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Abstract

MT evaluation metrics are tested for cor-
relation with human judgments either at
the sentence- or the corpus-level. Trained
metrics ignore corpus-level judgments and
are trained for high sentence-level correla-
tion only. We show that training only for
one objective (sentence or corpus level),
can not only harm the performance on the
other objective, but it can also be subopti-
mal for the objective being optimized. To
this end we present a metric trained for
corpus-level and show empirical compar-
ison against a metric trained for sentence-
level exemplifying how their performance
may vary per language pair, type and level
of judgment. Subsequently we propose a
model trained to optimize both objectives
simultaneously and show that it is far more
stable than—and on average outperforms—
both models on both objectives.

1 Introduction

Ever since BLEU (Papineni et al., 2002) many
proposals for an improved automatic evaluation
metric for Machine Translation (MT) have been
made. Some proposals use additional information
for extracting quality indicators, like paraphrasing
(Denkowski and Lavie, 2011), syntactic trees (Liu
and Gildea, 2005; Stanojevi¢ and Sima’an, 2015)
or shallow semantics (Rios et al., 2011; Lo et al.,
2012) etc. Whereas others use different match-
ing strategies, like n-grams (Papineni et al., 2002),
treelets (Liu and Gildea, 2005) and skip-bigrams
(Lin and Och, 2004). Most metrics use several
indicators of translation quality which are often
combined in a linear model whose weights are es-
timated on a training set of human judgments.
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Because the most widely available type of hu-
man judgments are relative ranking (RR) judg-
ments, the main machine learning method used for
training the metrics were based on the learning-
to-rank framework (Li, 2011). While the effec-
tiveness of this framework for training evaluation
metrics has been confirmed many times, e.g., (Ye
et al., 2007; Duh, 2008; Stanojevi¢ and Sima’an,
2014; Maet al., 2016), so far there is no prior work
exploring alternative objective functions for train-
ing learning-to-rank models. Without exception,
all existing learning-to-rank models are trained to
rank sentences while completely ignoring the cor-
pora judgments, likely because human judgments
come in the form of sentence rankings.

It might seem that sentence and corpus level
tasks are very similar but that is not the case. Em-
pirically it has been shown that many metrics that
perform well on the sentence level do not perform
well on the corpus level and vice versa. By train-
ing to rank sentences the model does not necessar-
ily learn to give scores that are well scaled, but
only to give higher scores to better translations.
Training for the corpus level score would force the
metric to give well scaled scores on the sentence
level.

Human judgments of sentences can be aggre-
gated in different ways to hypothesize human
judgments of full corpora. However, this fact has
not been used so far to train learning-to-rank mod-
els that are good for ranking different corpora.

This work fills-in this gap by exploring the mer-
its of different objective functions that take corpus
level judgments into consideration. We first create
a learning-to-rank model for ranking corpora and
compare it to the standard learning-to-rank model
that is trained for ranking sentences. This com-
parison shows that performance of these two ob-
jectives can vary radically depending on the cho-
sen meta-evaluation method. To tackle this prob-
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Figure 1: Computation Graph

lem we contribute a new objective function, in-
spired by multi-task learning, in which we train
for both objectives simultaneously. This multi-
objective model behaves a lot more stable over all
methods of meta-evaluation and achieves a higher
correlation than both single objective models.

2 Models

All the models that we define have one basic func-
tion in common, we call it a forward(-) function,
that maps the features of any sentence to a sin-
gle real number. That function can be any differ-
entiable function including multi-layer neural net-
works as in (Ma et al., 2016), but here we will stick
with the standard linear model:
forward(¢) = ¢Tw +b

Here ¢ is a vector with feature values of a sen-
tence, w is a weight vector and b is a bias term.
Usually in training we would like to process a
mini-batch of feature vectors ®, where ® is a ma-
trix in which each column is a feature vector of
individual sentence in the mini-batch or in the cor-
pus. By using broadcasting we can rewrite the pre-
vious definition of the forward(-) function as:

forward(®) = ®Tw + b
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Now we can define the score of a sentence as a
sigmoid function applied over the output of the
forward(-) function because we want to get a
score between 0 and 1:

sentScore(¢) = o forward(p))

As the corpus level score we will use just the av-
erage of sentence level scores:

1
corpScore(®) = — sentScore(P
pScore(®) = — 3" (@)
where m is the number of sentences in the corpus.
Next we present several objective functions that
are illustrated by the computation graph in Fig-
ure 1.

2.1 Training for Sentence Level Accuracy

Here we use the training objective very similar to
BEER (Stanojevi¢ and Sima’an, 2014) which is
a learning-to-rank framework that finds a separat-
ing hyper-plane between “good” and “bad” trans-
lations. Unlike BEER, we use a max-margin ob-
jective instead of logistic regression.

For each mini-batch we randomly select m hu-
man relative ranking pairwise judgments and after
extracting features for all the sentences taking part
in these judgments we put features in two matrices
®,in and Py,s. These matrices are structured in
such a way that for judgment ¢ the column 7 in
®,in contains the features of the “good” transla-
tion in the judgment and the column ¢ in @, the
features of the “bad” translation.

We would like to maximize the average mar-
gin that would separate sentence level scores of
pairs of translations in each judgment. Because
the squashing sigmoid function does not influence
the ranking we can directly optimize on the un-
squashed forward pass and require that the margin
between “good” and “bad” translation is at least 1:

Asent = forward(Psyin) — forward(Pss)
1
— g max(0,1 — Agent)
m

2.2 Training for Corpus Level Accuracy

Lossgent =

At the corpus level we would like to do a simi-
lar thing as on the sentence level: maximize the
distance between the scores of “good” and “bad”
corpora. In this case we have additional informa-
tion that is not present on the sentence level: we
know not only which corpus is (according to hu-
mans) better, but also by how much it is better. For



that we can use one of the heuristics such as the
Expected Wins (Koehn, 2012). We can use this
information to guide the learning model by how
much it should separate the scores of two corpora.

For doing this we use an approach similar
to Max-Margin Markov Networks (Taskar et al.,
2003) where for each training instance we dynami-
cally scale the margin that should be enforced. We
want the margin between the scores A, to be
at least as big as the margin between the human
scores Apyuman assigned to these systems. In one
mini-batch we will use only a randomly chosen
pair of corpora with feature matrices Py, and
® ;s for which we have a human comparison. The
corpus level loss function is given by:

Acorp = corpScore(Peyin) — corpScore(Pos)
Acor‘p)

LOSSCmnp = mam(O, Ahuman -

2.3 Training Jointly for Sentence and Corpus
Level Accuracy

In this model we optimize both objectives jointly
in the style of multi-task learning (Caruana, 1997).
Here we employ the simplest approach of just
tasking the interpolation of the previously intro-
duced loss functions.

Loss joint = o - Lossgent + (1 — &) - LosScorp

The interpolation is controlled by the hyper-
parameter o which could in principle be tuned for
good performance, but here we just fix it to 0.5 to
give both objectives equal importance.

2.4 Feature Functions

The feature functions that are used are reimple-
mentation of many (but not all) feature functions
of BEER. Because the point of this paper is about
the exploration of different objective functions we
did not try to experiment with more complex fea-
ture functions based on paraphrasing, function
words or permutation trees.

We use just simple precision, recall and 3 types
of F-score (with 8 parameters 1, 2 and 0.5) over
different “pieces” of translation:

e character n-grams of orders 1,2,3,4 and 5
e word n-grams of orders 1,2,3 and 4

e skip-bigrams of maximum skip 2 and oo
(similar to ROUGE-S2 and ROUGE-S* (Lin
and Och, 2004))
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One final feature deals with length-disbalance.
If the length of the system and reference trans-
lation are a and b respectively then this feature
is computed as maw(gﬁgﬁ? (@9 1t is computed

both for word and character length.

3 Experiments

Experiments are conducted on WMTI3
(Machéacek and Bojar, 2013), WMT14 (Machacek
and Bojar, 2014) and WMT16 (Bojar et al., 2016)
datasets which were used as training, validation
and testing datasets respectively.

All of the models are implemented using Ten-
sorFlow! and trained with L2 regularization A =
0.001 and ADAM optimizer with learning rate
0.001. The mini-batch size for sentence level
judgments is 2000 and for the corpus level is one
comparison. Each model is trained for 200 epochs
out of which the one performing best on the val-
idation set for the objective function being opti-
mized is used during the test time.

We show the results for the relative ranking
(RR) judgments correlation in Table 1. For all lan-
guage pairs that are of the form en-X we show it
under the column X and for all the language pairs
that have English on the target side we present
their average under the column en.

RR corpus vs. sentence objective The corpus-
objective is better than the sentence-objective for
both corpus and sentence level RR judgments on 5
out of 7 languages and also on average correlation.

RR joint vs. single-objectives Training for the
joint objective improves even more on both lev-
els of RR correlation and outperforms both single-
objective models on average and on 4 out of 7 lan-
guages.

Making confident conclusions from these re-
sults is difficult because, to the best of our knowl-
edge, there is no principled way of measuring sta-
tistical significance on the RR judgments. That
is why we also tested on direct assessment (DA)
judgments available from WMT16. On DA we
can measure statistical significance on the sen-
tence level using Williams test (Graham et al.,
2015) and on the corpus level using combination
of hybrid-supersampling and Williams test (Gra-
ham and Liu, 2016). The results of correlation
with human judgment are for sentence and corpus
level are shown in Table 2.

"https://www.tensorflow.org/



Objective H en ‘ cs ‘ de ‘ fi ‘ ro ‘ ru ‘ tr H Average
sent 0.963 | 0.977 | 0.737 | 0.938 | 0.922 | 0.905 | 0.937 0.912
corpus 0.944 | 0.982 | 0.765 | 0.940 | 0.917 | 0.907 | 0.954 0.916
joint 0.963 | 0.983 | 0.748 | 0.951 | 0.933 | 0.905 | 0.946 0.918
(a) Corpus level
Objective H en \ cs \ de \ fi \ ro \ ru \ tr H Average
sent 0.347 | 0.405 | 0.345 | 0.304 | 0.293 | 0.382 | 0.304 0.340
corpus 0.337 | 0.414 | 0.349 | 0.307 | 0.292 | 0.385 | 0.325 0.344
joint 0.350 | 0.410 | 0.356 | 0.296 | 0.299 | 0.396 | 0.312 0.346

(b) Sentence level

Table 1: Relative Ranking (RR) Correlation. The corpus level correlation is measured with Pearson r
and sentence level with Kendall 7

Objective H en-ru ‘ cs-en ‘ de-en fi-en ro-en ru-en tr-en H Average
sent 0.91135 | 0.9839¢ | 0.8483% | 0.95565 | 0.8348% | 0.8888" | 0.97065 | 0.9133
corpus 0.9086 | 09790 [0.8032 |[0.9121 |0.7933 | 0.8857 [ 0.9011 | 0.8833
joint 0.9111° | 0.9844< | 0.84885 | 0.9545% | 0.8399 | 0.89355 | 0.9647¢ | 0.9138
(a) Corpus level
Objective H en-ru cs-en de-en fi-en ro-en ru-en tr-en H Average
sent 0.6655% | 0.6478% | 0.4930% | 0.4608° | 0.5066° | 0.5535% | 0.5800¢ || 0.5582
corpus 0.5632 | 0.5676 | 0.3913 | 03644 | 0.3771 | 0.4306 | 0.4579 || 0.4503
joint 0.6668° | 0.66312, | 0.50197, | 0.4608% | 0.52767, | 0.5564C | 0.5830C | 0.5657

(b) Sentence level

Table 2: Direct Assessment (DA) Pearson r Correlation. Super- and sub-scripts S, C and J signify that
the model outperforms with statistical significance (p < 0.05) the model trained for sentence, corpus or
joint objective respectively. Bold marks that the system has outperformed both other models significantly.

DA corpus vs. other objectives On DA judg-
ments the results for corpus level objective are
completely different than on the RR judgments.
On DA judgments the corpus-objective model is
significantly outperformed on both levels and on
all languages by both of the other objectives.

This shows that gambling on one objective
function (being that sentence or corpus level ob-
jective) could give unpredictable results. This
is precisely the motivation for creating the joint
model with multi-objective training.

DA joint vs. single objectives By choosing to
jointly optimize both objectives we get a much
more stable model that performs well both on DA
and RR judgments and on both levels of judgment.
On the DA sentence level, the joint model was not
outperformed by any other model and on 3 out of 7
language pairs it significantly outperforms both al-
ternative objectives. On the corpus level results are

23

a bit mixed, but still joint objective outperforms
both other models on 4 out of 7 language pairs and
also it gives higher correlation on average.

4 Conclusion

In this work we found that altering the objective
function for training MT metrics can have radi-
cal effects on performance. Also the effects of
the objective functions can sometimes be unex-
pected: the sentence objective might not be good
for sentence level correlation (in case of RR judg-
ments) and the corpus objective might not be good
for corpus level correlation (in case of DA judg-
ments). The difference among objectives is better
explained by different types of human judgments:
the corpus objective is better for RR while sen-
tence objective is better for DA judgments.

Finally, the best results are achieved by training
for both objectives at the same time. This gives



an evaluation metric that is far more stable in its
performance over all methods of meta-evaluation.
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