Jiawei Li
2024
Bit_numeval at SemEval-2024 Task 7: Enhance Numerical Sensitivity and Reasoning Completeness for Quantitative Understanding
Xinyue Liang
|
Jiawei Li
|
Yizhe Yang
|
Yang Gao
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
In this paper, we describe the methods used for Quantitative Natural Language Inference (QNLI), and Quantitative Question Answering (QQA) in task1 of Semeval2024 NumEval. The challenge’s focus is to enhance the model’s quantitative understanding consequently improving its performance on certain tasks. We accomplish this task from two perspectives: (1) By integrating real-world numerical comparison data during the supervised fine-tuning (SFT) phase, we enhanced the model’s numerical sensitivity. (2) We develop an innovative reward model scoring mechanism, leveraging reinforcement learning from human feedback (RLHF) techniques to improve the model’s reasoning completeness.
2023
Incomplete Utterance Rewriting by A Two-Phase Locate-and-Fill Regime
Zitong Li
|
Jiawei Li
|
Haifeng Tang
|
Kenny Zhu
|
Ruolan Yang
Findings of the Association for Computational Linguistics: ACL 2023
Rewriting incomplete and ambiguous utterances can improve dialogue models’ understanding of the context and help them generate better results. However, the existing end-to-end models will have the problem of too large search space, resulting in poor quality of rewriting results. We propose a 2-phase rewriting framework which first predicts the empty slots in the utterance that need to be completed, and then generate the part to be filled into each positions. Our framework is simple to implement, fast to run, and achieves the state-of-the-art results on several public rewriting datasets.
2022
PSP: Pre-trained Soft Prompts for Few-Shot Abstractive Summarization
Xiaochen Liu
|
Yang Gao
|
Yu Bai
|
Jiawei Li
|
Yinan Hu
|
Heyan Huang
|
Boxing Chen
Proceedings of the 29th International Conference on Computational Linguistics
Few-shot abstractive summarization has become a challenging task in natural language generation. To support it, we developed a novel soft prompts architecture coupled with a prompt pre-training plus prompt fine-tuning paradigm, which is effective and tunes only extremely light parameters. To meet the structure of the generation models, the soft prompts comprise continuous input embeddings across an encoder and a decoder. Importantly, a new inner-prompt placed in the text is introduced to capture document-level information. The aim is to devote attention to understanding the document that better prompts the model to generate document-related content. In the training process, the prompt pre-training with self-supervised pseudo-data firstly teaches the model basic summarizing capability. Then, with few-shot examples, only the designed lightweight soft prompts are fine-tuned. Experimental results on the CNN/DailyMail and XSum datasets show that our method, with only 0.1% of the parameters, outperforms full-model tuning where all model parameters are tuned. It also surpasses Prompt Tuning by a large margin and delivers competitive results against Prefix-Tuning with 3% of the parameters.
Search
Co-authors
- Yang Gao 2
- Zitong Li 1
- Haifeng Tang 1
- Kenny Zhu 1
- Ruolan Yang 1
- show all...