can be further exploited at higher

4.1 Evaluation as a general func­
tional parser

It is necessary firstly to evaluate our parser with respect to the richly annotated functional parse it produces. While time and space effi­ciency issues of the algorithm have not been brought to bear too heavily on the work done, the techniques adopted are general. enough to be used for parsing other functional grammars represented as 'structural templates' (and sup­plemented by features and transition probabil­ities, and filling and exponence tables) , with minimum modification to the algorithm itself. The information contained in the flat parse trees constructed by the parser, while being richer in content, also allow for · natural in­terleaving of syntax with higher semantic and pragmatic processing. In this sense, we consider the current parser to be a successful precursor to a fully proba-

Weerasinghe and Fawcett

bilistic chart parser for functionally rich gram­
mars.

More detailed formal evaluation, both of
time-space efficiency of the algorithm and the
parser's accuracy in analysing free text needs
to be postponed for the present , until the
parser is 'trained ' on the fully systemically
(hand) parsed Polytechnic of Wales (POW)
corpus1 6 . At the time of writing, a tool for
the extraction of the necessary probabilities
has been implemented (Day, 1993) , though it
needs as yet to be linked to the parser's prob­
ability module.

4.2 Evaluation as a front-end to
COMMUNAL

Though the general algorithm is concerned
with text parsing, our specific area of appli­
cation is to use the parser as a front-end to
the COMMUNAL NLP system, which is al­
ready equipped with a large systemic func­
tional grammar embodied in its generator
GENESYS. For this reason, the parser is
equipped with an interactive interface which
acts on input in an incremental way. It is
also able to achieve a significant coverage of
the 'midi ' version of the GENESYS grammar.
Our thesis is that this prototype parser will
lend itself to being substantially extended to
cover other complex grammatical phenomena
handled by the 'full ' version of the grammar,
without the need to make any major alter­
ations to the techniques employed in it .

4.3 Limitations and further work

One of the main limitations of the integrity
of the system is that of the parser need­
ing to be manually supplied with grammati­
cal information embodied within the genera-

16This is available from ICAME's archive at the
Norwegian Computing Centre for the Humanities in
Bergen, Norway.

13

tor, GENESYS. An urgent need therefore is
for a technique for extracting this information
directly without human intervention. This
would enable any grammar represented in sys­
tem network notation to be compiled into a
parsable form.

The main source of lexical probabilities for
the parser has been West (1965) , while el­
ement transition probabilities have been ex­
tracted (using the aforementioned interactive
tool) from the POW corpus. For a more con­
sistent approach non-reliant on human inter­
vention, more work is needed on developing a
non-interactive version of the parser which is
able to train on hand parsed corpora.

The improvement of these aspects of the sys­
tem will allow the current parser to be used as
a robust 'real text' parser and to be incorpo­
rated into a NL U system capable of true inter­
leaved processing.

Reference

Atwell , E. S . , Souter, C. D . , & O'Donoghue,
T. F. (1988) . Prototype parser 1 . Tech.
rep. 17, Computational Linguistics Unit ,
University of Wales College of Cardiff,
UK.

Brew, C. (1991) . Systemic classification and
its efficiency. Computational Linguistics,
1 7(4) .

Davy, A. (1978) . Discourse production: A computer model . of some aspects of a speaker. Edinburgh University Press,
Edinburgh, UK.

Day, M . D. (1993) . The interactive cor­
pus query facility: a tool for exploiting
parsed natural language corpora. Mas­
ter's thesis, University of Wales College
of Cardiff, UK.

Weerasinghe and Fawcett
Fawcett, R P. ·(1993) . A generationist ap­proach to grammar reversibility in natu­ral language processing. In Strzalkowski, T. (Ed .) , Reversible Grammar in Nat­ural Language Generation. Dordrecht : Kluwer.
Fawcett, R. P. , & Tucker, G. H. (1990) . Demonstration of genesys: a very large, semantically based systemic functional grammar. In The 13th International Conference on Computational Linguis­tics (COLING-90), pp . 47-49.
Fawcett , R. P. , Tucker, G. H . , & Lin, Y. Q. (1993) . How a systemic functional gram­mar works: the role of realization in re­alization. In Horacek, H . , & Zock, M. (Eds .) , New Concepts in Natural Lan­guage Generation: Planning, Realiza­tion and Systems. Pinter, London.
Kasper, R. T. (1987) . A unification method for disjunctive feature descriptions. In Proceedings of the 25th Annual Meeting of the Association of Computational Lin­guistics.
Kasper, R. T. (1988) . An experimental parser for systemic grammars. In The 12th International Conference on Computa­tional Linguistics {COLING-88}.
Magerman, D. M . , & Marcus, M. P. (1991) . Pearl: A probabilistic chart parser. In Procedings of the 2nd International Workshop on Parsing Technologies.
Mann, W. C . , & Matthiessen, C. (1985) . Nigel : A systemic grammar for text generation. In Freedle, R. 0. (Ed.) , Systemic Per­spectives on Discourse. Ablex.
Matthiessen, C . M. I. M. (1991) . Test genera­tion and systemic functional linguistics. Pinter , London.

14
Mellish, C. S. (1988) . Implementing systemic classification by unification. Computa­tional Linguistics, 14 (1) .

O'Donoghue, T. F . (1991a) . A semantic inter­preter for systemic grammars. In Pro­ceedings of the A GL Workshop on Re­versible Grammars.
O'Donoghue, T. F. (1991b) . The vertical strip parser : a lazy approach to parsi_ng. Re­port 91 . 15 , School of Computer Studies, University of Leeds, UK.
O 'Donoghue, T . F . (1993) . Semantic interpre­tation in a systemic grammar. In Strza­lkowski , T. (Ed .) , Reversible Grammar in Natural Language Generation. Dor­drecht: Kluwer.
Patten, T. (1988) . Systemic Text Generation as Problem Solving. Cambridge Univer­sity Press.
Patten, T . , & Ritchie, G. (1986) . _A formal model of systemic grammar. Research paper 290, Deptartment of AI, Edin­butgh University, UK.
Van der Linden, E.-J . (1992) . Incremental processing and the hierarchical lexicon. Computational Linguistics, 18 (2) .
West, M. (1965) . A general service list of en­glish words. Longmans.
Winograd, T. (1972) . Understanding Natural Language. Academic Press Inc .

Weerasinghe and Fawcett

Appendix

Symbol Name Also Known As
Clause elements:

cl Clause Sentence
& Linker Conjunct(coord) B Binder Conjunct(subord)
A Adjunct Adverbial/Prepos-itional phrase Cl/2 Complements Object(direct/ indirect) 0 Operator First Auxiliary
X Auxiliary Auxiliary 0/M Operator/ Modal Verb Main Verb
s Subject First NP
N Negator Negator I Infinitive Infinitive M Main Verb Verb
Cm Main-Verb- Particle completing complement
Nominal group elements:

ngp
dq
vq dd
m

Nominal group Quantifying determiner 'of' element Deictic determiner Modifier

Noun phrase
Determiner
Preposition Determiner
Adjective

Function

Realizes a 'situation' Links two 'equal' units Binds subordinate unit into a higher unit Realizes circumstantial roles, etc. in the clause Realizes main participant roles in the clause (together with S) Realizes mood, negation, emphasis or polarity, tense Realizes tense, aspect , passives Operator functioning as the Main Verb of the clause Specifies the subject role of the clause Negates clause Used in infinitive clauses Specifies the process, constrains the roles in clause and tense Completes the meaning of the Main Verb

Realizes 'things'
Quantifies the nominal group
Shows 'selection' relationship Marks definiteness in the nominal group Modifies the 'head' of the group

15

Weerasinghe and Fawcett

mth

h

qth

qsit

Thing
modifier
Head

Qualifier

Qualifier

Noun modifier

Noun

pp

Relative clause

Prepositional group elements :

pgp Prepositional pp
group

p Preposition Preposition
CV Completive NP in PP

Quantity-quality group elements:

qqgp Quantity- Adverbial or
quality gp. Adjectival

t Temperer Intensifier

a Apex Adjective or
Adverb

f Finisher

Modifies the 'head' of the. group ·

Marks the head noun or is a pronoun
or proper name
Modifies the 'head' by a prepositional
group
Modifies the 'head ' by a clause

Realizes a 'minimal relationship'
plus a thing
Expresses minimal relationship
Expresses the thing

Realizes (quantities of) qualities

Tempers the quality of the
following adverb/adjective
The 'head' of the group

Completes meaning of temperer

Participant roles: (Conflated with S and Cl , C2)

Af Affected Patient
Ag Agent Actor
At Attribute
Ca Carrier
Cog Cognizant
Cre Created
Erri Emoter
Loe Location
Pere Perceiver
Ph Phenomenon
Pos Possessed

16

Weerasinghe and Fawcett 17

Adjuncts bearing circumstantial roles:

Afreq Frequency Ahyp Hypothetical Ama Manner Apl Place Apol Politeness Areas Reason Atp Time position Ausu Usuality

