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Abstract 

Many of the tasks associated with natural 
language processing (NLP) can be viewed as 
classification problems. Examples are the 
computer grading of student writing samples 
and speech recognition systems. If  we accept 
this view, then the objective of learning 
classifications from sample text is to classify and 
predict successfully on new text. While success 
in the marketplace can be said to be the ultimate 
test of validation for NLP systems, this success 
is not likely to be achieved unless appropriate 
techniques are used to validate the prototype. 
This paper discusses useful validation 
techniques for classification-based NLP systems 
and how these techniques may be used to 
estimate the true performance of the system. 

INTRODUCTION 

The objective of learning classifications from 
sample text is to classify and predict successfidly 
on new text. For example, in developing a 
system for grading student writing samples, the 
objective is to learn how to classify student 
writing samples into grade categories so that we 
may use the system to predict successfully the 
grade categories for new samples of student 
writing (Nolan, 1997a). 

The most commonly used measure of 
success or failure is a classifier's error rate 
(Weiss & Kulikowski, 1991). Each .time the 
classifier is presented with a case, it makes a 
decision about the appropriate class for the case. 
Sometimes it is right; sometimes it is wrong. 
The true error rate is statistically defined as the 
error rate of the classifier on a large number of 
new cases that converge in the limit to the actual 
population distribution. 

I f  we were given an unlimited number 
of  cases, the true error rate could be readily 
computed as the number of samples approached 
infinity. In the real world, the number of 

samples is always finite, and typically relatively 
small. The major question is then whether it is 
possible to extrapolate from empirical error rates 
calculated from small sample results to the true 
error rate. It turns out that there are a number of 
ways of presenting sample cases to a classifier to 
get better estimates of the true error rate. Some 
of these techniques are better than others. In 
statistical terms, some estimators of the true 
error rate are considered biased. They tend to 
estimate too low, i.e., on the optimistic side, or 
too high, i.e., on the pessimistic side. 

In the next section, we will define just 
what an error is when using classification 
systems for natural language processing. The 
apparent error rate will be contrasted with the 
true error rate. The effect of classifier 
complexity and feature dimensionality on 
classification results will be followed by 
conclusions. 

WHAT IS AN ERROR? 

An error is simply a misclassification: the 
classifier is presented a case, and it classifies the 
case incorrectly. If  all errors are of equal 
importance, a single error rate, calculated as 
follows, 

number of errors 
error rate -- 

number of cases 

summarizes the overall performance of a 
classifier. However, for many applications, 
distinctions among different types of errors turn 
out to be important. For example, the error 
committed in tentatively diagnosing someone as 
healthy when one has a life-threatening illness 
(known as a false negative decision) is usually 
considered far more serious than the opposite 
type of error - of diagnosing someone as ill 
when one is in fact healthy (known as a false 
positive). Further tests and the passage of time 
will frequently correct the misdiagnosis of the 
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healthy person without any permanent damage 
(except possibly to one's pocket book), whereas 
an illness left untreated will probably get worse 
and lead to more serious problems, even death. 
Although not usually a life and death decision, 
classifying a student's writing sample can result 
in the same type of false negative and false 
positive errors. 

Let us suppose the writing sample 
evaluation is being made to help determine 
whether the student will be placed into a 
program designed to help poor writers to 
improve their writing skills. In this case, as in 
the previous one, there are two errors that can be 
made. The evaluation of the writing sample 
could indicate that the student should not need 
to be placed in the special writing program 
when in fact they are deficient in writing skills 
(a false negative). Or the evaluation could 
indicate that the student shouM be placed in the 
special writing program when the student's 
writing skills are really at a level indicating he 
or she does not need extra help (false positive). 

The question is whether the two types 
of errors committed in the writing sample 
evaluation scenario - false negative and false 
positive errors, respectively - are of the same 
consequence. If they are not, then we must 
extend our definition of error. 

Costs and Risks 

A natural alternative to an error rate as 
previously defined is a misclassification cost 
(lVlachina, 1987). Here, instead of designing a 
classifier to minimize error rates, the goal would 
be to minimize misclassification costs. A 
misclassification cost is simply a number that is 
assigned as a penalty for making a mistake. For 
example, in the two-class situation, a cost of one 
might be assigned to a false positive error and a 
cost of two to a false negative error. An average 
cost of misclassitication can be obtained by 
weighing each of the costs by the respective 
error rate. Computation,ally, this means that the 
errors are converted into costs by multiplying an 
error by its misclassification cost. The effect of 
having false negatives cost twice what false 
positives cost will be to tolerate many more false 
positive errors than false negative ones for a 
fixed classifier design. If  an optimal decision- 
making strategy is followed, cost choices have a 
direct effect on decision thresholds and resulting 
error rates. 

If we assign a cost to each type of error 
or misclassification, the total cost of 
misclassification is most directly computed as 
the sum of the costs for each error. If  all 
misclassifications are assigned a cost of 1, the 
total cost is given by the number of errors, and 
the average cost per decision is the error rate. By 
raising or lowering the cost of misclassification, 
we are biasing decisions in different directions, 
as if there were more or fewer cases in a given 
class. Formally, ff i is the predicted class and j is 
the true class, then for n classes, the total cost of 
misclassification is 

n n 

Cost = Z E Eij Cij 
i = l j = l  

where Eq is the number of errors and Cq is the 
cost for that type misclassification. Of course, 
the cost of a correct classification (Cq, for i=j) is 
0. 

For example, using the data in Figure 
1, ff the cost of misclassifying a class 1 case is 1, 
and the cost of miselassifying a class 2 case is 2, 
then the total cost of the classifier is (14 * 1) + 
(6 * 2) = 26 and the average cost per decision is 
26/106 = .25. This is quite different from the 
result if costs had been equal and set to 1, which 
would have yielded a total cost of merely 20, and 
an average cost per decision of .19 (Weiss & 
Kulikowski, 1991). 

True Class 
Predicted Class 1 2 

1 71 6 
2 14 15 

Figure 1: Sample Classification Results 

We have so far considered the costs of 
misclassifications, but not the potential for 
expected gains arising from correct 
classification. In risk armlysis or decision 
analysis, both costs (or losses) and benefits 
(gains) are used to evaluate the performance of a 
classifier. A rational objective of the classifier is 
to maximize gains. The expected gain or loss is 
the difference between the gains for correct 
classifications and losses for incorrect 
classifications. 

Instead of costs, we can call the 
numbers risks. If  misclassification costs are 
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assigned as negative numbers, and gains from 
correct classification as positive numbers, then 
we can express the total risk as 

n n 

Risk = g  g E~jR~ 
i=l j=l 

where Eq is once again the number of errors and 
R e is the risk of classifying a case that truly 
belongs in class j into class i. 

Costs and risks can all be employed in 
conjunction with error rate analysis. In some 
ways, they can be viewed as modified error 
rates. If conventionally agreed upon units, such 
as monetary costs, are available to measure the 
value of a quantity, then a good case can be 
made for the usefulness of basing a decision 
system on these alternatives as opposed to one 
based directly on error rates. The implication for 
classification-based NLP is that attention must 
be paid to the context o f  the particular 
application as regards the costs and risks 
associated with the possible errors in 
classification. 

APPARENT VS. TRUE ERROR RATE 

As stated earlier, the true error rate of a 
classifier is defined as the error rate of the 
classifier ff it was tested on the true distribution 
of cases in the population - which can be 
empirically approximated by a very large 
number of new cases gathered independently 
from the cases used to design the classifier. 

The apparent error rate of a classifier is 
the error rate of the classifier on the sample 
cases that were used to design or build the 
system. In general, the apparent error rates tend 
to be biased optimistically. The true error rate is 
almost invariably higher than the apparent error 
rate. This happens when the classifier has been 
overfitted (or overspecialized) to the particular 
characteristics of the sample data (Ripley, 
1996). 

It is useless to design a classifier that 
does well on the design sample, but does poorly 
on new cases. And unfortunately, as just 
mentioned, using solely the apparent error to 
estimate future performance can often lead to 
disastrous results on new data. To illustrate this, 
we can look at an example from speech 
recognition. Any novice could design a classifier 
with a zero apparent error rate simply by using a 

direct table lookup approach as illustrated in 
Figure 2. A sample of one individual's speech 
and pronunciation patterns become the 
classifier. When trying to interpret a spoken 
word from this individual, we would just lookup 
the answer (classification) in the table 
containing their speech patterns. 

If we test on the original speech data, 
and no pattern is repeated for different classes, 
we never make a mistake. Unfortunately, when 
we bring in new speech data (another person's 
speech), the odds of finding the individual case 
in the aforementioned table are extremely 
remote because of the enormous number of 
possible combinations of speech features. 

~ Decision by [ 
Table Lookup[ ~ 

of Original ]~q-"lCases I 
Samples I 

Figure 2: Classification by Table Lookup 

The nature of this problem, which is 
illustrated most easily with the table lookup 
approach, is caused by overfitting the speech 
classifier to the data. Basing our estimate of 
performance of this classifier on the apparent 
error rate leads to similar problems. While the 
table lookup is an extreme example, the extent 
to which classification methods arc susceptible 
to overfitting varies. Many a learning system 
designer has been lulled into a false sense of 
security by the mirage of low apparent error 
rates. 

This problem is of particular concern 
when analyzing student writing samples where 
the odds of finding a writing sample identical to 
one in the test sample are extremely remote 
because of the enormous number of possible 
combinations of writing features. 

Fortunately, there are very effective 
techniques for guaranteeing good properties in 
the estimates of a true error rate even for a small 
sample. While these techniques can measure the 
performance of a classifier, they do not 
guarantee that the apparent error rate is close to 
the true error rate for a given application. 

The requirement for any model of true 
error estimation is that the sample data are a 
random sample. This means that the sample(s) 
should not be preselected in any way. The 
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concept of randomness is very important in 
obtaining a good estimate of the true error rate. 
A computer classifieation-based NLP system is 
always at the mercy of the design samples 
supplied to it. Without a random sample, the 
error rate estimates can be compromised, or 
alternatively, they will apply to a different 
population than intended. 

Train and Test Error Rate Estimation 

Many researchers have employed the train-and- 
test paradigm for estimating the true error rate 
(Nolan, 1997b). This involves splitting the 
sample into two groups. One group is called the 
training set and the other the testing set. The 
training set is used to design the classifier, and 
the testing set is used strictly for testing. If we 
"hide" or "hold out" the test cases and only look 
at them after the classifier design is complete, 
then we have a direct procedural correspondence 
to the task of determining the error rate on new 
cases. The error rate of the classifier on the test 
cases is called the test sample error rate. 

As usual, the two sets of cases should 
be random samples from some population. In 
addition, the case.s in the two sample sets should 
be independent. By independent, we mean that 
there is no relationship among them other than 
that they are samples from the same population. 
To ensure that they are independent, they might 
be gathered at different times or by different 
researchers. 

A question that arises with the train- 
and-test error rate estimation technique can be 
stated as: "How many test cases are needed for 
the test sample error rate to be essentially the 
true error rate?" The answer is: a surprisingly 
small number. Moreover, based on the test 
sample size, we know how far off the test 
sample estimate can be. These estimations can 
be derived from basic probability theory. 
Specifically, the accuracy of error rate estimates 
for a specific classifier on independent and 
randomly drawn test samples is governed by the 
binomial distribution. While a demonstration of 
the use of the binomial distribution is not shown 
here, it should be emphasized that the quality of 
the test sample estimate is directly dependent on 
the number of test cases. When the test sample 
size reaches 1000, the estimates are extremely 
accurate. At sample size 5000, the test sample 
estimate is virtually identical to the true error 
rate. 

Random Resampling 

A single random partition of the data set can be 
misleading for small or moderately sized 
samples. In such cases, multiple train-and-test 
experiments can do better. When multiple train- 
and-test experiments are performed, a new 
classifier is learned from each training sample. 
The estimatod error rate is the average of the 
error rates for classifiers derived for the 
independently and randomly generated tests 
partitions. Random subsampling can produce 
better error estimates than a single train-and-test 
partition. 

A special case of resampling is known 
as leaving-one-out (Lachenbruch & Mickey, 
1968). For a given method and sample size, n, a 
classifier is generated using (n-l) cases and 
tested on the remaining case. This is repeated n 
times, each time designing a classifier by 
leaving-one-out. Thus each ease in the sample is 
used as a test case, and each time nearly all 
eases are used to design a classifier. The error 
rate is the number of errors on the single test 
cases divided by n. 

Leaving-one-out is an elegant and 
straightforward technique for estimating 
classifier error rates. The leaving-one-out 
estimator is an almost unbiased estimator of the 
true error rate of a classifier. This means that 
over many different sample sets of size n, the 
leaving-one-out estimate will average out to the 
true error rate. Suppose you are given 100 
sample sets of 50 eases each. The average of the 
leaving-one-out estimates for each of the 100 
sample sets will be very close to the true error 
rate. Because the leaving-one-out estimator is 
unbiased, for even modest sample sizes of over 
100, the estimate should be accurate. 

The great advantage of tlus technique is 
that all the cases in the available sample are 
used for testing, and almost all the cases are also 
used for training the classifier. In addition, 
much smaller sample sizes than those required 
in the train-test method can lead to very accurate 
estimation. There is an increased computational 
cost, however. 

Bootstrapping 

Although the leaving-one-out error rate 
estimator is an almost unbiased estimator of the 
true error rate of a classifier, there are 
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difficulties with this technique. Both the bias 
and variance of an error estimator contribute to 
the inaccuracy and imprecision of the error rate 
estimate. While leafing-one.out is nearly 
unbiased, its variance is high for small samples. 

A more recently discovered resampling 
method, called bootstrapping, has shown much 
promise as an error rate estimator (Efron, 1983). 
There are numerous bootstrap estimators. We 
will discuss one, called the e0 bootstrap 
estimator. For this, a training group consists of 
n cases sampled with replacement from a size n 
sample. Sampled with replacement means that 
the training samples are drawn from the data set 
and placed back after they are used, so their 
repeated use is allowed. Cases not found in the 
training group form the test group. The 
estimated error rate is the average of the error 
rates over a number of iterations. About 200 
iterations for bootstrap estimates are considered 
necessary to obtain a good estimate. Thus, this is 
computationally considerably more expensive 
than leaving-one-out. 

CLASSIFIER COMPLEXITY AND 
FEATURE DIMENSIONALITY 

Intuitively, one expects that the more 
information that is available, the better one 
should do. The more knowledge we have, the 
better we can make decisions. Similarly, one 
might expect that a theoretically more powerful 
classification method should work better in 
practice. Surprisingly, in practice, both of these 
expectations are wrong (Wallace & Freeman, 
1987). 

Most classification methods involve 
compromises. They make some assumptions 
about the population distribution and about the 
decision process fitting a specific type of 
representation. The samples, however, are often 
treated as a somewhat mysterious collection. 
The features thought to differentiate the object 
classes have been preselected (hopefully by an 
experienced person), but initiaily it is not known 
whether they are high quality features or 
whether they arc highly noisy or redundant. If 
the features all have good predictive capabilities, 
any one of many classification methods should 
do well. Otherwise, the situation is much less 
predictable. 

Suppose one is trying to make an 
evaluation about the level of reading 

comprehension understanding exhibited in a 
sample piece of student writing based on five 
features. Later two new features are added and 
samples collected. Although no data has been 
deleted, and new information has been added, 
some methods may actually yield worse results 
on the new, more complete set of data than on 
the original, smaller set. These results can be 
reflected in poorer apparent error rates, but more 
often in worse (estimated) true error rates. What 
causes this phenomenon of performance 
degradation with additional information? Some 
methods perform particularly well with good, 
highly predictive features, but fail apart with 
noisy data. Other methods may overweight 
redundant features that measure the same thing 
by, in effect, counting them more than once. 

In practice, many features used in NLP 
applications are often poor, noisy, and 
redundant. Adding new information in the form 
of weak features can actually degrade 
performance of the system. This is particularly 
true of methods that are applied directly to the 
data without any estimate of complexity fit to 
the data. For these methods, the primary 
approach to minimize the effects of feature noise 
and redundancy is feature selection. Given some 
initial set of features, a feature selection 
procedure will throw out some of the features 
that are deemed to be noncontributory to 
classification. 

Our goal is to fit a classification model 
to the data without overspecializing the learning 
system to the data. Thus, we must determine just 
how complex a classifier the data supports. In 
general, we do not know the answer to this 
question until we estimate the true error rate for 
different classifiers and classifier fits. In 
practice, though, simpler classifiers often do 
better than more complex or theoretically 
advantageous classifiers. For some classifiers, 
the underlying assumptions of the more complex 
classifier may be violated. For most classifiers, 
the data are not strong enough to generalize 
beyond an indicated level of complexity fit. As a 
rule of  thumb, one is looking for the simplest 
solution that yields good results. 

CONCLUSIONS AND 
RECOMMENDATIONS 

The success of a specific classification-based 
NLP application depends on several factors, 
including the power of the training method and 
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the size of the training sample. Irrespective of 
the classification method, the performance of a 
classification-based NLP system should be 
evaluated by estimating the accuracy of future 
predictions, technically known as estimating the 
true error rate on future cases. This is of 
fundamental importance for comparing 
classifiers on the same samples and also for 
selecting key characteristics of many of the 
newer classifiers, e.g., neural networks. 

It has been shown that, with limited 
samples, the best techniques for measuring the 
performance of classification-based NLP 
systems are resampling methods that simulate 
the presentation of new cases by repeatedly 
hiding some test cases. Additionally, attention 
must be paid to the context of the particular 
NLP application as regards the costs and risks 
associated with the possible errors in 
classification. 

Although statistically valid estimates of 
the true error rate will not guarantee success in 
the marketplace for NLP systems, they will give 
one a measure of confidence in the true 
performance of the system. 
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