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Abstract

End-to-end task-oriented dialog systems
usually suffer from the challenge of in-
corporating knowledge bases. In this pa-
per, we propose a novel yet simple end-to-
end differentiable model called memory-
to-sequence (Mem2Seq) to address this is-
sue. Mem2Seq is the first neural gen-
erative model that combines the multi-
hop attention over memories with the
idea of pointer network. We empirically
show how Mem2Seq controls each gener-
ation step, and how its multi-hop attention
mechanism helps in learning correlations
between memories. In addition, our model
is quite general without complicated task-
specific designs. As a result, we show that
Mem2Seq can be trained faster and attain
the state-of-the-art performance on three
different task-oriented dialog datasets.

1 Introduction

Task-oriented dialog systems help users to achieve
specific goals with natural language such as
restaurant reservation and schedule arrangement.
Traditionally, they have been built with several
pipelined modules: language understanding, dia-
log management, knowledge query, and language
generation (Williams and Young, 2007; Hori et al.,
2009; Lee et al., 2009; Levin et al., 2000; Young
et al., 2013). Moreover, the ability to query exter-
nal Knowledge Bases (KBs) is essential in task-
oriented dialog systems, since the responses are
guided not only by the dialog history but also by
the query results (e.g. Table 1). However, despite
the stability of such pipelined systems via com-
bining domain-specific knowledge and slot-filling
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Point of interest (poi) Distance Traffic info Poi type Address
The Westin 5 miles moderate traffic rest stop 329 El Camino Real

Round Table 4 miles no traffic pizza restaurant 113 Anton Ct
Mandarin Roots 5 miles no traffic chinese restaurant 271 Springer Street
Palo Alto Cafe 4 miles moderate traffic coffee or tea place 436 Alger Dr

Dominos 6 miles heavy traffic pizza restaurant 776 Arastradero Rd
Stanford Express Care 6 miles no traffic hospital 214 El Camino Real

Hotel Keen 2 miles heavy traffic rest stop 578 Arbol Dr

1t
h

Tu
rn

DRIVER Where can I get tea?
Seq2Seq I have a away from away would you like the address

+Attn I have a listing for a place that serves tea that is 5 miles away
Ptr-Unk There is a away you like would you like more info

Mem2Seq The nearest tea shop is Palo Alto Cafe located 4 miles away,
would you like directions there?

GOLD Palo Alto Cafe is 4 miles away and serves coffee and tea.
Do you want the address?

2t
h

Tu
rn

DRIVER Yes.
Seq2Seq The is at at

+Attn
The address is 329 El Camino Real and it’s 3 miles away
and there is no traffic

Ptr-Unk Palo Alto Cafe is 4 miles away and PAD is no traffic
Mem2Seq Palo Alto Cafe is 4 miles away at 436 Alger Drive

GOLD Palo Alto is located at 436 Alger Dr.

Table 1: Example of generated responses for the
In-Car Assistant on the navigation domain.

techniques, modeling the dependencies between
modules is complex and the KB interpretation re-
quires human effort.

Recently, end-to-end approaches for dialog
modeling, which use recurrent neural networks
(RNN) encoder-decoder models, have shown
promising results (Serban et al., 2016; Wen et al.,
2017; Zhao et al., 2017). Since they can directly
map plain text dialog history to the output re-
sponses, and the dialog states are latent, there is
no need for hand-crafted state labels. Moreover,
attention-based copy mechanism (Gulcehre et al.,
2016; Eric and Manning, 2017) have been recently
introduced to copy words directly from the input
sources to the output responses. Using such mech-
anism, even when unknown tokens appear in the
dialog history, the models are still able to produce
correct and relevant entities.

However, although the above mentioned ap-
proaches were successful, they still suffer from
two main problems: 1) They struggle to effec-
tively incorporate external KB information into
the RNN hidden states (Sukhbaatar et al., 2015),



1469

Figure 1: The proposed Mem2Seq architecture for task-oriented dialog systems. (a) Memory encoder
with 3 hops; (b) Memory decoder over 2 step generation.

since RNNs are known to be unstable over long
sequences. 2) Processing long sequences is very
time-consuming, especially when using attention
mechanisms.

On the other hand, end-to-end memory
networks (MemNNs) are recurrent attention
models over a possibly large external mem-
ory (Sukhbaatar et al., 2015). They write exter-
nal memories into several embedding matrices,
and use query vectors to read memories repeat-
edly. This approach can memorize external KB in-
formation and rapidly encode long dialog history.
Moreover, the multi-hop mechanism of MemNN
has empirically shown to be essential in achiev-
ing high performance on reasoning tasks (Bordes
and Weston, 2017). Nevertheless, MemNN sim-
ply chooses its responses from a predefined candi-
date pool rather than generating word-by-word. In
addition, the memory queries need explicit design
rather than being learned, and the copy mechanism
is absent.

To address these problems, we present a novel
architecture that we call Memory-to-Sequence
(Mem2Seq) to learn task-oriented dialogs in an
end-to-end manner. In short, our model augments
the existing MemNN framework with a sequen-
tial generative architecture, using global multi-
hop attention mechanisms to copy words directly
from dialog history or KBs. We summarize our
main contributions as such: 1) Mem2Seq is the
first model to combine multi-hop attention mech-
anisms with the idea of pointer networks, which
allows us to effectively incorporate KB informa-
tion. 2) Mem2Seq learns how to generate dynamic
queries to control the memory access. In addi-
tion, we visualize and interpret the model dynam-
ics among hops for both the memory controller

and the attention. 3) Mem2Seq can be trained
faster and achieve state-of-the-art results in several
task-oriented dialog datasets.

2 Model Description

Mem2Seq 1 is composed of two components: the
MemNN encoder, and the memory decoder as
shown in Figure 1. The MemNN encoder cre-
ates a vector representation of the dialog history.
Then the memory decoder reads and copies the
memory to generate a response. We define all the
words in the dialog history as a sequence of to-
kens X = {x1, . . . , xn, $}, where $ is a special
charter used as a sentinel, and the KB tuples as
B = {b1, . . . , bl}. We further define U = [B;X]
as the concatenation of the two sets X and B, Y =
{y1, . . . , ym} as the set of words in the expected
system response, and PTR = {ptr1, . . . , ptrm}
as the pointer index set:

ptri =

{
max(z) if ∃z s.t. yi = uz

n + l + 1 otherwise
(1)

where uz ∈ U is the input sequence and n + l + 1
is the sentinel position index.

2.1 Memory Encoder
Mem2Seq uses a standard MemNN with adjacent
weighted tying (Sukhbaatar et al., 2015) as an en-
coder. The input of the encoder is word-level in-
formation in U . The memories of MemNN are
represented by a set of trainable embedding matri-
ces C = {C1, . . . , CK+1}, where each Ck maps
tokens to vectors, and a query vector qk is used as
a reading head. The model loops over K hops and

1The code is available at https://github.com/
HLTCHKUST/Mem2Seq

https://github.com/HLTCHKUST/Mem2Seq
https://github.com/HLTCHKUST/Mem2Seq
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it computes the attention weights at hop k for each
memory i using:

pki = Softmax((qk)TCk
i ), (2)

where Ck
i = Ck(xi) is the memory content in po-

sition i, and Softmax(zi) = ezi/Σje
zj . Here, pk

is a soft memory selector that decides the mem-
ory relevance with respect to the query vector qk.
Then, the model reads out the memory ok by the
weighted sum over Ck+1 2,

ok =
∑
i

pkiC
k+1
i . (3)

Then, the query vector is updated for the next hop
by using qk+1 = qk + ok. The result from the
encoding step is the memory vector oK , which will
become the input for the decoding step.

2.2 Memory Decoder
The decoder uses RNN and MemNN. The
MemNN is loaded with both X and B, since we
use both dialog history and KB information to
generate a proper system response. A Gated Re-
current Unit (GRU) (Chung et al., 2014), is used
as a dynamic query generator for the MemNN. At
each decoding step t, the GRU gets the previously
generated word and the previous query as input,
and it generates the new query vector. Formally:

ht = GRU(C1(ŷt−1), ht−1); (4)

Then the query ht is passed to the MemNN which
will produce the token, where h0 is the encoder
vector oK . At each time step, two distribution are
generated: one over all the words in the vocabu-
lary (Pvocab), and one over the memory contents
(Pptr), which are the dialog history and KB inofr-
mation. The first, Pvocab, is generated by concate-
nating the first hop attention read out and the cur-
rent query vector.

Pvocab(ŷt) = Softmax(W1[ht; o
1]) (5)

where W1 is a trainable parameter. On the other
hand, Pptr is generated using the attention weights
at the last MemNN hop of the decoder: Pptr =
pKt . Our decoder generates tokens by pointing to
the input words in the memory, which is a simi-
lar mechanism to the attention used in pointer net-
works (Vinyals et al., 2015).

2Here is Ck+1 since we use adjacent weighted tying.

We designed our architecture in this way be-
cause we expect the attention weights in the
first and the last hop to show a “looser” and
“sharper” distribution, respectively. To elaborate,
the first hop focuses more on retrieving mem-
ory information and the last one tends to choose
the exact token leveraging the pointer supervi-
sion. Hence, during training all the parameters are
jointly learned by minimizing the sum of two stan-
dard cross-entropy losses: one between Pvocab(ŷt)
and yt ∈ Y for the vocabulary distribution, and
one between Pptr(ŷt) and ptrt ∈ PTR for the
memory distribution.

2.2.1 Sentinel

If the expected word is not appearing in the mem-
ories, then the Pptr is trained to produce the sen-
tinel token $, as shown in Equation 1. Once the
sentinel is chosen, our model generates the token
from Pvocab, otherwise, it takes the memory con-
tent using the Pptr distribution. Basically, the sen-
tinel token is used as a hard gate to control which
distribution to use at each time step. A similar ap-
proach has been used in (Merity et al., 2017) to
control a soft gate in a language modeling task.
With this method, the model does not need to learn
a gating function separately as in Gulcehre et al.
(2016), and is not constrained by a soft gate func-
tion as in See et al. (2017).

2.3 Memory Content

We store word-level content X in the memory
module. Similar to Bordes and Weston (2017), we
add temporal information and speaker information
in each token of X to capture the sequential depen-
dencies. For example, “hello t1 $u” means “hello”
at time step 1 spoken by a user.

On the other hand, to store B, the KB informa-
tion, we follow the works of Miller et al. (2016);
Eric et al. (2017) that use a (subject, relation, ob-
ject) representation. For example, we represent
the information of The Westin in Table 1: (The
Westin, Distance, 5 miles). Thus, we sum word
embeddings of the subject, relation, and object to
obtain each KB memory representation. During
decoding stage, the object part is used as the gen-
erated word for Pptr. For instance, when the KB
tuple (The Westin, Distance, 5 miles) is pointed,
our model copies “5 miles” as an output word. No-
tice that only a specific section of the KB, relevant
to a specific dialog, is loaded into the memory.
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Task 1 2 3 4 5 DSTC2 In-Car
Avg. User turns 4 6.5 6.4 3.5 12.9 6.7 2.6

Avg. Sys turns 6 9.5 9.9 3.5 18.4 9.3 2.6
Avg. KB results 0 0 24 7 23.7 39.5 66.1
Avg. Sys words 6.3 6.2 7.2 5.7 6.5 10.2 8.6

Max. Sys words 9 9 9 8 9 29 87
Pointer Ratio .23 .53 .46 .19 .60 .46 .42

Vocabulary 3747 1229 1601
Train dialogs 1000 1618 2425

Val dialogs 1000 500 302
Test dialogs 1000 + 1000 OOV 1117 304

Table 2: Dataset statistics for 3 different datasets.

3 Experimental Setup

3.1 Dataset

We use three public multi-turn task-oriented dia-
log datasets to evaluate our model: the bAbI dia-
log (Bordes and Weston, 2017), DSTC2 (Hender-
son et al., 2014) and In-Car Assistant (Eric et al.,
2017). The train/validation/test sets of these three
datasets are split in advance by the providers. The
dataset statistics are reported in Table 2.

The bAbI dialog includes five end-to-end dia-
log learning tasks in the restaurant domain, which
are simulated dialog data. Task 1 to 4 are about
API calls, refining API calls, recommending op-
tions, and providing additional information, re-
spectively. Task 5 is the union of tasks 1-4. There
are two test sets for each task: one follows the
same distribution as the training set and the other
has out-of-vocabulary (OOV) entity values that
does not exist in the training set.

We also used dialogs extracted from the Di-
alog State Tracking Challenge 2 (DSTC2) with
the refined version from Bordes and Weston
(2017), which ignores the dialog state annotations.
The main difference with bAbI dialog is that this
dataset is extracted from real human-bot dialogs,
which is noisier and harder since the bots made
mistakes due to speech recognition errors or mis-
interpretations.

Recently, In-Car Assistant dataset has been re-
leased. which is a human-human, multi-domain
dialog dataset collected from Amazon Mechan-
ical Turk. It has three distinct domains: cal-
endar scheduling, weather information retrieval,
and point-of-interest navigation. This dataset has
shorter conversation turns, but the user and system
behaviors are more diverse. In addition, the sys-
tem responses are variant and the KB information
is much more complicated. Hence, this dataset re-
quires stronger ability to interact with KBs, rather
than dialog state tracking.

3.2 Training

We trained our model end-to-end using Adam op-
timizer (Kingma and Ba, 2015), and chose learn-
ing rate between [1e−3, 1e−4]. The MemNNs,
both encoder and decoder, have hops K = 1, 3, 6
to show the performance difference. We use sim-
ple greedy search and without any re-scoring tech-
niques. The embedding size, which is also equiv-
alent to the memory size and the RNN hidden size
(i.e., including the baselines), has been selected
between [64, 512]. The dropout rate is set between
[0.1, 0.4], and we also randomly mask some in-
put words into unknown tokens to simulate OOV
situation with the same dropout ratio. In all the
datasets, we tuned the hyper-parameters with grid-
search over the validation set, using as measure
to the Per-response Accuracy for bAbI dialog and
DSTC2, and BLEU score for the In-Car Assistant.

3.3 Evaluation Metrics

Per-response/dialog Accuracy: A generative re-
sponse is correct only if it is exactly the same as
the gold response. A dialog is correct only if ev-
ery generated responses of the dialog are correct,
which can be considered as the task-completion
rate. Note that Bordes and Weston (2017) tests
their model by selecting the system response from
predefined response candidates, that is, their sys-
tem solves a multi-class classification task. Since
Mem2Seq generates each token individually, eval-
uating with this metric is much more challenging
for our model.
BLEU: It is a measure commonly used for ma-
chine translation systems (Papineni et al., 2002),
but it has also been used in evaluating dialog sys-
tems (Eric and Manning, 2017; Zhao et al., 2017)
and chat-bots (Ritter et al., 2011; Li et al., 2016).
Moreover, BLEU score is a relevant measure in
task-oriented dialog as there is not a large vari-
ance between the generated answers, unlike open
domain generation (Liu et al., 2016). Hence, we
include BLEU score in our evaluation (i.e. using
Moses multi-bleu.perl script).
Entity F1: We micro-average over the entire set of
system responses and compare the entities in plain
text. The entities in each gold system response are
selected by a predefined entity list. This metric
evaluates the ability to generate relevant entities
from the provided KBs and to capture the seman-
tics of the dialog (Eric and Manning, 2017; Eric
et al., 2017). Note that the original In-Car Assis-
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Task QRN MemNN GMemNN Seq2Seq Seq2Seq+Attn Ptr-Unk Mem2Seq H1 Mem2Seq H3 Mem2Seq H6
T1 99.4 (-) 99.9 (99.6) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
T2 99.5 (-) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
T3 74.8 (-) 74.9 (2.0) 74.9 (0) 74.8 (0) 74.8 (0) 85.1 (19.0) 87.0 (25.2) 94.5 (59.6) 94.7 (62.1)
T4 57.2 (-) 59.5 (3.0) 57.2 (0) 57.2 (0) 57.2 (0) 100 (100) 97.6 (91.7) 100 (100) 100 (100)
T5 99.6 (-) 96.1 (49.4) 96.3 (52.5) 98.8 (81.5) 98.4 (87.3) 99.4 (91.5) 96.1 (45.3) 98.2 (72.9) 97.9 (69.6)

T1-OOV 83.1 (-) 72.3 (0) 82.4 (0) 79.9 (0) 81.7 (0) 92.5 (54.7) 93.4 (60.4) 91.3 (52.0) 94.0 (62.2)
T2-OOV 78.9 (-) 78.9 (0) 78.9 (0) 78.9 (0) 78.9 (0) 83.2 (0) 81.7 (1.2) 84.7 (7.3) 86.5 (12.4)
T3-OOV 75.2 (-) 74.4 (0) 75.3 (0) 74.3 (0) 75.3 (0) 82.9 (13.4) 86.6 (26.2) 93.2 (53.3) 90.3 (38.7)
T4-OOV 56.9 (-) 57.6 (0) 57.0 (0) 57.0 (0) 57.0 (0) 100 (100) 97.3 (90.6) 100 (100) 100 (100)
T5-OOV 67.8 (-) 65.5 (0) 66.7 (0) 67.4 (0) 65.7 (0) 73.6 (0) 67.6 (0) 78.1 (0.4) 84.5 (2.3)

Table 3: Per-response and per-dialog (in the parentheses) accuracy on bAbI dialogs. Mem2Seq achieves
the highest average per-response accuracy and has the least out-of-vocabulary performance drop.

Ent. F1 BLEU Per-
Resp.

Per-
Dial.

Rule-Based - - 33.3 -
QRN - - 43.8 -

MemNN - - 41.1 0.0
GMemNN - - 47.4 1.4

Seq2Seq 69.7 55.0 46.4 1.5
+Attn 67.1 56.6 46.0 1.4

+Copy 71.6 55.4 47.3 1.3
Mem2Seq H1 72.9 53.7 41.7 0.0
Mem2Seq H3 75.3 55.3 45.0 0.5
Mem2Seq H6 72.8 53.6 42.8 0.7

Table 4: Evaluation on DSTC2.
Seq2Seq (+attn and +copy) is reported
from Eric and Manning (2017).

BLEU Ent. F1 Sch. F1 Wea. F1 Nav. F1
Human* 13.5 60.7 64.3 61.6 55.2

Rule-Based* 6.6 43.8 61.3 39.5 40.4
KV Retrieval Net* 13.2 48.0 62.9 47.0 41.3

Seq2Seq 8.4 10.3 09.7 14.1 07.0
+Attn 9.3 19.9 23.4 25.6 10.8

Ptr-Unk 8.3 22.7 26.9 26.7 14.9
Mem2Seq H1 11.6 32.4 39.8 33.6 24.6
Mem2Seq H3 12.6 33.4 49.3 32.8 20.0
Mem2Seq H6 9.9 23.6 34.3 33.0 4.4

Table 5: Evaluation on In-Car Assistant. Human, rule-
based and KV Retrieval Net evaluation (with *) are reported
from (Eric et al., 2017), which are not directly comparable.
Mem2Seq achieves highest BLEU and entity F1 score over
baselines.

tant F1 scores reported in Eric et al. (2017) uses
the entities in their canonicalized forms, which are
not calculated based on real entity value. Since
the datasets are not designed for slot-tracking, we
report entity F1 rather than the slot-tracking accu-
racy as in (Wen et al., 2017; Zhao et al., 2017).

4 Experimental Results

We mainly compare Mem2Seq with hop 1,3,6
with several existing models: query-reduction
networks (QRN, Seo et al. (2017)), end-to-
end memory networks (MemNN, Sukhbaatar
et al. (2015)), and gated end-to-end memory net-
works (GMemNN, Liu and Perez (2017)). We
also implemented the following baseline models:
standard sequence-to-sequence (Seq2Seq) models
with and without attention (Luong et al., 2015),
and pointer to unknown (Ptr-Unk, Gulcehre et al.
(2016)). Note that the results we listed in Table 3
and Table 4 for QRN are different from the origi-
nal paper, because based on their released code, 3

we discovered that the per-response accuracy was
not correctly computed.
bAbI Dialog: In Table 3, we follow Bordes

3We simply modified the evaluation part and reported the
results. (https://github.com/uwnlp/qrn)

and Weston (2017) to compare the performance
based on per-response and per-dialog accuracy.
Mem2Seq with 6 hops can achieve per-response
97.9% and per-dialog 69.6% accuracy in T5, and
84.5% and 2.3% for T5-OOV, which surpass ex-
isting methods by far. One can find that in T3 es-
pecially, which is the task to recommend restau-
rant based on their ranks, our model can achieve
promising results due to the memory pointer. In
terms of per-response accuracy, this indicates that
our model can generalize well with few perfor-
mance loss for test OOV data, while others have
around 15-20% drop. The performance gain in
OOV data is also mainly attributed to the use of
copy mechanism. In addition, the effectiveness of
hops is demonstrated in tasks 3-5, since they re-
quire reasoning ability over the KB information.
Note that QRN, MemNN and GMemNN viewed
bAbI dialog tasks as classification problems. Al-
though their tasks are easier compared to our gen-
erative methods, Mem2Seq models can still over-
pass the performance. Finally, one can find that
Seq2Seq and Ptr-Unk models are also strong base-
lines, which further confirms that generative meth-
ods can also achieve good performance in task-
oriented dialog systems (Eric and Manning, 2017).
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DSTC2: In Table 4, the Seq2Seq models
from Eric and Manning (2017) and the rule-based
from Bordes and Weston (2017) are reported.
Mem2Seq has the highest 75.3% entity F1 score
and an high of 55.3 BLEU score. This further con-
firms that Mem2Seq can perform well in retrieving
the correct entity, using the multiple hop mecha-
nism without losing language modeling. Here, we
do not report the results using match type (Bordes
and Weston, 2017) or entity type (Eric and Man-
ning, 2017) feature, since this meta-information
are not commonly available and we want to have
an evaluation on plain input output couples. One
can also find out that, Mem2Seq comparable per-
response accuracy (i.e. 2% margin) among other
existing solution. Note that the per-response ac-
curacy for every model is less than 50% since the
dataset is quite noisy and it is hard to generate a
response that is exactly the same as the gold one.

In-Car Assistant: In Table 5, our model can
achieve highest 12.6 BLEU score. In addition,
Mem2Seq has shown promising results in terms
of Entity F1 scores (33.4%), which are, in general,
much higher than those of other baselines. Note
that the numbers reported from Eric et al. (2017)
are not directly comparable to ours as we mention
below. The other baselines such as Seq2Seq or Ptr-
Unk especially have worse performances in this
dataset since it is very inefficient for RNN meth-
ods to encode longer KB information, which is the
advantage of Mem2Seq.

Furthermore, we observe an interesting phe-
nomenon that humans can easily achieve a high
entity F1 score with a low BLEU score. This im-
plies that stronger reasoning ability over entities
(hops) is crucial, but the results may not be similar
to the golden answer. We believe humans can pro-
duce good answers even with a low BLEU score,
since there could be different ways to express the
same concepts. Therefore, Mem2Seq shows the
potential to successfully choose the correct enti-
ties.

Note that the results of KV Retrieval Net base-
line reported in Table 5 come from the original pa-
per (Eric et al., 2017) of In-Car Assistant, where
they simplified the task by mapping the expression
of entities to a canonical form using named entity
recognition (NER) and linking. Hence the eval-
uation is not directly comparable to our system.
For example, their model learned to generate re-
sponses such as “You have a football game at foot-
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Figure 2: Training time per-epoch for different
tasks (lower is better). The speed difference be-
comes larger as the maximal input length in-
creases.

ball time with football party,” instead of generat-
ing a sentence such as “You have a football game
at 7 pm with John.” Since there could be more than
one football party or football time, their model
does not learn how to access the KBs, but it rather
learns the canonicalized language model.
Time Per-Epoch: We also compare the train-
ing time 4 in Figure 2. The experiments are set
with batch size 16, and we report each model
with the hyper-parameter that can achieved the
highest performance. One can observe that the
training time is not that different for short in-
put length (bAbI dialog tasks 1-4) and the gap
becomes larger as the maximal input length in-
creases. Mem2Seq is around 5 times faster in In-
Car Assistant and DSTC2 compared to Seq2Seq
with attention. This difference in training effi-
ciency is mainly attributed to the fact that Seq2Seq
models have input sequential dependencies which
limit any parallelization. Moreover, it is unavoid-
able for Seq2Seq models to encode KBs, instead
Mem2Seq only encodes with dialog history.

5 Analysis and Discussion

Memory Attention: Analyzing the attention
weights has been frequently used to show the
memory read-out, since it is an intuitive way to un-
derstand the model dynamics. Figure 3 shows the
attention vector at the last hop for each generated
token. Each column represents the Pptr vector at
the corresponding generation step. Our model has
a sharp distribution over the memory, which im-

4Intel(R) Core(TM) i7-3930K CPU@3.20GHz, using a
GeForce GTX 1080 Ti
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M

em
or

y
C

o
n

te
n

t

COR: the closest parking garage is civic center garage located 4 miles away at 270 altaire walk
GEN: the closest parking garage is civic center garage at 270 altaire walk 4 miles away through the directions

0.0

0.2

0.4

0.6

0.8

Figure 3: Last hop memory attention visualization
from the In-Car dataset. COR and GEN on the top
are the correct response and our generated one.

plies that it is able to select the right token from
the memory. For example, the KB information
“270 altarie walk” was retrieved at the sixth step,
which is an address for “civic center garage”. On
the other hand, if the sentinel is triggered, then the
generated word comes from vocabulary distribu-
tion Pvocab. For instance, the third generation step
triggered the sentinel, and “is” is generated from
the vocabulary as the word is not present in the
dialog history.

Multiple Hops: Mem2Seq shows how multiple
hops improve the model performance in several
datasets. Task 3 in the bAbI dialog dataset serves
as an example, in which the systems need to rec-
ommend restaurants to users based on restaurant
ranking from highest to lowest. Users can reject
the recommendation and the system has to rea-
son over the next highest restaurant. We found
out there are two common patterns between hops
among different samples: 1) the first hop is usu-
ally used to score all the relevant memories and

Figure 4: Principal component analysis of query
vectors in hop (a) 1 and (b) 6 for bAbI dialog.

room time date party event
conference room 100 3pm Thursday sales team conference

- 11am Tuesday - tennis activity
- 7pm Wednesday - dentist appointment

conference room 100 1pm Tuesday HR meeting
- 7pm Friday - doctor appointment
- 11am Tuesday - lab appointment

DRIVER When’s my tennis match?
Seq2seq Your lab appointment is on Monday at

+Att Your lab appointment is on Tuesday at 11am
Ptr-Unk Your tennis match is on PAD at 1pm

Mem2Seq H1 Your is very welcome
Mem2Seq H3 Your tennis is on Tuesday at 11am
Mem2Seq H6 Your tennis is Monday at 11am

GOLD Your tennis match is Tuesday at 11am

Table 6: Example of generated responses for the
In-Car Assistant on the scheduling domain.

retrieve information; 2) the last hop tends to focus
on a specific token and makes mistakes when the
attention is not sharp. Such mistakes can be at-
tributed to lack of hops, for some samples. For
more information, we report two figures in the
supplementary material.
Query Vectors: In Figure 4, the principal com-
ponent analysis of Mem2Seq queries vectors is
shown for different hops. Each dot is a query vec-
tor ht during each decoding time step, and it has its
corresponding generated word yt. The blue dots
are the words generated from Pvocab, which trig-
gered the sentinel, and orange ones are from Pptr.
One can find that in (a) hop 1, there is no clear sep-
aration of two different colors but each of which
tends to group together. On the other hand, the
separation becomes clearer in (b) hop 6 as each
color clusters into several groups such as location,
cuisine, and number. Our model tends to retrieve
more information in the first hop, and points into
the memories in the last hop.
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Examples: Table 1 and 6 show the generated re-
sponses of different models in the two test set sam-
ples from the In-Car Assistant dataset. We report
examples from this dataset since their answers are
more human-like and not as structured and repet-
itive as others. Seq2Seq generally cannot pro-
duce related information, and sometimes fail in
language modeling. Instead, using attention helps
with this issue, but it still rarely produces the cor-
rect entities. For example, Seq2Seq with atten-
tion generated 5 miles in Table 1 but the correct
one is 4 miles. In addition, Ptr-Unk often cannot
copy the correct token from the input, as shown by
“PAD” in Table 1. On the other hand, Mem2Seq
is able to produce the correct responses in this two
examples. In particular in the navigation domain,
shown in Table 1, Mem2Seq produces a different
but still correct utterance. We report further ex-
amples from all the domains in the supplementary
material.

Discussions: Conventional task-oriented dialog
systems (Williams and Young, 2007), which are
still widely used in commercial systems, require
a multitude of human efforts in system designing
and data collection. On the other hand, although
end-to-end dialog systems are not perfect yet, they
require much less human interference, especially
in the dataset construction, as raw conversational
text and KB information can be used directly with-
out the need of heavy preprocessing (e.g. NER,
dependency parsing). To this extent, Mem2Seq
is a simple generative model that is able to in-
corporate KB information with promising gener-
alization ability. We also discovered that the en-
tity F1 score may be a more comprehensive evalu-
ation metric than per-response accuracy or BLEU
score, as humans can normally choose the right
entities but have very diversified responses. In-
deed, we want to highlight that humans may have a
low BLEU score despite their correctness because
there may not be a large n-gram overlap between
the given response and the expected one. How-
ever, this does not imply that there is no correla-
tion between BLEU score and human evaluation.
In fact, unlike chat-bots and open domain dialogs
where BLEU score does not correlate with hu-
man evaluation (Liu et al., 2016), in task-oriented
dialogs the answers are constrained to particular
entities and recurrent patterns. Thus, we believe
BLEU score still can be considered as a relevant
measure. In future works, several methods could

be applied (e.g. Reinforcement Learning (Ranzato
et al., 2016), Beam Search (Wiseman and Rush,
2016)) to improve both responses relevance and
entity F1 score. However, we preferred to keep
our model as simple as possible in order to show
that it works well even without advanced training
methods.

6 Related Works

End-to-end task-oriented dialog systems train a
single model directly on text transcripts of di-
alogs (Wen et al., 2017; Serban et al., 2016;
Williams et al., 2017; Zhao et al., 2017; Seo et al.,
2017; Serban et al., 2017). Here, RNNs play an
important role due to their ability to create a la-
tent representation, avoiding the need for artificial
state labels. End-to-End Memory Networks (Bor-
des and Weston, 2017; Sukhbaatar et al., 2015),
and its variants (Liu and Perez, 2017; Wu et al.,
2017, 2018) have also shown good results in such
tasks. In each of these architectures, the output is
produced by generating a sequence of tokens, or
by selecting a set of predefined utterances.

Sequence-to-sequence (Seq2Seq) models have
also been used in task-oriented dialog sys-
tems (Zhao et al., 2017). These architectures have
better language modeling ability, but they do not
work well in KB retrieval. Even with sophisticated
attention models (Luong et al., 2015; Bahdanau
et al., 2015), Seq2Seq fails to map the correct en-
tities to the generated input. To alleviate this prob-
lem, copy augmented Seq2Seq models Eric and
Manning (2017), were used. These models out-
perform utterance selection methods by copying
relevant information directly from the KBs. Copy
mechanisms has also been used in question an-
swering tasks (Dehghani et al., 2017; He et al.,
2017), neural machine translation (Gulcehre et al.,
2016; Gu et al., 2016), language modeling (Merity
et al., 2017), and summarization (See et al., 2017).

Less related to dialog systems, but related to our
work, are the memory based decoders and the non-
recurrent generative models: 1) Mem2Seq query
generation phase used to access our memories can
be seen as the memory controller used in Memory
Augmented Neural Networks (MANN) (Graves
et al., 2014, 2016). Similarly, memory en-
coders have been used in neural machine transla-
tion (Wang et al., 2016), and meta-learning appli-
cation (Kaiser et al., 2017). However, Mem2Seq
differs from these models as such: it uses multi-
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hop attention in combination with copy mecha-
nism, whereas other models use a single matrix
representation. 2) non-recurrent generative mod-
els (Vaswani et al., 2017), which only rely on self-
attention mechanism, are related to the multi-hop
attention mechanism used in MemNN.

7 Conclusion

In this work, we present an end-to-end trainable
Memory-to-Sequence model for task-oriented di-
alog systems. Mem2Seq combines the multi-hop
attention mechanism in end-to-end memory net-
works with the idea of pointer networks to incor-
porate external information. We empirically show
our model’s ability to produce relevant answers us-
ing both the external KB information and the pre-
defined vocabulary, and visualize how the multi-
hop attention mechanisms help in learning corre-
lations between memories. Mem2Seq is fast, gen-
eral, and able to achieve state-of-the-art results in
three different datasets.
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Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

Tiancheng Zhao, Allen Lu, Kyusong Lee, and Max-
ine Eskenazi. 2017. Generative encoder-decoder
models for task-oriented spoken dialog systems with
chatting capability. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 27–36. Association for Computational Lin-
guistics.

http://aclweb.org/anthology/P17-1062
http://aclweb.org/anthology/P17-1062
http://aclweb.org/anthology/P17-1062
https://aclweb.org/anthology/D16-1137
https://aclweb.org/anthology/D16-1137
http://aclweb.org/anthology/W17-5505
http://aclweb.org/anthology/W17-5505
http://aclweb.org/anthology/W17-5505

