Benjamin K. Bergen


2024

pdf bib
Language Model Behavior: A Comprehensive Survey
Tyler A. Chang | Benjamin K. Bergen
Computational Linguistics, Volume 50, Issue 1 - March 2024

Transformer language models have received widespread public attention, yet their generated text is often surprising even to NLP researchers. In this survey, we discuss over 250 recent studies of English language model behavior before task-specific fine-tuning. Language models possess basic capabilities in syntax, semantics, pragmatics, world knowledge, and reasoning, but these capabilities are sensitive to specific inputs and surface features. Despite dramatic increases in generated text quality as models scale to hundreds of billions of parameters, the models are still prone to unfactual responses, commonsense errors, memorized text, and social biases. Many of these weaknesses can be framed as over-generalizations or under-generalizations of learned patterns in text. We synthesize recent results to highlight what is currently known about large language model capabilities, thus providing a resource for applied work and for research in adjacent fields that use language models.

pdf bib
Characterizing Learning Curves During Language Model Pre-Training: Learning, Forgetting, and Stability
Tyler A. Chang | Zhuowen Tu | Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 12

How do language models learn to make predictions during pre-training? To study this, we extract learning curves from five autoregressive English language model pre-training runs, for 1M unseen tokens in context. We observe that the language models generate short repetitive phrases before learning to generate longer and more coherent text. We also find that individual tokens often exhibit sudden increases or decreases in loss that are surprisingly consistent across pre-training runs. To better understand these fluctuations, we quantify the final surprisal, within-run variability, age of acquisition, forgettability, and cross-run variability of learning curves for individual tokens in context. More frequent tokens reach lower final surprisals, exhibit less variability within and across pre-training runs, are learned earlier, and are less likely to be “forgotten” during pre-training. Higher n-gram probabilities further accentuate these effects. Independent of the target token, shorter and more frequent contexts correlate with marginally more stable and quickly acquired predictions. Based on our results, we argue for the existence of sequential learning dependencies between different model capabilities, and we characterize language model learning as early n-gram learning before gradual refinement of tail n-gram predictions.

2023

pdf bib
Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models
James A. Michaelov | Catherine Arnett | Tyler A. Chang | Benjamin K. Bergen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Abstract grammatical knowledge—of parts of speech and grammatical patterns—is key to the capacity for linguistic generalization in humans. But how abstract is grammatical knowledge in large language models? In the human literature, compelling evidence for grammatical abstraction comes from structural priming. A sentence that shares the same grammatical structure as a preceding sentence is processed and produced more readily. Because confounds exist when using stimuli in a single language, evidence of abstraction is even more compelling from crosslingual structural priming, where use of a syntactic structure in one language primes an analogous structure in another language. We measure crosslingual structural priming in large language models, comparing model behavior to human experimental results from eight crosslingual experiments covering six languages, and four monolingual structural priming experiments in three non-English languages. We find evidence for abstract monolingual and crosslingual grammatical representations in the models that function similarly to those found in humans. These results demonstrate that grammatical representations in multilingual language models are not only similar across languages, but they can causally influence text produced in different languages.

pdf bib
Rarely a problem? Language models exhibit inverse scaling in their predictions following few-type quantifiers
James A. Michaelov | Benjamin K. Bergen
Findings of the Association for Computational Linguistics: ACL 2023

How well do language models deal with quantification? In this study, we focus on ‘few’-type quantifiers, as in ‘few children like toys’, which might pose a particular challenge for language models because the sentence components with out the quantifier are likely to co-occur, and ‘few’-type quantifiers are rare. We present 960 English sentence stimuli from two human neurolinguistic experiments to 22 autoregressive transformer models of differing sizes. Not only do all the models perform poorly on ‘few’-type quantifiers, but overall the larger the model, the worse its performance. This inverse scaling is consistent with previous work suggesting that larger models increasingly reflect online rather than offline human processing, and we argue that the decreasing performance of larger models may challenge uses of language models as the basis for natural language systems.

pdf bib
Emergent Inabilities? Inverse Scaling Over the Course of Pretraining
James A. Michaelov | Benjamin K. Bergen
Findings of the Association for Computational Linguistics: EMNLP 2023

Does inverse scaling only occur as a function of model size, or can it also occur over the course of training? We carry out an exploratory study investigating whether the performance of language models on specific tasks can decrease (while general performance remains high) during training on the language modeling task. We find 8 tasks on which Pythia 12B (Biderman et al., 2023) shows decreased performance over the course of training. Five of these tasks (TruthfulQA-MC1, TruthfulQA-MC2, Hindsight Neglect, Memo Trap, and Pattern Match Suppression) additionally show a consistent relationship whereby larger language models show a greater decrease in performance the more they are trained, despite showing standard (positive) scaling overall. This highlights the importance of testing performance at all relevant benchmarks any time models are trained on additional data, even if their overall performance improves.

2022

pdf bib
Do Language Models Make Human-like Predictions about the Coreferents of Italian Anaphoric Zero Pronouns?
James A. Michaelov | Benjamin K. Bergen
Proceedings of the 29th International Conference on Computational Linguistics

Some languages allow arguments to be omitted in certain contexts. Yet human language comprehenders reliably infer the intended referents of these zero pronouns, in part because they construct expectations about which referents are more likely. We ask whether Neural Language Models also extract the same expectations. We test whether 12 contemporary language models display expectations that reflect human behavior when exposed to sentences with zero pronouns from five behavioral experiments conducted in Italian by Carminati (2005). We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the human behavior from all the experiments, with others successfully modeling some of the results. This result suggests that human expectations about coreference can be derived from exposure to language, and also indicates features of language models that allow them to better reflect human behavior.

pdf bib
Collateral facilitation in humans and language models
James A. Michaelov | Benjamin K. Bergen
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Are the predictions of humans and language models affected by similar things? Research suggests that while comprehending language, humans make predictions about upcoming words, with more predictable words being processed more easily. However, evidence also shows that humans display a similar processing advantage for highly anomalous words when these words are semantically related to the preceding context or to the most probable continuation. Using stimuli from 3 psycholinguistic experiments, we find that this is also almost always also the case for 8 contemporary transformer language models (BERT, ALBERT, RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J, and XGLM). We then discuss the implications of this phenomenon for our understanding of both human language comprehension and the predictions made by language models.

pdf bib
The Geometry of Multilingual Language Model Representations
Tyler A. Chang | Zhuowen Tu | Benjamin K. Bergen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We assess how multilingual language models maintain a shared multilingual representation space while still encoding language-sensitive information in each language. Using XLM-R as a case study, we show that languages occupy similar linear subspaces after mean-centering, evaluated based on causal effects on language modeling performance and direct comparisons between subspaces for 88 languages. The subspace means differ along language-sensitive axes that are relatively stable throughout middle layers, and these axes encode information such as token vocabularies. Shifting representations by language means is sufficient to induce token predictions in different languages. However, we also identify stable language-neutral axes that encode information such as token positions and part-of-speech. We visualize representations projected onto language-sensitive and language-neutral axes, identifying language family and part-of-speech clusters, along with spirals, toruses, and curves representing token position information. These results demonstrate that multilingual language models encode information along orthogonal language-sensitive and language-neutral axes, allowing the models to extract a variety of features for downstream tasks and cross-lingual transfer learning.

pdf bib
Word Acquisition in Neural Language Models
Tyler A. Chang | Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 10

We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words on the MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007). Drawing on studies of word acquisition in children, we evaluate multiple predictors for words’ ages of acquisition in LSTMs, BERT, and GPT-2. We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models, reinforcing the importance of interaction and sensorimotor experience in child language acquisition. Language models rely far more on word frequency than children, but, like children, they exhibit slower learning of words in longer utterances. Interestingly, models follow consistent patterns during training for both unidirectional and bidirectional models, and for both LSTM and Transformer architectures. Models predict based on unigram token frequencies early in training, before transitioning loosely to bigram probabilities, eventually converging on more nuanced predictions. These results shed light on the role of distributional learning mechanisms in children, while also providing insights for more human-like language acquisition in language models.

2020

pdf bib
How well does surprisal explain N400 amplitude under different experimental conditions?
James A. Michaelov | Benjamin K. Bergen
Proceedings of the 24th Conference on Computational Natural Language Learning

We investigate the extent to which word surprisal can be used to predict a neural measure of human language processing difficulty—the N400. To do this, we use recurrent neural networks to calculate the surprisal of stimuli from previously published neurolinguistic studies of the N400. We find that surprisal can predict N400 amplitude in a wide range of cases, and the cases where it cannot do so provide valuable insight into the neurocognitive processes underlying the response.