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Abstract

Several deep learning models have been
proposed for solving math word problems
(MWPs) automatically. Although these mod-
els have the ability to capture features with-
out manual efforts, their approaches to cap-
turing features are not specifically designed
for MWPs. To utilize the merits of deep
learning models with simultaneous consider-
ation of MWPs’ specific features, we propose
a group attention mechanism to extract global
features, quantity-related features, quantity-
pair features and question-related features in
MWPs respectively. The experimental results
show that the proposed approach performs sig-
nificantly better than previous state-of-the-art
methods, and boost performance from 66.9%
to 69.5% on Math23K with training-test split,
from 65.8% to 66.9% on Math23K with 5-fold
cross-validation and from 69.2% to 76.1% on
MAWPS.

1 Introduction

Computer systems, dating back to 1960s, have
been developing to automatically solve math word
problems (MWPs) (Feigenbaum and Feldman,
1963; Bobrow, 1964). As illustrated in Table 1,
when solving this problem, machines are asked to
infer “how many shelves would Tom fill up ” based
on the textual problem description. It requires sys-
tems having the ability to map the natural language
text into the machine-understandable form, reason
in terms of sets of numbers or unknown variables,
and then derive the numeric answer.

In recent years, a growing number of deep
learning models for MWPs (Wang et al., 2017;
Ling et al., 2017; Wang et al., 2018b,a; Huang
et al., 2018a,b; Wang et al., 2019) have drawn
inspiration from advances in machine translation.
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Problem: For a birthday party Tom bought 4
regular sodas and 52 diet sodas. If his fridge
would only hold 7 on each shelf, how many
shelves would he fill up?
Equation: x = (4.0 + 52.0)/7.0
Solution: 8

Table 1: A math word problem.

The core idea is to leverage the immense capac-
ity of neural networks to strengthen the process
of equation generating. Compared to statistical
machine learning-based methods (Kushman et al.,
2014; Mitra and Baral, 2016; Roy and Roth, 2018;
Zhou et al., 2015; Huang et al., 2016) and se-
mantic parsing-based methods (Shi et al., 2015;
Koncel-Kedziorski et al., 2015; Roy and Roth,
2015; Huang et al., 2017), these methods do not
need hand-crafted features and achieve high per-
formance on large datasets. However, they lack
in capturing the specific MWPs features, which
are an evidently vital component in solving MWP.
More related work and feature-related information
can be found in Zhang et al. (2018).

Inspired by recent work on modeling local-
ity using multi-head attention (Li et al., 2018;
Yang et al., 2018, 2019), we introduce a group
attention that contains different attention mech-
anisms to extract various types of MWPs fea-
tures. More explicitly, there are four kinds of at-
tention mechanisms: 1) Global attention to grab
global information; 2) Quantity-related attention
to model the relations between the current quan-
tity and its neighbor-words; 3) Quantity-pair at-
tention to acquire the relations between quanti-
ties; 4) Question-related attention to capture the
connections between the question and quantities.
The experimental results show that the proposed
model establishes the state-of-the-art performance
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on both Math23K and MAWPS datasets. In ad-
dtion, we release the source code of our model in
Github1.

2 Background: Self-Attention Network

Self-attention networks have shown impressive re-
sults in various natural language processing tasks,
such as machine translation (Vaswani et al., 2017;
Shaw et al., 2018) and natural language infer-
ence (Shen et al., 2018) due to their flexibility in
parallel computation and power of modeling long
dependencies. It can model pairwise relevance by
calculating attention weights between pairs of el-
ements of an input sequence. In Vaswani et al.
(2017), they propose a self-attention computation
module, known as “Scaled Dot-Product Atten-
tion”(SDPA). It is used as the basic unit of multi-
head attention. This module’s input contains query
matrix Q ∈ Rm×dk , key matrix K ∈ Rm×dk and
value matrix V ∈ Rm×dv , where m is the num-
ber of input tokens, dk is the dimension of query
or key vector, dv is the dimension of value vector.
Output can be computed by:

head = softmax(
QKT

√
dk

)V, (1)

As Vaswani et al. (2017) found, performing at-
tention by projecting the queries, keys, and val-
ues into subspace with different learnable projec-
tion functions instead of a single attention can en-
hance the capacity to capture various context in-
formation. More specifically, this attention model
first transforms Q, K, and V into {Qh, Kh, Vh}
with weights {W h

Q,W
h
K ,W

h
V }, and then obtains

the output features {head1,head2, · · · ,headk}
by SDPA, where k is the number of SDPA mod-
ules. Finally, these output features are concate-
nated and projected to produce the final output
state O

′
.

3 Approach

In this section, we introduce how the proposed
framework works and the four different types of
attention we designed.

3.1 Overview
We propose a sequence-to-sequence (SEQ2SEQ)
model with group attention to capture different
types of features in MWPs. The SEQ2SEQ model

1 https://github.com/lijierui/
group-attention
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Figure 1: Framework of our approach.

takes the text of the whole problem as the input
and corresponding equation as the output. Specif-
ically, the group attention consists of four differ-
ent types of multi-head attention modules. As
illustrated in Figure 1, the pre-processed input
X = {x1, · · · , xm} is transformed into He =
{he1, · · · , hem} through Bi-LSTM. We set Q =
K = V = He. The output of the group atten-
tion O

′
is produced by:

O
′
= GroupAtt(Q,K,V), (2)

Following the same paradigm in (Vaswani et al.,
2017), we add a fully-connected feed forward
layer to the multi-head attention mechanism layer
(i.e., group attention), and each layer is followed
by a residual connection and layer normalization.
Consequently, the output of group attention block
O is obtained.

During decoding, we employ the pipeline in
(Wang et al., 2018a). The output Y is obtained
through

yt = Softmax(Attention(hdt , oj)), (3)

where hdt is the hidden state at the t-th step, oj is
the j-th state vector from the outputO of the group
attention block.

3.2 Pre-Processing of MWPs
Given a MWP P and its corresponding groud-
truth equation, we project words of the MWP
{wP

i }mi=1 into word embedding vectors {ePi }mi=1

through a word embedding matrix E, i.e., ePi =
EwP

i . Considering the diversity of quantities in
natural language, we follow the work of Wang
et al. (2017) which proposed to map quantities

https://github.com/lijierui/group-attention
https://github.com/lijierui/group-attention
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Figure 2: Example for how to separate MWPs.

into special tokens in the problem text by the fol-
lowing two rules: 1) All the quantities that ap-
pear in the MWP are determined if they are sig-
nificant quantities that will be used in the equa-
tion using Significant Number Identify (SNI); 2)
All recognized significant quantities in the MWP
P are mapped to a list of mapped quantity tokens
{n1, ..., nl} in terms of their appearance order in
the problem text, where l is the number of quanti-
ties. Through the above rules, the mapped MWP
text X = {x1, · · · , xm} that will be used as the
input of the SEQ2SEQ model can be acquired.

In addition, the quantity tokens in the equation
are also substituted according to the correspond-
ing mapping in problem text. For example, the
mapped quantity tokens and the mapped equation
of the problem in Table 1 are {n1 = 4, n2 =
52, n3 = 7} and (n1 + n2) ÷ n3 respectively. To
address the issue that a MWP may have more than
one correct solution equations (e.g., 3×2 and 2×3
are both correct equations to solve the problem
”How many apples will Tom eat after 3 days if he
eats 2 apples per day?”), we normalize the equa-
tions to postfix expressions following the rules in
Wang et al. (2018a), ensuring that every problem
is corresponding to a unique equation. Thus, we
can obtain the mapped equation Eq that will be re-
garded as the target sequence.

3.3 Group Attention

With the aim of implementing group attention,
as illustrated in Figure 2, we separate the prob-
lem text X = {x1, · · · , xm} into quantity spans
Xquant = {Xquant,1, · · · , Xquant,l} and the ques-
tion span Xquest. The quantity span includes one
or more quantity and their neighborhood words,
and the question span consists of words of the
question. For simplicity, the spans are separated
by commas and periods, which naturally separate
the sentence semantically and each span often con-
tains one quantity, and spans with quantity (but not
last) are considered as quantity spans while the last
span is considered as question span since it always
contains the question. By doing this, spans do not

Figure 3: Group attention: (a) Global attention; (b)
Quantity-related attention; (c) Quantity-pair attention;
(d) Question-related attention.

overlap with each other.
As illustrated in Figure 3, following how

the problem text is divided, {Q,K, V } are
masked into the input of group attention,
{Qg,Kg, Vg}, {Qc,Kc, Vc}, {Qp,Kp, Vp} and
{Qq,Kq, Vq}, where g, c, p, and q are the
notations of global, quantity-related, quantity-
pair and question-related attention. After that,
{Og, Oc, Op, Oq} are computed by different
groups of SDPA modules. The output of group
attention O is produced by concatenating and pro-
jecting again:

O
′
= Concat(Og,Oc,Op,Oq), (4)

We will describe four types of group attention
in detail in the following passage.

Global Attention: Document-level features
play an important role in distinguishing the cat-
egory of MWPs and quantities order in equa-
tions. To capture these features from a global per-
spective, we introduce a type of attention named
as global attention, which computes the attention
vector based on the whole input sequence.

For Qg, Kg, and Vg, we set them to He. The
output Og can be obtained by SDPA modules be-
longing to global attention. For example, the word
“apple” illustrated in Figure 2 will attend to the
words in the whole problem text from “Janet” to
“?”.

Quantity-Related Attention: The words
around quantity usually provide beneficial clues
for MWPs solving. Hence, we introduce quantity-
related attention, which focuses on the question
span or quantities span where the current quantity
resides.
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For i-th span, its Qc, Kc, and Vc are all derived
from Xquant,i within its own part. For example, as
illustrated in Figure 2, the word “she” only attends
to the words in the 2-nd quantity span “She finds
another 95,”.

Quantity-Pair Attention: The relationship be-
tween two quantities is of great importance in de-
termining their associated operator. We design
an attention module called quantity-pair attention,
which is used to model this relationship between
quantities.

The question span can be viewed as the quan-
tity span containing an unknown quantity. Thus,
the computation process consists of two parts: 1)
Attention between quantities: the query Qp is de-
rived fromXquant,i, and correspondingKp and Vp
are stemmed from Xquant,j(j 6= i). For example,
as illustrated in Figure 2, the word “has” in the 1-st
quantity span can only attend to words from the 2-
nd quantity span; 2) Attention between quantities
and question: the query Qp is originated Xquest

within the question span, and corresponding Kp

and Vp are derived from Xquant. For example, as
illustrated in Figure 2, the word “How” attends to
the words in the quantity spans from “Janet” to
“95,”.

Question-Related Attention: The question can
also derive distinguishing information such as
whether the answer value is positive. Thus, we
propose question-related attention, which is uti-
lized to model the connections between question
and problem description stem.

There are also two parts when modeling this
type of relation: 1) Attention for quantity span: the
queryQq is derived fromXquant,i, the correspond-
ing Kq and Vq are stemmed from Xquest. For ex-
ample, as illustrated in Figure 2, the word “apples”
in quantity span only attends to the words from
the question span; 2) Attention for question span:
for the query Qq corresponding to Xquest, the cor-
responding Kq and Vq are extracted according to
Xquant. For example, as illustrated in Figure 2, the
word “does” in question span attends to the words
in all the quantity spans.

4 Experiment

4.1 Experimental Setup

We evaluate the proposed model on these
datasets, Math23K (Wang et al., 2017) and
MAWPS (Koncel-Kedziorski et al., 2016).

Datasets: Math23K is collected from multiple

online educational websites. This dataset contains
23,162 Chinese elementary school level MWPs.
MAWPS is another large scale dataset which owns
2,373 arithmetic word problems after harvesting
ones with a single unknown variable.

Evaluation Metrics: We use answer accuracy
to evaluate our model. The accuracy calculation
follows a simple formula. If a generated equa-
tion produces an answer equal to the correspond-
ing ground truth answer, we consider it to be right.

Implementation details: For Math23K, we fol-
low the training and test set released by (Wang
et al., 2017), and we also evaluate our proposed
method with 5-fold cross-validation in main re-
sults table. We adopt the pre-trained word embed-
dings with dimension set to 128 and use a two-
layer Bi-LSTM with 256 hidden units and a group
attention with four different functional 2-head at-
tention as the encoder, and a two-layer LSTM
with 512 hidden units as the decoder. Dropout
probabilities for word embeddings, LSTM and
group attention are all set to 0.3. The number
of epochs and mini-batch size are set to 300 and
128 respectively. As to the optimizer, we use the
Adam optimizer with β1 = 0.9, β2 = 0.98 and
e = 10−9. Refer to (Vaswani et al., 2017), we
use the same policy to vary the learning rate with
warmup steps=2000. For MAWPS, we use 5-
fold cross-validation, and the parameter setting is
similar to those on Math23K.

Baselines: We compare our approach with re-
trieval models, deep learning based solvers. The
retrieval models Jaccard and Cosine in (Robaidek
et al., 2018) find the most similar math word
problem in training set under a distance met-
ric and use its equation template to compute
the result. DNS (Wang et al., 2017) first ap-
plies a vanilla SEQ2SEQ model with GRU as en-
coder and LSTM as the decoder to solve MWPs.
In (Wang et al., 2018a), the authors apply Bi-
LSTM with equation normalization to reinforce
the vanilla SEQ2SEQ model. T-RNN (Wang
et al., 2019) launches a two-stage system named as
T-RNN that first predicts a tree-structure template
to be filled, and then accomplishes the template
with operators predicted by the recursive neural
network. In S-Aligned (Chiang and Chen, 2019),
the encoder is designed to understand the seman-
tics of problems, and the decoder focuses on de-
ciding which symbol to generate next over seman-
tic meanings of the generated symbols.
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4.2 Main Results

MAWPS Math23K Math23K*
Jaccard 45.6 - 47.2
Cosine 38.2 - 23.8

DNS 59.5 - 58.1
Bi-LSTM 69.2 66.7 -
T-RNN 66.8 66.9 -
S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9

Table 2: Model comparison. Notice that Math23K
means the open training-test split and Math23K*
means 5-fold cross-validation.

As illustrated in Table 2, we can see that
retrieval approaches work poorly on both two
datasets. Our method named as GROUP-ATT per-
forms substantially better than existing deep learn-
ing based methods, increasing the accuracy from
66.9% to 69.5% on Math23K based on training-
test split, from 65.8% to 66.9% on Math23K with
5-fold cross-validation and from 69.2% to 76.1%
on MAWPS. In addition, DNS and T-RNN also
boost the performance by integrating with retrieval
methods, while (Wang et al., 2018a) improves the
performance by combining different SEQ2SEQ
models. However, we only focus on improving
the performance of single model. It is worth not-
ing that GROUP-ATT also achieves higher ac-
curacy than the state-of-the-art ensemble models
(Wang et al., 2019) (68.7% on Math23K based on
training-test split, 67.0% on MAWPS).

Math23K
Bi-LSTM 66.7

w/ Global Attention 68.2
w/ Quantity-Related Attention 68.2
w/ Quantity-Pair Attention 67.7
w/ Question-Related Attention 68.1

Table 3: The ablation study to quantify the role of each
type of attention in group attention.

In addition, we perform an ablation study to em-
pirically examine the ability of designed group at-
tentions. We adopt the same parameter settings as
GROUP-ATT while applying a single kind of at-
tention with 8 heads. Table 3 shows the results of
ablation study on Math23K. Although each spec-
ified attention tries to catch related information
alone, it still outperforms Bi-LSTM by a margin
from 1.0% to 1.5%, showing its effectiveness.

In a parking lot, there are !" cars and motorcycles in total, each 

car has !# wheels, and each motorcycle has 	n& wheels. These 

cars have !' wheels in total, so how many motorcycles are there 

in the parking lot?  

equa,-.!: 0 = (!"!# − !')/(!# − !&) 

  Attention for which word     Quantity-pair attention 

  Quantity-related attention         Question-related attention

Figure 4: An example of attention visualization

4.3 Visualization Analysis of Attention

To better understand how the group attention
mechanism works, we implement an attention vi-
sualization on a typical example from Math23K.
As shown in Figure 4, n3 describes how many
wheels a motorcycle has. Through quantity-pair
and quantity-related attention heads, n3 pays at-
tention to all quantities that describe the number
of wheels. Question-related attention helps n3
attend to “motorcycle” in question. In addition,
surprisingly, in the quantity-pair heads, the atten-
tion of n3 becomes more focused on the words
“These”, “in total” from “These vehicles have n4
wheels in total”. This indicates part-whole re-
lation(i.e., one quantity is part of a larger quan-
tity), mentioned in (Mitra and Baral, 2016; Roy
and Roth, 2018), which is of great importance in
MWPs solving. Our analysis illustrates that the
hand-crafted grouping can force the model to uti-
lize distinct information and relations conducive
to solving MWPs.

5 Conclusion

In this paper, we introduce a group attention
method which can reinforce the capacity of model
to grab various types of MWPs specific features.
We conduct experiments on two benchmarks and
show significant improvements over a collection
of competitive baselines, verifying the value of our
model. Plus, our ablation study demonstrates the
effectiveness of each group attention mechanism.
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