
A Appendix
A.1 TextAttack in Five Lines or Less

Table 3 provides some examples of tasks that
can be accomplished in bash or Python with five
lines of code or fewer. Note that every action has
to be prefaced with a single line of code (pip
install textattack).
A.2 Components of TextAttack

This section explains each of the four compo-
nents of the TextAttack framework and de-
scribes the components that are currently imple-
mented. Figure 5 shows the decomposition of two
popular attacks (Alzantot et al., 2018; Jin et al.,
2019).
A.2.1 Goal Functions

A goal function takes an input x0 and determines
if it is satisfies the conditions for a successful attack
in respect to the original input x. Goal functions
vary by task. For example, for a classification task,
a successful adversarial attack could be changing
the model’s output to be a certain label. Goal func-
tions also scores how ”good” the given x0 is for
achieving the desired goal, and this score can be
used by the search method as a heuristic for finding
the optimal solution.
TextAttack includes the following goal func-

tions:
• Untargeted Classification: Minimize the score of

the correct classification label.
• Targeted Classification: Maximize the score of a

chosen incorrect classification label.
• Input Reduction (Classification): Reduce the in-

put text to as few wordas as possible while main-
taining the same predicted label.

• Non-Overlapping Output (Text-to-Text): Change
the output text such that no words in it overlap
with the original output text.

• Minimzing BLEU Score (Text-to-Text): Change
the output text such that the BLEU score between
it and the original output text is minimized (Pap-
ineni et al., 2001).

A.2.2 Constraints
A perturbed text is only considered valid

if it satisfies each of the attack’s constraints.
TextAttack contains four classes of constraints.
Pre-transformation Constraints These con-
straints are used to preemptively limit how x can
be perturbed and are applied before x is perturbed.
• Stopword Modification: stopwords cannot be

perturbed.
• Repeat Modification: words that have been al-

ready perturbed cannot be perturbed again.
• Minimum Word Length: words less than a cer-

tain length cannot be perturbed.
• Max Word Index Modification: words past a

certain index cannot be perturbed.
• Input Column Modification: for tasks such as

textual entailment where input might be com-
posed of two parts (e.g. hypothesis and premise),
we can limit which part we can transform (e.g.
hypothesis).

Overlap We measure the overlap between x and
x adv using the following metrics on the charac-
ter level and require it to be lower than a certain
threshold as a constraint:
• Maximum BLEU score difference (Papineni

et al., 2001)
• Maximum chrF score difference (Popovic, 2015)
• Maximum METEOR score difference (Agarwal

and Lavie, 2008)
• Maximum Levenshtein edit distance
• Maximum percentage of words changed
Grammaticality These constraints are typically
intended to prevent the attack from creating per-
turbations which introduce grammatical errors.
TextAttack currently supports the following
constraints on grammaticality:
• Maximum number of grammatical errors in-

duced, as measured by LanguageTool (Naber
et al., 2003)

• Part-of-speech consistency: the replacement
word should have the same part-of-speech as
the original word. Supports taggers provided by
flair, SpaCy, and NLTK.

• Filtering out words that do not fit within the
context based on the following language models:
– Google 1-billion words language model

(Józefowicz et al., 2016)
– Learning To Write Language Model (Holtz-

man et al., 2018) (as used by (Jia et al., 2019))
– GPT-2 language model (Radford et al., 2019)

JTODO: adding a COLA model would be nice
Semantics Some constraints attempt to preserve
semantics between x and x adv. TextAttack
currently provides the following built-in semantic
constraints:
• Maximum swapped word embedding distance

(or minimum cosine similarity)
• Minimum cosine similarity score of sentence rep-

9

Task Command

Run an attack

TextFooler on an LSTM trained on the MR
sentiment classification dataset

textattack attack --recipe textfooler

--model bert-base-uncased-mr

--num-examples 100

TextFooler against BERT fine-tuned on SST-2 textattack attack --model

bert-base-uncased-sst2 --recipe

textfooler --num-examples 10

DeepWordBug on DistilBERT trained on the
Quora Question Pairs paraphrase identification
dataset:

textattack attack --model

distilbert-base-uncased-qqp --recipe

deepwordbug --num-examples 100

seq2sick (black-box) against T5 fine-tuned for
English-German translation:

textattack attack --model t5-en-de

--recipe seq2sick --num-examples 100

Beam search with beam width 4 and word
embedding transformation and untargeted goal
function on an LSTM:

textattack attack --model lstm-mr

--num-examples 20 --search-method

beam-search:beam width=4

--transformation word-swap-embedding

--constraints repeat stopword

max-words-perturbed:max num words=2

embedding:min cos sim=0.8

part-of-speech --goal-function

untargeted-classification

Data augmentation Augment dataset from ’examples.csv’ using
the EmbeddingAugmenter, swapping out 4%
of words, with 2 augmentations for example,
withholding the original samples from the out-
put CSV

textattack augment --csv examples.csv

--input-column text --recipe

embedding --pct-words-to-swap 4

--transformations-per-example 2

--exclude-original

Augment a list of strings in Python from textattack.augmentation import

EmbeddingAugmenter

augmenter = EmbeddingAugmenter()

s = ’What I cannot create, I do not

understand.’

augmenter.augment(s)

Train a model Train the default LSTM for 50 epochs on the
Yelp Polarity dataset

textattack train --model lstm

--dataset yelp polarity --batch-size

64 --epochs 50 --learning-rate 1e-5

Fine-tune bert-base on the CoLA dataset for 5
epochs

textattack train --model

bert-base-uncased --dataset glue:cola

--batch-size 32 --epochs 5

Fine-tune RoBERTa on the Rotten Tomatoes
Movie Review dataset, first augmenting each
example with 4 augmentations produced by
the EasyDataAugmentation augmenter

textattack train --model

roberta-base --batch-size 64

--epochs 50 --learning-rate

1e-5 --dataset rotten tomatoes

--augment eda --pct-words-to-swap .1

--transformations-per-example 4

Adversarially fine-tune DistilBERT on AG
News using the HotFlip word-based attack,
first training for 2 epochs on the original
dataset

textattack train --model

distilbert-base-cased --dataset ag news

--attack hotflip --num-clean-epochs 2

Table 3: With TextAttack, adversarial attacks, data augmentation, and adversarial training can be achieved in just a few
lines of Bash or Python.

resentations obtained by well-trained sentence
encoders:
– Skip-Thought Vectors (Kiros et al., 2015)
– Universal Sentence Encoder (Cer et al., 2018)
– InferSent (Conneau et al., 2017)
– BERT trained for semantic similarity (Reimers

and Gurevych, 2019)
• Minimum BERTScore (Zhang* et al., 2020)

A.2.3 Transformations
A transformation takes an input and returns a

set of potential perturbations. The transformation
is agnostic of goal function and constraint(s): it
returns all potential transformations.

We categorize transformations into two kinds:
white-box and black-box. White-box transforma-

10

7UDQVIRUPDWLRQ
��:RUG(PEHGGLQJ'LVWDQFH�PLQBFRVBVLP ����
��3DUW2I6SHHFK�YHUEBQRXQBVZDS 7UXH�
��8QLYHUVDO6HQWHQFH(QFRGHU�
���PHWULF µDQJXODU
��WKUHVK ������������

6HDUFK�0HWKRG

&RQVWUDLQWV

*RDO�)XQFWLRQ 8QWDUJHWHG&ODVVLILFDWLRQ

��:RUGV3HUWXUEHG3HUFHQWDJH�PD[BSHUF ���
��:RUG(PEHGGLQJ'LVWDQFH�PD[BPVH ����
��*RRJOH/DQJXDJH0RGHO�QBSHUBLQGH[��

$O]DQWRW�HW�DO��������

8QWDUJHWHG&ODVVLILFDWLRQ

*UHHG\:RUG6ZDS:RUG,PSRUWDQFH5DQNLQJ

:RUG6ZDS(PEHGGLQJ�HPEHGGLQJ µFIµ�

-LQ�HW�DO��������

*HQHWLF$OJRULWKP:RUG6ZDS

:RUG6ZDS(PEHGGLQJ�HPEHGGLQJ µFIµ�

Figure 5: TextAttack builds NLP attacks from a goal function, search method, transformation, and list of constraints. This
shows attacks from Alzantot et al. (2018) and Jin et al. (2019) created using TextAttack modules.

tions have access to the model and can query it or
examine its parameters to help determine the trans-
formation. For example, Ebrahimi et al. (2017) de-
termines potential replacement words based on the
gradient of the one-hot input vector at the position
of the swap. Black-box transformations determine
the potential perturbations without any knowledge
of the model.
TextAttack currently supports the following

transformations:
• Word swap with nearest neighbors in the counter-

fitted embedding space (Mrkšić et al., 2016)
• WordNet word swap (Miller et al., 1990)
• Word swap proposed by a masked language

model (Garg and Ramakrishnan, 2020; Li et al.,
2020)

• Word swap gradient-based: swap word with an-
other word in the vocabulary that maximize the
model’s loss (Ebrahimi et al., 2017) (white-box)

• Word swap with characters transformed (Gao
et al., 2018):
– Character deleted
– Neighboring characters swapped
– Random character inserted
– Substituted with a random character
– Character substituted with a homoglyph
– Character substituted with a neighboring char-

acter from the keyboard (Pruthi et al., 2019)
• Word deletion
• Word swap with another word in the vocabulary

that has the same Part-of-Speech and sememe,
where the sememe is obtained by HowNet (Dong
et al., 2006).

• Composite transformation: returns the results of
multiple transformations

A.2.4 Search Methods
The search method aims to find a perturbation

that achieves the goal and satisfies all constraints.
Many combinatorial search methods have been pro-

posed for this process. TextAttack has imple-
mented a selection of the most popular ones from
the literature:

• Greedy Search with Word Importance Rank-
ing. Rank all words according to some ranking
function. Swap words one at a time in order of
decreasing importance.

• Beam Search. Initially score all possible trans-
formations. Take the top b transformations
(where b is a hyperparameter known as the
”beam width”) and iterate, looking at potential
transformations for all sequences in the beam.

• Greedy Search. Initially score transformations
at all positions in the input. Swap words, taking
the highest-scoring transformations first. (This
can be seen as a case of beam search where b =
1).

• Genetic Algorithm. An implementation of the
algorithm proposed by Alzantot et al. (2018). It-
eratively alters the population through greedy
perturbation of each population member and
crossover between population numbers, with
preference to the more successful members of
the population. (We also support an alternate
version, the ”Improved Genetic Algorithm” pro-
posed by Wang et al. (2019)).

• Particle Swarm Optimization. A
population-based evolutionary computa-
tion paradigms (Kennedy and Eberhart, 1995)
that exploits a population of interacting individu-
als to iteratively search for the optimal solution
in the specific space (Zang et al., 2020). The
population is called a swarm and individual
agents are called particles. Each particle has a
position in the search space and moves with an
adaptable velocity.

11

A.3 TextAttack Attack Reproduction
Results

Table 4 displays a comparison of results
achieved when running attacks in TextAttack
alongside numbers reported in the original paper.
All TextAttack benchmarks were run on pre-
trained models provided by the library and can be
reproduced in a single textattack attack

command. There are a few important implementa-
tion differences:

• The genetic algorithm benchmark comes from
the faster genetic algorithm of (Jia and Liang,
2017). As opposed to the original algorithm of
(Alzantot et al., 2018), this implementation uses
a fast language model, so it can query contexts of
up to 5 words. Additionally, perplexity is com-
pared to that of the original word, not the previ-
ous perturbation. Since these are more rigorous
linguistic constraints, a lower attack success rate
is expected.

• The LSTM models from BAE (Garg and Ra-
makrishnan, 2020) were trained using counter-
fitted GLoVe embeddings. The LSTM models
from TextAttack were trained using normal
GLoVe embeddings. Our models are conse-
quently less robust to counter-fitted embedding
synonym swaps, and a higher attack success rate
is expected.

• The HowNet synonym set used in
TextAttack’s PSO implementation is a
concatenation of the three synonym sets
used in the paper. This is necessary since
TextAttack is dataset-agnostic and cannot
expect to provide a set of synonyms for every
possible dataset. Since the attack has more
synonyms to choose from, TextAttack’s
PSO implementation is slightly more successful.

A.4 TextAttack Attack Prototypes
This section displays “attack prototypes” for

each attack recipe implemented in TextAttack.
This is a concise way to print out the components
of a given attack along with its parameters. These
are directly copied from the output of running
TextAttack.

Alzantot Genetic Algorithm (Alzantot et al.,
2018)
Attack (

(search method) : GeneticAlgorithm (

(pop size) : 60
(max iters) : 20
(temp) : 0.3
(give up if no improvement) : False

)
(goal function) : UntargetedClassification
(transformation) : WordSwapEmbedding(

(max candidates) : 8
(embedding type) : paragramcf

)
(constraints) :

(0) : MaxWordsPerturbed(
(max percent) : 0.2
(compare against original) : True

)
(1) : WordEmbeddingDistance(

(embedding type) : paragramcf
(max mse dist) : 0.5
(cased) : False
(include unknown words) : True
(compare against original) : False

)
(2) : GoogleLanguageModel(

(top n) : None
(top n per index) : 4
(compare against original) : False

)
(3) : RepeatModification
(4) : StopwordModification
(5) : InputColumnModification (

(matching column labels) : [’premise ’ , ’hypothesis ’]
(columns to ignore) : {’premise’}

)
(is black box) : True

)

Alzantot Genetic Algorithm (faster) (Jia
et al., 2019)

Attack (
(search method) : GeneticAlgorithm (

(pop size) : 60
(max iters) : 20
(temp) : 0.3
(give up if no improvement) : False

)
(goal function) : UntargetedClassification
(transformation) : WordSwapEmbedding(

(max candidates) : 8
(embedding type) : paragramcf

)
(constraints) :

(0) : MaxWordsPerturbed(
(max percent) : 0.2

)
(1) : WordEmbeddingDistance(

(embedding type) : paragramcf
(max mse dist) : 0.5
(cased) : False
(include unknown words) : True

)
(2) : LearningToWriteLanguageModel(

(max log prob diff) : 5.0
)

(3) : RepeatModification
(4) : StopwordModification

(is black box) : True
)

BAE (Garg and Ramakrishnan, 2020)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : delete

)
(goal function) : UntargetedClassification
(transformation) : WordSwapMaskedLM(

(method) : bae
(masked lm name) : bert�base�uncased
(max length) : 256
(max candidates) : 50

)
(constraints) :

(0) : PartOfSpeech(

12

LSTM BERT-Base
MR SST-2 IMDB AG MR SST-2 IMDB SNLI AG

Reported - - 97.0 / 14.7 - - - - - -
alzantot (Alzantot et al., 2018)

TextAttack 64.6 / 17.8 70.8 / 18.3 73.0 / 4.0 27.7 / 11.6 40.7 / 19.1 46.5 / 20.7 46.7 / 7.3 74.9 / 12.3 18.1 / 12.6
Reported 70.2 / - - 73.2 / - - 48.3 / - - 45.9 / - - -

bae (Garg and Ramakrishnan, 2020)
TextAttack 74.4 / 12.3 72.7 / 13.5 88.8 / 2.6 21.4 / 6.3 61.5 / 15.2 66.6 / 14.5 55.6 / 3.2 78.4 / 7.1 16.9 / 7.4
Reported - - - 72.5 / - - - - - -

deepwordbug (Gao et al., 2018)
TextAttack 86.3 / 16.8 82.6 / 17.1 97.6 / 5.2 83.4 / 19.4 78.2 / 21.2 81.3 / 18.9 80.9 / 5.3 99.0 / 9.8 60.7 / 25.1
Reported - 93.8 / 9.1 100.0 / 3.7 - - 91.2 / 8.2 98.7 / 3.7 78.9 / 11.7 -

pso (Zang et al., 2020)
TextAttack 94.9 / 10.7 96.5 / 11.5 100.0 / 1.3 83.7 / 12.7 92.7 / 11.9 91.3 / 12.9 100.0 / 1.2 91.8 / 6.2 79.4 / 16.7
Reported 96.2 / 14.9 - 99.7 / 5.1 95.8 / 18.6 86.7 / 16.7 - 85.0 / 6.1 95.5 / 18.5 86.7 / 22.0

textfooler (Jin et al., 2019)
TextAttack 97.4 / 13.6 98.8 / 14.2 100.0 / 2.4 95.3 / 17.2 88.7 / 18.7 94.8 / 16.9 100.0 / 7.2 96.3 / 7.2 79.5 / 23.5

Table 4: Comparison between our re-implemented attacks and the original source code in terms of success rate (left number)
and percentage of perturbed words (right number). Numbers that are not found in the literature are marked as “-”. 1000 samples
are randomly selected for evaluation from all these datasets except IMDB (100 samples are used for IMDB since some attack
methods like Genetic and PSO take over 4 days to finish 1000 samples).

(tagger type) : nltk
(tagset) : universal
(allow verb noun swap) : True
(compare against original) : True

)
(1) : UniversalSentenceEncoder (

(metric) : cosine
(threshold) : 0.936338023
(window size) : 15
(skip text shorter than window) : True
(compare against original) : True

)
(2) : RepeatModification
(3) : StopwordModification

(is black box) : True
)

BERT-Attack (Li et al., 2020)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : unk

)
(goal function) : UntargetedClassification
(transformation) : WordSwapMaskedLM(

(method) : bert�attack
(masked lm name) : bert�base�uncased
(max length) : 256
(max candidates) : 48

)
(constraints) :

(0) : MaxWordsPerturbed(
(max percent) : 0.4
(compare against original) : True

)
(1) : UniversalSentenceEncoder (

(metric) : cosine
(threshold) : 0.2
(window size) : inf
(skip text shorter than window) : False
(compare against original) : True

)
(2) : RepeatModification
(3) : StopwordModification

(is black box) : True
)

DeepWordBug (Gao et al., 2018)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : unk

)
(goal function) : UntargetedClassification
(transformation) : CompositeTransformation (

(0) : WordSwapNeighboringCharacterSwap(
(random one) : True

)
(1) : WordSwapRandomCharacterSubstitution(

(random one) : True
)

(2) : WordSwapRandomCharacterDeletion(
(random one) : True

)
(3) : WordSwapRandomCharacterInsertion(

(random one) : True
)

)
(constraints) :

(0) : LevenshteinEditDistance (
(max edit distance) : 30
(compare against original) : True

)
(1) : RepeatModification
(2) : StopwordModification

(is black box) : True
)

HotFlip (Ebrahimi et al., 2017)
Attack (

(search method) : BeamSearch(
(beam width) : 10

)
(goal function) : UntargetedClassification
(transformation) : WordSwapGradientBased(

(top n) : 1
)
(constraints) :

(0) : MaxWordsPerturbed(
(max num words) : 2
(compare against original) : True

)
(1) : WordEmbeddingDistance(

(embedding type) : paragramcf
(min cos sim) : 0.8
(cased) : False
(include unknown words) : True
(compare against original) : True

)
(2) : PartOfSpeech(

(tagger type) : nltk
(tagset) : universal
(allow verb noun swap) : True
(compare against original) : True

)
(3) : RepeatModification
(4) : StopwordModification

(is black box) : False
)

Input Reduction (Feng et al., 2018)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : delete

)
(goal function) : InputReduction (

(maximizable) : True
)
(transformation) : WordDeletion
(constraints) :

(0) : RepeatModification
(1) : StopwordModification

(is black box) : True
)

Kuleshov (Kuleshov et al., 2018)

13

Attack (
(search method) : GreedySearch
(goal function) : UntargetedClassification
(transformation) : WordSwapEmbedding(

(max candidates) : 15
(embedding type) : paragramcf

)
(constraints) :

(0) : MaxWordsPerturbed(
(max percent) : 0.5
(compare against original) : True

)
(1) : ThoughtVector (

(embedding type) : paragramcf
(metric) : max euclidean
(threshold) : �0.2
(window size) : inf
(skip text shorter than window) : False
(compare against original) : True

)
(2) : GPT2(

(max log prob diff) : 2.0
(compare against original) : True

)
(3) : RepeatModification
(4) : StopwordModification

(is black box) : True
)

MORPHEUS (Tan et al., 2020)
Attack (

(search method) : GreedySearch
(goal function) : MinimizeBleu(

(maximizable) : False
(target bleu) : 0.0

)
(transformation) : WordSwapInflections
(constraints) :

(0) : RepeatModification
(1) : StopwordModification

(is black box) : True
)

Particle Swarm Optimization (Zang et al.,
2020)
Attack (

(search method) : ParticleSwarmOptimization
(goal function) : UntargetedClassification
(transformation) : WordSwapHowNet(

(max candidates) : �1
)
(constraints) :

(0) : RepeatModification
(1) : StopwordModification
(2) : InputColumnModification (

(matching column labels) : [’premise ’ , ’hypothesis ’]
(columns to ignore) : {’premise’}

)
(is black box) : True

)

Pruthi Keyboard Char-Swap Attack (Pruthi
et al., 2019)
Attack (

(search method) : GreedySearch
(goal function) : UntargetedClassification
(transformation) : CompositeTransformation (

(0) : WordSwapNeighboringCharacterSwap(
(random one) : False

)
(1) : WordSwapRandomCharacterDeletion(

(random one) : False
)

(2) : WordSwapRandomCharacterInsertion(
(random one) : False

)
(3) : WordSwapQWERTY
)

(constraints) :

(0) : MaxWordsPerturbed(
(max num words) : 1
(compare against original) : True

)
(1) : MinWordLength
(2) : StopwordModification
(3) : RepeatModification

(is black box) : True
)

PWWS (Ren et al., 2019)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : pwws

)
(goal function) : UntargetedClassification
(transformation) : WordSwapWordNet
(constraints) :

(0) : RepeatModification
(1) : StopwordModification

(is black box) : True
)

seq2sick (Cheng et al., 2018)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : unk

)
(goal function) : NonOverlappingOutput
(transformation) : WordSwapEmbedding(

(max candidates) : 50
(embedding type) : paragramcf

)
(constraints) :

(0) : LevenshteinEditDistance (
(max edit distance) : 30
(compare against original) : True

)
(1) : RepeatModification
(2) : StopwordModification

(is black box) : True
)

TextBugger (Li et al., 2019)
Attack (

(search method) : GreedyWordSwapWIR(
(wir method) : unk

)
(goal function) : UntargetedClassification
(transformation) : CompositeTransformation (

(0) : WordSwapRandomCharacterInsertion(
(random one) : True

)
(1) : WordSwapRandomCharacterDeletion(

(random one) : True
)

(2) : WordSwapNeighboringCharacterSwap(
(random one) : True

)
(3) : WordSwapHomoglyphSwap
(4) : WordSwapEmbedding(

(max candidates) : 5
(embedding type) : paragramcf

)
)

(constraints) :
(0) : UniversalSentenceEncoder (

(metric) : angular
(threshold) : 0.8
(window size) : inf
(skip text shorter than window) : False
(compare against original) : True

)
(1) : RepeatModification
(2) : StopwordModification

(is black box) : True
)

TextFooler (Jin et al., 2019)

14

Attack (
(search method) : GreedyWordSwapWIR(

(wir method) : del
)
(goal function) : UntargetedClassification
(transformation) : WordSwapEmbedding(

(max candidates) : 50
(embedding type) : paragramcf

)
(constraints) :

(0) : WordEmbeddingDistance(
(embedding type) : paragramcf
(min cos sim) : 0.5
(cased) : False
(include unknown words) : True
(compare against original) : True

)
(1) : PartOfSpeech(

(tagger type) : nltk
(tagset) : universal
(allow verb noun swap) : True
(compare against original) : True

)
(2) : UniversalSentenceEncoder (

(metric) : angular
(threshold) : 0.840845057
(window size) : 15
(skip text shorter than window) : True
(compare against original) : False

)
(3) : RepeatModification
(4) : StopwordModification
(5) : InputColumnModification (

(matching column labels) : [’premise ’ , ’hypothesis ’]
(columns to ignore) : {’premise’}

)
(is black box) : True

)

15

