Rajalakshmi S


2024

pdf bib
SSN_ARMM at SemEval-2024 Task 10: Emotion Detection in Multilingual Code-Mixed Conversations using LinearSVC and TF-IDF
Rohith Arumugam S | Angel Deborah S | Rajalakshmi S | Milton R S | Mirnalinee T T
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Our paper explores a task involving the analysis of emotions and triggers within dialogues. We annotate each utterance with an emotion and identify triggers, focusing on binary labeling. We emphasize clear guidelines for replicability and conduct thorough analyses, including multiple system runs and experiments to highlight effective techniques. By simplifying the complexities and detailing clear methodologies, our study contributes to advancing emotion analysis and trigger identification within dialogue systems.

2019

pdf bib
SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online Reviews using Deep Learning Techniques on Augmented Data
Rajalakshmi S | Angel Deborah S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the work on mining the suggestions from online reviews and forums. Opinion mining detects whether the comments are positive, negative or neutral, while suggestion mining explores the review content for the possible tips or advice. The system developed by SSN-SPARKS team in SemEval-2019 for task 9 (suggestion mining) uses a rule-based approach for feature selection, SMOTE technique for data augmentation and deep learning technique (Convolutional Neural Network) for classification. We have compared the results with Random Forest classifier (RF) and MultiLayer Perceptron (MLP) model. Results show that the CNN model performs better than other models for both the subtasks.

2018

pdf bib
SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection Using Rule Based Feature Selection
Angel Deborah S | Rajalakshmi S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 12th International Workshop on Semantic Evaluation

The system developed by the SSN MLRG1 team for Semeval-2018 task 1 on affect in tweets uses rule based feature selection and one-hot encoding to generate the input feature vector. Multilayer Perceptron was used to build the model for emotion intensity ordinal classification, sentiment analysis ordinal classification and emotion classfication subtasks. Support Vector Machine was used to build the model for emotion intensity regression and sentiment intensity regression subtasks.

pdf bib
SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using MultiLayer Perceptron
Rajalakshmi S | Angel Deborah S | S Milton Rajendram | Mirnalinee T T
Proceedings of the 12th International Workshop on Semantic Evaluation

Sentiment analysis plays an important role in E-commerce. Identifying ironic and sarcastic content in text plays a vital role in inferring the actual intention of the user, and is necessary to increase the accuracy of sentiment analysis. This paper describes the work on identifying the irony level in twitter texts. The system developed by the SSN MLRG1 team in SemEval-2018 for task 3 (irony detection) uses rule based approach for feature selection and MultiLayer Perceptron (MLP) technique to build the model for multiclass irony classification subtask, which classifies the given text into one of the four class labels.