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Abstract

We present a parser that relies primar-
ily on extracting information directly from
surface spans rather than on propagat-
ing information through enriched gram-
mar structure. For example, instead of cre-
ating separate grammar symbols to mark
the definiteness of an NP, our parser might
instead capture the same information from
the first word of the NP. Moving context
out of the grammar and onto surface fea-
tures can greatly simplify the structural
component of the parser: because so many
deep syntactic cues have surface reflexes,
our system can still parse accurately with
context-free backbones as minimal as X-
bar grammars. Keeping the structural
backbone simple and moving features to
the surface also allows easy adaptation
to new languages and even to new tasks.
On the SPMRL 2013 multilingual con-
stituency parsing shared task (Seddah et
al., 2013), our system outperforms the top
single parser system of Bjorkelund et al.
(2013) on a range of languages. In addi-
tion, despite being designed for syntactic
analysis, our system also achieves state-
of-the-art numbers on the structural senti-
ment task of Socher et al. (2013). Finally,
we show that, in both syntactic parsing and
sentiment analysis, many broad linguistic
trends can be captured via surface features.

1 Introduction

Naive context-free grammars, such as those em-
bodied by standard treebank annotations, do not
parse well because their symbols have too little
context to constrain their syntactic behavior. For
example, to PPs usually attach to verbs and of
PPs usually attach to nouns, but a context-free PP
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symbol can equally well attach to either. Much
of the last few decades of parsing research has
therefore focused on propagating contextual in-
formation from the leaves of the tree to inter-
nal nodes. For example, head lexicalization (Eis-
ner, 1996; Collins, 1997; Charniak, 1997), struc-
tural annotation (Johnson, 1998; Klein and Man-
ning, 2003), and state-splitting (Matsuzaki et al.,
2005; Petrov et al., 2006) are all designed to take
coarse symbols like PP and decorate them with
additional context. The underlying reason that
such propagation is even needed is that PCFG
parsers score trees based on local configurations
only, and any information that is not threaded
through the tree becomes inaccessible to the scor-
ing function. There have been non-local ap-
proaches as well, such as tree-substitution parsers
(Bod, 1993; Sima’an, 2000), neural net parsers
(Henderson, 2003), and rerankers (Collins and
Koo, 2005; Charniak and Johnson, 2005; Huang,
2008). These non-local approaches can actually
go even further in enriching the grammar’s struc-
tural complexity by coupling larger domains in
various ways, though their non-locality generally
complicates inference.

In this work, we instead try to minimize the
structural complexity of the grammar by moving
as much context as possible onto local surface fea-
tures. We examine the position that grammars
should not propagate any information that is avail-
able from surface strings, since a discriminative
parser can access that information directly. We
therefore begin with a minimal grammar and it-
eratively augment it with rich input features that
do not enrich the context-free backbone. Previ-
ous work has also used surface features in their
parsers, but the focus has been on machine learn-
ing methods (Taskar et al., 2004), latent annota-
tions (Petrov and Klein, 2008a; Petrov and Klein,
2008b), or implementation (Finkel et al., 2008).

By contrast, we investigate the extent to which
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we need a grammar at all. As a thought experi-
ment, consider a parser with no grammar, which
functions by independently classifying each span
(i,7) of a sentence as an NP, VP, and so on, or
null if that span is a non-constituent. For exam-
ple, spans that begin with the might tend to be
NPs, while spans that end with of might tend to
be non-constituents. An independent classification
approach is actually very viable for part-of-speech
tagging (Toutanova et al., 2003), but is problem-
atic for parsing — if nothing else, parsing comes
with a structural requirement that the output be a
well-formed, nested tree. Our parser uses a min-
imal PCFG backbone grammar to ensure a ba-
sic level of structural well-formedness, but relies
mostly on features of surface spans to drive accu-
racy. Formally, our model is a CRF where the fea-
tures factor over anchored rules of a small back-
bone grammar, as shown in Figure 1.

Some aspects of the parsing problem, such as
the tree constraint, are clearly best captured by a
PCFG. Others, such as heaviness effects, are nat-
urally captured using surface information. The
open question is whether surface features are ade-
quate for key effects like subcategorization, which
have deep definitions but regular surface reflexes
(e.g. the preposition selected by a verb will often
linearly follow it). Empirically, the answer seems
to be yes, and our system produces strong results,
e.g. up to 90.5 F1 on English parsing. Our parser
is also able to generalize well across languages
with little tuning: it achieves state-of-the-art re-
sults on multilingual parsing, scoring higher than
the best single-parser system from the SPMRL
2013 Shared Task on a range of languages, as well
as on the competition’s average F1 metric.

One advantage of a system that relies on surface
features and a simple grammar is that it is portable
not only across languages but also across tasks
to an extent. For example, Socher et al. (2013)
demonstrates that sentiment analysis, which is
usually approached as a flat classification task,
can be viewed as tree-structured. In their work,
they propagate real-valued vectors up a tree using
neural tensor nets and see gains from their recur-
sive approach. Our parser can be easily adapted
to this task by replacing the X-bar grammar over
treebank symbols with a grammar over the sen-
timent values to encode the output variables and
then adding n-gram indicators to our feature set
to capture the bulk of the lexical effects. When
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applied to this task, our system generally matches
their accuracy overall and is able to outperform it
on the overall sentence-level subtask.

2 Parsing Model

In order to exploit non-independent surface fea-
tures of the input, we use a discriminative formula-
tion. Our model is a conditional random field (Laf-
ferty et al., 2001) over trees, in the same vein as
Finkel et al. (2008) and Petrov and Klein (2008a).
Formally, we define the probability of a tree T’
conditioned on a sentence w as

) (1)

where the feature domains r range over the (an-
chored) rules used in the tree. An anchored rule
r is the conjunction of an unanchored grammar
rule rule(r) and the start, stop, and split indexes
where that rule is anchored, which we refer to as
span(r). It is important to note that the richness of
the backbone grammar is reflected in the structure
of the trees T', while the features that condition di-
rectly on the input enter the equation through the
anchoring span(r). To optimize model parame-
ters, we use the Adagrad algorithm of Duchi et al.
(2010) with L2 regularization.

We start with a simple X-bar grammar whose
only symbols are NP, NP-bar, VP, and so on. Our
base model has no surface features: formally, on
each anchored rule  we have only an indicator of
the (unanchored) rule identity, rule(r). Because
the X-bar grammar is so minimal, this grammar
does not parse very accurately, scoring just 73 F1
on the standard English Penn Treebank task.

In past work that has used tree-structured CRFs
in this way, increased accuracy partially came
from decorating trees 7' with additional annota-
tions, giving a tree 7" over a more complex symbol
set. These annotations introduce additional con-
text into the model, usually capturing linguistic in-
tuition about the factors that influence grammati-
cality. For instance, we might annotate every con-
stituent X in the tree with its parent Y, giving a
tree with symbols X ["Y]. Finkel et al. (2008) used
parent annotation, head tag annotation, and hori-
zontal sibling annotation together in a single large
grammar. In Petrov and Klein (2008a) and Petrov
and Klein (2008b), these annotations were latent;
they were inferred automatically during training.

o7 Z f(r,w)

p(T|w) o exp (
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Hall and Klein (2012) employed both kinds of an-
notations, along with lexicalized head word anno-
tation. All of these past CRF parsers do also ex-
ploit span features, as did the structured margin
parser of Taskar et al. (2004); the current work pri-
marily differs in shifting the work from the gram-
mar to the surface features.

The problem with rich annotations is that they
increase the state space of the grammar substan-
tially. For example, adding parent annotation can
square the number of symbols, and each subse-
quent annotation causes a multiplicative increase
in the size of the state space. Hall and Klein
(2012) attempted to reduce this state space by fac-
toring these annotations into individual compo-
nents. Their approach changed the multiplicative
penalty of annotation into an additive penalty, but
even so their individual grammar projections are
much larger than the base X-bar grammar.

In this work, we want to see how much of the
expressive capability of annotations can be cap-
tured using surface evidence, with little or no an-
notation of the underlying grammar. To that end,
we avoid annotating our trees at all, opting instead
to see how far simple surface features will go in
achieving a high-performance parser. We will re-
turn to the question of annotation in Section 5.

3 Surface Feature Framework

To improve the performance of our X-bar gram-
mar, we will add a number of surface feature tem-
plates derived only from the words in the sentence.
We say that an indicator is a surface property if
it can be extracted without reference to the parse
tree. These features can be implemented with-
out reference to structured linguistic notions like
headedness; however, we will argue that they still
capture a wide range of linguistic phenomena in a
data-driven way.

Throughout this and the following section, we
will draw on motivating examples from the En-
glish Penn Treebank, though similar examples
could be equally argued for other languages. For
performance on other languages, see Section 6.

Recall that our CRF factors over anchored rules
r, where each r has identity rule(r) and anchor-
ing span(r). The X-bar grammar has only indi-
cators of rule(r), ignoring the anchoring. Let a
surface property of r be an indicator function of
span(r) and the sentence itself. For example, the
first word in a constituent is a surface property, as
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Rule backoffs
VP RULE = VP — VBD NP |

T~ PARENT = VP

VBD NP .
| _ Span properties

J NN FIRSTWORD = averted

LASTWORD = disaster

averted financial _disaster
5 6 7 8

LENGTH =3
Features J
FIRSTWORD = averted =~ PARENT = VP
FIRSTWORD = averted RULE = VP — VBD NP
LASTWORD = disaster PARENT = VP

J

Figure 1: Features computed over the application
of the rule VP — VBD NP over the anchored
span averted financial disaster with the shown in-
dices. Span properties are generated as described
throughout Section 4; they are then conjoined with
the rule and just the parent nonterminal to give the
features fired over the anchored production.

is the word directly preceding the constituent. As
illustrated in Figure 1, the actual features of the
model are obtained by conjoining surface proper-
ties with various abstractions of the rule identity.
For rule abstractions, we use two templates: the
parent of the rule and the identity of the rule. The
surface features are somewhat more involved, and
so we introduce them incrementally.

One immediate computational and statistical is-
sue arises from the sheer number of possible sur-
face features. There are a great number of spans
in a typical treebank; extracting features for ev-
ery possible combination of span and rule is pro-
hibitive. One simple solution is to only extract
features for rule/span pairs that are actually ob-
served in gold annotated examples during train-
ing. Because these “positive” features correspond
to observed constituents, they are far less numer-
ous than the set of all possible features extracted
from all spans. As far as we can tell, all past CRF
parsers have used “positive” features only.

However, negative features—features that are
not observed in any tree—are still powerful indica-
tors of (un)grammaticality: if we have never seen
a PRN that starts with “has,” or a span that be-
gins with a quotation mark and ends with a close
bracket, then we would like the model to be able to
place negative weights on these features. Thus, we
use a simple feature hashing scheme where posi-
tive features are indexed individually, while nega-



Features Section F1
RULE 4 73.0
+ SPAN FIRST WORD + SPAN LAST WORD + LENGTH 4.1 85.0
+ WORD BEFORE SPAN + WORD AFTER SPAN 4.2 89.0
+ WORD BEFORE SPLIT + WORD AFTER SPLIT 4.3 89.7
+ SPAN SHAPE 4.4 89.9

Table 1: Results for the Penn Treebank development set, reported in F1 on sentences of length < 40
on Section 22, for a number of incrementally growing feature sets. We show that each feature type
presented in Section 4 adds benefit over the previous, and in combination they produce a reasonably

good yet simple parser.

tive features are bucketed together. During train-
ing there are no collisions between positive fea-
tures, which generally receive positive weight, and
negative features, which generally receive nega-
tive weight; only negative features can collide.
Early experiments indicated that using a number
of negative buckets equal to the number of posi-
tive features was effective.

4 Features

Our goal is to use surface features to replicate
the functionality of other annotations, without in-
creasing the state space of our grammar, meaning
that the rules rule(r) remain simple, as does the
state space used during inference.

Before we present our main features, we briefly
discuss the issue of feature sparsity. While lexical
features are a powerful driver of our parser, firing
features on rare words would allow it to overfit the
training data quite heavily. To that end, for the
purposes of computing our features, a word is rep-
resented by its longest suffix that occurs 100 or
more times in the training data (which will be the
entire word, for common words).!

Table 1 shows the results of incrementally
building up our feature set on the Penn Treebank
development set. RULE specifies that we use only
indicators on rule identity for binary production
and nonterminal unaries. For this experiment and
all others, we include a basic set of lexicon fea-
tures, i.e. features on preterminal part-of-speech
tags. A given preterminal unary at position ¢ in
the sentence includes features on the words (suf-
fixes) at position ¢ — 1, ¢, and 7 + 1. Because the
lexicon is especially sensitive to morphological ef-
fects, we also fire features on all prefixes and suf-

1Experiments with the Brown clusters (Brown et al.,
1992) provided by Turian et al. (2010) in lieu of suffixes were

not promising. Moreover, lowering this threshold did not im-
prove performance.
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fixes of the current word up to length 5, regardless
of frequency.

Subsequent lines in Table 1 indicate additional
surface feature templates computed over the span,
which are then conjoined with the rule identity as
shown in Figure 1 to give additional features. In
the rest of the section, we describe the features of
this type that we use. Note that many of these fea-
tures have been used before (Taskar et al., 2004;
Finkel et al., 2008; Petrov and Klein, 2008b); our
goal here is not to amass as many feature tem-
plates as possible, but rather to examine the ex-
tent to which a simple set of features can replace a
complicated state space.

4.1 Basic Span Features

We start with some of the most obvious proper-
ties available to us, namely, the identity of the first
and last words of a span. Because heads of con-
stituents are often at the beginning or the end of
a span, these feature templates can (noisily) cap-
ture monolexical properties of heads without hav-
ing to incur the inferential cost of lexicalized an-
notations. For example, in English, the syntactic
head of a verb phrase is typically at the beginning
of the span, while the head of a simple noun phrase
is the last word. Other languages, like Korean or
Japanese, are more consistently head final.
Structural contexts like those captured by par-
ent annotation (Johnson, 1998) are more subtle.
Parent annotation can capture, for instance, the
difference in distribution in NPs that have S as a
parent (that is, subjects) and NPs under VPs (ob-
jects). We try to capture some of this same intu-
ition by introducing a feature on the length of a
span. For instance, VPs embedded in NPs tend
to be short, usually as embedded gerund phrases.
Because constituents in the treebank can be quite
long, we bin our length features into 8 buckets, of



[ VP — no VBP NNS ]

VP
S
VBP NNS
I I
no read messages in his inbox

Figure 2: An example showing the utility of span
context. The ambiguity about whether read is an
adjective or a verb is resolved when we construct
a VP and notice that the word proceeding it is un-
likely.

[NP — (NP ... impact) PP) ]

NP
T~

NP PP
A A

has an impact on the market

Figure 3: An example showing split point features
disambiguating a PP attachment. Because impact
is likely to take a PP, the monolexical indicator
feature that conjoins impact with the appropriate
rule will help us parse this example correctly.

lengths 1, 2, 3, 4, 5, 10, 20, and >21 words.

Adding these simple features (first word, last
word, and lengths) as span features of the X-
bar grammar already gives us a substantial im-
provement over our baseline system, improving
the parser’s performance from 73.0 F1 to 85.0 F1
(see Table 1).

4.2 Span Context Features

Of course, there is no reason why we should con-
fine ourselves to just the words within the span:
words outside the span also provide a rich source
of context. As an example, consider disambiguat-
ing the POS tag of the word read in Figure 2. A
VP is most frequently preceded by a subject NP,
whose rightmost word is often its head. Therefore,
we fire features that (separately) look at the words
immediately preceding and immediately follow-
ing the span.

4.3 Split Point Features

Another important source of features are the words
at and around the split point of a binary rule ap-
plication. Figure 3 shows an example of one in-
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PRN

. Q

( CEO of Enron )
L |

VP

P

said , “ Too bad , ”

(XxX) X, Xx,”

Figure 4: Computation of span shape features on
two examples. Parentheticals, quotes, and other
punctuation-heavy, short constituents benefit from
being explicitly modeled by a descriptor like this.

stance of this feature template. impact is a noun
that is more likely to take a PP than other nouns,
and so we expect this feature to have high weight
and encourage the attachment; this feature proves
generally useful in resolving such cases of right-
attachments to noun phrases, since the last word
of the noun phrase is often the head. As another
example, coordination can be represented by an
indicator of the conjunction, which comes imme-
diately after the split point. Finally, control struc-
tures with infinitival complements can be captured
with a rule S — NP VP with the word “to” at the
split point.

4.4 Span Shape Features

We add one final feature characterizing the span,
which we call span shape. Figure 4 shows how this
feature is computed. For each word in the span,’
we indicate whether that word begins with a cap-
ital letter, lowercase letter, digit, or punctuation
mark. If it begins with punctuation, we indicate
the punctuation mark explicitly. Figure 4 shows
that this is especially useful in characterizing con-
structions such as parentheticals and quoted ex-
pressions. Because this feature indicates capital-
ization, it can also capture properties of NP in-
ternal structure relevant to named entities, and its
sensitivity to capitalization and punctuation makes
it useful for recognizing appositive constructions.

5 Annotations

We have built up a strong set of features by this
point, but have not yet answered the question of
whether or not grammar annotation is useful on
top of them. In this section, we examine two of the
most commonly used types of additional annota-
tion, structural annotation, and lexical annotation.

%For longer spans, we only use words sufficiently close to
the span’s beginning and end.



Annotation  Deyv, len < 40
v=0,h=0 90.1
v=1,h=0 90.5
v=0h=1 90.2
v=1h=1 90.9
Lexicalized 90.3

Table 2: Results for the Penn Treebank develop-
ment set, sentences of length < 40, for different
annotation schemes implemented on top of the X-
bar grammar.

Recall from Section 3 that every span feature is
conjoined with indicators over rules and rule par-
ents to produce features over anchored rule pro-
ductions; when we consider adding an annotation
layer to the grammar, what that does is refine the
rule indicators that are conjoined with every span
feature. While this is a powerful way of refining
features, we show that common successful anno-
tation schemes provide at best modest benefit on
top of the base parser.

5.1 Structural Annotation

The most basic, well-understood kind of annota-
tion on top of an X-bar grammar is structural an-
notation, which annotates each nonterminal with
properties of its environment (Johnson, 1998;
Klein and Manning, 2003). This includes vertical
annotation (parent, grandparent, etc.) as well as
horizontal annotation (only partially Markovizing
rules as opposed to using an X-bar grammar).

Table 2 shows the performance of our feature
set in grammars with several different levels of
structural annotation.? Klein and Manning (2003)
find large gains (6% absolute improvement, 20%
relative improvement) going from v = 0, h = 0 to
v = 1,h = 1; however, we do not find the same
level of benefit. To the extent that our parser needs
to make use of extra information in order to ap-
ply a rule correctly, simply inspecting the input to
determine this information appears to be almost
as effective as relying on information threaded
through the parser.

In Section 6 and Section 7, we use v = 1 and
h = 0; we find that v = 1 provides a small, reli-
able improvement across a range of languages and
tasks, whereas other annotations are less clearly
beneficial.

3We use v = 0 to indicate no annotation, diverging from
the notation in Klein and Manning (2003).
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Test <40 Testall
90.6 90.1
89.9 89.2

Berkeley
This work

Table 3: Final Parseval results forthev = 1,h =0
parser on Section 23 of the Penn Treebank.

5.2 Lexical Annotation

Another commonly-used kind of structural an-
notation is lexicalization (Eisner, 1996; Collins,
1997; Charniak, 1997). By annotating grammar
nonterminals with their headwords, the idea is to
better model phenomena that depend heavily on
the semantics of the words involved, such as coor-
dination and PP attachment.

Table 2 shows results from lexicalizing the X-
bar grammar; it provides meager improvements.
One probable reason for this is that our parser al-
ready includes monolexical features that inspect
the first and last words of each span, which cap-
tures the syntactic or the semantic head in many
cases or can otherwise provide information about
what the constituent’s type may be and how it is
likely to combine. Lexicalization allows us to cap-
ture bilexical relationships along dependency arcs,
but it has been previously shown that these add
only marginal benefit to Collins’s model anyway
(Gildea, 2001).

5.3 English Evaluation

Finally, Table 3 shows our final evaluation on Sec-
tion 23 of the Penn Treebank. We use the v =
1, h = 0 grammar. While we do not do as well as
the Berkeley parser, we will see in Section 6 that
our parser does a substantially better job of gener-
alizing to other languages.

6 Other Languages

Historically, many annotation schemes for parsers
have required language-specific engineering: for
example, lexicalized parsers require a set of head
rules and manually-annotated grammars require
detailed analysis of the treebank itself (Klein and
Manning, 2003). A key strength of a parser that
does not rely heavily on an annotated grammar is
that it may be more portable to other languages.
We show that this is indeed the case: on nine lan-
guages, our system is competitive with or better
than the Berkeley parser, which is the best single



Arabic  Basque French German Hebrew Hungarian Korean Polish  Swedish [ Avg
Dev, all lengths
Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50 78.91
Berkeley-Rep | 78.70 84.33 79.68 82.74 89.55 89.08 82.84  87.12 75.52 83.28
Our work 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30
Test, all lengths
Berkeley 79.19 70.50 80.38 78.30 86.96 81.62 7142 79.23 79.18 78.53
Berkeley-Tags | 78.66 74.74 79.76 78.28 85.42 85.22 78.56  86.75 80.64 80.89
Our work 78.75 83.39 79.70 78.43 87.18 88.25 80.18  90.66 82.00 83.17

Table 4: Results for the nine treebanks in the SPMRL 2013 Shared Task; all values are F-scores for
sentences of all lengths using the version of evalb distributed with the shared task. Berkeley-Rep is
the best single parser from (Bjorkelund et al., 2013); we only compare to this parser on the development
set because neither the system nor test set values are publicly available. Berkeley-Tags is a version of
the Berkeley parser run by the task organizers where tags are provided to the model, and is the best
single parser submitted to the official task. In both cases, we match or outperform the baseline parsers in
aggregate and on the majority of individual languages.

parser* for the majority of cases we consider.

We evaluate on the constituency treebanks from
the Statistical Parsing of Morphologically Rich
Languages Shared Task (Seddah et al., 2013).
We compare to the Berkeley parser (Petrov and
Klein, 2007) as well as two variants. First,
we use the “Replaced” system of Bjorkelund et
al. (2013) (Berkeley-Rep), which is their best
single parser’ The “Replaced” system modi-
fies the Berkeley parser by replacing rare words
with morphological descriptors of those words
computed using language-specific modules, which
have been hand-crafted for individual languages
or are trained with additional annotation layers
in the treebanks that we do not exploit. Unfor-
tunately, Bjorkelund et al. (2013) only report re-
sults on the development set for the Berkeley-Rep
model; however, the task organizers also use a ver-
sion of the Berkeley parser provided with parts
of speech from high-quality POS taggers for each
language (Berkeley-Tags). These part-of-speech
taggers often incorporate substantial knowledge
of each language’s morphology. Both Berkeley-
Rep and Berkeley-Tags make up for some short-
comings of the Berkeley parser’s unknown word
model, which is tuned to English.

In Table 4, we see that our performance is over-
all substantially higher than that of the Berkeley
parser. On the development set, we outperform the
Berkeley parser and match the performance of the
Berkeley-Rep parser. On the test set, we outper-

#I.e. it does not use a reranking step or post-hoc combina-
tion of parser results.

Their best parser, and the best overall parser from the
shared task, is a reranked product of “Replaced” Berkeley
parsers.

form both the Berkeley parser and the Berkeley-
Tags parser on seven of nine languages, losing
only on Arabic and French.

These results suggest that the Berkeley parser
may be heavily fit to English, particularly in its
lexicon. However, even when language-specific
unknown word handling is added to the parser, our
model still outperforms the Berkeley parser over-
all, showing that our model generalizes even bet-
ter across languages than a parser for which this
is touted as a strength (Petrov and Klein, 2007).
Our span features appear to work well on both
head-initial and head-final languages (see Basque
and Korean in the table), and the fact that our
parser performs well on such morphologically-
rich languages as Hungarian indicates that our suf-
fix model is sufficient to capture most of the mor-
phological effects relevant to parsing. Of course,
a language that was heavily prefixing would likely
require this feature to be modified. Likewise, our
parser does not perform as well on Arabic and He-
brew. These closely related languages use tem-
platic morphology, for which suffixing is not ap-
propriate; however, using additional surface fea-
tures based on the output of a morphological ana-
lyzer did not lead to increased performance.

Finally, our high performance on languages
such as Polish and Swedish, whose training tree-
banks consist of 6578 and 5000 sentences, respec-
tively, show that our feature-rich model performs
robustly even on treebanks much smaller than the
Penn Treebank.°

The especially strong performance on Polish relative to
other systems is partially a result of our model being able to
produce unary chains of length two, which occur frequently
in the Polish treebank (Bjorkelund et al., 2013).
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[2 — (4 While..)) | ]

While “ Gangs ” is never lethargic , it is hindered by its plot .

Figure 5: An example of a sentence from the Stan-
ford Sentiment Treebank which shows the utility
of our span features for this task. The presence
of “While” under this kind of rule tells us that the
sentiment of the constituent to the right dominates
the sentiment to the left.

7 Sentiment Analysis

Finally, because the system is, at its core, a classi-
fier of spans, it can be used equally well for tasks
that do not normally use parsing algorithms. One
example is sentiment analysis. While approaches
to sentiment analysis often simply classify the sen-
tence monolithically, treating it as a bag of n-
grams (Pang et al., 2002; Pang and Lee, 2005;
Wang and Manning, 2012), the recent dataset of
Socher et al. (2013) imposes a layer of structure
on the problem that we can exploit. They annotate
every constituent in a number of training trees with
an integer sentiment value from 1 (very negative)
to 5 (very positive), opening the door for models
such as ours to learn how syntax can structurally
affect sentiment.”

Figure 5 shows an example that requires some
analysis of sentence structure to correctly under-
stand. The first constituent conveys positive senti-
ment with never lethargic and the second conveys
negative sentiment with hindered, but to determine
the overall sentiment of the sentence, we need to
exploit the fact that while signals a discounting of
the information that follows it. The grammar rule
2 — 4 1 already encodes the notion of the senti-
ment of the right child being dominant, so when
this is conjoined with our span feature on the first
word (While), we end up with a feature that cap-
tures this effect. Our features can also lexicalize
on other discourse connectives such as but or how-
ever, which often occur at the split point between
two spans.

"Note that the tree structure is assumed to be given; the
problem is one of labeling a fixed parse backbone.

7.1 Adapting to Sentiment

Our parser is almost entirely unchanged from the
parser that we used for syntactic analysis. Though
the treebank grammar is substantially different,
with the nonterminals consisting of five integers
with very different semantics from syntactic non-
terminals, we still find that parent annotation is ef-
fective and otherwise additional annotation layers
are not useful.

One structural difference between sentiment
analysis and syntactic parsing lies in where the rel-
evant information is present in a span. Syntax is
often driven by heads of constituents, which tend
to be located at the beginning or the end, whereas
sentiment is more likely to depend on modifiers
such as adjectives, which are typically present
in the middle of spans. Therefore, we augment
our existing model with standard sentiment anal-
ysis features that look at unigrams and bigrams
in the span (Wang and Manning, 2012). More-
over, the Stanford Sentiment Treebank is unique
in that each constituent was annotated in isolation,
meaning that context never affects sentiment and
that every word always has the same tag. We ex-
ploit this by adding an additional feature template
similar to our span shape feature from Section 4.4
which uses the (deterministic) tag for each word
as its descriptor.

7.2 Results

We evaluated our model on the fine-grained sen-
timent analysis task presented in Socher et al.
(2013) and compare to their released system. The
task is to predict the root sentiment label of each
parse tree; however, because the data is annotated
with sentiment at each span of each parse tree, we
can also evaluate how well our model does at these
intermediate computations. Following their exper-
imental conditions, we filter the test set so that it
only contains trees with non-neutral sentiment la-
bels at the root.

Table 5 shows that our model outperforms the
model of Socher et al. (2013)—both the published
numbers and latest released version—on the task
of root classification, even though the system was
not explicitly designed for this task. Their model
has high capacity to model complex interactions
of words through a combinatory tensor, but it ap-
pears that our simpler, feature-driven model is just
as effective at capturing the key effects of compo-
sitionality for sentiment analysis.
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‘ Root  All Spans
Non-neutral Dev (872 trees)
Stanford CoreNLP current | 50.7 80.8
This work 53.1 80.5
Non-neutral Test (1821 trees)
Stanford CoreNLP current | 49.1 80.2
Stanford EMNLP 2013 45.7 80.7
This work 49.6 80.4

Table 5: Fine-grained sentiment analysis results
on the Stanford Sentiment Treebank of Socher et
al. (2013). We compare against the printed num-
bers in Socher et al. (2013) as well as the per-
formance of the corresponding release, namely
the sentiment component in the latest version of
the Stanford CoreNLP at the time of this writ-
ing. Our model handily outperforms the results
from Socher et al. (2013) at root classification and
edges out the performance of the latest version of
the Stanford system. On all spans of the tree, our
model has comparable accuracy to the others.

8 Conclusion

To date, the most successful constituency parsers
have largely been generative, and operate by refin-
ing the grammar either manually or automatically
so that relevant information is available locally to
each parsing decision. Our main contribution is
to show that there is an alternative to such anno-
tation schemes: namely, conditioning on the input
and firing features based on anchored spans. We
build up a small set of feature templates as part of a
discriminative constituency parser and outperform
the Berkeley parser on a wide range of languages.
Moreover, we show that our parser is adaptable to
other tree-structured tasks such as sentiment anal-
ysis; we outperform the recent system of Socher et
al. (2013) and obtain state of the art performance
on their dataset.

Our system is available as open-source at
https://www.github.com/dlwh/epic.
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