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Abstract

Multi-token prediction (MTP) is an alterna-
tive training objective for language models that
has recently been proposed as a potential im-
provement over traditional next-token predic-
tion (NTP). Instead of training models to pre-
dict only the next token, as is standard, MTP
trains them to predict the next k tokens at each
step. While MTP was shown to improve down-
stream performance and sample efficiency in
large language models (LLMs), smaller lan-
guage models (SLMs) struggle with this objec-
tive. Recently, a curriculum-based approach
was offered as a solution to this problem for
models as small as 1.3B parameters by adjust-
ing the difficulty of the training objective over
time. In this work we investigate the viability of
MTP curricula in a highly data- and parameter-
constrained setting. Our experimental results
show that even 130M-parameter models benefit
from including the MTP task in the pre-training
objective. These gains hold even under severe
data constraints, as demonstrated on both zero-
shot benchmarks and downstream tasks.

1 Introduction

Next-token prediction (NTP) is the predominant
training objective for autoregressive language mod-
els. Learning to predict only one token at each
generation step has guided the training of models
like GPT (Brown et al., 2020; OpenAI et al., 2024)
and LLaMA (Touvron et al., 2023a,b; Grattafiori
et al., 2024), and Qwen (Qwen et al., 2025; Yang
et al., 2025). Despite its simplicity, this training ob-
jective has led to remarkable advancements across
text understanding, generation, and reasoning tasks.
However, by restricting the prediction horizon to
a single upcoming token, large language models
(LLMs) may underexploit their ability to anticipate
and plan over longer stretches of text.

Multi-token prediction (MTP) (Gloeckle et al.,
2024) addresses this shortcoming by including mul-
tiple (k) subsequent tokens into the objective (see

Figure 1: Visualization of MTP vs NTP. Instead of focus-
ing on just the next upcoming token, in MTP multiple
subsequent tokens are predicted at each step, using mul-
tiple parallel output heads that share a common model
backbone (Gloeckle et al., 2024).

Figure 1 for an illustration). As a result, MTP
was shown to improve model’s downstream per-
formance, inference speed, and training sample
efficiency without significantly increasing training
time. On a large scale, the MTP training objec-
tive was adopted by (Liu et al., 2024) for their
Deepseek-V3 model that serves as a base model
for the reasoning R1 model (Guo et al., 2025).

Nonetheless, MTP is not a free lunch: its ben-
efits are most pronounced for models with suffi-
cient capacity to handle the increased predictive
complexity. When applied to smaller language
models (SLMs, < 7B), the objective can even de-
grade performance, as these models often struggle
to learn more complex morphological and semantic
dependencies in parallel from the outset. To ad-
dress this, Aynetdinov and Akbik (2025) proposed
a curriculum-based approach to MTP for SLMs,
that gradually adjusts the number of predicted to-
kens during training. By varying k over time, they
showed that SLMs can better adapt to the MTP ob-
jective and recover some of the performance gains
observed in larger models.

In this work, we push this approach even fur-
ther by investigating the potential of curriculum-



Figure 2: Visualization of the forward and reverse MTP curricula (Aynetdinov and Akbik, 2025). When training
a language model on a 3-token-prediction task for n steps, the forward curriculum starts with a vanilla NTP task,
adding an additional token to the task every n

3 steps. The reverse curriculum does the opposite, starting with a full
3-token-prediction task, and dropping a token from the task every n

3 steps.

based MTP training in an even more constrained
regime, with models under 1B parameters, trained
on just 10M words. Using a 130M-parameter GPT-
2 model as our test case, we compare the vanilla
NTP and static MTP training objectives against for-
ward and reverse curricula proposed by Aynetdinov
and Akbik (2025) in order to evaluate their effec-
tiveness in both zero-shot and fine-tuned settings.
Contributions. This paper makes the following
contributions:

• We extend the analysis of curriculum-based
MTP objectives to models under 1B parameters
trained on just 10M words.

• We provide a more detailed look at the training
dynamics of MTP- vs NTP-based SLMs through-
out multiple epochs.

• We showcase that very small LMs can still ben-
efit from the MTP objective on additional tasks
introduced in this iteration of the BabyLM chal-
lenge.

2 Preliminaries

In this section, we briefly formalize the multi-token
prediction objective, as well as the curricula pro-
posed by Aynetdinov and Akbik (2025), considered
in this paper.

2.1 Multi-Token Prediction Objective

Large language models are usually trained with the
next-token prediction (NTP) objective. Given a
context sequence

x = (x1, x2, . . . , xt),

the task is to predict the next token xt+1 by maxi-
mizing its conditional probability:

LNTP = −
T∑
t=1

logP (xt+1 | x1, . . . , xt; θ),

where θ denotes model parameters.
The multi-token prediction (MTP) objective gen-

eralizes this setup to predicting a sequence of k
future tokens y = (xt+1, xt+2, . . . , xt+k) in paral-
lel:

LMTP = −
T∑
t=1

k∑
i=1

logP (xt+i | x1, . . . , xt; θ),

where probabilities are produced by k output heads
that share the same model backbone.

2.2 Curriculum Schedules
The curricula vary the number of active prediction
heads k ∈ {1, . . . , kmax} across epochs. Updates
occur at fixed intervals of E/kmax epochs, where
E is the total training epochs. We consider two pre-
defined variants: a forward and a reverse schedule.
The forward curriculum mimicks the progression
from an easy NTP to a more complext MTP task,
while the reverse curriculum simulates the oppo-
site.

Forward curriculum. Training starts with k = 1
and gradually increases the number of active heads:

kcurrent(e) = min

(
kmax,

⌊
e

E/kmax

⌋
+ 1

)
.

Reverse curriculum. Training starts with k =
kmax and progressively decreases the number of
active heads:

kcurrent(e) = max

(
1, kmax −

⌊
e

E/kmax

⌋)
.



BLiMP BLiMP EWoK Entity WUG Eye Self-paced
Objective Curriculum Suppl. Tracking Adj. Nom. Tracking Reading Avg.

(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (∆R2) (∆R2)

NTP - 62.17 59.48 49.79 13.74 59.50 10.59 4.13 37.06

- 61.37 56.90 49.46 17.88 65.00 11.00 4.30 37.99
MTP Reverse 61.93 57.60 50.22 18.60 66.00 11.17 4.28 38.54

Forward 61.51 58.29 49.73 13.40 60.00 10.15 4.00 36.73

Table 1: Zero-shot evaluation after training the models for 10 epochs on the 10M BabyLM dataset. Best scores are
highlighted.

3 Experimental Setup

We aim to assess the impact of incorporating the
MTP objective during pre-training of small lan-
guage models in data-constrained settings. To en-
able a comparison with the baseline numbers pub-
lished by the BabyLM challenge organizers (Char-
pentier et al., 2025), our experimental setup closely
mirrors theirs. For further discussion of the training
setup and associated computational costs, please
refer to Appendix A.
Tokenizer and data. We use the provided
BabyLM dataset mixture consisting of 10M words
(strict-small track) for pre-training. We apply
only minor pre-processing, mostly aimed at e.g.
removing opening headers and closing footnotes in
the Project Gutenberg subset, or speaker prefixes
in the Childes and Switchboard subsets. Using the
tokenizers provided with the baseline models, we
tokenize and naively split or concatenate the text
documents to fit the context window of 512. We
also experiment with a tokenizer that has half the
size of the baseline vocabulary, i.e. we compare
tokenizers with 8K vs 16K subword tokens.
Model architecture. We conduct our experiments
using a decoder-only GPT-2 transformer architec-
ture with 130M parameters (Radford et al., 2019).
As for the additional language modeling heads re-
quired for multi-token prediction, we opt for addi-
tional linear layers on top of the shared backbone.
This introduces 8M or 16M additional trainable
parameters depending on the vocabulary size, but
keeps the amount of transformer layers the same be-
tween MTP and NTP models. For the purposes of
the BabyLM challenge we keep the amount of max-
imum tokens in the pre-training objective limited
to 2. Based on the empirical results provided by
Gloeckle et al. (2024) and Aynetdinov and Akbik
(2025), using more tokens in the objective would
not be practically meaningful due to the increasing
complexity of the objective and the smaller size of

models considered in this work.
Training and evaluation. We consider 4 model
configurations:

NTP A model we trained by replicating the setup
used by the BabyLM organizers to train their
baseline model, using a vanilla NLP objective.

MTP, Static A model trained using the 2-token
prediction objective throughout all 10 epochs
of pre-training.

MTP, Forward Curriculum A model trained fol-
lowing the forward MTP curriculum: in the
first 5 epochs, we use a classical NTP objec-
tive in which we predict only the next token.
Then, in the remaining 5 epochs we switch to
an MTP objective to predict the next 2 tokens.

MTP, Reverse Curriculum A model trained fol-
lowing the reverse MTP curriculum: in the
first 5 epochs, we immediately start with pre-
dicting the next 2 tokens. In the final 5 epochs,
we switch to a standard NTP objective.

We train these models for 10 epochs using the
hyperparameters that were used to train the baseline
GPT-2 model for the strict-small track. For
downstream zero-shot and fine-tuning evaluation
we use the provided BabyLM pipeline (Charpentier
et al., 2025). During evaluation all models perform
only regular next token prediction for a controlled
comparison of their performances.

4 Results

4.1 Result 1: Downstream Performance

4.1.1 Zero-shot evaluation
The results of the final zero-shot evaluation after
training the aforementioned models for 10 epochs
are listed in Table 1. We highlight some of the
insights below. We also provide a comparison of



Objective Curriculum BoolQ MNLI MRPC QQP MultiRC RTE WSC Avg.
(Acc.) (Acc.) (F1) (F1) (Acc.) (Acc.) (Acc.)

NTP - 68.01 50.10 80.14 61.78 63.53 58.27 63.46 63.61

- 66.97 50.41 81.10 62.09 66.67 56.12 63.46 63.83
MTP Reverse 67.77 48.92 80.26 62.97 66.01 57.55 63.46 63.85

Forward 67.83 50.61 79.64 61.66 64.36 56.83 63.46 63.48

Table 2: Performance on SuperGLUE tasks after fine-tuning. Best scores are highlighted.

our baseline replication with the actual BabyLM
baseline model on zero-shot tasks in Table 4 of
Appendix B.
MTP forces SLMs to focus on patterns beyond
local ones. Both the Static MTP and the Re-
verse Curriculum MTP models outperform the NTP
model on Entity Tracking (Kim and Schuster, 2023)
with a significant gap between them. This sug-
gests that the MTP objective, even if used only for
the first half of the pre-training, forces the model
to "look ahead" more, i.e. better anticipate what
comes next, and thus to better keep track of entity
states in text sequences. This comes at the cost of
being proficient at local syntactical, morphological,
and semantic patterns, which is evident from all
MTP-based models lagging behind the NTP model
on the BLiMP benchmark (Warstadt et al., 2020)
on average.
None of the models were able to acquire mean-
ingful world knowledge. All models considered
in our experiments do not score above 50 on EWoK
(Ivanova et al., 2024), which means that none of
the models perform better than a random guess on
this benchmark. Since the MTP objective was not
shown to have any significantly positive or negative
impact on knowledge acquisition by language mod-
els, this is consistent with previous works. There-
fore, this is evidence of scarce factual knowledge
in the provided baseline dataset.
MTP leads to slightly more human-like text pro-
cessing by LMs. The Eye Tracking score reflects
how much of the variance in human eye fixation
durations can be explained beyond what a sim-
ple regression using simple lexical features can,
when taking the LM’s predictions into account. If
model’s log probabilities for the next token can be
a valuable predictor of eye fixation duration on that
token, the LM mirrors the human eye movements
when we read texts. The Self-Paced Reading works
similarly, but also controls for spillover: it includes
predictors for the preceding word’s length and sur-

prisal, so the LM only gets credit for predicting
processing difficulty that is specific to the current
word, independent of any carryover effects from
the previous one (de Varda et al., 2024).

Slightly higher Eye Tracking and Self-Paced
Reading scores of Reverse Curriculum and Static
MTP models can be explained by previously dis-
cussed better anticipation of upcoming tokens. As
a result, we argue that MTP mimics the way hu-
mans interact with text closer than NTP, given the
nature of aforementioned scores - the MTP mod-
els tend be slightly more surprised by (i.e. assign
lower probability to) the tokens or words on which
the human readers tend to spend more time on.

Interestingly, the Forward Curriculum MTP
model does not outperform the NTP model on
these phenomena. This suggest that in our data-
constrained setting with multiple training epochs
the objective used early on in the training process
seems to play a more important role when it comes
to model performance.

4.1.2 Performance on classification tasks

When it comes to fine-tuning on downstream clas-
sification tasks, intuitively the amount of tokens
in the prediction objective during pre-training of
causal language models should not make a big dif-
ference. Table 2 showcases the performance of
MTP and NTP models on SuperGLUE tasks (Wang
et al., 2020), and there is indeed almost no differ-
ence between NTP- and MTP-based language mod-
els on average. The only task where a noticeable
gap between between these models can be observed
is MultiRC, where Static and Reverse Curriculum
MTP models outperform the NTP model. Since
MultiRC involves tracking the states of entities
across multiple sentences to some extent, this can
be explained by better zero-shot performance of
Static and Reverse Curriculum MTP models on the
Entity Tracking task.



Figure 3: Zero-shot evaluation over epochs. The dotted line at epoch 5 indicates the switch in the training objective
for models trained with either of the objective curricula. Tokenizer vocabulary size: 16K.

4.2 Result 2: Performance over epochs

To assess how the timing of the pre-training ob-
jective influences downstream model performance,
we analyze the zero-shot performance of our mod-
els over 10 epochs. Figure 3 shows results for all
benchmarks except EWoK, where all models per-
form around chance level throughout all epochs.
We show the performance development on EWoK
in Figure 4 of Appendix B.
MTP objective acts as a regularizer in the early
epochs. Prabhudesai et al. (2025) have shown that
autoregressive LMs can overfit to repeated data
after only a few epochs. We see a similar picture in
our analysis: performance on Entity Tracking and
WUG drops sharply after the first epoch.

However, models trained with the MTP objective
from the beginning, i.e. Static MTP and Backward
Curriculum, retain higher scores on these tasks for
longer, while steadily improving on Eye Tracking.
This suggests that MTP regularizes the learning
signal in the earlier epochs, slowing the erosion
of entity state tracking and morphological general-
ization. Higher accuracy on the WUG Adjective
Normalization task (Hofmann et al., 2024) means
that the models more consistently mirror human
preferences about how to form nouns from novel
adjectives, indicating stronger alignment with how
humans do morphological generalization.
Forward Curriculum does not lead to improve-
ments in the second stage of the training. After

epoch 5, when Reverse Curriculum switches fully
to NTP, it slightly overtakes Static MTP on BLiMP,
suggesting that the model refines its representation
learned in the first part of the pre-training.

In contrast, Forward Curriculum performs sim-
ilarly to or worse than NTP, with improvements
observed only on BLiMP Supplement. This sug-
gests that introducing MTP in the second stage of
training on repeated data does not replicate the ben-
efits of early exposure, at least for the zero-shot
tasks in the BabyLM evaluation pipeline, which
use only a single language modeling head.

4.3 Ablation: Reduced vocabulary size

Aynetdinov and Akbik (2025) have shown that
MTP-based byte-level SLMs outperform subword-
level ones, partly because a subword token carries
more semantic and morphological information than
a byte, and therefore it is easier to predict mul-
tiple bytes, rather than subwords. Motivated by
this observation, we additionally explore how the
vocabulary size of a subword tokenizer would im-
pact the performance and generalization abilities of
even smaller MTP-based models. To this end, we
trained identical counterparts of our models with a
vocabulary size reduced by half.

Table 3 compares the performance of models
trained on the initial vocabulary size of 16k against
the models trained on half the initial vocabulary
size of 8k. Generally we observe that the models
showcase a very similar performance to each other,



Vocabulary
BLiMP BLiMP EWoK Entity WUG Eye Self-paced

Size
Objective Curriculum Suppl. Tracking Adj. Nom. Tracking Reading Avg.

(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (∆R2) (∆R2)

16k

NTP - 62.17 59.48 49.79 13.74 59.50 10.59 4.13 37.06
- 61.37 56.90 49.46 17.88 65.00 11.00 4.30 37.99

MTP Reverse 61.93 57.60 50.22 18.60 66.00 11.17 4.28 38.54
Forward 61.51 58.29 49.73 13.40 60.00 10.15 4.00 36.73

8k

NTP - 61.91 58.57 49.51 11.82 57.50 9.43 3.77 36.07
- 61.25 56.81 49.12 16.25 70.00 8.92 3.61 37.99

MTP Reverse 61.36 56.61 49.22 16.31 66.50 8.58 3.58 37.45
Forward 61.23 59.10 49.36 11.91 55.50 9.48 3.83 35.77

Table 3: Zero-shot evaluation of models using different tokenizer vocabulary sizes after training for 10 epochs on
the 10M BabyLM dataset. Best scores are highlighted.

except for the performance on Eye Tracking and
Self-Paced Reading benchmarks. Now, the Static
and Reverse Curriculum models show a worse per-
formance than NTP and Forward Curriculum mod-
els on these tasks.

Since a smaller vocabulary means that words
tend to be split into more tokens, MTP models
more often encounter situations in which they have
to predict 2 tokens belonging to the same word at a
given prediction step. At evaluation time, when all
models are doing next-token prediction, this train-
ing bias potentially shows up as lower probability
assigned to the word onset token. As a result, the
whole-word surprisal gets noisier and aligns less
with human data.

As for the absolute scores, a smaller vocabulary
size has led to better final zero-shot scores only
on WUG and BLiMP Supplement. We therefore
do not observe conclusive positive effects of re-
ducing the vocabulary size for any of the models
considered in our experiments. We also show how
the performance of models with a vocabulary size
of 8k develops over the epochs in Figure 5 of Ap-
pendix B.

5 Related Work

Curriculum learning. Curriculum learning (CL)
structures the order of training examples so that
models progress from simpler to more complex
cases (Bengio et al., 2009). Inspired by staged
human learning, CL has been applied in computer
vision, speech recognition, and NLP (Soviany et al.,
2022), including encoder-only pre-training (Xu
et al., 2020; Nagatsuka et al., 2021; Ranaldi et al.,
2023) and instruction-tuning of decoder-only mod-
els (Mukherjee et al., 2023; Lee et al., 2024).

Although rarely used in the large-scale pre-

training of publicly available decoder-only foun-
dation models, Feng et al. (2024) showed that a
two-stage, quality-based curriculum can improve
training outcomes. By contrast, CL is common
in data-constrained scenarios such as the BabyLM
challenge (Hu et al., 2024). A meta-analysis of the
2023 BabyLM submissions (Warstadt et al., 2023)
concluded that difficulty-based data ordering of-
ten matched shuffled baselines, whereas objective-
level curricula tended to produce more reliable im-
provements.

For instance, Salhan et al. (2024) explored
acquisition-inspired, cross-lingual curricula de-
rived from age-ordered child-directed speech, pair-
ing them with different objective-level strategies,
and found consistent gains in small-scale model
training. Hong et al. (2024) proposed Active Cur-
riculum Language Modeling, involving dynami-
cally selecting examples based on model uncer-
tainty, which improved common-sense and world-
knowledge performance.

Multi-token prediction. Next-token prediction
(NTP) remains the dominant language modeling ob-
jective, but several works have explored predicting
multiple future tokens in parallel (MTP). Prophet-
Net (Qi et al., 2020) was an early large-scale imple-
mentation, introducing a future n-gram objective
with n-stream self-attention to attend to and pre-
dict multiple tokens at once, albeit with additional
computational cost. Pal et al. (2023) found that
NTP-trained models implicitly encode information
about several future tokens in their hidden states,
which can be partially recovered through probing.

Gloeckle et al. (2024) proposed a compute-
matched MTP architecture using full transformer
layers as separate language modeling heads, pre-
serving efficiency while matching or exceeding the



performance of NTP models and enabling faster in-
ference through parallel decoding. However, they
reported that MTP objective can lead to perfor-
mance degradation in models with less than 7B pa-
rameters. Aynetdinov and Akbik (2025) addressed
this issue by proposing pre-training curricula that
allow SLMs to recover some of the performance
gains enjoyed by larger LMs.

Cai et al. (2024), on the other hand, showed that
it is possible to enable multi-token prediction in
larger models pre-trained on the next-token predic-
tion task only. This allows to speed up the inference
speed of already trained models by enabling self-
speculative decoding (Stern et al., 2018).

6 Conclusion

In this paper we explored the viability of using the
multi-token prediction objective for training very
small language models in a data-constrained setting
posed by the BabyLM challenge. We tested both
static and curriculum-based training strategies for
the MTP objective against a model trained using a
regular next token prediction objective. Our experi-
mental results show that the MTP objective has its
merit even at a scale of 130M model parameters,
when evaluated using the BabyLM pipeline. In fact,
the model trained under a reverse MTP curriculum
outperformed the NTP baseline on all zero-shot
evaluation tasks except for BLiMP.

The analysis of model performances through-
out the training process revealed that the MTP
objective functions as an early-phase regularizer
on repeated, small corpora: it slows the erosion
of non-local language patterns learned in the first
epochs. The difference in the pre-training showed
a very limited effect on downstream classifica-
tion performance on SuperGLUE after fine-tuning,
and the available BabyLM data mixture does not
support meaningful world-knowledge acquisition
via causal language modeling regardless of objec-
tive. Reducing the subword vocabulary largely
preserved the same qualitative picture and offered
no meaningful advantage neither to MTP-based,
nor to NTP-based models.

In data- and parameter-constrained settings such
as the one considered in this work, employing a
reverse MTP curriculum during pre-training yields
better downstream performance while maintaining
the same final inference speed as using only the
NTP objective. In contrast, the forward curricu-
lum produced the lowest average zero-shot perfor-

mance. We attribute this to the model becoming
trapped in a local minimum caused by overfitting
during the early training stages, with the subse-
quent increase in task difficulty further reinforcing
rather than alleviating the suboptimal performance.
Thus, if the goal is to increase inference speed, us-
ing a static MTP objective is more preferable in
settings similar to the one considered in this work.

In the future we would like to use the MTP
objective for pre-training slightly larger models,
but still under 1B parameters, on somewhat larger
datasets, such as the one used in the Strict track
of the BabyLM challenge. We also see value in
extending the evaluation of MTP-based models to
include generative tasks, such as abstractive sum-
marization, which could provide a richer assess-
ment of their capabilities.

Limitations

One limitation of our experimental setup is the fact
that we used MTP curricula that were pre-defined
in advance. The decision to progressively add or
remove a token to or from a 2-token objective in the
middle of the training is arbitrary, since it does not
rely on any metrics about the models themselves
or the training loss. This means that dropping or
adding the additional token from or to the objec-
tive was done perhaps at a suboptimal point in the
training process, leaving additional performance
improvements at the table. However, the goal of
this paper was to establish that the MTP objective
has any merit in a data- and parameter-constrained
setting of a BabyLM challenge. We plan to improve
on this aspect of our experiments in the future iter-
ations of the BabyLM challenge.

Furthermore, models capable of multi-token pre-
diction can also support self-speculative decoding,
which has potential both for efficiency gains and
for deeper analysis of model behavior. In this work,
we did not explore this aspect, focusing instead on
controlled comparisons within the BabyLM evalu-
ation pipeline. Future work could incorporate such
decoding strategies to examine how MTP-trained
models differ from NTP-trained ones in real gen-
eration settings, potentially revealing qualitative
differences that are not captured by the current
benchmarks.
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Figure 4: Zero-shot performance on EWoK over epochs. The performances are listed for models with both
vocabulary sizes. The dotted line at epoch 5 indicates the switch in the training objective for models trained with
either of the objective curricula.

Figure 5: Zero-shot evaluation over epochs. The dotted line at epoch 5 indicates the switch in the training objective
for models trained with either of the objective curricula. Tokenizer vocabulary size: 8K.



BLiMP BLiMP EWoK Entity WUG Eye Self-paced
Model Suppl. Tracking Adj. Nom. Tracking Reading Avg.

(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (∆R2) (∆R2)

BabyLM Baseline 66.36 57.07 49.90 13.90 52.50 8.66 4.34 36.10

Baseline Replication 62.17 59.48 49.79 13.74 59.50 10.59 4.13 37.06
Static MTP 61.37 56.90 49.46 17.88 65.00 11.00 4.30 37.99

Reverse MTP Curriculum 61.93 57.60 50.22 18.60 66.00 11.17 4.28 38.54
Forward MTP Curriculum 61.51 58.29 49.73 13.40 60.00 10.15 4.00 36.73

Table 4: Zero-shot performance comparison against the strict-small (10M) BabyLM baseline. Tokenizer
vocabulary size: 16K. Best and second-best scores are highlighted. The differences between the baseline model and
our replication of it can be explained by potential differences in the learning rate scheduler and data preprocessing.
We used the cosine scheduler that anneals to 10% of the maximum learning rate. Our NTP, Static NTP and Reverse
MTP Curriculum models outperform the BabyLM baseline on all benchmarks, except for BLiMP.
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