Abstract
In this paper we show how the performance of tweet clustering can be improved by leveraging character-based neural networks. The proposed approach overcomes the limitations related to the vocabulary explosion in the word-based models and allows for the seamless processing of the multilingual content. Our evaluation results and code are available on-line: https://github.com/vendi12/tweet2vec_clustering.- Anthology ID:
 - W17-1105
 - Volume:
 - Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media
 - Month:
 - April
 - Year:
 - 2017
 - Address:
 - Valencia, Spain
 - Editors:
 - Lun-Wei Ku, Cheng-Te Li
 - Venue:
 - SocialNLP
 - SIG:
 - Publisher:
 - Association for Computational Linguistics
 - Note:
 - Pages:
 - 36–44
 - Language:
 - URL:
 - https://aclanthology.org/W17-1105
 - DOI:
 - 10.18653/v1/W17-1105
 - Cite (ACL):
 - Svitlana Vakulenko, Lyndon Nixon, and Mihai Lupu. 2017. Character-based Neural Embeddings for Tweet Clustering. In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, pages 36–44, Valencia, Spain. Association for Computational Linguistics.
 - Cite (Informal):
 - Character-based Neural Embeddings for Tweet Clustering (Vakulenko et al., SocialNLP 2017)
 - PDF:
 - https://preview.aclanthology.org/revert-3132-ingestion-checklist/W17-1105.pdf
 - Code
 - vendi12/tweet2vec_clustering