@inproceedings{rao-etal-2023-ji,
title = "基于{R}o{BERT}a的中文仇恨言论侦测方法研究({C}hinese Hate Speech detection method Based on {R}o{BERT}a-{WWM})",
author = "Rao, Xiaojun and
Zhang, Yangsen and
Jia, Qilong and
Liu, Xueyang",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/sigarab-more-entries-6621/2023.ccl-1.44/",
pages = "501--511",
language = "zho",
abstract = "``随着互联网的普及,社交媒体虽然提供了交流观点的平台,但因其虚拟性和匿名性也加剧了仇恨言论的传播,因此自动侦测仇恨言论对于维护社交媒体平台的文明发展至关重要。针对以上问题,构建了一个中文仇恨言论数据集CHSD,并提出了一种中文仇恨言论侦测模型RoBERTa-CHHSD。该模型首先采用RoBERTa预训练语言模型对中文仇恨言论进行序列化处理,提取文本特征信息;再分别接入TextCNN模型和Bi-GRU模型,提取多层次局部语义特征和句子间全局依赖关系信息;将二者结果融合来提取文本中更深层次的仇恨言论特征,对中文仇恨言论进行分类,从而实现中文仇恨言论的侦测。实验结果表明,本模型在CHSD数据集上的F1值为89.12{\%},与当前最优主流模型RoBERTa-WWM相比提升了1.76{\%}。''"
}Markdown (Informal)
[基于RoBERTa的中文仇恨言论侦测方法研究(Chinese Hate Speech detection method Based on RoBERTa-WWM)](https://preview.aclanthology.org/sigarab-more-entries-6621/2023.ccl-1.44/) (Rao et al., CCL 2023)
ACL