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Message from the General Chair

Welcome to New Orleans and to NAACL HLT 2018 – the biggest NAACL to date. Natural Language
Processing and Computational Linguistics is constantly growing and changing with a constant flow of
new methods and topics. Every year also sees an even more exciting and diverse research community,
with a steadily increasing number researchers, companies both large and small, and a vibrant community
of practitioners and students who are excited at the prospect of taking on the newest challenges of the
discipline. This year’s NAACL HLT conference reflects what an exciting time this is for our field, and
highlights the vibrancy and vitality of our community.

I feel extremely lucky to be able to work with a fantastic program committee, especially the two
extremely dedicated, creative and resourceful program chairs: Amanda Stent and Heng Ji. Their
innovations include a new review form, intended to elicit higher quality reviews, the opportunity for
authors to review the reviewers, the Test-of-Time awards, and a program where poster and demo sessions
run consistently in parallel to the oral sessions, in order to allow the conference to reflect the ever
increasing diversity of research topics and the corresponding volume of accepted papers. I am especially
excited about the new Test-of-Time papers award session, and hope to see this new innovation become a
regular part of ACL conferences.

We have named the Test-of-Time award in memory of Aravind Joshi, who left us this year, after having
a huge lifetime impact on our community. We will always remember him for his gentle conversational
style, sharp focus, interest in linguistic, computational and mathematical properties of language, and his
lifetime commitment to mentoring women in NLP. I feel extremely lucky to have been one of his Ph.D.
students.

This year we also introduced an industrial track, with the aim of featuring papers that focus on scalable,
interpretable, reliable and customer facing methods for industrial applications of Natural Language
Processing. The idea of having such a track was proposed by Yunyao Li who strongly advocated for
it: this proposal was then discussed and approved by the NAACL board. After that, it was all go, with an
incredible amount of work to promote and organize it by the industrial track chairs: Jennifer Chu-Carroll,
Yunyao Li and Srinivas Bangalore.

The overall program looks amazing and reflects the cooperative way that everyone on the committee
worked together. What a team! I am so grateful for getting to be a part of this community of people,
and I really appreciate the enthusiasm and attention to detail reflected in their hard work: Amanda Stent
and Heng Ji (program chairs); Jennifer Chu-Carroll, Yunyao Li and Srinivas Bangalore (industrial track
chairs); Ying Lin (website chair); Marie Meteer and Jason Williams (workshop co-chairs); Mohit Bansal
and Rebecca Passonneau (tutorial co-chairs); Yang Liu, Tim Paek, and Manasi Patwardhan (demo co-
chairs); Chris Callison-Burch and Beth Hockey (Family-Friendly Program Co-Chairs) Stephanie Lukin
and Meg Mitchell (publication co-chairs); Jonathan May (handbook chair); Silvio Ricardo Cordeiro,
Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim (student cochairs) along with Swapna
Somasundaran and Sam Bowman (Faculty Advisors) for the student research workshop; Lena Reed
(student volunteer coordinator); Kristy Hollingshead, Kristen Johnson, and Parisa Kordjamshidi (local
sponsorships and exhibits cochairs); Yonatan Bisk and Wei Xu (publicity and social media chairs);
David Yarowsky and Joel Tetreault (treasurers) and Alexis Palmer and Jason Baldridge (the NAACL
international Sponsorship Team). Also thanks to Rich at SoftConf for his speedy response to questions
and his willingness to help us innovate with our new review form. And thanks to Julia Hockenmaier and
the whole NAACL Executive Board for always being willing to consult on any issue.

The program highlights three keynote speakers in the main track: Dilek Hakkani-Tür, Kevin Knight,
and Charles Yang. We also have two keynote speakers in the industry track: Mari Ostendorf and Daniel
Marcu. These talks promising to be interesting across a range of issues from language acquisition iniv



children to the commercial possibilities of conversational agents. The industry track will also feature
two panels, one on careers in industry (as compared to academia) and the other on ethics in NLP. The
program also includes six tutorials featuring topics of current interest and sources of innovation in the
field. We have sixteen workshops plus the student research workshop: some of these workshops have
become events in themselves with many of them repeated each year. We will also have plenary sessions
for the outstanding paper awards and the new Test-Of-Time papers award session.

Any event of this scale can only happen with the the hard work of a wonderful group of people. I
especially want to thank the NAACL board for being willing to consult on a range of different issues
and Priscilla Rasmussen for taking care of all the millions of details that need to be looked after every
single day to make sure the logistical aspects of the conference come together. I want to especially thank
Priscilla for her hard work and creativity organizing our social event: we first will go to Mardi Gras
World to see the world of wonders created each year for the Mardi Gras. From there we go to the river,
to the dockside River City Plaza and River City Ballroom for New Orleans’ famous cuisine and libations
and dancing to live Zydeco, funk, soul and R&B.

ACL has been working for several years to increase diversity at our conferences and in our community.
So, taking inspiration from ACL 2017, we aimed to make NAACL family friendly, by providing childcare
at the conference, and encouraging people to bring their families to the social events and breakfasts.
Diversity can also be a consequence of the support for students to attend the conference that we receive
from the NSF, CRA-CCC and CRA-W: this subsidizes student travel to the student research workshop
as well as their registration and ACL memberships. When combined with the support we are able to give
to our student volunteers, we aim to make it possible for students from all over the world to come to
the conference and be part of our community. We also decided, in consultation with the NAACL board,
to provide subsidies to the Widening NLP workshop, which is only being held for the second time at
this year’s NAACL (last year called the Women in NLP workshop). These subsidies enable participation
from students and young researchers from developing countries to attend the conference.

I am grateful to our sponsors for their generous contributions, which add so much to what we can do at
the conference. Our Diamond sponsors are Bloomberg, Google, and Toutiao AI Lab (ByteDance). The
Platinum sponsor is Amazon. The Gold Sponsors are Ebay, Grammarly, IBM Research, KPMG, Oracle,
Poly AI, Tulane University, Capital One and Two Sigma. The Silver sponsors are Nuance and Facebook,
and the Bronze sponsors are iMerit and USC/ISI.

Finally, there are many more people who through their hard work and dedication have contributed
to make this conference a success: the area chairs, workshop organizers, tutorial presenters, student
mentors, and reviewers. And of course you all, the attendees without whom there would be no
conference: you are the life and spirit of the conference and the NAACL community. I hope you all
have a fun and exciting time at NAACL HLT 2018!

NAACL HLT 2018 General Chair
Marilyn Walker, University of California Santa Cruz
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Message from the Program Co-Chairs

We welcome you to New Orleans for the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2018)! We
had three primary goals for NAACL HLT 2018: construct a great program; manage the integrity and
quality of the publication process; and ensure broad participation.

Construct a great program: NAACL HLT 2018 does have a great program, thanks to all of you!
We will have three exciting keynotes, from Charles Yang, Kevin Knight and Dilek Hakkani-Tür. 331
research track papers (205 long, 125 short), accepted following peer review, will be presented1. Four of
these papers have been identified as outstanding papers, and one will be named best paper. We will also
feature a “Test of Time” session with retrospectives (from the authors) on three influential papers from
ACL venues. We thank the committees who nominated and voted on these paper awards.

The main program at NAACL HLT 2018 also includes 16 TACL paper presentations, 20 demos, a student
research workshop and an industry track. Keynotes from both the research and industry tracks are
plenary. In a change from previous years of NAACL HLT, and motivated by EMNLP 2017, poster and
oral presentation sessions will be held in parallel during the day. All posters are grouped thematically
(including posters from the industry track and student research workshop and demos) and assigned to
poster sessions so as to not be against oral presentation sessions with the same theme.

Manage the integrity and quality of the publication process: To manage load, we decided that
each area chair should be responsible for no more than 30 submissions and that reviewers should be
responsible for reviewing no more than 3 submissions. To help reviewers, we and the ACL program
co-chairs constructed a more structured review form, with questions related to the new ACL guidelines
on publication and reviewing, as well as to contribution types, experimental methods (thank you, Bonnie
Webber!), software and handling of data.

We recruited an excellent group of 72 area chairs; we thank them for their leadership, and for nominating
and voting on outstanding papers, outstanding reviewers and test of time papers. 1372 individuals
reviewed papers for the conference (as program committee members, ad hoc reviewers or secondary
reviewers); all but 49 reviewers had no more than 3 submissions to review overall, and the 49 reviewers
who took on a heavier load did so voluntarily. We thank all our reviewers, especially the ad-hoc reviewers
who provided last minute reviews and the outstanding reviewers identified by the area chairs.

Submissions were assigned to area chairs and reviewers using a combination of area chair expertise,
Toronto Paper Matching System (TPMS) scores and reviewer bids. Both long and short paper
submissions received 3 reviews each. Long paper authors had an opportunity to respond to reviews.
Accept/reject suggestions were made by area chairs working in small groups of 2-3 and discussing with
reviewers as necessary; final decisions were made by the program chairs. Where there was disagreement
or discussion, one area chair wrote a short meta review that was shared with the authors.

This year, if the authors of a NAACL HLT 2018 submission and the author of a review for that submission
both consented, then we will include the review in a review corpus to be released jointly with the program
chairs of ACL, Iryna Gureyvich and Yusuke Miyao. We also asked authors of accepted papers to upload
the source code for their papers. Both of these corpora will be released in the coming months.

The health of our field as a science is dependent on a scalable peer review process, which in turn depends
on (a) conscientious effort from a broad pool of expert reviewers, and (b) tools, processes and policies
that can structure and facilitate reviewing. As a field we are at a breaking point: we are growing rapidly,

1We received 1122 research track submissions (664 long, 458 short). 33 were rejected without review and 85 were
withdrawn by the authors either before, during or after review. vi



with corresponding heavy load on experienced reviewers; and we lack good tools to manage the process.
Peer review involves several tasks that we, as NLP researchers, ought to be uniquely qualified to address,
including expertise sourcing, network analysis and text mining. We have written a proposal with other
members of the ACL community about ways the ACL can improve our peer review infrastructure. We
have also written a collection of “how to” documents that we will pass on to future conference organizers.

Ensure broad participation: To ensure broad participation, we recruited program committee members
using a similar method to that used for NAACL HLT 2016: we invited anyone who had published
repeatedly in ACL sponsored venues, who had a PhD or significant experience in the field spanning
more than 5 years, and whose email address was up to date in START. We thank Dragomir Radev for
giving us a list of names from the ACL anthology.

We also kept a blog where we discussed and attempted to “demystify” each stage of the publication
process. This blog can be found at the conference website, http://naacl2018.org. We are very
grateful to the researchers who wrote guest blog posts, including Justine Cassell, Barbara Plank, Preslav
Nakov, Omer Levy, Gemma Boleda, Emily Bender, Nitin Madnani, David Chiang, Kevin Knight, Dan
Bikel and Joakim Nivre.

On our blog, we reported on the diversity of our area chair, reviewer and author pools in terms of years
of experience, affiliation type and geography, and gender. We will include these details in our report to
the NAACL Executive Committee. We hope that future years’ chairs will make similar reports.

The excellence of the overall NAACL HLT 2018 program is thanks to all the chairs and organizers. We
especially thank the following people: Margaret Mitchell and Stephanie Lukin, the publication chairs;
Jonathan May, the handbook chair; Yonatan Bisk and Wei Xu, the publicity and social media chairs;
Ying Lin, the tireless website chair; and Marilyn Walker, the NAACL HLT 2018 general chair. We thank
the chairs of NAACL HLT 2016 and ACL 2017 for their informative blogs, and the program chairs of
NAACL HLT 2016, Owen Rambow and Ani Nenkova, for their advice. We thank the program co-chairs
of ACL 2018, Iryna Gurevych and Yusuke Miyao, who have been very collaborative on matters related to
reviewing. We thank Shuly Winter, who helped fix a serious START bug. We thank Julia Hockenmaier
and the NAACL Executive Committee for their support. We are grateful for the professional work of
Rich Gerber and his colleagues at SoftConf (START), and of Priscilla Rasmussen from the ACL.

It has been an enormous privilege for us to see the scientific advances that will be presented at this
conference. We would like to close with some advice for you, the conference attendees.

• The presenters have made valuable contributions to our science; their oral, poster and demo
presentations are worth your time and attention.
• Talk to some people you haven’t previously met. They may be your future collaborators!
• You can follow the conference on social media; we have a conference app and website where we

will post any updates to the program, and our twitter handle is @naaclhlt.
• This event is run by a professional organization with a code of conduct2. If you observe or are the

recipient of unprofessional behavior, you may contact any current member of the ACL or NAACL
Executive Committees, the NAACL HLT general chair (Marilyn Walker), us (the program chairs),
or Priscilla Rasmussen (acl@aclweb.org). We will hold your communications in strict confidence
and consult you before taking any action.

We look forward to a wonderful conference!

NAACL HLT 2018 Program Co-Chairs
Heng Ji, RPI
Amanda Stent, Bloomberg

2https://www.aclweb.org/adminwiki/index.php?title=Anti-Harassment_Policyvii
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Outstanding Papers
For NAACL HLT 2018 we recognize four outstanding research track papers (one of these will be named
best paper). These four papers were selected by a committee composed of Joyce Chai (Michigan State
University), Michael Collins (Columbia University), Jennifer Foster (Dublin City University), Smaranda
Muresan (Columbia University) and Joel Tetreault (Grammarly; chair), all NAACL HLT 2018 area chairs
with no conflicts with the candidate outstanding papers. The nine candidate papers were selected by the
program chairs from nineteen papers nominated by the area chairs. These papers will be presented in a
plenary session on the last day of the conference. Congratulations to the authors!

• Deep Contextualized Word Representations, by Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer

• Learning to Map Context-Dependent Sentences to Executable Formal Queries, by Alane Suhr,
Srinivasan Iyer and Yoav Artzi

• Neural Text Generation in Stories using Entity Representations as Context, by Elizabeth Clark,
Yangfeng Ji and Noah A. Smith

• Recurrent Neural Networks as Weighted Language Recognizers, by Yining Chen, Sorcha Gilroy,
Andreas Maletti, Jonathan May and Kevin Knight

Test of Time Papers
For NAACL HLT 2018 we recognize three influential and inspiring Computational Linguistics (CL) pa-
pers which were published between 2002-2012 at the Association for Computational Linguistics (ACL)
conferences (including ACL, NAACL, EACL, EMNLP and CONLL), workshops and journals (including
TACL and CL), to recognize research that has had long-lasting influence until today, including positive
impact on a subarea of CL, across subareas of CL, and outside of the CL research community. These pa-
pers may have proposed new research directions and new technologies, or released results and resources
that have greatly benefit the community. Nineteen candidate test of time papers were nominated by our
area chairs. Separate votes on these papers were held separately by two committees: an expert award
committee consisting of all ACL and NAACL general chairs and program chairs and NAACL board
members from 2013-2018 who did not have a conflict with the nominated papers, and a community
award committee consisting of the 1000 authors who have published the most papers at ACL venues and
who did not have a conflict with the nominated papers. These papers will be re-presented by the authors
in a plenary session on the second day of the conference. Congratulations to the authors!

• BLEU: a Method for Automatic Evaluation of Machine Translation, by Kishore Papineni, Salim
Roukos, Todd Ward and Wei-Jing Zhu

• Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Per-
ceptron Algorithms, by Michael Collins

• Thumbs up?: Sentiment Classification using Machine Learning Techniques, by Bo Pang, Lillian
Lee and Shivakumar Vaithyanathan
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Keynote Talk: Why 72?
Charles Yang

University of Pennsylvania

Biography
Charles is a Professor of Linguistics, Computer Science, and Psychology at the University of Pennsyl-
vania and directs the Program in Cognitive Science. He has spent a long time to work out the tricks
children use to learn languages and is now ready to try them out on machines. His most recent book, The
Price of Linguistic Productivity, is the winner of the 2017 LSA Leonard Bloomfield award.

Keynote Talk: The Moment When the Future Fell Asleep
Kevin Knight

University of Southern California / Information Sciences Institute

Biography
Kevin is a professor of computer science at the University of Southern California and fellow of the
Information Sciences Institute. He is a 2014 fellow of the ACL for foundational contributions to ma-
chine translation, to the application of automata for NLP, to decipherment of historical manuscripts, to
semantics and to generation.

Keynote Talk: Google Assistant or My Assistant? Towards Personalized
Situated Conversational Agents

Dilek Hakkani-Tür
Google Research

Abstract
Interacting with machines in natural language has been a holy grail since the beginning of computers.
Given the difficulty of understanding natural language, only in the past couple of decades, we started
seeing real user applications for targeted/limited domains. More recently, advances in deep learning
based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational
systems. However, personalization (i.e., learning to take actions from users and learning about users
beyond memorizing simple attributes) remains a research challenge. In this talk, I’ll review end-to-end
situated dialogue systems research, with components for situated language understanding, dialogue state
tracking, policy, and language generation. The talk will highlight novel approaches where dialogue
is viewed as a collaborative game between a user and an agent in the presence of visual information.
The situated conversational agent can be bootstrapped using user simulation (crawl), improved through
interactions with crowd-workers (walk), and iteratively refined with real user interactions (run).

Biography
Dilek is a research scientist at Google Research Dialogue Group and has previously held positions at
Microsoft Research, ICSI, and AT&T Labs – Research. She is a fellow of the IEEE and of ISCA. Her
research interests include conversational AI, natural language and speech processing, spoken dialogue
systems, and machine learning for language processing.
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Enhanced Word Representations for Bridging Anaphora Resolution

Yufang Hou
IBM Research Ireland
yhou@ie.ibm.com

Abstract

Most current models of word representations
(e.g., GloVe) have successfully captured fine-
grained semantics. However, semantic simi-
larity exhibited in these word embeddings is
not suitable for resolving bridging anaphora,
which requires the knowledge of associative
similarity (i.e., relatedness) instead of seman-
tic similarity information between synonyms
or hypernyms. We create word embeddings
(embeddings PP) to capture such relatedness
by exploring the syntactic structure of noun
phrases. We demonstrate that using embed-
dings PP alone achieves around 30% of accu-
racy for bridging anaphora resolution on the
ISNotes corpus. Furthermore, we achieve a
substantial gain over the state-of-the-art sys-
tem (Hou et al., 2013b) for bridging antecedent
selection.

1 Introduction

Bridging (Clark, 1975; Prince, 1981; Gundel et al.,
1993) establishes entity coherence in a text by
linking anaphors and antecedents via various non-
identity relations. In Example 1, the link between
the bridging anaphor (the chief cabinet secre-
tary) and the antecedent (Japan) establish local
(entity) coherence.

(1) Yet another political scandal is racking Japan.
On Friday, the chief cabinet secretary an-
nounced that eight cabinet ministers had re-
ceived five million yen from the industry.

Choosing the right antecedents for bridging
anaphors is a subtask of bridging resolution. For
this substask, most previous work (Poesio et al.,
2004; Lassalle and Denis, 2011; Hou et al., 2013b)
calculate semantic relatedness between an anaphor
and its antecedent based on word co-occurrence
count using certain syntactic patterns.

Most recently, word embeddings gain a lot pop-
ularity in NLP community because they reflect hu-
man intuitions about semantic similarity and re-
latedness. Most word representation models ex-
plore the distributional hypothesis which states
that words occurring in similar contexts have
similar meanings (Harris, 1954). State-of-the-
art word representations such as word2vec skip-
gram (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014) have been shown to perform well
across a variety of NLP tasks, including textual en-
tailment (Rocktäschel et al., 2016), reading com-
prehension (Chen et al., 2016), and information
status classification (Hou, 2016). However, these
word embeddings capture both “genuine” similar-
ity and relatedness, and they may in some cases
be detrimental to downstream performance (Kiela
et al., 2015). Bridging anaphora resolution is one
of such cases which requires lexical association
knowledge instead of semantic similarity informa-
tion between synonyms or hypernyms. In Exam-
ple 1, among all antecedent candidates, “the chief
cabinet secretary” is the most similar word to the
bridging anaphor “eight cabinet ministers” but
obviously it is not the antecedent for the latter.

In this paper, we explore the syntactic structure
of noun phrases (NPs) to derive contexts for nouns
in the GloVe model. We find that the prepositional
structure (e.g., X of Y) and the possessive struc-
ture (e.g., Y’s X) are a useful context source for
the representation of nouns in terms of relatedness
for bridging relations.

We demonstrate that using our word embed-
dings based on PP contexts (embeddings PP)
alone achieves around 30% of accuracy on bridg-
ing anaphora resolution in the ISNotes corpus,
which is 12% better than the original GloVe word
embeddings. Moreover, adding an additional fea-
ture based on embeddings PP leads to a significant
improvement over a state-of-the-art system on

1



bridging anaphora resolution (Hou et al., 2013b).

2 Related Work

Bridging anaphora resolution. Anaphora
plays an important role in discourse comprehen-
sion. Different from identity anaphora which
indicates that a noun phrase refers back to the
same entity introduced by previous descriptions in
the discourse, bridging anaphora links anaphors
and antecedents via lexico-semantic, frame or
encyclopedic relations.

Bridging resolution has to recognize bridging
anaphors and find links to antecedents. There has
been a few works tackling full bridging resolu-
tion (Hahn et al., 1996; Hou et al., 2014). In re-
cent years, various computational approaches have
been developed for bridging anaphora recognition
(Markert et al., 2012; Hou et al., 2013a) and for
bridging antecedent selection (Poesio et al., 2004;
Hou et al., 2013b). This work falls into the latter
category and we create a new lexical knowledge
resource for the task of choosing antecedents for
bridging anaphors.

Previous work on bridging anaphora resolution
(Poesio et al., 2004; Lassalle and Denis, 2011;
Hou et al., 2013b) explore word co-occurence
count in certain syntactic preposition patterns to
calculate word relatedness. These patterns encode
associative relations between nouns which cover
a variety of bridging relations. Our PP context
model exploits the same principle but is more gen-
eral. Unlike previous work which only consider
a small number of prepositions per anaphor, the
PP context model considers all prepositions for all
nouns in big corpora. It also includes the posses-
sive structure of NPs. The resulting word embed-
dings are a general resource for bridging anaphora
resolution. In addition, it enables efficient compu-
tation of word association strength through low-
dimensional matrix operations.

Enhanced word embeddings. Recently, a few
approaches investigate different ways to improve
the vanilla word embeddings. Levy and Goldberg
(2014) explore the dependency-based contexts in
the Skip-Gram model. The authors replace the
linear bag-of-words contexts in the original Skip-
Gram model with the syntactic contexts derived
from the automatically parsed dependency trees.
They observe that the dependency-based embed-
dings exhibit more functional similarity than the
original skip-gram embeddings. Heinzerling et al.

(2017) show that incorporating dependency-based
word embeddings into their selectional preference
model slightly improve coreference resolution per-
formance. Kiela et al. (2015) try to learn word em-
beddings for similarity and relatedness separately
by utilizing a thesaurus and a collection of psycho-
logical association norms. The authors report that
their relatedness-specialized embeddings perform
better on document topic classification than simi-
larity embeddings. Schwartz et al. (2016) demon-
strate that symmetric patterns (e.g, X or Y) are
the most useful contexts for the representation of
verbs and adjectives. Our work follows in this vein
and we are interested in learning word representa-
tions for bridging relations.

3 Approach

3.1 Asymmetric Prepositional and Possessive
Structures

The syntactic prepositional and possessive struc-
tures of NPs encode a variety of bridging rela-
tions between anaphors and their antecedents. For
instance, the rear door of that red car indicates
the part-of relation between “door” and “car”, and
the company’s new appointed chairman implies
the employment relation between “chairman” and
“company”. We therefore extract noun pairs door–
car, chairman–company by using syntactic struc-
ture of NPs which contain prepositions or posses-
sive forms.

It is worth noting that bridging relations ex-
pressed in the above syntactic structures are asym-
metric. So for each noun pair, we keep the head on
the left and the noun modifier on the right. How-
ever, a lot of nouns can appear on both positions,
such as “travelers in the train station”, “travelers
from the airport”, “hotels for travelers”, “the des-
tination for travelers”. To capture the differences
between these two positions, we add the postfix
“ PP” to the nouns on the left. Thus we extract the
following four pairs from the above NPs: travel-
ers PP–station, travelers PP–airport, hotels PP–
travelers, destination PP–travelers.

3.2 Word Embeddings Based on PP Contexts
(embeddings PP)

Our PP context model is based on GloVe (Pen-
nington et al., 2014), which obtains state-of-the-
art results on various NLP tasks. We extract noun
pairs as described in Section 3.1 from the automat-
ically parsed Gigaword corpus (Parker et al., 2011;

2



Target Word embeddings PP GloVe Giga
president minister, mayor, governor, clinton vice, presidency, met, former

bush presidents
president PP vice-president PP, federation, republic —

usa, corporation
residents villagers, citizens, inhabitants, families locals, villagers, people, citizens

participants homes
residents PP resident PP, neighborhood, shemona1 —

ashraf, suburbs
members participants, leaders, colleagues, officials member, representatives, others, leaders

lawmakers groups
members PP member PP, representatives PP, basij2 —

leaders PP, community
travelers travellers, thirsts PP, shoppers travellers, passengers, vacationers

quarantines PP, needle-sharing PP tourists, shoppers
travelers PP e-tickets, travellers PP, cairngorms3 —

flagstaffs PP, haneda4

1 Shemona is a city in Israel. 2 Basij is a paramilitary group in Iran.
3 Cairngorms is mountain range in Scotland. 4 Haneda is an airport in Japan.

Table 1: Target words and their top five nearest neighbors in embeddings PP and GloVe Giga

Napoles et al., 2012). We treat each noun pair as a
sentence containing only two words and concate-
nate all 197 million noun pairs in one document.
We employ the GloVe tookit1 to train the PP con-
text model on the above extracted noun pairs. All
tokens are converted to lowercase, and words that
appear less than 10 times are filtered. This results
in a vocabulary of around 276k words and 188k
distinct nouns without the postfix “ PP”. We set
the context window size as two and keep other pa-
rameters the same as in Pennington et al. (2014).
We report results for 100 dimension embeddings,
though similar trends were also observed with 200
and 300 dimensions.

For comparison, we also trained a 100 dimen-
sion word embeddings (GloVe Giga) on the whole
Gigaword corpus, using the same parameters re-
ported in Pennington et al. (2014).

Table 1 lists a few target words and their top
five nearest neighbors (using cosine similarity) in
embeddings PP and GloVe Giga respectively. For
the target words “residents” and “members”, both
embeddings PP and GloVe Giga yield a list of
similar words and most of them have the same se-
mantic type as the target word. For the “travel-
ers” example, GloVe Giga still presents the similar
words with the same semantic type, while embed-

1https://github.com/stanfordnlp/GloVe

dings PP generates both similar words and related
words (words containing the postfix “ PP”). More
importantly, it seems that embeddings PP can
find reasonable semantic roles for nominal pred-
icates (target words containing the postfix “ PP”).
For instance, “president PP” is mostly related to
countries or organizations, and “residents PP” is
mostly related to places.

The above examples can be seen as qualita-
tive evaluation for our PP context model. We as-
sume that embeddings PP can be served as a lex-
ical knowledge resource for bridging antecedent
selection. In the next section, we will demonstrate
the effectiveness of embeddings PP for the task of
bridging anaphora resolution.

4 Quantitative Evaluation

For the task of bridging anaphora resolution, we
use the dataset ISNotes2 released by Hou et al.
(2013b). This dataset contains around 11,000
NPs annotated for information status including
663 bridging NPs and their antecedents in 50 texts
taken from the WSJ portion of the OntoNotes
corpus (Weischedel et al., 2011). It is notable
that bridging anaphors in ISNotes are not lim-
ited to definite NPs as in previous work (Poe-
sio et al., 1997, 2004; Lassalle and Denis, 2011).

2http://www.h-its.org/english/research/nlp/download

3



The semantic relations between anaphor and an-
tecedent in the corpus are quite diverse: only
14% of anaphors have a part-of/attribute-of rela-
tion with the antecedent and only 7% of anaphors
stand in a set relationship to the antecedent. 79%
of anaphors have “other” relation with their an-
tecedents, without further distinction. This in-
cludes encyclopedic relations such as the waiter
– restaurant as well as context-specific relations
such as the thieves – palms.

We follow Hou et al. (2013b)’s experimen-
tal setup and reimplement MLN model II as our
baseline. We first test the effectiveness of em-
beddings PP alone to resolve bridging anaphors.
Then we show that incorporating embeddings PP
into MLN model II significantly improves the re-
sult.

4.1 Using embeddings PP Alone

For each anaphor a, we simply construct the list
of antecedent candidates Ea using NPs preceding
a from the same sentence as well as from the pre-
vious two sentences. Hou et al. (2013b) found
that globally salient entities are likely to be the an-
tecedents of all anaphors in a text. We approxi-
mate this by adding NPs from the first sentence of
the text to Ea. This is motivated by the fact that
ISNotes is a newswire corpus and globally salient
entities are often introduced in the beginning of an
article. On average, each bridging anaphor has 19
antecedent candidates using this simple antecedent
candidate selection strategy.

Given an anaphor a and its antecedent candidate
list Ea, we predict the most related NP among all
NPs in Ea as the antecedent for a. The related-
ness is measured via cosine similarity between the
head of the anaphor (plus the postfix “ PP”) and
the head of the candidate.

This simple deterministic approach based on
embeddings PP achieves an accuracy of 30.32%
on the ISNotes corpus. Following Hou et al.
(2013b), accuracy is calculated as the proportion
of the correctly resolved bridging anaphors out of
all bridging anaphors in the corpus.

We found that using embeddings PP outper-
forms using other word embeddings by a large
margin (see Table 2), including the original GloVe
vectors trained on Gigaword and Wikipedia 2014
dump (GloVe GigaWiki14) and GloVe vectors that
we trained on Gigaword only (GloVe Giga). This
confirms our observation in Section 3.2 that em-

acc
GloVe GigaWiki14 18.10
GloVe Giga 19.00
embeddings wo PPSuffix 22.17
embeddings PP 30.32

Table 2: Results of embeddings PP alone for bridging
anaphora resolution compared to the baselines. Bold
indicates statistically significant differences over the
baselines using randomization test (p < 0.01).

biddings PP can capture the relatedness between
anaphor and antecedent for various bridging rela-
tions.

To understand the role of the suffix “ PP” in
embeddings PP, we trained word vectors embed-
dings wo PPSuffix using the same noun pairs as in
embeddings PP. For each noun pair, we remove
the suffix “ PP” attached to the head noun. We
found that using embeddings wo PPSuffix only
achieves an accuracy of 22.17% (see Table 2).
This indicates that the suffix “ PP” is the most sig-
nificant factor in embeddings PP. Note that when
calculating cosine similarity based on the first
three word embeddings in Table 2, we do not add
the suffix “ PP” to the head of an bridging anaphor
because such words do not exist in these word vec-
tors.

4.2 MLN model II + embeddings PP

MLN model II is a joint inference framework
based on Markov logic networks (Domingos and
Lowd, 2009). In addition to modeling the seman-
tic, syntactic and lexical constraints between the
anaphor and the antecedent (local constraints), it
models that:

• semantically or syntactically related
anaphors are likely to share the same
antecedent (joint inference constraints);

• a globally salient entity is preferred to be the
antecedent of all anaphors in a text even if
the entity is distant to the anaphors (global
salience constraints);

• several bridging relations are strongly sig-
naled by the semantic classes of the anaphor
and the antecedent, e.g., a job title anaphor
such as chairman prefers a GPE or an or-
ganization antecedent (semantic class con-
straints).
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acc
MLN model II 41.32
MLN model II + GloVe GigaWiki14 39.52
MLN model II + embeddings wo PPSuffix 40.42
MLN model II + embeddings PP 45.85

Table 3: Results of integrating embeddings PP into MLN model II for bridging anaphora resolution compared
to the baselines. Bold indicates statistically significant differences over the baselines using randomization test
(p < 0.01).

Due to the space limit, we omit the details of MLN
model II, but refer the reader to Hou et al. (2013b)
for a full description.

We add one constraint into MLN model II based
on embeddings PP: each bridging anaphor a is
linked to its most related antecedent candidate us-
ing cosine similarity. We use the same strategy as
in the previous section to construct the list of an-
tecedent candidates for each anaphor. Unlike the
previous section, which only uses the vector of the
NP head to calculate relatedness, here we include
all common nouns occurring before the NP head
as well because they also represent the core se-
mantic of an NP (e.g., “earthquake victims” and
“the state senate”).

Specifically, given an NP, we first construct a
list N which consists of the head and all common
nouns appearing before the head, we then repre-
sent the NP as a vector v using the following for-
mula, where the suffix “ PP” is added to each n if
the NP is a bridging anaphor:

v =

∑
n∈N embeddings PPn

|N | (1)

Table 3 shows that adding the constraint
based on embeddings PP improves the result
of MLN model II by 4.5%. However, adding
the constraint based on the vanilla word em-
beddings (GloVe GigaWiki14) or the word em-
beddings without the suffix “ PP” (embed-
dings wo PPSuffix) slightly decreases the result
compared to MLN model II. Although MLN model
II already explores preposition patterns to calcu-
late relatedness between head nouns of NPs, it
seems that the feature based on embeddings PP is
complementary to the original preposition pattern
feature. Furthermore, the vector model allows us
to represent the meaning of an NP beyond its head
easily.

5 Conclusions

We present a PP context model based on GloVe
by exploring the asymmetric prepositional struc-
ture (e.g., X of Y) and possessive structure (e.g.,
Y’s X) of NPs. We demonstrate that the resulting
word vectors (embeddings PP) are able to capture
the relatedness between anaphor and antecedent in
various bridging relations. In addition, adding the
constraint based on embeddings PP yields a sig-
nificant improvement over a state-of-the-art sys-
tem on bridging anaphora resolution in ISNotes
(Hou et al., 2013b).

For the task of bridging anaphora resolution,
Hou et al. (2013b) pointed out that future work
needs to explore wider context to resolve context-
specific bridging relations. Here we combine the
semantics of pre-nominal modifications and the
head by vector average using embeddings PP. We
hope that our embedding resource3 will facilitate
further research into improved context modeling
for bridging relations.
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Abstract

We present an empirical study of gender bias
in coreference resolution systems. We first in-
troduce a novel, Winograd schema-style set of
minimal pair sentences that differ only by pro-
noun gender. With these Winogender schemas,
we evaluate and confirm systematic gender
bias in three publicly-available coreference
resolution systems, and correlate this bias with
real-world and textual gender statistics.

1 Introduction

There is a classic riddle: A man and his son get
into a terrible car crash. The father dies, and the
boy is badly injured. In the hospital, the surgeon
looks at the patient and exclaims, “I can’t operate
on this boy, he’s my son!” How can this be?

That a majority of people are reportedly unable
to solve this riddle1 is taken as evidence of un-
derlying implicit gender bias (Wapman and Belle,
2014): many first-time listeners have difficulty as-
signing both the role of “mother” and “surgeon” to
the same entity.

As the riddle reveals, the task of coreference
resolution in English is tightly bound with ques-
tions of gender, for humans and automated sys-
tems alike (see Figure 1). As awareness grows
of the ways in which data-driven AI technolo-
gies may acquire and amplify human-like biases
(Caliskan et al., 2017; Barocas and Selbst, 2016;
Hovy and Spruit, 2016), this work investigates
how gender biases manifest in coreference reso-
lution systems.

There are many ways one could approach this
question; here we focus on gender bias with re-
spect to occupations, for which we have corre-
sponding U.S. employment statistics. Our ap-
proach is to construct a challenge dataset in

1The surgeon is the boy’s mother.

Figure 1: Stanford CoreNLP rule-based coreference
system resolves a male and neutral pronoun as coref-
erent with “The surgeon,” but does not for the corre-
sponding female pronoun.

the style of Winograd schemas, wherein a pro-
noun must be resolved to one of two previously-
mentioned entities in a sentence designed to be
easy for humans to interpret, but challenging for
data-driven systems (Levesque et al., 2011). In
our setting, one of these mentions is a person
referred to by their occupation; by varying only
the pronoun’s gender, we are able to test the im-
pact of gender on resolution. With these “Wino-
gender schemas,” we demonstrate the presence
of systematic gender bias in multiple publicly-
available coreference resolution systems, and that
occupation-specific bias is correlated with em-
ployment statistics. We release these test sen-
tences to the public.2

In our experiments, we represent gender as a
categorical variable with either two or three possi-
ble values: female, male, and (in some cases) neu-
tral. These choices reflect limitations of the textual
and real-world datasets we use.

2 Coreference Systems

In this work, we evaluate three publicly-
available off-the-shelf coreference resolution sys-
tems, representing three different machine learn-
ing paradigms: rule-based systems, feature-driven

2https://github.com/rudinger/
winogender-schemas
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statistical systems, and neural systems.

Rule-based In the absence of large-scale data
for training coreference models, early systems re-
lied heavily on expert knowledge. A frequently
used example of this is the Stanford multi-pass
sieve system (Lee et al., 2011). A deterministic
system, the sieve consists of multiple rule-based
models which are applied in succession, from
highest-precision to lowest. Gender is among the
set of mention attributes identified in the very first
stage of the sieve, making this information avail-
able throughout the system.

Statistical Statistical methods, often with mil-
lions of parameters, ultimately surpassed the per-
formance of rule-based systems on shared task
data (Durrett and Klein, 2013; Björkelund and
Kuhn, 2014). The system of Durrett and Klein
(2013) replaced hand-written rules with simple
feature templates. Combinations of these features
implicitly capture linguistic phenomena useful for
resolving antecedents, but they may also uninten-
tionally capture bias in the data. For instance, for
occupations which are not frequently found in the
data, an occupation+pronoun feature can be highly
informative, and the overly confident model can
exhibit strong bias when applied to a new domain.

Neural The move to deep neural models led to
more powerful antecedent scoring functions, and
the subsequent learned feature combinations re-
sulted in new state-of-the-art performance (Wise-
man et al., 2015; Clark and Manning, 2016b).
Global inference over these models further im-
proved performance (Wiseman et al., 2016; Clark
and Manning, 2016a), but from the perspective
of potential bias, the information available to the
model is largely the same as in the statistical mod-
els. A notable exception is in the case of sys-
tems which make use of pre-trained word embed-
dings (Clark and Manning, 2016b), which have
been shown to contain bias and have the potential
to introduce bias into the system.

Noun Gender and Number Many coreference
resolution systems, including those described
here, make use of a common resource released by
Bergsma and Lin (2006)3 (“B&L”): a large list of
English nouns and noun phrases with gender and

3This data was distributed in the CoNLL 2011 and 2012
shared tasks on coreference resolution. (Pradhan et al., 2011,
2012)

number counts over 85GB of web news. For ex-
ample, according to the resource, 9.2% of men-
tions of the noun “doctor” are female. The re-
source was compiled by bootstrapping coreference
information from the dependency paths between
pairs of pronouns. We employ this data in our
analysis.

3 Winogender Schemas

Our intent is to reveal cases where coreference
systems may be more or less likely to recognize a
pronoun as coreferent with a particular occupation
based on pronoun gender, as observed in Figure 1.
To this end, we create a specialized evaluation set
consisting of 120 hand-written sentence templates,
in the style of the Winograd Schemas (Levesque
et al., 2011). Each sentence contains three refer-
ring expressions of interest:

1. OCCUPATION , a person referred to by their
occupation and a definite article, e.g., “the
paramedic.”

2. PARTICIPANT , a secondary (human) partic-
ipant, e.g., “the passenger.”

3. PRONOUN , a pronoun that is coreferent with
either OCCUPATION or PARTICIPANT.

We use a list of 60 one-word occupations ob-
tained from Caliskan et al. (2017) (see supple-
ment), with corresponding gender percentages
available from the U.S. Bureau of Labor Statis-
tics.4 For each occupation, we wrote two simi-
lar sentence templates: one in which PRONOUN is
coreferent with OCCUPATION, and one in which
it is coreferent with PARTICIPANT (see Figure 2).
For each sentence template, there are three PRO-
NOUN instantiations (female, male, or neutral),
and two PARTICIPANT instantiations (a specific
participant, e.g., “the passenger,” and a generic
paricipant, “someone.”) With the templates fully
instantiated, the evaluation set contains 720 sen-
tences: 60 occupations× 2 sentence templates per
occupation × 2 participants × 3 pronoun genders.

Validation Like Winograd schemas, each sen-
tence template is written with one intended cor-
rect answer (here, either OCCUPATION or PAR-

450 are from the supplement of Caliskan et al. (2017), an
additional 7 from personal communication with the authors,
and three that we added: doctor, firefighter, and secretary.
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(1a) The paramedic performed CPR on the passenger
even though she/he/they knew it was too late.

(2a) The paramedic performed CPR on the passenger
even though she/he/they was/were already dead.

(1b) The paramedic performed CPR on someone
even though she/he/they knew it was too late.

(2b) The paramedic performed CPR on someone
even though she/he/they was/were already dead.

Figure 2: A “Winogender” schema for the occupation
paramedic. Correct answers in bold. In general, OC-
CUPATION and PARTICIPANT may appear in either or-
der in the sentence.

TICIPANT).5 We aimed to write sentences where
(1) pronoun resolution was as unambiguous for
humans as possible (in the absence of additional
context), and (2) the resolution would not be af-
fected by changing pronoun gender. (See Figure
2.) Nonetheless, to ensure that our own judgments
are shared by other English speakers, we vali-
dated all 720 sentences on Mechanical Turk, with
10-way redundancy. Each MTurk task included
5 sentences from our dataset, and 5 sentences
from the Winograd Schema Challenge (Levesque
et al., 2011)6, though this additional validation
step turned out to be unnecessary.7 Out of 7200
binary-choice worker annotations (720 sentences
× 10-way redundancy), 94.9% of responses agree
with our intended answers. With simple major-
ity voting on each sentence, worker responses
agree with our intended answers for 718 of 720
sentences (99.7%). The two sentences with low
agreement have neutral gender (“they”), and are
not reflected in any binary (female-male) analysis.

Correlation (r) RULE STAT NEURAL

B&L 0.87 0.46 0.35
BLS 0.55 0.31 0.31

Table 1: Correlation values for Figures 3 and 4.

5Unlike Winograd schemas, we are not primarily con-
cerned with whether these sentences are “hard” to solve, e.g.,
because they would require certain types of human knowl-
edge or could not be easily solved with word co-occurrence
statistics.

6We used the publicly-available examples from
https://cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/WSCollection.html

7In the end, we did not use the Winograd schemas to fil-
ter annotators, as raw agreement on the Winogender schemas
was much higher to begin with (94.9% Winogender vs.
86.5% Winograd).
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Figure 3: Gender statistics from Bergsma and Lin
(2006) correlate with Bureau of Labor Statistics 2015.
However, the former has systematically lower female
percentages; most points lie well below the 45-degree
line (dotted). Regression line and 95% confidence in-
terval in blue. Pearson r = 0.67.

4 Results and Discussion

We evaluate examples of each of the three coref-
erence system architectures described in 2: the
Lee et al. (2011) sieve system from the rule-
based paradigm (referred to as RULE), Durrett
and Klein (2013) from the statistical paradigm
(STAT), and the Clark and Manning (2016a) deep
reinforcement system from the neural paradigm
(NEURAL).

By multiple measures, the Winogender schemas
reveal varying degrees of gender bias in all three
systems. First we observe that these systems do
not behave in a gender-neutral fashion. That is to
say, we have designed test sentences where cor-
rect pronoun resolution is not a function of gen-
der (as validated by human annotators), but system
predictions do exhibit sensitivity to pronoun gen-
der: 68% of male-female minimal pair test sen-
tences are resolved differently by the RULE sys-
tem; 28% for STAT; and 13% for NEURAL.

Overall, male pronouns are also more likely to
be resolved as OCCUPATION than female or neu-
tral pronouns across all systems: for RULE, 72%
male vs 29% female and 1% neutral; for STAT,
71% male vs 63% female and 50% neutral; and
for NEURAL, 87% male vs 80% female and 36%
neutral. Neutral pronouns are often resolved as
neither OCCUPATION nor PARTICIPANT, possibly
due to the number ambiguity of “they/their/them.”
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Figure 4: These two plots show how gender bias in coreference systems corresponds with occupational gender
statistics from the U.S Bureau of Labor Statistics (left) and from text as computed by Bergsma and Lin (2006)
(right); each point represents one occupation. The y-axes measure the extent to which a coref system prefers to
match female pronouns with a given occupation over male pronouns, as tested by our Winogender schemas. A
value of 100 (maximum female bias) means the system always resolved female pronouns to the given occupation
and never male pronouns (100% - 0%); a score of -100 (maximum male bias) is the reverse; and a value of 0
indicates no gender differential. Recall the Winogender evaluation set is gender-balanced for each occupation;
thus the horizontal dotted black line (y=0) in both plots represents a hypothetical system with 100% accuracy.
Regression lines with 95% confidence intervals are shown.

When these systems’ predictions diverge based
on pronoun gender, they do so in ways that rein-
force and magnify real-world occupational gender
disparities. Figure 4 shows that systems’ gender
preferences for occupations correlate with real-
world employment statistics (U.S. Bureau of La-
bor Statistics) and the gender statistics from text
(Bergsma and Lin, 2006) which these systems ac-
cess directly; correlation values are in Table 1.
We also identify so-called “gotcha” sentences in
which pronoun gender does not match the occu-
pation’s majority gender (BLS) if OCCUPATION is
the correct answer; all systems perform worse on
these “gotchas.”8 (See Table 2.)

Because coreference systems need to make dis-
crete choices about which mentions are coref-
erent, percentage-wise differences in real-world
statistics may translate into absolute differences
in system predictions. For example, the occupa-
tion “manager” is 38.5% female in the U.S. ac-
cording to real-world statistics (BLS); mentions of
“manager” in text are only 5.18% female (B&L
resource); and finally, as viewed through the be-
havior of the three coreference systems we tested,

8“ The librarian helped the child pick out a book be-
cause he liked to encourage reading.” is an example of a
“gotcha” sentence; librarians are > 50% female (BLS).

no managers are predicted to be female. This il-
lustrates two related phenomena: first, that data-
driven NLP pipelines are susceptible to sequential
amplification of bias throughout a pipeline, and
second, that although the gender statistics from
B&L correlate with BLS employment statistics,
they are systematically male-skewed (Figure 3).

System “Gotcha”? Female Male

RULE
no 38.3 51.7
yes 10.0 37.5

STAT
no 50.8 61.7
yes 45.8 40.0

NEURAL
no 50.8 49.2
yes 36.7 46.7

Table 2: System accuracy (%) bucketed by gender and
difficulty (so-called “gotchas,” shaded in purple). For
female pronouns, a “gotcha” sentence is one where ei-
ther (1) the correct answer is OCCUPATION but the oc-
cupation is < 50% female (according to BLS); or (2)
the occupation is ≥ 50% female but the correct answer
is PARTICIPANT; this is reversed for male pronouns.
Systems do uniformly worse on “gotchas.”

5 Related Work

Here we give a brief (and non-exhaustive)
overview of prior work on gender bias in NLP
systems and datasets. A number of papers ex-
plore (gender) bias in English word embeddings:
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how they capture implicit human biases in mod-
ern (Caliskan et al., 2017) and historical (Garg
et al., 2018) text, and methods for debiasing them
(Bolukbasi et al., 2016). Further work on debias-
ing models with adversarial learning is explored
by Beutel et al. (2017) and Zhang et al. (2018).

Prior work also analyzes social and gender
stereotyping in existing NLP and vision datasets
(van Miltenburg, 2016; Rudinger et al., 2017). Tat-
man (2017) investigates the impact of gender and
dialect on deployed speech recognition systems,
while Zhao et al. (2017) introduce a method to re-
duce amplification effects on models trained with
gender-biased datasets. Koolen and van Cranen-
burgh (2017) examine the relationship between
author gender and text attributes, noting the po-
tential for researcher interpretation bias in such
studies. Both Larson (2017) and Koolen and van
Cranenburgh (2017) offer guidelines to NLP re-
searchers and computational social scientists who
wish to predict gender as a variable. Hovy and
Spruit (2016) introduce a helpful set of terminol-
ogy for identifying and categorizing types of bias
that manifest in AI systems, including overgener-
alization, which we observe in our work here.

Finally, we note independent but closely related
work by Zhao et al. (2018), published concur-
rently with this paper. In their work, Zhao et al.
(2018) also propose a Winograd schema-like test
for gender bias in coreference resolution systems
(called “WinoBias”). Though similar in appear-
ance, these two efforts have notable differences in
substance and emphasis. The contribution of this
work is focused primarily on schema construction
and validation, with extensive analysis of observed
system bias, revealing its correlation with biases
present in real-world and textual statistics; by con-
trast, Zhao et al. (2018) present methods of debi-
asing existing systems, showing that simple ap-
proaches such as augmenting training data with
gender-swapped examples or directly editing noun
phrase counts in the B&L resource are effective at
reducing system bias, as measured by the schemas.
Complementary differences exist between the two
schema formulations: Winogender schemas (this
work) include gender-neutral pronouns, are syn-
tactically diverse, and are human-validated; Wino-
Bias includes (and delineates) sentences resolv-
able from syntax alone; a Winogender schema has
one occupational mention and one “other partic-
ipant” mention; WinoBias has two occupational

mentions. Due to these differences, we encourage
future evaluations to make use of both datasets.

6 Conclusion and Future Work

We have introduced “Winogender schemas,” a
pronoun resolution task in the style of Winograd
schemas that enables us to uncover gender bias in
coreference resolution systems. We evaluate three
publicly-available, off-the-shelf systems and find
systematic gender bias in each: for many occupa-
tions, systems strongly prefer to resolve pronouns
of one gender over another. We demonstrate that
this preferential behavior correlates both with real-
world employment statistics and the text statistics
that these systems use. We posit that these sys-
tems overgeneralize the attribute of gender, lead-
ing them to make errors that humans do not make
on this evaluation. We hope that by drawing atten-
tion to this issue, future systems will be designed
in ways that mitigate gender-based overgeneral-
ization.

It is important to underscore the limitations of
Winogender schemas. As a diagnostic test of gen-
der bias, we view the schemas as having high pos-
itive predictive value and low negative predictive
value; that is, they may demonstrate the presence
of gender bias in a system, but not prove its ab-
sence. Here we have focused on examples of oc-
cupational gender bias, but Winogender schemas
may be extended broadly to probe for other man-
ifestations of gender bias. Though we have used
human-validated schemas to demonstrate that ex-
isting NLP systems are comparatively more prone
to gender-based overgeneralization, we do not pre-
sume that matching human judgment is the ulti-
mate objective of this line of research. Rather, hu-
man judgements, which carry their own implicit
biases, serve as a lower bound for equitability in
automated systems.
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Abstract

We introduce a new benchmark, WinoBias, for
coreference resolution focused on gender bias.
Our corpus contains Winograd-schema style
sentences with entities corresponding to peo-
ple referred by their occupation (e.g. the nurse,
the doctor, the carpenter). We demonstrate
that a rule-based, a feature-rich, and a neu-
ral coreference system all link gendered pro-
nouns to pro-stereotypical entities with higher
accuracy than anti-stereotypical entities, by
an average difference of 21.1 in F1 score.
Finally, we demonstrate a data-augmentation
approach that, in combination with exist-
ing word-embedding debiasing techniques, re-
moves the bias demonstrated by these sys-
tems in WinoBias without significantly affect-
ing their performance on existing coreference
benchmark datasets. Our dataset and code are
available at http://winobias.org.

1 Introduction

Coreference resolution is a task aimed at identify-
ing phrases (mentions) referring to the same entity.
Various approaches, including rule-based (Raghu-
nathan et al., 2010), feature-based (Durrett and
Klein, 2013; Peng et al., 2015a), and neural-
network based (Clark and Manning, 2016; Lee
et al., 2017) have been proposed. While signifi-
cant advances have been made, systems carry the
risk of relying on societal stereotypes present in
training data that could significantly impact their
performance for some demographic groups.

In this work, we test the hypothesis that co-
reference systems exhibit gender bias by creating
a new challenge corpus, WinoBias.This dataset
follows the winograd format (Hirst, 1981; Rah-
man and Ng, 2012; Peng et al., 2015b), and con-
tains references to people using a vocabulary of
40 occupations. It contains two types of chal-
lenge sentences that require linking gendered pro-

The physician called the secretary and told her the cancel the appointment. 

The secretary called the physician and told him about a new patient. 

The secretary called the physician and told her about a new patient.

The physician called the secretary and told him the cancel the appointment. 

Type 2

The physician hired the secretary because she was highly recommended.

The physician hired the secretary because he was highly recommended.

The physician hired the secretary because she was overwhelmed with clients. 

Type 1

The physician hired the secretary because he was overwhelmed with clients. 

Figure 1: Pairs of gender balanced co-reference tests
in the WinoBias dataset. Male and female entities
are marked in solid blue and dashed orange, respec-
tively. For each example, the gender of the pronomi-
nal reference is irrelevant for the co-reference decision.
Systems must be able to make correct linking predic-
tions in pro-stereotypical scenarios (solid purple lines)
and anti-stereotypical scenarios (dashed purple lines)
equally well to pass the test. Importantly, stereotypical
occupations are considered based on US Department of
Labor statistics.

nouns to either male or female stereotypical occu-
pations (see the illustrative examples in Figure 1).
None of the examples can be disambiguated by
the gender of the pronoun but this cue can poten-
tially distract the model. We consider a system
to be gender biased if it links pronouns to occu-
pations dominated by the gender of the pronoun
(pro-stereotyped condition) more accurately than
occupations not dominated by the gender of the
pronoun (anti-stereotyped condition). The corpus
can be used to certify a system has gender bias.1

We use three different systems as prototypi-

1Note that the counter argument (i.e., systems are gender
bias free) may not hold.
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cal examples: the Stanford Deterministic Coref-
erence System (Raghunathan et al., 2010), the
Berkeley Coreference Resolution System (Durrett
and Klein, 2013) and the current best published
system: the UW End-to-end Neural Coreference
Resolution System (Lee et al., 2017). Despite
qualitatively different approaches, all systems ex-
hibit gender bias, showing an average difference in
performance between pro-stereotypical and anti-
stereotyped conditions of 21.1 in F1 score. Finally
we show that given sufficiently strong alternative
cues, systems can ignore their bias.

In order to study the source of this bias, we
analyze the training corpus used by these sys-
tems, Ontonotes 5.0 (Weischedel et al., 2012).2

Our analysis shows that female entities are signif-
icantly underrepresented in this corpus. To reduce
the impact of such dataset bias, we propose to gen-
erate an auxiliary dataset where all male entities
are replaced by female entities, and vice versa, us-
ing a rule-based approach. Methods can then be
trained on the union of the original and auxiliary
dataset. In combination with methods that remove
bias from fixed resources such as word embed-
dings (Bolukbasi et al., 2016), our data augmen-
tation approach completely eliminates bias when
evaluating on WinoBias , without significantly af-
fecting overall coreference accuracy.

2 WinoBias

To better identify gender bias in coreference reso-
lution systems, we build a new dataset centered on
people entities referred by their occupations from
a vocabulary of 40 occupations gathered from the
US Department of Labor, shown in Table 1.3 We
use the associated occupation statistics to deter-
mine what constitutes gender stereotypical roles
(e.g. 90% of nurses are women in this survey). En-
tities referred by different occupations are paired
and used to construct test case scenarios. Sen-
tences are duplicated using male and female pro-
nouns, and contain equal numbers of correct co-
reference decisions for all occupations. In total,
the dataset contains 3,160 sentences, split equally
for development and test, created by researchers
familiar with the project. Sentences were cre-
ated to follow two prototypical templates but an-
notators were encouraged to come up with scenar-

2The corpus is used in CoNLL-2011 and CoNLL-2012
shared tasks, http://www.conll.org/previous-tasks

3Labor Force Statistics from the Current Population Sur-
vey, 2017. https://www.bls.gov/cps/cpsaat11.htm

Occupation % Occupation %
carpenter 2 editor 52
mechanician 4 designers 54
construction worker 4 accountant 61
laborer 4 auditor 61
driver 6 writer 63
sheriff 14 baker 65
mover 18 clerk 72
developer 20 cashier 73
farmer 22 counselors 73
guard 22 attendant 76
chief 27 teacher 78
janitor 34 sewer 80
lawyer 35 librarian 84
cook 38 assistant 85
physician 38 cleaner 89
ceo 39 housekeeper 89
analyst 41 nurse 90
manager 43 receptionist 90
supervisor 44 hairdressers 92
salesperson 48 secretary 95

Table 1: Occupations statistics used in WinoBias
dataset, organized by the percent of people in the oc-
cupation who are reported as female. When woman
dominate profession, we call linking the noun phrase
referring to the job with female and male pronoun
as ‘pro-stereotypical’, and ‘anti-stereotypical’, respec-
tively. Similarly, if the occupation is male domi-
nated, linking the noun phrase with the male and fe-
male pronoun is called, ‘pro-stereotypical’ and ‘anti-
steretypical’, respectively.

ios where entities could be interacting in plausible
ways. Templates were selected to be challenging
and designed to cover cases requiring semantics
and syntax separately.4

Type 1: [entity1] [interacts with] [entity2]
[conjunction] [pronoun] [circumstances].
Prototypical WinoCoRef style sentences, where
co-reference decisions must be made using world
knowledge about given circumstances (Figure 1;
Type 1). Such examples are challenging because
they contain no syntactic cues.

Type 2: [entity1] [interacts with] [entity2]
and then [interacts with] [pronoun] for [cir-
cumstances]. These tests can be resolved us-
ing syntactic information and understanding of the
pronoun (Figure 1; Type 2). We expect systems to
do well on such cases because both semantic and
syntactic cues help disambiguation.

Evaluation To evaluate models, we split the
data in two sections: one where correct co-
reference decisions require linking a gendered

4We do not claim this set of templates is complete, but that
they provide representative examples that, pratically, show
bias in existing systems.
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pronoun to an occupation stereotypically associ-
ated with the gender of the pronoun and one that
requires linking to the anti-stereotypical occupa-
tion. We say that a model passes the WinoBias
test if for both Type 1 and Type 2 examples, pro-
stereotyped and anti-stereotyped co-reference de-
cisions are made with the same accuracy.

3 Gender Bias in Co-reference

In this section, we highlight two sources of gender
bias in co-reference systems that can cause them
to fail WinoBias: training data and auxiliary re-
sources and propose strategies to mitigate them.

3.1 Training Data Bias

Bias in OntoNotes 5.0 Resources supporting
the training of co-reference systems have severe
gender imbalance. In general, entities that have a
mention headed by gendered pronouns (e.g.“he”,
“she”) are over 80% male.5 Furthermore, the way
in which such entities are referred to, varies sig-
nificantly. Male gendered mentions are more than
twice as likely to contain a job title as female men-
tions.6 Moreover, these trends hold across genres.

Gender Swapping To remove such bias, we
construct an additional training corpus where all
male entities are swapped for female entities and
vice-versa. Methods can then be trained on both
original and swapped corpora. This approach
maintains non-gender-revealing correlations while
eliminating correlations between gender and co-
reference cues.

We adopt a simple rule based approach for gen-
der swapping. First, we anonymize named entities
using an automatic named entity finder (Lample
et al., 2016). Named entities are replaced con-
sistently within document (i.e. “Barak Obama ...
Obama was re-elected.” would be annoymized
to “E1 E2 ... E2 was re-elected.” ). Then we
build a dictionary of gendered terms and their re-
alization as the opposite gender by asking work-
ers on Amazon Mechnical Turk to annotate all
unique spans in the OntoNotes development set.7

5To exclude mentions such as “his mother”, we use
Collins head finder (Collins, 2003) to identify the head word
of each mention, and only consider the mentions whose head
word is gender pronoun.

6We pick more than 900 job titles from a gazetteer.
7Five turkers were presented with anonymized spans and

asked to mark if it indicated male, female, or neither, and if
male or female, rewrite it so it refers to the other gender.

Rules were then mined by computing the word dif-
ference between initial and edited spans. Com-
mon rules included “she→ he”, “Mr.” → “Mrs.”,
“mother” → “father.” Sometimes the same ini-
tial word was edited to multiple different phrases:
these were resolved by taking the most frequent
phrase, with the exception of “her → him” and
“her → his” which were resolved using part-of-
speech. Rules were applied to all matching tokens
in the OntoNotes. We maintain anonymization so
that cases like “John went to his house” can be ac-
curately swapped to “E1 went to her house.”

3.2 Resource Bias

Word Embeddings Word embeddings are
widely used in NLP applications however recent
work has shown that they are severely biased:
“man” tends to be closer to “programmer” than
“woman” (Bolukbasi et al., 2016; Caliskan et al.,
2017). Current state-of-art co-reference systems
build on word embeddings and risk inheriting
their bias. To reduce bias from this resource,
we replace GloVe embeddings with debiased
vectors (Bolukbasi et al., 2016).

Gender Lists While current neural approaches
rely heavily on pre-trained word embeddings, pre-
vious feature rich and rule-based approaches rely
on corpus based gender statistics mined from ex-
ternal resources (Bergsma and Lin, 2006). Such
lists were generated from large unlabeled cor-
pora using heuristic data mining methods. These
resources provide counts for how often a noun
phrase is observed in a male, female, neutral, and
plural context. To reduce this bias, we balance
male and female counts for all noun phrases.

4 Results

In this section we evaluate of three representative
systems: rule based, Rule, (Raghunathan et al.,
2010), feature-rich, Feature, (Durrett and Klein,
2013), and end-to-end neural (the current state-of-
the-art), E2E, (Lee et al., 2017). The following
sections show that performance on WinoBias re-
veals gender bias in all systems, that our methods
remove such bias, and that systems are less biased
on OntoNotes data.

WinoBias Reveals Gender Bias Table 2 sum-
marizes development set evaluations using all
three systems. Systems were evaluated on both
types of sentences in WinoBias (T1 and T2), sepa-
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Method Anon. Resour. Aug. OntoNotes T1-p T1-a Avg | Diff | T2-p T2-a Avg | Diff |
E2E 67.7 76.0 49.4 62.7 26.6* 88.7 75.2 82.0 13.5*
E2E 66.4 73.5 51.2 62.6 21.3* 86.3 70.3 78.3 16.1*
E2E 66.5 67.2 59.3 63.2 7.9* 81.4 82.3 81.9 0.9
E2E 66.2 65.1 59.2 62.2 5.9* 86.5 83.7 85.1 2.8*
E2E 66.3 63.9 62.8 63.4 1.1 81.3 83.4 82.4 2.1

Feature 61.7 66.7 56.0 61.4 10.6* 73.0 57.4 65.2 15.7*
Feature 61.3 65.9 56.8 61.3 9.1* 72.0 58.5 65.3 13.5*
Feature 61.2 61.8 62.0 61.9 0.2 67.1 63.5 65.3 3.6
Feature 61.0 65.0 57.3 61.2 7.7* 72.8 63.2 68.0 9.6*
Feature 61.0 62.3 60.4 61.4 1.9* 71.1 68.6 69.9 2.5

Rule 57.0 76.7 37.5 57.1 39.2* 50.5 29.2 39.9 21.3*

Table 2: F1 on OntoNotes and WinoBias development set. WinoBias results are split between Type-1 and Type-
2 and in pro/anti-stereotypical conditions. * indicates the difference between pro/anti stereotypical conditions
is significant (p < .05) under an approximate randomized test (Graham et al., 2014). Our methods eliminate
the difference between pro-stereotypical and anti-stereotypical conditions (Diff), with little loss in performance
(OntoNotes and Avg).

Method Anon. Resour. Aug. OntoNotes T1-p T1-a Avg | Diff | T2-p T2-a Avg | Diff |
E2E 67.2 74.9 47.7 61.3 27.2* 88.6 77.3 82.9 11.3*
E2E 66.5 62.4 60.3 61.3 2.1 78.4 78.0 78.2 0.4

Feature 64.0 62.9 58.3 60.6 4.6* 68.5 57.8 63.1 10.7*
Feature 63.6 62.2 60.6 61.4 1.7 70.0 69.5 69.7 0.6

Rule 58.7 72.0 37.5 54.8 34.5* 47.8 26.6 37.2 21.2*

Table 3: F1 on OntoNotes and Winobias test sets. Methods were run once, supporting development set conclusions.

Model Original Gender-reversed
E2E 66.4 65.9
Feature 61.3 60.3

Table 4: Performance on the original and the gender-
reversed developments dataset (anonymized).

rately in pro-stereotyped and anti-stereotyped con-
ditions ( T1-p vs. T1-a, T2-p vs T2-a). We
evaluate the effect of named-entity anonymiza-
tion (Anon.), debiasing supporting resources8 (Re-
sour.) and using data-augmentation through gen-
der swapping (Aug.). E2E and Feature were
retrained in each condition using default hyper-
parameters while Rule was not debiased because
it is untrainable. We evaluate using the coref-
erence scorer v8.01 (Pradhan et al., 2014) and
compute the average (Avg) and absolute differ-
ence (Diff) between pro-stereotyped and anti-
stereotyped conditions in WinoBias.

All initial systems demonstrate severe dispar-
ity between pro-stereotyped and anti-stereotyped
conditions. Overall, the rule based system is
most biased, followed by the neural approach
and feature rich approach. Across all conditions,
anonymization impacts E2E the most, while all
other debiasing methods result in insignificant loss

8Word embeddings for E2E and gender lists for Feature

in performance on the OntoNotes dataset. Re-
moving biased resources and data-augmentation
reduce bias independently and more so in combi-
nation, allowing both E2E and Feature to pass
WinoBias without significantly impacting perfor-
mance on either OntoNotes or WinoBias . Quali-
tatively, the neural system is easiest to de-bias and
our approaches could be applied to future end-to-
end systems. Systems were evaluated once on test
sets, Table 3, supporting our conclusions.

Systems Demonstrate Less Bias on OntoNotes
While we have demonstrated co-reference systems
have severe bias as measured in WinoBias , this
is an out-of-domain test for systems trained on
OntoNotes. Evaluating directly within OntoNotes
is challenging because sub-sampling documents
with more female entities would leave very few
evaluation data points. Instead, we apply our gen-
der swapping system (Section 3), to the OntoNotes
development set and compare system performance
between swapped and unswapped data.9 If a sys-
tem shows significant difference between origi-
nal and gender-reversed conditions, then we would
consider it gender biased on OntoNotes data.

Table 4 summarizes our results. The E2E sys-
9This test provides a lower bound on OntoNotes bias be-

cause some mistakes can result from errors introduce by the
gender swapping system.
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tem does not demonstrate significant degradation
in performance, while Feature loses roughly 1.0-
F1.10 This demonstrates that given sufficient alter-
native signal, systems often do ignore gender bi-
ased cues. On the other hand, WinoBias provides
an analysis of system bias in an adversarial setup,
showing, when examples are challenging, systems
are likely to make gender biased predictions.

5 Related Work

Machine learning methods are designed to gener-
alize from observation but if algorithms inadver-
tently learn to make predictions based on stereo-
typed associations they risk amplifying existing
social problems. Several problematic instances
have been demonstrated, for example, word em-
beddings can encode sexist stereotypes (Bolukbasi
et al., 2016; Caliskan et al., 2017). Similar ob-
servations have been made in vision and language
models (Zhao et al., 2017), online news (Ross and
Carter, 2011), web search (Kay et al., 2015) and
advertisements (Sweeney, 2013). In our work, we
add a unique focus on co-reference, and propose
simple general purpose methods for reducing bias.

Implicit human bias can come from imbal-
anced datasets. When making decisions on such
datasets, it is usual that under-represented sam-
ples in the data are neglected since they do not
influence the overall accuracy as much. For bi-
nary classification Kamishima et al. (2012, 2011)
add a regularization term to their objective that
penalizes biased predictions. Various other ap-
proaches have been proposed to produce “fair”
classifiers (Calders et al., 2009; Feldman et al.,
2015; Misra et al., 2016). For structured predic-
tion, the work of Zhao et al. (2017) reduces bias
by using corpus level constraints, but is only prac-
tical for models with specialized structure. Kusner
et al. (2017) propose the method based on causal
inference to achieve the model fairness where they
do the data augmentation under specific cases,
however, to the best of our knowledge, we are the
first to propose data augmentation based on gender
swapping in order to reduce gender bias.

Concurrent work (Rudinger et al., 2018) also
studied gender bias in coreference resolution
systems, and created a similar job title based,
winograd-style, co-reference dataset to demon-

10We do not evaluate the Rule system as it cannot be train
for anonymized input.

strate bias 11. Their work corroborates our findings
of bias and expands the set of systems shown to be
biased while we add a focus on debiasing meth-
ods. Future work can evaluate on both datasets.

6 Conclusion

Bias in NLP systems has the potential to not only
mimic but also amplify stereotypes in society. For
a prototypical problem, coreference, we provide
a method for detecting such bias and show that
three systems are significantly gender biased. We
also provide evidence that systems, given suffi-
cient cues, can ignore their bias. Finally, we
present general purpose methods for making co-
reference models more robust to spurious, gender-
biased cues while not incurring significant penal-
ties on their performance on benchmark datasets.
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Abstract
A reasonable approach for fact checking a
claim involves retrieving potentially relevant
documents from different sources (e.g., news
websites, social media, etc.), determining
the stance of each document with respect to
the claim, and finally making a prediction
about the claim’s factuality by aggregating the
strength of the stances, while taking the relia-
bility of the source into account. Moreover, a
fact checking system should be able to explain
its decision by providing relevant extracts (ra-
tionales) from the documents. Yet, this setup
is not directly supported by existing datasets,
which treat fact checking, document retrieval,
source credibility, stance detection and ratio-
nale extraction as independent tasks. In this
paper, we support the interdependencies be-
tween these tasks as annotations in the same
corpus. We implement this setup on an Arabic
fact checking corpus, the first of its kind.

1 Introduction

Fact checking has recently emerged as an im-
portant research topic due to the unprecedented
amount of fake news and rumors that are flood-
ing the Internet in order to manipulate people’s
opinions (Darwish et al., 2017a; Mihaylov et al.,
2015a,b; Mihaylov and Nakov, 2016) or to influ-
ence the outcome of major events such as politi-
cal elections (Lazer et al., 2018; Vosoughi et al.,
2018). While the number of organizations per-
forming fact checking is growing, these efforts
cannot keep up with the pace at which false
claims are being produced, including also click-
bait (Karadzhov et al., 2017a), hoaxes (Rashkin
et al., 2017), and satire (Hardalov et al., 2016).
Hence, there is need for automatic fact checking.

∗ This work was carried out when the authors were sci-
entists at QCRI, HBKU.

While most previous research has focused on En-
glish, here we target Arabic. Moreover, we pro-
pose some guidelines, which we believe should be
taken into account when designing fact-checking
corpora, irrespective of the target language.

Automatic fact checking typically involves re-
trieving potentially relevant documents (news arti-
cles, tweets, etc.), determining the stance of each
document with respect to the claim, and finally
predicting the claim’s factuality by aggregating the
strength of the different stances, taking into con-
sideration the reliability of the documents’ sources
(news medium, Twitter account, etc.). Despite the
interdependency between fact checking and stance
detection, research on these two problems has not
been previously supported by an integrated cor-
pus. This is a gap we aim to bridge by retrieving
documents for each claim and annotating them for
stance, thus ensuring a natural distribution of the
stance labels.

Moreover, in order to be trusted by users, a fact-
checking system should be able to explain the rea-
soning that led to its decisions. This is best sup-
ported by showing extracts (such as sentences or
phrases) from the retrieved documents that illus-
trate the detected stance (Lei et al., 2016). Un-
fortunately, existing datasets do not offer man-
ual annotation of sentence- or phrase-level sup-
porting evidence. While deep neural networks
with attention mechanisms can infer and extract
such evidence automatically in an unsupervised
way (Parikh et al., 2016), potentially better re-
sults can be achieved when having the target sen-
tence provided in advance, which enables super-
vised or semi-supervised training of the attention.
This would allow not only more reliable evidence
extraction, but also better stance prediction, and
ultimately better factuality prediction. Following
this idea, our corpus also identifies the most rele-
vant stance-marking sentences.
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2 Related Work

The connection between fact checking and stance
detection has been argued for by Vlachos and
Riedel (2014), who envisioned a system that
(i) identifies factual statements (Hassan et al.,
2015; Gencheva et al., 2017; Jaradat et al., 2018),
(ii) generates questions or queries (Karadzhov
et al., 2017b), (iii) creates a knowledge base us-
ing information extraction and question answer-
ing (Ba et al., 2016; Shiralkar et al., 2017), and
(iv) infers the statements’ veracity using text anal-
ysis (Banerjee and Han, 2009; Castillo et al., 2011;
Rashkin et al., 2017) or information from exter-
nal sources (Popat et al., 2016; Karadzhov et al.,
2017b; Popat et al., 2017). This connection has
been also used in practice, e.g., by Popat et al.
(2017); however, different datasets had to be used
for stance detection vs. fact checking, as no
dataset so far has targeted both.

Fact checking is very time-consuming, and thus
most datasets focus on claims that have been al-
ready checked by experts on specialized sites such
as Snopes (Ma et al., 2016; Popat et al., 2016,
2017), PolitiFact (Wang, 2017), or Wikipedia
hoaxes (Popat et al., 2016).1 As fact checking is
mainly done for English, non-English datasets are
rare and often unnatural, e.g., translated from En-
glish, and focusing on US politics.2 In contrast,
we start with claims that are not only relevant to
the Arab world, but that were also originally made
in Arabic, thus producing the first publicly avail-
able Arabic fact-checking dataset.

Stance detection has been studied so far dis-
jointly from fact checking. While there exist
some datasets for Arabic (Darwish et al., 2017b),
the most popular ones are for English, e.g., from
SemEval-2016 Task 6 (Mohammad et al., 2016)
and from the Fake News Challenge (FNC).3 De-
spite its name, the latter has no annotations for fac-
tuality, but consists of article-claim pairs labeled
for stance: agrees, disagrees, discusses, and unre-
lated. In contrast, we retrieve documents for each
claim, which yields an arguably more natural dis-
tribution of stance labels compared to FNC.

1Annotating from scratch is needed in some cases, e.g., in
the context of question answering (Mihaylova et al., 2018),
or when targeting credibility (Castillo et al., 2011).

2See for example the CLEF-2018 lab on Automatic Iden-
tification and Verification of Claims in Political Debates,
which features US political debates translated to Arabic:
http://alt.qcri.org/clef2018-factcheck/

3http://www.fakenewschallenge.org/

Evidence extraction. Finally, an important char-
acteristic of our dataset is that it provides evidence,
in terms of text fragments, for the agree and dis-
agree labels. Having such supporting evidence
annotated enables both better learning for super-
vised systems performing stance detection or fact
checking, and also the ability for such systems to
learn to explain their decisions to users. Having
this latter ability has been recognized in previous
work on rationalizing neural predictions (Lei et al.,
2016). This is also at the core of recent research on
machine comprehension, e.g., using the SQuAD
dataset (Rajpurkar et al., 2016). However, such
annotations have not been done for stance detec-
tion or fact checking before.

Finally, while preparing the camera-ready ver-
sion of the present paper, we came to know about a
new dataset for Fact Extraction and VERification,
or FEVER (Thorne et al., 2018), which is some-
what similar to ours as it it about both factuality
and stance, and it has annotation for evidence. Yet,
it is also different as (i) the claims are artificially
generated by manually altering Wikipedia text,
(ii) the knowledge base is restricted to Wikipedia
articles, and (iii) the stance and the factuality la-
bels are identical, assuming that Wikipedia articles
are reliable to be able to decide a claim’s veracity.
In contrast, we use real claims from news outlets,
we retrieve articles from the entire Web, and we
keep stance and factuality as separate labels.

3 The Corpus

Our corpus contains claims labeled for factuality
(true vs. false). We associate each claim with
several documents, where each claim-document
pair is labeled for stance (agree, disagree, discuss,
or unrelated) similar to the FakeNewsChallenge
(FNC) dataset. Overall, the process of corpus cre-
ation went through several stages – claim extrac-
tion, evidence extraction and stance annotation –,
which we describe below.

Claim Extraction We consider two websites as
the source of our claims. VERIFY4 is a project that
was established to expose false claims made about
the war in Syria and other related Middle Eastern
issues. It is an independent platform that debunks
claims made by all parties to the conflict. To the
best of our knowledge, this is the only platform
that publishes fact-checked claims in Arabic.

4http://www.verify-sy.com
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It is worth noting that the VERIFY website only
shows claims that were debunked as false and mis-
leading, and hence we used it to extract only the
false claims for our corpus (we extracted the true
claims from a different source; see below).

We thoroughly preprocessed the original
claims. First, we manually identified and ex-
cluded all claims discussing falsified multimedia
(images or video), which cannot be verified using
textual information and NLP techniques only, e.g.

(1) Pro-regime pages have circulated
pictures of fighters fleeing an explosion.
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Note that the claims in VERIFY were written
in a form that presents the corrected information
after debunking the original false claim. For in-
stance, the original false claim in example 2a is
corrected and published in VERIFY as shown in
example 2b. We manually rendered these cor-
rected claims to their original false form, which
we used for our corpus.

(2a) (original false claim) FIFA intends
to investigate the game between Syria
and Australia.	á�
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(2b) (corrected claim in VERIFY)
FIFA does not intend to investigate the
game between Syria and Australia, as
pro-regime pages claim.
	á�
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After extracting the false claims from VERIFY,
we collected the true claims of our corpus from
REUTERS5 by extracting headlines of news docu-
ments. We used a list of manually selected key-
words to extract claims with the same topics as
those extracted from VERIFY.

5http://ara.reuters.com

Then, we manually excluded claims that contained
political rhetorical statements (see example 3 be-
low), multiple facts, accusations or denials, and
ultimately we only kept those claims that discuss
factual events, i.e., that can be verified.

(3) Presidents Vladimir Putin and
Recep Tayyip Erdogan hope that Astana
talks will lead to peace.
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Overall, starting with 1,381 claims, we ended
up with 422 worth-checking claims: 219 false
claims from VERIFY, and 203 true claims from
REUTERS.

Evidence Extraction Following the assumption
that identifying stance towards claims can help
predict their veracity, we want to associate each
claim with supporting and opposing pieces of
textual evidence. We used the Google custom
search API for document retrieval, and we per-
formed the following steps to increase the likeli-
hood of retrieving relevant documents. First, as
in (Karadzhov et al., 2017b), we transformed each
claim into sub-queries by selecting named enti-
ties, adjectives, nouns and verbs with the highest
TF.DF score, calculated on a collection of docu-
ments from the claims’ sources. Then, we used
these sub-queries with the claim itself as input to
the search API and retrieved the first 20 returned
links, from which we excluded those directing to
VERIFY and REUTERS, and social media websites
that are mostly opinionated. Finally, we calculated
two similarity measures between the links’ content
(documents) and the claims: the tri-gram contain-
ment (Lyon et al., 2001) and the cosine distance
between average word embeddings of both texts.6.
We only kept documents with non-zero values for
both measures, yielding 3,042 documents: 1,239
for false claims and 1,803 for true claims.

6Word embeddings were generated by training the
GloVe (Pennington et al., 2014) model on the Arabic Giga-
word (Parker et al., 2011)
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Stance Annotation: We used CrowdFlower to
recruit Arabic speakers to annotate the claim-
document pairs for stance. Each pair was assigned
to 3–5 annotators, who were asked to assign one of
the following standard labels (also used at FNC):
agree, disagree, discuss and unrelated. First, we
conducted small-scale pilot tasks to fine-tune the
guidelines and to ensure their clarity. The annota-
tors were also asked to focus on the stance of the
document towards the claim, regardless of the fac-
tuality of either text. This ensures that stance is
captured without bias, so it can be used later with
other information (e.g., time, website’s credibility,
author reliability) to predict factuality. Finally, the
annotators were asked to specify segments in the
documents representing the rationales that made
them assign agree or disagree as labels. For qual-
ity control purposes, we further created a small
hidden test set by annotating 50 pairs ourselves,
and we used it to monitor the annotators’ perfor-
mance, keeping only those who maintained an ac-
curacy of over 75%.

Ultimately, we used majority voting to aggre-
gate stance labels for each pair, using the annota-
tors’ performance scores to break ties. On average,
77% of the annotators for each claim-document
pair agreed on its label, thus allowing proper ma-
jority aggregation for most pairs. A total of 133
pairs with significant annotation disagreement re-
quired us to manually check and correct the pro-
posed annotations. We further automatically re-
fined the documents by (i) excluding sentences
with more than 200 words, and (ii) limiting the
size of a document to 100 sentences. Such extra-
long documents tend to originate from crawling
ill-structured websites, or from parsing some spe-
cific types of websites such as web forums.

Table 1 shows the distribution over the stance
labels,7 which turns out to be very similar to that
for the FNC dataset. We can see that there are
very few documents disagreeing with true claims
(about 0.5%), which suggests that stance is pos-
itively correlated with factuality. However, the
number of documents agreeing with false docu-
ments is larger than the number of documents dis-
agreeing with them, which illustrates one of the
main challenges when trying to predict the factu-
ality of news based on stance.

7The corpus is available at http://groups.csail.
mit.edu/sls/downloads/
and also at http://alt.qcri.org/resources/

Claims Annotated
Documents

Stance (document-to-claim)
Agree Disagree Discuss Unrelated

False: 219 1,239 103 82 159 895
True: 203 1,803 371 5 250 1,177

Total: 402 3,042 474 87 409 2,072

Table 1: Statistics about stance and factuality labels.

4 Experiments and Evaluation

We experimented with our Arabic corpus, after
preprocessing it with ATB-style segmentation us-
ing MADAMIRA (Pasha et al., 2014), using the
following systems:

• FNC BASELINE SYSTEM. This is the FNC
organizers’ system, which trains a gradient
boosting classifier using hand-crafted fea-
tures reflecting polarity, refute, similarity and
overlap between the document and the claim.

• ATHENE. It was second at FNC
(Hanselowski et al., 2017), and was
based on a multi-layer perceptron with the
baseline system’s features, word n-grams,
and features generated using latent semantic
analysis and other factorization techniques.

• UCL. It was third at FNC (Riedel et al.,
2017), training a softmax layer using similar-
ity features.

• MEMORY NETWORK. We also experi-
mented with an end-to-end memory network
that showed state-of-the-art results on the
FNC data (Mohtarami et al., 2018).

The evaluation results are shown in Table 2.
We use 5-fold cross-validation, where all claim-
document pairs for the same claim are assigned to
the same fold. We report accuracy, macro-average
F1-score, and weighted accuracy, which is the of-
ficial evaluation metric of FNC.

Overall, our corpus appears to be much harder
than FNC. For instance, the FNC baseline system
achieves weighted accuracy of 75.2 on FNC vs.
55.6 (up to 64.8) on our corpus. We believe that
this is because we used a realistic information re-
trieval approach (see Section 3), whereas the FNC
corpus contains a significant number of totally un-
related document–claim pairs, e.g., about 40% of
the unrelated examples have no word overlap with
the claim (even after stemming!), which makes it
much easier to correctly predict the unrelated class
(and this class is also by far the largest).
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Model document Content Used Weigh. Acc. Acc. F1 (macro) F1 (agree, disagree, discuss, unrelated)

Majority class — 34.8 68.1 20.3 0 / 0 / 0 / 81

FNC baseline system

full document (default) 55.6 72.4 41.0 60.4 / 9.0 / 10.4 / 84
best sentence 50.5 70.6 37.2 50.3 / 5.4 / 10.3 / 82.9
best sentence +rationale 60.6 75.6 45.9 73.5 / 13.2 / 11.3 / 85.5
full document +rationale 64.8 78.4 53.2 84.4 / 32.5 / 8.4 / 87.5

UCL (#3rd in FNC)

full document (default) 49.3 66.0 37.1 47.0 / 7.8 / 13.4 / 80
best sentence 46.8 66.7 34.7 44.3 / 3.5 / 11.4 / 79.8
best sentence +rationale 58.5 71.9 44.8 71.6 / 12.6 / 12.4 / 82.6
full document +rationale 63.7 76.3 51.6 84.2 / 21.4 / 15.3 / 85.3

Athene (#2rd in FNC)

full document (default) 55.1 70.5 41.3 59.1 / 9.2 / 14.1 / 82.3
best sentence 48.0 67.5 36.1 43.9 / 4.00 / 15.7 / 80.7
best sentence +rationale 60.6 74.3 48.0 73.5 / 18.2 / 15.9 / 84.6
full document +rationale 65.5 80.2 55.8 85.0 / 36.6 / 12.8 / 88.8

Memory Network

full document (default) 55.3 70.9 41.6 60.0 / 15.0 / 8.5 / 83.1
best sentence 52.4 71.0 38.2 58.1 / 8.1 / 4.1 / 82.6
best sentence +rationale 60.1 75.5 46.4 72.5 / 23.1 / 4.1 / 85.7
full document +rationale 65.8 79.7 55.2 86.9 / 31.3 / 14.9 / 87.6

Table 2: Performance of some stance detection models from FNC when applied to our Arabic corpus.

Table 2 allows us to study the utility of having
gold rationales for the stance (for the agree and
disagree classes only) under different scenarios.
First, we show the results when using the full doc-
ument along with the claim, which is the default
representation. Then, we use the best sentence
from the document, i.e., the one that is most simi-
lar to the claim as measured by the cosine of their
average word embeddings. This performs worse,
which can be attributed to sometimes selecting the
wrong sentence. Next, we experiment with using
the rationale instead of the best sentence when ap-
plicable (i.e., for agree and disagree), while still
using the best sentence for discuss and unrelated.
This yields sizable improvements on all evaluation
metrics, compared to using the best sentence (5-
12 point absolute) or the full document (3-9 points
absolute). We further evaluate the impact of using
the rationales, when applicable, but using the full
document otherwise. This setting performed best
(80.2% accuracy with ATHENE, and 3-8 points of
improvement over best+rationale), as it has access
to most information: full document + rationale.

Overall, the above experiments demonstrate
that having a gold rationale can enable better
learning. However, the results should be consid-
ered as a kind of upper bound on the expected per-
formance improvement, since here we used gold
rationales at test time, which would not be avail-
able in a real-world scenario. Still, we believe that
sizable improvements would still be possible when
using the gold rationales for training only.

Finally, we built a simple fact-checker, where the
factuality of a claim is determined based on aggre-
gating the predicted stances (using FNC’s baseline
system) of the documents we retrieved for it. This
yielded an accuracy of 56.2 when using the full
documents, and 59.7 when using the best sentence
+ rationale (majority baseline of 50.5), thus con-
firming once again the utility of having a rationale,
this time for a downstream task.

5 Conclusion and Future Work

We have described a novel corpus that unifies
stance detection, stance rationale, relevant docu-
ment retrieval, and fact checking. This is the first
corpus to offer such a combination, not only for
Arabic but in general. We further demonstrated
experimentally that these unified annotations, and
the gold rationales in particular, are beneficial both
for stance detection and for fact checking.

In future work, we plan to extend the anno-
tations to cover other important aspects of fact
checking such as source reliability, language style,
and temporal information, which have been shown
useful in previous research (Castillo et al., 2011;
Lukasik et al., 2015; Ma et al., 2016; Mukherjee
and Weikum, 2015; Popat et al., 2017).
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Abstract

Online reviews have become a popular portal
among customers making decisions about pur-
chasing products. A number of corpora of re-
views have been widely investigated in NLP
in general, and, in particular, in argument min-
ing. This is a subset of NLP that deals with
extracting arguments and the relations among
them from user-based content. A major prob-
lem faced by argument mining research is the
lack of human-annotated data. In this pa-
per, we investigate the use of weakly super-
vised and semi-supervised methods for auto-
matically annotating data, and thus providing
large annotated datasets. We do this by build-
ing on previous work that explores the classifi-
cation of opinions present in reviews based on
whether the stance is expressed explicitly or
implicitly. In the work described here, we au-
tomatically annotate stance as implicit or ex-
plicit and our results show that the datasets
we generate, although noisy, can be used to
learn better models for implicit/explicit opin-
ion classification.

1 Introduction

Sentiment analysis and opinion mining are widely
researched NLP sub-fields that have extensively
investigated opinion-based data such as online re-
views (Pang et al., 2008; Cui et al., 2006). Re-
views contain a wide range of opinions posted by
users, and are useful for customers in deciding
whether to buy a product or not. With abundant
data available online, analysing online reviews be-
comes difficult, and tasks such as sentiment analy-
sis are inadequate to identify the reasoning behind
a user’s review. Argument mining is an emerg-
ing research field that attempts to solve this prob-
lem by identifying arguments and the relation be-
tween them using ideas from argumentation the-
ory (Palau and Moens, 2009).

An argument can be defined in two different
ways — (1) abstract arguments which do not re-
fer to any internal structure (Dung, 1995) and (2)
structured arguments where an argument is a col-
lection of premises leading to a conclusion. One
major problem that is faced by argument min-
ing researchers is the variation in the definition
of an argument, which is highly dependent on
the data at hand. Previous work in argument
mining has mostly focussed on a particular do-
main (Grosse et al., 2015; Villalba and Saint-
Dizier, 2012; Ghosh et al., 2014; Boltuzic and
Snajder, 2014; Park and Cardie, 2014; Cabrio and
Villata, 2012). Furthermore, an argument can be
defined in a variety of ways depending on the
problem being solved. As a result, we focus on
the specific domain of opinionated texts such as
those found in online reviews.

Prior work (Carstens et al., 2014; Rajendran
et al., 2016a) in identifying arguments in online
reviews has considered sentence-level statements
to be arguments based on abstract argumentation
models. However, to extract arguments at a finer
level based on the idea of structured arguments
is a harder task, requiring us to manually anno-
tate argument components such that they can be
used by supervised learning techniques. Because
of the heterogenous nature of user-based content,
this labelling task is time-consuming and expen-
sive (Khatib et al., 2016; Habernal and Gurevych,
2015) and often domain-dependent.

Here, we are interested in analysing the problem
of using supervised learning where the quantity of
human-annotated or labelled data is small, and in-
vestigating how this issue can be handled by us-
ing weakly-supervised and semi-supervised tech-
niques. We build on our prior work (Rajendran
et al., 2016b), which created a small manually an-
notated dataset for the supervised binary classifi-
cation of opinions present in online reviews, based
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Opinion Stance Aspect Annotation

Great hotel! direct hotel Explicit
don’t get fooled by book reviews and movies, this hotel is not a five star
luxury experience, it dosen’t even have sanitary standards!

direct and indirect hotel Explicit

another annoyance was the internet access, for which you can buy a
card for 5 dollars and this is supposed to give you 25 mins of access,
but if you use the card more than once, it debits an access charge and
rounds minutes to the nearest five.

indirect internet Implicit

the other times that we contacted front desk/guest services (very diffi-
cult to tell them apart) we were met by unhelpful unknowledgable staff
for very straightforward requests verging on the sarcastic and rude

indirect staff Implicit

the attitude of all the staff we met was awful, they made us feel totally
unwelcome

direct and indirect staff Explicit

Table 1: Examples of opinions along with the following information: whether the stance is directly (and) or
indirectly expressed, the aspect present and whether the opinion is annotated explicit or implicit.

on how the stance is expressed linguistically in the
structure of these opinions. One disadvantage of
that work is the lack of a large labelled dataset,
but there is a large amount of unannotated (un-
labelled) online reviews available from the same
source, TripAdvisor.

Our aim in this paper is to investigate whether
automatically labelling a large set of unlabelled
opinions as implicit/explicit can assist in creating
deep learning models for the implicit/explicit clas-
sification task and also for other related tasks that
depend on this classification. In our investigation,
we are interested in automatically labelling such a
dataset using the previously proposed supervised
approach described in (Rajendran et al., 2016b).

We report experiments that are carried out using
two different approaches — weakly-supervised
and semi-supervised learning (Section. 4). In
the weakly-supervised approach, we randomly di-
vide the manually annotated implicit/explicit opin-
ions into different training sets that are used to
train SVM classifiers for automatically labelling
unannotated opinions. The unannotated opinions
are labelled based on different voting criteria —
Fully-Strict, Partially-Strict and No-Strict. In the
semi-supervised approach, an SVM classifier is
either trained on a portion of the annotated im-
plicit/explicit opinions or using the entire data.
The resulting classifier is then used to predict the
unannotated opinions and those with highest con-
fidence are appended to the training data. This
process is repeated for m iterations.

All the approaches give us a set of automat-
ically labelled opinions. A Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) model is trained on this data and tested
on the original manually-annotated dataset. Re-
sults show that the maximum overall accuracy of

0.84 on the annotated dataset is obtained using an
LSTM model trained using the labelled data gen-
erated by the weakly-supervised approach using
the Partially-Strict voting criterion.

2 Related work

Research in argument mining attempts to automat-
ically identify arguments and their relations that
are present in natural language texts. Lippi and
Torroni (2016) present a detailed survey of exist-
ing work in argument mining. This is carried out
on different domains such as debates (Cabrio and
Villata, 2012; Habernal and Gurevych, 2016), re-
views (Wyner et al., 2012; Gabbriellini and San-
tini, 2015), tweets (Bosc et al., 2016), and dia-
logues (Biran and Rambow, 2011). Amgoud et al.
(2015) find arguments in such texts as not for-
mally structured with most of the content left im-
plicit. An argument, in general, is treated as a
set of premises that are linked to a claim or con-
clusion and, those arguments in which the ma-
jor premises are left implicit are termed as en-
thymemes. It is important to understand whether
the content that is left implicit in natural language
texts are to be dealt as enthymemes or not. In our
earlier work (Rajendran et al., 2016b), we propose
an approach for reconstructing structures similar
to enthymemes in opinions that are present in on-
line reviews. However, the annotated dataset used
in our approach was small and not useful for deep
learning models. Recent work in argument min-
ing is able to achieve better performance for the
argument identification task using neural network
models with the availability of a large corpus of
annotated arguments (Habernal et al., 2018; Eger
et al., 2017). Annotating a large corpus by hand
is a tedious task and little existing work in ar-
gument mining has explored alternative ways to
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do it. Naderi and Hirst (2014) propose a frame-
based approach for dealing with arguments present
in parliamentary discourse and suggest that us-
ing a semi-supervised approach can help in de-
veloping their dataset into a large corpus. Haber-
nal and Gurevych (2015) have proposed a semi-
supervised based approach for identifying argu-
ments using a clustering based approach on unla-
belled data. Their results outperform several base-
lines and provide a way of developing their cor-
pus without having to manually annotate the en-
tire dataset. In this paper, we show that a small
labelled dataset trained using an existing SVM-
based classifer with the best features can help in
automatically labelling a large dataset and we also
evaluate its usefulness for modelling deep learning
models.

3 Implicit/Explicit classification

Our prior work (Rajendran et al., 2016b) de-
fines a sentence-level statement that is of a pos-
itive/negative sentiment and talks about a target
as being a stance-containing opinion. Biber and
Finegan (1988) define stance as the expression of
the user’s attitude and judgement in their message
to convince the audience towards the standpoint
taken by them. This is different from the defini-
tion used for stance detection in NLP, in which,
a given piece of text is classified as being for or
against a given claim. Based on the definition
given in Biber and Finegan (1988), we take stance-
containing opinions to be classified as being im-
plicit or explicit based on how the stance or the
standpoint of the reviewer towards the target is ex-
pressed in the linguistic structure of the opinion.
This definition of what we term implicit or ex-
plicit may depend on the audience interpretation
and may vary for evey individual. In order to make
the human annotation task less subjective, Rajen-
dran et al. (2016b) use the following cues to label
the opinions as implicit or explicit. These opinions
are extracted from hotel reviews present in the Ar-
guAna corpus (Wachsmuth et al., 2014). Some ex-
amples from Rajendran et al. (2016b) are given in
Table. 1.
Explicit opinion

1. Direct approval/disapproval is expressed by
the reviewer. Few examples are: I do not
like the hotel, I would definitely recom-
mend this hotel

2. Strong intensity of expression. Certain

words or clauses have a strong posi-
tive/negative intensity towards a particu-
lar target. For example, worst staff! has
a strong negative intensity in compari-
son to the staff were not helpful.

Implicit opinion
1. Words or clauses indicate positive/negative

expression but do not express it with a
strong intensity. For example, the staff
were friendly and helped us with our
baggages.

2. Opinions that are expressed as personal
facts. Few examples are small room,
carpets are dirty etc.

3. Opinions that express a form of justi-
fication such as describing an incident
that indirectly is meant to imply the re-
viewer’s satisfaction or dissatisfaction.
For example, they made us wait for a
long time for the check-in and the staff
completely ignored us.

To overcome the data imbalance for the two
classes, the original dataset annotated by a single
annotator was undersampled in (Rajendran et al.,
2016b) into 1244 opinions (495 explicit and 749
implicit). Next, two annotators were asked to in-
dependently annotate this undersampled dataset,
and the inter-annotator agreement for this task is
0.70, measured using Cohen’s κ (Cohen, 1960).

4 Methodology

4.1 Weakly-supervised Approach
Our first experiment uses a method that is simi-
lar to bagging (Breiman, 1996). Starting from a
randomly selected subset of the undersampled an-
notated data, we first create three different train-
ing sets, T1, T2 and T3. These training sets are
then each used to train an SVM classifier which
uses the highest discriminative features (Rajen-
dran et al., 2017) identified for predicting implicit
and explicit stance:

Unigrams and Bigrams Each word present in an
opinion and each pair of consecutive words
present in an opinion are considered as fea-
tures.

Noun-Adjective pattern Let us consider N to
represent the list of k nouns in an opinion and
A to represent the list of l adjectives. The
combination of each noun with an adjective
is considered as a Noun tag + Adjective tag
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Dataset Labelled Data Average-based Fully-Strict Partially-Strict No-Strict

Exp Imp Size Acc Size Acc Size Acc Size Acc

D1 100 749 4931 73.95 4376 72.99 4541 75.56 4931 67.76
D2 200 749 4931 79.5 4310 75.64 4575 82.07 4931 71.66
D3 300 749 4931 80.99 4427 79.50 4655 83.36 4931 73.71
D4 400 749 4931 81.50 4541 78.13 4726 84.08 4931 76.36

D5 495 100 4931 76.41 3411 76.20 4113 75.32 4931 82.23
D6 495 200 4931 81.72 3742 83.52 4276 80.30 4931 83.19
D7 495 300 4931 83.01 4054 83.36 4409 83.44 4931 79.90
D8 495 400 4931 82.42 4054 83.60 4498 84.08 4931 82.31
D9 495 500 4931 83.54 4501 83.44 4762 84.00 4931 82.63
D10 495 600 4931 83.75 4484 83.52 4762 83.52 4931 82.39
D11 495 700 4931 82.15 4678 83.19 4797 84.00 4931 82.55

Table 2: Datasets vary in the number of explicit and implicit opinions that are randomly sampled from the labelled
data to be trained by the SVM classifier. For each of the weakly supervised approach, we give size, the number of
the predicted labels that are used to train an LSTM-based model. This model was then tested on the entire labelled
data, and the accuracy of this LSTM model is reported.

feature. Thus there are k.l combined Noun +
Adjective features in total for each opinion.

Average-based sentence embedding We com-
pute the mean of the 300-dimensional
pre-trained word embedding vectors trained
using GloVe (Pennington et al., 2014) to
create a sentence embedding, and use each
dimension in the sentence embedding as a
feature in the classifier.

v =
1

|S|

|S|∑

i=1

si (1)

where |S| represents the size of the opinion
and si represents the pre-trained word em-
bedding for the ith word in the opinion.

The three resulting SVM classifiers are then
used to annotate 4931 unannotated opinions, and
these newly annotated opinions are then used to
train an LTSM classifier. We generate the an-
notated opinions in two different ways — what
we call the average-based method and the voting-
based method — and for each method we use
the resulting annotated opinions differently as de-
scribed next.

Average-Based Each training set T1, T2 and T3
is used to train separate SVM classifiers, which
are used to label the unlabelled opinions, giving
corresponding annotated opinion sets U1, U2 and
U3. Separate LSTM models are trained on each of
U1, U2 and U3, and tested on the original set of
annotated data. Finally, the averaged performance
across the three LSTMs is reported.

Iterations Self-training Reserved

Size Accuracy Size Accuracy

1 22 49.43 511 67.68
5 2110 80.86 1717 68.24
10 2574 81.83 2194 70.25
15 3600 82.71 3152 70.98
20 3613 82.71 3708 68.81
25 4931 82.71 4931 64.22

Table 3: Accuracy of the LSTM model on annotated
data using a set of automatically labelled unannotated
opinions of Size.

Voting-Based Again, each training set T1, T2
and T3 is used to train separate SVM classifiers,
which are used to label the unlabelled opinions,
giving corresponding annotated opinion sets U1,
U2 and U3. We then followed an approach that is
similar to Ng and Cardie (2003) to combine the
opinions in U1, U2 and U3 into a single set, de-
noted by UF , using the following voting criteria:
Fully-Strict An opinion is included in UF if all

three SVM classifiers predict the same stance
label.

Partially-Strict An opinion is included inUF if all
three SVM classifiers identify it as explicit,
or if at least two of them classify it as im-
plicit.

No-Strict An opinion is included inUF as implicit
if at least one of the classifiers predict it to
be implicit, otherwise it is included in UF as
explicit.

UF was then used to train an LSTM classifier and
this was tested on the original annotated data.

Note that moving from Fully-strict→ Partially-
Strict → No-Strict relaxes the requirement on in-
cluding an opinion in UF so that the number of
opinions in the training data increases.
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4.2 Semi-supervised approach
We conduct a second experiment to test the com-
bination of both labelled (1244 opinions) and un-
labelled (4931 opinions) data using the following
popular semi-supervised learning methods.
Self-training method We train an SVM using the

labelled data D and use this to annotate the
unannotated data U . The annotated opinions
from U which are labelled with the highest
probability are then added toD. This process
is repeated m times.

Reserved method Here we use the method of Liu
et al. (2013), where a portion of the training
data R is reserved, and the remainder is used
for training the SVM. The resulting classifier
is run on the combination of U and R. The
annotated opinions from U with the highest
probability and the opinions fromR that have
the lowest probability of having a correct la-
bel generated by the SVM are appended to
the training dataset. This operation is re-
peated m times. We chose 222 explicit opin-
ions and 287 implicit opinions as the training
data, and took 273 explicit opinions and 462
implicit opinions as the reserved portion.

After the final iteration, the final set of annotations
of the opinions in U is used to train an LSTM
model. The resulting classifier is then tested on
the original set of annotated data.

5 Experiment and Results

We used Keras1 to implement an LSTM model
with an embedding layer using pre-trained 300
dimensional GloVe embeddings, followed by an
LSTM layer of size 100 with a dropout rate of 0.5
and a sigmoid output layer. The input length is
padded to 50. Parameter optimisation is done us-
ing Adam (Kingma and Ba, 2014). For the semi-
supervised approaches, we consider the number of
iterations, m = 1− 25.

Table. 2 reports under Size the number of unan-
notated data that is automatically labelled using
the weakly-supervised approaches. The corre-
sponding columns Exp and Imp contain the num-
ber of manually annotated opinions that are used
to train the SVM classifier used in the first-step of
the proposed method. The Acc column denotes the
accuracy for predicting the labels of the annotated
dataset using the LSTM model trained on the au-
tomatically labelled, unannotated data.

1https://keras.io/

Looking at the performance of the weakly-
supervised approach in Table. 2, we observe the
effect of varying the size of the explicit and the im-
plicit opinion sets that are used to train the SVM-
based classifier (see columns Emp and Imp in Ta-
ble. 2). Comparing these with the accuracy scores,
we find that using the largest set of explicit opin-
ions in training the initial SVMs gives new an-
notated data that can train classifiers that perform
best on the original annotated data. Overall, us-
ing the entire undersampled data for training the
SVMs and using the Partially-Strict voting based
method gives the best performance with an accu-
racy of 0.84.

Table. 3 reports the results obtained using the
self-training method and the reserved method.
These show how the size of the labelled unanno-
tated dataset increases at each iteration and these
newly annotated opinions are added to the train-
ing data. The accuracy of the LSTM model in pre-
dicting the labels of annotated opinions improves
with the size of the automatically labelled dataset.
However, the accuracy of the reserved method de-
creases in performance after 20 iterations2. Of the
two methods, the self-training method performs
best, showing that using training data with the
lowest confidence does not help in this task.

Overall, the results are positive, showing a
range of methods that can create automatically la-
belled data which is accurate enough to be useful
for deep-learning methods. The dataset is publicly
available at https://goo.gl/Bym2Vz.

6 Conclusion

This work investigated a particular task related to
argument mining where we have a small anno-
tated dataset. Our results show that using a semi-
supervised method with the available small anno-
tated dataset is sufficient to label a larger unla-
belled dataset so it can be used to train a deep
learning LSTM model for argument mining.
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Abstract

We investigate whether and where multi-
task learning (MTL) can improve perfor-
mance on NLP problems related to argu-
mentation mining (AM), in particular ar-
gument component identification. Our re-
sults show that MTL performs particularly
well (and better than single-task learning)
when little training data is available for
the main task, a common scenario in AM.
Our findings challenge previous assump-
tions that conceptualizations across AM
datasets are divergent and that MTL is dif-
ficult for semantic or higher-level tasks.

1 Introduction

Computational argumentation mining (AM) deals
with the automatic identification of argumentative
structures within natural language. This can be
beneficial in many applications such as summariz-
ing arguments in texts to improve comprehensibil-
ity for end-users, or information retrieval and ex-
traction (Persing and Ng, 2016). A common task
is to segment a text into argumentative and non-
argumentative components and identify the type
of argumentative components. As an illustration,
consider the (simplified) example from Eger et al.
(2017): “Since [it killed many marine lives]Premise
[tourism has threatened nature]Claim.” Here, the
non-argumentative token “Since” is followed by
two argumentative components: a premise that
supports a claim.

Argumentation is highly subjective and concep-
tualized in different ways (Peldszus and Stede,
2013; Al-Khatib et al., 2017). On the one hand,
this implies that creating reliable ground-truth
datasets for AM is costly, as it requires trained an-
notators. However, even trained annotators have
problems identifying and classifying arguments

reliably in texts (Habernal and Gurevych, 2017).
To tackle AM in a new domain or develop new
AM tasks, it may thus not be possible to create
large datasets as required by most state-of-the-art
machine learning approaches. On the other hand,
the different conceptualizations of argumentation
resulted in AM corpora with different argument
component types, with very little conceptual over-
lap between some of these corpora (Daxenberger
et al., 2017). This distinguishes AM from more es-
tablished NLP tasks like discourse parsing (Braud
et al., 2016) and makes it particularly challenging.
Therefore, a natural question is how to handle new
AM datasets in a new domain and with sparse data.

Here, we investigate how existing AM datasets
from different domains and with different con-
ceptualizations of arguments can be leveraged
to tackle these challenges. More precisely, we
study whether conceptually diverse AM datasets
from different domains can help deal with new
AM datasets when data is limited. A promis-
ing direction to incorporate existing datasets as
“auxiliary knowledge” is by means of multi-task
learning (MTL), a paradigm that dates back to
the 1990s (Caruana, 1993, 1996), but has only
recently gained large attention (Collobert et al.,
2011; Søgaard and Goldberg, 2016; Hashimoto
et al., 2017). The idea behind MTL is to learn
several tasks jointly, similarly to human learning,
so that tasks serve as mutual sources of “induc-
tive bias” for one another. MTL has been reported
particularly beneficial when tasks exhibit “natu-
ral hierarchies” (Søgaard and Goldberg, 2016) or
when the amount of training data for the main
task is sparse (Benton et al., 2017; Augenstein and
Søgaard, 2017), where the auxiliary tasks may act
as regularizers to prevent overfitting (Ruder et al.,
2017). The latter is precisely the scenario most
relevant to us.

In this paper, we (1) investigate to which de-
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gree training a system to solve several conceptu-
ally different AM tasks jointly improves perfor-
mance over learning in isolation, (2) compare per-
formance gains across different dataset sizes, and
(3) do so across various domains. Our findings
show that MTL is helpful for AM—particularly
in data sparsity settings—when treating other AM
tasks as auxiliary.1

2 Related Work

AM is a relatively new field in NLP. Hence, a lot
of related work revolves around creating new cor-
pora. We use six such corpora, described in more
detail in Section 3. On the modeling side, Stab and
Gurevych (2017) and Persing and Ng (2016) rely
on pipeline approaches for AM, combining parts
of the pipeline using integer linear programming
(ILP). Eger et al. (2017) propose neural end-to-end
models for AM. While Daxenberger et al. (2017)
show that there is little consensus on the conceptu-
alization of a claim across AM corpora, Al-Khatib
et al. (2016) use distant supervision to overcome
domain gaps for identifying (non-)argumentative
text.

MTL has been applied in many different set-
tings. Bollmann and Søgaard (2016) and Peng
and Dredze (2017) use data from different do-
mains as different tasks and thereby improve his-
torical spelling normalization and Chinese word
segmentation and NER, respectively. Plank et al.
(2016) apply an MTL setup to POS tagging across
22 different languages, where the auxiliary task
is to predict token frequency. Eger et al. (2017)
explore sub-tasks (such as component identifica-
tion) of a complex AM tagging problem (including
relations between components) as auxiliaries and
find that this improves performances. However,
they stay within one single domain and dataset,
and thus their approach does not address the ques-
tion how new AM datasets with sparse data can
profit from existing AM resources. Conceptually
closest to our work, Braud et al. (2017) leverage
data from different languages as well as differ-
ent domains in order to improve discourse pars-
ing. While MTL was shown effective for syn-
tactic tasks under certain conditions (Søgaard and
Goldberg, 2016), Alonso and Plank (2017) find
that MTL does not improve performances in four

1The code and data used for our experiments are
available from https://github.com/UKPLab/
naacl18-multitask_argument_mining.

out of five semantic (i.e., higher level) tasks that
they study. We are among the first to perform a
structured investigation of MTL for higher-level
pragmatic tasks, which are thought to be much
more challenging than syntactic tasks (Alonso and
Plank, 2017), and in particular, explore it for AM
in cross-domain settings.

3 Experiments

Data We experiment with six datasets for argu-
ment component identification, i.e. the token-level
segmentation and typing of components. These
datasets are all of different sizes, have different
average text lengths, and different argument com-
ponent types and label distributions, as summa-
rized in Table 1. We only choose datasets con-
taining both argumentative components and non-
argumentative text. Claims are available in five of
six datasets, and all datasets have premises (resp.
“justification”), although it is unclear how large
the conceptual overlap is across datasets. Further
component types are idiosyncractic. hotel has
the largest number of types, namely, six. Most
datasets also come with further information, e.g.
relations between argument components, which
are not considered here.

Approach Due to the difference in annotations
used in the different datasets, we consider each
dataset as a separate AM task. We treat all of
them as sequence tagging problems, where pre-
dicting BIO tags (argument segmentation) and ar-
gument component types (component classifica-
tion) is framed as a joint task. This is achieved
through token-level BIO tagging with the label set
{O} ∪ {B, I} × T , where T is a dataset spe-
cific set of argument component types, e.g. T =
{claim, premise, . . .}. Thus, the overall number
of tags in each dataset is twice the number of
non-“O” component types plus one (2 · |T | + 1).
We use the state-of-the-art framework by Reimers
and Gurevych (2017) for both single-task learning
(STL) and MTL. It employs a bidirectional LSTM
(BILSTM) model with a CRF layer over individ-
ual LSTM outputs to account for label dependen-
cies. We use nadam as optimizer. For MTL, the
recurrent layers of the deep BILSTM are shared
by all tasks, with a separate CRF layer for each
task. All tasks terminate at the same level. The
main task determines the number of mini-batches
used for training, i.e. in every iteration the main
task is trained on all its mini-batches and all other
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Dataset Domain #Docs Tokens Component Types

Reed et al. (2008) various (Araucaria) 507 120 C (16), P (46), O (38)
Biran and Rambow (2011) wikipedia discussions 118 1592 C (9), justification (23), O (68)
Liu et al. (2017), Gao et al.
(2017)

hotel reviews 194 185 C (39), P (22), major C (7), implicit P (8),
background (7), recommendation (5), O (12)

Habernal and Gurevych
(2017)

web discourse 340 250 C (4), P (25), backing (13), rebuttal (3), refu-
tation (1), O (54)

Habernal et al. (2017) news comments 1927 108 P (53), O (47)
Stab and Gurevych (2017) persuasive essays 402 366 C (15), P (45), major C (8), O (32)

Table 1: AM datasets: C – claim, P – premise, O – non-argumentative; numbers in parentheses are label
distributions in %; ‘tokens’ is the average in each document.

(auxiliary) tasks are trained on the same number
of (randomly drawn) mini-batches.

To simulate data sparsity, we experiment with
different sizes of training data for the main task.
We first draw a “sparse” training set of 21K to-
kens2 for each of the six AM datasets and a dev
set of 9K to simulate a sparse scenario with 30K
given tokens. The remaining data of each specific
dataset is used as its test set (at least 5K tokens).
We then randomly draw a subset of the training
data to create three more ‘sparsity scenarios’ with
12K, 6K, and 1K tokens, respectively. Both dev
and test set remain the same as in the 21K sce-
nario. It is worth emphasizing how little data is
used in the 1K scenario—only 1-10 documents (or
roughly 50 sentences). We train a separate STL
system for each of the six datasets and each of
the four sparsity scenarios. In the MTL setup, the
respective sparsity data is used as the main task,
all other (auxiliary) AM datasets, each considered
a separate task, are trained on all their available
data. To measure the effect of MTL as opposed
to a mere increase of training data, we further-
more train for each main task (i.e. each dataset
and sparsity scenario) an STL system on the union
of (training data of) main and auxiliary task, and
evaluate it on the main task’s test data.

Hyperparameter optimization For each spar-
sity scenario and dataset we train 50 STL/MTL
systems using GloVe embeddings (Pennington
et al., 2014) and 50 using the embeddings by
Komninos and Manandhar (2016). For each run
we randomly choose a layout with either one hid-
den layer of h ∈ {50, 100, 150} units or two lay-
ers of 100 units as well as variational dropout rates
between 0.2 and 0.5 for the input layer and for the
hidden units.

2Or more, since whole documents are added to the train-
ing set until the sum of tokens is at least 21K. Similarly for
smaller training and dev sets.

4 Results

Note that we experiment with artificially shrunk
datasets, which makes our results incomparable
with those reported for the full datasets in other
works. Nevertheless, it is to be expected that our
STL model is on par with results obtained in re-
cent works also using neural models for argument
component identification, since our state-of-the-
art BILSTM has the same architecture as the one
by Eger et al. (2017).

Overall trends Table 2 reports the average
macro-F13 test scores over the respective ten best
(according to the macro-F1 dev scores) hyperpa-
rameter configurations. We compare STL on each
task, MTL with all remaining datasets as auxil-
iary tasks, and the union baseline. For three of
the six datasets, MTL yields a significant improve-
ment in all sparsity scenarios. Interestingly, these
are the datasets with only one or two types of ar-
gument components. For the other three datasets,
MTL only yields an improvement in the sparser
data scenarios. The union baseline generally per-
forms (considerably) worse than STL in all sce-
narios. This implies that the domains and compo-
nent types (label spaces) used in the different AM
datasets are too diverse to model them as one sin-
gle task and that the improvement of MTL over
STL cannot be attributed to more available data.

Figure 1 shows the general trends of our re-
sults. For each dataset, the figure plots the dif-
ference between normalized MTL and normalized
STL macro-F1 scores (MTLnorm(k)−STLnorm(k))
for k = 1K, 6K, 12K, 21K training data points for
the main task. For each specific dataset, the nor-
malized macro-F1 score is defined as σnorm(k) =
σ(k)

STL(1K) , where σ(k) is the original macro-F1 score
and STL(1K) denotes the STL score for 1K train-

3As implemented in scikit-learn (Pedregosa et al., 2011).
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Dataset 21K 12K 6K 1K

var – STL 43.34 42.85 38.89 31.30
var – MTL 47.39 45.63 42.14 37.10
var – BL 30.45 27.35 26.75 26.62

wiki – STL 23.37 22.57 20.93 19.74
wiki – MTL 32.50 31.99 28.03 20.17*

wiki –BL 18.34 18.12 17.49 20.47

news – STL 56.49 54.61 54.21 49.67
news – MTL 57.76 56.34 55.41* 52.43
news – BL 32.63 40.63 36.54 35.51

essays – STL 60.54 56.35 49.68 24.60
essays – MTL 60.55 57.90* 52.14 32.55
essays – BL 48.38 31.58 21.13 12.39

web – STL 23.43 22.33 19.71 11.28
web – MTL 23.27 22.97 21.73 15.31
web – BL 15.21 14.94 12.09 10.80

hotel – STL 47.91 47.78 45.64 29.82
hotel – MTL 46.44 46.78 46.60 39.45
hotel – BL 45.69 43.61 42.56 20.39

Table 2: Macro-F1 for AM component identifi-
cation, comparing MTL, STL (significant differ-
ences in bold with p < 0.01, p < 0.05 if * using
Mann-Whitney U Test) and union baseline (BL).

ing data. Using this normalization, all scores are
directly comparable and have the interpretation of
improvement over the STL scenario with 1K to-
kens. It is noteworthy that MTL always improves
over STL when the main task is very sparse (1K)
and gains are sometimes substantial (between 30
and 40% for web, essays, and hotel).

We observe three different patterns with re-
spect to the main task: (i) for essays, web,
and hotel, MTL is considerably better than STL
when the main task is sparse, but for 21K tokens
we observe either minimal gains or losses from
MTL compared to STL. (ii) The var and news
datasets are stable, with consistent small gains
from MTL over STL for all sizes of the main task.
Finally, (iii) wiki displays an unusual pattern in
that MTL gains are increasing with the amount of
training data. We attribute this to the large label
imbalance in wiki, where nearly 70% of the data
is ‘O’. When training data is very sparse, STL pre-
dicts 99% of all tokens as ‘O’, which results in a
high F1 score for this component type but very low
F1 scores (below 1%) for the two other component
types. The macro-F1 is thus lower than that of
MTL, where ‘claim’ and ‘premise’ have a higher
F1 score. Even though STL improves on the iden-
tification of ‘premise’ and ‘claim’ in the 21k sce-
nario, the trend remains, since MTL also improves
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0.4
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1K 6K 12K 21K

∆
(k
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wiki
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Figure 1: MTL versus STL: curves ∆(k) =
MTLnorm(k) − STLnorm(k) as a function of size
k of main task.

on these labels.

Detailed analysis Upon closer inspection, we
find that across all datasets MTL generally im-
proves performance for class labels with low fre-
quency as compared to STL. The more training
data becomes available, the better STL gets in
predicting such class labels, thus closing the gap
to MTL. However, for wiki even 21K does not
seem sufficient for STL to learn the two infrequent
class labels, predicting 87% as ‘O’, so MTL still
yields more than 10pp higher F1 for these infre-
quent classes.

Further analysis of our results reveals that the
increase in the overall F1 score for MTL over STL
is both due to improved component segmentation
(BIO labeling) and better type prediction. For ex-
ample, in the 21K and 6K data settings, the BIO la-
beling improves by 1-4pp macro-F1 for nearly all
datasets and even by up to 17% for wiki. Unsur-
prisingly, in most cases, MTL also reduces invalid
BIO sequences (‘O’ followed by ‘I’). Regarding
the F1 scores of argument component types, we
observe an improvement of MTL over STL for
claims or major claims in all datasets containing
these types and for premises in all but one dataset.
It is further interesting that for the hotel dataset,
MTL confuses premises mainly with the semanti-
cally similar implicit premises, whereas STL con-
fuses premises with claims. Moreover, in both
hotel and essays, claims are rarely predicted
to be major claims, but major claims are predicted
to be claims (both STL and MTL).

These results indicate that, despite the differ-
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ent domains and label spaces of the six datasets,
MTL appears to learn generalized cross-domain
representations of argument components, which
aid argument component identification in sparse
data scenarios and across domains.

5 Concluding Remarks

We showed that MTL improves performance over
STL on AM tasks (particularly) when training
data is sparse. More precisely, argument com-
ponent identification on a small AM dataset im-
proves when treating other AM datasets as auxil-
iary tasks, even if these include different compo-
nent types, coming from diverse domains. Over-
all, our results challenge the view that MTL is
only infrequently effective for semantic or higher-
level tasks (Alonso and Plank, 2017). We at-
tribute the success of MTL over STL to a few fac-
tors in our setting: (1) Alonso and Plank (2017)
used syntactic auxiliary tasks for semantic main
tasks, whereas we choose only higher-level aux-
iliary tasks for higher-level main tasks. (2) The
label spaces of all our tasks are relatively small, so
that generalized representations can be learned in
the LSTMs’ hidden layers without suffering from
label sparsity. (3) The AM tasks considered here
apparently do share common ground, a finding
worth mentioning in itself given the contrary ev-
idence in related work (Daxenberger et al., 2017).

Our findings cannot be readily anticipated by
previous research, which has reached mixed con-
clusions regarding the effectiveness of MTL over-
all and particular aspects, such as the size of main
task. For example, while Luong et al. (2016) sug-
gest that success of MTL requires that the auxil-
iary task does not swamp the main task data, Ben-
ton et al. (2017) and Yang et al. (2017) come to the
opposite conclusion that MTL is particularly ef-
fective when the data of the main task is small, and
Bingel and Søgaard (2017) find a low correlation
between size of the main task and MTL success.
Our curves in Figure 1 appear to prefer the view
that MTL is effective when the main task training
data is sparse.

The scope for future work is vast. For exam-
ple, it would be interesting to investigate whether
standard low-level tasks, such as POS tagging
or chunking, are effective for AM. Furthermore,
other architectures for multi-task learning that ap-
ply soft parameter sharing, such as sluice networks
(Ruder et al., 2017), will be investigated.
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Abstract

Many problems in NLP require aggregating in-
formation from multiple mentions of the same
entity which may be far apart in the text. Ex-
isting Recurrent Neural Network (RNN) lay-
ers are biased towards short-term dependen-
cies and hence not suited to such tasks. We
present a recurrent layer which is instead bi-
ased towards coreferent dependencies. The
layer uses coreference annotations extracted
from an external system to connect entity men-
tions belonging to the same cluster. Incorpo-
rating this layer into a state-of-the-art reading
comprehension model improves performance
on three datasets – Wikihop, LAMBADA and
the bAbi AI tasks – with large gains when
training data is scarce.

1 Introduction

A long-standing goal of NLP is to build systems
capable of reasoning about the information present
in text. One important form of reasoning for Ques-
tion Answering (QA) models is the ability to ag-
gregate information from multiple mentions of en-
tities. We call this coreference-based reasoning
since multiple pieces of information, which may
lie across sentence, paragraph or document bound-
aries, are tied together with the help of referring
expressions which denote the same real-world en-
tity. Figure 1 shows examples.

QA models which directly read text to answer
questions (commonly known as Reading Com-
prehension systems) (Hermann et al., 2015; Seo
et al., 2017a), typically consist of RNN layers.
RNN layers have a bias towards sequential re-
cency (Dyer, 2017), i.e. a tendency to favor
short-term dependencies. Attention mechanisms
alleviate part of the issue, but empirical studies
suggest RNNs with attention also have difficulty
modeling long-term dependencies (Daniluk et al.,
2017). We conjecture that when training data

is scarce, and inductive biases play an important
role, RNN-based models would have trouble with
coreference-based reasoning.

Context: [...] mary got the football there [...] mary
went to the bedroom [...] mary travelled to the hallway
[...]
Question: where was the football before the hallway ?

Context: Louis-Philippe Fiset [...] was a local physician
and politician in the Mauricie area [...] is located in the
Mauricie region of Quebec, Canada [...]
Question: country of citizenship – louis-philippe fiset ?

Figure 1: Example questions which require
coreference-based reasoning from the bAbi dataset
(top) and Wikihop dataset (bottom). Coreferences are
in bold, and the correct answers are underlined.

At the same time, systems for coreference res-
olution have seen a gradual increase in accuracy
over the years (Durrett and Klein, 2013; Wise-
man et al., 2016; Lee et al., 2017). Hence, in this
work we use the annotations produced by such
systems to adapt a standard RNN layer by intro-
ducing a bias towards coreferent recency. Specif-
ically, given an input sequence and coreference
clusters extracted from an external system, we in-
troduce a term in the update equations for Gated
Recurrent Units (GRU) (Cho et al., 2014) which
depends on the hidden state of the coreferent an-
tecedent of the current token (if it exists). This
way hidden states are propagated along corefer-
ence chains and the original sequence in parallel.

We compare our Coref-GRU layer with the reg-
ular GRU layer by incorporating it in a recent
model for reading comprehension. On synthetic
data specifically constructed to test coreference-
based reasoning (Weston et al., 2015), C-GRUs
lead to a large improvement over regular GRUs.
We show that the structural bias introduced and
coreference signals are both important to reach
high performance in this case. On a more re-
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alistic dataset (Welbl et al., 2017), with noisy
coreference annotations, we see small but signif-
icant improvements over a state-of-the-art base-
line. As we reduce the training data, the gains be-
come larger. Lastly, we apply the same model to
a broad-context language modeling task (Paperno
et al., 2016), where coreference resolution is an
important factor, and show improved performance
over state-of-the-art.

2 Related Work

Entity-based models. Ji et al. (2017) presented
a generative model for jointly predicting the next
word in the text and its gold-standard corefer-
ence annotation. The difference in our work is
that we look at the task of reading comprehen-
sion, and also work in the more practical set-
ting of system extracted coreferences. EntNets
(Henaff et al., 2016) also maintain dynamic mem-
ory slots for entities, but do not use coreference
signals and instead update all memories after read-
ing each sentence, which leads to poor perfor-
mance in the low-data regime (c.f. Table 1). Yang
et al. (2017) model references in text as explicit
latent variables, but limit their work to text gen-
eration. Kobayashi et al. (2016) used a pooling
operation to aggregate entity information across
multiple mentions. Wang et al. (2017) also noted
the importance of reference resolution for read-
ing comprehension, and we compare our model to
their one-hot pointer reader.

Syntactic-recency. Recent work has used syn-
tax, in the form of dependency trees, to replace the
sequential recency bias in RNNs with a syntactic
recency bias (Tai et al., 2015; Swayamdipta, 2017;
Qian et al., 2017; Chen et al., 2017). However,
syntax only looks at dependencies within sentence
boundaries, whereas our focus here is on longer
ranges. Our resulting layer is structurally similar
to GraphLSTMs (Peng et al., 2017), with an addi-
tional attention mechanism over the graph edges.
However, while Peng et al. (2017) found that using
coreference did not lead to any gains for the task of
relation extraction, here we show that it has a pos-
itive impact on the reading comprehension task.
Self-Attention (Vaswani et al., 2017) models are
becoming popular for modeling long-term depen-
dencies, and may also benefit from coreference in-
formation to bias the learning of those dependen-
cies. Here we focus on recurrent layers and leave
such an analysis to future work.

Mary went … she 

… 

… 

Mary went … she 

… 

… 
hf

t�1

hf
t

hf
yt

hb
t0

hb
t0+1xt xt0

hb
yt0

Figure 2: Forward (left) and Backward (right) Coref-
GRU layers. Mary and she are coreferent.

Part of this work was described in an unpub-
lished preprint (Dhingra et al., 2017b). The cur-
rent paper extends that version and focuses exclu-
sively on coreference relations. We also report re-
sults on the WikiHop dataset, including the perfor-
mance of the model in the low-data regime.

3 Model

Coref-GRU (C-GRU) Layer. Suppose we are
given an input sequence w1, w2, . . . , wT along
with their word vectors x1, . . . , xT and annota-
tions for the most recent coreferent antecedent for
each token y1, . . . , yT , where yt ∈ {0, . . . , t − 1}
and yt = 0 denotes the null antecedent (for tokens
not belonging to any cluster). We assume all to-
kens belonging to a mention in a cluster belong to
that cluster, and there are C clusters in total. Our
recurrent layer is adapted from GRU cells (Cho
et al., 2014), but similar extensions can be derived
for other recurrent cells as well. The update equa-
tions in a GRU all take the same basic form given
by:

f(Wxt + Uht−1 + b).

The bias for sequential recency comes from the
second term Uht−1. In this work we add an-
other term to introduce a bias towards coreferent
recency instead:

f(Wxt+αtUφs(ht−1)+(1−αt)U
′φc(hyt)+ b),

where hyt is the hidden state of the coreferent an-
tecedent of wt (with h0 = 0), φs and φc are non-
linear functions applied to the hidden states com-
ing from the sequential antecedent and the coref-
erent antecedent, respectively, and αt is a scalar
weight which decides the relative importance of
the two terms based on the current input (so that,
for example, pronouns may assign a higher weight
for the coreference state). When yt = 0, αt is
set to 1, otherwise it is computed using a key-
based addressing scheme (Miller et al., 2016), as
αt = softmax(xTt k), where k is a trainable key
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vector. In this work we use simple slicing func-
tions φs(x) = x[1 : d/2], and φc(x) = x[d/2 : d]
which decompose the hidden states into a sequen-
tial and a coreferent component, respectively. Fig-
ure 2 (left) shows an illustration of the layer, and
the full update equations are given in Appendix A.

Connection to Memory Networks. We can
also view the model as a memory network
(Sukhbaatar et al., 2015) with a memory state Mt

at each time step which is a C × d matrix. The
rows of this memory matrix correspond to the
state of each coreference cluster at time step t.
The main difference between Coref-GRUs and a
typical memory network such as EntNets (Henaff
et al., 2016) lies in the fact that we use corefer-
ence annotations to read and write from the mem-
ory rather than let model learn how to access the
memory. With Coref-GRUs, only the content of
the memories needs to be learned. As we shall see
in Section 4, this turns out to be a useful bias in
the low-data regime.

Bidirectional C-GRU. To extend to the bidi-
rectional case, a second layer is fed the same se-
quence in the reverse direction, xT , . . . , x1 and
yt ∈ {0, t + 1, . . . , T} now denotes the immedi-
ately descendent coreferent token from wt. Out-
puts from the two layers are then concatenated to
form the bi-directional output (see Figure 2).

Complexity. The resulting layer has the same
time-complexity as that of a regular GRU layer.
The memory complexity increases since we have
to keep track of the hidden states for each coref-
erence cluster in the input. If there are C clusters
and B is the batch size, the resulting complexity
is by O(BTCd). This scales linearly with the in-
put size T , however we leave exploration of more
efficient architectures to future work.

Reading comprehension architecture. All
tasks we look at involve tuples of the form
(p, q, a, C), where the goal is to find the answer
a from candidates C to question q with passage
p as context. We use the Gated-Attention (GA)
reader (Dhingra et al., 2017a) as a base architec-
ture, which computes representations of the pas-
sage by passing it through multiple bidirectional
GRU layers with an attention mechanism in be-
tween layers. We compare the original GA archi-
tecture (GA w/ GRU) with one where the bidirec-
tional GRU layers are replaced with bidirectional
C-GRU layers (GA w/ C-GRU). Performance is
reported in terms of the accuracy of detecting the

correct answer from C, and all models are trained
using cross-entropy loss. When comparing two
models we ensure the number of parameters are
the same in each. Other implementation details
are listed in Appendix B.

4 Experiments & Results

Method Avg Max # failed

EntNets (Henaff et al., 2016) – 0.704 15
QRN (Seo et al., 2017b) – 0.901 7

Bi-GRU 0.727 0.767 13
Bi-C-GRU 0.790 0.831 12
GA w/ GRU 0.764 0.810 10
GA w/ GRU + 1-hot 0.766 0.808 9
GA w/ C-GRU 0.870 0.886 5

Table 1: Accuracy on bAbi-1K, averaged across all 20
tasks. Following previous work we run each task for 10
random seeds, and report the Avg and Max (based on
dev set) performance. A task is considered failed if its
Max performance is < 0.95.

BAbi AI tasks. Our first set of experiments
are on the 1K training version of the synthetic
bAbi AI tasks (Weston et al., 2015). The pas-
sages and questions in this dataset are generated
using templates, removing many complexities in-
herent in natural language, but it still provides a
useful testbed for us since some tasks are specifi-
cally constructed to test the coreference-based rea-
soning we tackle here. Experiments on more nat-
ural data are described below.

Table 1 shows a comparison of EntNets (Henaff
et al., 2016), QRNs (Seo et al., 2017b) (the best
published results on bAbi-1K), and our models.
We also include the results for a single layer ver-
sion of GA Reader (which we denote simply as
Bi-GRU or Bi-C-GRU when using coreference)
to enable fair comparison with EntNets. In each
case we see clear improvements of using C-GRU
layers over GRU layers. Interestingly, EntNets,
which have>99% performance when trained with
10K examples only reach 70% performance with
1K training examples. The Bi-C-GRU model sig-
nificantly improves on this baseline, which shows
that, with less data, coreference annotations can
provide a useful bias for a memory network on
how to read and write memories.

A break-down of task-wise performance is
given in Appendix C. Comparing C-GRU to the
GRU based method, we find that the main gains
are on tasks 2 (two supporting facts), 3 (three sup-
porting facts) and 16 (basic induction). All these
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Figure 3: Left: Accuracy of GA w/ C-GRU as corefer-
ence annotations are removed for bAbi task 3. Right:
Expected probability of correct answer (exp (−loss))
on Validation set as training progresses on Wikihop
dataset for 1K, 5K and the full training datasets.

tasks require aggregation of information across
sentences to derive the answer. Comparing to the
QRN baseline, we found that C-GRU was signif-
icantly worse on task 15 (basic deduction). On
closer examination we found that this was because
our simplistic coreference module which matches
tokens exactly was not able to resolve “mice” to
“mouses” and “cats” to “cat”. On the other hand,
C-GRU was significantly better than QRN on task
16 (basic induction).

We also include a baseline which uses coref-
erence features as 1-hot vectors appended to the
input word vectors (GA w/ GRU + 1-hot). This
provides the model with information about the
coreference clusters, but does not improve perfor-
mance, suggesting that the regular GRU is unable
to track the given coreference information across
long distances to solve the task. On the other
hand, in Figure 3 (left) we show how the per-
formance of GA w/ C-GRU varies as we remove
gold-standard mentions from coreference clusters,
or if we replace them with random mentions (GA
w/ random-GRU). In both cases there is a sharp
drop in performance, showing that specifically us-
ing coreference for connecting mentions is impor-
tant.

Wikihop dataset. Next we apply our model to
the Wikihop dataset (Welbl et al., 2017), which is
specifically constructed to test multi-hop reading
comprehension across documents. Each instance
in this dataset consists of a collection of passages
(p1, . . . , pN ), and a query of the form (h, r) where
h is an entity and r is a relation. The task is to find
the tail entity t from a set of provided candidates
C. As preprocessing we concatenate all documents
in a random order, and extract coreference anno-

Method Follow Follow
+single

Follow
+multiple Overall

Dev Dev Dev Dev Test

1K

GA w/ GRU 0.307 0.332 0.287 0.263 –
GA w/ C-GRU 0.355 0.370 0.354 0.330 –

5K

GA w/ GRU 0.382 0.385 0.390 0.336 –
GA w/ C-GRU 0.452 0.454 0.460 0.401 –

full

BiDAF – – – – 0.429
GA w/ GRU 0.606 0.615 0.604 0.549 –
GA w/ C-GRU 0.614 0.616 0.614 0.560† 0.593

Table 2: Accuracy on Wikihop. Follow: annotated as
answer follows from the given passages. Follow +mul-
tiple: annotated as requiring multiple passages for an-
swering. Follow +single annotated as requiring one
passage for answering. †p = 0.057 using Mcnemar’s
test compared to GA w/ GRU.

tations from the Berkeley Entity Resolution sys-
tem (Durrett and Klein, 2013) which gets about
62% F1 score on the CoNLL 2011 test set. We
only keep the coreference clusters which contain
at least one candidate from C or an entity which
co-occurs with the head entity h. We report results
in Table 2 when using the full training set, as well
as when using a reduced training set of sizes 1K
and 5K, to test the model under a low-data regime.
In Figure 3 we also show the training curves of
exp (−loss) on the validation set.

We see higher performance for the C-GRU
model in the low data regime, and better gen-
eralization throughout the training curve for all
three settings. This supports our conjecture that
the GRU layer has difficulty learning the kind
of coreference-based reasoning required in this
dataset, and that the bias towards coreferent re-
cency helps with that. However, perhaps sur-
prisingly, given enough data both models per-
form comparably. This could either indicate that
the baseline learns the required reasoning patterns
when given enough data, or, that the bias towards
corefence-based reasoning hurts performance for
some other types of questions. Indeed, there are
9% questions which are answered correctly by the
baseline but not by C-GRU, however, we did not
find any consistent patterns among these in our
analyses. Lastly, we note that both models vastly
outperform the best reported result of BiDAf from
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(Welbl et al., 2017)1. We believe this is because
the GA models select answers from the list of
candidatees, whereas BiDAF ignores those candi-
dates.

Method overall context

Chu et al. (2017) 0.4900 –
GA w/ GRU 0.5398 0.6677
GA w/ GRU + 1-hot 0.5338 0.6603
GA w/ C-GRU 0.5569 0.6888†

Table 3: Accuracy on LAMBADA test set, averaged
across two runs with random initializations. context:
passages for which the answer is in context. overall:
full test set for comparison to prior work. †p < 0.0001
using Mcnemar’s test compared to GA w/ GRU.

LAMBADA dataset. Our last set of exper-
iments is on the broad-context language model-
ing task of LAMBADA dataset (Paperno et al.,
2016). This dataset consists of passages 4-5 sen-
tences long, where the last word needs to be pre-
dicted. Interestingly, though, the passages are fil-
tered such that human volunteers were able to pre-
dict the missing token given the full passage, but
not given only the last sentence. Hence, predict-
ing these tokens involves a broader understanding
of the whole passage. Analysis of the questions
(Chu et al., 2017) suggests that around 20% of the
questions need coreference understanding to an-
swer correctly. Hence, we apply our model which
uses coreference information for this task.

We use the same setup as Chu et al. (2017)
which formulated the problem as a reading com-
prehension one by treating the last sentence as
query, and the remaining passage as context to ex-
tract the answer from. In this manner only 80% of
the questions are answerable, but the performance
increases substantially compared to pure language
modeling based approaches. For this dataset we
used Stanford CoreNLP to extract coreferences
(Clark and Manning, 2015), which achieved 0.63
F1 on the CoNLL test set. Table 3 shows a com-
parison of the GA w/ GRU baseline and GA w/ C-
GRU models. We see a significant gain in perfor-
mance when using the layer with coreference bias.
Furthermore, the 1-hot baseline which uses the
same coreference information, but with sequential
recency bias fails to improve over the regular GRU

1The official leaderboard at http://qangaroo.cs.
ucl.ac.uk/leaderboard.html shows two models
with better performance than reported here (as of April 2018).
Since we were unable to find publications for these models
we omit them here.

layer. While the improvement for C-GRU is small,
it is significant, and we note that questions in this
dataset involve several different types of reasoning
out of which we only tackle one specific kind. The
proposed GA w/ C-GRU layer sets a new state-of-
the-art on this dataset.

5 Conclusion

We present a recurrent layer with a bias towards
coreferent recency, with the goal of tackling read-
ing comprehension problems which require aggre-
gating information from multiple mentions of the
same entity. Our experiments show that when
combined with a powerful reading architecture,
the layer provides a useful inductive bias for solv-
ing problems of this kind. In future work, we aim
to apply this model to other problems where long-
term dependencies at the document level are im-
portant. Noise in the coreference annotations has
a detrimental effect on the performance (Figure 3),
hence we also aim to explore joint models which
learn to do coreference resolution and reading to-
gether.
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A C-GRU update equations

For simplicity, we introduce the variablemt which
concatenates (||) the sequential and coreferent hid-
den states:

mt = αtφs(ht−1)||(1− αt)φc(hyt)

Then the update equations are given by:

rt = σ(W rxt + U rmt + br)

zt = σ(W zxt + U zmt + bz)

h̃t = tanh(W hxt + rt � Uhmt + bh)

ht = (1− zt)�mt + zth̃t

The attention parameter αt is given by:

αt =
expxTt k1

expxTt k1 + expxTt k2

where k1 and k2 are trainable key vectors.

B Implementation details

We use K = 3 layers with the GA architecture.
We keep the same hyperparameter settings when
using GRU or C-GRU layers, which we describe
here.

For the bAbi dataset, we use a hidden state size
of d = 64, batch size of B = 32, and learning rate
0.01 which is halved after every 120 updates. We
also use dropout with rate 0.1 at the output of each
layer. The maximum number of coreference clus-
ters across all tasks was C = 13. Half of the tasks
in this dataset are extractive, meaning the answer
is present in the passage, whereas the other half
are classification tasks, where the answer is in a
list of candidates which may not be in the passage.
For the extractive tasks, we use the attention sum
layer as described in the GA Reader paper (Dhin-
gra et al., 2017a). For the classification tasks we
replace this with a softmax layer for predicting one
of the classes.

For the Wikihop dataset, we use a hidden state
size of d = 64, batch size B = 16, and learn-
ing rate of 0.0005 which was halved every 2500
updates. The maximum number of coreference
clusters was set to 50 for this dataset. We used
dropout of 0.2 in between the intermediate layers,
and initialized word embeddings with Glove (Pen-
nington et al., 2014). We also used character em-
beddings, which were concatenated with the word
embeddings, of size 10. These were output from a

CNN layer with 50 filters each of width 5. Follow-
ing (Weissenborn et al., 2017), we also appended
a feature to the word embeddings in the passage
which indicated if the token appeared in the query
or not.

For the LAMBADA dataset, we use a hidden
state size of d = 256, batch size of B = 64, and
learning rate of 0.0005 which was halved every 2
epochs. Word vectors were initialized with Glove,
and dropout of 0.2 was applied after intermediate
layers. The maximum number of coreference clus-
ters in this dataset was 15.

C Task-wise bAbi performance

Task QRN GA w/
GRU

GA w/
C-GRU

1: Single Supporting Fact 1.000 0.997 1.000
2: Two Supporting Facts 0.993 0.345 0.990
3: Three Supporting Facts 0.943 0.558 0.982
4: Two Argument Relations 1.000 1.000 1.000
5: Three Argument Relations 0.989 0.989 0.993
6:Yes/No Questions 0.991 0.962 0.976
7: Counting 0.904 0.946 0.976
8: Lists / Sets 0.944 0.947 0.964
9: Simple Negation 1.000 0.991 0.990
10: Indefinite Knowledge 1.000 0.992 0.986
11: Basic Coreference 1.000 0.995 0.996
12: Conjunction 1.000 1.000 0.996
13: Compound Coreference 1.000 0.998 0.993
14: Time Reasoning 0.992 0.895 0.849
15: Basic Deduction 1.000 0.521 0.470
16: Basic Induction 0.470 0.488 0.999
17: Positional Reasoning 0.656 0.580 0.574
18: Size Reasoning 0.921 0.908 0.896
19: Path Finding 0.213 0.095 0.099
20: Agent’s Motivation 0.998 0.998 1.000

Average 0.901 0.810 0.886

Table 4: Breakdown of task-wise performance on bAbi
dataset. Tasks where C-GRU is significant better /
worse than either GRU or QRNs are highlighted.
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Abstract

Despite myriad efforts in the literature design-
ing neural dialogue generation systems in re-
cent years, very few consider putting restric-
tions on the response itself. They learn from
collections of past responses and generate one
based on a given utterance without consider-
ing, speech act, desired style or emotion to
be expressed. In this research, we address the
problem of forcing the dialogue generation to
express emotion. We present three models that
either concatenate the desired emotion with
the source input during the learning, or push
the emotion in the decoder. The results, eval-
uated with an emotion tagger, are encouraging
with all three models, but present better out-
come and promise with our model that adds
the emotion vector in the decoder.

1 Introduction

Automatic dialogue generation (Ritter et al., 2011)
aims at generating human-like responses given
a human-to-human dialogue history. Most con-
versational agents are specialized for a specific
domain such as travel booking (Xu and Rud-
nicky, 2000) and are typically finite state-based or
template-based. Open domain dialogue systems
have seen a growing interest in recent years thanks
to neural dialogue generation systems, based on
deep learning models. These systems do not en-
code dialog structure and are entirely data-driven.
They learn to predict the maximum-likelihood es-
timation (MLE) based on a large training cor-
pus. The machine learning-based system basically
learns to predict the words and the sentence to re-
spond based on the previous utterances. However,
while such a system can generate grammatically
correct and human-like answers, the responses are
often generic and non-committal instead of being
specific and emotionally intelligent. For instance,
we can not dictate a particular emotion to express.

In this paper, we consider a model in which the
wished emotion to be expressed is injected to di-
rect the response generation. For example, if the
user says: “I just missed my deadline.” If we want
the system to respond with sadness, it could be “I
am sorry to hear that.”, but we can also force the
response to express anger: “You should never do
it again!”

There are some challenges to tackle this task.

• The current neural dialogue models are not
satisfactory in general.

• There is a lack of dialogue corpora that are
labeled with emotions.

• The evaluation is hard because emotion is
subjective and sometimes ambiguous.

The idea is to use an emotion mining from text
classifier (Yadollahi et al., 2017) to predict the
emotion or emotions expressed in the source utter-
ance, then decide based on the detected emotions,
which emotion e is expressed in the response. The
response is evaluated using the same emotion clas-
sifier and is declared successful if e is predicted
from the response. The emotion tagger we use is
based on the work in (Yadollahi et al., 2017) but
uses a deep learning model and trains on 9 emo-
tions: anger, disgust, fear, guilt, joy, love, sadness,
surprise, and thankfulness. These are based on the
six basic emotions from Ekman’s model (Ekman,
1992), to which we added guilt, love and thank-
fulness in the context of an open ended conversa-
tional agent that we aim to be emotionally intelli-
gent for companionship to elderly users.

In this paper, we proposed three approaches to
make our model of our conversational agent gen-
erate responses expressing specific emotions. The
first two approaches add the emotion as a token
with the input during the learning either before the
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utterance sentence or after, and the third approach
injects the desired emotion directly in the decoder.

2 Related Work

Vinyals and Le (2015) adopted the Sequence-to-
sequence (Seq2Seq) model used in machine trans-
lation (Sutskever et al., 2014) in the task of au-
tomatic response generation. Seq2Seq learns to
generate a sequence of words from another se-
quence of words as input. Since then, many works
based on this framework have been conducted to
improve the response quality from different points
of view. Reinforcement learning has also been
adopted to force the model to have longer dis-
cussions (Li et al., 2016b). Serban et al. (2017)
proposed a hierarchical encoder to generate a re-
sponse from more utterances. Moreover, there are
also attempts to avoid generating dull, short re-
sponses (Li et al., 2017a,b).

3 Embed Emotion into Seq2Seq Models

Seq2Seq is a conditional language model which
takes as input message-response pairs (X,Y ),
where X = x1, x2, · · · , xm and Y =
y1, y2, · · · , yn are sentences consisting of se-
quences of words. The goal of the model is to
minimize the cross entropy loss L = log p(Y |X).
Despite the variants of Seq2Seq models, they usu-
ally consist of two major components: encoder
and decoder. The encoder embeds a source mes-
sage into a vector which is then fed into the de-
coder. The decoder generates Ŷ = ŷ1, ŷ2, · · ·
step by step. This procedure can be described as
c = Encoder(X), Y = Decoder(c). In our case,
each (X,Y ) pair is assigned with an additional de-
sired response emotion e. Our goal is therefore to
minimize− log p(Y |X, e). We propose two meth-
ods to tackle this task based on how to embed e,
either concatenating an emotion token to the input
message, or injecting the emotion into the decoder.

3.1 Seq2Seq with Attention
The choice of our encoder is LSTM (Hochreiter
and Schmidhuber, 1997) and it can be formulated
as the following.

hEn
t , cEn

t = LSTMEn(M(xi), [h
En
t−1; c

En
t−1])

hEn
0 = cEn

0 = 000 (1)

Where hEn
t and cEn

t are encoder’s hidden state
and cell state at time t. M(x) is the vector repre-
sentation of word x (Mikolov et al., 2013). In our

experiments, we apply the state-of-the-art FastText
(Joulin et al., 2016) pre-trained model.

Adapting attention mechanism in sequence gen-
eration has shown promising improvement (Bah-
danau et al., 2014; Luong et al., 2015). In our case,
we use the global attention with general score
function (Luong et al., 2015) under the assump-
tion that generated words can be aligned to any of
the words in the previous dialogue utterance. We
use another LSTM to decode the information, the
decoder with attention can be described as:

hhhEn = [hEn
1 , hEn

2 , · · · , hEn
m ] (2)

ĥt = αt · hhhEn (3)

αt = Softmax(hDe
t Wahhh

En) (4)

hDe
t , cDe

t = LSTMDe(M(yi), [ĥt−1; cDe
t−1]) (5)

ĥ0 = hEn
m , cDe

0 = cEn
m (6)

Where hDe
t and cDe

t are hidden state and cell
state. αt is the attention weights over all hidden
states of encoder. Wa is a trainable matrix which
is initialized randomly.

3.2 Embedding Emotion
Our first model is inspired by Google’s multilin-
gual neural machine translation system (Johnson
et al., 2016). Generating different types of emo-
tional responses can be an analogy to translating
the same sentence into different languages. The
implementation is straight forward; we make each
emotion a single token and concatenate it with the
input X so that our model has the target of mini-
mizing log p(Y |X ′), where X ′ = Concat(e,X).
This approach reduces the two individual inputs
into one so that they can be trained on normal
Seq2Seq models. Further more, we consider the
concatenation in two ways, before X and after X ,
as the following.

X1 = {e, x1, x2, · · · , xm} (Enc− bef) (7)

X2 = {x1, x2, · · · , xm, e} (Enc− aft) (8)

Both of the methods are embedding the desired
emotion into an encoder. We name them Enc-bef
and Enc-aft, respectively. e is the emotion of the
generated response and is obtained from Y by an
emotion mining classifier. Both models require to
change the m in (2) and (6) to m+ 1.

Li et al. (2016a) proposed a modified Seq2Seq
model that allows models to learn the speaking

50



16/04/2018 attentionLSTMSeq2Seq.html

1/1

E E E D D D
h

En

1

h

En

2

c

En

1

c

En

2

c

En

m

h

En

m

h

De

1

h

De

2

Global Attention

c

De

1

c

De

2

h

̂ 

1

h

̂ 

2

M( )x

1

M( )x

2

M( )x

m

M( )y

1

M( )y

2

e

v

e

v

: M(v)X

0

E E

: M(v)X

m+1

Figure 1: Three models to embed emotion: orange and yellow are the addition emotion tokens to concatenate
with the source sentences for model Enc-bef and Enc-aft respectively. The salmon-colored blocks represent the
emotion vectors which need to be feed into decoder of model Dec repeatedly.

styles of different people from a movie script cor-
pus. Our third approach adapts their idea but in-
stead of embedding people/speaker into the de-
coder, we feed the emotion vectors ve during the
decoding. Equation (5) is changed to hDe

t , cDe
t =

LSTMDe(M(yi), [ĥt−1; cDe
t−1; ve]). ve is drawn

from a trainable embedding layer. We name this
model Dec. The models are shown in Figure 1.

4 Dataset

To train the dialogue models, we use the Open-
Subtitles dataset (lis, 2016). Precisely, we use the
pre-processed data by (Li et al., 2016a) and fur-
ther removed duplicates. The total amount of ut-
terances is 11.3 million, each utterance has a min-
imal length of 6 words.

Since there is no existing dialogue data set la-
beled with emotions, we trained our own emotion
classifier to tag the corpus. We use the CBET
dataset 1 (Yadollahi et al., 2017; Shahraki and Za-
iane, 2017), it contains 9 emotions and 81k in-
stances. Each instance is labeled with up to two
emotions. The emotions are anger, surprise, joy,
love, sadness, fear, disgust, guilt, and thankful-
ness. We train a bidirectional LSTM (Graves et al.,
2005) model and achieve an F1-score of 68.4%
with precision 49.1% and recall 52.9% on these
emotions. To tag the target utterances with higher
confidence, we use a threshold to separate those
utterances that do not express emotion. 34.01%
are thus labeled as Non-emotion. ’Non-emotion’
is treated as a special emotion when training the
dialogue models, but it is not considered in the
evaluation.

1http://www.cs.ualberta.ca/˜zaiane/data/CBET/CBET.csv

5 Experiments and Evaluation

5.1 Seq2Seq

With the purpose of comparison, the parameters
of the three models are set to be the same. The
dimensions of LSTM hidden units are set to 600.
Adam optimizer (Kingma and Ba, 2014) with
learning rate of 0.0001 is used. The size of the vo-
cabulary space is set to 25,000, which is the same
as that in (Li et al., 2016a). We also use FastText
(Joulin et al., 2016) pre-trained word embedding
which is shared by the LSTMs in both encoder
and decoder and set to trainable. We held out 50k
samples from the whole dataset as test set. 95% of
the remaining is used to train the dialogue models,
and 5% of it is used for evaluation and preventing
overfitting.

5.2 Accuracy of Expressed Emotions

In this research, we tackle the problem of train-
ing a generative model that can respond while ex-
pressing a specific emotion. Unlike the work by
(Li et al., 2016a), expensive human evaluation is
not needed. Instead, we evaluate the output using
an emotion mining classifier to see whether the in-
tended emotion is among the detected ones. For
each input utterance, we let the model generate re-
sponses for each of the 9 emotions and check, us-
ing the emotion classifier, which emotion is indeed
expressed in the output. Hence, the emotions’ ac-
curacies of the generated responses are estimated
by the emotion classifier. Different from the pro-
cedure of tagging, where we put a threshold to en-
force a higher precision, the most possible emo-
tion is chosen in the evaluation. The results are
shown in Table 1.
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Emotion Enc-bef Enc-aft Dec
anger 60.34% 62.44% 68.24%
fear 89.34% 86.46% 87.52%
joy 45.76% 41.36% 48.53%
love 56.96% 55.32% 59.13%
sadness 94.16% 93.93% 94.22%
surprise 84.46% 85.11% 87.22%
thankfulness 87.89% 89.51% 91.06%
disgust 78.06% 76.94% 79.01%
guilt 93.25% 92.16% 91.22%
Average 76.69% 75.91% 78.46%

Table 1: Per class accuracy of generated response

Figure 2: Confusion matrix of model Enc-bef

6 Results and Discussion

From Table 1, we can observe that Dec has better
overall average accuracies than Enc-bef and Enc-
aft. The average accuracies of Enc-bef and Enc-aft
are very close. However, we notice some discrep-
ancies in the individual emotions’ accuracies. For
instance, fear is better captured by Enc-bef, while
anger has a much better accuracy for Dec.

To further inspect the results, we also show the
normalized confusion matrix of each model re-
spectively, as in Figure 2, 3 and 4. We can no-
tice obvious dark colored diagonals for the three
figures. This indicates that all the three proposed
models, indeed, have the ability to generate re-
sponses with given emotions. From these fig-
ures, we find that models tend to generate the re-
sponses with guilt regardless of the desired emo-
tion. All the three models tend to generate thank-
fulness while they were instructed to express joy.

The patterns of confusion matrices of model
Enc-aft, Enc-bef and Dec are close to each other.

Figure 3: Confusion matrix of model Enc-aft

Figure 4: Confusion matrix of model Dec

However, Dec model has a slightly better overall
performance.

Tables 2 and 3 display examples of generated
responses, according to different emotions, given
a source utterance extracted from the test set. We
can observe that the generated text is: (1) related
to the source text; (2) expresses the desired emo-
tions. For instance, when responding to “What is
she doing here?”, the generated text employs “she”
rather than “he”. The models are also able to ex-
press the emotion of fear by generating the word
“afraid”. When instructed to respond to the previ-
ous utterance “I didn’t realize you were here”, and
to express guilt, all the models are able to gener-
ate “I am sorry”. In terms of semantics, while the
source is mentioning “here”, the Dec model is able
to answer with “I was just in the garden” which re-
mains coherent with the location context.

Since increasing the diversity is not the target of
this work, our models also suffer from this com-
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source what is she doing here ?
target how do i open this god

forsaken window !
anger Enc-bef she ’s going to kill herself
anger Enc-aft she ’s going to kill you
anger Dec she ’s supposed to be in the

house
fear Enc-bef i ’m afraid i can ’t tell you
fear Enc-aft she ’s trying to kill herself
fear Dec i ’m afraid she ’s not here
love Enc-bef she wants to see you in the

bedroom
love Enc-aft she ’s in love with you
love Dec she wants to be with you
disgust Enc-bef she ’s not allowed to leave
disgust Enc-aft she ’s going to be sick
disgust Dec she ’s the one who raped me

Table 2: Examples of generated responses by the three
models with emotions anger, fear, love and disgust.

mon problem of Seq2Seq models. Similar to gen-
erating “I don’t know” regardless of source sen-
tences, in Seq2Seq models (Sordoni et al., 2015;
Serban et al., 2016; Li et al., 2016b), our model
tends to generate “I <unk>l be back in a minute”
for emotion anger. The diversity of words that are
used for each emotion are low, e.g., generations for
emotion fear often have the word “gun” and the
responses of emotion “sadness” often start with “I
don’t want ”. This is clearly a side effect from our
training data.

7 Conclusion

Emotional intelligence is the ability to monitor in-
terlocutor’s emotions and in turn appropriately ex-
press emotions in response. In our case, monitor-
ing emotions in utterances is done using an emo-
tion mining classifier. We assume that given some
mapping rules, we can decide to express a specific
emotion in the response. For instance if the mes-
sage expresses sadness, the response could express
compassion or surprise depending upon context.
The work presented herein focuses solely on gen-
erating a response that expresses a given desired
emotion, and assumes the emotion to be expressed
is given via these mapping rules. However, one
could automatically learn the emotion to express
given the emotion in the message directly from
the data by changing the input message-response
pairs (X,Y ) into ((X, eX), (Y, eY )) where eX is

source i didn ’t realize you were
here

target maybe i should leave so
you can continue
joy Enc-bef i ’m here to make a phone

call
joy Enc-aft i ’m so happy for you
joy Dec i was just in the garden

house
sadness Enc-bef i thought you were gonna

be here
sadness Enc-aft she ’s trying to kill herself
sadness Dec i thought i ’d be here
guilt Enc-bef i ’m sorry i didn ’t
guilt Enc-aft i ’m sorry i didn ’t know
you were here
guilt Dec i ’m sorry i didn ’t hear you
surprise Enc-bef i ’m here to find out
surprise Enc-aft i thought you were going to

be here
surprise Dec i thought you might be here

Table 3: Examples of generated responses by the three
models with emotions joy, sadness, guilt and surprise.

the emotion in the message and eY is the emo-
tion in the response. In this paper, we show that
it is indeed possible to generate fluent responses
that express a desired emotion. We present three
models to do so. Despite the differences among
the models, they are all trained towards minimiz-
ing− log p(Y |X, e) and all converge. The expres-
sion of some emotions (guilt, sadness and thank-
fulness) even reach accuracies over the 90%.

In our early experiments, we tagged each of the
target utterance with the most possible emotion
regardless of its confidence, wrongly assuming
that all target utterances have a significant emo-
tion. Although, our generative models can still
be forced to produce the desired emotions, the
quality of the generated sentences in terms of ex-
pressed emotions is below what is presented in Ta-
ble 1 where the utterances without emotions (be-
low a certain threshold) were labeled by “Non-
Emotion”. This shows the importance of learning
to express emotions only from the utterances that
indeed strongly convey measurable emotions. The
other sentences are still kept to contribute in build-
ing the language model. We believe that adding
reasoning to the mix can further enhance the emo-
tional intelligence of a conversational agent.
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Abstract
Neural network models, based on the at-
tentional encoder-decoder model, have good
capability in abstractive text summarization.
However, these models are hard to be con-
trolled in the process of generation, which
leads to a lack of key information. We propose
a guiding generation model that combines the
extractive method and the abstractive method.
Firstly, we obtain keywords from the text by a
extractive model. Then, we introduce a Key
Information Guide Network (KIGN), which
encodes the keywords to the key information
representation, to guide the process of gener-
ation. In addition, we use a prediction-guide
mechanism, which can obtain the long-term
value for future decoding, to further guide the
summary generation. We evaluate our model
on the CNN/Daily Mail dataset. The exper-
imental results show that our model leads to
significant improvements.

1 Introduction

Text summarization aims to generate a brief sum-
mary from an input document while retaining the
key information. There are two broad approaches
to summarization: extractive and abstractive. Ex-
tractive models (Mihalcea and Tarau, 2004; Ya-
sunaga et al., 2017) usually extract a few sentences
or keywords from the source text, while abstrac-
tive models (Rush et al., 2015; Nallapati et al.,
2016) generate new words and phrases that not in
the source text to construct the summary.

Recently, inspired by the success of encoder-
decoder model (Sutskever et al., 2014), abstractive
summarization models (Nallapati et al., 2016; See
et al., 2017) are able to generate the summaries
with high ROUGE scores. While these models
proved to be capable of capturing the regularities
of the text summarization, they are hard to be con-
trolled in the process of generation. Without ex-
ternal guidance, these models just get the source

∗ Corresponding Author: Weiran Xu

text as input and then output the summary, which
certainly leads to a lack of key information.

Zhou et al. (2017) propose a selective gate net-
work to retain more key information in the sum-
mary. However, the selective gate network, which
is controlled by the representation of the input
text, controls the information flow from encoder
to decoder for just once. If some key informa-
tion does not pass the network, it is hard for them
to appear in the summary. See et al. (2017) pro-
pose a pointer-generator model, which uses the
pointer mechanism (Vinyals et al., 2015) to copy
words from the input text, to deal with the out-of-
vocabulary (OOV) words. Without external guid-
ance, it is hard for the pointer to identify key-
words. To address these problems, we combine
the extractive model and the abstractive model and
use the former one to obtain keywords as guidance
for the latter one.

In this paper we propose a guiding generation
model for abstractive text summarization. Firstly,
we use a extractive method to obtain the keywords
from the text. Then, we introduce a Key Infor-
mation Guide Network (KIGN), which encodes
the keywords to the key information representa-
tion and integrates it into the abstractive model, to
guide the process of generation. The guidance is
mainly in two aspects: the attention mechanism
(Bahdanau et al., 2014) and the pointer mecha-
nism. In addition, we propose a novel prediction-
guide mechanism based on He et al. (2017), which
predicts the extent of key information covered in
the final summary, to further guide the summary
generation. Experiments show that our model
achieves significant improvements.

2 Related work

Neural encoder-decoder models. Abstractive
models(Rush et al., 2015; Chopra et al., 2016)
have been widely used in text summarization. Nal-
lapati et al. (2016) use a pointer network (Vinyals
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Figure 1: Our key information guide model. It consists of key information guide network, encoder and decoder. In
the key information guide network, we encode the keywords to the key information representation k.

et al., 2015) to deal with the unknown word prob-
lem.

Keywords extraction. TextRank algorithm
(Mihalcea and Tarau, 2004), which extracts key-
words from the source text, is unsupervised.

Prediction-guide mechanism. Inspired by the
success of AlphaGO, He et al. (2017) propose a
prediction network to predict the long-term value
of the final summary. Our prediction-guide mech-
anism is use to guarantee the more key information
covered in the final summary.

3 Our Model

In this section, we describe (1) our baseline
encoder-decoder model, (2) our key information
guide network, and (3) our prediction-guide mech-
anism.

3.1 Encoder-decoder model based attention

Our baseline model is similar to that of Nallap-
ati et al. (2016). The tokens of the input arti-
cle x= {x1, x2, ..., xN} are fed into the encoder,
which maps the text into a sequence of encoder
hidden states {h1, h2, ..., hn}. At each decoding
time step t, the decoder reads the previous word
embedding wt−1 and the previous context vector
ct−1 as inputs to obtain the decoder hidden state
st. The context vector ct is calculated by using the
attention mechanism:

eti = vT tanh(Whhi +Wsst) (1)

αe
t = softmax(et) (2)

ct =

N∑

i=1

αe
tihi (3)

where v,Wh,Ws are learnable parameters, hi is
the hidden state of the input token xi.

The context vector ct, which represents what
has been read from the source text, is concatenated
with the decoder hidden state st to predict the next
word with a softmax layer over the whole vocabu-
lary:

P (yt|y1, ..., yt−1) = softmax(f(st, ct)) (4)

where f represents a linear function.

3.2 Key information guide network

Most encoder-decoder models (Zhou et al., 2017;
See et al., 2017) just get the source text as input
and then output the summary, which is hard to be
controlled in the process of generation and leads
to a lack of key information in the summary. We
propose a key information guide network to guide
the process of generation from two aspects: the
attention mechanism and the pointer mechanism.

In detail, we extract keywords from the text by
using TextRank algorithm. As shown in Figure 1,
the keywords are fed one-by-one into the key in-
formation guide network, and then we concatenate
the last forward hidden state~hn and backward hid-
den state ~h1 as the key information representation
k:

k =

[
~h1

~hn

]
(5)

Attention mechanism: Traditional attention
mechanism is hard to identify keywords, which
just uses the decoder state as a query to get the at-
tention distribution of the encoder hidden states.
We use the key information representation k as
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extra input to the attention mechanism, changing
equation (1) to:

eti = vT tanh(Whhi +Wsst +Wkk) (6)

where Wk is a learnable parameter. We use the
new eti to obtain new attention distribution αe

t

(Equation 2) and new context vector ct (Equation
3).

Our key information representation k makes the
attention mechanism more focus on the keywords.
That is seem like to introduce prior knowledge to
the model.

Then, we apply the key information representa-
tion k and use the new context vector ct to calcu-
late a probability distribution over all words in the
vocabulary, changing equation (4) to:

Pv(yt|y1, ..., yt−1) = softmax(f(st, ct, k)) (7)

where v represents that yt is from the target vocab-
ulary.

Pointer mechanism: Due to the limitation of
the vocabulary size, some keywords may not be
in the target vocabulary, which will certainly lead
to a lack of them in the final summary. Therefore
we take the key information representation k, the
context vector ct and the decoder hidden state st
as inputs to calculate a soft switch psw, which is
used to choose between generating a word from
the target vocabulary or copying a word from the
input text:

psw = σ(wT
k k + wT

c ct + wT
stst + bsw) (8)

where wT
k , w

T
c , w

T
s and bsw are parameters, σ is

the sigmoid function.
Our pointer mechanism, which is equipped with

the key information representation, has the ability
to identify the keywords. We use the new atten-
tion distribution αe

ti as the probability of the input
token wi and obtain the following probability dis-
tribution to predict the next word:

P (yt = w) = pswPv(yt = w)

+ (1− psw)
∑

i:wi=w

αe
ti

(9)

Note that if w is an out-of-vocabulary word,
Pv(yt = w) is zero.

During training, we minimize a maximum-
likelihood loss at each decoding time step, which
is most widely used in sequence generation. We

define y∗t as the target word for the decoding time
step t and the overall loss is:

L = − 1

T

T∑

t=0

logP (y∗t |y∗1, ..., y∗t−1, x) (10)

3.3 Prediction-guide mechanism at test time
At test time, when predicting the next word, we
consider not only the above probability (Equa-
tion 9), but also a long-term value predicted by
the prediction-guide mechanism. The prediction-
guide mechanism is based on He et al. (2017).

Our prediction-guide mechanism, which is a
single-layer feed forward network with sigmoid
activation function, predicts the extent of the key
information covered in the final summary. At each
decoding time step t, we take mean pooling over
the decoder hidden states s̄t = 1

t

∑t
l=1 sl, the en-

code hidden states h̄n = 1
n

∑n
i=1 hi and the key

information representation k as inputs to calculate
the long-term value.

We sample two partial summaries yp1 and yp2

for each x with random stop to get s̄t. Then, we
finish the generation from yp to obtain M aver-
age decoder hidden states s̄ of the completed sum-
maries S(yp) (using beam search), and compute
the average score:

AvgCos(x, yp) =
1

M

∑

s̄∈S(yp)

cos(s̄, k) (11)

where cos is the function of cosine similarity.
We hope the predicted value of v(x, yp1) can

be larger than v(x, yp2) if AvgCos(x, yp1) >
AvgCos(x, yp2). Therefore, the loss function of
the prediction-guide network is as follows:

Lpg =
∑

(x,yp1,yp2)

ev(x,yp2)−v(x,yp1) (12)

where AvgCos(x, yp1) > AvgCos(x, yp2).
At test time, we first compute the normalized

log probability of each candidate, and then lin-
early combine it with the value predicted by the
prediction-guide network. In detail, given an ab-
stractive model P (y|x) (Equation 9), a prediction-
guide network v(x, y) and a hyperparameter α ∈
(0, 1), the score of partial sequence y for x is com-
puted by:

α× logP (y|x) + (1− α)× log v(x, y) (13)

where α ∈ (0, 1), is a hyperparameter.
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Model ROUGE-1 ROUGE-2 ROUGE-L
Enc-dec+attn baseline (50k vocab) 31.33 11.81 28.83
Abstractive model (Nallapati et al., 2016) 35.46 13.30 32.65
Baseline+pointer 36.44 15.66 33.42
KIGN 37.76 16.56 34.49
Prediction-guide 37.24 16.27 34.14
KIGN+Prediction-guide 38.95 17.12 35.68

Table 1: ROUGE F1 scores for models on the CNN/Daily Mail test set. All our ROUGE scores have a 95%
confidence interval of at most ±0.25 as reported by the official ROUGE script.

4 Experiments

4.1 Experiment setting

We use the CNN/Daily Mail dataset(Nallapati
et al., 2016; Hermann et al., 2015) and use scripts
supplied by Nallapati et al. (2016) to obtain the
same version of the data, which has 28,7226 train-
ing pairs, 13,368 validation pairs and 11,490 test
pairs. We use two 256-dimensional LSTMs for
the bidirectional encoder and one 256-dimensional
LSTM for the decoder. In our key information
guide network, the approach of encoding key-
words is same to the encoder. In addition, we use a
vocabulary of 50k words for both source and target
and do not pre-train the word embeddings - they
are learned from scratch during training. During
training and testing, we truncate the text to 400 to-
kens and limit the length of the summary to 100 to-
kens. We train using Adagrad (Duchi et al., 2011)
with learning rate 0.15 and an initial accumulator
value of 0.1. The batch size is set as 16. Following
the previous work, our evaluation metric is F-score
of ROUGE (Lin and Hovy, 2003).

In addition, for the prediction-guide mecha-
nism, we set the single-layer feed forward network
with 800 nodes. For the hyperparameter α, we
test the performances of KIGN+Prediction-guide
model using different α during decoding. As can
be seen from the figure 2, the performance is sta-
ble for the α ranging from 0.8 to 0.95. When α
is set as 0.9, we can obtain the highest F-score
of ROUGE. Besides, we set the M as 8 and adapt
mini-batch training with batch size to be 16. The
network is trained with AdaDelta (Zeiler, 2012).

During training and at test time we truncate the
input tokens to 400 and limit the length of the
output summary to 100 tokens for training and
120 tokens at test time, which is similar to See
et al. (2017). We trained our keywords network
model less than 200, 000 training iterations. Then
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Figure 2: ROUGE-1, ROUGE-2 and ROUGE-L F1
scores of KIGN+Prediction-guide model w.r.t different
hyperparameter α.

we trained the single-layer feed forward network
based on the KIGN model. Finally, at test time,
we combine the KIGN model and the prediction-
guide mechanism to generate the summary.

4.2 Results and discussions

We compare our model with the baseline model
(enc-dec+attn), hierarchical networks (Nallapati
et al., 2016) and the baseline model equipped with
pointer-mechanism since we use the pointer mech-
anism in our model.

Table 1 shows that our key information
guide network scores exceed the baseline model
equipped with the pointer-mechanism by (+1.3
ROUGE-1, +0.9 ROUGE-2, +1.0 ROUGE-L). In
addition, we just add the prediction-guide mech-
anism on the baseline model equipped with the
pointer-mechanism to understand the contribution
of each part. The scores of that exceed the baseline
model equipped with the pointer-mechanism by
(+0.8 ROUGE-1, +0.6 ROUGE-2, +0.7 ROUGE-
L). Finally, combining the key information guide
network and the prediction-guide mechanism, we
achieve a better performance. Our best model
scores exceed the baseline model with pointer-
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Text(truncated): google claims to have cracked a problem
that has flummoxed anyone who has tried to read a doctor’s
note - how to read anyone’s handwriting. the firm claims
the latest update to its android handsets can under 82 lan-
guages in 20 distinct scripts, and works with both printed
and cursive writing input with or without a stylus. it even
allows users to simply draw emoji they want to send. scroll
down for video. the california search giant claims the latest
update to its android handsets can understand handwriting in
82 languages in 20 distinct scripts. google says its handwrit-
ing recognition works by building on large-scale language
modeling, robust multi-language ocr.

Gold: google handwriting input works on android phones
and tablets. handsets can under 82 languages in 20 distinct
scripts. works with both printed and cursive writing input
with or without a stylus.

Baseline+pointer-mechanism: google claims to have
cracked a problem that has flummoxed anyone who has tried
to read a doctor ’s note how to read anyone ’s handwriting.

Our model: google claims the latest update to its android
handsets can under 82 languages in 20 distinct scripts, and
works with both printed and cursive writing input with or
without a stylus.

Figure 3: Comparison of the output of two models
on a news article. Bold words in text are the key
information. (Baseline: enc-dec+attn; Our model:
KIGN+prediction-guide)

mechanism by (+2.5 ROUGE-1, +1.5 ROUGE-2,
+2.2 ROUGE-L). In this paper, we do not imple-
ment coverage mechanism in our model, which
can greatly improve the score of ROUGE (See
et al., 2017).

4.3 Case study

Figure 3 is an example to show the coverage of
the key information between the text and the sum-
mary and the bold words are the key information
of the text. We compare the output of two models
and give the gold summary. It shows that the main
idea of the text is about google handwriting input
working on android handsets and some function
introduction. The baseline model equipped with
pointer-mechanism produces the summary, which
just shows that google have cracked the problem
of reading handwriting, while the summary gener-
ated by our model covers almost all the key infor-
mation of the text.

5 Conclusion

In this work, we propose a guiding generation
model for abstractive text summarization. We
combine the extractive model and the abstractive
model. Firstly, we use the extractive method to

obtain keywords from the input text. Then, we in-
troduce a key information guide network, which
encodes the keywords to the key information rep-
resentation, to guide the process of generation. In
addition, we propose a prediction-guide mecha-
nism to further guide the generation at test time.
Experiments show that our model leads to signifi-
cant improvements.
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Abstract

Natural language generation (NLG) is a crit-
ical component in spoken dialogue systems.
Classic NLG can be divided into two phases:
(1) sentence planning: deciding on the overall
sentence structure, (2) surface realization: de-
termining specific word forms and flattening
the sentence structure into a string. Many sim-
ple NLG models are based on recurrent neu-
ral networks (RNN) and sequence-to-sequence
(seq2seq) model, which basically contains a
encoder-decoder structure; these NLG mod-
els generate sentences from scratch by jointly
optimizing sentence planning and surface real-
ization using a simple cross entropy loss train-
ing criterion. However, the simple encoder-
decoder architecture usually suffers from gen-
erating complex and long sentences, because
the decoder has to learn all grammar and dic-
tion knowledge. This paper introduces a hi-
erarchical decoding NLG model based on lin-
guistic patterns in different levels, and shows
that the proposed method outperforms the tra-
ditional one with a smaller model size. Fur-
thermore, the design of the hierarchical decod-
ing is flexible and easily-extensible in various
NLG systems1.

1 Introduction

Spoken dialogue systems that can help users to
solve complex tasks have become an emerging re-
search topic in artificial intelligence and natural
language processing areas (Wen et al., 2017; Bor-
des et al., 2017; Dhingra et al., 2017; Li et al.,
2017). A typical dialogue system pipeline con-
tains a speech recognizer, a natural language un-
derstanding component, a dialogue manager, and
a natural language generator (NLG).

The first two authors have equal contributions.
1The source code is available at https://github.

com/MiuLab/HNLG.

NLG is a critical component in a dialogue
system, where its goal is to generate the nat-
ural language given the semantics provided by
the dialogue manager. As the endpoint of inter-
acting with users, the quality of generated sen-
tences is crucial for user experience. The com-
mon and mostly adopted method is the rule-based
(or template-based) method (Mirkovic and Cave-
don, 2011), which can ensure the natural language
quality and fluency. Considering that designing
templates is time-consuming and the scalability
issue, data-driven approaches have been investi-
gated for open-domain NLG tasks.

Recent advances in recurrent neural network-
based language model (RNNLM) (Mikolov et al.,
2010, 2011) have demonstrated the capability
of modeling long-term dependency by leverag-
ing RNN structure. Previous work proposed
an RNNLM-based NLG (Wen et al., 2015) that
can be trained on any corpus of dialogue act-
utterance pairs without any semantic alignment
and hand-crafted features. Sequence-to-sequence
(seq2seq) generators (Cho et al., 2014; Sutskever
et al., 2014) further offer better results by lever-
aging encoder-decoder structure: previous model
encoded syntax trees and dialogue acts into se-
quences (Dušek and Jurčı́ček, 2016) as inputs of
attentional seq2seq model (Bahdanau et al., 2015).
However, it is challenging to generate long and
complex sentences by the simple encoder-decoder
structure due to grammar complexity and lack of
diction knowledge.

This paper proposes a hierarchical decoder
leveraging linguistic patterns, where the decoding
hierarchy is constructed in terms of part-of-speech
(POS) tags. The original single decoding process
is separated into a multi-level decoding hierarchy,
where each decoding layer generates words asso-
ciated with a specific POS set. The experiments
show that our proposed method outperforms the
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ENCODER

name[Midsummer House], food[Italian], 
priceRange[moderate], near[All Bar One]

All Bar One place it Midsummer House

All Bar One is priced place it is called Midsummer House

All Bar One is moderately priced Italian place it is called
Midsummer House

Near All Bar One is a moderately priced Italian place it is called
Midsummer House

DECODING LAYER1

DECODING LAYER2

DECODING LAYER3

DECODING LAYER4

Hierarchical Decoder

1. NOUN + PROPN + PRON

2. VERB

3. ADJ + ADV

4. Others

Input Semantics
𝒙 = {𝑤1, … , 𝑤𝑇}

[ … 1, 0, 0, 1, 0, …]

Semantic 1-hot 
Representation

Bidirectional
GRU Encoder

GRU Decoder

Italian priceRangename …

All Bar One is a

is a moderately

All Bar One is moderately

…

…

…

…

… …

output from last layer 𝒚𝒕
𝒊−𝟏

last output 𝒚𝒕−𝟏
𝒊

1. Repeat-input
2. Inner-Layer Teacher Forcing
3. Inter-Layer Teacher Forcing
4. Curriculum Learning

…

𝒉enc

Figure 1: The framework of the proposed semantically conditioned NLG model.

classic seq2seq model with less parameters. In
addition, our proposed model allows other word-
level or sentence-level characteristics to be further
leveraged for better generalization.

2 The Proposed Approach

The framework of the proposed semantically con-
ditioned NLG model is illustrated in Figure 1,
where the model architecture is based on an
encoder-decoder (seq2seq) design (Cho et al.,
2014; Sutskever et al., 2014). In the seq2seq ar-
chitecture, a typical generation process includes
encoding and decoding phases: First, the given se-
mantic representation sequence x = {wt}T1 is fed
into a RNN-based encoder to capture the temporal
dependency and project the input to a latent fea-
ture space, and encoded into 1-hot semantic repre-
sentation as the initial state of the encoder in order
to maintain the temporal-independent condition as
shown in the left-bottom of Figure 1. The recur-
rent unit of the encoder is bidirectional gated re-
current unit (GRU) (Cho et al., 2014),

henc = BiGRU(x). (1)

Then the encoded semantic vector, henc, flows into
an RNN-based decoder as the initial state to gen-
erate word sequences by an RNN model shown in
the left-top component of the figure.

2.1 Hierarchical Decoder

Despite the intuitive and elegant design of the
seq2seq model, it is difficult to generate long,
complex, and decent sequences by such encoder-
decoder structure, because a single decoder is not
capable of learning all diction, grammar, and other
related linguistic knowledge. Some prior work ap-
plied additional technique such as reranker to se-
lect a better result among multiple generated se-
quences (Wen et al., 2015; Dušek and Jurčı́ček,
2016). However, the issue still remains unsolved
in NLG community.

Therefore, we propose a hierarchical decoder to
address the above issue, where the core idea is to
separate the decoding process and learn different
types of patterns instead of learning all relevant
knowledge together. The hierarchical decoder
is composed of several decoding layers, each of
which is only responsible for learning a portion
of the related knowledge. Namely, the linguistic
knowledge can be incorporated into the decoding
process and divided into several subsets.

In this paper, we use part-of-speech (POS) tags
as the additional linguistic features to construct
the hierarchy, where POS tags of the words in
the target sentence are separated into several sub-
sets and each layer is responsible for decoding the
words associated with a specific set of POS pat-
terns. An example is shown in the right part of
Figure 1, where the first layer at the bottom is in
charge of learning to decode nouns, pronouns, and
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proper nouns, and the second layer is in charge
of verbs, and so on. Our approach is also intu-
itive from the viewpoint of how humans learn to
speak; for example, infants first learn to say the
keywords which are often nouns. When an infant
says “Daddy, toilet.”, it actually means “Daddy, I
want to go to the toilet.”. Along with the growth of
the age, children learn more grammars and vocab-
ulary and then start adding verbs to the sentences,
further adding adverbs, and so on. This process of
how humans learn to speak is the core motivation
of our proposed method.

In the hierarchical decoder, the initial state of
each GRU-based decoding layer i is the extracted
feature henc from the encoder, and the input at ev-
ery step is the last predicted token yit−1 concate-
nated with the output from the previous layer yi−1t ,

hi
t, o

i
t = GRUi

dec(y
i
t−1, y

i−1
t | henc,hi

t−1),(2)

yit = argmax(ot), (3)

where hi
t is the t-th hidden state of the i-th GRU

decoding layer and yit is the t-th outputted word in
the i-th layer. The cross entropy loss is used for
optimization.

2.2 Inner- and Inter-Layer Teacher Forcing
Teacher forcing (Williams and Zipser, 1989) is a
strategy for training RNN that uses model output
from a prior time step as an input, and it works by
using the expected output at the current time step
ŷt as the input at the next time step, rather than the
output generated by the network. In our proposed
framework, an input of a decoder contains not only
the output from the last step but one from the last
decoding layer. Therefore, we design two types of
teacher forcing techniques – inner-layer and inter-
layer.

Inner-layer teacher forcing is the classic
teacher forcing strategy:

hi
t, o

i
t = GRUi

dec(ŷ
i
t−1, y

i−1
t | henc,hi

t−1). (4)

Inter-layer teacher forcing uses the labels in-
stead of the actual output tokens of the last layer:

hi
t, o

i
t = GRUi

dec(y
i
t−1, ŷ

i−1
t | henc,hi

t−1). (5)

The teacher forcing techniques can also be trig-
gered only with a certain probability, which is
known as the schedule sampling approach (Ben-
gio et al., 2015). In our experiments, the schedule
sampling approach is also adopted.

2.3 Repeat-Input Mechanism

The concept of our proposed method is to hierar-
chically generate the sequence, gradually adding
words associated with different linguistic patterns.
Therefore, the generated sequences from the de-
coders become longer as the generating process
proceeds to the higher decoding layers, and the
sequence generated by a upper layer should con-
tain the words predicted by the lower layers. In
order to ensure the output sequences with the con-
straints, we design a strategy that repeats the out-
puts from the last layer as inputs until the current
decoding layer outputs the same token, so-called
repeat-input mechanism. This approach offers at
least two merits: (1) Repeating inputs tells the
decoder that the repeated tokens are important to
encourage the decoder to generate them. (2) If
the expected output sequence of a layer is much
shorter than the one of the next layer, the large dif-
ference in length becomes a critical issue of the
hierarchical decoder, because the output sequence
of a layer will be fed into the next layer. With the
repeat-input mechanism, the impact of length dif-
ference can be mitigated.

2.4 Curriculum Learning

The proposed hierarchical decoder consists of
several decoding layers, the expected output se-
quences of upper layers are longer than the ones
in the lower layers. The framework is suitable for
applying the curriculum learning (Elman, 1993),
in which core concept is that a curriculum of pro-
gressively harder tasks could significantly acceler-
ate a networks training. The training procedure is
to train each decoding layer for some epochs from
the bottommost layer to the topmost one.

3 Experiments

3.1 Setup

The experiments are conducted using the E2E
NLG challenge dataset (Novikova et al., 2017)2,
which is a crowd-sourced dataset of 50k instances
in the restaurant domain. The input is the semantic
frame containing specific slots and corresponding
values, and the output is the natural language con-
taining the given semantics as shown in Figure 1.

To prepare the labels of each layer within the
hierarchical structure of the proposed method,

2http://www.macs.hw.ac.uk/
InteractionLab/E2E/
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NLG Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

(a) Sequence-to-Sequence Model 44.7 51.6 19.5 40.6
(b) + Hierarchical Decoder 41.1 60.2 31.4 46.2
(c) + Hierarchical Decoder, Repeat-Input 41.2 60.5 33.8 48.6
(d) + Hierarchical Decoder, Curriculum Learning 40.9 62.9 34.5 50.1
(e) + All 44.1 67.3 38.0 53.8
(f) (e) with High Inner-Layer TF Prob. 36.9 58.5 31.3 45.9
(g) (e) with High Inter-Layer TF Prob. 42.5 67.3 38.7 53.3
(h) (e) with High Inner- and Inter-Layer TF Prob. 41.7 64.5 36.6 52.0

Table 1: The NLG performance reported on BLEU, ROUGE-1, ROUGE-2, and ROUGE-L of models (%).

we utilize spaCy toolkit to perform POS tag-
ging for the target word sequences. Some prop-
erties such as names of restaurants are delex-
icalized (for example, replaced with symbols
”RESTAURANT NAME”) to avoid data sparsity.
We assign the words with specific POS tags for
each decoding layer: nouns, proper nouns, and
pronouns for the first layer, verbs for the second
layer, adjectives and adverbs for the third layer,
and others for the forth layer. Note that the hierar-
chies with more than four levels are also applica-
ble, the proposed hierarchical decoder is a general
and easily-extensible concept.

The experimental results are shown in Table 1.
Row (a) is the simple seq2seq model as the base-
line. The probability of activating inter-layer and
inner-layer teacher forcing is set to 0.5 in the rows
(a)-(e); to evaluate the impact of teacher forcing,
the probability is set to 0.9 (rows (f)-(h)). The
probability of teacher forcing is attenuated every
epoch, the decay ratio is 0.9. We perform 20 train-
ing epochs without early stop; when the curricu-
lum learning approach is applied, only the first
layer is trained during first five epochs, the sec-
ond decoder layer starts to be trained at the sixth
epoch, and so on. To evaluate the quality of the
generated sequences regarding both precision and
recall, the evaluation metrics include BLEU and
ROUGE (1, 2, L) scores.

3.2 Results and Analysis

To fairly examine the effectiveness of our pro-
posed approaches, we control the size of the pro-
posed model to be smaller. The baseline seq2seq
decoder has 400-dim hidden layer, and the models
with the proposed hierarchical decoder (rows (b)-
(h)) have four 100-dim decoding layers. Table 1
shows that simply introducing the hierarchical de-
coding technique without increment of parame-
ters (row (b)) to separate the generation process

into several phases achieves significant improve-
ment in ROUGE scores, 16.7% in ROUGE-1, 61%
in ROUGE-2, and 13.8% in ROUGE-L respec-
tively. Applying the proposed repeat-input mech-
anism (row (c)) and the curriculum learning strat-
egy (row (d)) both offer considerable improve-
ment. Combining all the proposed techniques
(row (e)) yields the best performance in ROUGE
scores with nearly the same performance in BLEU
and achieves 30.4%, 94.8%, and 32.5% improve-
ment in ROUGE-1, ROUGE-2, and ROUGE-L re-
spectively, demonstrating the effectiveness of the
proposed approach.

To further verify the impact of teacher forcing,
the integrated models (row (e)) with high inter and
inner-layer teacher forcing probability (rows (f)-
(h)) are also evaluated. Note that when the teacher
forcing is activated probabilistically, the strate-
gies are also known as schedule sampling (Bengio
et al., 2015). Row (f) shows that high probabil-
ity of triggering inner-layer teacher forcing results
in severe performance degradation, while models
with high inter-layer teacher forcing probability
(rows (g)-(h)) can avoid the harmful impact. The
results are reasonable and reflects the potential is-
sue of error propagation within the proposed hier-
archical structure.

Note that the decoding process is a single-
path forward generation without any heuristics and
other mechanisms (like beam search and rerank-
ing), so the effectiveness of the proposed meth-
ods can be fairly verified. The experiments show
that by considering linguistic patterns in hierarchi-
cal decoding, the proposed approaches can signif-
icantly improve NLG results with smaller models.

4 Conclusion

This paper proposes a seq2seq-based model with
a hierarchical decoder that leverages various lin-
guistic patterns and further designs several corre-
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sponding training and inference techniques. The
experimental results show that the models apply-
ing the proposed methods achieve significant im-
provement over the classic seq2seq model. By in-
troducing additional word-level or sentence-level
labels as features, the hierarchy of the decoder can
be designed arbitrarily. Namely, the proposed hi-
erarchical decoding concept is general and easily-
extensible, with flexibility of being applied to
many NLG systems.
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2017. The E2E dataset: New challenges for end-to-
end generation. In Proceedings of SIGDIAL. pages
201–206.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS. pages 3104–3112.

Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola
Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. 2015. Stochastic language generation in di-
alogue using recurrent neural networks with convo-
lutional sentence reranking. In Proceedings of SIG-
DIAL. pages 275–284.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL. pages 438–449.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation 1(2):270–280.

A Dataset Detail

The experiments are conducted using the E2E
NLG challenge dataset, which is a crowd-sourced
dataset in the restaurant domain, the training set
contains 42064 instances while there are 4673
instances in the validation (development) set.
In our experiments, we use the validation set
to test our models. In the E2E NLG Challenge
dataset, the input is the semantics containing
slots and their values, and the output is the
corresponding natural language. For exam-
ple, the slot-value pairs "name[Bibimbap
House], food[English],
priceRange[moderate],
area[riverside], near[Clare
Hall]" correspond to the target sentence
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“Bibimbap House is a moderately priced restau-
rant who’s main cuisine is English food. You
will find this local gem near Clare Hall in the
Riverside area.”.

B Parameter Setting

We use mini-batch Adam as the optimizer with the
batch size of 32 examples. The baseline seq2seq
model (row (a)) sets the encoder’s hidden layer
size to 200 and the decoder’s to 400. The size of
the hidden layer in the encoder and the decoder
layers of the models based on the proposed hierar-
chical decoder (rows (b)-(h)) are 200 and 100, re-
spectively. Note that in this setting, the models ap-
plied the proposed methods will have less param-
eters than the baseline seq2seq model. In terms of
the models utilized the basic RNN cell, the base-
line seq2seq model (row (a)) has 640k parameters
whereas the proposed models (rows (b)-(h)) have
only 520k parameters.
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Abstract
We present the first neural poetry translation
system. Unlike previous works that often fail
to produce any translation for fixed rhyme and
rhythm patterns, our system always translates
a source text to an English poem. Human eval-
uation ranks translation quality as acceptable
78.2% of the time.

1 Introduction

Despite recent improvements in machine trans-
lation, automatic translation of poetry remains a
challenging problem. This challenge is partially
due to the intrinsic complexities of translating a
poem. As Robert Frost says “Poetry is what gets
lost in translation”. Nevertheless, in practice po-
ems have always been translated and will continue
to be translated between languages and cultures.

In this paper, we introduce a method for auto-
matic poetry translation. As an example, consider
the following French poem:

French poem:
Puis je venais masseoir pr‘es de sa chaise
Pour lui parler le soir plus ‘a mon aise.

(Literally:
Then I came to sit near her chair
To discuss with her the evening more
at my ease.)

Our goal is to translate this poem into English,
but also to obey target rhythm and rhyme pat-
terns specified by the user, such as 2-line rhyming
iambic pentameter, ten syllables per line with al-
ternating stress 0101010101, where 0 represents
an unstressed syllable, and 1 represents a stressed
syllable. Lines strictly rhyme if their pronuncia-
tions match from the final stressed vowel onwards;
slant rhyming allows variation. Overall, this is a
difficult task even for human translators.

In spite of recent works in automatic poetry
generation (Oliveira, 2012; He et al., 2012; Yan

et al., 2013; Zhang and Lapata, 2014; Yi et al.,
2017; Wang et al., 2016; Ghazvininejad et al.,
2016, 2017; Hopkins and Kiela, 2017; Oliveira,
2017), little has been done on automatic poetry
translation. Greene et al. (2010) use phrase-based
machine translation techniques to translate Italian
poetic lines to English-translation lattices. They
search these lattices for the best translation that
obeys a given rhythm pattern. Genzel et al. (2010)
also use phrase-based machine translation tech-
nique to translate French poems to English ones.
They apply the rhythm and rhyme constraints dur-
ing the decoding process. Both methods report
total failure in generating any translations with a
fixed rhythm and rhyme format for most of the po-
ems. Genzel et al. (2010) report that their method
can generate translations in a specified scheme for
only 12 out of 109 6-line French stanzas.

This failure is due to the nature of the
phrase-based machine translation (PBMT) sys-
tems. PBMT systems are bound to generate trans-
lations according to a learned bilingual phrase
table. These systems are well-suited to uncon-
strained translation, as often the phrase table en-
tries are good translations of source phrases. How-
ever, when rhythm and rhyme constraints are ap-
plied to PBMT, translation options become ex-
tremely limited, to the extent that it is often im-
possible to generate any translation that obeys the
poetic constraints (Greene et al., 2010). In addi-
tion, literal translation is not always desired when
it comes to poetry. PBMT is bound to translate
phrase-by-phrase, and it cannot easily add, re-
move, or alter details of the source poem.

In this paper, we propose the first neural poetry
translation system and show its quality in trans-
lating French to English poems. Our system is
much more flexible than those based on PBMT,
and is always able to produce translations into any
scheme. In addition, we propose two novel im-
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provements to increase the quality of the transla-
tion while satisfying specified rhythm and rhyme
constraints. Our proposed system generates the
following translation for the French couplet men-
tioned above:

French poem:
Puis je venais masseoir pr‘es de sa chaise
Pour lui parler le soir plus ‘a mon aise.
Our system:
And afterwards I came to sit together.
To talk about the evening at my pleasure.

2 Data

We use a French translation of Oscar Wilde’s
Ballad of Reading Gaol (Wilde, 2001) by Jean
Guiloineau1 as our input poem, and the original
Wilde’s poem as the human reference. This test
set contains 109 6-line stanzas, 29 of which we
use for development. For each stanza, we re-
quire our machine translation to produce odd lines
with iambic tetrameter and even lines with iambic
trimeter, with even lines (2, 4, 6) rhyming.

3 Proposed Method

3.1 Model A: Initial Model

Unconstrained Machine Translation. The base
of our poetry translation system is an encoder-
decoder sequence-to-sequence model (Sutskever
et al., 2014) with a two-layer recurrent neu-
ral network (RNN) with long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997). It is pre-trained on parallel French-English
WMT14 corpus.2 Specifically, we use 2-layer
LSTM cells with 1000 hidden cells for each layer.
For pre-training, we set the dropout ratio to 0.5.
Batch size is set to 128, and the learning rate is
initially set as 0.5 and starts to decay by 0.5 when
the perplexity of the development set starts to in-
crease. Gradients are clipped at 5 to avoid gradient
explosion. We stop pre-training the system after 3
epochs. In order to adapt the translation system to
in-domain data, we collect 16,412 English songs
with their French translations and 12,538 French
songs with their English translations (6M word to-
kens in total) as our training corpus,3 and continue
training the system (warm start)4 with this dataset.

1https://bit.ly/2GN1ZGk
2http://www.statmt.org/wmt14/translation-task.html
3http://lyricstranslate.com/
4We continue training the system while we set dropout

ratio to 0.2, and keep the other settings fixed.

This encoder-decoder RNN model is used to gen-
erate the unconstrained translation of the poems.
Enforcing Rhythm in Translation. To enforce
the rhythm constraint, we adopt the technique of
Ghazvininejad et al. (2016). We create a large
finite-state acceptor (FSA) that compactly encodes
all word sequences that satisfy the rhythm con-
straint. In order to generate a rhythmic transla-
tion for the source poem, we constrain the possi-
ble LSTM translations with this FSA. To do so, we
alter the beam search of the decoding phase of the
neural translation model to only generate outputs
that are accepted by this FSA.
Enforcing Rhyme in Translation. Ghazvinine-
jad et al. (2016) fix the rhyme words in advance
and build an FSA with the chosen rhyme words in
place. Unlike their work, we do not fix the rhyme
words in the FSA beforehand, but let the model
choose rhyme words during translation. We do so
by partitioning the vocabulary into rhyme classes
and building one FSA for each class. This FSA
accepts word sequences that obey the rhythm pat-
tern and end with any word within the correspond-
ing rhyme class. Then we translate each line of
the source poem multiple times, once according to
each rhyme class. In the final step, for each set
of rhyming lines, we select a set of translations
that come from the same rhyme class and have the
highest combined translation score. In practice,
we just make FSAs for each of the 100 most fre-
quent rhyme classes (out of 1505), which covers
67% of actual rhyming word tokens in our devel-
opment set.

3.2 Model B: Biased Decoding with
Unconstrained Translation

Naive application of rhythm and rhyme constraints
to the neural translation system limits the transla-
tion options of the system. Sometimes the beam
search finds no related translation that satisfies the
constraints, forcing the decoder to choose an unre-
lated target-language token. The system does not
have a way to recover from this situation, and con-
tinues to generate a totally unrelated phrase. An
example is rhythm- and rhyme-constrained trans-
lation of “Et buvait lair frais jusquau soir” (“And
drinking fresh air until the evening”) to “I used to
close my hair” by our initial system (Figure 1).

We therefore propose to use the output of un-
constrained translation as a guideline for the con-
strained translation process. To do so, we encour-
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age the words that appear in the unconstrained
translation during the decoding step of the con-
strained one. We encourage by multiplying their
RNN log probabilities by 5 during beam search.
Figure 1 shows how this technique addresses the
problem.

French poem:
Sans mains tordues, comme ces hommes,
Ces pauvres hommes sans espoir,
Qui osent nourrir lespérance
Dans le caveau du désespoir:
Il regardait vers le soleil
Et buvait lair frais jusquau soir.

Human reference:
He did not wring his hands, as do
Those witless men who dare
To try to rear the changeling Hope
In the cave of black Despair:
He only looked upon the sun,
And drank the morning air.

Unconstrained machine translation:
Like these men
These poor men without hope,
Who dare to feed the hope.
In the vault of despair
He was looking to the sun
And drinking fresh air until the evening.

Rhythmic and rhyming translation
by model A:

Without a crooked hand as men.
These hopeless people there.
Who dare to feed the expectations.
Surrounded by despair.
He only looking at the sun.
I used to close my hair.

Rhythmic and rhyming translation
by model B:

Without a crooked hand as men.
These hopeless people there.
Who dare to feed the expectations.
Surrounded by despair.
He only looking at the sun.
Was drinking fresh of air.

Figure 1: An example of poetry translation by models
A and B. Biased decoding with unconstrained transla-
tion (Model B) produces a better translation compared
to the baseline rhythm- and rhyme-constrained system.

3.3 Model C: Biased Decoding with All
Potential Translation

Our poetry translation system is also challenged
by rare words for which the system has not learned
a good translation. The unconstrained system pro-
duces a special<UNK> token for these cases, but

the FSA does not accept <UNK>, as it is not pro-
nounceable. We can let the system produce its next
guess instead, but<UNK> is a sign that the trans-
lation system is not sure about the source meaning.

To overcome this problem, we use an idea sim-
ilar to model B. This time, in addition to encour-
aging the unconstrained translated words, we en-
courage all potential translations of the foreign
words. To get the potential translations, we use the
translation table (t-table) extracted from parallel
French-English training data using Giza++ (Och
and Ney, 2003). This way, the system receives an
external signal that guides it toward selecting bet-
ter translations for the rare foreign word. We run
five iterations of each of IBM models 1, 2, HMM,
and 4 to get the t-table. An example of how this
method improves the poem quality over model B
can be observed in the fifth line of the poems in
Figure 2.

4 Results

Our first experiment compares model A with
model B. These systems generated non-identical
translations for 77 (out of 80) of the test stanzas.
We ask 154 Amazon mechanical turk judges to
compare these translations (each pair of transla-
tions was compared twice). We present the judges
with the French poem for reference and did not
mention that the poems are computer generated.
Judges have the option to prefer either of the po-
ems or state they cannot decide. The results in
Table 1 clearly show that the model B generates
better translations.

In the second experiment, we compare model B
with model C. We have 84 judges compare 42 dif-
ferent poems. Table 2 shows that judges preferred
the outputs of model C by a 17.7% margin.

We also ask 238 judges to rank translations of
all the 80 stanzas of the test set as very bad, bad,
ok, good, and very good. Table 3 shows the dis-
tribution of this ranking. We see that 78.2% of
the judges ranked the output ok or more (49.6% of
the poems were ranked good or very good). Fig-
ure 3 shows an example of the poems ranked as
very good.

5 Conclusion

In this paper we presented the first neural poetry
translation system and provided two novel meth-
ods to improve the quality of the translations. We
conducted human evaluations on generated po-
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French poem:
Il ny avait que sable et boue
Où sétait ouverte la tombe.
Le long des murs de la prison
On ne voyait aucune tombe.
Un petit tas de chaux ardente
Servait de linceul à cette ombre.

Human reference:
For where a grave had opened wide,
There was no grave at all:
Only a stretch of mud and sand
By the hideous prison-wall,
And a little heap of burning lime,
That the man should have his pall.

Unconstrained machine translation:
There was only sand and mud
Where the grave opened.
Along the walls of prison
We saw no grave
A little pile of <UNK>
<UNK> to this shadow.

Rhythmic and rhyming translation
by model B:

But there was only sand and mud.
To where the grave was laid.
Along the walls of prison wall.
We saw no masquerade.
A little lot of prostitutes.
They used to shroud this shade.

Rhythmic and rhyming translation
by model C:

But there was only sand and mud.
To where the grave was laid.
Along the walls of prison wall.
We saw no masquerade.
A little bunch of shiny lime.
They used to shroud this shade.

Figure 2: An example of poetry translation by models
B and C. Biased decoding with all potential translation
(Model C) produces a better translation compared to
Model B.

Method Name
User

Preference

Model A 18.2%
Cannot Decide 19.5%

Model B 62.3%

Table 1: Users prefer translations generated by model
A.

ems and showed that the proposed improvements
highly improve the translation quality.

French poem:
Tels des vaisseaux dans la tempête,
Nos deux chemins sétaient croisés,
Sans młme un signe et sans un mot,
Nous navions mot déclarer ;
Nous nétions pas dans la nuit sainte
Mais dans le jour déshonoré.

Human reference:
Like two doomed ships that pass in storm
We had crossed each others way:
But we made no sign, we said no word,
We had no word to say;
For we did not meet in the holy night,
But in the shameful day.

Translation by our full system (model C):
And like some ships across the storm.
These paths were crossed astray.
Without a signal nor a word.
We had no word to say.
We had not seen the holy night.
But on the shameful day.

Figure 3: A sample poem translated by our full system
(Model C).

Method Name
User

Preference

Model B 26.7%
Cannot Decide 28.9%

Model C 44.4%

Table 2: Users prefer translations generated by model
C.

Very
Bad Bad OK Good

Very
Good

5.9% 15.9% 28.6% 35.3% 14.3%

Table 3: Quality of the translated poems by model C.
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Abstract

Human evaluation for natural language gen-
eration (NLG) often suffers from inconsis-
tent user ratings. While previous research
tends to attribute this problem to individ-
ual user preferences, we show that the qual-
ity of human judgements can also be im-
proved by experimental design. We present
a novel rank-based magnitude estimation
method (RankME), which combines the use
of continuous scales and relative assessments.
We show that RankME significantly improves
the reliability and consistency of human rat-
ings compared to traditional evaluation meth-
ods. In addition, we show that it is possible
to evaluate NLG systems according to multi-
ple, distinct criteria, which is important for
error analysis. Finally, we demonstrate that
RankME, in combination with Bayesian esti-
mation of system quality, is a cost-effective al-
ternative for ranking multiple NLG systems.

1 Introduction

Human judgement is the primary evaluation cri-
terion for language generation tasks (Gkatzia and
Mahamood, 2015). However, limited effort has
been made to improve the reliability of these sub-
jective ratings (Gatt and Krahmer, 2017). In this
research, we systematically compare and analyse a
wide range of alternative experimental designs for
eliciting intrinsic user judgements for the task of
comparing multiple systems. We draw upon previ-
ous studies in language generation, e.g. (Belz and
Kow, 2010, 2011; Siddharthan and Katsos, 2012),
as well as in the related field of machine translation
(MT), e.g. (Bojar et al., 2016, 2017). In particular,
we investigate the following challenges:
Distinct criteria: Traditionally, NLG outputs are
evaluated according to different criteria, such as
naturalness and informativeness (Gatt and Krah-
mer, 2017). Naturalness, also known as fluency or

readability, targets the linguistic competence of the
text. Informativeness, otherwise known as accuracy
or adequacy, targets the relevance and correctness
of the output relative to the input specification. Ide-
ally, we want to measure outputs of NLG systems
with respect to these distinct criteria, especially for
error analysis. For instance, one system may pro-
duce syntactically fluent output but misses impor-
tant information, while another system, although
being less fluent, may generate output that covers
the meaning perfectly. Nevertheless, human judges
often fail to distinguish between these different as-
pects, which results in highly correlated scores, e.g.
(Novikova et al., 2017a). This is one of the reasons
why some more recent research adds a general,
overall quality criterion (Wen et al., 2015a,b; Man-
ishina et al., 2016; Novikova et al., 2016, 2017a),
or even uses only that (Sharma et al., 2016). In
the following, we show that discriminative ratings
for different aspects can still be obtained, using
distinctive task design.
Consistency: Previous research has identified a
high degree of inconsistency in human judgements
of NLG outputs, where ratings often differ signifi-
cantly (p < 0.001) for the same utterance (Walker
et al., 2007). While this might be attributed to
individual preferences, e.g. (Walker et al., 2007;
Dethlefs et al., 2014), we also show that consis-
tency (as measured by inter-annotator agreement)
can be improved by different experimental setups,
e.g. the use of continuous scales instead of discrete
ones. Inconsistent user ratings are problematic in
many ways, e.g. when developing metrics for au-
tomatic evaluation (Dušek et al., 2017; Novikova
et al., 2017a).
Relative vs. absolute assessment. Intrinsic hu-
man evaluation methods are typically designed to
assess the quality of a system. However, they are
frequently used to compare the quality of different
NLG systems, which is not necessarily appropriate.
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In the following, we show that relative assessment
methods produce more consistent and more dis-
criminative human ratings than direct assessment
methods.

In order to investigate these challenges, we com-
pare several state-of-the-art NLG systems, which
are evaluated by human crowd workers using a
range of evaluation setups. We show that our
newly introduced method, called rank-based mag-
nitude estimation (RankME), outperforms tradi-
tional evaluation methods. It combines advances
suggested by previous research, such as continu-
ous scales (Belz and Kow, 2011), magnitude es-
timation (Siddharthan et al., 2012) and relative
assessment (Callison-Burch et al., 2007). All
code and data, as well as a more detailed descrip-
tion of the study setup are publicly available at:
https://github.com/jeknov/RankME

2 Experimental Setup
We were able to obtain outputs of 3 systems from
the recent E2E NLG challenge (Novikova et al.,
2017b):1 the Sheffield NLP system (Chen et al.,
2018) and the Slug2Slug system (Juraska et al.,
2018), as well as the outputs of the baseline TGen
system (Dušek and Jurčı́ček, 2016). We chose these
systems in order to assess whether our methods can
discriminate between outputs of different quality:
Automatic metric scores, including BLEU, ME-
TEOR, etc., indicate that the Slug2Slug and TGen
systems show similar performance while Sheffield’s
is further apart.1

All three systems are based on the sequence-
to-sequence (seq2seq) architecture with attention
(Bahdanau et al., 2015). Sheffield NLP and TGen
both use this basic architecture with LSTM recur-
rent cells (Hochreiter and Schmidhuber, 1997) and
a beam search, TGen further adds a reranker to pe-
nalize semantically invalid outputs. Slug2Slug is
an ensemble of three seq2seq models with LSTM
recurrent decoders. Two of them use LSTM recur-
rent encoders and one uses a convolutional encoder.
A reranker checking for semantic validity selects
among the outputs of all three models.

We use the first one hundred outputs for each
system, and we collect human ratings from three
independent crowd workers for each output using
the CrowdFlower platform. We use three differ-
ent methods to collect human evaluation data: 6-
point Likert scales, plain magnitude estimation

1http://www.macs.hw.ac.uk/
InteractionLab/E2E

Method DA RR DS CS
Likert x x
Plain ME x x
RankME x x

Table 1: Three methods used to collect human eval-
uation data. Here, DA = direct assessment, RR =
relative ranking, DS = discrete scale, CS = continu-
ous scale.

(plain ME), and rank-based magnitude estima-
tion (RankME). In a magnitude estimation (ME)
task (Bard et al., 1996), subjects provide a relative
rating of an experimental sentence to a reference
sentence, which is associated with a pre-set/fixed
number. If the target sentence appears twice as
good as the reference sentence, for instance, sub-
jects are to multiply the reference score by two;
if it appears half as good, they should divide it in
half, etc. Note that ME implies the use of contin-
uous scales, i.e. rating scales without numerical
labels, similar to the visual analogue scales used by
Belz and Kow (2011) or direct assessment scales
of (Graham et al., 2013; Bojar et al., 2017), how-
ever, without given end-points. Siddharthan and
Katsos (2012) have previously used ME for evalu-
ating readability of automatically generated texts.
RankME extends this idea by asking subjects to
provide a relative ranking of all target sentences.
Table 1 provides a summary of methods and scales,
and indicates whether relative ranking or direct
assessment was used.

3 Judgements of Multiple Criteria
In our experiments, we collect ratings on the fol-
lowing criteria:
• Informativeness (= adequacy): Does the utter-

ance provide all the useful information from the
meaning representation?
• Naturalness (= fluency): Could the utterance

have been produced by a native speaker?
• Quality: How do you judge the overall quality

of the utterance in terms of its grammatical cor-
rectness, fluency, adequacy and other important
factors?
In order to investigate whether judgements of

these criteria are correlated, we compare two ex-
perimental setups: In Setup 1, crowd workers are
shown the input meaning representation (MR) and
the corresponding output of one of the NLG sys-
tems and are asked to evaluate the output with re-
spect to all three aspects in one task. In Setup 2,
these aspects are assessed separately, in individual
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tasks. Furthermore, when crowd workers are asked
to assess naturalness, the MR is not shown to them
since it is not relevant for the task. Both setups
utilise all three data collection methods – Likert
scales, plain ME and RankME.

The results in Table 2 show that scores are highly
correlated for Setup 1. This is in line with previ-
ous research in MT (Callison-Burch et al., 2007;
Koehn, 2010). Separate collection (Setup 2), how-
ever, decreases correlation between naturalness and
quality, as well as naturalness and informativeness
to very low levels, especially when using ME meth-
ods. Nevertheless, informativeness and quality are
still highly correlated. We assume that this is due
to the fact that raters see the MR in both cases.

To obtain more insight into informativeness rat-
ings, we asked crowd workers to further distinguish
informativeness in terms of added and missed in-
formation with respect to the original MR. Crowd
workers were asked to select a checkbox for added
information if the output contained information not
present in the given MR, or a checkbox for missed
information if the output missed some information
from the MR. The results of Chi-squared test show
that distributions of missed and added information
are significantly different (p < 0.01), i.e. systems
add or delete information at different rates. Again,
this information is valuable for error analysis. In
addition, results in Table 4 show that assessing
the amount of missed information indeed produces
a different overall system ranking to added infor-
mation. As such, it is worth considering missed
information as a separate criterion for evaluation.
This can also be approximated automatically, as
demonstrated by Wiseman et al. (2017).

4 Consistency and Use of Scales
To assess consistency in human ratings, we cal-
culate the intra-class correlation coefficient (ICC),
which measures inter-observer reliability for more
than two raters (Landis and Koch, 1977). In our
experiments, we compare discrete Likert scales
with continuous scales implemented via ME with
respect to the resulting reliability of collected hu-
man ratings. The results in Table 3 show that the
use of ME significantly increases ICC levels for
naturalness and quality. This effect is especially
pronounced for Setup 2 where ratings are collected
separately. Both plain ME and RankME meth-
ods show a significant increase in ICC, with the
RankME method showing the highest ICC results.
This difference is most apparent for naturalness,

where RankME shows an ICC of 0.42 compared to
plain ME’s 0.27. For informativeness, Likert scales
already provide satisfactory agreement.

In previous research, discrete, ordinal Likert
scales are the dominant method of human eval-
uation for NLG, although they may produce results
where statistical significance is overestimated (Gatt
and Krahmer, 2017). Recent studies show that con-
tinuous scales allow subjects to give more nuanced
judgements (Belz and Kow, 2011; Graham et al.,
2013; Bojar et al., 2017). Moreover, raters were
found to strongly prefer continuous scales over dis-
crete ones (Belz and Kow, 2011). In addition to
this previous work, our results also show that con-
tinuous scales significantly improve reliability of
human ratings when implemented via ME.

5 Ranking vs Direct Assessment
Most data collection methods for evaluation, in-
cluding Likert and plain ME, are designed to di-
rectly assess the quality of a system. However,
these methods are almost always used to compare
multiple systems relative to each other. Recently,
the NLP evaluation literature has started to address
this issue, mostly using binary comparisons, for
example between the outputs of two MT systems
(Dras, 2015; Bojar et al., 2016). In our experi-
ments, Likert and plain ME are direct assessment
(DA) methods, while RankME is a relative ranking
(RR)-based method (see also Table 1). In order to
directly compare DA and RR, we generated overall
system rankings based on our different methods, us-
ing pairwise bootstrap test at 95% confidence level
(Koehn, 2004) to establish statistically significant
differences.

The results in Table 4 show that both plain ME
and RankME methods produce similar rankings
of NLG systems, which is in line with previous re-
search in MT (Bojar et al., 2016). It is also apparent
that ME methods, by using a continuous scale, pro-
vide more distinctive overall rankings than Likert
scales. For naturalness scores, no method results in
clear system ratings, which possibly reflects in the
low ICC of this criterion (cf. Table 3). RankME
is the only method to provide a clear ranking with
respect to overall utterance quality. However, its
ranking of informativeness is less clear than that of
plain ME, which might be due to the different re-
sults for missed and added information (see Sec. 4).
In addition, the results in Table 3 show that RR, in
combination with Setup 2, results in more consis-
tent ratings than DA.
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Setup 1 Setup 2
naturalness

Likert

qu
al

ity 0.54* -0.01
Plain ME 0.44* -0.03
RankME 0.28* -0.04

Setup 1 Setup 2
informativeness

Likert

qu
al

ity 0.00 0.54*
Plain ME 0.48* 0.71*
RankME 0.55* 0.74*

Setup 1 Setup 2
naturalness

Likert

in
fo

rm
. 0.15* -0.18*

Plain ME 0.03 -0.07
RankME 0.09 -0.08

Table 2: Spearman correlation between ratings of naturalness and quality, collected using two different
setups and three data collection methods – Likert, plain ME and RankME. Here, “*” denotes p < 0.05.

Method Rating Setup 1 Setup 2

Likert
naturalness 0.07 0.12
quality 0.02 0.41*
informativeness 0.93* 0.78*

Plain ME
naturalness -0.03 0.27*
quality 0.22* 0.60*
informativeness 0.59* 0.79*

RankME
naturalness 0.11 0.42*
quality 0.10 0.68*
informativeness 0.72* 0.82*

Table 3: ICC scores for human ratings of natural-
ness, informativeness and quality. “*” denotes
p < 0.05.

Ranking Rating criterion & method

1. Slug2Slug
2. TGen
3. Sheffield NLP

Plain ME informativeness
RankME quality
TrueSkill quality
added information

1. TGen
2. Slug2Slug
3. Sheffield NLP

missing information

1.–2. Slug2Slug
+ TGen

3. Sheffield NLP

Plain ME quality
RankME informativeness
TrueSkill informativeness
Likert quality
Likert informativeness

1.–2. Slug2Slug
+ Sheffield NLP

3. TGen
Likert naturalness

1.–3. Slug2Slug
+ TGen
+ Sheffield NLP

Plain ME naturalness
RankME naturalness
TrueSkill naturalness

Table 4: Results of system ranking using different
data collection methods with Setup 2 (different
ranks are statistically significant with p < 0.05).

5.1 Relative comparisons of many outputs

While there are clear advantages to relative rank-
based assessment, the amount of data needed for
this approach grows quadratically with the num-
ber of systems to compare, which is problematic
with larger numbers of systems, e.g. in a shared
task challenge. Data-efficient ranking algorithms,
such as TrueSkill (Herbrich et al., 2006), are there-
fore applied by recent MT evaluation studies (Sak-
aguchi et al., 2014; Bojar et al., 2016) to produce
overall system rankings based on a sample of bi-
nary comparisons. However, TrueSkill has not
previously been used for evaluating NLG systems.
TrueSkill produces system rankings by gradually

updating a Bayesian estimate of each system’s ca-
pability according to the “surprisal” of pairwise
comparisons of individual system outputs. This
way, fewer direct comparisons between systems
are needed to establish their overall ranking. We
computed system rankings using TrueSkill over
comparisons collected via RankME and were able
to show that it produces exactly the same system
rankings for all three criteria as using RankME di-
rectly (see Table 4), despite the fact that the compar-
isons are only used in a “win-loss-tie” fashion. This
shows that RankME can be used with TrueSkill to
produce consistent rankings of a larger number of
systems.

6 Conclusion and Discussion
In this paper, we demonstrate that the experimental
design has a significant impact on the reliability as
well as the outcomes of human evaluation studies
for natural language generation. We first show that
correlation effects between different evaluation cri-
teria can be minimised by eliciting them separately.
Furthermore, we introduce RankME, which com-
bines relative rankings and magnitude estimation
(with continuous scales), and demonstrate that this
method results in better agreement amongst raters
and more discriminative results. Finally, our results
suggest that TrueSkill is a cost-effective alternative
for producing overall relative rankings of multiple
systems. This framework has the potential to not
only significantly influence how NLG evaluation
studies are run, but also produce more reliable data
for further processing, e.g. for developing more
accurate automatic evaluation metrics, which we
are currently lacking, e.g. (Novikova et al., 2017a).

In current work, we test RankME with a wider
range of systems (under submission). We also plan
to investigate how this method transfers to related
tasks, such as evaluating open-domain dialogue
responses, e.g. (Lowe et al., 2017). In addition,
we aim to investigate additional NLG evaluation
methods, such as extrinsic task contributions, e.g.
(Rieser et al., 2014; Gkatzia et al., 2016).
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Abstract

Sentence simplification aims to simplify the
content and structure of complex sentences,
and thus make them easier to interpret for hu-
man readers, and easier to process for down-
stream NLP applications. Recent advances
in neural machine translation have paved the
way for novel approaches to the task. In
this paper, we adapt an architecture with aug-
mented memory capacities called Neural Se-
mantic Encoders (Munkhdalai and Yu, 2017)
for sentence simplification. Our experiments
demonstrate the effectiveness of our approach
on different simplification datasets, both in
terms of automatic evaluation measures and
human judgments.

1 Introduction

The goal of sentence simplification is to compose
complex sentences into simpler ones so that they
are more comprehensible and accessible, while
still retaining the original information content and
meaning. Sentence simplification has a number of
practical applications. On one hand, it provides
reading aids for people with limited language
proficiency (Watanabe et al., 2009; Siddharthan,
2003), or for patients with linguistic and cognitive
disabilities (Carroll et al., 1999). On the other
hand, it can improve the performance of other
NLP tasks (Chandrasekar et al., 1996; Knight and
Marcu, 2000; Beigman Klebanov et al., 2004).

Prior work has explored monolingual machine
translation (MT) approaches, utilizing corpora of
simplified texts, e.g., Simple English Wikipedia
(SEW), and making use of statistical MT models,
such as phrase-based MT (PBMT) (Štajner et al.,
2015; Coster and Kauchak, 2011; Wubben et al.,
2012), tree-based MT (TBMT) (Zhu et al., 2010;
Woodsend and Lapata, 2011), or syntax-based MT
(SBMT) (Xu et al., 2016).

Inspired by the success of neural MT
(Sutskever et al., 2014; Cho et al., 2014), recent
work has started exploring neural simplification
with sequence to sequence (Seq2seq) models, also
referred to as encoder-decoder models. Nisioi et
al. (2017) implemented a standard LSTM-based
Seq2seq model and found that they outperform
PBMT, SBMT, and unsupervised lexical simplifi-
cation approaches. Zhang and Lapata (Zhang and
Lapata, 2017) viewed the encoder-decoder model
as an agent and employed a deep reinforcement
learning framework in which the reward has three
components capturing key aspects of the target
output: simplicity, relevance, and fluency.

The common practice for Seq2seq models is
to use recurrent neural networks (RNNs) with
Long Short-Term Memory (LSTM, Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Unit
(GRU, Cho et al., 2014) for the encoder and de-
coder (Nisioi et al., 2017; Zhang and Lapata,
2017). These architectures were designed to be
capable of memorizing long-term dependencies
across sequences. Nevertheless, their memory is
typically small and might not be enough for the
simplification task, where one is confronted with
long and complicated sentences.

In this study, we go beyond the conventional
LSTM/GRU-based Seq2seq models and propose
to use a memory-augmented RNN architecture
called Neural Semantic Encoders (NSE). This ar-
chitecture has been shown to be effective in a wide
range of NLP tasks (Munkhdalai and Yu, 2017).
The contribution of this paper is twofold:

(1) First, we present a novel simplification
model which is, to the best of our knowledge, the
first model that use memory-augmented RNN for
the task. We investigate the effectiveness of neu-
ral Seq2seq models when different neural architec-
tures for the encoder are considered. Our experi-
ments reveal that the NSELSTM model that uses an
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Figure 1: Attention-based encoder-decoder model. The
model may attend to relevant source information while
decoding the simplification, e.g., to generate the target
word won the model may attend to the source words
received, nominated and Prize.

NSE as the encoder and an LSTM as the decoder
performed the best among these models, improv-
ing over strong simplification systems. (2) Sec-
ond, we perform an extensive evaluation of vari-
ous approaches proposed in the literature on differ-
ent datasets. Results of both automatic and human
evaluation show that our approach is remarkably
effective for the task, significantly reducing the
reading difficulty of the input, while preserving
grammaticality and the original meaning. We fur-
ther discuss some advantages and disadvantages of
these approaches.

2 Neural Sequence to Sequence Models

2.1 Attention-based Encoder-Decoder Model
Our approach is based on an attention-based
Seq2seq model (Bahdanau et al., 2015) (Figure
1). Given a complex source sentence X = x1:Tx ,
the model learns to generate its simplified version
Y = y1:Ty . The encoder reads through X and
computes a sequence of hidden states h1:Tx :

ht = Fenc(ht−1, xt),
where Fenc is a non-linear activation function
(e.g., LSTM), ht is the hidden state at time t. Each
time the model generates a target word yt, the de-
coder looks at a set of positions in the source sen-
tence where the most relevant information is lo-
cated. Specifically, another non-linear activation
function F dec is used for the decoder where the
hidden state st at time t is computed by:

st = Fdec(st−1, yt−1, ct).
Here, the context vector ct is computed as a
weighted sum of the hidden vectors h1:Tx :

ct =
Tx∑
i=1

αtihi, αti =
exp(st−1�hi)

Tx∑
j=1

exp(st−1�hj)

,

where � is the dot product of two vectors. Gen-
eration is conditioned on ct and all the previously
generated target words y1:t−1:

P (Y|X ) =
Ty∏
t=1

P (yt|{y1:t−1}, ct),

P (yt|{y1:t−1}, ct) = G(yt−1, st, ct),
where G is some non-linear function. The training
objective is to minimize the cross-entropy loss of
the training source-target pairs.

2.2 Neural Semantic Encoders
An RNN allows us to compute a hidden state ht of
each word summarizing the preceding words x1:t,
but not considering the following words xt+1:Tx

that might also be useful for simplification. An al-
ternative approach is to use a bidirectional-RNN
(Schuster and Paliwal, 1997). Here, we propose to
use Neural Semantic Encoders (NSE, Munkhdalai
and Yu, 2017). During each encoding time step
t, we compute a memory matrix Mt ∈ RTx×D

where D is the dimensionality of the word vec-
tors. This matrix is initialized with the word vec-
tors and is refined over time through NSE’s func-
tions to gain a better understanding of the input
sequence. Concretely, NSE sequentially reads the
tokens x1:Tx with its read function:

rt = F enc
read(rt−1, xt),

where F enc
read is an LSTM, rt ∈ RD is the hidden

state at time t. Then, a compose function is used
to compose rt with relevant information retrieved
from the memory at the previous time step, Mt−1:

ct = F enc
compose(rt,mt),

where F enc
compose is a multi-layer perceptron with

one hidden layer, ct ∈ R2D is the output vector,
and mt ∈ RD is a linear combination of the mem-
ory slots of Mt−1, weighted by σti ∈ R:

mt =
Tx∑
i=1

σtiMt−1,i, σti =
exp(rt�Mt−1,i)

Tx∑
j=1

exp(rt�Mt−1,j)

.

Here, Mt−1,i is the ith row of the memory matrix
at time t− 1, Mt−1. Next, a write function is used
to map ct to the encoder output space:

wt = F enc
write(wt−1, ct),

where F enc
write is an LSTM, wt ∈ RD is the hidden

state at time t. Finally, the memory is updated ac-
cordingly. The retrieved memory content pointed
by σti is erased and the new content is added:

Mt,i = (1− σti)Mt−1,i + σtiwt.

NSE gives us unrestricted access to the entire
source sequence stored in the memory. As such,
the encoder may attend to relevant words when
encoding each word. The sequence w1:Tx is then
used as the sequence h1:Tx in Section 2.1.
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2.3 Decoding

We differ from the approach of Zhang et al. (2017)
in the sense that we implement both a greedy strat-
egy and a beam-search strategy to generate the tar-
get sentence. Whereas the greedy decoder always
chooses the simplification candidate with the high-
est log-probability, the beam-search decoder keeps
a fixed number (beam) of the highest scoring can-
didates at each time step. We report the best sim-
plification among the outputs based on automatic
evaluation measures.

3 Experimental Setup

3.1 Datasets

Following (Zhang and Lapata, 2017), we exper-
iment on three simplification datasets, namely:
(1) Newsela (Xu et al., 2015), a high-quality
simplification corpus of news articles composed
by Newsela1 professional editors. We used the
split of the data in (Zhang and Lapata, 2017),
i.e., 94,208/1,129/1,077 pairs for train/dev/test.
(2) WikiSmall (Zhu et al., 2010), which contains
aligned complex-simple sentence pairs from En-
glish Wikipedia (EW) and SEW. The dataset has
88,837/205/100 pairs for train/dev/test. (3) Wik-
iLarge (Zhang and Lapata, 2017), a larger cor-
pus in which the training set is a mixture of three
Wikipedia datasets in (Zhu et al., 2010; Woodsend
and Lapata, 2011; Kauchak, 2013), and the devel-
opment and test sests are complex sentences taken
from WikiSmall, each has 8 simplifications written
by Amazon Mechanical Turk workers (Xu et al.,
2016). The dataset has 296,402/2,000/359 pairs
for train/dev/test. Table 1 provides statistics on the
training sets.

Dataset vocab size #tokens/sent
src tgt src tgt

Newsela 41,066 30,193 25.94 15.89
WikiSmall 113,368 93,835 24.26 20.33
WikiLarge 201,841 168,962 25.17 18.51

Table 1: Statistics for the training sets: the vocabulary
size (vocab size), and the average number of tokens per
sentence (#tokens/sent) of the source (src) and target
(tgt) language.

3.2 Models and Training Details

We implemented two attention-based Seq2seq
models, namely: (1) LSTMLSTM: the encoder

1https://newsela.com

is implemented by two LSTM layers; (2) NSEL-
STM: the encoder is implemented by NSE. The
decoder in both cases is implemented by two
LSTM layers. For all experiments, our mod-
els have 300-dimensional hidden states and 300-
dimensional word embeddings. Parameters were
initialized from a uniform distribution [-0.1, 0.1).
We used the same hyperparameters across all
datasets. Word embeddings were initialized ei-
ther randomly or with Glove vectors (Pennington
et al., 2014) pre-trained on Common Crawl data
(840B tokens), and fine-tuned during training. We
used a vocabulary size of 20K for Newsela, and
30K for WikiSmall and WikiLarge. Our mod-
els were trained with a maximum number of 40
epochs using Adam optimizer (Kingma and Ba,
2015) with step size α = 0.001 for LSTMLSTM,
and 0.0003 for NSELSTM, the exponential decay
rates β1 = 0.9, β2 = 0.999. The batch size is set
to 32. We used dropout (Srivastava et al., 2014)
for regularization with a dropout rate of 0.3. For
beam search, we experimented with beam sizes of
5 and 10. Following (Jean et al., 2015), we re-
placed each out-of-vocabulary token 〈unk〉 with
the source word xk with the highest alignment
score αti, i.e., k = argmax

i
(αti).

Our models were tuned on the development
sets, either with BLEU (Papineni et al., 2002)
that scores the output by counting n-gram matches
with the reference, or SARI (Xu et al., 2016) that
compares the output against both the reference and
the input sentence. Both measures are commonly
used to automatically evaluate the quality of sim-
plification output. We noticed that SARI should
be used with caution when tuning neural Seq2seq
simplification models. Since SARI depends on
the differences between a system’s output and the
input sentence, large differences may yield very
good SARI even though the output is ungrammat-
ical. Thus, when tuning with SARI, we ignored
epochs in which the BLEU score of the output is
too low, using a threshold ς . We set ς to 22 on
Newsela, 33 on WikiSmall, and 77 on WikiLarge.

3.3 Comparing Systems

We compared our models, either tuned with BLEU
(-B) or SARI (-S), against systems reported in
(Zhang and Lapata, 2017), namely DRESS, a
deep reinforcement learning model, DRESS-LS,
a combination of DRESS and a lexical simplifi-
cation model (Zhang and Lapata, 2017), PBMT-
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R, a PBMT model with dissimilarity-based re-
ranking (Wubben et al., 2012), HYBRID, a hy-
brid semantic-based model that combines a sim-
plification model and a monolingual MT model
(Narayan and Gardent, 2014), and SBMT-SARI, a
SBMT model with simplification-specific compo-
nents. (Xu et al., 2016).

3.4 Evaluation

We measured BLEU, and SARI at corpus-level
following (Zhang and Lapata, 2017). In addi-
tion, we also evaluated system output by elicit-
ing human judgments. Specifically, we randomly
selected 40 sentences from each test set, and in-
cluded human reference simplifications and corre-
sponding simplifications from the systems above2.
We then asked three volunteers3 to rate simplifica-
tions with respect to Fluency (the extent to which
the output is grammatical English), Adequacy (the
extent to which the output has the same meaning
as the input sentence), and Simplicity (the extent
to which the output is simpler than the input sen-
tence) using a five point Likert scale.

4 Results and Discussions

4.1 Automatic Evaluation Measures

The results of the automatic evaluation are dis-
played in Table 2. We first discuss the results
on Newsela that contains high-quality simplifica-
tions composed by professional editors. In terms
of BLEU, all neural models achieved much higher
scores than PBMT-R and HYBRID. NSELSTM-B
scored highest with a BLEU score of 26.31. With
regard to SARI, NSELSTM-S scored best among
neural models (29.58) and came close to the per-
formance of HYBRID (30.00). This indicates that
NSE offers an effective means to better encode
complex sentences for sentence simplification.

On WikiSmall, HYBRID – the current state-of-
the-art – achieved best BLEU (53.94) and SARI
(30.46) scores. Among neural models, NSELSTM-
B yielded the highest BLEU score (53.42), while
NSELSTM-S performed best on SARI (29.75). On
WikiLarge4, again, NSELSTM-B had the highest
BLEU score of 92.02. SBMT-SARI – that was

2The outputs of comparison systems are available at
https://github.com/XingxingZhang/dress.

3two native English speakers and one non-native fluent
English speaker

4Here, BLEU scores are much higher compared to
Newsela and WikiSmall since there are 8 reference simpli-
fications for each input sentence in the test set.

Model Newsela WikiSmall WikiLarge
BLEU SARI BLEU SARI BLEU SARI

PBMT-R 18.19 15.77 46.31 15.97 81.11 38.56
HYBRID 14.46 30.00 53.94 30.46 48.97 31.40
SBMT-SARI NA NA 73.08 39.96
DRESS 23.21 27.37 34.53 27.48 77.18 37.08
DRESS-LS 24.30 26.63 36.32 27.24 80.12 37.27
LSTMLSTM-B 24.38 27.66 50.53 17.67 88.81 34.22
NSELSTM-B 26.31 27.42 53.42 17.47 92.02 33.43
LSTMLSTM-S 23.50 28.67 31.32 28.04 81.95 35.45
NSELSTM-S 22.62 29.58 29.72 29.75 80.43 36.88

Table 2: Model performance using automatic evalua-
tion measures (BLEU and SARI).

trained on a huge corpus of 106M sentence pairs
and 2B words – scored highest on SARI with
39.96, followed by DRESS-LS (37.27), DRESS

(37.08), and NSELSTM-S (36.88).

4.2 Human Judgments

The results of human judgments are displayed in
Table 3. On Newsela, NSELSTM-B scored highest
on Fluency. PBMT-R was significantly better than
all other systems on Adequacy while LSTMLSTM-
S performed best on Simplicity. NSELSTM-B did
very well on both Adequacy and Simplicity, and
was best in terms of Average. Example model out-
puts on Newsela are provided in Table 4.

On WikiSmall, NSELSTM-B performed best
on both Fluency and Adequacy. On WikiLarge,
LSTMLSTM-B achieved the highest Fluency score
while NSELSTM-B received the highest Ade-
quacy score. In terms of Simplicity and Average,
NSELSTM-S outperformed all other systems on
both WikiSmall and WikiLarge.

As shown in Table 3, neural models often
outperformed traditional systems (PBMT-R, HY-
BRID, SBMT-SARI) on Fluency. This is not sur-
prising given the recent success of neural Seq2seq
models in language modeling and neural machine
translation (Zaremba et al., 2014; Jean et al.,
2015). On the downside, our manual inspection
reveals that neural models learn to perform copy-
ing very well in terms of rewrite operations (e.g.,
copying, deletion, reordering, substitution), often
outputting the same or parts of the input sentence.

Finally, as can be seen in Table 3, REFER-
ENCE scored lower on Adequacy compared to Flu-
ency and Simplicity on Newsela. On Wikipedia-
based datasets, REFERENCE obtained high Ade-
quacy scores but much lower Simplicity scores
compared to Newsela. This supports the assertion
by previous work (Xu et al., 2015) that SEW has a
large proportion of inadequate simplifications.
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Model Newsela WikiSmall WikiLarge
F A S Avg. F A S Avg. F A S Avg.

REFERENCE 4.58 2.98 3.99 3.85 4.63 3.97 3.59 4.06 4.59 4.43 2.38 3.80
PBMT-R 3.73 3.90 1.98 3.20 4.07 4.11 2.28 3.49 4.22 4.09 2.31 3.54
HYBRID 2.77 2.56 2.41 2.58 3.21 3.62 2.56 3.13 2.63 2.48 2.26 2.46
SBMT-SARI NA NA 3.89 3.87 2.54 3.43
DRESS 3.98 2.84 2.93 3.25 4.35 3.33 3.49 3.72 4.56 3.66 2.63 3.62
DRESS-LS 3.99 2.90 2.98 3.29 4.43 3.33 3.56 3.77 4.68 3.88 2.63 3.73
LSTMLSTM-B 3.95 2.93 3.14 3.34 4.42 3.88 2.65 3.65 4.80 4.47 1.89 3.72
NSELSTM-B 4.26 3.13 3.39 3.59 4.74 4.22 2.49 3.82 4.73 4.58 1.94 3.75
LSTMLSTM-S 4.24 3.03 3.45 3.57 4.59 3.40 3.42 3.80 4.73 4.23 2.21 3.72
NSELSTM-S 3.83 2.78 3.01 3.21 4.57 3.28 3.81 3.89 4.65 3.95 2.90 3.83

Table 3: Average human ratings (Fluency (F), Adequacy (A), Simplicity (S), and Average (Avg.)).

COMPLEX: Another parent , Mike Munson , sits on the bench with a tablet and uses an app to track and analyze the team ’s shots .
REFERENCE: Basketball parent Mike Munson sits on the bench with a tablet , like an iPad .
PBMT-R: Another parent , Mike Munson is on the bench with a tablet and uses an app to track and analyze the team ’s shots .
HYBRID: another parent , mike munson sits uses an app to track and analyze shots .
DRESS: Another parent , Mike Munson , sits on the bench with a computer .
DRESS-LS: Another parent , Mike Munson , sits on the bench with a computer .
LSTMLSTM-B: He starts on the bench with a tablet and uses an app to track .
NSELSTM-B: Another parent , Mike Munson , sits on the bench with a tablet and uses an app to track .
LSTMLSTM-S: She sits on the bench with a tablet and uses an app to track and study the team ’s shots .
NSELSTM-S: He sits on the bench with a tablet .
COMPLEX: Stowell believes that even documents about Lincoln ’s death will give people a better understanding of the man who was
assassinated 150 years ago this April .
REFERENCE: Stowell thinks that even information about Lincoln ’s death will help people understand him .
PBMT-R: Stowell thinks that even documents about Lincoln ’s death will give people a better understanding of the man who was killed
150 years ago this April .
HYBRID: documents that will give people a understanding the man was assassinated 150 years ago .
DRESS: Stowell thinks that even documents about Lincoln ’s death will give people a better understanding of the man .
DRESS-LS: Stowell thinks that even documents about Lincoln ’s death will give people a better understanding of the man .
LSTMLSTM-B: Stowell believes that only documents about Lincoln ’s death will give people a better understanding .
NSELSTM-B: Stowell believes that the discovery about Lincoln ’s death will give people a better understanding of the man .
LSTMLSTM-S: Stowell thinks that even documents about Lincoln ’s death will give people a better understanding of the man .
NSELSTM-S: Stowell thinks that even papers about Lincoln ’s death will give people a better understanding of the man .

Table 4: Example model outputs on Newsela. Substitutions are shown in bold.

4.3 Correlations

Table 5 shows the correlations between the scores
assigned by humans and the automatic evaluation
measures. There is a positive significant correla-
tion between Fluency and Adequacy (0.69), but a
negative significant correlation between Adequacy
and Simplicity (-0.64). BLEU correlates well with
Fluency (0.63) and Adequacy (0.90) while SARI
correlates well with Simplicity (0.73). BLEU and
SARI show a negative significant correlation (-
0.54). The results reflect the challenge of manag-
ing the trade-off between Fluency, Adequacy and
Simplicity in sentence simplification.

Adequacy Simplicity BLEU SARI
Fluency 0.69∗∗ -0.03 0.63∗∗ -0.48∗∗

Adequacy -0.64∗∗ 0.90∗∗ -0.81∗∗

Simplicity -0.56∗∗ 0.73∗∗

BLEU -0.54∗∗

Table 5: Pearson correlation between the scores as-
signed by humans and the automatic evaluation mea-
sures. Scores marked ∗∗ are significant at p < 0.01.

5 Conclusions

In this paper, we explore neural Seq2seq models
for sentence simplification. We propose to use an
architecture with augmented memory capacities
which we believe is suitable for the task, where
one is confronted with long and complex sen-
tences. Results of both automatic and human eval-
uation on different datasets show that our model is
capable of significantly reducing the reading diffi-
culty of the input, while performing well in terms
of grammaticality and meaning preservation.
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Vinı́cius Rodriguez Uzêda, Renata Pontin de Mattos
Fortes, Thiago Alexandre Salgueiro Pardo, and San-
dra Maria Aluı́sio. 2009. Facilita: Reading assis-
tance for low-literacy readers. In Proceedings of the
27th ACM International Conference on Design of
Communication (SIGDOC). ACM, New York, NY,
USA, pages 29–36.

Kristian Woodsend and Mirella Lapata. 2011. Learn-
ing to simplify sentences with quasi-synchronous
grammar and integer programming. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). As-
sociation for Computational Linguistics, Edinburgh,
Scotland, UK., pages 409–420.

Sander Wubben, Antal van den Bosch, and Emiel
Krahmer. 2012. Sentence simplification by mono-
lingual machine translation. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). Association for Compu-
tational Linguistics, Jeju Island, Korea, pages 1015–
1024.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the
Association for Computational Linguistics (TACL)
3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics (TACL) 4:401–415.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement learn-
ing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics, Copenhagen, Denmark, pages 595–605.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of
the 23rd International Conference on Computa-
tional Linguistics (COLING). Coling 2010 Organiz-
ing Committee, Beijing, China, pages 1353–1361.

85



Proceedings of NAACL-HLT 2018, pages 86–91
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

A Corpus of Non-Native Written English Annotated for Metaphor

Beata Beigman Klebanov, Chee Wee Leong, and Michael Flor
Educational Testing Service

660 Rosedale Road
Princeton, NJ, USA

bbeigmanklebanov,cleong,mflor@ets.org

Abstract

We present a corpus of 240 argumentative es-
says written by non-native speakers of English
annotated for metaphor. The corpus is made
publicly available. We provide benchmark
performance of state-of-the-art systems on this
new corpus, and explore the relationship be-
tween writing proficiency and metaphor use.

1 Introduction

With the ubiquity of metaphor across genres of
written and spoken communication, the ability
of NLP systems to deal with metaphor effec-
tively is an actively researched topic (Veale et al.,
2016). Most current work in the supervised ma-
chine learning paradigm uses data from the British
National Corpus (BNC). Beigman Klebanov et al.
(2015) reported an evaluation of a metaphor de-
tection system on students’ writing; however, their
corpus was not released for public use. Our con-
tributions are as follows: (1) We release metaphor
annotations of 240 argumentative essays written
by non-native speakers of English. This is the first
publicly available metaphor annotated data in this
genre we are aware of. (2) We evaluate state-of-
art (SoA) feature sets on the new data. (3) We
show that use of argumentation-relevant metaphor
is a significant predictor of a holistic score of essay
quality, above and beyond essay length.

2 Related Work

Research in automated assessment of students’
writing, both native and non-native, is increasingly
moving beyond traditional models that emphasize
English conventions, sophistication of vocabulary,
and organization (Attali and Burstein, 2006). As-
sessing aspects of content is a rapidly growing re-
search topic, including evaluation of arguments, of
the writer’s use of information from source mate-
rials, of the coherence of the essay, among others

(Ghosh et al., 2016; Persing and Ng, 2015; Stab
and Gurevych, 2014; Song et al., 2014; Somasun-
daran et al., 2014; Gurevich and Deane, 2007).
Use of metaphor is another aspect of language
use that goes beyond grammar and mechanics; re-
cent research suggests that use of metaphor dif-
fers with proficiency (Beigman Klebanov et al.,
2013), including in non-native writing (Littlemore
et al., 2013). On top of serving as a new dataset
for metaphor detection experiments, our corpus
supports investigation of the relationship between
metaphor use and English proficiency.

Most of the recent work on supervised metaphor
identification in running text has been done on the
VU Amsterdam Metaphor Corpus (VUA) (Steen
et al., 2010), a large-scale resource containing ex-
cerpts from the BNC in four genres (news, aca-
demic, fiction, and conversation) annotated for
metaphor at the word level (Beigman Klebanov
et al., 2016; Haagsma and Bjerva, 2016; Rai et al.,
2016; Do Dinh and Gurevych, 2016; Dunn, 2014).
Recently, researchers also reported experiments
on a corpus of proverbs (Özbal et al., 2016), a
corpus of posts to an online breast cancer support
group (Jang et al., 2016, 2015), and on argumen-
tative essays (Beigman Klebanov et al., 2015); in
these studies, feature sets originally developed for
the VUA corpus served as baselines. We follow
the same methodology.

3 Metaphor Annotation

3.1 Data
The data was sampled from the publicly available
ETS Corpus of Non-Native Written English.1 The
data for annotation was sampled using 8×3×2 de-
sign, namely, 5 essays were sampled for each of
the eight prompt questions, for three native lan-
guages of the writer (Japanese, Italian, Arabic),

1https://catalog.ldc.upenn.edu/LDC2014T06
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and for two proficiency levels – medium and high.
We decided not to include data from low English
proficiency writers, as the writing is often barely
coherent and the authors’ meaning is sometimes
difficult to determine. For the experiments re-
ported below, the data was partitioned into 75%
training and 25% testing. Data partitions and fea-
ture values will be released for public use.2

3.2 Annotation

The annotation protocol used in this study was
taken from Beigman Klebanov et al. (2013).
The protocol was developed for analyzing ar-
gumentative writing, and emphasized the iden-
tification of argumentation-relevant metaphors.
Argumentation-relevant metaphors are, briefly,
those that help the author advance her argument.
For example, if you are arguing against some
action because it would drain resources, drain
is a metaphor that helps you advance your ar-
gument, because it presents the expenditure in
a very negative way, suggesting that resources
would disappear very quickly and without con-
trol. Beigman Klebanov et al. (2013) reported
inter-annotator agreement of κ = .56-.58 on binary
classification of all content words in an essay into
metaphor or non-metaphor.

All 240 essays in our corpus were annotated by
two annotators: an annotator with a BA in English
and Spanish and experience as an English-as-
a-second-language (TESOL) instructor who was
hired for this project (annotator A) and the lead
author of this paper (annotator B). The annotation
procedure was as follows. First, 3 out of 30 essays
for each prompt were chosen for training and cal-
ibration; the two annotators performed an annota-
tion on the 3 essays, and discussed disagreements.
Then, each annotator independently annotated the
remaining 27 essays. Inter-annotator agreement
was calculated for each of the 27 essays; all es-
says with κ < 0.5 were selected, and annotator A
was asked to review his annotations of these essays
again. Once the essays were returned from anno-
tator A’s review, agreement was measured again.
If the overall agreement for the set of 27 was be-
low κ = 0.55, essays that had κ < 0.5 were se-
lected, and annotator B reviewed her own annota-
tions of those essays. Once these annotations were
returned, the final κ for the set of 27 essays was
calculated. Average inter-annotator agreement for

2https://github.com/EducationalTestingService/metaphor

the first annotation pass (before reviews of their
own work by A and B) was κ = 0.56. After re-
views by one or both the annotators, the average
agreement was κ = 0.62. For the experiments, we
use the union of the two annotations: everything
marked as metaphor by at least one annotator is la-
beled as a metaphor, consistently with the practice
in prior work (Beigman Klebanov et al., 2013).

To illustrate the annotation, consider an excerpt
from a response to the prompt “It is better to have
broad knowledge of many academic subjects than
to specialize in one specific subject”; metaphors
are italicized:

I ultimately agree with the fact that it is
better to be specialized on a specific sub-
ject than to spread energy on different
subjects. However I say ultimately, be-
cause being and staying focused on one
subject means always to discard other
subjects. I found the focus necessary
and very important at a certain late stage
of the personal working career or aca-
demic career. The reason behind this
you build up some “spikes of knowl-
edge” on a broad knowledge platform.
These sharp spikes of knowledge will
allow you to promote yourself and to
pull with you the society forward.

This excerpt is rich in metaphor, painting
knowledge as a tall, spiky, yet sturdy structure one
builds on a broad solid platform, to serve as a grip
when pulling (others) up; a metaphor of academic
subjects as objects that can be neatly isolated from
one another, examined in detail, and accepted to
removed from possession; a life-as-a-journey ele-
ment that breaks events in life into “stages”. All
these are working (not necessarily most elegantly)
to support the notion that specialization is feasible
at an appropriate time in one’s life, and it would
make you stand out (in the skyline, so-to-speak).

It is worth pointing out some differences be-
tween this annotation and an annotation that would
have resulted from the application of the MIPVU
protocol used in the VUA corpus.3 The MIPVU
protocol requires an annotator to establish the con-
textual meaning of a lexical item and then consider
whether there exists another meaning (attested in
a contemporary dictionary) that is more ”basic”,

3MIPVU is an extension of MIP (Pragglejaz, 2007) –
Metaphor Identification Procedure.

87



which is defined as (i) more concrete; (ii) related
to bodily action; (iii) more precise (as opposed to
vague). Additional words in the excerpt shown
above might have been marked as metaphors by
the MIPVU protocol – such as found and behind,
since their contextual senses are less concrete than
the “see where something is by searching for it”4

and “at the back of something”, respectively – but
these do not seem to contribute as directly to the
content of the author’s argument. It is debatable
whether discard would be considered a metaphor
by MIPVU, its one dictionary sense being “to get
rid of something that you no longer want or need,”
which might or might not be considered the con-
textual sense depending on whether “something”
in the definition is interpreted as a concrete ob-
ject with shape and size or possibly an abstract
entity with ill-defined boundaries. The protocol
used here does not require recourse to dictionary
definitions, leaving the senses to the annotator’s
intuition. On average, 3% (0.03) of all words in
an essay are marked as metaphor according to this
protocol; the standard deviation is 0.02; min = 0;
max = 0.1, in the training partition.

4 State-of-art feature sets on new data

The task to be performed on the annotated data
is to classify all content words (allPOS: verbs,
nouns, adjectives, and adverbs) or just the verbs
(verbs) in an essay into those that are being used
metaphorically or those that are not. The verbs
have, be, and do are excluded from both allPOS
and verbs data. Table 1 summarizes the data.

Data Training Testing
#T #I %M #T #I

all-POS 180 26,737 7% 60 9,017
verbs 180 7,016 14% 60 2,301

Table 1: Summary of the data. #T = # of texts; #I = #
of instances; %M = proportion of metaphors.

We evaluated the performance of two feature
sets. The set v-16 comes from Beigman Klebanov
et al. (2016), addressing metaphoricity of verbs.
The feature set all-15 comes from Beigman Kle-
banov et al. (2015) and addresses all content words
(all-POS). We also ran the v-16 feature set on all-
POS data – lemma unigram features are calculated
for all words, WordNet lexicographic categories

4Sense definitions are quoted from the MacMillan dictio-
nary, used in MIPVU.

Feature Set Features
all-15 unigrams (all POS), part of

speech (all POS), topics (all POS),
concreteness (all POS),
difference in concreteness (v, adj)

v-16 lemma unigrams (v),
WordNet lexicographic categories (v),
difference in concreteness (v)

all-16 lemma unigrams (all POS),
WordNet lexicographic categories (v),
difference in concreteness (v, adj)

Table 2: Details of the VUA SoA feature sets

are used only for verbs,5 and the difference in con-
creteness feature is calculated for verbs (verb vs
its direct object) and for adjectives (adjective vs
its head noun). We found that this feature set is
competitive with all-15; we therefore include it in
the benchmark, as all-16. Table 2 summarizes the
three feature sets.

The metaphor detection systems use SoA fea-
ture sets with Logistic Regression as the classifier.
The systems are evaluated for precision, recall,
and F-score for the class “metaphor”. The evalua-
tions were performed with scikit-learn (Pedregosa
et al., 2011) using the SKLL toolkit6 that makes it
easy to run batch scikit-learn experiments. Table 3
shows the results. Since the data is imbalanced,
we applied re-weighting using grid-search opti-
mization, parametrized as in Beigman Klebanov
et al. (2015); we also report results with no re-
weighting.

Sys Optimized Re-weighting No Re-weighting
P R F P R F

all-15 .52 .52 .52 .68 .40 .50
all-16 .49 .58 .53 .69 .39 .50
v-16 .50 .64 .56 .69 .39 .50

Table 3: Performance of Logistic Regression with SoA
feature sets on essay data.

We note that the performance of the SoA fea-
ture sets on the new data is somewhat below the
published results for the VUA data. In partic-
ular, the v-16 system posted an F-score of 0.60
when trained and tested on verbs-only VUA data
(Beigman Klebanov et al., 2016). Improvement of
metaphor detection performance is clearly an im-
portant avenue for future work.

5We also expanded the WordNet feature set to use the lex-
icographic categories for verbs and for nouns, but the addi-
tion of nominal categories degraded performance; these re-
sults are not reported.

6http://github.com/ EducationalTestingService/skll
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5 Metaphor use and writing proficiency

The main motivation of the study and the anno-
tation campaign is the potential for creating fea-
tures based on metaphor use for assessing the
English language skills of developing writers, un-
der the assumption that argumentation-relevant
use of metaphor is a fairly advanced skill that re-
quires solid command of vocabulary and a cer-
tain amount of cultural knowledge, among other
things. In this section, we consider the rela-
tionship between holistic scores of essay qual-
ity and use of metaphor, in argumentative essays.
Specifically we ask the following research ques-
tions: (1) Is there a relationship between essay
score and metaphor use? (2) Is this relation-
ship the same for the two definitions of metaphor
– argumentation-relevant metaphor and the more
traditional MIPVU definition? (3) Does the rela-
tionship depend on the specifics of the task set to
the writer?

5.1 Data

We use six sets from three testing programs.
MGrF and MGrS – Mixed Graduate Free and
Source-based, respectively – come from a test
of English administered to domestic and interna-
tional applicants to graduate schools in the U.S.
IColF and IColS – International College Free
and Source-based – come from a test of English
mainly administered to international applicants to
U.S. colleges and universities. DTLF and DTLS
– Domestic Teacher Licensure Free and Source-
based – come from a test of English administered
domestically to those wishing to obtain teaching
certification in the U.S. The datasets vary in popu-
lation (domestic vs international, early stages of
higher education vs advanced) and in the tasks
– for each test, one of the tasks is the standard
defend-your-position-on-an-issue task (F), while
the other (S) requires test-takers to use source texts
to summarize, criticize, or draw on arguments pre-
sented therein. Table 4 summarizes the data.

5.2 Method

We quantify the extent of metaphor use in an essay
as the logarithm of metaphor frequency per 1,000
words. Given the tendency of essay length to be a
strong predictor of proficiency scores, our evalua-
tion metric is partial correlation with essay score
controlling for length.

For metaphor detection, we train all-16 model

with no re-weighting.7 We augment the 240-essay
corpus described here with an additional set of
141 essays annotated using the same protocol on
proprietary data from the same program as MGrF.
Performance for a system trained on this combined
set of essays is shown as Arg in Table 4; a system
that uses the same features and the same training
regime on VUA data is shown as VUA in Table 4.

5.3 Results

Dataset # Score Performance
Essays Scale Arg VUA

MGrF+ 40,000 1-6 .166 .020
MGrS 40,000 1-6 .060 .006
IColF+ 40,000 1-5 .159 .070
IColS 40,000 1-5 .067 .052
DTLF 10,000 1-6 .121 .029
DTLS 10,000 1-6 .092 .019

Table 4: Partial correlation controlling for length be-
tween essay score and metaphor use, for a system
trained on essays (Arg) vs VUA data. The underlined
figures are not statistically significant (p > 0.01). Plus
signs are explained in the text.

First, we observe that Arg shows statistically
significant partial correlations for all datasets;
namely, use of argumentation-relevant metaphor
provides information about essay score above and
beyond essay length.

Second, Arg outperforms VUA. In some cases,
the difference could be attributed to data being in-
domain; the sets marked with a plus in Table 4 are
taken from the same testing programs as the train-
ing data for Arg, although the specific prompts
are different. However, Arg does better across the
board, including data completely unrelated to the
annotation campaign. It is likely that the proto-
col that emphasized specifically the need to pay
attention to the role played by the metaphor in the
author’s argument is at least partially responsible
for the higher performance indicators.

Next, we observe better performance on F sets,
those with a very general, single-sentence prompt
(see example in section 3.2) than on S datasets
with extensive prompts that directed test-takers
to criticize, summarize, or draw upon arguments
presented in specific textual sources. Again, this

7Precision-oriented detection models aggregated through
a logarithmic or square-root functions are common in the au-
tomated essay scoring literature (Gamon et al., 2013; Chen
et al., 2017; Attali and Burstein, 2006).
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could be due to the short-prompt-based arguments
being more in line with the annotated data; how-
ever, since there is a similar tendency for the VUA-
trained system, it could also be a more general is-
sue of the extent to which the author controls the
vocabulary in her essay. With extensive prompts
that contain information that needs to be reflected
in the essay, a substantial part of the vocabulary
is forced by the prompt and not drawn from the
author’s more creative faculties and knowledge.

6 Conclusion

We present a corpus of argumentative essays
written by non-native speakers of English anno-
tated for metaphor. The corpus is made pub-
licly available; this is the first publicly avail-
able metaphor annotated data in this genre we
are aware of. We provide benchmark perfor-
mance on this new corpus. We also show that
use of argumentation-relevant metaphor provides
information about English proficiency above and
beyond essay length, especially in the standard
defend-a-position-on-an-issue essays where au-
thors have fuller control of their vocabulary.
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Abstract
In the Story Cloze Test, a system is presented
with a 4-sentence prompt to a story, and must
determine which one of two potential end-
ings is the ‘right’ ending to the story. Previ-
ous work has shown that ignoring the training
set and training a model on the validation set
can achieve high accuracy on this task due to
stylistic differences between the story endings
in the training set and validation and test sets.
Following this approach, we present a sim-
pler fully-neural approach to the Story Cloze
Test using skip-thought embeddings of the sto-
ries in a feed-forward network that achieves
close to state-of-the-art performance on this
task without any feature engineering. We also
find that considering just the last sentence of
the prompt instead of the whole prompt yields
higher accuracy with our approach.

1 Introduction

Mostafazadeh et al. (2016) introduced the Story
Cloze Test: given a four-sentence story prompt (or
‘context’), the task is to pick the ‘right’ common-
sense ending from two options. The Cloze Test is
intended to be a general framework for evaluating
story understanding, since it ostensibly requires
combining semantic understanding and common-
sense knowledge of our world. The task is accom-
panied by the Rochester story (ROCstory) cor-
pus. The training set consists of crowdsourced
five-sentence stories designed to capture common
events in daily life. The validation and testing
sets consist of four-sentence prompts and labeled
‘right’ and ‘wrong’ story endings. Table 1 shows
such a sample story from the Rochester corpus val-
idation set with a labeled right and wrong ending.

Many previous approaches to the Cloze Test
have ignored the training set entirely and trained
on the validation set since the former lacks ‘neg-
ative’ examples; although this greatly reduces the
available training data, it circumvents the issue of
obtaining negative examples during training.

Story Context
Bob loved to watch movies.
He was looking forward to a three day weekend
coming up.
He made a list of his favorite movies and invited
some friends over.
He spent the weekend with his friends watching
all his favorite movies.
Right Ending: Bob had a great time.
Wrong Ending: Bob stopped talking to those
friends.

Table 1: A sample story from the ROCStory Validation
Set

Our contribution to this task is two-fold.
First, we achieve near state-of-the-art performance
(within 1.1%) but with a much simpler, fully-
neural approach. Where previous approaches rely
on feature engineering or involved neural network
architectures, we achieve high accuracy with a
fully neural approach involving only a single feed-
forward network and pre-trained skip-thought em-
beddings (Kiros et al., 2015). Second, we find
that considering only the last sentence of the con-
text outperforms models that consider the full con-
text. Previous approaches focused on the accuracy
achieved by either considering the whole context
or ignoring the whole context of the story. In sum,
our approach differs from previous efforts in the
joint use of three strategies: (1) using skip-thought
embeddings (Kiros et al., 2015) for sentences in
the story in a feed-forward neural network, (2)
training the model on the provided validation set,
and (3) considering the two endings with only the
last sentence in the prompt.

This paper is structured as follows: we will dis-
cuss previous approaches to the problem and how
they compare to our approach, describe our model
and the experiments we ran in detail, and finally
discuss reasons for our model’s superior perfor-
mance and why ignoring the first three sentences
of the story produces better accuracy.
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2 Related Work

Mostafazadeh et al. (2016) presented the original
Story Cloze Test, and showed that while humans
could achieve 100% accuracy on the task, a deep
structured semantic model (Huang et al., 2013)
was the best performing artificial baseline, with a
test-set accuracy of 58.5%. While they do consider
using skip-thought embeddings for this task, they
do so by choosing the ending whose embedding
was closer to the average skip-thought embedding
of the context. This only achieves a test-set ac-
curacy of 55.2%. On the other hand, we train a
feed-forward network using skip-thought embed-
dings.

The Story Cloze Test was the shared task at LS-
DSem 2017, and Mostafazadeh et al. (2017) sum-
marize the approaches by various teams on this
task. The best-performing system by Schwartz
et al. (2017b) achieved a test-set accuracy of
75.2%. Like us, they train their model on the val-
idation set, but their approach relies more heav-
ily on feature engineering. They find that they
could achieve 72.4% accuracy using just the stylis-
tic features of the endings, suggesting that many
of the ‘right’ endings on this task could be iden-
tified independent of the story context. Upon fur-
ther investigation, Schwartz et al. (2017a) find dif-
ferences not only between the ‘right’ and ‘wrong’
endings in the validation set, but also between
these and the ‘right’ endings from the training
set, providing some explanation for why models
trained on the validation set outperform models
trained on the training set - their data distributions
are somewhat different.

Further work by Cai et al. (2017) established a
neural baseline for models trained on the valida-
tion set, with a test-set accuracy of 74.7%. They
were also able to achieve a marginally better ac-
curacy of 72.5% (compared to Schwartz et al.
(2017b)) when using just the sentence endings and
ignoring the context; and this approach did not re-
quire any feature engineering. They showed that a
human can distinguish ‘right’ from ‘wrong’ end-
ings without the context with 78% accuracy, fur-
ther backing the claim that the importance of con-
text in determining the right ending is more lim-
ited than desirable on this task. Their approach in-
volves training a hierarchical bidirectional LSTM
with attention to first encode sentences and then
stories, with a hinge-loss objective function.

Roemmele et al. (2017) use skip-thought em-

beddings for this task, but they encode the entire
context using a GRU, with a binary classifier to
determine if an ending was right or wrong. They
train their model on the provided training set, sam-
pling negative examples from the training set it-
self. Their best model achieves 67.2% accuracy
on this task.

Currently, the comprehensive approach taken
by Chaturvedi et al. (2017), where they model
event sequence, sentiment trajectory, and topi-
cal consistency for a hidden coherence model,
achieves the state-of-the-art performance on this
task, with a test-set accuracy of 77.6%.

3 Approach

We trained several models on both the training set
and the validation set of the ROCStory corpus.
When training a model on the training set, we ob-
tain ‘negative’ examples (i.e. wrong endings) by
randomly choosing a sentence from another story
in the corpus. In this section, we describe the
choice of sentence embeddings, the architecture of
the models we trained, and our experimental setup.

3.1 Embeddings

Key to our approach is the use of skip-thought
embeddings (Kiros et al., 2015) in our feed-
forward network (denoted skip in Table 2). These
are 4800-dimensional embeddings of sentences
trained on the task of predicting their context using
the BookCorpus dataset (a large dataset of books).
We use a pre-trained skip-thought encoder1 to ob-
tain the embeddings for all sentences in the train-
ing set, validation set, and test set.

To isolate the increase in accuracy from us-
ing skip-thought vectors, we also experiment with
learning sentence embeddings directly, for this
task. Unlike the skip-thought encoder that di-
rectly gives sentence embeddings, we use a bidi-
rectional LSTM that takes in GloVe embeddings
(Pennington et al., 2014) of each word in the sen-
tence and returns a 4800 dimensional embedding
of the sentence (denoted GloVe in Table 2) formed
by concatenating the outputs of the forward and
backward LSTMs. We use the GloVe model pre-
trained on Wikipedia 2014 and Gigaword 5 data2.

1https://github.com/ryankiros/skip-thoughts
2https://nlp.stanford.edu/projects/glove/
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Figure 1: Model Architecture

3.2 Models

Common to all our models is a single feed-forward
neural network with a softmax-layer at the end
that acts as a binary classifier. This neural net-
work takes in a 4800-dimensional input (the same
dimensionality as the skip-thought embeddings)
and returns the probability of the endings being
‘right’ and ‘wrong’. During inference time, we
make a forward pass with each of the two possible
endings, and select the ending that has a higher
probability of being the ‘right’ ending. We use
two layer and three layer fully connected networks
with Rectified Linear (ReLU) non-linearities (re-
fer to Appendix A for model-specific architec-
ture). We then experiment with different inputs
to the neural network, as described below.

No Context (NC) This model attempts to iden-
tify the ‘right’ ending of a story by ignoring the
story context and looking only at examples of right
and wrong endings. As such, the input to the neu-
ral network is just the skip-thought embedding of
the story ending, with 0/1 label indicating whether
it was the ‘wrong’ or ‘right’ ending.

Last Sentence (LS) In this model, the input to
the neural network is the sum of the skip-thought
embedding of the last sentence of the prompt (i.e.,
fourth sentence in the story) and the skip-thought
embedding of the ending. Essentially, we are at-
tempting to identify the right ending based on only
the ending and the preceding sentence in the story.

Full Context (FC) Here, we use a Gated Recur-
rent Unit (GRU) to encode the entire story prompt
into a 4800-dimensional vector, add it to the skip-
thought embedding of the story ending, and pass
it as input to the neural network. The input to the

GRU is the skip-thought embedding of each sen-
tence, and this model attempts to identify the right
ending by considering the entire story prompt.

4 Experiments

4.1 Dataset

For all our experiments, we use the ROCStory
corpus (Mostafazadeh et al., 2016). The corpus
consists of a training set of 98,161 five-sentence
stories, a validation set consisting of 1,871 four-
sentence stories, and a test set of 1,871 four-
sentence stories, with the validation and test sets
providing labeled ‘right’ and ‘wrong’ story end-
ings for each story. (Mostafazadeh et al., 2016)
crowdsourced the collection of stories on Amazon
Mechanical Turk; workers were asked to compose
five-sentence stories about common daily situa-
tions with a clear beginning and end. To create the
validation and testing sets, endings were removed
from stories and an additional group of workers on
Mechanical Turk were asked to provide a ‘right’
ending or a ‘wrong’ ending.

Although models trained on the validation set
score higher than those trained on the training set
as previously discussed, we provide the results for
the same model trained on the validation set (de-
noted val) as well as the training set (denoted trn)
in Table 2 for comparison.

4.2 Experimental Method

When training on the training set, we tuned hyper-
parameters using the validation set. When train-
ing on the validation set, we hold out 10% of the
validation set, and tune hyper-parameters to find a
configuration that maximizes the accuracy on the
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model val test
trn-NC-skip 60.3% 60.8%
val-NC-skip 73.9% 72.6%
trn-FC-skip 62.4% 62.6%
val-FC-skip 73.8% 71.6%
trn-LS-skip 62.8% 62.7%
val-LS-skip 77.2% 76.5%

val-LS-GloVe 69.7% 63.0%
Chaturvedi et al. (2017) - 77.6%
Schwartz et al. (2017b) - 75.2%

Cai et al. (2017) - 74.7%

Table 2: Accuracies for various models on the Story
Cloze Test

held out data. We use cross-entropy loss and SGD
with learning rate of 0.01.

During training, we save the model every 3000
iterations, and calculate the validation accuracy.
We train each model five times (except the FC
models, which we train once due to time consider-
ations), and report the average test set accuracy of
the model. We use the model with the highest val-
idation accuracy in each round to calculate the test
set accuracy for that round. We present our results
in Table 2.

4.3 Results and Discussion

The 3-layer feed-forward neural network trained
on the validation set by summing the skip-thought
embeddings of the last sentence (LS) of the story
prompt and the ending gives the best accuracy
(76.5%). This approach is far simpler than pre-
vious approaches in the literature; it requires no
feature engineering, nor intricate neural network
architecture, and achieves close to state-of-the-art
accuracy. Comparing ‘val-LS-skip’ to ‘val-LS-
GloVe’ (i.e., using skip-thought embeddings for
sentences vs. GloVe word embeddings), we con-
firm that the success of this approach lies in the
sizable boost to accuracy from the use of pre-
trained skip-thought embeddings.

This is perhaps unsurprising given the success
of skip-thought embeddings in story-related tasks
(Agrawal et al. (2016), Roemmele et al. (2017)),
since the model was trained on a large corpus of
fiction. While the BookCorpus and ROCStories
draw from different distributions, it is possible that
skip-thought vectors implicitly encode a general
notion of typical story continuation. In the ab-
sence of such a large dataset to learn such asso-

ciations from, the LSTM with GloVe embedding
inputs is unable to encode the necessary informa-
tion to do well on this task.

We note that the model trained using only the
last sentence (LS) of the story context has higher
accuracy compared to the model that uses a GRU
to encode the full context (FC), and even the Cai
et al. (2017) model which encodes the entire con-
text. It is unclear from our experiments why this
might be. One hypothesis is that as stories near
conclusion, the space of possible continuations
contracts. In the absence of further context, a de-
fault prior is assumed - as implicitly encoded in
skip-thought vectors trained on BookCorpus - that
is often correct. Providing more context may con-
flict with the default prior, introducing uncertainty.
Another hypothesis is that the Mechanical Turk
workers creating the validation and test data sets
focused more on the fourth sentence when writing
their ‘right’ and ‘wrong’ endings, so once again,
adding context introduces error.

Finally, we observe that the Story Cloze Test
is an easier task than identifying whether a given
ending is coherent or not, since the former in-
volves a forced choice between two endings. Dur-
ing test time, the model does not need to classify
whether a given ending is ‘right’ or ‘wrong’, as
it learns to do during train time; instead, it sim-
ply needs to correctly predict which ending is less
wrong.

5 Conclusion

We have shown a simple yet effective neural
model that achieves high accuracy on the Cloze
Test, which is within 1.1% of the state-of-the-art
approach that relies on feature engineering. Ad-
ditionally, we make a minor improvement on Cai
et al. (2017)’s ‘ending-only’ baseline accuracy of
72.5% with our val-NC-skip model.

Finally, we also showed that, for the models
tested here, using the full context actually per-
forms worse than using just the last sentence of
the context. Future investigation will be needed
to determine whether this is a property inherent
to human storytelling or a form of bias introduced
during data collection.
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Abstract

We describe an effort to annotate a corpus
of natural language instructions consisting of
622 wet lab protocols to facilitate automatic or
semi-automatic conversion of protocols into a
machine-readable format and benefit biologi-
cal research. Experimental results demonstrate
the utility of our corpus for developing ma-
chine learning approaches to shallow seman-
tic parsing of instructional texts. We make our
annotated Wet Lab Protocol Corpus available
to the research community.1

1 Introduction

As the complexity of biological experiments in-
creases, there is a growing need to automate wet
laboratory procedures to avoid mistakes due to hu-
man error and also to enhance the reproducibility
of experimental biological research (King et al.,
2009). Several efforts are currently underway to
define machine-readable formats for writing wet
lab protocols (Ananthanarayanan and Thies, 2010;
Soldatova et al., 2014; Vasilev et al., 2011). The
vast majority of today’s protocols, however, are
written in natural language with jargon and collo-
quial language constructs that emerge as a byprod-
uct of ad-hoc protocol documentation. This moti-
vates the need for machine reading systems that
can interpret the meaning of these natural lan-
guage instructions, to enhance reproducibility via
semantic protocols (e.g. the Aquarium project)
and enable robotic automation (Bates et al., 2016)
by mapping natural language instructions to exe-
cutable actions.

In this study we take a first step towards this
goal by annotating a database of wet lab protocols
with semantic actions and their arguments; and
conducting initial experiments to demonstrate its
utility for machine learning approaches to shallow
semantic parsing of natural language instructions.

1The dataset is available on the authors’ websites.

Isolation of temperate phages by plaque agar overlay
1. Melt soft agar overlay tubes in boiling water and place
in the 47C water bath.
2. Remove one tube of soft agar from the water bath.
3. Add 1.0 mL host culture and either 1.0 or 0.1 mL viral
concentrate.
4. Mix the contents of the tube well by rolling back and
forth between two hands, and immediately empty the tube
contents onto an agar plate.
5. Sit RT for 5 min.
6. Gently spread the top agar over the agar surface by slid-
ing the plate on the bench surface using a circular motion.
7. Harden the top agar by not disturbing the plates for 30
min.
8. Incubate the plates (top agar side down) overnight to 48
h.
9. Temperate phage plaques will appear as turbid or
cloudy plaques, whereas purely lytic phage will appear as
sharply defined, clear plaques.

Figure 1: An example wet lab protocol. The first seven
steps are imperative sentences, and the last sentence de-
scribes the end results and their subsequent utilization.

To the best of our knowledge, this is the first anno-
tated corpus of natural language instructions in the
biomedical domain that is large enough to enable
machine learning approaches.

There have been many recent data collection
and annotation efforts that have initiated natu-
ral language processing research in new direc-
tions, for example political framing (Card et al.,
2015), question answering (Rajpurkar et al., 2016)
and cooking recipes (Jermsurawong and Habash,
2015). Although mapping natural language in-
structions to machine readable representations is
an important direction with many practical appli-
cations, we believe current research in this area is
hampered by the lack of available annotated cor-
pora. Our annotated corpus of wet lab protocols
could enable further research on interpreting nat-
ural language instructions, with practical applica-
tions in biology and life sciences.

Prior work has explored the problem of learn-
ing to map natural language instructions to ac-
tions, often learning through indirect supervision
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Figure 2: Example sentences (#5 and #6) from the lab protocol in Figure 1 as shown in the BRAT annotation
interface.
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Figure 3: An action graph can be directly derived from
annotations as seen in Figure 2 (example sentence #6) .

to address the lack of labeled data in instructional
domains. This is done, for example, by interact-
ing with the environment (Branavan et al., 2009,
2010) or observing weakly aligned sequences of
instructions and corresponding actions (Chen and
Mooney, 2011; Artzi and Zettlemoyer, 2013). In
contrast, we present the first steps towards a prag-
matic approach based on linguistic annotation
(Figure 3). We describe our effort to exhaus-
tively annotate wet lab protocols with actions cor-
responding to lab procedures and their attributes
including materials, instruments and devices used
to perform specific actions. As we demonstrate in
§6, our corpus can be used to train machine learn-
ing models which are capable of automatically an-
notating lab-protocols with action predicates and
their arguments (Gildea and Jurafsky, 2002; Das
et al., 2014); this could provide a useful linguis-
tic representation for robotic automation (Bollini
et al., 2013) and other downstream applications.

2 Wet Lab Protocols

Wet laboratories are laboratories for conducting
biology and chemistry experiments which involve
chemicals, drugs, or other materials in liquid
solutions or volatile phases. Figure 1 shows
one representative wet lab protocol. Research
groups around the world curate their own repos-

itories of protocols, each adapted from a canoni-
cal source and typically published in the Materials
and Method section at the end of a scientific article
in biology and chemistry fields. Only recently has
there been an effort to gather collections of these
protocols and make them easily available. Lever-
aging an openly accessible repository of protocols
curated on the https://www.protocols.io platform,
we annotated hundreds of academic and commer-
cial protocols maintained by many of the lead-
ing bio-science laboratory groups, including Verve
Net, Innovative Genomics Institute and New Eng-
land Biolabs. The protocols cover a large spec-
trum of experimental biology, including neurol-
ogy, epigenetics, metabolomics, cancer and stem
cell biology, etc (Table 1). Wet lab protocols con-
sist of a sequence of steps, mostly composed of
imperative statements meant to describe an action.
They also can contain declarative sentences de-
scribing the results of a previous action, in addi-
tion to general guidelines or warnings about the
materials being used.

3 Annotation Scheme

In developing our annotation guidelines we had
three primary goals: (1) We aim to produce a se-
mantic representation that is well motivated from
a biomedical and linguistic perspective; (2) The
guidelines should be easily understood by annota-
tors with or without biology background, as evalu-
ated in Table 3; (3) The resulting corpus should be
useful for training machine learning models to au-
tomatically extract experimental actions for down-
stream applications, as evaluated in §6.

We utilized the EXACT2 framework (Soldatova
et al., 2014) as a basis for our annotation scheme.
We borrowed and renamed 9 object-based entities
from EXACT2, in addition, we created 5 measure-
based (NUMERICAL, GENERIC-MEASURE, SIZE,
PH, MEASURE-TYPE) and 3 other (MENTION,
MODIFIER, SEAL) entity types. EXACT2 con-
nects the entities directly to the action without
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Protocol Category Count avg #Sentences avg #Words avg #Entities avg #Relations avg #Actions
molecular biology 186 27.42 338.06 85.25 84.20 35.77
microbiology 105 22.07 328.94 74.46 71.71 27.89
cell biology 94 19.23 236.74 61.09 60.95 23.93
Plant biology 48 17.17 219.96 44.67 43.85 20.44
Immunology 79 25.92 339.58 83.17 78.24 32.68
chemical biology 110 14.37 188.30 46.40 47.45 19.01

Table 1: Statistics of our Wet Lab Protocol Corpus by protocol category.

Total per Protocol per Sentence
# of sentences 13679 21.99 –
# of words 177770 285.80 12.99
# of entities 43236 69.51 3.16
# of relations 42425 68.21 3.10
# of actions 17485 28.11 1.28

Table 2: Statistics of the Wet Lab Protocol Corpus.

describing the type of relations, whereas we de-
fined and annotated 12 types of relations between
actions and entities, or pairs of entities (see Ap-
pendix for a full description).

For each protocol, the annotators were re-
quested to identify and mark every span of text
that corresponds to one of 17 types of entities
or an action (see examples in Figure 2). Inter-
section or overlap of text spans, and the subdi-
vision of words between two spans were not al-
lowed. The annotation guideline was designed to
keep the span short for entities, with the average
length being 1.6 words. For example, CONCEN-
TRATION tags are often very short: 60% 10x, 10M,
1 g/ml. The METHOD tag has the longest aver-
age span of 2.232 words with examples such as
rolling back and forth between two hands. The
methods in wet lab protocols tend to be descrip-
tive, which pose distinct challenges from exist-
ing named entity extraction research in the med-
ical (Kim et al., 2003) and other domains. After
all entities were labelled, the annotators connected
pairs of spans within each sentence by using one
of 12 directed links to capture various relation-
ships between spans tagged in the protocol text.
While most protocols are written in scientific lan-
guage, we also observe some non-standard usage,
for example using RT to refer to room tempera-
ture, which is tagged as TEMPERATURE.

4 Annotation Process

Our final corpus consists of 622 protocols anno-
tated by a team of 10 annotators. Corpus statistics
are provided in Table 1 and 2. In the first phase

Annotators Entities+Actions Relations
Biologist-Linguist 0.7600 0.6084
Biologist-Other 0.7621 0.6619
Linguist-Other 0.7574 0.6753
all 4 coders 0.7599 0.6625

Table 3: Inter-annotator agreement (Krippendorff’s α)
between annotators with biology, linguistics and other
backgrounds.

of annotation, we worked with a subset of 4 anno-
tators including one linguist and one biologist to
develop the annotation guideline for 6 iterations.
For each iteration, we asked all 4 annotators to an-
notate the same 10 protocols and measured their
inter-annotator agreement, which in turn helped
in determining the validity of the refined guide-
lines. The average time to annotate a single proto-
col of 40 sentences was approximately 33 minutes,
across all annotators.

4.1 Inter-Annotator Agreement

We used Krippendorff’s α for nominal data (Krip-
pendorff, 2004) to measure the inter-rater agree-
ment for entities, actions and relations. For enti-
ties, we measured agreement at the word-level by
tagging each word in a span with the span’s la-
bel. To evaluate inter-rater agreement for relations
between annotated spans, we consider every pair
of spans within a step and then test for matches
between annotators (partial entity matches are al-
lowed). We then compute Krippendorff’s α over
relations between matching pairs of spans. Inter-
rater agreement for entities, actions and relations
is presented in Figure 3.

5 Methods

To demonstrate the utility of our annotated cor-
pus, we explore two machine learning approaches
for extracting actions and entities: a maximum en-
tropy model and a neural network tagging model.
We also present experiments for relation classifi-
cation. We use the standard precision, recall and
F1 metrics to evaluate and compare the perfor-
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mance.

5.1 Maximum Entropy (MaxEnt) Tagger
In the maximum entropy model for action and en-
tity extraction (Borthwick and Grishman, 1999),
we used three types of features based on the cur-
rent word and context words within a window of
size 2:
• Parts of speech features which were gener-

ated by the GENIA POS Tagger (Tsuruoka
and Tsujii, 2005), which is specifically tuned
for biomedical texts;
• Lexical features which include unigrams, bi-

grams as well as their lemmas and synonyms
from WordNet (Miller, 1995) are used;
• Dependency parse features which include

dependent and governor words as well as the
dependency type to capture syntactic infor-
mation related to actions, entities and their
contexts. We used the Stanford dependency
parser (Chen and Manning, 2014).

5.2 Neural Sequence Tagger
We utilized the state-of-the-art Bidirectional
LSTM with a Conditional Random Fields (CRF)
layer (Ma and Hovy, 2016; Lample et al.,
2016; Plank et al., 2016), initialized with 200-
dimentional word vectors pretrained on 5.5 bil-
lion words from PubMed and PMC biomedical
texts (Moen and Ananiadou, 2013). Words unseen
in the pretrained vocabulary were randomly ini-
tialized using a uniform distribution in the range
(-0.01, 0.01). We used Adadelta (Zeiler, 2012)
optimization with a mini-batch of 16 sentences
and trained each network with 5 different random
seeds, in order to avoid any outlier results due to
randomness in the model initialization.

5.3 Relation Classification
To demonstrate the utility of the relation annota-
tions, we also experimented with a maximum en-
tropy model for relation classification using fea-
tures shown to be effective in prior work (Li and
Ji, 2014; GuoDong et al., 2005; Kambhatla, 2004).
The features are divided into five groups:
• Word features which include the words con-

tained in both arguments, all words in be-
tween, and context words surrounding the ar-
guments;
• Entity type features which include action

and entity types associated with both argu-
ments;

Entity/Action
(freq. in test set) MaxEnt BiLSTM

BiLSTM
+ CRF

Action (3519) 83.87 85.95 86.89
Amount (886) 68.25 81.59 82.34
Conc. (273) 56.84 65.36 76.36
Device (408) 49.14 58.73 64.02
Gen.-Measure (91) 05.88 06.45 25.68
Location (1007) 61.07 69.57 73.53
Meas.-Type (50) 15.38 18.75 21.62
Mention (37) 43.37 52.31 57.97
Method (177) 37.97 30.60 38.21
Modifier (720) 50.86 56.90 59.34
Numerical (129) 39.70 47.84 49.80
Reagent (2486) 60.54 71.34 74.55
Seal (43) 49.52 54.05 66.67
Size (69) 19.35 24.82 26.92
Speed (200) 74.88 85.31 91.00
Temperature (469) 80.69 86.68 91.90
Time (708) 83.68 92.69 93.94
pH (21) 41.86 53.66 70.00
Macro-avg F1 49.23 58.81 64.44
Micro-avg F1 68.03 74.99 78.03

Table 4: F1 scores for segmenting and classifying en-
tities and action triggers compared across the various
models.

MaxEnt Model Relations
Features P R F1
Words 66.16 46.84 54.85
+ Entity Type 78.93 72.75 75.72
+ Overlap 80.81 74.73 77.65
+ Base Phrase Chunking 81.04 76.52 78.71
+ Dependency Tree 80.98 77.04 78.96

Table 5: Precision, Recall and F1 (micro-average) of
the maximum entropy model for relation classification,
as each feature is added.

• Overlapping features which are the number
of words, as well as actions or entities, in be-
tween the candidate entity pair;
• Chunk features which are the chunk tags of

both arguments predicted by the GENIA tag-
ger;
• Dependency features which are context

words related to the arguments in the depen-
dency tree according to the Stanford Depen-
dency Parser.

Also included are features indicating whether the
two spans are in the same noun phrase, preposi-
tional phrase, or verb phrase.

6 Results

The full annotated dataset of 622 protocols are
randomly split into training, dev and test sets using
a 6:2:2 ratio. The training set contains 374 proto-
cols of 8207 sentences, development set contains
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MaxEnt Model Actions Entities
Features P R F1 P R F1
POS 74.83 79.94 77.30* 26.66 27.93 28.77
uni/bigram 76.29 69.59 72.79 43.75 32.93 37.58
POS, uni/bigram 79.77 85.51 82.54 49.83 54.51 52.07
POS, uni/bigram, lem./syn. 80.10 85.56 82.74 49.79 54.54 52.06
POS, uni/bigram, lem./syn., dep. 81.65 86.22 83.87 57.04 63.03 59.90*

Table 6: Performance of maximum entropy model with various features.*The POS features are especially useful
for recognizing actions; dependency based features are more helpful for entities than actions.

POS tag (freq.) Top 3 examples
VB (9345) Add(1404), Incubate(638), Remove(396)

VBG (755) adding(112), inverting(89), pipetting(34)

VBN (727) added(43), stored(38), incubated(38)

VBP (512) Do(80), mix(38), pour(33)

VBD (147) resuspend(25), put(20), kept(8)

VBZ (44) remains(5), covers(4), washes(3)

NN (4248) Centrifuge(324), Transfer(301), Place(215)

NNP (1551) Mix(335), Wash(277), Vortex(114)

NNS (80) washes(9), to(7), dilutions(4)

JJ (576) dry(66), Apply(26), decant(23)

OTHER (1080) not(111), off(110), up(105)

Table 7: Frequency of different part-of-speech (POS)
tags for action words. Majority of the action words
either fall under the verb POS tags (VBs 60.48%) or
nouns (NNs 30.84%). The GENIA POS tagger is
under-identifying verbs in the wet lab protocols, tag-
ging some as adjectives (JJ).

123 protocols of 2736 sentences, and test set con-
tains 125 protocols of 2736 sentences. We use the
evaluation script from the CoNLL-03 shared task
(Tjong Kim Sang and De Meulder, 2003), which
requires exact matches of label spans and does not
reward partial matches. During the data prepro-
cessing, all digits were replaced by ‘0’.

6.1 Entity Identification and Classification

Table 4 shows the performance of various methods
for entity tagging. We found that the BiLSTM-
CRF model consistently outperforms other meth-
ods, achieving an overall F1 score of 86.89 at iden-
tifying action triggers and 72.61 at identifying and
classifying entities.

Table 6 shows the system performance of the
MaxEnt tagger using various features. Depen-
dency based features have the highest impact on
the detection of entities, as illustrated by the ab-
solute drop of 7.84% in F-score when removed.
Parts of speech features alone are the most effec-
tive in capturing action words. This is largely due
to action words appearing as verbs or nouns in the
majority of the sentences as shown in Table 7. We
also notice that the GENIA POS tagger, which is

is trained on Wall Street Journal and biomedical
abstracts in the GENIA and PennBioIE corpora,
under-identifies verbs in wet lab protocols. We
suspect this is due to fewer imperative sentences
in the training data. We leave further investigation
for future work, and hope the release of our dataset
can help draw more attention to NLP research on
instructional languages.

6.2 Relation Classification

Finally, precision and recall at relation extraction
are presented in Table 5. We used gold action and
entity segments for the purposes of this particu-
lar evaluation. We obtained the best performance
when using all feature sets.

7 Conclusions

In this paper, we described our effort to annotate
wet lab protocols with actions and their semantic
arguments. We presented an annotation scheme
that is both biologically and linguistically moti-
vated and demonstrated that non-experts can ef-
fectively annotate lab protocols. Additionally, we
empirically demonstrated the utility of our cor-
pus for developing machine learning approaches
to shallow semantic parsing of instructions. Our
annotated corpus of protocols is available for use
by the research community.
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A Annotation Guidelines

The wet lab protocol dataset annotation guidelines
were designed primarily to provide a simple de-
scription of the various actions and their argu-
ments in protocols so that it could be more ac-
cessible and be effectively used by non-biologists
who may want to use this dataset for various nat-
ural language processing tasks such as action trig-
ger detection or relation extraction. In the follow-
ing sub-sections we summarize the guidelines that
were used in annotating the 622 protocols as we
explore the actions, entities and relations that were
chosen to be labelled in this dataset.

A.1 Actions

Under a broad categorization, Action is a process
of doing something, typically to achieve an aim. In
the context of wet lab protocols, action mentions
in a sentence or a step are deliberate but short de-
scriptions of a task tying together various entities
in a meaningful way. Some examples of action
words, (categorized using GENIA POS tagger),
are present in Table 7 along with their frequencies.

A.2 Entities

We broadly classify entities commonly seen in
protocols under 17 tags. Each of the entity tags
were designed to encourage short span length,
with the average number of words per entity tag
being 1.6. For example, Concentration tags
are often very short: 60% 10x, 10M, 1 g/ml, while
the Method tag has the longest average span of
2.232 words with examples such as rolling back
and forth between two hands (as seen in Figure 4).
The methods in wet lab protocols tend to be de-
scriptive, which pose distinct challenges from ex-
isting named entity extraction research in the med-
ical and other domains.

A.2.1 Object Based Entities
Reagent: A substance or mixture for use in any
kind of reaction in preparing a product because of
its chemical or biological activity.
Location: Containers for reagents or other phys-
ical entities. They lack any operation capabili-
ties other than acting as a container. These could
be laboratory glassware or plastic tubing meant to
hold chemicals or biological substances.
Device: A machine capable of acting as a con-
tainer as well as performing a specific task on the
objects that it holds. A device and a location are

Tag Examples

5K10K15K
Freq. of Tags

0.51.01.52.0
Avg-Word

Action Add, Incubate, Pipette off,  etc

Reagent mtDNA Adenylation Mix, Para..

Location
microcentrifuge tube, PCR
Plate, Petri dish, etc

Amount 1 mL, 100 µl, 1.5 ml, etc

Modifier
gently, at least, appropriate,
proportionally, etc

Time 5min, overnight, until late aft..

Device
pipette, microfuge, Sorvall
SS34 rotor, etc

Temperature 25°C, 56 degree Celsius, room..

Concentration
1X, 70%, 50 mM, 1 x 108 cells/
mL, etc

Method
dialysis, transmission electron
microscopy, etc

Speed 14,000xg, 10,000 rpm, 44,000 ..

Numerical 10, 20, once, two, several, etc

Generic-Measure30-kD, 100 V, 595nm, 6 V cm-..

Size
12 x 75 mm, 150 mm, 25mm
diameter, etc

Measure-Type concentration, purity and yiel..

Seal
dialysis cap, aluminum foil,
adhesive PCR plate seal, etc

Mention it, them, they, etc

pH
pH 7.8, neutral pH, 7.2 ± 0.2
pH, etc

17485

13703

5402

4801

4307

3590

2417

2369

1782

1024

961

743

626

516

336

302

225

132

1.094

1.665

1.553

1.694

1.244

1.962

1.691

1.436

1.763

2.232

1.999

1.167

2.080

1.812

1.518

1.672

1.098

2.023

Figure 4: Examples, Frequency and Avg-Word for ac-
tions and entities.

similar in all aspects except that a device performs
a specific set of operations on its contents, usually
illustrated in the sentence itself, or sometimes im-
plied.
Seal: Any kind of lid or enclosure for the location
or device. It could be a cap, or a membrane that ac-
tively participates in the protocol action, and hence
is essential to capture this type of entity.

A.2.2 Measure Based Entities
Amount: The amount of any reagent being used
in a given step, in terms of weight or volume.
Concentration: Measure of the relative propor-
tions of two or more quantities in a mixture. Usu-
ally in terms of their percentages by weight or vol-
ume.
Time: Duration of a specific action described in a
single step or steps, typically in secs, min, days, or
weeks.
Temperature: Any temperature mentioned in de-
gree Celsius, Fahrenheit, or Kelvin.
Method: A word or phrase used to concisely de-
fine the procedure to be performed in association
with the chosen action verb. Its usually a noun, but
could also be a passive verb.
Speed: Typically a measure that represents rota-
tion per min for centrifuges.
Numerical: A generic tag for a number that
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Label Syntax/Rules Example

Acts-on
Action⇒ Reagent | Location | Mention | Device |
Seal

Creates Action⇒ Reagent |Mention

Site Action⇒ Location | Device |Mention | Reagent

Using
Action⇒Method |Action | Seal |Device |Mention
| Reagent | Location

Setting
Action | Device | Modifier ⇒ Method | Action |
Seal | Device |Mention | Reagent | Location

Count Action⇒ Numerical

Measure-
Type-Link

Action⇒Measure-Type

Coreference Mention⇒ [Every other entity]

Mod-Link [Every Entity or Action]⇒Modifier

Measure
Reagent | Location | Device | Mention | Seal
⇒ Amount | Numerical | Size | Concentration |
Generic-Measure | pH

Meronym
Reagent | Location | Device | Mention | Seal ⇒
Reagent | Location | Device |Mention | Seal

Or [All Entities or Action]⇒ [All Entities or Action]

Of-Type Generic-Measure | Numerical⇒Measure-Type

Table 8: Relations along with their rules and examples
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doesn’t fit time, temp, etc and which isn’t accom-
panied by its unit of measure.
Generic-Measure: Any measures that don’t fit
the list of defined measures in this list.
Size A measure of the dimension of an object. For
example: length, area or thickness.
Measure-Type: A generic tag to mark the type of
measurement associated with a number.
pH: measure of acidity or alkalinity of a solution.

A.2.3 Parts of Speech based Entities
Modifier: A word or a phrase that acts as an ad-
ditional description of the entity it is modifying.
For example, quickly mix vs slowly mix are clearly
two different actions, informed by their modifiers
”quickly” or ”slowly” respectively.
Mention: Words that can refer to an object men-
tioned earlier in the sentence.

A.3 Relations

A.3.1 Action Relations (Action - Entity)
Acts-On: Links the reagent, or location that the
action acts on, typically linking the direct objects
in the sentence to the action.
Creates: This relation marks the physical entity
that the action creates.
Site: A link that associates a Location or Device to
an action. It indicates that the Device or Location
is the site where the action is performed. It is also
used as a way to indicate which entity will finally
hold/contain the result of the action.
Using: Any entity that the action verb makes use
of is linked with this relation.
Setting: Any measure type entity that is being
used to set a device is linked to the action that is
attempting to use that numerical.
Count: A Numerical entity that represents the
number of times the action should take place.
Measure Type Link: Associates an action to a
Measure Type entity that the Action is instructing
to measure.

A.3.2 Binary Relations (Entity - Entity)
Coreference: A link that associates two phrases
when those two phrases refer to the same entity.
Mod Link: A Modifier entity is linked to any en-
tity that it is attempting to modify using this rela-
tion.
Settings: Links devices to their settings directly,
only if there is no Action associated with those set-
tings.

Measure: A link that associates the various nu-
merical measures to the entity its trying to measure
directly.
Meronym: Links reagents, locations or devices
with materials contained in the reagent, location
or device.
Or: Allows chaining multiple entities where ei-
ther of them can be used for a given link.
Of-Type: used to specify the Measure-Type of a
Generic-Measure or a Numerical, if the sentence
contains this information.
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Abstract

Large-scale datasets for natural language in-
ference are created by presenting crowd work-
ers with a sentence (premise), and asking them
to generate three new sentences (hypotheses)
that it entails, contradicts, or is logically neu-
tral with respect to. We show that, in a signif-
icant portion of such data, this protocol leaves
clues that make it possible to identify the label
by looking only at the hypothesis, without ob-
serving the premise. Specifically, we show that
a simple text categorization model can cor-
rectly classify the hypothesis alone in about
67% of SNLI (Bowman et al., 2015) and 53%
of MultiNLI (Williams et al., 2018). Our anal-
ysis reveals that specific linguistic phenom-
ena such as negation and vagueness are highly
correlated with certain inference classes. Our
findings suggest that the success of natural lan-
guage inference models to date has been over-
estimated, and that the task remains a hard
open problem.

1 Introduction

Natural language inference (NLI; also known
as recognizing textual entailment, or RTE) is a
widely-studied task in natural language process-
ing, to which many complex semantic tasks, such
as question answering and text summarization, can
be reduced (Dagan et al., 2006). Given a pair of
sentences, a premise p and a hypothesis h, the goal
is to determine whether or not p semantically en-
tails h.

The problem of acquiring large amounts of la-
beled inference data was addressed by Bowman
et al. (2015), who devised a method for crowd-
sourcing high-agreement entailment annotations
en masse, creating the SNLI and later the genre-
diverse MultiNLI (Williams et al., 2018) datasets.
In this process, crowd workers are presented with

F These authors contributed equally to this work.

a premise p drawn from some corpus (e.g., image
captions), and are required to generate three new
sentences (hypotheses) based on p, according to
one of the following criteria:

Entailment h is definitely true given p
Neutral h might be true given p
Contradiction h is definitely not true given p

In this paper, we observe that hypotheses gener-
ated by this crowdsourcing process contain arti-
facts that can help a classifier detect the correct
class without ever observing the premise (Sec-
tion 2).

A closer look suggests that the observed arti-
facts are a product of specific annotation strategies
and heuristics that crowd workers adopt. We find,
for example, that entailed hypotheses tend to con-
tain gender-neutral references to people, purpose
clauses are a sign of neutral hypotheses, and nega-
tion is correlated with contradiction (Section 3).
Table 1 shows a single set of instances from SNLI
that demonstrates all three phenomena.

We re-evaluate high-performing NLI models on
the subset of examples on which our hypothesis-
only classifier failed, which we consider to be
“hard” (Section 4). Our results show that the per-
formance of these models on the “hard” subset is
dramatically lower than their performance on the
rest of the instances. This suggests that, despite
recently reported progress, natural language infer-
ence remains an open problem.

2 Annotation Artifacts are Common

We conjecture that the framing of the annotation
task has a significant effect on the language gener-
ation choices that crowd workers make when au-
thoring hypotheses, producing certain patterns in
the data. We call these patterns annotation arti-
facts.
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Premise A woman selling bamboo sticks talking to two men on a loading dock.

Entailment There are at least three people on a loading dock.
Neutral A woman is selling bamboo sticks to help provide for her family.
Contradiction A woman is not taking money for any of her sticks.

Table 1: An instance from SNLI that illustrates the artifacts that arise from the annotation protocol. A
common strategy for generating entailed hypotheses is to remove gender or number information. Neutral
hypotheses are often constructed by adding a purpose clause. Negations are often introduced to generate
contradictions.

Model SNLI MultiNLI
Matched Mismatched

majority class 34.3 35.4 35.2
fastText 67.0 53.9 52.3

Table 2: Performance of a premise-oblivious text
classifier on NLI. The MultiNLI benchmark con-
tains two test sets: matched (in-domain exam-
ples) and mismatched (out-of-domain examples).
A majority baseline is presented for reference.

To determine the degree to which such arti-
facts exist, we train a model to predict the label
of a given hypothesis without seeing the premise.
Specifically, we use fastText (Joulin et al.,
2017), an off-the-shelf text classifier that models
text as a bag of words and bigrams, to predict the
entailment label of the hypothesis.1 This classifier
is completely oblivious to the premise.

Table 2 shows that a significant portion of each
test set can be correctly classified without look-
ing at the premise, well beyond the most-frequent-
class baseline.2

Our finding demonstrates that it is possible to
perform well on these datasets without modeling
natural language inference.

3 Characteristics of Annotation Artifacts

In the previous section we showed that more than
half (MultiNLI) or even two thirds (SNLI) of the
data can be classified correctly using annotation
artifacts. A possible explanation for the formation
and relative consistency of these artifacts is that

1For MultiNLI, we additionally enabled two hyperparam-
eters: character 4-grams, and filtering words that appeared
less than 10 times in the training data.

2Experiments with two other text classifiers, a logistic re-
gression classifier with word and character n-gram features
and a premise-oblivious version of the decomposable atten-
tion model (Parikh et al., 2016), yielded similar results.

crowd workers adopt heuristics in order to gener-
ate hypotheses quickly and efficiently. We identify
some of these heuristics by conducting a shallow
statistical analysis of the data, focusing on lexi-
cal choice (Section 3.1) and sentence length (Sec-
tion 3.2).

3.1 Lexical Choice
To see whether the use of certain words is indica-
tive of the inference class, we compute the point-
wise mutual information (PMI) between each
word and class in the training set:

PMI(word, class) = log
p(word, class)

p(word, ·)p(·, class)

We apply add-100 smoothing to the raw statistics;
the aggressive smoothing emphasizes word-class
correlations that are highly discriminative. Table 4
shows the top words affiliated with each class by
PMI, along with the proportion of training sen-
tences in each class containing each word.

Below, we elaborate on the most discriminat-
ing words for each NLI class, and suggest possible
annotation heuristics that gave rise to these par-
ticular artifacts. However, it is important to note
that even the most discriminative words are not
very frequent, indicating that the annotation arti-
facts are diverse, and that crowd workers tend to
adopt multiple heuristics for generating new text.

Entailment. Entailed hypotheses have generic
words such as animal, instrument, and outdoors,
which were probably chosen to generalize over
more specific premise words such as dog, guitar,
and beach. Other heuristics seem to replace ex-
act numbers with approximates (some, at least,
various), and to remove explicit gender (human
and person appear lower down the list). Some
artifacts are specific to the domain, such as out-
doors and outside, which are typical of the per-
sonal photo descriptions on which SNLI was built.
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Premise Two dogs are running through a field.

Entailment There are animals outdoors.
Neutral Some puppies are running to catch a stick.
Contradiction The pets are sitting on a couch.

Table 3: The example provided in the annotation guidelines for SNLI. Some of the observed artifacts
(bold) can be potentially traced back to phenomena in this specific example.

Entailment Neutral Contradiction

SNLI

outdoors 2.8% tall 0.7% nobody 0.1%
least 0.2% first 0.6% sleeping 3.2%
instrument 0.5% competition 0.7% no 1.2%
outside 8.0% sad 0.5% tv 0.4%
animal 0.7% favorite 0.4% cat 1.3%

MNLI

some 1.6% also 1.4% never 5.0%
yes 0.1% because 4.1% no 7.6%
something 0.9% popular 0.7% nothing 1.4%
sometimes 0.2% many 2.2% any 4.1%
various 0.1% most 1.8% none 0.1%

Table 4: Top 5 words by PMI(word, class), along
with the proportion of class training samples con-
taining word. MultiNLI is abbreviated to MNLI.

Interestingly, the example from the SNLI anno-
tation guidelines (Table 3) contains both animals
and outdoors, and also removes the number. This
example likely primed the annotators, inducing the
specific heuristics of replacing dog with animal
and mentions of scenery with outdoors.

Neutral. Modifiers (tall, sad, popular) and su-
perlatives (first, favorite, most) are affiliated with
the neutral class. These modifiers are perhaps a
product of a simple strategy for introducing in-
formation that is not obviously entailed by the
premise, yet plausible. Another formulation of
neutral hypotheses seems to be through cause and
purpose clauses, which increase the prevalence of
discourse markers such as because. Once again,
we observe that the example from the SNLI an-
notation guidelines does just that, by adding the
purpose clause to catch a stick (Table 3).

Contradiction. Negation words such as nobody,
no, never and nothing are strong indicators of con-
tradiction.3 Other (non-negative) words appear to
be part of heuristics for contradicting whatever in-
formation is displayed in the premise; sleeping
contradicts any activity, and naked (further down
the list) contradicts any description of clothing.

3Similar findings were observed in the ROC story cloze
annotation (Schwartz et al., 2017).

Figure 1: The probability mass function of the hy-
pothesis length in SNLI, by class.

The high frequency of cat probably stems from the
many dog images in the original dataset.

3.2 Sentence Length

We observe that the number of tokens in generated
hypotheses is not distributed equally among the
different inference classes. Figure 1 shows that,
in SNLI, neutral hypotheses tend to be long, while
entailed ones are generally shorter. The median
length of a neutral hypothesis is 9, whereas 60% of
entailments have 7 tokens or less. We also observe
that half of hypotheses with at least 12 tokens are
neutral, while a similar portion of hypotheses of
length 5 and under are entailments, making hy-
pothesis length an effective feature. Length is also
a discriminatory feature in MultiNLI, but is less
significant, possibly due to the introduction of di-
verse genres.

The bias in sentence length may suggest that
crowd workers created many entailed hypotheses
by simply removing words from the premise. In-
deed, when representing each sentence as a bag of
words, 8.8% of entailed hypotheses in SNLI are
fully contained within their premise, while only
0.2% of neutrals and contradictions exhibit the
same property. MultiNLI showed similar trends.
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Model SNLI MultiNLI Matched MultiNLI Mismatched
Full Hard Easy Full Hard Easy Full Hard Easy

DAM 84.7 69.4 92.4 72.0 55.8 85.3 72.1 56.2 85.7
ESIM 85.8 71.3 92.6 74.1 59.3 86.2 73.1 58.9 85.2
DIIN 86.5 72.7 93.4 77.0 64.1 87.6 76.5 64.4 86.8

Table 5: Performance of high-performing NLI models on the full, Hard, and Easy NLI test sets.

4 Re-evaluating NLI Models

In Section 2, we showed that a model with no ac-
cess to the premise can correctly classify many ex-
amples in both SNLI and MultiNLI, performing
well above the most-frequent-class baseline. This
raises an important question about state-of-the-art
NLI models: to what extent are they “gaming” the
task by learning to detect annotation artifacts?

To answer this question, we partition each
NLI test set into two subsets: examples that the
premise-oblivious model classified accurately are
labeled Easy, and those it could not are Hard.

We then train an NLI model on the original
training sets (from either SNLI or MultiNLI),4 and
evaluate on the full test set, the Hard test set,
and the Easy test set. We ran this experiment
on three high-performing NLI models: the De-
composable Attention Model (DAM; Parikh et al.,
2016),5 the Enhanced Sequential Inference Model
(ESIM; Chen et al., 2017),6 and the Densely In-
teractive Inference Network (DIIN; Gong et al.,
2018).7 All models were retrained out of the box.

Table 5 shows the performance of each model
on the different splits. While the models correctly
classify some Hard examples, the bulk of their
success is attributed to the Easy examples. This
result implies that the ability of NLI models to rec-
ognize textual entailment is lower than previously
perceived, and that such models rely heavily on
annotation artifacts in the hypothesis to make their
predictions.

A natural question to ask is whether it is pos-
sible to select a set of NLI training and test sam-
ples which do not contain easy-to-exploit artifacts.
One solution might be to filter Easy examples from
the training set, retaining only Hard examples.
However, initial experiments suggest that it might

4The MultiNLI models were trained on MultiNLI data
alone (as opposed to a blend of MultiNLI and SNLI data).

5github.com/allenai/allennlp
6github.com/nyu-mll/multiNLI
7 goo.gl/kCeZXm

not be as straightforward to eliminate annotation
artifacts once the dataset has been collected.

First, after removing the Easy examples, Hard
examples might not necessarily be artifact-free.
For instance, removing all contradicting samples
containing the word “no” (a strong indicator for
contradiction, see Section 3), leaves the Hard
dataset with this word mostly appearing in the neu-
tral and entailing classes, thus creating a new ar-
tifact. Secondly, Easy examples contain impor-
tant inference phenomena (e.g. the word “animal”
is indeed a hypernym of “dog”), and removing
these examples may hinder the model from learn-
ing such phenomena. Importantly, artifacts do not
render any particular example incorrect; they are
a problem with the sample distribution, which is
skewed toward certain kinds of entailment, con-
tradiction, and neutral hypotheses. Therefore, a
better solution might not eliminate the artifacts
altogether, but rather balance them across labels.
Future strategies for reducing annotation artifacts
might involve experimenting with the prompts or
training given to crowd workers, e.g., to encourage
a wide range of strategies, or incorporating base-
line or adversarial systems that flag examples that
appear to use over-represented heuristics. We de-
fer research on hard-to-exploit NLI datasets to fu-
ture work.

5 Discussion

We reflect on our results and relate them to other
work that also analyzes annotation artifacts in
NLP datasets, drawing three main conclusions.

Many datasets contain annotation artifacts.
Lai and Hockenmaier (2014) demonstrated that
lexical features such as the presence of nega-
tion, word overlap, and hypernym relations are
highly predictive of entailment classes in the SICK
dataset (Marelli et al., 2014). Chen et al. (2016) re-
vealed problems with the CNN/DailyMail dataset
(Hermann et al., 2015) which resulted from apply-
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ing automatic tools for annotation. Levy and Da-
gan (2016) showed that a relation inference bench-
mark (Zeichner et al., 2012) is severely biased
towards distributional methods, since it was cre-
ated using DIRT (Lin and Pantel, 2001). Schwartz
et al. (2017) and Cai et al. (2017) showed that
certain biases are prevalent in the ROC stories
cloze task (Mostafazadeh et al., 2016), which al-
low models trained on the endings alone, and not
the story prefix, to yield state-of-the-art results.
Rudinger et al. (2017) revealed that elicited hy-
potheses in SNLI contain evidence of various gen-
der, racial, religious, and aged-based stereotypes.
In parallel to this work, Poliak et al. (2018) un-
covered similar annotation biases across multiple
NLI datasets. Indeed, annotation artifacts are not
unique to the NLI datasets, and the danger of such
biases should be carefully considered when anno-
tating new datasets.

Supervised models leverage annotation arti-
facts. Levy et al. (2015) demonstrated that su-
pervised lexical inference models rely heavily on
artifacts in the datasets, particularly the tendency
of some words to serve as prototypical hypernyms.
Agrawal et al. (2016); Jabri et al. (2016); Goyal
et al. (2017) all showed that state-of-the-art visual
question answering (Antol et al., 2015) systems
leverage annotation biases in the dataset. Cirik
et al. (2018) find that complex models for referring
expression recognition achieve high performance
without any text input. In parallel to this work,
Dasgupta et al. (2018) found that the InferSent
model (Conneau et al., 2017) relies on word-level
heuristics to achieve state-of-the-art performance
on SNLI. These findings coincide with ours, and
strongly suggest that supervised models will ex-
ploit shortcuts in the data for gaming the bench-
mark, if such exist.

Annotation artifacts inflate model perfor-
mance. This is a corollary of the above, since
large portions of the test set can be solved by rely-
ing on annotation artifacts alone. A similar finding
by Jia and Liang (2017) showed that the perfor-
mance of top question-answering models trained
on SQuAD (Rajpurkar et al., 2016) drops drasti-
cally by introducing simple adversarial sentences
in the evidence. We release the Hard SNLI and
MultiNLI test sets,8 and encourage the community

8SNLI: goo.gl/5rQKb5, MultiNLI matched: goo.
gl/abdSbi, MultiNLI mismatched: goo.gl/Cu9Gp6

to use them for evaluating NLI models (in addition
to the original benchmarks). We also encourage
the development of additional challenging bench-
marks that expose the true performance levels of
state-of-the-art NLI models.
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Abstract

Humor is an essential but most fascinating el-
ement in personal communication. How to
build computational models to discover the
structures of humor, recognize humor and even
generate humor remains a challenge and there
have been yet few attempts on it. In this pa-
per, we construct and collect four datasets with
distinct joke types in both English and Chi-
nese and conduct learning experiments on hu-
mor recognition. We implement a Convolu-
tional Neural Network (CNN) with extensive
filter size, number and Highway Networks to
increase the depth of networks. Results show
that our model outperforms in recognition of
different types of humor with benchmarks col-
lected in both English and Chinese languages
on accuracy, precision, and recall in compari-
son to previous works.

1 Introduction

Humor, a highly intelligent communicative ac-
tivity, provokes laughter or provides amusement.
The role that humor plays in life can be viewed as
a sociological phenomenon and function. Proper
use of it can help eliminate embarrassment, estab-
lish social relationships, create positive affection
in human social interactions. If computers can un-
derstand humor to some extent, it would facilitate
predicting human’s intention in human conversa-
tion, and thereby enhance the proficiency of many
machine-human interaction systems.

However, to automate the humor recognition is
also a very challenging research topic in natural
language understanding. The extent to which a
person may sense humor depends on his/her per-
sonal background. For example, young children
may favor cartoons while the grownups may feel
the humor in cartoons boring. Also, many types
of humor require substantial such external knowl-
edge as irony, wordplay, metaphor and sarcasm.

These factors make the task of automated humor
recognition difficult.

Recently, with the advance of deep learning
that allows end-to-end training with big data with-
out human intervention of feature selection, hu-
mor recognition becomes promising. In this work,
we propose a convolutional neural network (CNN)
with augmentation of both the filter sizes and fil-
ter numbers. We use the architecture called high-
way network to implement a much more proficient
model for humor recognition. The performance
on many benchmarks shows a significant improve-
ment in detecting different humor context genre.

2 Related Work

The task of automatic humor recognition refers
to deciding whether a given sentence expresses a
certain degree of humor. In early studies, most
of them are formulated as a binary classification,
based on selection on linguistic features. Puran-
dare and Litman analyzed humorous spoken con-
versations from a classic comedy television show.
They used standard supervised learning classifiers
to identify humorous speech (Purandare and Lit-
man, 2006). Taylor and Marlack focused on a spe-
cific type of humor, wordplays. Their algorithm of
the study was based on the extraction of structural
patterns and peculiar structure of jokes (Taylor and
Mazlack, 2004). Later, Yang et al. (2015) for-
mulated a classifier to distinguish between humor-
ous and non-humorous instances, and also created
computational models to discover the latent se-
mantic structure behind humor from four perspec-
tives: incongruity, ambiguity, interpersonal effect
and phonetic style.

Recently, with the rise of artificial neural net-
works, many studies utilize the methods for hu-
mor recognition. Luke and Alfredo applied re-
current neural network (RNN) to humor detec-
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tion from reviews in Yelp dataset. In addition,
they also applied convolutional neural networks
(CNNs) to train a model and the work shows
that the model trained with CNNs has more ac-
curate humor recognition (de Oliveira and Ro-
drigo, 2015). In other research (Bertero and Fung,
2016), CNNs were found to be a better sentence
encoder for humor recognition as well. In a recent
work, Chen and Lee predicted audience’s laugh-
ter also using convolutional neural network. Their
work gets higher detection accuracy and is able
to learn essential feature automatically (Chen and
Lee, 2017). However, there are still some limita-
tions: (a) they focused on only a specific humor
type in TED data, that is puns. (b) the datasets in
most studies are English corpus. (c) the evalua-
tions are isolated from other research.

In our work, we build the humor recognizer by
using CNNs with extensive filter size and number,
and the result shows higher accuracy from previ-
ous CNNs models. We conducted experiments on
two different dataset, which were used in the pre-
vious studies. One is Pun of the Day (Yang et al.,
2015), and the other is 16000 One-Liners (Mihal-
cea and Strapparava, 2005). In addition, we con-
structed a Chinese dataset to evaluate the general-
ity of the method performance on humor recogni-
tion against different languages.

3 Data

To fairly evaluate the performance on humor
recognition, we need the dataset to consist of both
humorous (positive) and non-humorous (negative)
samples. The datasets we use to construct hu-
mor recognition experiments includes four parts:
Pun of the Day (Yang et al., 2015), 16000 One-
Liners (Mihalcea and Strapparava, 2005), Short
Jokes dataset and PTT jokes. The four datasets
have different joke types, sentence lengths, data
sizes and languages that allow us to conduct more
comprehensive and comparative experiments. We
would like to thank Yang and Mihalcea for their
kindly provision of two former datasets. And we
depict how we collect the latter two datasets in the
following subsections. Table 1 shows the statistics
of four datasets.

3.1 16000 One-Liners

16000 One-Liners dataset collected humorous
samples from daily joke websites while using for-
mal writing resources (e.g., news titles) to obtain

Dataset #Pos #Neg Type Lang
16000 One-Liners 16000 16002 One-liner EN
Pun of the Day 2423 2403 Pun EN
Short Jokes 231657 231657 All EN
PTT Jokes 1425 2551 Political CH

Table 1: Statistics of four datasets

non-humorous samples. A one-liner is a joke that
usually has very few words in a single sentence
with comic effects and interesting linguistic struc-
ture. While longer jokes can have a relatively com-
plex linguistic structure, a one-liner must produce
the humorous effect with very few words.

3.2 Pun of the Day

Pun of the Day dataset was constructed from the
Pun of the Day website. The pun, also called
paronomasia, is a form of wordplay that ex-
ploits multiple meanings of a term, or of similar-
sounding words, for an intended humorous or
rhetorical effect. The negative samples of this
dataset are sampled from news website.

3.3 Short Jokes Dataset

Short Jokes dataset, which collected the most
amount of jokes among four datasets, are from
an open database on a Kaggle project1. It con-
tains 231,657 short jokes with no restriction on
joke types scraped from various joke websites and
length ranging from 10 to 200 characters. We use
it as our positive samples. For the negative sam-
ples, we choose WMT162 English news crawl as
our non-humorous data resource. However, sim-
ply treating sentences from the resource as nega-
tive samples could result in deceptively high per-
formance of classification due to the domain dif-
ferences between positive and negative data. So
we try to minimize such domain differences by se-
lecting negative samples whose words all appear
in the positive samples and whose average text
length being close to the humorous ones.

3.4 PTT Jokes

PTT Bulletin Board System (PTT, Chinese: 批
踢踢, telnet://ptt.cc) is the largest terminal-based
bulletin board system (BBS) in Taiwan. It has
more than 1.5 million registered users and over
20,000 boards covering a multitude of topics. Ev-
ery day more than 20,000 articles and 500,000
comments are posted. Additionally, there is a

1https://www.kaggle.com/abhinavmoudgil95/short-jokes
2http://www.statmt.org/wmt16/translation-task.html
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board called joke that we could acquire large
amount of Chinese humor samples. Thus, we
use some political-related words to extract polit-
ical jokes from PTT and treat them as the posi-
tive samples. For the negative samples, we use
Yahoo News in politics and select the samples by
the same method we use in Short Jokes dataset to
prevent from the problem of domain difference.

4 Method

In this section, we describe how we design our
model for humor recognition.

4.1 CNN
Convolutional neural network (CNN) is a neu-
ral network architecture designed to extract local
features in high dimensional data such as image
or speech signal. When it comes to natural lan-
guage processing (NLP), CNN also shows suc-
cesses in several text categorization tasks (Johnson
and Zhang, 2015). The input of most NLP tasks,
such as a sentence or a document could be rep-
resented as a 2D structure with word embedding
(Mikolov et al., 2013). In the input 2D matrix,
each row is a vector of a word, a word segment
or even a character that depends on the embed-
ding methods. And typically we make the window
width of the filters the same as the embedding di-
mension. Thus, the filter size varies according to a
sliding window size we decide.

Figure 1: Network Architecture

4.2 Model Setting
In this paper, our CNN model’s setup follows the
Kim (2014) for the task of text classification. Fig-
ure 1 depicts the model’s details. We firstly con-
vert tokenized input sentence (length L) with word
vector (dimension d) to a 2D matrix (L x d) by
utilization of the GloVe embedding vectors (Pen-
nington et al., 2014) which trained on 6B tokens
and 400K vocabulary words of Wikipedia 2014 +
Gigaword 5 as our embedding layer. Next, accord-
ing to the average sentence length in the dataset,
we tried different filter sizes with a range from 3

to 20. For each filter size, 100-200 filters are ap-
plied to the model. After convolutional layer, we
exploit max pooling and then flatten the output.
Assume we totally have n filters, eventually it will
lead to a flatten 1D vector with dimension n at the
prediction output.

4.3 Highway Layer

To improve the performance we usually can con-
nect the flattened output with a fully connected
layer and predict labels. In this paper, we would
like to evaluate the performance improvement as
we increase the network depth. However, the
training of deeper networks becomes more diffi-
cult with increasing depth. So we use the con-
cept of highway network (Srivastava et al., 2015)
to help improve our model. The highway network
allows shortcut connections with gate functions.
These gates are data-dependent with parameters.
It allows information unimpeded to flow through
several layers in information highways. The archi-
tecture is characterized by the gate units that learn
to regulate the flow of information through a net-
work. With this architecture, we could train much
deeper nets. In the end, we also use dropout and
connect the results to the output layer.

5 Experiment

In this section, we describe how we formulate hu-
mor recognition as a text classification problem
and conduct experiments on four datasets which
we mentioned in Section 3. We validate the per-
formance of different network structure with 10
fold cross validation and compare with the perfor-
mance of previous work.

Table 2 shows the experiments on both 16000
One-Liners and Pun of the Day. We set the base-
line on the previous works of Yang et al. (2015)
by Random Forest with Word2Vec + Human Cen-
tric Feature (Word2Vec + HCF) and Chen and Lee
(2017) by Convolutional Neural Networks. We
choose a dropout rate at 0.5 and test our model’s
performance with two factors F and HN. F means
the increase of filter size and number as we men-
tioned in section 4. Otherwise, the window sizes
would be (5, 6, 7) and filter number is 100 that is
the same with Chen and Lee (2017)’s. HN indi-
cates that we use the highway layers to train deep
networks and we set the HN layers = 3 because it
has better stability and accuracy in training step.
We could observe that when we use both F and
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16000 One-Liners Pun of the Day
Accuracy Precision Recall F1 Accuracy Precision Recall F1

Previous Work
Word2Vec+HCF 0.854 0.834 0.888 0.859 0.797 0.776 0.836 0.705
CNN 0.861 0.857 0.864 0.864

Our Methods
CNN 0.877 0.899 0.856 0.877 0.867 0.880 0.859 0.869
CNN+F 0.892 0.896 0.928 0.898 0.892 0.886 0.907 0.896
CNN+HN 0.885 0.877 0.902 0.889 0.892 0.889 0.903 0.896
CNN+F+HN 0.897 0.872 0.936 0.903 0.894 0.866 0.940 0.901

Table 2: Comparison of Different Methods of Humor Recognition

HN our model gives the best performance on both
accuracy and F1-Score and this conclusion is con-
sistent across two datasets. The results show that
our model helps increase F1-Score from 0.859 to
0.903 on 16000 One-Liners and from 0.705, 0.864
to 0.901 on Pun of the Day compared to previous
work

Dataset Accuracy Precision Recall F1
Short Jokes 0.906 0.902 0.946 0.924
PTT Jokes 0.957 0.927 0.959 0.943

Table 3: Result of Short Jokes and PTT Jokes datasets

Table 3 presents the result of Short Jokes and
PTT Jokes datasets. As we can see, for the datasets
was construed, it achieve 0.924 on Short Jokes and
0.943 on PTT Jokes in terms of F1 score respec-
tively. It shows that the deep learning model can,
to some extent learn the humorous meaning and
structure embedded in the text automatically with-
out human selection of features.

6 Discussion

In this section, we show a sample in each cat-
egory (true positive, false positive, true negative
and false negative) to get a sense of what kinds of
sentences are predicted correctly and incorrectly.
The sentences are shown in the table 4.

Sentence
TP when he gave his wife a necklace he got a chain reaction
TN the barking of a dog does not disturb the man on a camel
FP rats know the way of rats
FN it’s a fact taller people sleep longer in bed

Table 4: Example Sentences

The TP sentence ”when he gave his wife a neck-
lace he got a chain reaction” shows that our model
seems to be able to catch not only the literal mean-
ing between the ”necklace” and ”got a chain re-
action”. Besides, the TN sentence ”the barking
of a dog does not disturb the man on a camel”
means that if you’re lucky enough to own your

own camel, a little thing like a barking dog won’t
bother you. The example is a proverb but not a
joke and our model correctly recognizes it as a
non-humor one. Model misclassifies certain in-
stances such as the FP sentence ”rats know the way
of rats” is actually derived from a Chinese proverb
and the model predict it as humor. In addition, the
FN sentence ”it’s a fact taller people sleep longer
in bed” is obviously a joke but it is not considered
as a humor by the model. To deal with more sub-
tle humor/non-humor, the model has room to be
improved.

7 Conclusion

In this study, we have extended the techniques of
automatic humor recognition to different types of
humor as well as different languages in both En-
glish and Chinese. We proposed a deep learning
CNN architecture with high way networks that can
learn to distinguish between humorous and non-
humorous texts based on a large scale of balanced
positive and negative dataset. The performance of
the CNN model outperforms the previous work.
It’s worth mentioning that the recognition accu-
racy on PTT, political jokes in Chinese, and the
short jokes dataset with various types of jokes
in English are both as high as above 90%. The
novel deep learning model relieves the required
human intervention of selection linguistic features
for humor recognition task. In future work, we
would conduct more rigorous comparative evalua-
tion with human humor recognition and look into
how the humorous texts can be generated using
deep learning models as well.
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Abstract

Hate speech detection is a critical, yet chal-
lenging problem in Natural Language Process-
ing (NLP). Despite the existence of numerous
studies dedicated to the development of NLP
hate speech detection approaches, the accu-
racy is still poor. The central problem is that
social media posts are short and noisy, and
most existing hate speech detection solutions
take each post as an isolated input instance,
which is likely to yield high false positive and
negative rates. In this paper, we radically im-
prove automated hate speech detection by pre-
senting a novel model that leverages intra-user
and inter-user representation learning for ro-
bust hate speech detection on Twitter. In ad-
dition to the target Tweet, we collect and ana-
lyze the user’s historical posts to model intra-
user Tweet representations. To suppress the
noise in a single Tweet, we also model the sim-
ilar Tweets posted by all other users with rein-
forced inter-user representation learning tech-
niques. Experimentally, we show that leverag-
ing these two representations can significantly
improve the f-score of a strong bidirectional
LSTM baseline model by 10.1%.

1 Introduction

The rapid rise in user-generated web content has
not only yielded a vast increase in information ac-
cessibility, but has also given individuals an easy
platform on which to share their beliefs and to
publicly communicate with others. Unfortunately,
this has also led to nefarious uses of online spaces,
for instance for the propagation of hate speech.

An extensive body of work has focused on
the development of automatic hate speech clas-
sifiers. A recent survey outlined eight cate-
gories of features used in hate speech detec-
tion (Schmidt and Wiegand, 2017): simple sur-
face (Warner and Hirschberg, 2012; Waseem and
Hovy, 2016), word generalization (Warner and

Figure 1: Our hate speech classifier. In contrast to ex-
isting methods that focus on a single target Tweet as in-
put (center), we incorporate intra-user (right) and inter-
user (left) representations to enhance performance.

Hirschberg, 2012; Zhong et al., 2016), sentiment
analysis (Van Hee et al., 2015), lexical resources
and linguistic features (Burnap and Williams,
2016), knowledge-based features (Dinakar et al.,
2012), meta-information (Waseem and Hovy,
2016), and multi-modal information (Zhong et al.,
2016). Closely related to our work is research that
leverages user attributes in the classification pro-
cess such as history of participation in hate speech
and usage of profanity (Xiang et al., 2012; Dadvar
et al., 2013). Both Xiang et al. (2012) and Dad-
var et al. (2013) collect user history to enhance
detection accuracy. The former requires the user
history to be labeled instances. However, label-
ing user history requires significant human effort.
The latter models the user with manually selected
features. In contrast, our approach leverages unla-
beled user history to automatically model the user.

In this paper, we focus on augmenting hate
speech classification models by first performing
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Figure 2: The overview of our proposed model. t is the input target Tweet, z denotes intra-user Tweets, and xa is
the selected inter-user Tweet. rie is the inter-user representation, ria is the intra-user representation, and rta is the
representation of the target Tweet. These three branches respectively correspond to the three branches illustrated
in Figure 1. yi is the prediction at the time step i and si is the state input for the agent at the time step i. The
computing process is detailed in Section 2.3

representation learning to model user history with-
out supervision. The hypothesis is that, by analyz-
ing a corpus of the user’s past Tweets, our sys-
tem will better understand the language and be-
havior of the user, leading to better hate speech
detection accuracy. Another issue is that using a
single Tweet as input is often noisy for any ma-
chine learning classifier. For example, the Tweet
“I’m not sexist but I can not stand women com-
mentators” is actually an instance of hate speech,
even though the first half is misleading. To min-
imize noise, we also consider semantically sim-
ilar Tweets posted by other users. To do so,
we propose a reinforced bidirectional long short-
term memory network (LSTM) (Hochreiter and
Schmidhuber, 1997) to interactively leverage the
similar Tweets from a large Twitter dataset to en-
hance the performance of the hate speech classi-
fier. An overview of our approach is shown in Fig-
ure 1. The main contributions of our work are:

• We provide a novel perspective on hate
speech detection by modeling intra-user
Tweet representations.

• To improve robustness, we leverage similar
Tweets from a large unlabeled corpus with re-
inforced inter-user representations.

• We integrate target Tweets, intra-user and
inter-user representations in a unified frame-
work, outperforming strong baselines.

2 Approach

Figure 2 illustrates the architecture of our model.
It includes three branches, whose details will be
described in the following subsections.

2.1 Bidirectional LSTM

Given a target Tweet, the baseline approach is to
feed the embeddings of the Tweet into a bidirec-
tional LSTM network (Hochreiter and Schmidhu-
ber, 1997; Zhou et al., 2016; Liu et al., 2016) to
obtain the prediction. This is shown in the middle
branch in Figure 1. However, this method is likely
to fail when the target tweet is noisy or the critical
words for making predictions are out of vocabu-
lary.

2.2 Intra-User Representation

The baseline approach does not fully utilize avail-
able information, such as the user’s historical
Tweets. In our approach, we collect the user’s his-
torical posts through the Twitter API. For a tar-
get Tweet t, suppose we collect m Tweets posted
by this user: Zt = {z1, z2, ..., zm}. These
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intra-user Tweets are fed into a pre-trained model
to obtain an intra-user representation. The pre-
trained model has the same structure as the base-
line model. This is shown in the right branch in
Figures 1 and 2. The intra-user representation is
then combined with the baseline branch for the fi-
nal prediction. The computation process is:

ota(t) = fta(t,0) (1)

rta(t) = lta(σ(ota(t))) (2)

oia(zj) = fia(zj ,0) (3)

ria(t) = σ(
m∑

j=1

lia(σ(oia(zj)))) (4)

where fta is the bi-LSTM of the baseline branch;
ota is the output of the bi-LSTM; and lta, lia are
linear functions. Similarly, fia is the bi-LSTM of
the intra-user branch and oia is the output. rta is
the output prediction of the baseline branch. ria
is the intra-user representation, and σ is the non-
linear activation function.

2.3 Inter-User Representation

In addition to the user history, the Tweets that are
semantically similar to the target Tweet can also be
utilized to suppress noise in the target Tweet. We
collect similar Tweets from large unlabeled Tweet
setU by Locality Sensitive Hashing (LSH) (Indyk
and Motwani, 1998; Gionis et al., 1999). Since the
space of all Tweets is enormous, we use LSH to
efficiently reduce the search space. For each target
Tweet t, we use LSH to collect n nearest neighbors
of t in U : x1, x2, ..., xn. These n Tweets form the
inter-user Tweet set for t: Xt = {x1, x2, ..., xn}.

Due to the size of this set, a policy gradient-
based deep reinforcement learning agent is trained
to interactively fetch inter-user Tweets from Xt.
The policy network consists of two layers as
shown in the middle part of Figure 2 and the policy
network is trained by the REINFORCE algorithm
(Williams, 1992). At each time step i, the action of
the agent is to select one Tweet xa from Xt. xa is
then fed into a bi-LSTM followed by a linear layer.
The result is combined with the intra-user repre-
sentation and the baseline prediction (the right and
the middle branch in Figures 1 and 2) to get the
prediction at time step i. At each time step, the bi-
LSTM layer that encodes the selected inter-user is
initialized with the output hidden state of the last
time step. The number of time steps for each tar-
get Tweet is set to be a fixed number T so that

Algorithm 1 Training Algorithm
1: for t in training set do
2: collect Xt and Zt;
3: compute intra-user representation ria(t);
4: end for
5: initialize parameters θp of the policy network;
6: initialize parameters θe of the other nets;
7: for epoch = 1, E do
8: for t in training set do
9: compute ota(t), rta(t);

10: compute the raw prediction y′(t);
11: compute b(Xt);
12: xa = t;
13: compute oie(t);
14: initialize the state s(t)0;
15: for i = 1, T do
16: agent select action by ε− greedy;
17: update xa;
18: compute oie(t), rie(t);
19: compute y(t)i and s(t)i;
20: compute the reward vi(t);
21: end for
22: apply REINFORCE to update θp;
23: update θe on the loss L(θe) = e(y(t)T , y

∗);
24: end for
25: end for

the agent will terminate after T fetches. The final
prediction occurs at the last time step. The com-
putation is shown by the following equations.

oie(xa)i,hie(xa)i = fie(xa, hie(xb)i−1) (5)

rie(xa)i = lie(σ(oie(xa)i)) (6)

y′(t) = σ(lc(rta(t)⊕ ria(t))) (7)

y(t)i = σ(lc(rie(t)⊕ rta(t)⊕ ria(t))) (8)

where xb is the selected inter-user Tweet at time
step i − 1. fie is the bi-LSTM of the inter-user
branch. oie and hie are the output and the hidden
state. lc is a linear function. rie is the inter-user
representation. y′ is the prediction made without
the inter-user branch and y is the prediction made
with the inter-user branch. The symbol ⊕ means
concatenation. The subscript i denotes time step i.

The state at each time step for the agent is the
concatenation of encoded inter-user Tweets, the
output of the Bi-LSTM in the inter-user branch
and the baseline branch, together with the intra-
user representation in the intra-user branch (the
dotted arrows in Figure 2). Each inter-user Tweet
xj in Xt is encoded by the bi-LSTM of the inter-
user branch (the dotted arrow through the Bi-
LSTM of the inter-user branch).

b(xj) = fie(xj ,0) (9)

s(t)i[j]=oie(xa)i ⊕ b(xj)⊕ ota(t)⊕ria(t) (10)

b is the output of the bi-LSTM of the inter-user
branch. In order to differentiate with oie men-
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tioned above, we use b. s(t)i[j] is the jth row of
the state at time step i.

By using reinforcement learning, the state for
the agent is updated after each fetch of the inter-
user Tweet. Thus, the agent can interactively make
selections and update the inter-user representa-
tions step by step. The reward vi for the agent
at time step i is based on the original prediction
without the agent and the prediction at the last time
step with the agent. The computation is shown as:

q(t)i = e(y′(t), y∗)− e(y(t)T , y∗) (11)

v(t)i =





α ∗ q(t)i if y′(t)! = y∗

q(t)i else if y(t)T ! = y∗

0 otherwise

(12)

where e is the loss function; q(t) is the basic re-
ward; and v(t)i is the modified reward at time step
i. α is a positive number used to amplify the re-
ward when the original classification is incorrect.
The intuition of this reward is to train the agent to
be able to correct the misclassified Tweets. When
the original prediction and the last prediction are
both correct, the reward is set to 0 to make the
agent focus on the misclassified instances.

The complete training process is shown in Al-
gorithm 1. Before the training, the intra-user
Tweets and inter-user Tweets are collected for
each target Tweet. Then intra-user representations
are computed, followed by the computation for
initializing the environment and state for the agent.
Next, the agent’s actions, state updates, prediction,
and reward are computed. Finally, the parameters
are updated.

3 Experiments

3.1 Experimental Settings

Dataset: We use the dataset published by Waseem
and Hovy (2016). This dataset contains 16,907
Tweets. The original dataset only contains the
Tweet ID and the label for each Tweet. We ex-
pand the dataset with user ID and Tweet text. Af-
ter deleting the Tweets that are no longer acces-
sible, the dataset we use contains 15,781 Tweets
from 1,808 users. The published dataset has three
labels: racism, sexism and none. Since we con-
sider a binary classification setting, we union the
first two sets. In the final dataset, 67% are labeled
as non-hate speech, and 33% are labeled as hate
speech. 1000 Tweets are randomly selected for

Method Prec. Rec. F1
SVM .793 .656 .718
Logistic Regression .782 .611 .686
Bi-LSTM + attention .760 .665 .710
CNN-static .701 .707 .703
CNN-non-static .743 .699 .720
N-gram .729 .777 .739
Bi-LSTM .672 .737 .703
+ Intra. Rep. .772 .749 .760
+ Intra.+ Randomized Inter. Rep. .773 .764 .768
+ Intra.+ Reinforced Inter. Rep. .775 .773 .774

Table 1: Experimental results. Prec.: precision. Rec.:
recall. F1: F measure. Bi-LSTM: the baseline bidi-
rectional LSTM model. Bi-LSTM + attention: an at-
tentional bidirectional LSTM model. The experimen-
tal settings of the last three rows are illustrated in Sec-
tion 3.1. + Intra. Rep.: the model consists of the tar-
get Tweet branch and the intra-user branch. + Intra.
+ Randomized Inter. Rep. incorporates randomly se-
lected inter-user Tweets while + Intra. + Reinforced
Inter. Rep. further incorporates the reinforced inter-
user branch. The best results are in bold.

testing and the remaining 14,781 Tweets are for
training.
Baseline: The baseline model is a bi-LSTM
model. The input for the model is the word embed-
dings of the target Tweet. The word embedding is
of size 200. The hidden size of the LSTM is 64.
The optimizer is Adam and we use mini-batches of
size 25. The word embedding model is pre-trained
on a Tweet corpus containing 3,433,513 Tweets.
Intra-user Representation Learning: Based on
the target Tweet, we collect at most 400 Tweets
posted by the same user, with the target Tweet
removed. The baseline branch and the intra-user
branch are combined via a linear layer.
Combining with Inter-user Representation:
The inter-user Tweet set is collected from the
dataset via Locality Sensitive Hashing (LSH). In
our experiments, we use a set size of either 50, 100
or 200 Tweets. At each time step, one Tweet is se-
lected from the inter-user Tweet set by the policy
agent. We also experimented with a second set-
ting, in which we replace the agent by random se-
lection. At each time step, an inter-user Tweet is
randomly selected from X and fed into the inter-
user branch.

3.2 Results

We compare the above settings with six clas-
sification models: Supported Vector Machine
(SVM) (Suykens and Vandewalle, 1999), Logistic
Regression, attentional BI-LSTM, two CNN mod-
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els by Kim (2014), and a N-gram model (Waseem
and Hovy, 2016). We evaluate these models on
three metrics: precision, recall and F1 score. The
results are shown in Table 1. We report results for
|U | = 100 in Table 1, as results with sizes 50 and
200 are similar. We find that leveraging the intra-
user information helps reduce false positives. The
performance is further improved when integrating
our model with inter-user similarity learning. Our
results show that selection by the policy gradient
agent is slightly better than random selection, and
we hypothesize the effect would be more salient
when working with a larger unlabeled dataset. The
McNemar’s test shows that our model gives sig-
nificantly better (at p < 0.01) predictions than the
baseline bi-LSTM and attentional bi-LSTM.

3.3 Error Analysis

There are two types of hate speech that are mis-
classified. The first type contains rare words and
abbreviations, e.g. FK YOU KAT AND ANDRE!
#mkr. Such intentional misspellings or abbrevia-
tions are highly varied, making it difficult for the
model to learn the correct meaning. The second
type of hate speech is satire or metaphor, e.g. Con-
gratulations Kat. Reckon you may have the whole
viewer population against you now #mkr. Satire
and metaphors are extremely difficult to recog-
nize. In the above two cases, both the baseline
branch and the inter-user branch can be unreliable.

4 Conclusion

In this work, we propose a novel method for hate
speech detection. We use bi-LSTM as the base-
line method. However, our framework can eas-
ily augment other baseline methods by incorpo-
rating intra-user and reinforced inter-user repre-
sentations. In addition to detecting potential hate
speech, our method can be applied to help detect
suspicious social media accounts. Considering the
relationship between online hate speech and real-
life hate actions, our solution has the potential to
help analyze real-life extremists and hate groups.
Furthermore, intra-user and inter-user representa-
tion learning can be generalized to other text clas-
sification tasks, where either user history or a large
collection of unlabeled data are available.
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Abstract

We propose USIM, a semantic measure for
Grammatical Error Correction (GEC) that
measures the semantic faithfulness of the out-
put to the source, thereby complementing
existing reference-less measures (RLMs) for
measuring the output’s grammaticality. USIM
operates by comparing the semantic sym-
bolic structure of the source and the correc-
tion, without relying on manually-curated ref-
erences. Our experiments establish the validity
of USIM, by showing that (1) semantic anno-
tation can be consistently applied to ungram-
matical text; (2) valid corrections obtain a high
USIM similarity score to the source; and (3)
invalid corrections obtain a lower score.1

1 Introduction

Evaluation in Monolingual Translation, and particu-
larly in Grammatical Error Correction (GEC) is a chal-
lenging research field, much due to the difficulty in
integrating different types of rewriting operations into
a single measure, and the vast number of valid out-
puts (Tetreault and Chodorow, 2008; Madnani et al.,
2011; Chodorow et al., 2012; Bryant and Ng, 2015).
These difficulties have recently motivated a number of
proposals for new, improved reference-based measures
(RBMs) (Dahlmeier and Ng, 2012; Felice and Briscoe,
2015; Napoles et al., 2015).

Nevertheless, the size and heterogeneity of the space
of valid outputs per sentence often prohibits obtaining
a reference set that covers this space well, thereby lim-
iting the applicability of RBMs (Bryant and Ng, 2015).
To address this we propose a semantic RLM, USIM,
that operates by measuring the graph distance between
the semantic representations of the source and the out-
put. Reliable RLMs are appealing both in not relying
on references, which are costly to collect, and in avoid-
ing the biases incurred by selecting references that nec-
essarily cannot exhaust the vast space of valid correc-
tions.

1Our code is available in https://github.com/
borgr/USim.

Our proposal complements the RLM proposed by
Napoles et al. (2016), which uses grammatical error de-
tection techniques to assess the grammaticality of the
output, and the work of Asano et al. (2017), who advo-
cate the use of RLMs for fluency, grammaticality and
meaning preservation, but state that a meaning preser-
vation measure for GEC is currently lacking. A similar
decomposition of output quality to its adequacy (simi-
lar to faithfulness) and fluency (related to grammatical-
ity), has been used in machine translation (MT) evalu-
ation (e.g., Banchs et al., 2015).

As a test case, we use the UCCA semantic scheme
(Abend and Rappoport, 2013), motivated by its recent
use in semantic evaluation of MT (Birch et al., 2016)
and text simplification (Sulem et al., 2018) systems.
Nevertheless, USIM can be easily adapted to other se-
mantic schemes, such as AMR (Banarescu et al., 2013).
USIM is conceptually related to RLMs developed for
MT (Reeder, 2006; Albrecht and Hwa, 2007; Specia
et al., 2009, 2010). Notably, XMEANT (Lo et al.,
2014) compares the source to the output in terms of
their semantic role labeling structures. Our use of
UCCA is motivated by its wider coverage of predicate
types, as opposed to MEANT’s focus on verbal pred-
icates, and UCCA’s preservation of structure across
translations (Sulem et al., 2015). See (Birch et al.,
2016) for further discussion.

We conduct experiments to confirm USIM’s valid-
ity. Specifically, we show that (1) UCCA can be con-
sistently and automatically applied to learner language
(LL) (§4.2), (2) USIM is not prone to unduly penalize
valid corrections (§4.2), and (3) USIM assigns a lower
score to corrections of poor quality (§4.5). Our exper-
iments also indicate that UCCA parsing technology is
already sufficiently mature for an automatic variant of
USIM to provide reliable results (§4.3).

2 Background
LL Annotation. While most linguistic theories pro-
pose that each learner makes consistent use of syntax
(Huebner, 1985; Tarone, 1983), this use may not con-
form to the syntax of the learned language, or of any
other known language. This entails difficulties in defin-
ing syntactic annotation for LL, as the annotated syntax
differs between learners.
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Syntactic schemes for LL annotate syntactically er-
roneous sentences in different ways. Berzak et al.
(2016) and Ragheb and Dickinson (2012) annotate ac-
cording to the syntax used by the learner, even if this
use is not grammatical. Such annotation may be unre-
liable for measuring faithfulness, as GEC systems aim
to alter these erroneous syntactic structures. Nagata
and Sakaguchi (2016) take the opposite approach, and
remain faithful to the syntax intended by the learner.
This has also been the tradition in works on parser ro-
bustness (Bigert et al., 2005; Foster, 2004). However,
such approach is prone to inconsistencies due to the va-
riety of different syntactic structures that can be used to
express a similar meaning.

In this paper, we use semantic annotation to struc-
turally represent LL. Semantic structures are faithful to
the intended meaning, and not to the formal realization,
and thus face fewer conflicts where the syntactic struc-
ture used diverges from the one intended. We are not
aware of any previous attempts to semantically anno-
tate LL text.

The UCCA Scheme. UCCA is a semantic annota-
tion scheme that builds on typological and cognitive
linguistic theories. The scheme’s aims are to provide
a coarse-grained, cross-linguistically applicable repre-
sentation. Importantly, UCCA’s categories directly re-
flect semantic, rather than distributional distinctions.
For instance, UCCA is not sensitive to POS distinc-
tions: a Scene’s main relation can be a verb but also
an adjective (“He is thin”) or a noun (“John’s deci-
sion”). Indeed, Sulem et al. (2015) have found that
UCCA structures are preserved remarkably well across
English-French translations.

UCCA structures are directed acyclic graphs, where
the words correspond to (a subset of) their leaves. The
nodes of the graphs, called units, are either leaves or
several elements jointly viewed as a single entity ac-
cording to some semantic or cognitive consideration.
The edges bear one or more categories, indicating the
role of the sub-unit in the relation that the parent repre-
sents.

UCCA views the text as a collection of Scenes and
relations between them. A Scene describes a move-
ment, an action or a state which is persistent in time.
Every Scene contains one main relation, zero or more
Participants, interpreted in a broad sense to include lo-
cations, destinations and complement clauses, and Ad-
verbials, such as manner or aspectual modifiers.

3 Semantic Faithfulness Measures

We start by defining a simplified measure, used for
inter-annotator agreement (IAA). The measure com-
pares two UCCA annotations over the same set of to-
kens. We then proceed to define USIM, which com-
pares two UCCA structures over alignable but different
sets of tokens.

johnfor

R,Empty C,3

applean

E,5 C,6

gveHe

A,1
P,2

A,4 A,3

applean
E,5 C,6

JohngaveHe

A,1

P,2

A,3
A,4

P process
A participant
H linked scene
R relator
C center
E elaborator

Figure 1: UCCA structures of a learner language
(top) and correction (bottom) including word align-
ments (dashed). On the edges are labels and numbers
aligned to (top) or indexes (bottom). Precision is 7

9 Re-
call is 7

7 .

IAA Measure. We define a similarity measure over
UCCA annotations G1 and G2 that share their set of
leaves (tokens) W . For a node v in G1 or G2, define
its yield yield(v) ⊆ W as its set of leaf descendants.
Define a pair of edges (v1, u1) ∈ G1 and (v2, u2) ∈ G2

to be matching if yield(u1) = yield(u2) and they have
the same label. Labeled precision and recall are defined
by dividing the number of matching edges in G1 and
G2 by |E1| and |E2| respectively. DAG F -score is their
harmonic mean. The measure collapses to the common
parsing F -score if G1, G2 are trees.

The USIM Measure. Computing a faithfulness mea-
sure is slightly more involved, as the source sentence
graph Gs and its correction Gc do not share the same
set of leaves. We assume a (possibly partial, possi-
bly many-to-1) alignment between Gs and Gc, A ⊂
Vs × Vc.

An edge (v1, v2) ∈ Ec is said to match an edge
(u1, u2) ∈ Es if they have the same label and
(v2, u2) ∈ A. Recall (Precision) is defined as the ra-
tio of edges in Es (Ec) that have a match in Ec (Es)
respectively, and F -score is their harmonic mean. We
note that this measure collapses to the DAG F -score if
A includes all pairs of nodes inEs andEc that have the
same yield. See Figure 1.

In order to define the alignment between Vs and Vc,
we begin by aligning the leaves (tokens) in Vs and
Vc. Alignment is cast as a weighted bipartite graph
matching problem. Edge weights are assigned to be
the edit distances between the tokens. We note that
aligning words in GEC (and other monolingual trans-
lation tasks) is much simpler than in MT, as most
of the words are unchanged, deleted fully, added, or
changed slightly. Denote the resulting leaf alignment
withAl ⊂ Leavess×Leavesc. We extendAl to define
the node alignment A, aligning each non-leaf v ∈ Vs
to the node u ∈ Vc that maximizes

w (v, u) =
|Al ∩ (yield (u)× yield (v)) |

|yield (u) | .

We exclude from A zero-weighted pairs. USIM is de-
fined to be the F -score resulting from A. As the align-
ment may differ when aligning nodes from Vc to Vs
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and the other way around, we report USIM in both di-
rections.

USIM is somewhat more relaxed than DAG F -score,
as, unlike DAG F -score, it also aligns nodes whose
yields are not in perfect alignment with one another.
This relaxation is necessary, given that corrections of-
ten add or remove nodes, thus eliminating the possibil-
ity of a perfect alignment. In order to obtain compara-
ble IAA scores, we report IAA using USIM as well.

For completeness, we replicate the protocol used by
Sulem et al. (2015) for comparing the UCCA anno-
tations of standard English-French translations, which
we call Distributional Similarity (DISTSIM). For a
given UCCA label l, ci(l) is the number of l-labeled
UCCA edges in the i-th source sentence, and di(l) is
the number of l-labeled UCCA edges in its correspond-
ing correction. We define DISTSIM(l) between these
sentences to be 1

N

∑N
i=1 |ci(l)− di(l)|, where N is the

total number of sentence pairs.

4 Experiments
We conduct four types of experiments to validate
USIM, showing that: (1) semantic annotation can
be consistently applied to LL through inter-annotator
agreement (IAA) experiments; (2) a valid corrector
scores high on USIM; (3) an automatic UCCA parser
can reliably replace human annotation for USIM; (4)
USIM is sensitive to changes in meaning.

4.1 Experimental Setup.
We train two UCCA annotators, the first author and
a paid in-house annotator by annotating both LL and
standard English passages, until a high enough agree-
ment is reached (6 training hours). Training passages
are excluded from the evaluation. We use UCCA’s an-
notation guidelines2 without any adaptations.

We experiment on 7 essays and their corrections,
each comprising about 500 tokens (see supplementary
material 1). In order to measure IAA, we assigned 4 of
these essays to both annotators. In order to measure the
faithfulness score for a valid correction, we annotate
both the source and the manually corrected versions of
6 essays, 3 of which were annotated by both annotators.

4.2 The Faithfulness of Valid Corrections.
We obtain an IAA DAG F -score of 0.845 (Precision
0.834, Recall 0.857), which is comparable to the IAA
reported for English Wikipedia texts by Abend and
Rappoport (2013). As another point of comparison,
we doubly annotate 3 corrected NUCLE (Dahlmeier
et al., 2013) passages, obtaining a similar IAA. These
results suggest that UCCA annotating LL does not de-
grade IAA: it can be applied as consistently to LL as to
standard English.

Table 1 (left-hand side) presents the USIM scores
obtained by comparing the NUCLE references and the

2http://www.cs.huji.ac.il/~oabend/
ucca.html

USIM DISTSIM
s→r r→s Avg A+D Scene

Different 0.85 0.83 0.84 0.96 0.93
Same 0.92 0.91 0.92 0.97 0.96
IAA 0.85 0.81 0.83 - -

SAR15 - - - 0.95 0.96

Table 1: The faithfulness of valid corrections. The
left-hand side presents USIM, where s→r is the set-
ting where alignment is computed from the source to
the reference, r→s is the other way around, and Avg is
their average. The right-hand side presents DISTSIM
for the UCCA categories Participants and Adverbials
together (A+D), and for Scenes (Scene). Rows indi-
cate whether the same annotator annotated the source
and reference or not. For comparison, the IAA row is
the IAA computed using USIM. Results show that the
valid corrector’s faithfulness is comparable with IAA.
SAR15 are reported by Sulem et al. on English-French
translations; similarity is comparable to ours.

source, or equivalently the score of a valid correction.
To control for differences between the annotators, we
explore both a setting where both sides are annotated
by the same annotator, and a setting where they are an-
notated by different ones. As an upper bound on the
score of a valid corrector (using different annotators),
we also report the USIM IAA on source sentences.

Our results indicate that a valid correction obtains
a score comparable to the IAA, which indicates that
USIM is indeed insensitive to the surface divergence
between a source sentence and its valid corrections.
Finally, we compute the DISTSIM measure between
the source and reference sentences (Table 1, right-hand
side), obtaining similar results to those obtained by
Sulem et al. (2015). It suggests that on a coarse grained
level, UCCA structures are as robust to grammatical er-
ror corrections as they are to translation from English
to French, which was shown to be very robust, specifi-
cally more robust than syntactic representation (Sulem
et al., 2015).

4.3 Automatic USIM.
We experiment with an automatic variant of USIM,
where UCCA structures are parsed automatically. We
use the TUPA parser (Hershcovich et al., 2017) to gen-
erate UCCA structures, instead of the human annota-
tors. Otherwise the setup is as above. TUPA is used
with its biLSTM model, trained on the UCCA English
Wikipedia corpus.

We obtain a USIM score of 0.7 between the parses
of the reference correction and the source, which is
comparable to the parser’s reported performance (0.73
in-domain, 0.68 out-of-domain), despite not perform-
ing any domain adaptation to LL. That is, the UCCA
parses of the source and the correction are roughly as
similar to each other as they are to their gold standard
parse. This supports the hypothesis that semantic pars-
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ing technology is sufficiently mature to be applicable to
USIM. Results also suggest an improvement in parsing
performance may further improve these scores.

4.4 Sensitivity to Error Types

To provide another perspective on automated USIM’s
behaviour, we examined the measure’s sensitivity to
different error types, using MAEGE (Choshen and
Abend, 2018a). For each NUCLE sentence and set of
edits (replacements of sub-strings that contain an er-
ror by corrected ones. Such edit for the example in
fig. 1 might be ”gva”→ ”gave”, with type spelling),
we sample an order in which edits are applied. We se-
lect the source randomly to be one of the resulting sen-
tences. We then compare the difference in USIM before
and after applying each edit, and average these differ-
ences by the applied edit type. We denote the average
difference in USIM due to correction of errors of type
t with ∆t. The hypothesis is that ∆t should be close
to 0 for all t, as edits are manual and are thus assumed
to be faithful. We focus on edit types with high |∆t| to
better understand where USIM fails. See table 2 in the
supplementary material for complete results.

We find that among the 5 most penalized error types
by USIM are “unclear meaning” and corrections of
type “other”, that fit no specific type; these correc-
tions may actually change the meaning of the origi-
nal sentence. In the most penalized and most rewarded
changes we see ”Dangling Modifier“, ”Pronoun Refer-
ence“ and ”Word Tone“ errors, the first usually changes
a word into a more complex structure and the latter two
the opposite. Such changes alter the lower levels of the
UCCA structure (near the leaves); a similarity measure
that focuses on the top of the DAG, or one that performs
a better lexical semantic abstraction, may address this
sensitivity. Corrections of incorrect word order are also
highly rewarded (high ∆t), probably due to parser per-
formance (the UCCA structures themselves are not af-
fected by word order). Training the parser with LL an-
notated data may address this sensitivity.

Among the most rewarded changes we also see er-
rors of replacing rare or misconstructed words with
proper English words (Acronym and Mechanical er-
rors). We assume this is due to parser performance,
as TUPA only extracts features over complete words,
and has no character-level encoding at this point. Thus,
all misconstructed words fall into an out-of-vocabulary
category and can only be labeled by the context.

Lastly, adding a missing verb is shown to be highly
rewarded. Under the UCCA guidelines, a missing verb
should be annotated as an implicit unit, but as TUPA
does not generate implicit units, it is not surprising that
when corrections transforms an implicit unit into an
explicit word, the parser’s output changes (and hence
USIM). Future improvements to TUPA may address
this.

4.5 Sensitivity to Unfaithfulness.

We have shown that UCCA is insensitive to differences
between a source sentence and its valid correction. We
now present an evaluation of the sensitivity of USIM
to proposed corrections that diverge semantically from
the source. A semantic measure is, by its definition,
sensitive to variation in the semantic dimensions which
it encodes. In UCCA’s case, these distinctions focus on
predicate-argument structures, the inter-relations be-
tween them, and the semantic heads of complex argu-
ments. These distinctions are widely regarded as fun-
damental in the NLP and linguistic literature.

In order to empirically validate this claim, we
present an experiment which shows that corrections
of a fairly low quality indeed receive a much lower
USIM faithfulness score. Current state-of-the-art sys-
tems rarely alter the source sentences enough to yield
semantically unfaithful outputs (Choshen and Abend,
2018b). Consequently, their human rankings are not
determined by their semantic faithfulness, rendering
them unuseful for validating USIM. We instead exper-
iment with 5 partially trained correctors, trained and
evaluated on the JFLEG corpus (Napoles et al., 2017)
by Sakaguchi et al. (2017).

USIM is computed automatically for each system’s
output on 754 source sentences. Low faithfulness
results are expected, as these outputs include major
changes, sometimes deleting full phrases from the out-
put or changing every other word. Indeed, automatic
USIM obtains scores of 0.32-0.39 for 4 of the systems,
and 0.19 for the system that obtains the lowest GLEU
(Napoles et al., 2015) score. For completeness, we
run USIM on the 4 references provided by JFLEG for
each source and obtain scores of 0.72-0.78, suggesting
the domain change is not the reason for the low USIM
score.

Taken together, these results indicate that USIM,
even in its automatic variant, is sensitive to semantic
changes. Consider the example:

Source the good student must know how to under-
stand and work hard to get the iede.

Reference A good student must be able to understand
and work hard to get the idea.

Corrector The good student must know how to under-
stand and work hard to get on.

USIM assigns the reference 0.71 and only 0.33 to
the corrector. Moreover, although the reference makes
more word changes than the proposed correction, it still
obtains a higher USIM score.

5 Conclusion

We propose a measure of semantic faithfulness of a
correction to the source, thereby avoiding the pitfalls
of reference-based evaluation. We believe that using
RLMs in conjunction with RBMs in the training and
development of GEC systems will better address the
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challenge of over-conservatism, and the high costs of
acquiring many references.

Future work will conduct user studies to assess
the relative importance of different evaluation criteria.
Specifically, we will explore to what extent users are
tolerant to invalid changes to the sentence’s structure,
i.e., violation of conservatism, relative to their toler-
ance to invalid changes to the sentence’s meaning, i.e.,
violation of faithfulness. A better understanding of
how these interact may lead to improved semantic eval-
uation that will alleviate the need for a high number of
references.
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Abstract

This paper introduces rank-based training
of structured prediction energy networks
(SPENs). Our method samples from output
structures using gradient descent and mini-
mizes the ranking violation of the sampled
structures with respect to a scalar scoring func-
tion defined using domain knowledge. We
have successfully trained SPEN for citation
field extraction without any labeled data in-
stances, where the only source of supervi-
sion is a simple human-written scoring func-
tion. Such scoring functions are often easy to
provide; the SPEN then furnishes an efficient
structured prediction inference procedure.

1 Introduction

Structured prediction, or the task of predicting
multiple inter-dependent variables, is important in
many domains, including computer vision, com-
putational biology and natural language process-
ing. For example, in sequence labelling, im-
age segmentation, and parsing we are given in-
put variables x, and must predict output variables
y, where the number of possible y values are
typically exponential in the number of variables
that comprise it. Not only does this sometimes
give rise to computational difficulties, it also leads
to statistical parameter estimation issues, where
learning precise models requires large amounts of
labeled training data.

In some cases, unsupervised learning from
plentiful unlabeled data may provide helpful out-
puts (Daumé III, 2009; Ammar et al., 2014). But
usually some form of more direct supervision is
required to create a model truly useful to the task
at hand. In the absence of abundant labeled data
we may consider alternative forms of supervision.
For example, rather than providing labeled data
instances, humans may more easily inject their

domain knowledge by providing “labels on fea-
tures,” or “expectations” about correct outputs, as
in generalized expectation criteria (Mann and Mc-
Callum, 2010), or by providing constraints, as in
posterior regularization (Ganchev et al., 2010) or
constraint driven learning (Chang et al., 2007). A
major weakness of these methods, however, is that
at training time inference must be done in the fac-
tor graph encompassing the union of the model’s
factor graph and the expectation dependencies—
often leading to prohibitively expensive inference.
Moreover, these methods cannot learn from non-
decomposable domain knowledge, where the do-
main knowledge is not in a form of a set of labeled
features or constraints.

An easy way for humans to express domain
knowledge is by writing a simple scalar scoring
function that indicates preferences among choices
for y given x. These human-coded functions may,
for example, be based on arbitrary rule systems (or
even Turing-complete programs) of the sort writ-
ten by humans to solve problems before machine
learning became so wide-spread.

In general, the human written domain knowl-
edge functions are not expected to be perfect—
most likely only examining a subset of features
and not covering all cases. Thus we are now faced
with two challenges: (1) the domain knowledge
functions have limited generalization; (2) the do-
main knowledge functions provide a ranking, but
do not provide an inference (search) procedure.

This paper presents a new training method
for structured prediction energy networks
(SPENs) (Belanger and McCallum, 2016; Be-
langer et al., 2017) that aims to address both
these challenges, yielding efficient inference for
structured prediction, trained from human-coded
domain knowledge plus unlabeled data, but
not requiring any labeled data instances. In
SPENs, the factor graph that typically represents
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output variable dependencies is replaced with
a deep neural network that takes y and x as
input and outputs a scalar energy score, but is
able to learn much richer correlations than are
typically captured in factor graphs. Inference
in SPENs is performed by gradient descent in
the energy, back-propagated to cause steps in
a relaxed y space. Whereas previous training
procedures for SPENs used labeled data, here
we train SPENs from only unlabeled data plus
human-coded domain knowledge in the form
of a scoring function. We do so by building on
SampleRank (Rohanimanesh et al., 2011; Singh
et al., 2010), which enforces that the rank of two
sampled ys according to the trained factor graph
is consistent with their rank according to distance
to the labeled, true y. In our training method,
pairs of y’s are obtained from successive steps
of training-time gradient-descent inference on
y; when their rank is not consistent with that of
the domain knowledge function, we accordingly
update the energy network parameters.

We demonstrate our method on a citation field
extraction task, for which we learn a neural net-
work (1) that generalizes beyond the original do-
main knowledge function, and (2) that provides ef-
ficient test-time inference by gradient descent.

2 Structured Prediction Energy
Networks

In general, SPEN parameterizes an energy func-
tion Ew(y,x) using deep neural networks over
output variables y as well as input variables x,
where w denotes the neural network’s parameters.
Belanger and McCallum (2016) separate the en-
ergy function into global and local terms. The
role of the local terms is to capture the depen-
dency among input x and each individual output
variable yi, while the global term aims to capture
long-range dependencies among output variables.

Prediction in SPENs requires finding ŷ =
argminy∈Y Ew(y,x) for the given input x. This
inference problem is solved using gradient de-
scent. However, the energy surface is non-convex,
which prevents gradient descent inference from
finding the exact structure ymin that globally min-
imizes the energy function. One approach to ad-
dress this problem is to parameterize the energy
function such that the SPEN is convex in the out-
put variables y (Amos et al., 2017), but this lim-
its the representational power of SPENs. Al-

though gradient descent inference does not guar-
antee an exact solution, it has successfully been
used in several domains such as multi-label classi-
fication (Belanger and McCallum, 2016), image-
segmentation (Gygli et al., 2017), and semantic
role labeling (Belanger et al., 2017).

3 Rank-Based Training of SPENs

Different methods have been introduced for train-
ing SPENs: margin-based training (Belanger and
McCallum, 2016), end-to-end learning (Belanger
et al., 2017), and value matching (Gygli et al.,
2017). Margin-based training enforces the energy
of the ground truth structure to be lower than the
energy of every incorrect structure by a margin,
which is calculated as the Hamming loss between
the two structures. End-to-end learning unrolls the
energy minimization into a differentiable compu-
tation graph to output the predicted structure. It
then trains the model by directly minimizing the
loss between the predicted and ground-truth struc-
tures. Finally, the value matching approach trains
SPENs such that the energy value matches the
value of a given target function, such as the L2

distance between the ground-truth and predicted
structures.

All of these methods strongly depend on the ex-
istence of the ground truth values either as labeled
data or as the value of a function applied to it.
While dependence of the margin-based and end-
to-end learning approaches on the labeled data
is explicit, this dependency in the case of value-
matching may not be obvious. In the absence of la-
beled data, we have to use the model’s predictions
instead, for training. These predictions are often
incorrect, especially at early stages of training. As
a result, value-matching training is constrained to
match the score of these predictions with the value
of the energy function defined by SPEN. This re-
quires matching several incorrect structures for a
given input, which hinders gradient descent infer-
ence from finding the exact solution by introduc-
ing many local optima. To address this problem,
we use a ranking objective similar to SampleR-
ank (Rohanimanesh et al., 2011) such that it pre-
serves the optimum points of the score function.

In general, if SPEN ranks every pair of output
structures identical to the score function, the op-
timum points of the score function match those of
SPEN. However, forcing the ranking constraint for
every pair of output structures is not tractable, so
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we need to approximate it by sampling some can-
didate pairs. Given a score function V (y,x), we
are able to rank every two consecutive candidate
structures based on their score values. Consider
two candidate output structures y1 and y2 for the
given input x. We define yh and yl based on the
score function as the following:

yh = argmax
y∈{y1,y2}

V (y,x),

yl = argmin
y∈{y1,y2}

V (y,x). (1)

We expect that these two structures have the
same ranking with respect to Ew(.,x), which
can be described as: α(V (yh,x) − V (yl,x)) <
Ew(yh,x)−Ew(yl,x), where α is a tunable pos-
itive scalar. Therefore, the rank-based objective
minimizes the constraint violations:

min
w

∑

x∈D
[α(V (yh,x)− V (yl,x))−

Ew(yh,x) + Ew(yl,x)]+ (2)

[.]+ is max(., 0). Figure 1 shows a ranking vio-
lation for two structures y1 and y2 for a given x.
The arrows indicate the direction of update over
the energy surface. Note that we ignore the de-
pendence of y on w, which introduces approxi-
mation in the gradient of Eq. 2. For the super-
vised setting, Belanger et al. (2017) address this
problem by unrolling the inference steps as an
inference network and back-propagating through
the inference network. We leave exploring sim-
ilar approaches for rank-based training for future
work. To compute Eq. 2, we need to find configu-
rations yi and yj such that both are candidate so-
lutions for argminy∈Y Ew(y,x). If not, the num-
ber of required samples would be exponential in
|Y|. Since at test time we use gradient descent in-
ference, a similar method is used for generating
candidate structures: the trajectory of points in the
inference mechanism is used as the set of possi-
ble candidates. The idea of deterministic sampling
from SPEN energy surface was first introduced by
David Belanger (2017). We define the inference
trajectory, T (x), as a sequence of output struc-
tures generated using projected gradient descent
inference in order to find the minimum solution
of Ew(.,x).

Given a random initial structure y0, we de-
fine the inference trajectory as: T (x) =

Figure 1: Schematic machinery of rank-based training.
The dashed line is the surface of score function V (.,x)
and the solid line is the surface of SPEN E(.,x), both
conditioned on input x. Here, y2 and y3 violate the
ranking constraint, and the arrows show the direction
of updates on the energy surface.

{y1, · · · ,ym}, where yt+1 = Py∈∆L
(yt −

η ∂
∂yEw(yt,x)). Py∈∆L

projects the values of y
onto the probability simplex ∆L overL values that
each variable y can take. For each input x in the
training data, we find the first consecutive struc-
tures yi, yi+1 ∈ T (x) that violate the ranking
constraint, then use Eq. 2 to reduce the number
of violations. Algorithm 1 describes the complete
training algorithm.

Algorithm 1 Rank-based training of SPEN
D ← unlabeled mini-batch of training data
V (., .)← scoring function
Ew(., .)← input SPEN
for each x in D do
T (x)← samples using GD inference in Ew(.,x).
ξ ← ∅.
for each pair (yi,yi+1) in T (x) do

Construct yh and yl using Eq.1
if α(V (yh,x) − V (yl,x)) > Ew(yh,x) −

Ew(yl,x) then
ξ ← ξ ∪ (x,yh,yl).

end if
end for
Optimize Eq.2 using ξ.

end for

4 Citation Field Extraction

To show the success of rank-based learning with
indirect supervision, we conduct experiments on
citation field extraction as an instance of structured
prediction problems. The goal of citation field ex-
traction is to segment citation text into its con-
stituent parts such as Author, Title, Journal, Page,
and Date. We used the Cora citation dataset (Sey-
more et al., 1999), which includes 100 labeled ex-
amples as the test set and another 100 labeled ex-
amples for the validation set. Our training data
consists of 300 training examples from the Cora
citation data set for which we dismiss the labels,
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as well as another 700 unlabeled citations acquired
across the web, which adds up to 1000 unlabeled
data points. Each token can be labeled with one of
13 possible tags. We use fixed-length input data
by padding all citation text to the maximum cita-
tion length in the dataset, which is 118 tokens. We
report token-level accuracy measured on non-pad
tokens.

We provide the learning algorithm with a hu-
man written score function that takes the citation
text and predicted tags as input. The score func-
tion then checks for violations of its rules and pe-
nalizes the predicted tags accordingly. Figure 2
shows examples of rules in the score function.
Our complete score function consists of around 50
rules.

We used two 2-layer neural networks with 1000
and 500 hidden nodes to parameterize the local
and global energy functions of SPEN. We examine
different α (Eq. 2) values of 0.1, 1.0, 2.0, 5.0, and
10.0, and setting α value to 2.0 has the best per-
formance on the validation set. We use gradient
descent inference with ten gradient descent steps
and η = 0.1 for both training and test.

We include the results of generalized expecta-
tion (GE) from Mann and McCallum (2010) that
use the same dataset and setting. Our results show
that R-SPEN achieves significantly better token-
level accuracy as compared to GE.

We also compare R-SPEN with different infer-
ence algorithms that search using the score func-
tion to find the best configuration with maximum
score. The results of these are listed in Table 1.
Greedy search first randomly initializes the out-
put tags and then iteratively replaces each assigned
tag with a tag that results in the maximum score
until the end of the citation is reached. This pro-
cess is repeated until convergence, measured by no
tag changing in an iteration. To avoid the effects
of random initialization, this is repeated with var-
ied number of random restarts, as reported in Ta-
ble 1, where the best configuration is used in the
scores reported. For the baseline that implements
beam search, each citation is labeled by employ-
ing a beam search on the space of all tags for each
token and their subsequent configurations, while
keeping track of the best k configurations from one
token to the next. This search is further augmented
by restarting the search from the best k found after
one complete search, for a total of 10 times and 10
random restarts.

Figure 2: Examples of rules in the score function. The
first two rules constrain the relation of token and tags,
while the last rule targets the relationship between tags.

Consulting Table 1, we can confirm that both
greedy search and beam search find much better
output structures in term of score values as com-
pared to R-SPEN; however, they achieve poor ac-
curacy because the domain knowledge function
does not comprehensively provide rules regarding
all possible output structures. We report the aver-
age score values of the R-SPEN predictions on test
data as a function of training iterations in Figure 3.
Within 1000 iterations, R-SPEN is able to achieve
a test set accuracy of 38%, outperforming all base-
lines, while the average score is -18.0. R-SPEN
generalizes beyond the domain knowledge func-
tion because it successfully captures the correla-
tion among output variables through rank-based
training on unlabeled data, so its predictions may
have lower score values but are more accurate.

The test time inference of R-SPEN is much
faster than search algorithms because SPEN pro-
vides efficient approximate inference.

5 Related Work

Generalized Expectation (GE) (Mann and Mc-
Callum, 2010), Posterior Regularization (Ganchev
et al., 2010) and Constraint Driven Learn-
ing (Chang et al., 2007) are among well-known
approaches to learn from domain knowledge de-
composed over a set of constraints or labeled fea-
tures. However, these methods cannot learn from
black box domain knowledge based score func-
tions. Score functions of this type are abundant in
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Table 1: Comparison of R-SPEN with GE and differ-
ent search algorithms in terms of token-level accuracy,
test set average score, and time taken for inference dur-
ing test time.

Method Acc. Avg. Score Time (s)
GE 37.3% N/A —
Greedy Search
10 restarts 22.6% -4.92 700
100 restarts 26.0% -3.26 6997
1000 restarts 26.1% -2.51 69272
Beam Search
k=2 30.0% -1.87 4953
k=5 30.4% -1.80 12217
k=10 31.0% -1.44 22898
R-SPEN 47.1% -20.33 <1

Figure 3: Average test set score values during training
of R-SPEN.

various fields, for example, when the score is the
result of evaluating a non-differentiable function
over output structures.

Stewart and Ermon (2017) train a neural net-
work using a score function that guides the train-
ing based on physics of moving objects. They
have defined a differentiable score function which
provides the learning algorithm with the gradi-
ent of the score function. However, in our ap-
proach the score function could be any complex
non-differentiable function.

Peng et al. (2017) and Iyyer et al. (2017) use
energy-based max-margin training for learning
from an implicit source of supervision. This can
be viewed as a score function evaluating the pre-
dicted output structure based on some real-world
domain. For example, if the output structure is
the SQL query associated with a natural language
question, the score function can be specified as the
Jaccard similarity of the extracted cells from the
table using the generated SQL query and the set of

gold answers for the natural language query as in
Iyyer et al (2017).

6 Conclusion and Future Work

We have introduced a method to train structured
prediction energy networks with indirect supervi-
sion that is derived from domain knowledge. This
domain knowledge is a scalar function that is rep-
resented in the form of certain set of rules, eas-
ily provided by humans. By using a rank-based
training we are able to effectively generalize be-
yond the domain knowledge function in problem
instances where we do not have access to labeled
data, thus establishing a viable option for solving
structured prediction problems in those regimes.

R-SPEN only uses unlabeled data and domain
knowledge for training. We should also effectively
benefit from annotated data if any is available for
the task. This can be accomplished by augmenting
the domain knowledge with rules that take into ac-
count the distance between predicted and ground
truth labels.

In the future, we wish to explore the effective-
ness of R-SPEN on various tasks using domain
knowledge functions with varying degrees of com-
plexity.
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Abstract

Political identity is often manifested in lan-
guage variation, but the relationship between
the two is still relatively unexplored from a
quantitative perspective. This study exam-
ines the use of Catalan, a language local
to the semi-autonomous region of Catalonia
in Spain, on Twitter in discourse related to
the 2017 independence referendum. We cor-
roborate prior findings that pro-independence
tweets are more likely to include the local
language than anti-independence tweets. We
also find that Catalan is used more often
in referendum-related discourse than in other
contexts, contrary to prior findings on lan-
guage variation. This suggests a strong role
for the Catalan language in the expression of
Catalonian political identity.

1 Introduction

Social identity is often constructed through lan-
guage use, and variation in language there-
fore reflects social differences within the popu-
lation (Labov, 1963). In a multilingual setting,
an individual’s preference to use a local language
rather than the national one may reflect their polit-
ical stance, as the local language can have strong
ties to cultural and political identity (Moreno et al.,
1998; Crameri, 2017). The role of linguistic
identity is enhanced in extreme situations such
as referenda, where the voting decision may be
driven by identification with a local culture or lan-
guage (Schmid, 2001).

In October 2017, the semi-autonomous region
of Catalonia held a referendum on independence
from Spain, where 92% of respondents voted for
independence (Fotheringham, 2017). To deter-
mine the role of the local language Catalan in

∗Equal contributions.

this setting, we apply the methodology used by
Shoemark et al. (2017) in the context of the 2014
Scottish independence referendum to a dataset of
tweets related to the Catalonian referendum. We
use the phenomenon of code-switching between
Catalan and Spanish to pursue the following re-
search questions in order to understand the choice
of language in the context of the referendum:

1. Is a speaker’s stance on independence
strongly associated with the rate at which
they use Catalan?

2. Does Catalan usage vary depending on
whether the discussion topic is related to the
referendum, and on the intended audience?

For the first question, our findings are similar
to those in the Scottish case: pro-independence
tweets are more likely to be written in Catalan than
anti-independence tweets, and pro-independence
Twitter users are more likely to use Catalan than
anti-independence Twitter users (Section 4). With
respect to the second question, we find that Twitter
users are more likely to use Catalan in referendum-
related tweets, and that they are more likely to use
Catalan in tweets with a broader audience (Section
5).1

2 Related work

Code-switching, the alternation between lan-
guages within conversation (Poplack, 1980), has
been shown to be the product of grammatical
factors, such as syntax (Pfaff, 1979), and so-
cial factors, such as intended audience (Gumperz,

1Code for collecting data and rerunning the experiments
is available at https://github.com/ianbstewart/
catalan.
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Neutral #1O (748), #1Oct (1351), #1Oct2017 (171), #1Oct2017votarem (28), #CatalanRef2017 (46),
#CatalanReferendum (3244), #CatalanReferendum2017 (72), #JoVoto (54), #Ref1oct (90),
#Referéndum (640), #Referendum1deoctubre (146), #ReferendumCAT (457), #Referendum-
Catalan (298), #Votarem (954)

Pro-independence #1ONoTincPor (18), #1octL6 (184), #CataloniaIsNotSpain (10), #CATvotaSı́ (3),
#CataluñaLibre (27), #FreePiolin (293), #Freedom4Catalonia (2), #IndependenciaCataluña
(9), #LetCatalansVote (3), #Marxem (102), #RepúblicaCatalana (212), #Spainispain (8),
#SpanishDictatorship (9), #SpanishRepression (3), #TotsSomCatalunya (261)

Anti-independence #CataluñaEsEspaña (69), #DontDUIt (12), #EspanaNoSeRompe (29), #EspañaUnida (4),
#OrgullososDeSerEspañoles (55), #PorLaUnidadDeEspaña (2), #ProuPuigdemont (187)

Table 1: Hashtags related to the Catalonian referendum, their stances (neutral/pro/anti) and their frequencies in the
CT dataset.

1977). While many studies have examined code-
switching in the spoken context (Auer, 2013), so-
cial media platforms such as Twitter provide an
opportunity to study code-switching in online dis-
cussions (Androutsopoulos, 2015). In the on-
line context, choice of language may reflect the
writer’s intended audience (Kim et al., 2014) or
identity (Christiansen, 2015; Lavendar, 2017), and
the explicit social signals in online discussions
such as @-replies can be leveraged to test claims
about code-switching at a large scale (Nguyen
et al., 2015).

A relatively unexplored area of code-switching
behavior is politically-motivated code-switching,
which we assume has a different set of constraints
compared to everyday code-switching. With re-
spect to political separatism, Shoemark et al.
(2017) studied the use of Scots, a language local
to Scotland, in the context of the 2014 Scotland
independence referendum. They found that Twit-
ter users who openly supported Scottish indepen-
dence were more likely to incorporate words from
Scots in their tweets. They also found that Twitter
users who tweeted about the referendum were less
likely to use Scots in referendum-related tweets
than in non-referendum tweets.

This study considers the similar scenario which
took place in 2017 vis-à-vis the semi-autonomous
region of Catalonia. Our main methodological di-
vergence from Shoemark et al. (2017) relates to
the linguistic phenomenon at hand: while Scots
is mainly manifested as interleaving individual
words within English text (code-mixing), Catalan
is a distinct language which, when used, usually
replaces Spanish altogether for the entire tweet
(code-switching).

3 Data

The initial set of tweets for this study, T , was
drawn from a 1% Twitter sample mined between

January 1 and October 31, 2017, covering nearly a
year of activity before the referendum, as well as
its immediate aftermath.2

The first step in building this dataset was to
manually develop a seed set of hashtags related
to the referendum. Through browsing referendum
content on Twitter, the following seed hashtags
were selected: #CataluñaLibre, #Independenci-
aCataluña, #CataluñaEsEspaña, #EspañaUnida,
and #CatalanReferendum. All tweets contain-
ing at least one of these hashtags were extracted
from T , and the top 1,000 hashtags appearing
in the resulting dataset were manually inspected
for relevance to the referendum. From these
co-occurring hashtags, we selected a set of 46
hashtags and divided it into pro-independence,
anti-independence, and neutral hashtags, based on
translations of associated tweet content.3 After in-
cluding ASCII-equivalent variants of special char-
acters, as well as lowercased variants, our final
hashtag set comprises 111 unique strings.

Next, all tweets containing any referendum
hashtag were extracted from T , yielding 190,061
tweets. After removing retweets and tweets from
users whose tweets frequently contained URLs
(i.e., likely bots), our final “Catalonian Indepen-
dence Tweets” (CT) dataset is made up of 11,670
tweets from 10,498 users (cf. the Scottish refer-
endum set IT with 59,664 tweets and 18,589 users
in Shoemark et al. (2017)). 36 referendum-related
hashtags appear in the filtered dataset. They are
shown with their frequencies (including variants)
in Table 1 (cf. the 47 hashtags and similar fre-
quency distribution in Table 1 of Shoemark et al.
(2017)).

To address the control condition, all authors of

2A preliminary check of our data revealed that the earliest
referendum discussions began in January, 2017.

3Authors have a reading knowledge of Spanish. For edge
cases we consulted news articles relating to the hashtag.
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tweets in the CT dataset were collected to form a
set U , and all other tweets in T written by these
users were extracted into a control dataset (XT) of
45,222 tweets (cf. the 693,815 control tweets in
Table 6 of Shoemark et al. (2017)).

The CT dataset is very balanced with respect
to the number of tweets per user: only four users
contribute over ten tweets (max = 14) and only 16
have more than five. The XT dataset also has only
a few “power” users, such that nine users have
over 1,000 tweets (max = 3,581) and a total of
173 have over 100 tweets. Since the results are
macro-averaged over all users, these few power
users should not significantly distort the findings.

Language Identification. This study compares
variation between two distinct languages, Catalan
and Spanish. We used the langid language classifi-
cation package (Lui and Baldwin, 2012), based on
character n-gram frequencies, to identify the lan-
guage of all tweets in CT and XT. Tweets that were
not classified as either Spanish or Catalan with at
least 90% confidence were discarded. This thresh-
old was chosen by manual inspection of the langid
output. In the referendum dataset CT (control
set XT), langid confidently labeled 4,014 (56,892)
tweets as Spanish and 2,366 (10,178) as Catalan.
To address the possibility of code-mixing within
tweets, the first two authors manually annotated
a sample of 100 tweets, of which half were con-
fidently labeled as Spanish, and the other half as
Catalan. They found only two examples of poten-
tial code-mixing, both of Catalan words in Spanish
text.

4 Catalan Usage and Political Stance

The first research question concerns political
stance: do pro-independence users tweet in Cata-
lan at a higher rate than anti-independence users?

We analyze the relationship between language
use and stance on independence under two con-
ditions, comparing the use of Catalan among
pro-independence users vs. anti-independence
users in (1) opinionated referendum-related tweets
(tweets with Pro/Anti hashtags); and (2) all tweets.
These conditions address the possibilities that
the language distinction is relevant for pro/anti-
independence Twitter users in political discourse
and outside of political discourse, respectively.

Method. The first step is to divide the Twitter
users in U into pro-independence (PRO) and anti-

Tweets with All tweets
Pro/Anti hashtags

Group PRO ANTI PRO ANTI
# Users 713 242 1,011 312
# Tweets 858 288 44,229 22,841

Table 2: Tweet and user counts for the stance study.

Tweets with All tweets
Pro/Anti hashtags

p̂pro 0.3136 0.2772
p̂anti 0.0613 0.0586
d 0.2523 0.2186
p-value < 10−5 < 10−5

Table 3: Results of the stance study. d = p̂pro − p̂anti.

independence (ANTI) groups. First, the propor-
tion of tweets from each user that include a pro-

independence hashtag is computed as N
(u)
pro

N
(u)
pro +N

(u)
anti

,

whereN (u)
pro (N (u)

anti) is the count of tweets from user
u that contain a pro- (anti-) independence hashtag.
The PRO user set (Upro) includes all users whose
pro-independence proportion was above or equal
to 75%, and the ANTI user set (Uanti) includes all
users whose pro-independence proportion was be-
low or equal to 25%. The counts of users and
tweets identified as either Spanish or Catalan are
presented in Table 2.

To measure Catalan usage, let n(u)CA and n(u)ES de-
note the counts of Catalan and Spanish tweets user
u posted, respectively. We quantify Catalan us-

age using the proportion p̂(u) = n
(u)
CA

n
(u)
CA +n

(u)
ES

, com-

puting the macro-average over each group UG’s
members to produce p̂G = 1

|UG|
∑

u∈UG p̂
(u). The

test statistic is then the difference in Catalan usage
between the pro- and anti-independence groups,
d = p̂pro − p̂anti.

To determine significance, the users are ran-
domly shuffled between the two groups to recom-
pute d over 100,000 iterations. The p-value is the
proportion of permutations in which the random-
ized test statistic was greater than or equal to the
original test statistic from the unpermuted data.

Results. Catalan is used more often among the
pro-independence users compared to the anti-
independence users, across both the hashtag-
only and all-tweet conditions. Table 3 shows
that the proportion of tweets in Catalan for pro-
independence users (p̂pro) is significantly higher
than the proportion for anti-independence users
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(p̂anti). This is consistent with Shoemark et al.
(2017), who found more Scots usage among pro-
independence users (d = 0.00555 for pro/anti
tweets, d = 0.00709 for all tweets). The relative
differences between the groups are large: in the
all-tweet condition, p̂pro is five times greater than
p̂anti, whereas Shoemark et al. found a twofold
difference (p̂pro = 0.01443 versus p̂anti = 0.00734
for all-tweet condition). All raw proportions are
two orders of magnitude greater than those in the
Scottish study, a result of the denser language vari-
able used in this study (full-tweet code-switching
vs. intermittent code-mixing).

5 Catalan Usage, Topic, and Audience

One way to explain the variability in Catalan us-
age is through topic-induced variation, which pro-
poses that people adapt their language style in re-
sponse to a shift in topic (Rickford and McNair-
Knox, 1994). This leads to our second research
question: is Catalan more likely to be used in dis-
cussions of the referendum than in other topics?
This analysis is conducted under three conditions.
The first two conditions compare Catalan usage in
referendum-hashtag tweets (pro, anti, and neutral)
against (1) all tweets; and (2) tweets that contain
a non-referendum hashtag. This second condition
is meant to control for the general role of hash-
tags in reaching a wider audience (Pavalanathan
and Eisenstein, 2015), and its results motivate the
third analysis, comparing (3) @-reply tweets with
hashtag tweets.

5.1 Referendum Hashtags

Method. We extract all users in U who have
posted at least one referendum-related tweet and
at least one tweet unrelated to the referendum into
a new set, UR. Tweet and user counts for all
conditions are provided in Table 4. The small
numbers are a result of the condition require-
ment and the language constraint (tweets must be
identified as Spanish or Catalan with 90% con-
fidence). For a user u, we denote the propor-
tion of u’s referendum-related tweets written in
Catalan by p̂(u)C , and the proportion of u’s control
tweets written in Catalan by p̂(u)X . We are inter-
ested in the difference between these two propor-
tions d(u) = p̂

(u)
C − p̂

(u)
X and its average across all

users d̄UR = 1
|UR|

∑
u∈UR d

(u). Under the null hy-
pothesis that Catalan usage is unrelated to topic,
d̄UR would be equal to 0, which we test for signif-

Treatment set Ref. hash Ref. hash Replies
Control set All tweets All hash All hash

Users 772 548 654
Treatment tweets 887 656 6225
Control tweets 31,151 13,954 10,319

Table 4: Tweet and user counts for each condition in
the topic/audience study. ‘hash’ stands for ‘tweets with
hashtags’.

Treatment set Ref. hash Ref. hash Replies
Control set All tweets All hash All hash

d̄UR 0.033 0.018 −0.031
Standard error 0.011 0.011 0.011
t-statistic 3.02 1.59 −2.79
p-value 0.002 0.111 0.005

Table 5: Results of the topic/audience study. d̄UR is
the difference in rate of Catalan use between treatment
settings and control settings, averaged across users.

icance using a one-sample t-test.

Results. Our results, presented in the middle
columns of Table 5, show that users tweet in
Catalan at a significantly higher rate in referen-
dum tweets than in all control tweets (first re-
sults column), but no significant difference was
observed in the control condition where tweets
include at least one hashtag (second results col-
umn). The lack of a significant difference between
referendum-related hashtags and other hashtags
suggests that the topic being discussed is not as
central in choosing one’s language, compared with
the audience being targeted.

Our second result is the opposite of the prior
finding that there were significantly fewer Scots
words in referendum-related tweets than in con-
trol tweets (cf. Table 7 in Shoemark et al. (2017);
d̄u = −0.0015 for all controls). This suggests that
Catalan may serve a different function than Scots
in terms of political identity expression. Rather
than suppressing their use of Catalan in broadcast
tweets, users increase their Catalan use, perhaps
to signal their Catalonian identity to a broader au-
dience. This is supported by literature highlight-
ing the integral role Catalan plays in the Catalo-
nian national narrative (Crameri, 2017), as well as
the relatively high proportion of Catalan speakers
in Catalonia: 80.4% of the population has speak-
ing knowledge of Catalan (Government of Cat-
alonia, 2013), versus 30% population of Scotland
with speaking knowledge of Scots (Scots Lan-
guage Centre, 2011). There are also systemic dif-

139



ferences between the political settings of the two
cases: the Catalonian referendum had much larger
support for separation among those who voted
(92% in Catalonia vs. 45% in Scotland) (Fother-
ingham, 2017; Jeavens, 2014). These factors sug-
gest a different public perception of national iden-
tity in the two regions within the context of the ref-
erenda, resulting in different motivations behind
language choice.

5.2 Reply Tweets

Earlier work has highlighted the role of hashtags
and @-replies as affordances for selecting large
and small audiences, and their interaction with the
use of non-standard vocabulary (Pavalanathan and
Eisenstein, 2015). To test the role of audience size
in Catalan use, we compare the proportion of Cata-
lan in @-reply tweets against hashtag tweets.

Method. In this analysis, we take the treatment
set to be all tweets made by users in UR which
contain an @-reply but not a hashtag (narrow audi-
ence), and control against all tweets which contain
a hashtag but not an @-reply (wide audience).

Results. The results in the rightmost column of
Table 5 demonstrate a significant tendency to-
ward less Catalan use in @-replies than in hash-
tag tweets. This trend supports the hypothesis that
Catalan is intended for a wider audience.

This effect may also be explained by a subset of
reply tweets in political discourse being targeted
at national figures, possibly seeking to direct the
message at the target’s followers rather than to
engage in discussion with the target. For exam-
ple, one of the reply-tweets addresses a Spanish
politician (“user1”) in a conversation about a re-
cent court case: “@user1 @user2 What justice
are you talking about? What can a JUDGE like
this impart?”4. The same writer uses Catalan in a
more broadcast-oriented message: “Enough [be-
ing] dumb! We’ll get to work and do not divert
us from our way. First independence, then what
is needed! My part; #CatalonianRepublic”5. This
provides a new perspective on the earlier finding
by Pavalanathan and Eisenstein (2015): by reply-
ing to tweets from well-known individuals, it may

4@user1 @user2 De que justı́cia hablas? De la que pueda
impartir un JUEZ como este?

5Prou rucades! Anem per feina i no ens desviem del camı́.
El primer la independència, després el que calgui! El meu
parti; #republicacatalana

be possible to reach a large audience, similar to the
use of popular hashtags.

6 Conclusion

This study demonstrates the association of code-
switching with political stance, topic and audi-
ence, in the context of a political referendum. We
corroborate prior work by showing that the use
of a minority language is associated with pro-
independence political sentiment, and we also pro-
vide a result in contrast to prior work, that the
use of a minority language is associated with a
broader intended audience. This study extends the
setting of code-switching from everyday conversa-
tion into specifically political conversation, which
is subject to different expectations and constraints.

This study does not use geographic signals, be-
cause the sparsity of geotagged tweets prevented
us from restricting the scope to data generated in
Catalonia proper. Another potential limitation is
that assumption that political hashtags are robust
signals for political stance. Other work has shown
that political hashtags can be co-opted by oppos-
ing parties (Stewart et al., 2017).

Our findings extend prior work on political use
of Scots words on the inter-speaker level and
Scots-English code-mixing on the intra-speaker
level to examining language choice and code-
switching, respectively. Further work is required
to reconcile our results with prior work on topic
differences and audience size (Pavalanathan and
Eisenstein, 2015). Future work may also com-
pare the Catalonian situation with multilingual so-
cieties in which a minority language is discour-
aged (Karrebæk, 2013), or in which the languages
are more equally distributed (Blommaert, 2011).
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Abstract
Non-projective parsing can be useful to han-
dle cycles and reentrancy in AMR graphs. We
explore this idea and introduce a greedy left-
to-right non-projective transition-based parser.
At each parsing configuration, an oracle de-
cides whether to create a concept or whether to
connect a pair of existing concepts. The algo-
rithm handles reentrancy and arbitrary cycles
natively, i.e. within the transition system itself.
The model is evaluated on the LDC2015E86
corpus, obtaining results close to the state of
the art, including a Smatch of 64%, and show-
ing good behavior on reentrant edges.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic representation language to map the mean-
ing of English sentences into directed, cycled, la-
beled graphs (Banarescu et al., 2013). Graph ver-
tices are concepts inferred from words. The con-
cepts can be represented by the words themselves
(e.g. dog), PropBank framesets (Palmer et al.,
2005) (e.g. eat-01), or keywords (like named
entities or quantities). The edges denote relations
between pairs of concepts (e.g. eat-01 :ARG0
dog). AMR parsing integrates tasks that have usu-
ally been addressed separately in natural language
processing (NLP), such as named entity recogni-
tion (Nadeau and Sekine, 2007), semantic role la-
beling (Palmer et al., 2010) or co-reference res-
olution (Ng and Cardie, 2002; Lee et al., 2017).
Figure 1 shows an example of an AMR graph.

Several transition-based dependency parsing al-
gorithms have been extended to generate AMR.
Wang et al. (2015) describe a two-stage model,
where they first obtain the dependency parse of
a sentence and then transform it into a graph.
Damonte et al. (2017) propose a variant of the
ARC-EAGER algorithm to identify labeled edges
between concepts. These concepts are identified

"Earth"

"Earth" name

ARG1 quantpolarity

prince  arrived-01  planet  surprise-01  -  see-01  any  person

time

ARG0

ARG1

ARG4

ARG0

wiki name

op1

Figure 1: AMR graph for ‘When the prince arrived
on the Earth, he was surprised not to see any people’.
Words can refer to concepts by themselves (green),
be mapped to PropBank framesets (red) or be broken
down into multiple-term/non-literal concepts (blue).
Prince plays different semantic roles.

using a lookup table and a set of rules. A re-
stricted subset of reentrant edges are supported by
an additional classifier. A similar configuration is
used in (Gildea et al., 2018; Peng et al., 2018),
but relying on a cache data structure to handle
reentrancy, cycles and restricted non-projectivity.
A feed-forward network and additional hooks are
used to build the concepts. Ballesteros and Al-
Onaizan (2017) use a modified ARC-STANDARD

algorithm, where the oracle is trained using stack-
LSTMs (Dyer et al., 2015). Reentrancy is handled
through SWAP (Nivre, 2009) and they define addi-
tional transitions intended to detect concepts, enti-
ties and polarity nodes.

This paper explores unrestricted non-projective
AMR parsing and introduces AMR-COVINGTON,
inspired by Covington (2001). It handles arbitrary
non-projectivity, cycles and reentrancy in a natu-
ral way, as there is no need for specific transitions,
but just the removal of restrictions from the orig-
inal algorithm. The algorithm has full coverage
and keeps transitions simple, which is a matter of
concern in recent studies (Peng et al., 2018).
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2 Preliminaries and Notation

Notation We use typewriter font for con-
cepts and their indexes (e.g. dog or 1), regular
font for raw words (e.g. dog or 1), and a bold style
font for vectors and matrices (e.g. v, W).
Covington (2001) describes a fundamental algo-
rithm for unrestricted non-projective dependency
parsing. The algorithm can be implemented as a
left-to-right transition system (Nivre, 2008). The
key idea is intuitive. Given a word to be processed
at a particular state, the word is compared against
the words that have previously been processed, de-
ciding to establish or not a syntactic dependency
arc from/to each of them. The process continues
until all previous words are checked or until the
algorithm decides no more connections with pre-
vious words need to be built, then the next word is
processed. The runtime is O(n2) in the worst sce-
nario. To guarantee the single-head and acyclicity
conditions that are required in dependency pars-
ing, explicit tests are added to the algorithm to
check for transitions that would break the con-
straints. These are then disallowed, making the
implementation less straightforward.

3 The AMR-Covington algorithm

The acyclicity and single-head constraints are not
needed in AMR, as arbitrary graphs are allowed.
Cycles and reentrancy are used to model seman-
tic relations between concepts (as shown in Figure
1) and to identify co-references. By removing the
constraints from the Covington transition system,
we achieve a natural way to deal with them.1

Also, AMR parsing requires words to be trans-
formed into concepts. Dependency parsing oper-
ates on a constant-length sequence. But in AMR,
words can be removed, generate a single concept,
or generate several concepts. In this paper, addi-
tional lookup tables and transitions are defined to
create concepts when needed, following the cur-
rent trend (Damonte et al., 2017; Ballesteros and
Al-Onaizan, 2017; Gildea et al., 2018).

3.1 Formalization
Let G=(V,E) be an edge-labeled directed graph
where: V ={0,1,2, . . . ,M} is the set of concepts
andE = V ×E×V is the set of labeled edges, we
will denote a connection between a head concept

1This is roughly equivalent to going back to the naive
parser called ESH in (Covington, 2001), which has not seen
practical use in parsing due to the lack of these constraints.

i ∈ V and a dependent concept j ∈ V as i l−→ j,
where l is the semantic label connecting them.

The parser will process sentences from left to
right. Each decision leads to a new parsing con-
figuration, which can be abstracted as a 4-tuple
(λ1, λ2, β, E) where:

• β is a buffer that contains unprocessed words.
They await to be transformed to a concept, a
part of a larger concept, or to be removed. In
b|β, b represents the head of β, and it option-
ally can be a concept. In that case, it will be
denoted as b.

• λ1 is a list of previously created concepts that
are waiting to determine its semantic relation
with respect to b. Elements in λ1 are con-
cepts. In λ1|i, i denotes its last element.

• λ2 is a list that contains previously created
concepts for which the relation with b has al-
ready been determined. Elements in λ2 are
concepts. In j|λ2, j denotes the head of λ2.

• E is the set of the created edges.

Given an input sentence, the parser starts at an
initial configuration cs = ([0], [], 1|β, {}) and will
apply valid transitions until a final configuration
cf is reached, such that cf = (λ1, λ2, [], E). The
set of transitions is formally defined in Table 1:

• LEFT-ARCl: Creates an edge b
l−→ i. i is

moved to λ2.

• RIGHT-ARCl: Creates an edge i l−→ b. i is
moved to λ2.

• SHIFT: Pops b from β. λ1, λ2 and b are ap-
pended.

• NO ARC: It is applied when the algorithm
determines that there is no semantic relation-
ship between i and b, but there is a relation-
ship between some other node in λ1 and b.

• CONFIRM: Pops b from β and puts the con-
cept b in its place. This transition is called to
handle words that only need to generate one
(more) concept.

• BREAKDOWNα: Creates a concept b from b,
and places it on top of β, but b is not popped,
and the new buffer state is b|b|β. It is used
to handle a word that is going to be mapped
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Transitions Step t Step t+ 1

LEFT-ARCl (λ1|i, λ2,b|β,E) (λ1,i|λ2,b|β,E ∪ {b l−→ i})
RIGHT-ARCl (λ1|i, λ2,b|β,E) (λ1,i|λ2,b|β,E ∪ {i l−→ b})
MULTIPLE-ARCl1,l2 (λ1|i, λ2,b|β,E) (λ1,i|λ2,b|β,E ∪ {b l−→ i} ∪ {i l2−→ b})
SHIFT (λ1, λ2,b|β,E) (λ1 · λ2|b, [], β, E)
NO-ARC (λ1|i, λ2, β, E) (λ1,i|λ2, β, E)
CONFIRM (λ1, λ2, b|β,E) (λ1, λ2,b|β,E)
BREAKDOWNα (λ1, λ2, b|β,E) (λ1, λ2,b|b|β,E)
REDUCE (λ1, λ2, b|β,E) (λ1, λ2, β, E)

Table 1: Transitions for AMR-COVINGTON

to multiple concepts. To guarantee termi-
nation, BREAKDOWN is parametrized with a
constant α, banning generation of more than
α consecutive concepts by using this opera-
tion. Otherwise, concepts could be generated
indefinitely without emptying β.

• REDUCE: Pops b from β. It is used to remove
words that do not add any meaning to the sen-
tence and are not part of the AMR graph.

LEFT and RIGHT-ARC handle cycles and reen-
trancy with the exception of cycles of length 2
(which only involve i and b). To assure full
coverage, we include an additional transition:
MULTIPLE-ARC(l1,l2) that creates two edges b l1−→
i and i

l2−→ b. i is moved to λ2. MULTIPLE-
ARCs are marginal and will not be learned in prac-
tice. AMR-COVINGTON can be implemented with-
out MULTIPLE-ARC, by keeping i in λ1 after cre-
ating an arc and using NO-ARC when the parser
has finished creating connections between i and
b, at a cost to efficiency as transition sequences
would be longer. Multiple edges in the same direc-
tion between i and b are handled by representing
them as a single edge that merges the labels.

Example Table 2 illustrates a valid transition se-
quence to obtain the AMR graph of Figure 1.

3.2 Training the classifiers
The algorithm relies on three classifiers: (1) a tran-
sition classifier, Tc, that learns the set of transitions
introduced in §3.1, (2) a relation classifier, Rc, to
predict the label(s) of an edge when the selected
action is a LEFT-ARC, RIGHT-ARC or MULTIPLE-
ARC and (3) a hybrid process (a concept classi-
fier, Cc, and a rule-based system) that determines
which concept to create when the selected action
is a CONFIRM or BREAKDOWN.

Preprocessing Sentences are tokenized and
aligned with the concepts using JAMR (Flanigan
et al., 2014). For lemmatization, tagging and de-
pendency parsing we used UDpipe (Straka et al.,
2016) and its English pre-trained model (Zeman
et al., 2017). Named Entity Recognition is han-
dled by Stanford CoreNLP (Manning et al., 2014).

Architecture We use feed-forward neural net-
works to train the tree classifiers. The transition
classifier uses 2 hidden layers (400 and 200 input
neurons) and the relation and concept classifiers
use 1 hidden layer (200 neurons). The activation
function in hidden layers is a relu(x)=max(0, x)
and their output is computed as relu(Wi ·xi+ bi)
whereWi and bi are the weights and bias tensors to
be learned and xi the input at the ith hidden layer.
The output layer uses a softmax function, com-

puted as P (y = s|x) = ex
Tθs

∑S
s′=1 e

xTθs′
. All classi-

fiers are trained in mini-batches (size=32), using
Adam (Kingma and Ba, 2015) (learning rate set
to 3e−4), early stopping (no patience) and dropout
(Srivastava et al., 2014) (40%). The classifiers are
fed with features extracted from the preprocessed
texts. Depending on the classifier, we are using
different features. These are summarized in Ap-
pendix A (Table 5), which also describes (B) other
design decisions that are not shown here due to
space reasons.

3.3 Running the system

At each parsing configuration, we first try to find a
multiword concept or entity that matches the head
elements of β, to reduce the number of BREAK-
DOWNs, which turned out to be a difficult transi-
tion to learn (see §4.1). This is done by looking
at a lookup table of multiword concepts2 seen in

2The most frequent subgraph.
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λ1 λ2 β Action (times)
w, t, p REDUCE×21
p, a, o CONFIRM2

p, a, o SHIFT3

p a, o, t CONFIRM4

p a, o, t LEFT-ARC5

p a, o, t SHIFT6

p, a o, t, E REDUCE×27
p, a E, h, w BREAKDOWN8

p, a ‘E’, E, h SHIFT9

p, a, ‘E’ E, h, w BREAKDOWN10

p, a, ‘E’ ‘E’, h, w SHIFT11

a, ‘E’, ‘E’ E, h, w BREAKDOWN12

a, ‘E’, ‘E’ n, h, w LEFT-ARC12

a, ‘E’ ‘E’ n, h, w SHIFT13

‘E’, ‘E’, n E, h, w CONFIRM14

‘E’, ‘E’, n p2, h, w LEFT-ARC15

a, ‘E’, ‘E’ n, p2, h, w NO-ARC16

p, a, ‘E’ ‘E’, n, p2, h, w LEFT-ARC17

p, a ‘E’, ‘E’, n, p2, h, w SHIFT18

‘E’, n, p2 h, w, s REDUCE×219
‘E’, n, p2 s, n, t CONFIRM20

‘E’, n, p2 s, n, t LEFT-ARC21

‘E’, ‘E’, n p2 s, n, t NO-ARC×322
p, a ‘E’, ‘E’, n s, n, t LEFT-ARC×223

p, a, ‘E’ s, n, t SHIFT24

n, p2, s n, t, s2 CONFIRM25

n, p2, s -, t, s2 SHIFT26

p2, s, - t, s2, a2 REDUCE27

p2, s, - s2, a2, p3 CONFIRM28

p2, s, - s2, a2, p3 LEFT-ARC29

n, p2, s - s2, a2, p3 NO-ARC ×530
p a, ‘E’, ‘E’ s2, a2, p3 LEFT-ARC31

p, a, ‘E’ s2, a2, p3 SHIFT32

s, -, s2 a2, p3 CONFIRM33

s, -, s2 a2, p3 SHIFT34

-, s2, a2 p3 CONFIRM35

-, s2, a2 p3 LEFT-ARC36

s, -, s2 a2 p3 RIGHT-ARC37

s2, a2, p3 SHIFT38

Table 2: Sequence of gold transitions to obtain the
AMR graph for the sentence ‘When the prince arrived
on the Earth, he was surprised not to see any people’,
introduced in Figure 1. For brevity, we represent words
(and concepts) by their first character (plus an index if
it is duplicated) and we only show the top three words
for λ1, λ2 and β. Steps from 20 to 23(2) and from 28
to 31 manage the reentrant edges for prince (p) from
surprise-01 (s) and see-01 (s2).

the training set and a set of rules, as introduced in
(Damonte et al., 2017; Gildea et al., 2018).

We then invoke Tc and call the corresponding
subprocess when an additional concept or edge-
label identification task is needed.

Concept identification If the word at the top
of β occurred more than 4 times in the training
set, we call a supervised classifier to predict the
concept. Otherwise, we first look for a word-to-
concept mapping in a lookup table. If not found, if
it is a verb, we generate the concept lemma-01,
and otherwise lemma.

Edge label identification The classifier is in-
voked every time an edge is created. We use the
list of valid ARGs allowed in propbank framesets
by Damonte et al. (2017). Also, if p and o are a
propbank and a non-propbank concept, we restore
inverted edges of the form o

l-of−−−→ p as o l−→ p.

4 Methods and Experiments

Corpus We use the LDC2015E86 corpus and its
official splits: 16 833 graphs for training, 1 368
for development and 1 371 for testing. The final
model is only trained on the training split.

Metrics We use Smatch (Cai and Knight, 2013)
and the metrics from Damonte et al. (2017).3

Sources The code and the pretrained model
used in this paper can be found at https://
github.com/aghie/tb-amr.

4.1 Results and discussion
Table 3 shows accuracy of Tc on the development
set. CONFIRM and REDUCE are the easiest transi-
tions, as local information such as POS-tags and
words are discriminative to distinguish between
content and function words. BREAKDOWN is the
hardest action.4 In early stages of this work, we
observed that this transition could learn to cor-
rectly generate multiple-term concepts for named-
entities that are not sparse (e.g. countries or peo-
ple), but failed with sparse entities (e.g. dates or
percent quantities). Low performance on iden-
tifying them negatively affects the edge metrics,
which require both concepts of an edge to be cor-
rect. Because of this and to identify them prop-
erly, we use the mentioned complementary rules
to handle named entities. RIGHT-ARCs are harder
than LEFT-ARCs, although the reason for this is-
sue remains as an open question for us. The per-
formance for NO-ARCs is high, but it would be in-
teresting to achieve a higher recall at a cost of a
lower precision, as predicting NO-ARCs makes the
transition sequence longer, but could help iden-
tify more distant reentrancy. The accuracy of Tc
is ∼86%. The accuracy of Rc is ∼79%. We do

3It is worth noting that the calculation of Smatch and met-
rics derived from it suffers from a random component, as
they involve finding an alignment between predicted and gold
graphs with an approximate algorithm that can produce a sub-
optimal solution. Thus, as in previous work, reported Smatch
scores may slightly underestimate the real score.

4This transition was trained/evaluated for non named-
entity words that generated multiple nodes, e.g. father, that
maps to have-rel-role-91 :ARG2 father.
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Action Prec. Rec. F-score
LEFT-ARC 81.62 87.73 84.57
RIGHT-ARC 75.53 78.71 77.08
MULTIPLE-ARC 00.00 00.00 00.00
SHIFT 80.44 81.11 80.77
NO-ARC 89.71 86.71 88.18
CONFIRM 84.91 96.11 90.16
REDUCE 96.77 91.53 94.08
BREAKDOWN 85.09 50.23 63.17

Table 3: Tc scores on the development set.

Metric F W F’ D P Ours
Smatch 58 63 67 64 64 64
Unlabeled 61 69 69 69 - 68
No-WSD 58 64 68 65 - 65
NER 75 75 79 83 - 83
Wiki 0 0 75 64 - 70
Negations 16 18 45 48 - 47
Concepts 79 80 83 83 - 83
Reentrancy 38 41 42 41 - 44
SRL 55 60 60 56 - 57

Table 4: F-score comparison with F (Flanigan et al.,
2014), W (Wang et al., 2015), F’ (Flanigan et al., 2016),
D (Damonte et al., 2017), P (Peng et al., 2018). D, P
and our system are left-to-right transition-based.

not show the detailed results since the number of
classes is too high. Cc was trained on concepts
occurring more than 1 time in the training set, ob-
taining an accuracy of∼83%. The accuracy on the
development set with all concepts was ∼77%.

Table 4 compares the performance of our sys-
tems with state-of-the-art models on the test set.
AMR-COVINGTON obtains state-of-the-art results
for all the standard metrics. It outperforms the rest
of the models when handling reentrant edges. It is
worth noting that D requires an additional classi-
fier to handle a restricted set of reentrancy and P
uses up to five classifiers to build the graph.

Discussion In contrast to related work that re-
lies on ad-hoc procedures, the proposed algorithm
handles cycles and reentrant edges natively. This
is done by just removing the original constraints of
the arc transitions in the original Covington (2001)
algorithm. The main drawback of the algorithm
is its computational complexity. The transition
system is expected to run in O(n2), as the orig-
inal Covington parser. There are also collateral
issues that impact the real speed of the system,
such as predicting the concepts in a supervised

way, given the large number of output classes (dis-
carding the less frequent concepts the classifier
needs to discriminate among more than 7 000 con-
cepts). In line with previous discussions (Damonte
et al., 2017), it seems that using a supervised feed-
forward network to predict the concepts does not
lead to a better overall concept identification with
respect of the use of simple lookup tables that pick
up the most common node/subgraph. Currently,
every node is kept in λ, and it is available to be part
of new edges. We wonder if only storing in λ the
head node for words that generate multiple-node
subgraphs (e.g. for the word father that maps to
have-rel-role-91 :ARG2 father, keep-
ing in λ only the concept have-rel-role-91)
could be beneficial for AMR-COVINGTON.

As a side note, current AMR evaluation involves
elements such as neural network initialization,
hooks and the (sub-optimal) alignments of evalu-
ation metrics (e.g. Smatch) that introduce random
effects that were difficult to quantify for us.

5 Conclusion

We introduce AMR-COVINGTON, a non-projective
transition-based parser for unrestricted AMR. The
set of transitions handles reentrancy natively. Ex-
periments on the LDC2015E86 corpus show that
our approach obtains results close to the state of
the art and a good behavior on re-entrant edges.

As future work, AMR-COVINGTON produces
sequences of NO-ARCs which could be short-
ened by using non-local transitions (Qi and Man-
ning, 2017; Fernández-González and Gómez-
Rodrı́guez, 2017). Sequential models have
shown that fewer hooks and lookup tables are
needed to deal with the high sparsity of AMR

(Ballesteros and Al-Onaizan, 2017). Simi-
larly, BIST-COVINGTON (Vilares and Gómez-
Rodrı́guez, 2017) could be adapted for this task.
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A Supplemental Material

Table 5 indicates the features used to train the dif-
ferent classifiers. Concept features are random-
ized by ε = 2e−3 to an special index that refers
to an unknown concept during the training
phase. This helps learn a generic embedding for
unseen concepts in the test phase. Also, concepts
that occur only one time in the training set are not
considered as output classes by Cc.

Internal and external (from GloVe) word em-
bedding sizes are set to 100. The size of the con-
cept embedding is set to 50. The rest of the embed-
dings size are set to 20. The weights are initialized
to zero.

B Additional design decisions

We try to list more in detail the main hooks and de-
sign decisions followed in this work to mitigate the
high sparsity in Abstract Meaning Representation
which, at least in our experience, was a struggling
issue. These decisions mainly affect the mapping
from words to multiple-concept subgraphs.

• We identify named entities and nationalities,
and update the training configurations to gen-
erate the corresponding subgraph by applying a
set of hooks.5 The intermediate training config-
5The hooks are based on the text file resources for coun-

tries, cities, etc, released by Damonte et al. (2017) and an
analysis of how named entities are generated in the train-
ing/development set.

Features Tc Rc Cc
From β0, β1, λ10 , λ11

POS X X X
W X X X
EW X X X
C X X X
ENTITY X X X
LMh X X
LMc X X
LMcc X X
RMh X X
RMc X X
RMcc X X
NH, NC X X
DEPTH X X X
NPUNKT X X
HL X X
CT X X
G X
Labels from the predicted
dependency tree
D(bj , ik) ∀j, k j ∈ [0, 1] X X X
∧ k ∈ [0, 1, 2, 3]

Table 5: Set of proposed features for each classifier.
POS, W, C, ENTITY are part-of-speech tag, word, con-
cept and entity embeddings. EW are pre-trained exter-
nal word embeddings, fine-tuned during the training
phase (http://nlp.stanford.edu/data/glove.6B.zip, 100
dimensions). LM and RM are the leftmost and the right-
most function; and h, c, cc represent head, child and
grand-child concepts of a concept; so, for example,
LMc stands for the leftmost child of the concept. NH
and NC are the number of heads and children of a con-
cept. NPUNKT indicates the number of ‘.’, ‘;’, ‘:’, ‘?’,
‘!’ that have already been processed. HL denotes the
labels of the last assigned head. CT indicates the type
of concept (constant, propbank frameset, other). G in-
dicates if a concept was generated using a CONFIRM or
BREAKDOWN. D denotes the dependency label exist-
ing in the dependency tree between the word at the jth
position in β and the kth last in λ1 and vice versa. The
word that generated a concept is still accessible after
creating the concept.

urations are not fed as samples to the classifier.
On early experiments it was observed that the
BREAKDOWN transition could acceptably learn
non-sparse named entities (e.g. countries and
nationalities), but failed on the sparse ones (e.g.
dates or money amounts). By processing the
named entities with hooks instead, the aim was
to make the parser familiar with the parsing con-
figurations that are obtained after applying the
hooks.

• Additionally, named-entity subgraphs and sub-
graphs coming from phrases (involving two or
more terms) from the training set are saved into
a lookup table. The latter ones had little impact.
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• We store in a lookup table some single-word ex-
pressions that generated multiple-concept sub-
graphs in the training set, based on simple
heuristics. We store words that denote a neg-
ative expression (e.g. undecided that maps to
decide-01 :polarity -). We store words
that always generated the same subgraph and
occurred more than 5 times. We also store cap-
italized single words that were not previously
identified as named entities.

• We use the verbalization list from Wang et al.
(2015) (another lookup table).

• When predicting a CONFIRM or BREAKDOWN

for an uncommon word, we check if that word
was mapped to a concept in the training set. If
not, we generate the concept lemma-01 if it is
a verb, otherwise lemma.

• Dates formatted as YYMMDD or YYYYM-
MDD are identified using a simple criterion (se-
quence of 6 or 8 digits) and transformed into
YYYY-MM-DD on the test phase, as they were
consistently misclassified as integer numbers in
the development set.

• We apply a set of hooks similar to (Damonte
et al., 2017) to determine if the predicted label
is valid for that edge.

• We forbid to generate the same concept twice
consecutively. Also, we set α = 4 for BREAK-
DOWNα.

• If a node is created, but it is not attached to any
head node, we post-process it and connect to the
root node.

• We assume multi-sentence graphs should con-
tain sentence punctuation symbols. If we pre-
dict a multi-sentence graph, but there is no
punctuation symbol that splits sentences, we
post-process the graph and transform the root
node into an AND node.
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Abstract
We present a computational model to detect
and distinguish analogies in meaning shifts
between German base and complex verbs.
In contrast to previous corpus-based studies,
a novel dataset demonstrates that “regular”
shifts represent the smallest class. Classifica-
tion experiments relying on a standard simi-
larity model successfully distinguish between
four types of shifts, with verb classes boosting
the performance, and affective features for ab-
stractness, emotion and sentiment representing
the most salient indicators.

1 Introduction

German particle verbs are complex verb struc-
tures such as anstrahlen ‘to beam/smile at’ that
combine a prefix particle (an) with a base verb
(strahlen ‘to beam’). They are highly ambiguous,
and they often trigger meaning shifts of the base
verbs (Springorum et al., 2013; Köper and Schulte
im Walde, 2016). More specifically, Springorum
et al. (2013) presented a manual corpus explo-
ration suggesting regular mechanisms in mean-
ing shifts from base verbs (BVs) to particle verbs
(PVs) that apply across a semantically coherent
set of BVs. For example, the two sound BVs
brummen ’to hum’ and donnern ’to rumble’ both
describe a displeasing loud noise. Combining
them with the particle auf, the PVs aufbrummen
and aufdonnern are near-synonyms in one of their
senses, roughly meaning ’to forcefully assign a
task’. In a similar vein, Morgan (1997) used
schematic diagrams to illustrate meaning shifts of
English complex verbs with the particle out.

The goal of this work is to provide a computa-
tional model of meaning shifts for German parti-
cle verbs. We define our task from the perspec-
tive of an analogy, comparing a BV pair with a
PV pair, cf. Figure 1. A BV–PV model of regu-
lar meaning shifts expects (i) semantic coherence

sim(BV1,BV2) between the two BVs (i.e., overlap
in a selected set of semantically salient features),
(ii) strong semantic similarity sim(PV1,PV2) be-
tween the PVs, and (iii) low semantic similarity
sim(BVi,PVi) between the corresponding BV–PV
pairs, where the shifts take place.

sim(BV2,PV2)

sim(BV1,PV1)

sim(BV1,BV2) sim(PV1,PV2)

BV1brummen PV1aufbrummen

PV2aufdonnernBV2donnern

Figure 1: Analogy model applied to BV–PV shifts.

In a similar vein, a rich tradition on computa-
tional work on analogies focuses on finding a re-
lational analogy in multiple choices as required by
the SAT Scholastic Aptitude Test (Turney, 2006,
2012; Speer et al., 2017). While the SAT questions
provide a limited set of possible answers, more re-
cent attention has been spent on open vocabulary
tasks of the form A:B::C:? (Mikolov et al., 2013;
Levy and Goldberg, 2014).

The contribution of our analogy model is two-
fold: (i) it makes a step forward from hand-
selected manual datasets of meaning shifts to
larger-scale automatic classification; and (ii) it
aims to deepen the linguistic insights into com-
plex verb meaning shifts. While we focus on Ger-
man particle verbs, we expect our explorations to
be applicable also to other types of meaning shifts
or languages. Most importantly, we show that (a)
there are variants of (ir)regular meaning shifts that
go beyond what was found in corpus-based explo-
rations; (b) generalisation via classification boosts
the strengths of salient verb features; and (c) affec-
tive features (i.e., abstractness, emotion and senti-
ment) play the predominant role in similarity mod-
els of meaning shifts.
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2 A Collection of BV–PV Analogies

As to our knowledge, no datasets of human-
annotated complex verb meaning shifts are avail-
able, apart from small-scale case studies (Springo-
rum et al., 2013). We therefore collected human
judgements for analogy combinations of BV–PV
pairs of the form

BV1 : PV1 :: BV2 : PV2

such as klappern:abklappern::klopfen:abklopfen.
We aimed for ≈200 analogies per particle type,
focusing on the four highly frequent particle types
ab, an, auf, aus. The target selection was re-
stricted to PV1/PV2 combinations with identical
particles, and where the two PVs were deemed
(near-)synonyms according to the German stan-
dard dictionary DUDEN1 or the German Wik-
tionary2, as we were interested in BV–PV analo-
gies with semantically highly similar PVs.

In total, we collected 794 analogy questions.3

The BV–PV pairs were distributed over four lists
according to the four particle types, and annotated
by five German native speakers with a background
in linguistics. To avoid a sense-specific bias, we
provided no contextual information and therefore
conducted the annotation on the type level. The
annotators were asked to classify the analogies
into four categories to distinguish between mean-
ing shifts in no/one/both BV–PV pairs:

1. COMP: no BV–PV pair has a mean-
ing shift, i.e., both PVs are composi-
tional regarding their BVs, and therefore all
four verbs are (near-)synonyms; example:
(ab)feilen::(ab)schleifen ‘to grind (off)’

2. ASYMCOMP: only one of the BV–PV pairs
undergoes a meaning shift; in this case, the
annotators also indicated that pair; example:
(auf)wühlen::(auf)graben lit. ‘to churn::dig
(up)’, where aufwühlen includes a strong
emotion component

3. SHIFTDIFF: both BV–PV pairs show
a meaning shift, but the BVs are
not semantically similar; example:
(aus)baden::(aus)bügeln ‘to pay for an
error’ with baden ‘to take a bath’ and bügeln
‘to iron’

1www.duden.de/suchen/dudenonline/
2https://www.wiktionary.org/
3The dataset is publicly available at www.ims.

uni-stuttgart.de/data/pv-meaning-shift.

4. SHIFTREG: both BV–PV pairs undergo a
meaning shift, and the BVs are semantically
similar; example: (an)graben::(an)baggern
‘to hit on so.’ with both graben and baggern
‘to dig’

For practical reasons, we merged the left/right
asymmetric cases ASYMCOMP such that the an-
notated meaning shift was always on the left-hand
side (by swapping the asymmetric-right pairs),
since these cases represent instances of the same
phenomenon, i.e., where just one of the pairs un-
derwent a meaning shift.

Despite a distinction into four categories per in-
stance, we obtained a moderate Fleiss’ κ agree-
ment of 0.43 as the mean across the four particles:

ab an auf aus
0

50

100

150 23

169
4

173

17
170

14
173

78

24

56 56

27

60

50 69

41
85

47 34

Comp Asym.Comp ShiftDiff ShiftReg

Figure 2: Number of majority class instances for four
meaning shift categories by particle type.

We transformed the annotations to actual class
assignments by removing all instances from the
dataset without a category majority, i.e., we only
included BV–PV analogy pairs where at least 3 out
of 5 annotators agreed on the shift category. We
assigned the majority decision as class label. The
final collection still contains 685 analogy pairs.

The distribution across the four particles and the
four categories is illustrated in Figure 2, examples
are listed in Table 1. While meaning shifts have
been observed across all four particle types, the
analogical case SHIFTREG mentioned in previous
corpus explorations represents the smallest class
overall (8.5%). For the particle an, the cases with
two meaning shifts (SHIFTDIFF+SHIFTREG) are
especially rare (16.2%).

A manual inspection revealed that etymology
and semantic change often led to opaque PVs an-
notated as SHIFTDIFF; an example is abkupfern
‘to plagiarise’. The origin of this meaning is based
on the 18th century engravers who etched replicas
of text and images into copper (Kupfer) plates.
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COMP ASYMCOMP SHIFTDIFF SHIFTREG

abfeilen::abschleifen abbauen::abmontieren abschreiben::abkupfern abstottern::abrattern
abkuppeln::abhängen abchecken::abprüfen abschweifen::abdriften abrauschen::abzischen
aneignen::anlernen anfeuern::anbrennen ankreiden::anlasten anheizen::anfeuern
anbrüllen::anschreien anhängen::anheften anfechten::angreifen anwerfen::anschmeißen
auftupfen::auftropfen aufdrehen::aufzwirbeln auftreiben::aufspüren aufwirbeln::aufrühren
auffuttern::aufessen aufmotzen::aufstylen aufkreuzen::auftauchen aufbrummen::aufdonnern
aufritzen::aufschlitzen aufwühlen::aufgraben auferlegen::aufbrummen aufkeimen::aufblühen
ausrupfen::ausjäten ausposaunen::ausplaudern ausfeilen::ausbrüten ausweinen::ausheulen
ausschnaufen::ausatmen aussaugen::auspumpen ausstechen::ausbremsen auskochen::ausbrüten

Table 1: Example of BV–PV analogies across the four meaning shift categories.

3 Representations of BV–PV Analogies

The parallelogram in Figure 1 illustrates the (dis-)
similarities between BVs and PVs that come into
play when distinguishing between the four types
of (non-)shifts in our dataset: COMP requires all
four sides in the parallelogram to provide strong
similarites; SHIFTREG requires the BVi–BVj and
the PVi–PVj sides to provide strong similarities,
and both BVi–PVi sides to provide strong dissim-
ilarities; etc. An obvious option to address the
classification of the BV–PV analogies is thus by
relying on standard cosine scores, when represent-
ing the verbs in a distributional semantic model
(DSM). The following paragraphs describe such
a basic cosine-similarity model that we used as a
baseline, as well as alternative features which we
added as potentially salient regarding our task.

3.1 Basic Distributional Similarity Model

We created a basic DSM to represent all BVs
and all PVs by using a corpus-derived 300-
dimensional vector representation. As corpus re-
source we relied on DECOW14AX, a German
web corpus containing 12 billion tokens (Schäfer
and Bildhauer, 2012; Schäfer, 2015). The verb
vectors were obtained by looking at all context
words within a symmetrical window of size 3.
We applied positive pointwise mutual information
(PPMI) feature weighting together with singular
value decomposition (SVD). Measuring the cosine
similarities between the BVs and PVs as suggested
by Figure 1 then represents our basic distributional
similarity model containing four cosine values.

Figure 3 looks into cosine values across com-
binations of meaning shift categories. Figure 3
(a) shows box plots for BV-PV pairs in the two
compositional categories vs. the meaning-shifted
categories. It illustrates that BV-PV combinations

with a meaning shift indeed have lower cosine val-
ues between BVs and PVs than BV-PV combina-
tions without meaning shifts. The similarity be-
tween BVs is expected to be higher for the reg-
ularly shifted cases, where the base verbs have
something in common, in contrast to the irregu-
lar cases. This is also confirmed, cf. Figure 3 (b).
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(b) sim(BVi,BVj)

Figure 3: Cosine distributions across categories.

3.2 Generalisation Models

Classes and clusters are powerful techniques to
generalise over unseen or infrequent events. We
therefore extended the basic similarity model by
adding class label features for the four involved
verbs. We compared three different classifica-
tions. (1) We used the 15 verb classes from Ger-
maNet (Hamp and Feldweg, 1997; Kunze, 2000).
For particle verbs not covered by GermaNet, we
used the existing verbs as a seed set and applied a
nearest-prototype (centroid) classifier to all other
BVs and PVs, with a centroid for each of the 15
classes. Thus we were able to assign class labels
to all verbs in our dataset. (2) For three out of our
four particle types (ab, an, auf ), we found existing
manual semantic classifications with 9, 8 and 11
classes, respectively (Lechler and Roßdeutscher,
2009; Kliche, 2011; Springorum, 2011). To ob-
tain class labels for all verbs, we applied the same
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nearest-centroid technique as for the GermaNet
classes. (3) We compared the two resource-based
methods with an unsupervised k-Means clustering
based on the verbs’ vector representations. Unlike
the other methods, k-Means learns the centroids
without manually defined seed assignments. We
set the number of clusters to k = 10, as this gran-
ularity was similar to the manual classifications.

3.3 Affect Models

A BV–PV meaning shift often involves a change
in emotion and/or sentiment. For example, while
the BV servieren ‘to serve’ is perceived as rather
neutral or slightly positive, the PV abservieren ‘to
dump sb.’ has a clearly negative meaning and cor-
relates with the emotion sadness. On the other
hand, the BV motzen ‘to grumble’ is associated
with a negative sentiment and the emotion anger,
while its PV aufmotzen ‘to shine up, soup up’ in-
dicates a positive change.

In a slightly different vein, non-literal word us-
age often correlates with the degree of abstract-
ness of the word’s contexts (Turney et al., 2011;
Tsvetkov et al., 2014; Köper and Schulte im
Walde, 2016). For example, the PV abschminken
with the BV schminken ‘to put on make-up’ has a
literal, very concrete meaning (‘to remove make-
up’) and also a shifted, very abstract non-literal
meaning (‘to forget about something’).

We enriched the basic similarity model by inte-
grating affective information from human-created
lexicons. Since affective datasets are typically
small-scale and mostly exist for English, we ap-
plied a cross-lingual approach (Smith et al., 2017)
to learn a linear transformation that aligns mono-
lingual vectors from two languages in a single vec-
tor space. We took off-the-shelf word represen-
tations4 for German and English that live in the
same semantic space, learned a regression model
based on the English data, and applied it to the
German data by relying on findings from Köper
and Schulte im Walde (2017), who showed that a
feed-forward neural network obtained a high cor-
relation with human-annotated ratings.

The procedure was applied to a range of affec-
tive norm datasets in isolation: The NRC Hashtag
Emotion Lexicon (Mohammad and Kiritchenko,
2015) contains emotional ratings for 17k words;
we used anger, disgust, fear, joy, and sadness.

4https://github.com/Babylonpartners/
fastText_multilingual

Warriner et al. (2013) collected 14k ratings for va-
lence and arousal. For concreteness, we relied on
the 40k ratings from Brysbaert et al. (2014). Fi-
nally, we used the 10k ratings for happiness from
Dodds et al. (2011). In total, we obtained nine af-
fective values for 2.2 million words.5

We added the affective features to our basic sim-
ilarity model by first looking up the 9-dimensional
affect vectors for all four verbs involved in an anal-
ogy, and then calculating for each of the four simi-
larities in the analogy parallelogram (Figure 1) the
element-wise differences between the nine affec-
tive dimensions of the respective two verbs, result-
ing in 4× 9 = 36 extra vector dimensions.

In addition to looking at the verbs’ affective val-
ues we also looked at the affect of the respective
context words: For each verb we created a second
9-dimensional vector with average affective values
across the 500 most associated context words, ac-
cording to PPMI. With respect to the four verbs in
the analogy, this resulted in another 4 × 9 = 36
extra vector dimensions.

We further added affect information restricted
to the common context words of the involved
verbs (red and blue intersections in Figure 4):
For each intersection of the two BVs and the
two PVs as well as the two BV–PV combina-
tions, we learned another 9-dimensional emotional
centroid, now only based on the shared context
words, and provided the element-wise differences
between the two centroids as a feature.

PV1 ∩ PV2 −BV1 ∩BV2.

BV1 BV2

PV1 PV2

PV1 ∩BV1 − PV2 ∩BV2.

BV1 BV2

PV1 PV2

Figure 4: Venn diagrams with intersections.

4 Experiments on BV–PV Analogies

Two classification scenarios were implemented: a
four-class distinction between our four shift cat-
egories (4-Classes), and a binary distinction be-
tween cases where both BV–PV pairs include a

5These ratings are also available at www.ims.
uni-stuttgart.de/data/pv-meaning-shift.

153



Concreteness

Anger

Arousal
Fear

Happiness

Joy

Sadness
Valency

Disgust

Base verb Particle verb

COMP: (ab)montieren

(to mount→ to dismount)

Concreteness

Anger

Arousal
Fear

Happiness

Joy

Sadness
Valency

Disgust

SHIFT: (ab)frühstücken

(to have breakfast→ to fob sb. off)

Concreteness

Anger

Arousal
Fear

Happiness

Joy

Sadness
Valency

Disgust

SHIFT: (ab)servieren

(to serve→ to dump sb.)

Figure 5: Changes in affect and emotion for one compositional and two shifted BV–PV pairs. The affect/emotion
values are based on the top associated context words according to PPMI.

meaning shift vs. BV–PV pairs including cases of
compositionality (Shift-vs-Comp).

We applied a supervised classification setting
based on support vector machines (SVMs) with an
RBF kernel (Chang and Lin, 2011), using 10-fold
cross-validation. Next to the similarity, generali-
sation and affect features, we provided the particle
type as a feature in all settings. Table 2 reports the
results across feature sets. As evaluation metric
we report accuracy and a macro-average (equally-
weighted) f-score (F1) over all classes.

4-Classes Shift-vs-Comp
Acc F1 Acc F1

Majority baseline 31.24 .12 60.29 .38
Basic Sim 40.73 .32 65.10 .60

Sim+GermaNet 43.36 .34 67.15 .59
Sim+ManClass 45.55 .36 69.05 .62
Sim+k-Means 52.99 .37 70.51 .66

Affect (full) 57.08 .44 76.49 .74
Affect only verbs 47.73 .37 69.05 .65
Affect only context 58.39 .45 78.54 .77

Combination 56.20 .44 77.08 .75

Table 2: Results for 4- and 2-class distinctions, re-
porting accuracy and macro-F1.

All models perform significantly6 better than
the majority baseline. In addition, the full and
the context-only affective models perform signif-
icantly better than the similarity models with and
without generalisation, even though the unsuper-
vised k-Means clustering improves the basic simi-
larity model significantly (Sim+k-Means). Finally,
the context-only affective model outperforms the
verb-only affective model. Interestingly, a combi-
nation of all features (Combination) does not per-
form better than the context-only affective model

6Significance relies on χ2 with p < 0.001.

in isolation.

A leave-one-out classification using the best
classifier Affect only context as starting point re-
vealed that most performance (accuracy) is lost
when removing the emotion fear (-2.77), followed
by the emotion joy (-1.46) and arousal (-0.88). In
contrast, features related to disgust showed no im-
pact on the overall performance.

Figure 5 illustrates that we can spot changes in
affect and emotion even on the verb level: For
three BV–PV verb pairs with particle ab, it plots
the nine affective and emotion ratings for both
verbs, after rescaling to an interval of [0, 10]. In
the compositional case (a) the PV is highly similar
to the BV in all dimensions, creating roughly the
same shape as the BV. In the shift cases (b) and (c),
the PVs are less concrete and evoke less happiness
and joy than the BVs, while they evoke more fear,
anger and sadness in comparison to their BVs.

5 Conclusion

This paper presented a computational model of
meaning shifts for German particle verbs. Re-
lying on a novel dataset, we found that shifts
were observed across all our four particle types,
but the analogical case mentioned in previous
corpus explorations only represented the smallest
class overall (8.5%). SVM models successfully
distinguished between shift categories, with verb
classes boosting standard cosine similarity perfor-
mance, and affective context features representing
the most salient indicators.
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Abstract

Sentence pair modeling is critical for many
NLP tasks, such as paraphrase identification,
semantic textual similarity, and natural lan-
guage inference. Most state-of-the-art neu-
ral models for these tasks rely on pretrained
word embedding and compose sentence-level
semantics in varied ways; however, few works
have attempted to verify whether we really
need pretrained embeddings in these tasks. In
this paper, we study how effective subword-
level (character and character n-gram) rep-
resentations are in sentence pair modeling.
Though it is well-known that subword mod-
els are effective in tasks with single sentence
input, including language modeling and ma-
chine translation, they have not been systemat-
ically studied in sentence pair modeling tasks
where the semantic and string similarities be-
tween texts matter. Our experiments show that
subword models without any pretrained word
embedding can achieve new state-of-the-art re-
sults on two social media datasets and compet-
itive results on news data for paraphrase iden-
tification.

1 Introduction

Recently, there have been various neural network
models proposed for sentence pair modeling tasks,
including semantic similarity (Agirre et al., 2015),
paraphrase identification (Dolan et al., 2004; Xu
et al., 2015), natural language inference (Bow-
man et al., 2015), etc. Most, if not all, of these
state-of-the-art neural models (Yin et al., 2016;
Parikh et al., 2016; He and Lin, 2016; Tomar et al.,
2017; Shen et al., 2017) have achieved the best
performances for these tasks by using pretrained
word embeddings, but results without pretraining
are less frequently reported or noted. In fact, we
will show that, even with fixed randomized word
vectors, the pairwise word interaction model (He
and Lin, 2016) based on contextual word vector

similarities can still achieve strong performance
by capturing identical words and similar surface
context features. Moreover, pretrained word em-
beddings generally have poor coverage in social
media domain where out-of-vocabulary rate often
reaches over 20% (Baldwin et al., 2013).

We investigated the effectiveness of subword
units, such as characters and character n-grams, in
place of words for vector representations in sen-
tence pair modeling. Though it is well-known that
subword representations are effective to model
out-of-vocabulary words in many NLP tasks with
a single sentence input, such as machine transla-
tion (Luong et al., 2015; Costa-jussà and Fonol-
losa, 2016), language modeling (Ling et al., 2015;
Vania and Lopez, 2017), and sequence labeling
(dos Santos and Guimarães, 2015; Plank et al.,
2016), they are not systematically studied in the
tasks that concern pairs of sentences. Unlike
in modeling individual sentences, subword repre-
sentations have impacts not only on the out-of-
vocabulary words but also more directly on the
relation between two sentences, which is calcu-
lated based on vector similarities in many sentence
pair modeling approaches (more details in Section
2.1). For example, while subwords may capture
useful string similarities between a pair of sen-
tences (e.g. spelling or morphological variations:
sister and sista, teach and teaches), they could in-
troduce errors (e.g. similarly spelled words with
completely different meanings: ware and war).

To better understand the role of subword em-
bedding in sentence pair modeling, we performed
experimental comparisons that vary (1) the type of
subword unit, (2) the composition function, and
(3) the datasets of different characteristics. We
also presented experiments with language mod-
eling as an auxiliary multi-task learning objec-
tive, showing consistent improvements. Taken to-
gether, subword and language modeling establish
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new state-of-the-art results in two social media
datasets and competitive results in a news dataset
for paraphrase identification without using any
pretrained word embeddings.

2 Sentence Pair Modeling with Subwords

The current neural networks for sentence pair
modeling (Yin et al., 2016; Parikh et al., 2016;
He and Lin, 2016; Liu et al., 2016; Tomar et al.,
2017; Wang et al., 2017; Shen et al., 2017, etc) fol-
low a more or less similar design with three main
components: (a) contextualized word vectors gen-
erated via Bi-LSTM, CNN, or attention, as inputs;
(b) soft or hard word alignment and interactions
across sentences; (c) and the output classification
layer. Different models vary in implementation
details, and most importantly, to capture the same
essential intuition in the word alignment (also en-
coded with contextual information) – the seman-
tic relation between two sentences depends largely
on the relations of aligned chunks (Agirre et al.,
2016). In this paper, we used pairwise word in-
teraction model (He and Lin, 2016) as a represen-
tative example and staring point, which reported
robust performance across multiple sentence pair
modeling tasks and the best results by neural mod-
els on social media data (Lan et al., 2017).

2.1 Pairwise Word Interaction (PWI) Model

Let wa = (wa
1 , ...,w

a
m) and wb = (wa

1 , ...,w
b
n)

be the input sentence pair consisting of m and
n tokens, respectively. Each word vector wi ∈
Rd is initialized with pretrained d-dimensional
word embedding (Pennington et al., 2014; Wiet-
ing et al., 2015, 2016), then encoded with word
context and sequence order through bidirectional
LSTMs:

−→
h i = LSTMf (wi,

−→
h i−1) (1)

←−
h i = LSTM b(wi,

←−
h i+1) (2)

←→
h i = [

−→
h i,
←−
h i] (3)

h+
i =
−→
h i +

←−
h i (4)

where
−→
h i represents forward hidden state,

←−
h i

represents backword hidden state, and
←→
h i and h+

i

are the concatenation and summation of two direc-
tional hidden states.

For all word pairs (wa
i ,w

b
j) across sentences,

the model directly calculates word pair interac-
tions using cosine similarity, Euclidean distance,

and dot product over the outputs of the encoding
layer:

D(
−→
h i,
−→
h j) = [cos(

−→
h i,
−→
h j), (5)

L2Euclid(
−→
h i,
−→
h j),

DotProduct(
−→
h i,
−→
h j)].

The above equation can also apply to other states←−
h ,
←→
h and h+, resulting in a tensor D13×m×n af-

ter padding one extra bias term. A “hard” atten-
tion is applied to the interaction tensor to further
enforce the word alignment, by sorting the inter-
action values and selecting top ranked word pairs.
A 19-layer-deep CNN is followed to aggregate the
word interaction features and the softmax layer to
predicate classification probabilities.

2.2 Embedding Subwords in PWI Model
Our subword models only involve modification of
the input representation layer in the pairwise in-
teraciton model. Let c1, ..., ck be the subword
(character unigram, bigram and trigram) sequence
of a word w. The subword embedding matrix is
C ∈ Rd′∗k, where each subword is encoded into
the d′-dimension vector. The same subwords will
share the same embeddings. We considered two
different composition functions to assemble sub-
word embeddings into word embedding:

Char C2W (Ling et al., 2015) applies Bi-LSTM
to subword sequence c1, ..., ck, then the last hid-
den state

−→
h char

k in forward direction and the first
hidden state

←−
h char

0 of the backward direction are
linearly combined into word-level embedding w:

w = Wf ·
−→
h char

k +Wb ·
←−
h char

0 + b (6)

where Wf , Wb and b are parameters.

Char CNN (Kim et al., 2016) applies a convolu-
tion operation between subword sequence matrix
C and a filter F ∈ Rd′×l of width l to obtain a
feature map f ∈ Rk−l+1:

fj = tanh(〈C[∗, j : j + l − 1],F〉+ b) (7)

where 〈A,B〉 = Tr(ABT ) is the Frobenius inner
product, b is a bias and fj is the jth element of f .
We then take the max-over-time operation to select
the most important element:

yf = max
j

fj . (8)
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Dataset Training Size Test Size # INV # OOV OOV Ratio Source
PIT-2015 11530 838 7771 1238 13.7% Twitter trends

Twitter-URL 42200 9324 24905 11440 31.5% Twitter/news
MSRP 4076 1725 16226 1614 9.0% news

Table 1: Statistics of three benchmark datasets for paraphrase identification. The training and testing sizes are in
numbers of sentence pairs. The number of unique in-vocabulary (INV) and out-of-vocabulary (OOV) words are
calculated based on the publicly available GloVe embeddings (details in Section 3.2).

After applying q filters with varied lengths, we can
get the array w = [y1, ..., yq], which is followed
by a one-layer highway network to generate final
word embedding.

2.3 Auxiliary Language Modeling (LM)
We adapted a multi-task structure, originally pro-
posed by (Rei, 2017) for sequential tagging, to fur-
ther improve the subword representations in sen-
tence pair modeling. In addition to training the
model for sentence pair tasks, we used a secondary
language modeling objective that predicts the next
word and previous word using softmax over the
hidden states of Bi-LSTM as follows:

−→
E LM = −

T−1∑

t=1

(log(P (wt+1|−→mt)) (9)

←−
E LM = −

T∑

t=2

(log(P (wt−1|←−mt)) (10)

where −→mt = tanh(
−→
W hm

−→
h t) and ←−mt =

tanh(
←−
W hm

←−
h t). The Bi-LSTM here is separate

from the one in PWI model. The language model-
ing objective can be combined into sentence pair
modeling through a joint objective function:

Ejoint = E + γ(
−→
E LM +

←−
E LM ), (11)

which balances subword-based sentence pair mod-
eling objective E and language modeling with a
weighting coefficient γ.

3 Experiments

3.1 Datasets
We performed experiments on three benchmark
datasets for paraphrase identification; each con-
tained pairs of naturally occurring sentences man-
ually labeled as paraphrases and non-paraphrases
for binary classification: Twitter URL (Lan et al.,
2017) was collected from tweets sharing the same
URL with major news outlets such as @CNN.
This dataset keeps a balance between formal and
informal language. PIT-2015 (Xu et al., 2014,

2015) comes from the Task 1 of Semeval 2015 and
was collected from tweets under the same trend-
ing topic, which contains varied topics and lan-
guage styles. MSRP (Dolan and Brockett, 2005)
was derived from clustered news articles reporting
the same event in formal language. Table 1 shows
vital statistics for all three datasets.

3.2 Settings

To compare models fairly without implementation
variations, we reimplemented all models into a
single PyTorch framework.1 We followed the se-
tups in (He and Lin, 2016) and (Lan et al., 2017)
for the pairwise word interaction model, and used
the 200-dimensional GloVe word vectors (Pen-
nington et al., 2014), trained on 27 billion words
from Twitter (vocabulary size of 1.2 milion words)
for social media datasets, and 300-dimensional
GloVe vectors, trained on 840 billion words (vo-
cabulary size of 2.2 milion words) from Common
Crawl for the MSRP dataset. For cases with-
out pretraining, the word/subword vectors were
initialized with random samples drawn uniformly
from the range [0.05, 0.05]. We used the same hy-
perparameters in the C2W (Ling et al., 2015) and
CNN-based (Kim et al., 2016) compositions for
subword models, except that the composed word
embeddings were set to 200- or 300- dimensions
as the pretrained word embeddings to make exper-
iment results more comparable. For each experi-
ment, we reported results with 20 epochs.

3.3 Results

Table 2 shows the experiment results on three
datasets. We reported maximum F1 scores of any
point on the precision-recall curve (Lipton et al.,
2014) following previous work.

Word Models The word-level pairwise inter-
action models, even without pretraining (ran-
domzied) or fine-tuning (fixed), showed strong
performance across all three datasets. This reflects

1The code and data can be obtained from the first and
second author’s websites.
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Model Variations pre-train #parameters Twitter URL PIT-2015 MSRP

Word Models

Logistic Regression – – 0.683 0.645 0.829
(Lan et al., 2017) Yes 9.5M 0.749 0.667 0.834
pretrained, fixed Yes 2.2M 0.753 0.632 0.834

pretrained, updated Yes 9.5M 0.756 0.656 0.832
randomized, fixed – 2.2M 0.728 0.456 0.821

randomized, updated – 9.5M 0.735 0.625 0.834

Subword Models

C2W, unigram – 2.6M 0.742 0.534 0.816
C2W, bigram – 2.7M 0.742 0.563 0.825
C2W, trigram – 3.1M 0.729 0.576 0.824
CNN, unigram – 6.5M 0.756 0.589 0.820
CNN, bigram – 6.5M 0.760 0.646 0.814
CNN, trigram – 6.7M 0.753 0.667 0.818

Subword+LM

LM, C2W, unigram – 3.5M 0.760 0.691 0.831
LM, C2W, bigram – 3.6M 0.768 0.651 0.830
LM, C2W, trigram – 4.0M 0.765 0.659 0.831
LM, CNN, unigram – 7.4M 0.754 0.665 0.840
LM, CNN, bigram – 7.4M 0.761 0.667 0.835
LM, CNN, trigram – 7.6M 0.759 0.667 0.831

Table 2: Results in F1 scores on Twitter-URL, PIT-2015 and MSRP datasets. The best performance figure in each
dataset is denoted in bold typeface and the second best is denoted by an underline. Without using any pretrained
word embeddings, the Subword+LM models achieve better or competitive performance compared to word models.

the effective design of the BiLSTM and word in-
teraction layers, as well as the unique character
of sentence pair modeling, where n-gram over-
lapping positively signifies the extent of seman-
tic similarity. As a reference, a logistic regres-
sion baseline with simple n-gram (also in stemmed
form) overlapping features can also achieve good
performance on PIT-2015 and MSRP datasets.
With that being said, pretraining and fine-tuning
word vectors are mostly crucial for pushing out the
last bit of performance from word-level models.

Subword Models (+LMs) Without using any
pretrained word embeddings, subword-based pair-
wise word interaction models can achieve very
competitive results on social media datasets com-
pared with the best word-based models (pre-
trained, fixed). For MSRP with only 9% of
OOV words (Table 1), the subword models do
not show advantages. Once the subword mod-

Model INV Words OOV Words
any walking #airport brexit

Word

anything walk salomon bollocks
anyone running 363 misogynistic
other dead #trumpdchotel patriarchy
there around hillarys sexist

Subword

analogy waffling @atlairport grexit
nay slagging #dojreport bret

away scaling #macbookpro juliet
andy #hacking #guangzhou #brexit

Subword

any1 warming airport #brexit

+ LM

many wagging #airports brit
ang waging rapport ofbrexit

nanny waiting #statecapturereport drought-hit

Table 3: Nearest neighbors of word vectors under co-
sine similarity in Twitter-URL dataset.

els are trained with multi-task language modeling
(Subword+LM), the performance on all datasets
are further improved, outperforming the best pre-
viously reported results by neural models (Lan
et al., 2017). A qualitative analysis reveals that
subwords are crucial for out-of-vocabulary words
while language modeling ensures more semantic
and syntactic compatibility (Table 3).

3.4 Combining Word and Subword
Representations

In addition, we experimented with combining the
pretrained word embeddings and subword models
with various strategies: concatenation, weighted
average, adaptive models (Miyamoto and Cho,
2016) and attention models (Rei et al., 2016).
The weighted average outperformed all others but
only showed slight improvement over word-based
models in social media datasets; other combina-
tion strategies could even lower the performance.
The best performance was 0.763 F1 in Twitter-
URL and 0.671 in PIT-2015 with a weighted aver-
age: 0.75 × word embedding + 0.25 × subword
embedding.

4 Model Ablations

In the original PWI model, He and Lin (2016) per-
formed pattern recognition of complex semantic
relationships by applying a 19-layer deep convo-
lutional neural network (CNN) on the word pair
interaction tensor (Eq. 5). However, the SemEval
task on Interpretable Semantic Textual Similarity
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Model Variations CNN19 #parameters #hours/epoch Twitter URL PIT-2015 MSRP

Word Models
Logistic Regression – – – 0.683 0.645 0.829

pretrained, fixed Yes 2.2M 4.5h 0.753 0.632 0.834
– 1.4M 3.2h 0.741 0.602 0.827

Subword Models
C2W, unigram Yes 2.6M 5.8h 0.742 0.534 0.816

– 1.4M 4.6h 0.741 0.655 0.808

CNN, unigram Yes 6.5M 5.4h 0.756 0.589 0.820
– 5.3M 4.2h 0.759 0.659 0.809

Subword+LM
LM, C2W, unigram Yes 3.5M 6.5h 0.760 0.691 0.831

– 2.3M 5.3h 0.746 0.625 0.811

LM, CNN, unigram Yes 7.4M 5.8h 0.754 0.665 0.840
– 6.2M 4.6h 0.758 0.659 0.809

Table 4: Comparison of F1 scores between the original PWI model with 19-layer CNN for aggregation and the
simplified model without 19-layer CNN on Twitter-URL, PIT-2015 and MSRP datasets. The number of parameters
and training time per epoch shown are based on the Twitter URL dataset and a single NVIDIA Pascal P100 GPU.

(Agirre et al., 2016) in part demonstrated that the
semantic relationship between two sentences de-
pends largely on the relations of aligned words or
chunks. Since the interaction tensor in the PWI
model already encodes word alignment informa-
tion in the form of vector similarities, a natural
question is whether a 19-layer CNN is necessary.

Table 4 shows the results of our systems with
and without the 19-layer CNN for aggregating the
pairwise word interactions before the final soft-
max layer. While in most cases the 19-layer
CNN helps to achieve better or comparable perfor-
mance, it comes at the expense of ∼25% increase
of training time. An exception is the character-
based PWI without language model, which per-
forms well on the PIT-2015 dataset without the 19-
layer CNN and comparably to logistic regression
with string overlap features (Eyecioglu and Keller,
2015). A closer look into the datasets reveals that
PIT-2015 has a similar level of unigram overlap as
the Twitter URL corpus (Table 5),2 but lower char-
acter bigram overlap (indicative of spelling varia-
tions) and lower word bigram overlap (indicative
of word reordering) between the pairs of sentences
that are labeled as paraphrase.

The 19-layer CNN appears to be crucial for the
MSRP dataset, which has the smallest training size

Twitter URL PIT-2015 MSRP
#char unigrams in shorter sentence (all) 67.5 36.2 109.0
#char unigrams in longer sentence (all) 97.7 50.5 128.5
#char unigrams of the union (all) 101.1 53.0 130.0
#char unigrams of the intersection (all) 64.1 33.7 107.4
char unigram overlap (all) 63.4% 63.5% 82.6%
char unigram overlap (paraphrase-only) 68.8% 67.0% 84.7%
char bigram overlap (all) 30.8% 33.6% 67.4%
char bigram overlap (paraphrase-only) 48.2% 42.4% 71.6%
word unigram overlap (all) 13.3% 21.7% 54.8%
word unigram overlap (paraphrase-only) 32.0% 30.2% 59.1%
word bigram overlap (all) 5.3% 8.4% 33.2%
word bigram overlap (paraphrase-only) 17.9% 12.3% 36.8%

Table 5: Character and word overlap comparison.

and is skewed toward very high word overlap.2

For the two social media datasets, our subword
models have improved performance compared to
pretrained word models regardless of having or not
having the 19-layer CNN.

5 Conclusion

We presented a focused study on the effective-
ness of subword models in sentence pair model-
ing and showed competitive results without using
pretrained word embeddings. We also showed that
subword models can benefit from multi-task learn-
ing with simple language modeling, and estab-
lished new start-of-the-art results for paraphrase
identification on two Twitter datasets, where out-
of-vocabulary words and spelling variations are
profound. The results shed light on future work
on language-independent paraphrase identifica-
tion and multilingual paraphrase acquisition where
pretrained word embeddings on large corpora are
not readily available in many languages.
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Abstract

This paper presents models to predict event
durations. We introduce aspectual features that
capture deeper linguistic information than pre-
vious work, and experiment with neural net-
works. Our analysis shows that tense, aspect
and temporal structure of the clause provide
useful clues, and that an LSTM ensemble cap-
tures relevant context around the event.

1 Introduction

Robust textual understanding requires identifying
events and temporal relations between them. Be-
yond event participants, a crucial piece of informa-
tion regarding events is their duration, an attribute
rarely mentioned explicitly. For example, taking a
shower lasts a few minutes (not days), and a vaca-
tion lasts a few days (not years). Core tasks such as
temporal understanding and reasoning, as well as
applications such as temporal question answering
(Llorens et al., 2015) would benefit from knowing
the expected duration of events.

Consider a system that extracts temporal rela-
tions such as IS INCLUDED (Cassidy et al., 2014,
among others). When deciding whether a relation
holds between an event and a temporal expression,
such a system would benefit from knowing the du-
ration of the event at hand. For example, argu-
ment y of IS INCLUDED(built a house, y) must be
a temporal span ranging from a few weeks to a
year—the expected duration of built a house. Thus
relation candidates such as IS INCLUDED(built a
house, 4/5/2016 ) could be discarded right away.

Similarly, event durations combined with event
ordering and temporal anchoring would help to de-
termine the time of subsequent events. For ex-
ample, if John Doe started his drive to work at
8:00am, it is reasonable to expect him to start
working by 9:00am because commuting took him
(most likely) between a few minutes to an hour.

In this paper, we classify events based on their
expected duration. Specifically, we differentiate
between events whose duration is less than a day,
and events whose duration is a day or more. The
main contributions are: (a) linguistically moti-
vated features that yield better results than previ-
ous work, (b) an LSTM ensemble that obtains the
best results to date, and (c) error analysis shedding
light on the benefits of our models.

2 Related Work

TimeBank (Pustejovsky et al., 2006) is the corpus
of reference for temporal information. The anno-
tations follow TimeML (Pustejovsky et al., 2010)
and include events, temporal expressions (e.g., last
Friday), temporal signals (e.g., when, during), and
links encoding relations. TimeBank does not an-
notate the expected duration of events.

Annotating and learning event durations was
pioneered by Pan et al. (2011), who annotated
the events in TimeBank with their expected dura-
tions. Gusev et al. (2011) use query patterns in an
unsupervised approach to predict the duration of
events. The work presented here builds upon these
previous works: we introduce additional features
and an LSTM ensemble that obtains the best re-
sults to date. The new features are inspired by pre-
vious work on assigning situation entity (SE) type
labels to clauses (Friedrich et al., 2016). SE types
are a linguistic categorization of semantic clause
type, whereby each clause is labeled according to
the type of situation it introduces to a discourse
(STATE, EVENT, GENERIC, and GENERALIZING

SENTENCE (also known as habituals)).

Other related works include efforts modeling
event durations in social media (Williams and
Katz, 2012), and temporal anchoring of, among
others, durative events (Reimers et al., 2016).
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# Description

Pan et al.
1-3 event token, lemma and POS tag
4-9 head word, lemma and POS tags of the syntactic subject and object of the event

10-18 three closest hypernyms of the event, subject and object

Gusev et al.
19-20 named entity types of the syntactic subject and object of the event

21 flag indicating if the event is a reporting verb
22-25 flags indicating presence of dobj, iobj, pobj and advmod syntactic dependencies of the verb

Aspectual
features inspired
by situation
entities (Friedrich
et al.)

26 event tense: past, present or future, and simple, perfect or continuous form
27 whether the event is in active or passive voice
28 type of determiner present in the subject
29 noun type of the subject
30 subject person
31 whether the subject is a bare plural

32-40 synset id of the two closest hypernyms in WordNet of the event, subject and object
41-43 lexical filename of the event, subject and object in WordNet
44-46 depth of the event, subject and object in the WordNet taxonomy

47 countability from WebCelex of the subject and object
48 number of modifiers in the sentence
49 adverbial degree of the sentence
50 whether the sentence contains an adverb

51-700 flags indicating the Brown clusters present in the sentence

Table 1: Feature set to predict the expected duration of events with SVM. Features 1–25 were previously proposed
for the same task. Features 26–700 are inspired by previous work assigning situation entity types to clauses (2016).

3 Corpus

We use the corpus by Pan et al. (2011), who anno-
tated the events in TimeBank (Pustejovsky et al.,
2003) with their expected durations by specify-
ing upper and lower bounds. The authors clus-
tered these bounds into two labels: less than a day
(<day) and a day or longer (≥day), and the corpus
contains 2,354 events (<day: 958, ≥day: 1,396).
The same event predicate may have different dura-
tions depending on context as exemplified below:
• I want to be absolutely clear, to the extent

there is any implication that Mrs. Currie be-
lieves that the President or anyone else tried
to influence her recollection, that is abso-
lutely false and a mischaracterization of the
facts. Duration of want: <day.
• Nationalists want to move towards Irish unity

and see this process as a bridge in that direc-
tion. Duration of want: ≥day.

4 Experiments and Results

We experiment with traditional SVM and neural
networks. Our rationale behind SVM is to (a) in-
corporate deeper linguistic features than previous
work, and (b) establish a solid baseline. We exper-
iment with neural networks to evaluate the abil-
ity of word embeddings and recurrent neural net-
works to capture the context required to determine
event durations. Regarding SVM, we use scikit-
learn (Pedregosa et al., 2011). Regarding neu-
ral networks, we use Keras (Chollet et al., 2015)

with TensorFlow backend (Abadi et al., 2015). All
networks use GloVe embeddings with 300 dimen-
sions (Pennington et al., 2014) and the Adam opti-
mizer (Kingma and Ba, 2014). We use grid search
and 5-fold cross-validation to tune hyperparame-
ters (C and γ for SVM, and batch size, dropout
rate, etc. for neural networks).

4.1 Support Vector Machine

Table 1 describes the full feature set. We use
spaCy1 to tokenize the input text and extract lem-
mas, part-of-speech tags, named entities, and de-
pendencies. The features by Pan et al. (2011) and
Gusev et al. (2011) capture primarily lexical infor-
mation, relying on tendencies of particular words
to denote events of certain durations. These ten-
dencies are, however, subject to contextual influ-
ence. Duration is one component of the internal
temporal structure of events, and as such it is an
important factor for distinguishing between var-
ious aspectual categories (Vendler, 1957; Smith,
1991). It thus stands to reason that other features
which capture aspectual distinctions may also cor-
relate with event duration and be useful for clas-
sifying the duration of events in texts. In order
to explore this intuition, we adapt features from a
system designed to assign situation entity types to
clauses (Friedrich et al., 2016). Diagnostic crite-
ria for situation entity types include lexical aspect
(stative vs. dynamic) of the main verb, generic-
ity of the clause’s subject, and whether the clause

1https://github.com/explosion/spaCy
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Figure 1: Neural network architecture to predict event durations. The output layer combines (a) the embedding of
the verb at hand and (b) the output of three LSTMs: one for the whole sentence (bottom), one for the tokens before
the event (top left), and one for the tokens after the event (top right).

is episodic, habitual, or static. It is primarily
these criteria which features 26-50 aim to cap-
ture. For example, bare plural subjects with a sim-
ple present tense verb (e.g., Bats eat mosquitos)
are a hallmark of GENERIC clauses. Although
situation entity types do not directly map onto
the duration labels (<day or ≥day), the criteria
which contribute to determining them clearly in-
fluence aspectual interpretation, thus influencing
understanding of the duration of events. Regard-
ing Brown clusters, we use freely available clus-
ters trained on news data by Turian et al. (2010)
using the implementation by Liang (2005). We in-
clude one feature per cluster and set it to true if
any word in the sentence belongs to the cluster.

4.2 Feed-Forward Neural Network

The first neural network we experiment with is
a one-hidden-layer feed-forward neural network
that takes as input the event embedding. The tun-
ing process revealed that the size of the hidden
layer is not important, thus we report results us-
ing a hidden layer with 5 neurons. Intuitively, this
vanilla network evaluates whether pretrained word
embeddings can predict the duration of events.

4.3 LSTM Ensemble

The LSTM ensemble is an improvement of the
vanilla feed-forward neural network. It combines
the event embedding with three LSTMs (Hochre-
iter and Schmidhuber, 1997) capturing different
context around the event (Figure 1). The first
LSTM (200 units, bottom in Figure 1) take as in-
puts the full sentence, and each token is repre-
sented by two embeddings: the word embedding
(blue in Figure 1) and an additional embedding in-
dicating whether the token is the event of interest
or not (light and dark grey). The other two LSTMs
(200 units each, top in Figure 1) take as input the
sequence of tokens before and after the event at

P R F1

Pan et al.
<day .76 .57 .65
≥ day .70 .85 .77
Avg. .73 .72 .71

Pan et al. +
Gusev et al.

<day .73 .52 .61
≥ day .68 .84 .75
Avg. .70 .69 .68

Pan et al. +
Gusev et al. +
Situation Entities

<day .82 .63 .71
≥ day .74 .89 .81
Avg. .78 .77 *.76

Feed-forward
neural network

<day .87 .63 .73
≥day .77 .93 .84
Avg. .81 .80 *.80

LSTM ensemble
<day .97 .62 .76
≥day .78 .99 .87
Avg. .86 .83 *.82

Table 2: Results obtained using SVM and several fea-
ture combinations (top), and neural networks (bottom).
We indicate statistical significance with respect to Pan
et al. (2011) with *. Avg. stands for weighted average.

hand, respectively, and each token is represented
by the corresponding word embedding. Word em-
beddings remain fixed, but the additional embed-
dings are initialized randomly and tuned during
training along with all other network parameters.

4.4 Results

Table 2 presents results obtained with the test set
(WSJ data with 156 event instances). We used
the same train and test splits as Pan et al. (2011)
and Gusev et al. (2011), but reimplemented their
systems and obtained better results than those re-
ported by the authors. We believe this is due to
the fact that spaCy (and the state-of-the-art in gen-
eral) is more robust than older tools. Regarding
SVM, the feature sets previously proposed obtain
moderate results (F1: 0.71 and 0.68). These previ-
ous features clearly benefit from the new aspectual
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features (F1: 0.76), showing that the latter features
capture contextual information useful to determine
event durations. The feed-forward neural net-
work outperforms the SVM (F1: 0.80) although it
doesn’t have access to the context surrounding the
event at hand. This shows that embeddings alone
are effective at predicting event durations. Finally,
despite the relatively small dataset, the LSTM en-
semble complements the pretrained verb embed-
ding with distributional representations of the con-
text around it (the full sentence, and the words be-
fore and after the event), yielding an 0.82 F1.

5 Error Analysis

In this section, we provide insights into why the
additional aspectual features and neural networks
are useful to predict event durations.
Aspectual features yield 7% improvement in
overall F1 (0.71 vs. 0.76). Here are some exam-
ples that benefit from these features:
• The company said 80% of its auction busi-

ness is usually conducted in the second and
fourth quarters. The adverbial degree feature
(feature 49) characterizes that conducted is a
habitual event and made the SVM correctly
classify this event into ≥day.
• Nationalists want to move towards Irish unity

and see this process as a bridge in that direc-
tion. The subject of want is the bare plural
Nationalists (feature 31), which in turn indi-
cates that the event duration is ≥day.
• Sotheby’s Holdings Inc., the parent of

the auction house Sotheby’s, said its net
loss for the seasonally slow third quarter
narrowed from a year earlier on a leap
in operating revenue. The event narrowed
belongs to the WordNet lexical filename
verb.change and its object (loss) belongs to
noun.possession. These semantic classes
(features 41–43) made the classifier correctly
predict ≥day. Another important lexical file-
name is verb.possession, all events belonging
to this filename are annotated ≥day.

Neural Networks outperform any feature combi-
nation despite not having explicit access to any in-
formation beyond the sentence to which the event
belongs and pretrained word embeddings. Word
embeddings alone are surprisingly effective for
this task (feed-forward neural network F1: 0.80),
and benefit especially when the event at hand has
not been seen in training. Similar to the Word-

Net lexical filenames, embeddings cluster together
events with similar durations. The benefit of em-
beddings is, however, that they are pretrained on
massive amounts of data and virtually account for
any event (all the events annotated in the corpus
we work with have a GloVe embedding). Here is
an example of an unseen event in training that the
embeddings predict correctly:
• Revenue totaled $1.01 billion, a 43% in-

crease from $704.4 million, reflecting the
company’s acquisition of Emery earlier this
year. The feed-forward neural network and
embeddings learnt that mathematical expres-
sions last less than a day (<day).

Although the difference in F1 is small (0.82 vs.
0.80), the LSTM ensemble successfully captures
context required to predict event durations. Here
are two examples that benefit:
• The Portland, Ore., thrift said the restructur-

ing should help it meet new capital standards
from the Financial Institution Reform, Recov-
ery and Enforcement Act. The fact that re-
structuring appears nearby and has duration
≥day helps the LSTM ensemble predict that
meet also has duration ≥day in this context,
despite most meetings lasting less than a day.
Also, the LSTM ensemble has access only to
the nearby events but not to their duration.
• In over-the-counter trading yesterday, Ben-

jamin Franklin rose 25 cents to $4.25 (dura-
tion: <day). The LSTM ensemble is very
successful when temporal cues surrounding
the event at hand are present (e.g., yesterday).

6 Conclusions

In this paper, we classify events into those whose
duration is shorter than a day (<day) or a day or
longer (≥day). We have presented aspectual fea-
tures that account for deeper linguistic information
than previous work, and showed that they comple-
ment basic features used previously. We have also
experimented with neural networks, and showed
that (a) pretrained word embeddings successfully
solve this task, and (b) an LSTM ensemble cap-
tures relevant context around the event despite that
the corpus we work with is relatively small. We
believe that determining the duration of events has
the potential to help temporal reasoning in gen-
eral. For example, somebody can participate in
two events taking place at different locations only
if they do not overlap temporally.
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Abstract

We propose a framework that extends syn-
chronic polysemy annotation to diachronic
changes in lexical meaning, to counter-
act the lack of resources for evaluating
computational models of lexical semantic
change. Our framework exploits an intu-
itive notion of semantic relatedness, and
distinguishes between innovative and re-
ductive meaning changes with high inter-
annotator agreement. The resulting test
set for German comprises ratings from five
annotators for the relatedness of 1,320 use
pairs across 22 target words.

1 Introduction

We see an increasing interest in the automatic de-
tection of semantic change in computational lin-
guistics (Hamilton et al., 2016; Frermann and La-
pata, 2016; Schlechtweg et al., 2017, i.a.), moti-
vated by expected performance improvements of
practical NLP applications, or theoretical inter-
est in language or cultural change. However, a
major obstacle in the computational modeling of
semantic change is evaluation (Lau et al., 2012;
Cook et al., 2014; Frermann and Lapata, 2016;
Dubossarsky et al., 2017). Most importantly,
there is no reliable test set of semantic change
for any language that goes beyond a small set
of hand-selected targets. We counteract this lack
of resources by extending a framework of syn-
chronic polysemy annotation to the annotation of
Diachronic Usage Relatedness (DURel). DURel
has a strong theoretical basis and at the same time
makes use of established synchronic procedures
that rely on the intuitive notion of semantic relat-
edness. The annotations distinguish between in-
novative and reductive meaning change with high
inter-annotator agreement. DURel is language-
independent and thus applicable across languages;

this paper introduces the first test set of lexical se-
mantic change for German.

2 Related Work

A large number of studies has been performed
on synchronic word sense annotation (see Ide and
Pustejovsky, 2017 for an overview). Within this
set, our paper is most related to work focusing on
graded polysemy annotation. Most prominently,
Soares da Silva (1992) is interested in the ques-
tion of whether the theoretical distinction between
polysemy and homonymy can be experimentally
verified; Brown (2008) wants to know how fine-
grained word senses are, and Erk et al. (2009,
2013) examine whether we should adopt a graded
notion of word meaning.

In contrast, there is little work on annota-
tion with a focus on semantic change, despite
the growing interest and modeling efforts in the
field of semantic change detection. Lau et al.
(2012) and Cook et al. (2014) aim at verifying
the semantic developments of their targets by a
quasi-annotation procedure of dictionary entries,
however without reporting inter-annotator agree-
ment or other measures of reliability. Gulor-
dava and Baroni (2011) ask annotators for their
intuitions about changes but without direct re-
lation to language data. Bamman and Crane
(2011) exploit aligned translated texts as source of
word senses and conduct a very limited annotation
study on Latin texts from different time periods.
Schlechtweg et al. (2017) propose a small-scale
annotation of metaphoric change, but altogether
there is no standard test set across languages that
goes beyond a few hand-selected examples.

3 Lexical Semantic Change

It is well-known that lexical semantic change and
polysemy are tightly connected. For example,
Blank (1997) develops an elaborate theory where
polysemy is the synchronic, observable result of
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lexical semantic change. He distinguishes two
main types of lexical semantic change:

• innovative meaning change: emergence of
a full-fledged additional meaning of a word;
old and new meaning are related by polysemy

• reductive meaning change: loss of a full-
fledged meaning of a word

An example of innovative meaning change is
the emergence of polysemy in the German word
Donnerwetter around 1800 (Paul, 2002). Before
≈1800 Donnerwetter was only used in the mean-
ing of ‘thunderstorm’. After 1800 we still ob-
serve this meaning, and in addition we find a new,
clearly distinguished meaning as a swear word
‘Man alive!’. An example of reductive meaning
change is the German word Zufall. It had two
meanings≈1850, ‘seizure’ and ‘coincidence’ (Os-
man, 1971). After 1850, the word occurs less and
less often in the former meaning, until it is exclu-
sively used in the meaning of ‘coincidence’. Zufall
lost the meaning ‘seizure’.

3.1 Semantic Proximity
Based on Prototype Theory (Rosch and Mervis,
1975), Blank develops criteria to decide whether
word uses are related by polysemy. He defines a
continuum of semantic proximity with polysemy
located between identity and homonymy, as de-
picted in Table 1.

x

Identity
Context Variance
Polysemy
Homonymy

Table 1: Continuum of semantic proximity (cf. Blank,
1997, p. 418).

While it is difficult to directly apply these cri-
teria to practical annotation tasks, we exploit the
scale of semantic proximity indirectly, as previ-
ously done by synchronic research on polysemy
applying similar scales (Soares da Silva, 1992;
Brown, 2008; Erk et al., 2013). Especially Erk
et al.’s in-depth study validates an annotation
framework relying on a scale of semantic proxim-
ity, revealing high inter-annotator agreement and
strong correlation with traditional single-sense an-
notation as well as annotation of multiple lexical
paraphrases. For our study, we decided to adopt

a relatedness scale similar to Brown’s, shown in
Table 2.

x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

0: Cannot decide

Table 2: Our 4-point scale of relatedness derived from
Brown (2008).

3.2 Diachronic Usage Relatedness (DURel)
We frame our interest in lexical semantic change
as judging the strength of semantic relatedness
across use pairs of a target word w within a spe-
cific time period ti. A high mean proximity
value indicates meaning identity or context vari-
ance, while a low value indicates polysemy or
homonymy, cf. Table 1. This strategy is applied
independently to two time periods t1 and t2, as
illustrated in Figure 1. Innovative vs. reductive
meaning change can then be measured by decrease
vs. increase in the mean relatedness value of w
from t1 to t2. To see why this is justified, consider
the different semantic constellations of w’s use
pairs in t1 and t2 in Figure 1. If w is monosemous
in t1 and undergoes innovative meaning change
between the two time periods, we expect to find
use pairs in the later period t2 combining the old
and new meaning which are less related (score: 2)
than the use pairs from the earlier period t1 (score:
3). According to this rationale, the mean related-
ness values across w’s use pairs should be lower
in t2 than in t1. The reverse applies to reductive
meaning change.

t1: EARLIER t2: LATER

3

2

Figure 1: Two-dimensional use spaces (Tuggy, 1993;
Zlatev, 2003) in two time periods with a target word w
undergoing innovative meaning change. Dots represent
uses of w. Spatial proximity of two uses means high
relatedness.

There are a number of other, more complex se-
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mantic constellations. For example, if w not only
gains a new meaning, but rapidly loses the old
meaning, we cannot necessarily expect the mean
relatedness ofw’s use pairs to be higher in the later
than in the earlier time period. In order to cover
such cases, we will not only measure the mean
relatedness within the EARLIER and the LATER

groups of use pairs but also in a mixed COMPARE

group where each pair consists of a use from the
EARLIER and a use from the LATER group. By
this, old and new meaning are directly compared,
and we do not have to rely on the assumption that
the old meaning is still present.

By applying the above-described procedure to
all target words and sorting them according to
their mean relatedness scores, we obtain a ranked
list for each of the three groups EARLIER, LATER

and COMPARE. We then exploit two measures of
change: (i) ∆LATER measures changes in the de-
gree of mean relatedness of words, and is derived
by subtracting a target w’s mean in EARLIER from
its mean in LATER: ∆LATER(w) = Meanl(w) −
Meane(w). Positive vs. negative values on this
measure indicate innovative vs. reductive mean-
ing change. (ii) COMPARE directly measures the
relatedness between the EARLIER and the LATER

group and thus corresponds to w’s mean in the
COMPARE group: COMPARE(w) = Meanc(w).
High vs. low values on COMPARE indicate weak
vs. strong change, where the change includes both
innovative and reductive meaning changes.

4 Annotation Study

Five native speakers of German were asked to rate
1,320 use pairs on our 4-point scale of relatedness
in Table 2. All annotators were students of lin-
guistics. We explicitly chose two annotators with a
background in historical linguistics in order to see
whether knowledge about historical linguistics has
an effect on the annotation. Annotators were not
told that the study is related to semantic change.1

Target Words. The target words were selected
by manually checking a corpus for innovative and
reductive meaning changes, based on cases of
metaphoric, metonymic change and narrowing (in-
novative) as reported by Paul (2002), and cases
of reduction due to homonymy (reductive) as re-

1The guidelines (adapted from the synchronic study
by Erk et al., 2013) and the experiment data are
publicly available at www.ims.uni-stuttgart.de/
data/durel/.

Figure 2: Use pair from annotation table (English adap-
tion).

ported by Osman (1971). The corpus we used is
DTA (Deutsches Textarchiv, 2017), a freely avail-
able diachronic corpus of German. By focusing
on a late time period (19th century), we tried to
reduce problems coming with historical language
data as much as possible. We still normalized spe-
cial characters to modern orthography.

We included only those words as targets for
which we found the change suggested by the
literature reflected in the corpus, either weakly
or strongly, because an annotation relying on a
random selection of words suggested to undergo
change is likely to produce a set with very sim-
ilar and rather low values representing small ef-
fects. We thus guaranteed to include both: words
for which we expected weak effects as well as
words for which we expected strong effects. We
ended up with 19 cases of innovation and 9 cases
of reduction. Three words, Anstalt, Anstellung
and Vorwort represent especially interesting cases
and were selected more than once for the test set
since they undergo both innovative and reductive
change between the investigated time periods.

Sampling. For each target word we randomly
sampled 20 use pairs from DTA (searching for the
respective lemma and POS) for each of the groups
EARLIER (1750-1800), LATER (1850-1900) and
COMPARE, yielding 60 use pairs per word and
1,320 use pairs for 22 target words in total.

A use of a word is defined as the sentence the
word occurs in. The annotators were provided
these sentences as well as the preceding and the
following sentence in the corpus, cf. Figure 2. We
double-checked that each use of a word was only
sampled once within each group. If the total num-
ber of uses in the group was less than needed, uses
were allowed twice across pairs. Before present-
ing the use pairs to the annotators in a spreadsheet,
uses within pairs were randomized, and pairs from
all groups were mixed and randomly ordered.
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5 Results

Agreement. In line with Erk et al. (2013) we
measure inter-annotator agreement as the average
over pairwise Spearman’s ρ correlations (omit-
ting 0-judgments), cf. Table 3. The bottom line
provides the agreement of each annotator’s judg-
ments against the average judgment score across
the other annotators. The range of correlation co-
efficients is between 0.57 and 0.68, with an aver-
age correlation of 0.66. All the pairs are highly
significantly correlated (p < 0.01).

1 2 3 4 5
1 0.59 0.63 0.67 0.66
2 0.57 0.64 0.65
3 0.64 0.62
4 0.68

avg 0.71 0.68 0.68 0.75 0.74

Table 3: Correlation matrix for pairwise correlation
agreement; avg refers to agreement of the annotator in
the column against the average across the other anno-
tators.

The annotators with historical background are
annotators 4 and 5, who show the highest pairwise
agreement and also the highest agreement with the
average of the other annotators. This indicates that
historical knowledge makes a positive difference
when annotating DURel. Yet, the agreements of
the non-expert annotators only deviate slightly.

Overall, our correlations are comparable and
even moderately higher than the ones found in Erk
et al. (2013), who report average correlation scores
between 0.55 and 0.62. This difference is remark-
able, given that annotators had to judge histori-
cal data. Note, however, that the studies are not
exactly comparable, as Erk et al. used a more
fine-grained 5-point scale, and we presumably ex-
cluded a larger number of 0-judgments.

Qualitative Analysis. Figure 3 shows the tar-
get words ranked according to their values on
∆LATER. We can clearly identify three groups:
words with values >0, <0, and a majority with
values ≈0 difference in mean between the ear-
lier and the later time period. The three topmost
words have previously been classified as reductive,
the three lowermost words as innovative meaning
changes.

Figure 4 compares the distributions across re-

latedness scores for our two example words Zufall
and Donnerwetter from above. In EARLIER, Zu-
fall’s ratings (i.e., the number of times a specific
rating 0–4 was provided) vary much more than in
LATER where it has a high number of 4-judgments.
The contrary is the case for Donnerwetter. In ad-
dition, we find a clear difference between the two
words in the COMPARE group, because Donner-
wetter is used in a variety of new figurative ways
in LATER, while Zufall, besides losing the mean-
ing ‘seizure’, retains the prevalent meaning ‘coin-
cidence’ in both time periods.

Upon closer inspection, the words deviating
most from our predictions show either that the
change is already present before 1800 (e.g., Steck-
enpferd, ‘toy> toy; hobby’), that the new meaning
has a very low prevalence (e.g., Museum, ‘study
room; arts collection > arts collection’), or that
there are additional, previously not identified uses
in the later time period (e.g., Feine, ‘fineness;
grandeur > grandeur’). The mean value for re-
duction is 0.39, while it is -0.18 for innovation.

Overall, these findings confirm our predictions
and validate ∆LATER as a measure of lexical se-
mantic change. The case of Presse, ‘printing press
> printing press; print product/producer’, how-
ever, shows its shortcomings: ∆LATER wrongly
predicts no change for Presse, although it is
clearly present, because the new meaning has a
very high prevalence. ∆LATER cannot capture
such cases, while COMPARE can: it predicts strong
change for Presse.

Since COMPARE measures the degree of change
rather than distinguishing between types of
change, the highest values in its ranked list refer
to cases with values≈0 in ∆LATER, and the low-
est values refer to cases with extreme values of
∆LATER. A special case is Feder ‘bird feather >
bird feather; steel clip’, which reveals the need for
normalization of the COMPARE-measure: the word
is highly polysemous and has approximately the
same distribution in every group, because the new
meaning ‘steel clip’ has a very low prevalence.
For ∆LATER this correctly leads to a 0-prediction.
In contrast, COMPARE predicts strong change, be-
cause due to polysemy there is a high probability
to sample distantly related use pairs in the COM-
PARE group.

Discussion. While our measures enable us to
predict various semantic change constellations,
we also demonstrated that they collapse in cer-
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Figure 3: ∆LATER: Rank of target words according to
increase in mean usage relatedness from EARLIER to
LATER.

Zufall (reductive) Donnerwetter (innovative)

Figure 4: Plots of judgment freq. for target words per
group.

tain semantic constellations: ∆LATER is accu-
rate when used for simple semantic constellations
(i.e., only one reductive or innovative meaning
change), where the old meaning roughly maintains
its prevalence, thus making ∆LATER be prone to
corpus effects such as changes in text genre. For
an optimal application of this measure we there-
fore recommend (i) to choose directly adjacent and
short time periods for annotation, as the number of
changes increases with the length of the time pe-
riod, and (ii) to use a well-balanced corpus for the
annotation, ideally across all periods.

Unlike ∆LATER, COMPARE has the advantage
to capture multiple changes over time, but it con-
fuses polysemy and meaning change. In future
work, we aim to solve this issue by normaliz-
ing COMPARE with a measure of polysemy: For
any target word w the values from the EAR-
LIER group determine its degree of polysemy in
the earlier time period. Hence, the normalized
∆COMPARE(w) = Meanc(w)−Meane(w) intu-
itively measures how much the values in the COM-
PARE group differ from what we would already
expect from w’s early polysemy, so it predicts no
change in the case of a stable polysemous word,

and it predicts change if the word gains or loses a
meaning.

6 Conclusion

This paper presented a general framework
DURel for language-independent annotation of
Diachronic Usage Relatedness, in order to develop
test sets for lexical semantic change. In addition
to a strong theoretical basis, DURel shows em-
pirical validity in our annotation study with high
inter-annotator agreement. It relies on an intuitive
notion of semantic relatedness and needs no defi-
nition of word senses.

Furthermore, we proposed two measures of lex-
ical semantic change that predict various seman-
tic change constellations. While one measure suc-
cessfully distinguishes between innovative and re-
ductive meaning change, we also demonstrated the
need to refine and normalize the measures in order
to capture more variants of constellations regard-
ing the interplay of polysemy and meaning reduc-
tion/innovation.

The annotated test set for German is publicly
available and can be used to compare computa-
tional models of semantic change, and more gen-
erally to evaluate models of lexical variation in
corpora across times, domains, etc. Further test
sets across languages can be obtained by applying
DURel to the respective language uses.
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Abstract

In this paper, we present directional skip-gram
(DSG), a simple but effective enhancement
of the skip-gram model by explicitly distin-
guishing left and right context in word pre-
diction. In doing so, a direction vector is in-
troduced for each word, whose embedding is
thus learned by not only word co-occurrence
patterns in its context, but also the directions
of its contextual words. Theoretical and em-
pirical studies on complexity illustrate that our
model can be trained as efficient as the original
skip-gram model, when compared to other ex-
tensions of the skip-gram model. Experimen-
tal results show that our model outperforms
others on different datasets in semantic (word
similarity measurement) and syntactic (part-
of-speech tagging) evaluations, respectively.

1 Introduction

Word embedding and its related techniques have
shown to be vital for natural language processing
(NLP) (Bengio et al., 2003; Collobert and Weston,
2008; Turney and Pantel, 2010; Collobert et al.,
2011; Weston et al., 2015; Song and Lee, 2017).
The skip-gram (SG) model with negative sam-
pling (Mikolov et al., 2013a,c) is a popular choice
for learning word embeddings and has had large
impact in the community, for its efficient train-
ing and good performance in downstream applica-
tions. Although widely used for multiple tasks, SG
model relies on word co-occurrence within local
context in word prediction but ignores further de-
tailed information such as word orders, positions.

To improve original word embedding mod-
els, there are various studies leveraging external
knowledge to update word embeddings with post
processing (Faruqui et al., 2015; Kiela et al., 2015;
Song et al., 2017) or supervised objectives (Yu and
Dredze, 2014; Nguyen et al., 2016). However,
these approaches are limited by reliable semantic

resources, which are hard to obtain or annotate.
To overcome such limitations, there are many ap-
proaches to further exploiting the characteristics
of the running text, e.g., internal structure of the
context. These approaches include enlarging the
projection layer with consideration of word orders
(Bansal et al., 2014; Ling et al., 2015a), learn-
ing context words with different weights (Ling
et al., 2015b), etc. They are advantageous of
learning word embeddings in an end-to-end unsu-
pervised manner without requiring additional re-
sources. Yet, they are also restricted in their im-
plementation such as that they normally require a
larger hidden layer or additional weights, which
demand higher computation burden and could re-
sult in gradient explosion when embedding dimen-
sions are enlarged. Another issue is that when con-
sidering word orders, they may suffer from data
sparsity problem since n-gram coverage is much
less than word, especially in the cold start scenario
for a new domain where training data is limited.

To address the aforementioned issues, in this
paper, we propose a simple, but effective adap-
tation of the SG model, namely, directional skip-
gram (DSG), with consideration of not only the
word co-occurrence patterns, but also their rel-
ative positions modeled by a special “direction”
vector, which indicates whether the word to be
predicted is on the left or right side of the given
word. Although similarly motivated as the struc-
tured skip-gram (SSG) model (Ling et al., 2015a),
DSG produces word embeddings of higher qual-
ity with lower space and time complexities. Em-
pirical study shows that DSG can be trained ef-
ficiently (as fast as SG, while much faster than
SSG). To test the effectiveness of the embeddings
produced by DSG, we conduct experiments on se-
mantic (word similarity evaluation) and syntactic
(part-of-speech tagging) tasks. The results con-
firm the superiority of DSG to other models.
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2 Approach

2.1 Skip-Gram Model

The SG model (Mikolov et al., 2013b) is a popu-
lar choice to learn word embeddings by leveraging
the relations between a word and its neighboring
words. In detail, the SG model is to predict the
context for each given word wt, and maximizes

LSG =
1

|V |

|V |∑

t=1

∑

0<|i|≤c
log f(wt+i, wt) (1)

on a given corpus with vocabulary V , where wt+i

denotes the context words in a window wt+c
t−c, with

c denoting the window size. Herein f(wt+i, wt) =
p(wt+i | wt), and the probability to predict context
word is estimated by

p(wt+i |wt) =
exp(υ′wt+i

>υwt)∑
wt+i∈V exp(υ

′
wt+i

>υwt)
(2)

where υwt is the embedding for wt, and υ and
υ′ refer to input and output embeddings, respec-
tively. The training processing of SG model is
thus to maximize LSG over a corpus iteratively.
For a large vocabulary, word2vec uses hierarchi-
cal softmax or negative sampling (Mikolov et al.,
2013b) to address the computational complexity
that requires |V | × d matrix multiplications.

2.2 Structured Skip-Gram Model

The SSG model (Ling et al., 2015a) is an adap-
tation of SG model with consideration of words’
order. The overall likelihood of SSG model shares
the same form of SG model as Equation 1, how-
ever, with an adapted f(wt+i, wt) where the prob-
ability of predicting wt+i considers not only the
word-word relations but also its relative position
to wt. In practice, each word in wt+c

t−c is not pre-
dicted by a single predictor operating on the output
embeddings υ′wt+i

. Instead, wt+i is predicted by
2c predictors according to where it appears in wt’s
context. As a result, every word in SSG should
have 2c output embeddings for the 2c relative po-
sitions. The probability of predicting wt+i in SSG
is thus formulated as

p(wt+i |wt) =
exp(

∑c
r=−c υ

′
r,wt+i

>υwt)∑
wt+i∈V exp(

∑c
r=−c υ

′
r,wt+i

>υwt)

(3)
where υr,wt+i defines the positional output embed-
dings forwt+i at position r with respect towt. The
embedding of wt is thus updated with word order
information implicitly recorded in υr,wt+i .

Model Parameters Operations
SG 2|V |d 2cC(n+ 1)o

SSG (2c+ 1)|V |d 4c2C(n+ 1)o

SSSG 3|V |d 4cC(n+ 1)o

DSG 3|V |d 2cC(n+ 2)o

Table 1: Complexities of different SG models. The col-
umn of “Parameters” and “Operations” reports space
and time complexity, respectively. d: embedding di-
mension. C: corpus size. o: unit operation of predicting
and updating one word’s embedding. n: the number of
negative samples.

2.3 Directional Skip-Gram Model

The intuition behind this model is that word se-
quence is an important factor affecting the genera-
tion of our languages; a word should be biased as-
sociated with other words on its left or right side.
For instance, “merry” and “eve” both co-occur fre-
quently with “Christmas” in “merry Christmas”
and “Christmas eve”, respectively. Given the con-
text word “Christmas”, it is useful to identify the
word to be predicted is on the left or right for
learning the embeddings of “merry” and “eve”.1

Motivated by this, we propose a softmax function

g(wt+i, wt) =
exp(δwt+i

>υwt)∑
wt+i∈V exp(δwt+i

>υwt)
(4)

to measure how a context word wt+i is associated
with wt in its left or right context, by introducing
a new vector δ for each wt+i to present its relative
direction to wt. The function g shares an updating
paradigm similar to negative sampling:

υ(new)
wt

= υ(old)wt
− γ(σ(υ>wt

δwt+i)−D)δwt+i

δ(new)
wt+i

= δ(old)wt+i
− γ(σ(υ>wt

δwt+i)−D)υwt

where σ denotes the sigmoid function and γ the
discounting learning rate. Particularly, D is the
target label specifying the relative direction of
wt+i given wt, defined as

D =

{
1 i < 0
0 i > 0

according on the relative position of wt+i respect
to wt. The final model is defined as Equation 1
with f(wt+i, wt) = p(wt+i |wt) + g(wt+i, wt).

1Although SSG can also model this case because “merry”
and “eve” are normally associated with “Christmas” at fixed
positions, the intention of this example is to illustrate that
word sequence can be effectively modeled by distinguishing
left and right context.
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Dimension 200
Window size 5
Frequency cut-off 5
Negative samples 5
Starting learning rate 0.025
Iteration 5

Table 2: Model settings for training embeddings.

2.4 Complexity Analysis

To qualitatively analyze the efficiency of our pro-
posed model, we draw Table 1, which compares
the complexity of the aforementioned SG mod-
els. The Parameters column reports parameter
size, which refers to the space complexity. The
Operations column reports the number of opera-
tions in computation, referring to the time com-
plexity. Note that the above complexity analysis is
based on negative sampling. If using hierarchical
softmax, one can replace n+ 1 into h, which rep-
resents the average depth of the hierarchical tree.

Compared to SG model, the SSG model de-
mands obviously higher complexity in terms of
both space and time when context gets larger,
while every word in the DSG model only requires
one extra operation in addition to the original SG
model. Thus, if one enlarges the context, the DSG
model could have similar speed of SG model.

To fairly compare the efficiency of our model
and SSG, we additionally propose a simplified
SSG (SSSG) model that only models left and right
context for a given word. Instead of having 2c
output embeddings in SSG, each word in SSSG
has only two output embeddings representing left
and right context. This is an approximation of our
model within the SSG framework. On the out-
put side, SSSG has two “word” vectors respec-
tively for left and right context, while DSG has
one “word” vector and one “direction” vector. As
a result, the direction vector of DSG can be used to
explicitly predict whether the context is on the left
or right in word prediction, while SSSG doesn’t.

3 Experiments

We use intrinsic and extrinsic evaluations to eval-
uate the effectiveness of different embeddings. To
test and verify our analysis in §2.4, the efficien-
cies of aforementioned SG models are investigated
based on their training speed. The setups for all
experiments are illustrated as follows.

Figure 1: Comparisons of training speed in logarithm
against different context window size. KW/Sec refers
to thousand words per second.

Dataset. The embeddings were trained on the lat-
est dump of Wikipedia articles2, which contains
approximately 2 billion word tokens.

Comparison. Since the focus of this paper is to
enhance the SG model, we mainly consider the SG
model (Mikolov et al., 2013b), SSG model (Ling
et al., 2015a) and its simplified version SSSG
model, as baselines for comparison.

Settings. Different models share the same hyper-
parameters in training word embeddings, which
are presented in Table 2.

3.1 Training Speed

Figure 1 illustrates the training speed of different
SG models, i.e., SG, SSG, SSSG, and DSG, given
various size of context window.3 Compared to the
original SG model, SSG model shows a relatively
large drop of speed when enlarging the context
window, while there is much less drop observed
for the DSG model. Overall, the curves of four
models roughly comply with the qualitative analy-
sis in Table 1. When starting with only one context
word, the SSG, SSSG, and DSG model share simi-
lar training speed since their time complexities are
not affected by the limited context window size
under this circumstance. When enlarging the con-
text window, the speed gap between the SSG and
SG model is getting larger while the gap between
DSG and SG becomes smaller.4

2https://dumps.wikimedia.org/enwiki/latest/
3The numbers on the curves are obtained when running

on an Intel Xeon CPU E5-2680 v4 with 12 threads.
4Note that the derivations in Table 1 represents the upper

bound of the complexities, where every two words co-occur
in a context window, which hardly happens in real scenarios.
As a result, the observed gaps are slightly smaller from what
are presented in Table 1.
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MEN-3k SimLex-999 WS-353
CBOW 70.96 34.32 69.25

CWin 74.28 36.06 72.21
SG 71.90 34.35 70.11

SSG 71.26 31.80 69.46
SSSG 72.07 33.62 70.90
DSG 73.76 36.10 72.60

Table 3: Word similarity results (ρ × 100) from em-
beddings trained on the large corpus.

3.2 Word Similarity Evaluation

As a conventional intrinsic evaluation, word sim-
ilarity test is performed on the MEN-3k (Bruni
et al., 2012), SimLex-999 (Hill et al., 2015) and
WordSim-353 (Finkelstein et al., 2002) datasets
for quantitative comparisons among different em-
beddings. The Spearman’s rank correlation (ρ)
(Zar, 1998) is adopted to measure how close the
similarity scores to human judgments on the three
datasets. Besides SG, SSG and SSSG, we also in-
clude CBOW and CWin5 as reference baselines in
this word similarity evaluation.

Table 3 reports word similarity results when the
embeddings are trained on the entire Wiki corpus.
Besides, we created a small corpus by sampling
0.1% Wiki data to simulate the cold-start scenario
that limited data is used to train word embeddings.
The word similarity performance of all models on
this small corpus is reported in Table 4. Overall,
the results of all models are worse when trained
on the small dataset, especially the models tak-
ing structure information of context into account,
such as CWin and SSG. The reason may be largely
due to that modeling order dependence is sensitive
to data sparsity, hence CWin model fails to gener-
ate meaningful representations for low-frequency
words, which are prevalent on small corpus. This
observation indicates that data sparsity problem is
critical in learning word embeddings. Neverthe-
less, DSG yields robust results on different scale
of training data, which suggests that our model
provides an effective solution to learn embeddings
with exploiting the structure in context, while not
severely suffered from the data sparsity problem.
Particularly among all SG models, DSG produces
the best performance when trained on either the
large or the small corpus. This fact further proves

5Continuous window model, the counterpart of SSG pro-
posed in Ling et al. (2015a).

MEN-3k SimLex-999 WS-353
CBOW 58.23 26.67 64.40

CWin 59.68 25.19 62.82
SG 60.19 27.14 65.23

SSG 55.42 24.00 61.95
SSSG 62.70 26.55 66.10
DSG 63.18 27.51 66.71

Table 4: Word similarity results (ρ × 100) from em-
beddings trained on the small corpus.

the effectiveness of distinguishing left and right
context for SG embeddings.

3.3 Part-of-Speech Tagging

Besides the intrinsic evaluation to test the em-
beddings semantically, we also evaluate different
embeddings syntactically with an extrinsic evalu-
ation: part-of-speech (POS) tagging. Following
Ling et al. (2015a), this task is performed in both
news and social media data. For news data, we
use Wall Street Journal (WSJ) proportion from the
Penn Treebank (Marcus et al., 1993) and follow
the standard split of 38,219/5,527/5,462 sentences
for training, development, and test, respectively.
The social media data is based on ARK dataset
(Gimpel et al., 2011), which contains manual POS
annotations on English tweets. The standard split
of ARK contains 1,000/327/500 tweets as train-
ing/development/test set, respectively.

POS prediction is conducted by a bidirectional
LSTM-CRF (Huang et al., 2015; Lample et al.,
2016) taking the produced embeddings as input.
LSTM state size is setting to 200. For WSJ, we use
the aforementioned embeddings trained from the
Wiki corpus. For ARK, we prepare a Twitter cor-
pus (TWT) to build embeddings. This data con-
tains 100 million tweets collected through Twitter
streaming API6, followed by preprocessing using
the toolkit described in Owoputi et al. (2013). The
TWT embeddings are trained under the same pro-
cedure as the Wiki embeddings. Similar to word
similarity task, we use CBOW, SG, CWin, SSG
and SSSG as baselines in this task.

Results are reported in Table 5. We observe that
the DSG embeddings can best indicate POS tags
in comparison. It suggests that by exploring word
context in left and right directions, DSG model can
effectively capture syntactic information, which is

6https://developer.twitter.com/en/docs/tweets/filter-
realtime/overview
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WSJ ARK
Dev Test Dev Test

CBOW 96.86 97.01 89.36 88.36
CWin 96.98 97.25 90.03 89.94

SG 96.95 97.12 89.26 88.77
SSG 97.08 97.31 90.05 90.15

SSSG 97.01 97.19 89.83 89.78
DSG 97.16 97.37 90.12 90.43

Table 5: POS tagging results (accuracy) on WSJ and
ARK datasets.

useful in predicting POS tags. Although embed-
dings trained on TWT could be affected by the
noisiness and informal nature of tweets, POS tag-
gers with DSG embeddings achieve the best ac-
curacy on ARK data. This observation indicates
that, when learning word embeddings with context
structures on noisy data, DSG has its superiority to
other models such as SSG and SSSG.

4 Conclusions

This paper presents DSG, a simple yet effective
extension to the SG model for learning word em-
beddings. Given an input word, our model jointly
predicts its context words as well as their direc-
tion to the given word. It is analyzed and experi-
mented that our model can be trained as fast as the
original SG model. Experiments on word similar-
ity evaluation and POS tagging demonstrate that
DSG produces better semantic and syntactic rep-
resentations when it is compared with competi-
tive baselines. More importantly, it is also proved
that DSG can effectively predict word similarities
when trained on small dataset and is therefore less
sensitive to data sparsity than existing methods.
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Abstract

We present a simple and effective feed-
forward neural architecture for discriminating
between lexico-semantic relations (synonymy,
antonymy, hypernymy, and meronymy). Our
Specialization Tensor Model (STM) simulta-
neously produces multiple different special-
izations of input distributional word vectors,
tailored for predicting lexico-semantic rela-
tions for word pairs. STM outperforms more
complex state-of-the-art architectures on two
benchmark datasets and exhibits stable perfor-
mance across languages. We also show that,
if coupled with a lingual distributional space,
the proposed model can transfer the prediction
of lexico-semantic relations to a resource-lean
target language without any training data.

1 Introduction

Distributional vector spaces (i.e., word embed-
dings) (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017) are ubiquitous in
modern natural language processing (NLP). While
such vector spaces capture general semantic relat-
edness, their well-known limitation is the inability
to indicate the exact nature of the semantic relation
that holds between words. Yet, the ability to rec-
ognize the exact semantic relation between words
is crucial for many NLP applications: taxonomy
induction (Fu et al., 2014; Ristoski et al., 2017), nat-
ural language inference (Tatu and Moldovan, 2005;
Chen et al., 2017), text simplification (Glavaš and
Štajner, 2015), and paraphrase generation (Mad-
nani and Dorr, 2010), to name a few.

This is why numerous methods have been pro-
posed that either (1) specialize distributional vec-
tors to better reflect a particular relation (most
commonly synonymy) (Faruqui et al., 2015; Kiela
et al., 2015; Mrkšić et al., 2017; Vulić et al., 2017)
or (2) train supervised relation classifiers using
lexico-semantic relations (i.e., labeled word pairs)

from external resources such as WordNet (Fell-
baum, 1998) as training data (Baroni et al., 2012;
Roller et al., 2014; Shwartz et al., 2016; Glavaš and
Ponzetto, 2017).

Contributions. We present the Specialization Ten-
sor Model (STM), a simple and effective feed-
forward neural model for discriminating between
(arguably) most prominent lexico-semantic rela-
tions – synonymy, antonymy, hypernymy, and
meronymy. The STM architecture is based on the
hypothesis that different specializations of input
distributional vectors are needed for predicting dif-
ferent lexico-semantic relations. Our results show
that, despite its simplicity, STM outperforms more
complex models on the benchmarking CogALex-V
dataset (Santus et al., 2016). Further, it exhibits
stable performance across languages. Finally, we
show that, when coupled with a method for in-
ducing a multilingual distributional space (Artetxe
et al., 2017; Smith et al., 2017, inter alia), STM
can predict lexico-semantic relations also for lan-
guages with no training data available from exter-
nal linguistic resources. While in this work we
use STM to discriminate between four prominent
lexico-semantic relations, it can, at least conceptu-
ally, be trained to predict over an arbitrary set of
lexico-semantic relations, provided the availability
of respective training data.

2 Related Work

Specializing distributional vectors. Given a pair
of words, we cannot reliably determine the nature
of the lexico-semantic association between them
(if any), purely based on their distributional word
vectors (Mikolov et al., 2013; Pennington et al.,
2014, inter alia). It is a well-known property of
distributional methods to conflate different types of
semantic associations between words. This is why
methods for specializing word embeddings for par-
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Figure 1: Architecture of the Specialization Tensor Model (STM).

ticular relations use external linguistic constraints
(e.g., from WordNet) to either (1) modify the origi-
nal objective of general embedding algorithms and
directly train relation-specific embeddings from
corpora (Yu and Dredze, 2014; Kiela et al., 2015)
or (2) post-process the pre-trained distributional
space by moving closer together (or further apart)
words that stand in a particular relation (Wieting
et al., 2015; Mrkšić et al., 2017; Vulić and Mrkšić,
2018). While these methods specialize the distribu-
tional space to better reflect properties of a particu-
lar relation, e.g., synonymy (Wieting et al., 2015;
Mrkšić et al., 2017) or hypernymy (Vendrov et al.,
2016; Vulić and Mrkšić, 2018), they are not able to
discriminate between multiple lexico-semantic re-
lations at the same time, i.e., the embedding space
gets post-specialized for one particular relation.

Classifying lexico-semantic relations. Super-
vised relation classifiers learn to either identify one
particular relation of interest (Baroni et al., 2012;
Roller et al., 2014; Shwartz et al., 2016; Glavaš
and Ponzetto, 2017) or to discriminate between
multiple relations (Attia et al., 2016; Shwartz and
Dagan, 2016), using labeled word pairs from ex-
ternal resources like WordNet. The LexNet model
(Shwartz and Dagan, 2016) combines distributional
vectors with recurrent encodings of syntactic paths
taken from word co-occurrences in text corpora.
While adding the syntactic information boosts per-
formance, it limits the model’s portability to other
languages. Attia et al. (2016) train a convolutional
model in a multi-task setting, coupling multi-class
relation classification with binary classification of
word relatedness. Unlike LexNet, this model re-
quires only distributional vectors as input. Our
specialization tensor model also requires only dis-
tributional vectors as input, but compared to the
model of Attia et al. (2016), it has a simpler and
more intuitive feed-forward architecture.

Glavaš and Ponzetto (2017) recently showed that
asymmetric specialization of distributional vectors
helps to detect asymmetric relations (hypernymy,
meronymy). Following these findings, we hypoth-
esize that detection of different relations requires
different specializations of distributional vectors,
so we design STM accordingly.

3 Specialization Tensor Model

The high-level architecture of the Specialization
Tensor Model is depicted in Figure 1. The input to
the model is a pair of unspecialized distributional
word vectors (x1,x2). Both input vectors are first
transformed in K different ways with functions
f
(1)
S , . . . , f (K)

S . Each pair of corresponding special-
izations f (i)S (x1) and f (i)S (x2) is then forwarded to
the respective scoring function f (i)P . Finally, we
feed the K scores obtained from K pairs of differ-
ently specialized distributional vectors as features
to the multi-class relation classifier fclass .

3.1 Specialization Tensor
STM assumes that different word vector special-
izations emphasize different subsets of semantic
properties of words that are more informative for
predicting some lexico-semantic relations than oth-
ers. In other words, we assume that a particular
specialization function f (i)S can be trained to trans-
form the input vectors x1 and x2 into vectors that
encode properties suitable for predicting a particu-
lar relation, e.g., hypernymy. We set the specializa-
tion function f (i)S : Rm → Rn to be a non-linear
feed-forward network with a single hidden layer: it
transforms the input vector x ∈ Rm into a special-
ized vector x(i) ∈ Rn:1

f
(i)
S (x) = tanh

(
W

(i)
S x + b

(i)
S

)

1We have also experimented with more hidden layers but
f
(i)
S with a single hidden layer yielded best performance.

182



with W
(i)
S ∈ Rn×m and b

(i)
S ∈ Rn parameteriz-

ing the specialization function. Transformation
matrices W

(i)
S of different specialization functions

f
(i)
S can be seen as slices of a specialization tensor

W
[1..K]
S (hence the model name), coupled with the

specialization bias matrix BS = b
[1..K]
S . The num-

ber of specialization functions K (i.e., the number
of slices of the specialization tensor) is the hyper-
parameter of the model.

3.2 Bilinear Product Scores

Following the assumption that specialization ten-
sor slices generate relation-specific representations,
we assume that an interaction between the corre-
sponding specialized vectors x

(i)
1 = f

(i)
S (x1) and

x
(i)
2 = f

(i)
S (x2), produced by the i-th specializa-

tion tensor slice, generates an informative score
(i.e., a feature) for classifying the lexico-semantic
relation for a word pair. We produce a single fea-
ture for each pair of specialized vectors (x(i)

1 ,x
(i)
2 )

by non-linearly squashing their bilinear product:

f
(i)
P

(
x
(i)
1 ,x

(i)
2

)
= tanh

(
x
(i)
1

T
W

(i)
P x

(i)
2 + b

(i)
P

)

with the bilinear product matrices W
(i)
P ∈ Rn×n

and bias terms b(i)P ∈ R being trainable model
parameters. Bilinear product matrices W

(i)
P may

be seen as slices of the bilinear product tensor,
W

[1..K]
P , coupled with the bias vector bP =

[b
(1)
P , . . . , b

(K)
P ]T . The final K-dimensional feature

vector is then simply the concatenation of bilinear
product scores, that is, s = [f

(1)
P , . . . , f

(K)
P ]T .

3.3 Classification Objective

As the final step, we feed the feature vector s to the
relation classifier fclass , a feed-forward network
with a single hidden layer:

fclass(s) = tanh (Wcls + bcl )

with parameters Wcl ∈ RC×K and bcl ∈ RC ,
where C is the number of lexico-semantic rela-
tions between which we are discriminating. We
obtain the final prediction vector h by applying the
softmax function on the output of the relation clas-
sification component: h = softmax (fclass(s)).

STM is parametrized by (1) the specialization
tensor and bias matrix, (2) product tensor and
bias vector, and (3) classifier parameters, i.e.,

Ω = {W[1:K]
S ,BS ,W

[1:K]
P ,bP ,Wcl ,bcl}. As-

sume the training set of N triples, each consisting
of distributional vectors of two words and one-hot
encoding of the relation that holds between these
words, {(x1k ,x2k ,yk)}Nk=1. We optimize STM’s
parameters by minimizing the regularized cross-
entropy loss (i.e., negative log-likelihood):

J(Ω) = λ‖Ω‖2 −
N∑

k=1

C∑

j=1

yjk ln(h
j
k)

where hjk is the probability that the j-th relation
holds in the k-th training example (as predicted by
the model), and λ is the regularization factor.

4 Evaluation

We first describe the evaluation setup (datasets,
baselines, and model optimization) and then show
STM’s performance on a benchmarking relation
classification dataset (Santus et al., 2016). Finally,
we report how STM performs for different lan-
guages and in the language transfer setting.

4.1 Experimental Setup

Datasets. We use the CogALex-V dataset from
the shared task on corpus-based identification of
semantic relations (Santus et al., 2016). Its train
and test portions contain 3,054 and 4,260 word
pairs, respectively, covering four relations (syn-
onymy: 5.4%; antonymy: 8.8%; hypernymy: 8.6%;
and meronymy: 6.1%) and randomly paired words
(71.1%). CogALex-V is severely skewed in favor
of random word pairs and its training portion is
very limited in size. Nonetheless to the best of our
knowledge, it is the only publicly available dataset
for multi-class classification of lexico-semantic re-
lations on which other models have been compar-
atively evaluated (Attia et al., 2016; Shwartz and
Dagan, 2016).

Besides the skewed class distribution and the
limited size, CogALex-V also suffers from lexi-
cal repetitiveness.2 We have thus created an ad-
ditional larger and more balanced dataset by ran-
domly sampling triples from WordNet (Fellbaum,
1998). This dataset, termed WN-LS, contains
10,000 word pairs (approximately 2,000 pairs for
each of the four lexico-semantic relations and 2,000

2A single word can be present in up to ten pairs (although
there is no lexical overlap between the train and test data).
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randomly created pairs), split by 8:2 train-to-test ra-
tio. To support the multilingual analysis, we semi-
automatically translated the whole English (EN)
WN-LS dataset into German (DE) and Spanish
(ES).3 We additionally translated the test portion
of WN-LS to Croatian (HR), as an example of a
resource-lean language.4

Baselines. We compare STM against two baseline
models. The first baseline (CONCAT) feeds the
concatenation of the distributional embeddings to a
feed-forward classifier with a single hidden layer:

h(x1,x2)=softmax (tanh (Wcl[x1;x2] + bcl)) .

The second baseline, named BILIN-TENS is an
STM reduction in which we directly forward the in-
put vectors into the bilinear product tensor W

[1..K]
P ,

without being specialized. It can be seen as STM
with tensor specialization slices W

(i)
S fixed to iden-

tity matrices and biases b
(i)
S to zero vectors. Com-

paring STM with BILIN-TENS directly quantifies
the effect the specialization tensor has on relation
classification performance.

Optimization. We learn the STM’s parameters us-
ing the Adam algorithm (Kingma and Ba, 2015),
with initial learning rate set to 0.0001. We train in
mini-batches of size Nb = 50 and apply dropout
with the retaining probability of 0.5 to all model
layers. In all experiments, we find the optimal hy-
perparameters (the number of specialization tensor
slices K, the size of the specialized vectors n, and
the regularization factor λ) via grid search within
the 5-fold cross-validation on the training set.

4.2 Results and Discussion

Evaluation on CogALex-V. We show perfor-
mance (F1 score for all relations and micro-
averaged F1) on the CogALex-V dataset in Table
1.5 For a more direct comparison with the best-
performing shared task models, LexNet (Shwartz
et al., 2016) and the model of Attia et al. (2016),
we used 300-dimensional GloVe (Pennington et al.,
2014) distributional vectors as input.

Although not by a wide margin, STM out-
performs both best-performing models from the

3We first translated the dataset automatically with Google
Translate and then manually fixed the translation errors.

4We make WN-LS dataset publicly available, together
with the implementation of the specialization tensor model, at
https://github.com/codogogo/stm.

5Optimal STM config.: K = 5, n = 300, and λ = 0.001.

Model SYN ANT HYP MER All

Attia et al. (2016) 20.4 44.8 49.1 49.7 42.3
LexNet (2016) 29.7 42.5 52.6 49.3 44.5

CONCAT 10.9 28.5 34.8 32.9 27.4
BILIN-TENS 15.7 40.3 47.9 43.3 38.9

STM 22.1 50.4 49.8 50.4 45.3

Table 1: Performance on the CogALex-V dataset.

Model Lang. SYN ANT HYP MER All

LexNet EN 57.6 77.8 65.9 83.3 70.9
STM EN 58.6 86.6 63.5 79.5 72.5

STM DE 48.0 79.6 55.9 78.6 66.0
STM ES 52.3 80.5 62.6 78.8 68.6

Table 2: STM performance for three languages on (re-
spective translations of) the WN-LS dataset.

CogaLex-V shared task (Attia et al., 2016; Shwartz
et al., 2016), which is encouraging, given that STM
is simpler than both of these neural architectures.
STM outscores the model of Attia et al. (2016),
which uses the same input signal (i.e., only distri-
butional vectors) across the board. Overall, STM
also slightly outperforms LexNet (Shwartz and Da-
gan, 2016), despite the fact that LexNet addition-
ally employs rich syntactic signal. STM’s 6-point
edge over BILIN-TENS demonstrates the effective-
ness of multiple vector specializations, since this
performance gain can only be credited to the spe-
cialization tensor W[1..K]

S . Antonymy is the relation
for which STM yields largest gain with respect to
other models.

Multilingual comparison. Table 2 displays clas-
sification performance for English, German, and
Spanish on respective variants of the WN-LS
dataset. On the EN WN-LS version we com-
pare STM’s performance against the LexNet model
(Shwartz and Dagan, 2016). To allow for a more
transparent comparison of STM’s performance
across languages, we employed 300-dimensional
English, German, and Spanish fastText em-
beddings (Bojanowski et al., 2017), pre-trained
on Wikipedia.6 STM slightly outperforms the
more complex LexNet model (Shwartz and Da-
gan, 2016) on the WN-LS dataset as well. We
believe STM’s (not drastically) lower scores for
German and Spanish are due to (1) distributional

6https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md
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Train Test SYN ANT HYP MER All

EN DE 39.1 66.8 49.3 67.6 55.1
EN ES 41.7 73.0 52.6 69.0 58.6
EN HR 30.5 64.7 49.1 60.5 51.5

DE EN 34.0 68.6 47.2 62.4 54.2
DE ES 39.1 61.9 44.4 60.5 50.6
DE HR 30.3 59.8 37.7 51.7 45.2

ES EN 47.9 74.9 46.4 68.2 59.9
ES DE 37.8 66.7 47.9 62.7 53.3
ES HR 36.1 62.2 44.6 61.5 51.4

Table 3: Zero-shot cross-lingual transfer. Best perfor-
mance for each test set is shown in bold.

vectors built from smaller corpora (ES and DE
Wikipedia being smaller than EN Wikipedia) and
(2) language-specific phenomena (e.g., a large num-
ber of compounds in German).

Zero-shot language transfer. Finally, we inves-
tigate whether a pre-trained STM model can be
leveraged to predict lexico-semantic relations for a
new language, from which it has observed no train-
ing instances. We are particularly interested in such
zero-shot language transfer for resource-lean lan-
guages, for which resources like WordNet do not
exist. To enable transfer experiments, we needed to
induce a shared bilingual (or multilingual) vector
space. In all experiments, we induced the shared
distributional spaces using the mapping approach
and translation matrices from Smith et al. (2017).

In the first set of transfer experiments, we trained
STM on the WN-LS train portion in one language
(EN, ES, or DE) and evaluated it on the test WN-LS
portions of all other languages, including Croatian
as a resource-lean language. We show the results of
these experiments in Table 3. Performance drops,
compared to respective monolingual settings (i.e.,
performance of models trained on the WN-LS train
set of the same language, see Table 2), range be-
tween 10% (EN→ES compared to monolingual ES
results) and 18% (DE→EN performance compared
to monolingual EN performance). These drops
in zero-shot language transfer are due to imper-
fect bilingual embedding spaces. In fact, language
transfer results seem to be very correlated with the
quality of corresponding embedding translation ma-
trices (highest for transfers between EN and ES and
lowest for DE→HR transfer).7 It is encouraging
that we can build a reasonable relation classifier

7For example, Smith et al. (2017) report P@1 bilingual
lexicon extraction performance of 73% for ES-EN, 61% for
DE-EN, and 55% for HR-EN.

Train Test SYN ANT HYP MER All

EN+ES HR 31.7 59.8 52.3 68.3 54.4
EN+DE HR 29.0 61.7 46.5 65.3 51.5
DE+ES HR 36.6 61.4 47.5 65.7 53.1

EN+ES+DE HR 36.5 64.6 51.2 64.7 54.1

Table 4: Language transfer results on the HR WN-LS.
Training on combinations of EN, ES, and DE data.

even for a resource-lean language, without a single
training instance for that language.

Finally, we examine whether we can improve
prediction performance for a resource-lean lan-
guage (i.e., Croatian) by combining the training
data from multiple resource-rich languages (i.e.,
English, German, and Spanish). We show the
results for this experiment in Table 4. By com-
bining training data from different resource-rich
languages, we further improve prediction perfor-
mance for a resource-lean language. Compared to
the EN→HR transfer, we observe 3% overall per-
formance gain when training on merged (EN+ES
and EN+ES+DE) datasets. ES and DE training
instances are, however, merely translations of the
original EN instances, i.e., there is no additional
external knowledge being introduced. We thus be-
lieve that the observed gains are due to additional
regularization provided by the multilingual train-
ing provides, which allows us to learn a model that
better generalizes across languages.

5 Conclusion

We have presented a novel neural architecture
for predicting lexico-semantic relations between
words. The proposed tensor-based specialization
model specializes distributional vectors in multi-
ple ways and then uses these specializations to
compute features for relation classification. We
have demonstrated that our model outperforms
more complex and resource-heavier models on two
benchmarking datasets. We have further shown that
our model is by design portable across languages
and that it supports zero-shot knowledge transfer to
resource-lean languages. As future work, we plan
to experiment with more advanced neural architec-
tures and finer-grained relations. We also intend to
port the model to more languages.
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Abstract

Bilingual word embeddings are useful for
bilingual lexicon induction, the task of min-
ing translations of given words. Many studies
have shown that bilingual word embeddings
perform well for bilingual lexicon induction
but they focused on frequent words in gen-
eral domains. For many applications, bilin-
gual lexicon induction of rare and domain-
specific words is of critical importance. There-
fore, we design a new task to evaluate bilin-
gual word embeddings on rare words in dif-
ferent domains. We show that state-of-the-art
approaches fail on this task and present sim-
ple new techniques to improve bilingual word
embeddings for mining rare words. We release
new gold standard datasets and code to stimu-
late research on this task.

1 Introduction

Bilingual lexicon induction (BLI) is the task of
generating accurate translations for each word in
a list of source language words. Being able to per-
form BLI without parallel data is critical in many
low resource scenarios. Bilingual word embed-
dings (BWEs) represent words from two differ-
ent languages in the same vector space. BWEs
have been shown to be very effective for BLI
given a small seed lexicon (around 5000 word-
pairs) as the only bilingual signal. Until now,
BWEs have been evaluated on frequent words
from parliament proceedings or Wikipedia articles
and reached good accuracies on these datasets.
However, evaluations on rare and domain-specific
words have not yet been provided even though
such evaluation scenarios are critical for appli-
cations like machine translation (e.g., mining of
translations for OOV (out-of-vocabulary) items)
or bilingual terminology mining. In this paper,
we design a novel evaluation scenario for BWEs:
given (i) large amounts of monolingual data and

(ii) a seed lexicon of frequent word-pairs, the goal
is to create BWEs that enable accurate mining of
rare words. As gold standard data, we release
manually annotated pairs of rare words and their
translations from three domains: (i) web crawls
(ii) news commentaries (iii) medical texts. We
show that state-of-the-art BWEs perform poorly
on these data sets. We present simple techniques
to build and combine BWEs that yield strong per-
formance improvements. We study using fast-
text to build BWEs, using ensembles of BWEs,
and dealing with orthographic distance in BWEs,
all of which improve results for the new task of
rare word translation mining. A secondary con-
tribution is improvements over state-of-the-art ap-
proaches on frequent words (which have been al-
ready extensively studied in previous work). We
make our datasets and code publicly available1.

2 Bilingual Induction of Rare Words

We briefly present how BLI is performed using
BWEs and then introduce our new datasets.

Bilingual Lexicon Induction. The goal is to
generate translations t in target language Vt of pro-
vided words s from source language Vs. Given
a BWE representing Vs and Vt, an n-best list of
translations for each word s ∈ Vs can be induced
by taking the top n words ti ∈ Vt whose represen-
tation ~xti in the BWE is closest to the representa-
tion ~xs according to cosine distance.

Datasets. To create BWEs we use post-hoc
mapping which requires only monolingual texts
and a small seed lexicon (see §3). Our training
set consists of two large monolingual corpora:

• GENERAL: 4,400,309 English and German
sentences from parliament proceedings, news

1https://github.com/braunefe/BWEeval
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commentaries and web crawls taken from the
WMT 2016 shared task (Bojar et al., 2016).

• MEDICAL: 3,108,183 English and German
sentences from titles of medical Wikipedia
articles, medical term-pairs, patents, doc-
uments from the European Medicines
Agency.2

Seed Lexicons. Throughout the paper, we work
with two lexicons. For each lexicon, we take the
most common words and translate these by tak-
ing the top-ranked translation from a probabilis-
tic dictionary.3 BWEs trained using this data are
evaluated on our gold standards containing pairs of
rare words (we will also report results on frequent
words, as in previous work, see below).

• GENLEX: 4955 most frequent words from
GENERAL

• MEDLEX: 6079 most frequent words from
MEDICAL

Gold Standards for Rare Words. We created
gold standard data for rare words by randomly
sampling words occurring between 3 and 5 times4

in GENERAL and MEDICAL. For GENERAL we
sample rare words from news commentaries and
web crawls separately, so we have two rare word
data sets here. For each (English) sampled word, a
German native speaker generated a German trans-
lation. We indicate the division into validation and
test sets:

• CRAWLRARE: 1000 rare words from web
crawls of GENERAL (250 validation, 750 test)

• NEWSRARE: 1144 rare words from news
commentaries of GENERAL (369 validation,
775 test)

• MEDRARE: 2109 rare words from MEDICAL

(1000 validation, 1109 test)
As English-German BLI of frequent words has

not been studied before, following previous work,
we annotated 2000 frequent English words taken
from each of the General and Medical corpora
with their German translations using the same
probabilistic dictionary as was used to generate the
Lexicon sets. These two silver standard datasets
will also be released with the paper:

2This is taken from the in-domain part of: https://
ufal.mff.cuni.cz/ufal_medical_corpus.

3This word-level dictionary is taken from a standard
phrase-based SMT system trained on WMT 2017 data.

4Words with frequencies 1 and 2 are very often tokeniza-
tion errors or borrowings from other languages, therefore we
start at frequency 3. We did not consider tokenization errors
as rare words and removed those from our data.

• GENFREQ: 2000 frequent words from GEN-
ERAL (1000 validation, 1000 test)

• MEDFREQ: 2000 frequent words from MED-
ICAL (1000 validation, 1000 test)

3 Bilingual Word Embedding Creation

To create bilingual word embeddings, we use
post-hoc mapping (PHM), a method that projects
monolingual words embeddings (MWEs) into a
shared space using a linear transformation trained
with a small seed lexicon (Mikolov et al., 2013b;
Faruqui and Dyer, 2014; Xing et al., 2015; Lazari-
dou et al., 2015; Vulić and Korhonen, 2016).
Among methods to generate BWEs, PHM uses a
very cheap bilingual signal.5

Given MWEs in two languages Vs and Vt,
the goal of post-hoc mapping is to find a ma-
trix W ∈ Rd1×d2 that maps each representa-
tion ~xs ∈ Rd1 of a source word s ∈ Vs to the
representation ~yt ∈ Rd2 of its translation t ∈
Vt. Typically, W is learned using a seed lexi-
conL = {( ~x1, ~y1), . . . , ( ~xn, ~yn)}, where each pair
(~xi, ~yi) ∈ Vs×Vt are mutual translations. A com-
mon objective for cross-lingual mapping is ridge
regression (Mikolov et al., 2013b) (RIDGE), where
W is estimated by:

W∗ = argmin
W∈Rd1×d2

|| XW− Y || +λ ||W || (1)

where X and Y are stacked vectors of ~xi and ~yi
respectively. Lazaridou et al. (2015) use a max-
margin ranking loss (MAX-MARG) to estimate W.
For each (~xi, ~yi) ∈ L, a candidate ~y∗i = W · ~xi is
computed. The ranking loss is:

k∑

j 6=i

max{0, γ + sim( ~y∗i , ~yi)− sim( ~y∗i , ~yj)} (2)

where ~yj is a randomly selected negative example,
i.e., it is not a translation of ~xi, k is the number of
negative examples and sim(~x, ~y) computes cosine
similarity between ~x and ~y. Hyperparameters γ
and k are tuned on held-out validation data.6

5Gouws and Søgaard (2015) and Duong et al. (2016) also
leverage seed lexicons. However, in order to generate high
quality BWEs, these approaches leverage much larger bilin-
gual dictionaries.

6Ideally, the sum in Equation 2 should be computed over
the complete target vocabulary (i.e., k =| Vt |). Since this
is not feasible in practice, Lazaridou et al. (2015) treat k as
another hyperparameter tuned together with γ.
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Domain mapping W2V skip W2V cbow

genFreq ridge 27.1 (43.7) 24.0 (41.4)
max-marg 32.1 (47.7) 22.8 (40.0)

medFreq ridge 14.9 (24.0) 18.1 (30.1)
max-marg 16.0 (27.2) 16.8 (27.2)

Table 1: Bilingual lexicon induction of frequent word-
pairs on general and medical domain data. We report
top-1 and (top-5 in brackets) percentage accuracy. In
this paper, bolding indicates a best result so far for a
particular dataset.

3.1 Testing Previous Work

We reimplement Mikolov et al. (2013b) as well as
Lazaridou et al. (2015). To replicate their setup
on English-German texts we first evaluate these on
two standard tasks, mining frequent words from
GENERAL and MEDICAL. We follow the approach
of (Heyman et al., 2017) and use English as the
source language. First, we train 300 dimensional
MWEs on the monolingual data using W2V7 with
default parameters except that we lowered the
minimum word frequency threshold to 3 (Mikolov
et al., 2013a). To generate BWEs, we use MEDI-
CAL and MEDLEX for MEDRARE and MEDFREQ,
while we use GENERAL and GENLEX for the rest
of the test sets. We report results with the com-
bination of skip-gram (W2V SKIP) or cbow (W2V

CBOW) and RIDGE or MAX-MARG. As in previ-
ous work, we use top-1 (translation is the closest
neighbor) and top-5 (translation is one of 5 closest
neighbors) accuracies. The results in Table 1 show
that the best performing setups are W2V SKIP with
MAX-MARG for GENFREQ and W2V CBOW with
RIDGE for MEDFREQ. Accuracies are compara-
ble to previous work (which was on different lan-
guage pairs). The poor performance on MEDFREQ

is consistent with Heyman et al. (2017), who intro-
duced the task of mining frequent medical terms.

4 Applying BWEs for Mining Rare
Word-Pairs

We use the exact same BWEs training setup as
above (§3) and perform BLI on our new test sets
of rare words. The results in Table 2 show that
on low frequency word-pairs BWEs perform very
poorly. Compared to standard evaluation scenar-
ios (see Table 1) a massive performance decrease
is observed. Low accuracy is clearly caused by the
inability of context-based models (W2V) to build
accurate embedding vectors for words occurring

7https://github.com/dav/word2vec

Domain mapping W2V skip W2V cbow

crawlRare ridge 2.3 (3.2) 2.0 (2.4)
max-marg 2.1 (3.3) 1.7 (2.3)

newsRare ridge 4.6 (9.4) 1.9 (4.9)
max-marg 5.5 (11.0) 2.3 (4.8)

medRare ridge 0.1 (0.2) 0.1 (0.1)
max-marg 0.1 (0.4) 0.1 (0.1)

Table 2: Bilingual lexicon induction of low frequency
word-pairs in different domains.

Domain mapping FTT skip FTT cbow

crawlRare ridge 10.1 (14.7) 4.7 (6.7)
max-marg 11.5 (15.9) 7.3 (12.1)

newsRare ridge 23.2 (37.7) 6.8 (13.5)
max-marg 25.3 (39.5) 15.1 (24.1)

medRare ridge 12.2 (19.0) 8.2 (14.2)
max-marg 12.5 (20.0) 8.8 (15.3)

genFreq ridge 33.8 (51.4) 16.2 (32.1)
max-marg 38.7 (56.5) 28.3 (45.3)

medFreq ridge 17.8 (33.6) 14.9 (26.7)
max-marg 29.3 (42.7) 19.9 (33.2)

Table 3: Bilingual lexicon induction using MWEs
trained with FASTTEXT (FTT).

in very few contexts only. Through post-hoc map-
ping, these (poor) embeddings get projected ran-
domly into the bilingual space which results in
very poor performance on BLI especially for the
medical domain.

4.1 Using Subword Models
A first way to create BWEs that are better adapted
to rare words is to generate MWEs that provide
better vector representations for the words. One
simple idea is to try to add subword information.
We show empirically this helps BLI of rare words,
which has not been shown before, to our knowl-
edge. FASTTEXT (Bojanowski et al., 2017) ex-
tends W2V by adding subword information s(w, c)
to the context-based objective as follows:

s(w, c) =
∑

g∈Gw

z>g vc (3)

where Gw ⊂ {1, ..., G} is a set of character n-
gram indices corresponding to the n-grams that
appear in the word w, zg is the vector representa-
tion of the n-gram and vc is the vector of the con-
text words. Subword information helps for rare
words (by using n-gram information shared be-
tween words) and generates more accurate MWEs
especially for morphologically rich languages like
German. We create 300 dimensional MWEs us-
ing FASTTEXT skip-gram and cbow models with
default parameters and with the same exception
as before, i.e., we lowered the minimum word
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Domain mapping ensemble ensemble + edit edit only % orth. close

crawlRare ridge 10.3 (14.6) 19.5 (22.1) 19.0 (21.7) 60.3max-marg 13.2 (17.6) 19.5 (22.3)

newsRare ridge 24.3 (39.9) 32.0 (42.8) 21.8 (29.5) 39.8max-marg 27.2 (40.0) 32.8 (43.5)

medRare ridge 15.1 (20.6) 25.5 (26.8) 26.0 (28.2) 76.7max-marg 12.5 (21.2) 26.3 (28.2)

genFreq ridge 42.9 (60.7) 44.8 (62.0) 16.0 (27.1) 26.5max-marg 45.4 (63.2) 47.2 (63.6)

medFreq ridge 31.6 (37.0) 35.5 (44.2) 20.7 (32.9) 55.7max-marg 37.7 (46.7) 38.6 (47.4)

Table 4: Bilingual lexicon induction of low-frequency and frequent word-pairs in different domains. Ensem-
ble denotes the results for ensembling all BWE models, ensemble + edit shows results by adding orthographic
similarity, edit only denotes the results obtained by using only orthographic distance (all other weights set to 0)
and % orth. close shows the percentage of orthographically similar gold standard word pairs (whose normalized
Levenshtein distance is at most 0.3).

No. source model1 model2 corpus glossary

W2V skip FTT skip
1. snowstorms skinhead schneestürme crawlRare skinhead
2. fire-extinguishers goldzertifikate feuerlöschern crawlRare gold certificates
3. tissue-specificity basismilieu gewebespezifizität medRare base environment
4. university universität harvard-universität crawlRare Harvard University
5. cabin kabine flugzeugkabine newsRare airplane cabin

FTT skip ensemble
6. rubbish mülltonnen müll newsRare trashcan
7. bathtub badezimmer badewanne newsRare bathroom
8. parenthood vaterschaft elternschaft newsRare fatherhood
9. cognitively neurokognitiven kognitiv medRare neuro cognitive
10. nanojoules nanojoule mikrotröpfchen medRare microdroplet

ensemble ensemble + edit
11. sleddogs pferdeschlittenfahrten schlittenhunde crawlRare sled rides
12. gnome-applets gtkhtml gnome-anwendungen crawlRare layout engine used by Gnome
13. glutenins getreideproteinen glutenine medRare grain proteins
14. esterify verestern esteröl medRare ester oil

Table 5: Examples comparing the predictions of the indicated models using ridge for the mapping where model1
and model2 shows the induced words for the given source. Bolding indicates the correct prediction and we give
glosses for the incorrect predictions.

frequency value to 3. We perform PHM using
RIDGE and MAX-MARGIN. The results in Table 3
show that this procedure yields impressive perfor-
mance improvements. After evaluation8 we man-
ually looked at the prediction of our models. We
present examples in table 5. Examples 1–3 shows
that the model improves non-trivial cases as well
where the meanings of the incorrect predictions
induced by W2V are not close to that of the in-
put. We also show counterexamples 4 and 5 where
subword elements cause errors by inducing hy-
ponymies of the correct words. Generating BWEs
with MAX-MARGIN on these improved MWEs is
particularly effective. By analyzing word similar-
ities we saw that in BWEs acquired with RIDGE

rare English words are often mapped near to noise.
8We added these examples to the camera-ready paper after

the results were finalized.

Because MAX-MARGIN uses negative noisy word
pairs as training examples this phenomenon is not
as strongly present there.

4.2 Model Ensembling

Although BWEs obtained with FASTTEXT and
MAX-MARGIN clearly outperform other methods
on rare words, a combination of BWEs obtained
with different models can further improve perfor-
mance by integrating several sources of informa-
tion. We ensemble BWEs obtained using differ-
ent MWEs as follows: we generate n-best lists
(n = 100) of translation candidates using each
model. For each pair (s, t) of candidate transla-
tions, we compute an ensemble weight given by a
weighted sum of similarity scores Simi(s, t) ob-

191



tained on each BWE:

M∑

i=1

γiSimi(s, t) (4)

Simi(s, t) is computed using cosine similarity.
When a candidate pair (s, t) is not in the n-best list
generated by a model i then Simi(s, t) is set to 0.
The weights γi for each test set are tuned on vali-
dation sets separately (presented in §2) using grid
search. The results (Table 4) show that ensem-
bling yields significant gains over subword models
alone for all data sets. We again looked for exam-
ples after evaluation (Table 5) where ensembling
helped compared with the previous best setup (ex-
amples 6–9) and saw that the method again im-
proves upon hard cases where the incorrect pre-
dictions are very close, in terms of meaning, to
the gold annotation. Row 10 shows a counter-
example. We note that this idea could be used in a
supervised neural network for BLI as well, where
information from multiple models could be inte-
grated by concatenating embeddings from them
for a given word.

4.3 Adding Orthographic Distance
While subword information captures orthographic
properties of words to a certain extent, it can-
not precisely represent the orthographic distance
of each word pairs in a predefined number of di-
mensions, especially not that of source and target
word pairs when performining post-hoc mapping
(MWEs are trained separately thus there is no such
cross-lingual information). Thus, it is beneficial to
strengthen BWEs by integrating a similarity mea-
sure between word strings directly. The BWEs
ensemble in Equation 4 can easily be augmented
with a weighted term γM+1OSim(s, t) that mea-
sures the orthographic similarity (which we de-
fine as one minus the normalized Levenshtein dis-
tance) between the surface-forms of words s and
t. We generate n-best lists of candidate transla-
tions using different BWE models as in §4.2. In
addition, we generate a list containing the n clos-
est target words according to OSim(s, t) and en-
semble all lists together. Results are shown in Ta-
ble 4. To measure the impact of orthographic in-
formation alone, we also report results obtained
when using this information only (all other ensem-
ble weights set to 0). For low frequency word-
pairs, orthographic information leads to massive
performance gains. We analyzed the gold stan-

dard word pairs in our datasets from the perspec-
tive of orthographic similarity. For CRAWLRARE

and MEDRARE the ratios of similar words are high
which explains the large improvements obtained
by adding this measure. Even though the ratio
is not high for NEWSRARE and the two frequent
datasets, orthographic information still improves
performance which shows the advantage of using
the technique in all cases. Table 5 shows non-
trivial examples (11–13) where orthographic dis-
tance improves performance. Example 11 shows
the advantage of combining the vector represen-
tation with orthographic distance, i.e., our model
could find translations of sleddogs that have sim-
ilar meaning, while in examples 12 and 13 ortho-
graphic distance helped to pick the correct transla-
tion which is the closest in terms of edit distance.
On the other hand, in example 14 orthographic dis-
tance caused an error because the incorrect predic-
tion is too close to the source word in orthographic
distance.

5 Conclusion

We evaluated BWEs on the novel task of rare term
mining in different domains. Our experiments
show that previous approaches to bilingual lexi-
con induction fail when mining rare words. We
have studied techniques for decreasing the impact
of these problems. By ensembling different BWEs
and combining those with orthographic cues, we
have reached state-of-the-art results. By making
our code and datasets publicly available, we hope
to encourage other researchers to further enhance
BWEs to perform well on this important task. In
the future, we would like to work on BLI of multi-
word translations and compound words.
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Ivan Vulić and Anna Korhonen. 2016. On the role
of seed lexicons in learning bilingual word embed-
dings. In Proc. ACL.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin.
2015. Normalized word embedding and orthogonal
transform for bilingual word translation. In Proc.
NAACL.

193



Proceedings of NAACL-HLT 2018, pages 194–198
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Frustratingly Easy Meta-Embedding – Computing Meta-Embeddings by
Averaging Source Word Embeddings

Joshua N Coates
Department of Computer Science

University of Liverpool
j.n.coates@liverpool.ac.uk

Danushka Bollegala
Department of Computer Science

University of Liverpool
danushka@liverpool.ac.uk

Abstract

Creating accurate meta-embeddings from pre-
trained source embeddings has received at-
tention lately. Methods based on global and
locally-linear transformation and concatena-
tion have shown to produce accurate meta-
embeddings. In this paper, we show that the
arithmetic mean of two distinct word embed-
ding sets yields a performant meta-embedding
that is comparable or better than more com-
plex meta-embedding learning methods. The
result seems counter-intuitive given that vector
spaces in different source embeddings are not
comparable and cannot be simply averaged.
We give insight into why averaging can still
produce accurate meta-embedding despite the
incomparability of the source vector spaces.

1 Introduction

Distributed vector representations of words,
henceforth referred to as word embeddings, have
been shown to exhibit strong performance on a
variety of NLP tasks (Turian et al., 2010; Zou
et al., 2013). Methods for producing word em-
bedding sets exploit the distributional hypothesis
to infer semantic similarity between words within
large bodies of text, in the process they have been
found to additionally capture more complex lin-
guistic regularities, such as analogical relation-
ships (Mikolov et al., 2013c). A variety of meth-
ods now exist for the production of word embed-
dings (Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Huang et al., 2012; Pennington et al.,
2014; Mikolov et al., 2013a). Comparative work
has illustrated a variation in performance between
methods across evaluative tasks (Chen et al., 2013;
Yin and Schütze, 2016).

Methods of “meta-embedding”, as first pro-
posed by Yin and Schütze (2016), aim to con-
duct a complementary combination of informa-
tion from an ensemble of distinct word embedding

sets, each trained using different methods, and re-
sources, to yield an embedding set with improved
overall quality.

Several such methods have been proposed.
1TON (Yin and Schütze, 2016), takes an ensem-
ble of K pre-trained word embedding sets, and
employs a linear neural network to learn a set of
meta-embeddings along with K global projection
matrices, such that through projection, for every
word in the meta-embedding set, we can recover
its corresponding vector within each source word
embedding set. 1TON+ (Yin and Schütze, 2016),
extends this method by predicting embeddings for
words not present within the intersection of the
source word embedding sets. An unsupervised lo-
cally linear meta-embedding approach has since
been taken (Bollegala et al., 2017), for each source
embedding set, for each word; a representation
as a linear combination of its nearest neighbours
is learnt. The local reconstructions within each
source embedding set are then projected to a com-
mon meta-embedding space.

The simplest approach considered to date, has
been to concatenate the word embeddings across
the source sets (Yin and Schütze, 2016). Despite
its simplicity, concatenation has been used to pro-
vide a good baseline of performance for meta-
embedding.

A method which has not yet been proposed is
to conduct a direct averaging of embeddings. The
validity of this approach may perhaps not seem ob-
vious, owing to the fact that no correspondence ex-
ists between the dimensions of separately trained
word embedding sets. In this paper we first pro-
vide some analysis and justification that, despite
this dimensional disparity, averaging can provide
an approximation of the performance of concate-
nation without increasing the dimension of the em-
beddings. We give empirical results demonstrat-
ing the quality of average meta-embeddings. We
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make a point of comparison to concatenation since
it is the most comparable in terms of simplicity,
whilst also providing a good baseline of perfor-
mance on evaluative tasks. Our aim is to highlight
the validity of averaging across distinct word em-
bedding sets, such that it may be considered as a
tool in future meta-embedding endeavours.

2 Analysis

To evaluate semantic similarity between word em-
beddings we consider the Euclidean distance mea-
sure. For `2 normalised word embeddings, Eu-
clidean distance is a monotonically decreasing
function of the cosine similarity, which is a popu-
lar choice in NLP tasks that use word embeddings
such as semantic similarity prediction and analogy
detection (Levy et al., 2015; Levy and Goldberg,
2014). We defer the analysis of other types of
distance measures to future work. By evaluating
the relationship between the Euclidean distances
of pairs of words in the source embedding sets
and their corresponding Euclidean distances in the
meta-embedding space we can obtain a view as
to how the meta-embedding procedure is combin-
ing semantic information. We begin by examining
concatenation through this lens, before moving on
to averaging.

2.1 Concatenation
We can express concatenation by first zero-
padding our source embeddings, before combin-
ing them through addition.

Without loss of generality, we consider both
concatenation and averaging over only two source
word embedding sets for ease of exposition. Let
S1 and S2 be unique embedding sets of real-valued
continuous embeddings. We make no assumption
that S1 and S2 were trained using the same method
or resources. Consider two semantically similar
words u and v such that u,v ∈ S1 ∩ S2. Let uS1

and vS1 , and uS2 and vS2 denote the specific word
embeddings of u and v within the embeddings S1,
and S2 respectively.

Let the dimensions of embeddings S1, and S2
be denoted dS1 , and dS2 respectively. We zero-
pad embeddings from S1 by front-loading dS2 zero
entries to each word embedding vector. In con-
trast, we zero-pad embeddings from S2 by adding
dS1 zero entries to the end of each embedding vec-
tor. The resulting embeddings from S1 and S2 now
share a common dimension of dS1 + dS2 . Denote

the resulting embeddings of any word u ∈ S1∩S2,
as uzero

S1
and uzero

S2
respectively. Now, combining

our source embeddings through addition we obtain
equivalency to concatenation.

uzero
S1

+ uzero
S2

=




uS2(1)

uS2(2)

...
uS2(dS2

)

uS1(1)

uS1(2)

...
uS1(dS1

)




=

[
uS2

uS1

]
(1)

Note that the zero-padded vectors are orthogonal.
Let the Euclidean distance between these words

in each embedding be denoted by ES1 and ES2 .
Note that for any vector u ∈ Rn the addition of
zero-valued dimensions does not affect the value
of its `2-norm. So we have

ES1 = ||uS1 − vS1 ||2 =
∣∣∣∣uzero

S1
− vzero

S1

∣∣∣∣
2

(2)

ES2 = ||uS2 − vS2 ||2 =
∣∣∣∣uzero

S2
− vzero

S2

∣∣∣∣
2

(3)

Consider the Euclidean distance between u and v
after concatenation.

ECONC

=

∣∣∣∣
∣∣∣∣
[
uS2

uS1

]
−
[
vS2

vS1

]∣∣∣∣
∣∣∣∣
2

=
∣∣∣∣(uzero

S1
+ uzero

S2
)− (vzero

S1
+ vzero

S2
)
∣∣∣∣
2

=
∣∣∣∣(uzero

S1
− vzero

S1
)− (vzero

S2
− uzero

S2
)
∣∣∣∣
2

=
√

(ES1)
2 + (ES2)

2 − 2ES1ES2cos(θ)

=
√

(ES1)
2 + (ES2)

2 − 2ES1ES2(0)

=
√

(ES1)
2 + (ES2)

2

For any two words belonging to the resultant em-
bedding obtained by concatenation, the distance
between these words in the resultant space is the
root of the sum of squares of Euclidean distances
between these words in S1 and S2.

2.2 Average word embeddings
Here we now make the assumption that S1 and S2
have common dimension d.1

1Without loss of generality, source embeddings with dif-
ferent dimensionality can be appropriately padded to have the
same dimensionality.
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Despite there being no obvious correspondence
between dimensions of S1 and S2 we can show
that the average embedding set retains semantic
information through preservation of the relative
distances between words.

Consider the positioning of words u, and v af-
ter performing a word-wise average between the
source embedding sets. The Euclidean distance
between u and v in the resultant meta-embedding
is given by

EAV G

=

∣∣∣∣
∣∣∣∣
(uS1 + uS2)

2
− (vS1 + vS2)

2

∣∣∣∣
∣∣∣∣
2

=
1

2
||(uS1 − vS1)− (vS2 − uS2)||2

∝
√
(ES1)

2 + (ES2)
2 − 2ES1ES2 cos(θ)

Now in this case, unlike concatenation, we have
not designed our source embedding sets such that
they are orthogonal to each other, and so it seems
we are left with a term dependant on the angle be-
tween (uS1−vS1) and (vS2−uS2). However, Cai
et al. (2013) showed that, if X is a set of random
points ∈ Rn with cardinality |X |, then the limit-
ing distribution of angles, as |X | → ∞, between
pairs of elements from X , is Gaussian with mean
π/2. In addition, Cai et al. (2013) showed that the
variance of this distribution shrinks as the dimen-
sionality increases.

Word embedding sets typically contain in the
order of ten thousand or more points, and are typ-
ically of relatively high dimension. Moreover,
assuming the difference vector between any two
words in an embedding set is sufficiently random,
we may approximate the limiting Gaussian distri-
bution described by Cai et al. (2013). In such a
case the expectation would then be that the vec-
tors (uS1 − vS1) and (vS2 −uS2) are orthogonal,
leading to the following result.

E[EAV G] =
1

2

√
(ES1)

2 + (ES2)
2 ∝ ECONC

(4)

To summarise, if word embeddings can be shown
to be approximately orthogonal, then averaging
will approximate the same information as concate-
nation, without increasing the dimensionality of
the embeddings.

3 Experiments

We first empirically test our theory that word
embeddings are sufficiently random and high di-
mensional, such that they are approximately all
orthogonal to each other. We then present an
empirical evaluation of the performance of the
meta-embeddings produced through averaging,
and compare against concatenation.

3.1 Datasets
We use the following pre-trained embedding sets
that have been used in prior work on meta-
embedding learning (Yin and Schütze, 2016; Bol-
legala et al., 2017) for experimentation.

• GloVe (Pennington et al., 2014). 1,917,494
word embeddings of dimension 300.

• CBOW (Mikolov et al., 2013b). Phrase em-
beddings discarded, leaving 929,922 word
embeddings of dimension 300.

• HLBL (Turian et al., 2010). 246,122 hierar-
chical log-bilinear (Mnih and Hinton, 2009)
word embeddings of dimension 100.

Note that the purpose of this experiment is not
to compare against previously proposed meta-
embedding learning methods, but to empirically
verify averaging as a meta-embedding method and
validate the assumptions behind the theoretical
analysis. By using three pre-trained word em-
beddings with different dimensionalities and em-
pirical accuracies, we can evaluate the averaging-
based meta-embeddings in a robust manner.

We pad HLBL embeddings to the rear with 200
zero-entries to bring their dimension up to 300.
For GloVe, we `2 normalise each dimension of
the embedding across the vocabulary, as recom-
mended by the authors. Every individual word
embedding from each embedding set is then `2-
normalised. The proposed averaging operation, as
well as concatenation, operate only on the inter-
section of these embeddings. The intersectional
vocabularies GloVe ∩ CBOW, GloVe ∩ HLBL,
and CBOW∩HLBL contain 154,076; 90,254; and
140,479 word embeddings respectively.

3.2 Empirical distribution analysis
We conduct an empirical analysis of the distribu-
tion of the angle ^[(uS1 − vS1), (vS2 − uS2)]
for each pair of datasets. Table 1 shows the
mean and variance of these distributions, obtained

196



0.75 1.00 1.25 1.50 1.75 2.00 2.25

Angle in Radians.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 1: Distribution of angles between embeddings
within GloVe ∩ CBOW.

from samples of 200,000 random pairs of words
from each intersectional vocabulary. We find that
the angles are approximately normally distributed
around π/2.

Embeddings µ σ2

GloVe & CBOW 1.5609 0.0121
GloVe & HLBL 1.5709 0.0129
CBOW & HLBL 1.5740 0.0126

Table 1: Observed distribution parameters.

Figure 1 shows a normalised histogram of the
results for GloVe ∩ CBOW, along with a nor-
mal distribution characterised by the sample mean
and variance. GloVe ∩ HLBL, and CBOW ∩
HLBL plots are not shown due to space limita-
tions, but are similarly normally distributed. This
result shows that the pre-trained word embeddings
approximately satisfy the predictions made by Cai
et al. (2013), thereby empirically justifying the as-
sumption made in the derivation of (4).

3.3 Evaluation Tasks
3.3.1 Semantic Similarity
We measure the similarity between words by cal-
culating the cosine similarity between their em-
beddings; we then calculate Spearman correlation
against human similarity scores. The following
datasets are used: RG (Rubenstein and Goode-
nough, 1965), MC (Miller and Charles, 1991),
WS (Finkelstein et al., 2001), RW (Luong et al.,
2013), and SL (Hill et al., 2015).

3.3.2 Word Analogy
Using the Google dataset GL (Mikolov et al.,
2013b) (19544 analogy questions), we solve ques-
tions of the form a is to b as c is to what?, using

Embeddings RG MC WS RW SL GL

sources
HLBL 100 35.3 49.3 35.7 19.1 22.1 15.0
CBOW 300 76.0 82.2 69.8 53.4 44.2 67.1
GloVe 300 82.9 87.0 75.4 48.7 45.3 68.7

AVG
CBOW+HLBL 300 69.2 81.0 60.1 48.7 37.3 49.4
GloVe+CBOW 300 82.2 87.0 74.5 52.9 46.5 73.8
GloVe+HLBL 300 73.7 74.1 64.2 44.6 38.8 49.5

CONC
CBOW+HLBL 400 68.7 80.2 62.9 49.1 39.6 53.2
GloVe+CBOW 600 83.0 88.8 76.4 54.8 46.3 75.5
GloVe+HLBL 400 73.7 80.1 65.5 46.4 40.0 53.8

Table 2: Results on word similarity, and analogical
tasks. Best performances bolded per task. Dimension-
ality of the meta embedding is shown next to the source
embedding names.

the CosAdd method (Mikolov et al., 2013c) shown
in (5). Specifically, we determine a fourth word d
such that the similarity between (b− a+ c) and d
is maximised.

CosAdd(a : b, c : d) = cos(b− a+ c, d) (5)

3.4 Discussion of results
Table 2 shows task performance for each source
embedding set, and for both methods on every pair
of datasets. In our experiments concatenation ob-
tains better overall performance. However, aver-
aging offers improvements over the source embed-
ding sets for semantic similarity task SL and word
analogy task GL, on the combination of CBOW
and GloVe. HLBL has a negative effect on CBOW
and GloVe, but the performance of averaging is
close to that of concatenation. An advantage of
averaging when compared against concatenation,
is that the dimensionality of the produced meta-
embedding is not increased beyond the maximum
dimension present within the source embeddings,
resulting in a meta-embedding which is easier to
process and store.

4 Conclusion

We have presented an argument for averaging as
a valid meta-embedding technique, and found ex-
perimental performance to be close to, or in some
cases better than that of concatenation, with the
additional benefit of reduced dimensionality. We
propose that when conducting meta-embedding,
both concatenation and averaging should be con-
sidered as methods of combining embedding
spaces, and their individual advantages consid-
ered.
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Abstract
We present two novel datasets for the low-
resource language Vietnamese to assess mod-
els of semantic similarity: ViCon comprises
pairs of synonyms and antonyms across word
classes, thus offering data to distinguish be-
tween similarity and dissimilarity. ViSim-400
provides degrees of similarity across five se-
mantic relations, as rated by human judges.
The two datasets are verified through stan-
dard co-occurrence and neural network mod-
els, showing results comparable to the respec-
tive English datasets.

1 Introduction

Computational models that distinguish between
semantic similarity and semantic relatedness (Bu-
danitsky and Hirst, 2006) are important for many
NLP applications, such as the automatic genera-
tion of dictionaries, thesauri, and ontologies (Bie-
mann, 2005; Cimiano et al., 2005; Li et al., 2006),
and machine translation (He et al., 2008; Mar-
ton et al., 2009). In order to evaluate these mod-
els, gold standard resources with word pairs have
to be collected (typically across semantic rela-
tions such as synonymy, hypernymy, antonymy,
co-hyponymy, meronomy, etc.) and annotated for
their degree of similarity via human judgements.

The most prominent examples of gold standard
similarity resources for English are the Ruben-
stein & Goodenough (RG) dataset (Rubenstein
and Goodenough, 1965), the TOEFL test ques-
tions (Landauer and Dumais, 1997), WordSim-
353 (Finkelstein et al., 2001), MEN (Bruni et al.,
2012), SimLex-999 (Hill et al., 2015), and the lex-
ical contrast datasets by (Nguyen et al., 2016a,
2017). For other languages, resource examples
are the translation of the RG dataset to German
(Gurevych, 2005), the German dataset of paradig-
matic relations (Scheible and Schulte im Walde,

2014), and the translation of WordSim-353 and
SimLex-999 to German, Italian and Russian (Le-
viant and Reichart, 2015). However, for low-
resource languages there is still a lack of such
datasets, which we aim to fill for Vietnamese, a
language without morphological marking such as
case, gender, number, and tense, thus differing
strongly from Western European languages.

We introduce two novel datasets for Viet-
namese: a dataset of lexical contrast pairs ViCon
to distinguish between similarity (synonymy) and
dissimilarity (antonymy), and a dataset of seman-
tic relation pairs ViSim-400 to reflect the contin-
uum between similarity and relatedness. The two
datasets are publicly available.1 Moreover, we ver-
ify our novel datasets through standard and neural
co-occurrence models, in order to show that we
obtain a similar behaviour as for the correspond-
ing English datasets SimLex-999 (Hill et al., 2015),
and the lexical contrast dataset (henceforth Lex-
Con), cf. Nguyen et al. (2016a).

2 Related Work

Over the years a number of datasets have been col-
lected for studying and evaluating semantic sim-
ilarity and semantic relatedness. For English,
Rubenstein and Goodenough (1965) presented a
small dataset (RG) of 65 noun pairs. For each pair,
the degree of similarity in meaning was provided
by 15 raters. The RG dataset is assumed to re-
flect similarity rather than relatedness. Finkelstein
et al. (2001) created a set of 353 English noun-
noun pairs (WordSim-353)2, where each pair was
rated by 16 subjects according to the degree of
semantic relatedness on a scale from 0 to 10.
Bruni et al. (2012) introduced a large test collec-

1
www.ims.uni-stuttgart.de/data/vnese_sem_datasets

2
www.cs.technion.ac.il/˜gabr/resources/data/

wordsim353
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tion called MEN3. Similar to WordSim-353, the
authors refer to both similarity and relatedness
when describing the MEN dataset, although the
annotators were asked to rate the pairs accord-
ing to relatedness. Unlikely the construction of
the RG and WordSim-353 datasets, each pair in
the MEN dataset was only evaluated by one rater
who ranked it for relatedness relative to 50 other
pairs in the dataset. Recently, Hill et al. (2015)
presented SimLex-999, a gold standard resource
for the evaluation of semantic representations con-
taining similarity ratings of word pairs across dif-
ferent part-of-speech categories and concreteness
levels. The construction of SimLex-999 was mo-
tivated by two factors, (i) to consistently quantify
similarity, as distinct from association, and apply
it to various concept types, based on minimal in-
tuitive instructions, and (ii) to have room for the
improvement of state-of-the-art models which had
reached or surpassed the human agreement ceiling
on WordSim-353 and MEN, the most popular ex-
isting gold standards, as well as on RG. Scheible
and Schulte im Walde (2014) presented a collec-
tion of semantically related word pairs for Ger-
man and English,4 which was compiled via Ama-
zon Mechanical Turk (AMT)5 human judgement
experiments and comprises (i) a selection of tar-
gets across word classes balanced for semantic
category, polysemy, and corpus frequency, (ii) a
set of human-generated semantically related word
pairs (synonyms, antonyms, hypernyms) based on
the target units, and (iii) a subset of the generated
word pairs rated for their relation strength, includ-
ing positive and negative relation evidence.

For other languages, only a few gold standard
sets with scored word pairs exist. Among oth-
ers, Gurevych (2005) replicated Rubenstein and
Goodenough’s experiments after translating the
original 65 word pairs into German. In later
work, Gurevych (2006) used the same experimen-
tal setup to increase the number of word pairs to
350. Leviant and Reichart (2015) translated two
prominent evaluation sets, WordSim-353 (associ-
ation) and SimLex-999 (similarity) from English
to Italian, German and Russian, and collected the
scores for each dataset from the respective native
speakers via crowdflower6.

3
clic.cimec.unitn.it/˜elia.bruni/MEN

4
www.ims.uni-stuttgart.de/data/sem-rel-database/

5
www.mturk.com

6
www.crowdflower.com/

3 Dataset Design

3.1 Criteria

Semantic similarity is a narrower concept than
semantic relatedness and holds between lexical
terms with similar meanings. Strong similarity is
typically observed for the lexical relations of syn-
onymy and co-hyponymy. For example, in Viet-
namese “đội” (team) and “nhóm” (group) repre-
sents a synonym pair; “ô_tô” (car) and “xe_đạp”
(bike) is a co-hyponymy pair. More specifi-
cally, words in the pair “ô_tô” (car) and “xe_đạp”
(bike) share several features such as physical (e.g.
bánh_xe / wheels) and functional (e.g. vận_tải
/ transport), so that the two Vietnamese words
are interchangeable regarding the kinds of trans-
portation. The concept of semantic relatedness is
broader and holds for relations such as meronymy,
antonymy, functional association, and other “non-
classical relations” (Morris and Hirst, 2004). For
example, “ô_tô” (car) and “xăng_dầu” (petrol)
represent a meronym pair. In contrast to similar-
ity, this meronym pair expresses a clearly func-
tional relationship; the words are strongly associ-
ated with each other but not similar.

Empirical studies have shown that the predic-
tions of distributional models as well as humans
are strongly related to the part-of-speech (POS)
category of the learned concepts. Among oth-
ers, Gentner (2006) showed that verb concepts are
harder to learn by children than noun concepts.

Distinguishing antonymy from synonymy is
one of the most difficult challenges. While
antonymy represents words which are strongly as-
sociated but highly dissimilar to each other, syn-
onymy refers to words that are highly similar in
meaning. However, antonyms and synonyms often
occur in similar context, as they are interchange-
able in their substitution.

3.2 Resource for Concept Choice:
Vietnamese Computational Lexicon

The Vietnamese Computational Lexicon (VCL)7

(Nguyen et al., 2006) is a common linguistic
database which is freely and easily exploitable
for automatic processing of the Vietnamese lan-
guage. VCL contains 35,000 words corresponding
to 41,700 concepts, accompanied by morphologi-
cal, syntactic and semantic information. The mor-
phological information consists of 8 morphemes

7
https://vlsp.hpda.vn/demo/?page=vcl
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including simple word, compound word, redu-
plicative word, multi-word expression, loan word,
abbreviation, bound morpheme, and symbol. For
example, “bàn” (table) is a simple word with def-
inition “đồ thường làm bằng gỗ, có mặt phẳng và
chân đỡ . . . ” (pieces of wood, flat and supported by
one or more legs . . . ). The syntactic information
describes part-of-speech, collocations, and subcat-
egorisation frames. The semantic information in-
cludes two types of constraints: logical and se-
mantic. The logical constraint provides category
meaning, synonyms and antonyms. The semantic
constraint provides argument information and se-
mantic roles. For example, “yêu” (love) is a verb
with category meaning “emotion” and antonym
“ghét” (hate).

VCL is the largest linguistic database of its kind
for Vietnamese, and it encodes various types of
morphological, syntactic and semantic informa-
tion, so it presents a suitable starting point for the
choice of lexical units for our purpose.

3.3 Choice of Concepts
3.3.1 Concepts in ViCon
The choice of related pairs in this dataset was
drawn from VCL in the following way. We ex-
tracted all antonym and synonym pairs accord-
ing to the three part-of-speech categories: noun,
verb and adjective. We then randomly selected
600 adjective pairs (300 antonymous pairs and 300
synonymous pairs), 400 noun pairs (200 antony-
mous pairs and 200 synonymous pairs), and 400
verb pairs (200 antonymous pairs and 200 synony-
mous pairs). In each part-of-speech category, we
balanced for the size of morphological classes in
VCL, for both antonymous and synonymous pairs.

3.3.2 Concepts in ViSim-400
The choice of related pairs in this dataset was
drawn from both the VLC and the Vietnamese
WordNet8 (VWN), cf. Nguyen et al. (2016b). We
extracted all pairs of the three part-of-speech cat-
egories: noun, verb and adjective, according to
five semantic relations: synonymy, antonymy, hy-
pernymy, co-hoponymy and meronymy. We then
sampled 400 pairs for the ViSim-400 dataset, ac-
counting for 200 noun pairs, 150 verb pairs and
50 adjective pairs. Regarding noun pairs, we bal-
anced the size of pairs in terms of six relations:
the five extracted relations from VCL and VWN,

8
http://viet.wordnet.vn/wnms/

and an “unrelated” relation. For verb pairs, we
balanced the number of pairs according to five
relations: synonymy, antonymy, hypernymy, co-
hyponymy, and unrelated. For adjective pairs, we
balanced the size of pairs for three relations: syn-
onymy, antonymy, and unrelated. In order to se-
lect the unrelated pairs for each part-of-speech cat-
egory, we paired the unrelated words from the se-
lected related pairs at random. From these ran-
dom pairs, we excluded those pairs that appeared
in VCL and VWN. Furthermore, we also balanced
the number of selected pairs according to the sizes
of the morphological classes and the lexical cate-
gories.

3.4 Annotation of ViSim-400
For rating ViSim-400, 200 raters who were native
Vietnamese speakers were paid to rate the degrees
of similarity for all 400 pairs. Each rater was asked
to rate 30 pairs on a 0–6 scale; and each pair was
rated by 15 raters. Unlike other datasets which
performed the annotation via Amazon Mechani-
cal Turk, each rater for ViSim-400 conducted the
annotation via a survey which detailed the exact
annotation guidelines.

The structure of the questionnaire was moti-
vated by the SimLex-999 dataset: we outlined
the notion of similarity via the well-understood
idea of the six relations included in the ViSim-400
dataset. Immediately after the guidelines of the
questionnaire, a checkpoint question was posed to
the participants to test whether the person under-
stood the guidelines: the participant was asked
to pick the most similar word pair from three
given word pairs, such as kiêu_căng/kiêu_ngạo
(arrogant/cocky) vs. trầm/bổng (high/low) vs.
cổ_điển/biếng (classical/lazy). The annotators
then labeled the kind of relation and scored the de-
gree of similarity for each word pair in the survey.

3.5 Agreement in ViSim-400
We analysed the ratings of the ViSim-400 annota-
tors with two different inter-annotator agreement
(IAA) measures, Krippendorff’s alpha coefficient
(Krippendorff, 2004), and the average standard de-
viation (STD) of all pairs across word classes.
The first IAA measure, IAA-pairwise, computes
the average pairwise Spearman’s ρ correlation be-
tween any two raters. This IAA measure has
been a common choice in previous data collec-
tions in distributional semantics (Padó et al., 2007;
Reisinger and Mooney, 2010; Hill et al., 2015).
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Figure 1: Distribution of scored pairs in ViSim-400 across parts-of-speech and semantic relations.

All Noun Verb Adjective

IAA-Mean ρ 0.86 0.86 0.86 0.78
IAA-Pairwise ρ 0.79 0.76 0.78 0.75
Krippendorff’s α 0.78 0.76 0.78 0.86
STD 0.87 0.87 0.90 0.82

Table 1: Inter-annotator agreements measured by
Spearman’s ρ, Krippendorff’s α, and the average stan-
dard deviation (STD) of all pairs across word classes.

The second IAA measure, IAA-mean, compares
the average correlation of the human raters with
the average of all other raters. This measure would
smooth individual annotator effects, and serve as
a more appropriate “upper bound” for the per-
formance of automatic systems than IAA-pairwise
(Vulić et al., 2017). Finally, Krippendorff’s α co-
efficient reflects the disagreement of annotators
rather than their agreement, in addition to correct-
ing for agreement by chance.

Table 1 shows the inter-annotator agreement
values, Krippendorff’s α coefficient, and the re-
sponse consistency measured by STD over all
pairs and different word classes in ViSim-400.
The overall IAA-pairwise of ViSim-400 is ρ =
0.79, comparing favourably with the agreement on
the SimLex-999 dataset (ρ = 0.67 using the same
IAA-pairwise measure). Regarding IAA-mean,
ViSim-400 also achieves an overall agreement of
ρ = 0.86, which is similar to the agreement in
Vulić et al. (2017), ρ = 0.86. For Krippendorff’s
α coefficient, the value achieves α = 0.78, also
reflecting the reliability of the annotated dataset.

Furthermore, the box plots in Figure 1 present
the distributions of all rated pairs in terms of
the fine-grained semantic relations across word
classes. They reveal that –across word classes–
synonym pairs are clearly rated as the most simi-
lar words, and antonym as well as unrelated pairs

are clearly rated as the most dissimilar words. Hy-
pernymy, co-hyponymy and holonymy are in be-
tween, but rather similar than dissimilar.

4 Verification of Datasets

In this section, we verify our novel datasets Vi-
Con and ViSim-400 through standard and neural
co-occurrence models, in order to show that we
obtain a similar behaviour as for the correspond-
ing English datasets.

4.1 Verification of ViSim-400

We adopt a comparison of neural models on
SimLex-999 as suggested by Nguyen et al.
(2016a). They applied three models, a Skip-gram
model with negative sampling SGNS (Mikolov
et al., 2013), the dLCE model (Nguyen et al.,
2016a), and the mLCM model (Pham et al., 2015).
Both the dLCE and the mLCM models integrated
lexical contrast information into the basic Skip-
gram model to train word embeddings for distin-
guishing antonyms from synonyms, and for re-
flecting degrees of similarity.

The three models were trained with 300 di-
mensions, a window size of 5 words, and 10
negative samples. Regarding the corpora, we
relied on Vietnamese corpora with a total of
≈145 million tokens, including the Vietnamese
Wikipedia,9 VNESEcorpus and VNTQcorpus,10

and the Leipzig Corpora Collection for Viet-
namese11 (Goldhahn et al., 2012). For word seg-
mentation and POS tagging, we used the open-
source toolkit UETnlp12 (Nguyen and Le, 2016).
The antonym and synonym pairs to train the

9
https://dumps.wikimedia.org/viwiki/latest/

10
http://viet.jnlp.org/

download-du-lieu-tu-vung-corpus
11
http://wortschatz.uni-leipzig.de/en/download

12
https://github.com/phongnt570/UETnlp
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dLCE and mLCM models were extracted from
VWN consisting of 49,458 antonymous pairs and
338,714 synonymous pairs. All pairs which ap-
peared in ViSim-400 were excluded from this set.

Table 2 shows Spearman’s correlations ρ, com-
paring the scores of the three models with the hu-
man judgements for ViSim-400. As also reported
for English, the dLCE model produces the best
performance, SGNS the worst.

SGNS mLCM dLCE

ViSim-400 0.37 0.60 0.62
SimLex-999 0.38 0.51 0.59

Table 2: Spearman’s correlation ρ on ViSim-400 in
comparison to SimLex-999, cf. Nguyen et al. (2016a).

In a second experiment, we computed the co-
sine similarities between all word pairs, and used
the area under curve (AUC) to distinguish be-
tween antonyms and synonyms. Table 3 presents
the AUC results of the three models. Again, the
models show a similar behaviour in comparison to
SimLex-999, where also the dLCE model outper-
forms the two other models, and the SGNS model
is by far the worst.

Model Noun Verb Adj

ViSim-400
SGNS 0.66 0.63 0.70
mLCM 0.81 0.92 0.96
dLCE 0.92 0.95 0.98

SimLex-999
SGNS 0.66 0.65 0.64
mLCM 0.69 0.71 0.85
dLCE 0.72 0.81 0.90

Table 3: AUC scores for distinguishing antonyms from
synonyms in ViSim-400.

4.2 Verification of ViCon

In order to verify ViCon, we applied three co-
occurrence models to rank antonymous and syn-
onymous word pairs according to their cosine
similarities: two standard co-occurrence mod-
els based on positive point-wise mutual informa-
tion (PPMI) and positive local mutual information
(PLMI) (Evert, 2005) as well as an improved fea-
ture value representation weightSA as suggested
by Nguyen et al. (2016a). For building the vec-
tor space co-occurrence models, we relied on the
same Vietnamese corpora as in the previous sec-
tion. For inducing the word vector representations
via weightSA, we made use of the antonymous
and synonymous pairs in VWN, as in the previ-

ous section, and then removed all pairs which ap-
peared in ViCon. Optionally, we applied singular
value decomposition (SVD) to reduce the dimen-
sionalities of the word vector representations.

As in Nguyen et al. (2016a), we computed the
cosine similarities between all word pairs, and
then sorted the pairs according to their cosine
scores. Average Precision (AP) evaluated the three
vector space models. Table 4 presents the results
of the three vector space models with and with-
out SVD. As for English, the results on the Viet-
namese dataset demonstrate significant improve-
ments (χ2,∗ p < .001) of weightSA over PPMI
and PLMI, both with and without SVD, and across
word classes.

ADJ NOUN VERBMetric
SYN ANT SYN ANT SYN ANT

PPMI 0.70 0.38 0.68 0.39 0.69 0.38
PLMI 0.59 0.44 0.61 0.42 0.63 0.41
weightSA 0.93* 0.31* 0.94* 0.31 0.96 0.31
PPMI + SVD 0.76 0.36 0.66 0.40 0.81 0.34
PLMI + SVD 0.49 0.51 0.55 0.46 0.51 0.49

ViCon

weightSA + SVD 0.91* 0.32* 0.81* 0.34* 0.92* 0.32*
PLMI 0.56 0.46 0.60 0.42 0.62 0.42
weightSA 0.75 0.36 0.66 0.40 0.71 0.38
PLMI + SVD 0.55 0.46 0.55 0.46 0.58 0.44

LexCon

weightSA + SVD 0.76* 0.36* 0.66 0.40 0.70* 0.38*

Table 4: AP evaluation of co-occurrence models on Vi-
Con in comparison to LexCon (Nguyen et al., 2016a).

5 Conclusion

This paper introduced two novel datasets for the
low-resource language Vietnamese to assess mod-
els of semantic similarity: ViCon comprises syn-
onym and antonym pairs across the word classes
of nouns, verbs, and adjectives. It offers data
to distinguish between similarity and dissimilar-
ity. ViSim-400 contains 400 word pairs across
the three word classes and five semantic relations.
Each pair was rated by human judges for its de-
gree of similarity, to reflect the continuum be-
tween similarity and relatedness. The two datasets
were verified through standard co-occurrence and
neural network models, showing results compara-
ble to the respective English datasets.
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Abstract

Compositional Distributional Semantic Mod-
els (CDSMs) model the meaning of phrases
and sentences in vector space. They have
been predominantly evaluated on limited, ar-
tificial tasks such as semantic sentence simi-
larity on hand-constructed datasets. This pa-
per argues for lexical substitution as a means
to evaluate CDSMs. Lexical substitution is
a more natural task, enables us to evaluate
meaning composition at the level of individ-
ual words, and provides a common ground to
compare CDSMs with dedicated lexical substi-
tution models. We create a lexical substitution
dataset for CDSM evaluation from an English-
language corpus with manual “all-words” lexi-
cal substitution annotation. Our experiments
indicate that the Practical Lexical Function
CDSM outperforms simple component-wise
CDSMs and performs on par with the con-
text2vec lexical substitution model using the
same context.

1 Introduction

Compositional Distributional Semantics Models
(CDSMs) compute phrase meaning in semantic
space as a function of the meanings of the phrase
constituents (Baroni et al., 2014). The most basic
CDSMs represent words as vectors and compose
phrase vectors by component-wise operations of
the constituent vectors (Mitchell and Lapata, 2008).
More complex models represent predicates with
matrices and tensors (Baroni and Zamparelli, 2010;
Grefenstette, 2013; Paperno et al., 2014).

Given the large number of different CDSMs pro-
posed in the literature (Erk, 2012), meaningful eval-
uation becomes crucial. The dominant evaluation
method, adopted by the majority of CDSM studies,
is pairwise phrase similarity (Mitchell and Lap-
ata, 2008; Guevara, 2010; Grefenstette et al., 2012;
Grefenstette, 2013; Paperno et al., 2014). Only a

handful of studies pursued other evaluation tasks,
such as textual entailment (Marelli et al., 2014a,b)
or sentiment analysis (Socher et al., 2013).

Arguably, phrase similarity evaluation has three
major problems. First, the task is affected by the
general limitations of rating scales, such as incon-
sistencies in annotations, scale region bias, and
fixed granularity (Schuman and Presser, 1996).
Phrase similarity datasets used for CDSM eval-
uation demonstrate slight to fair inter-annotator
agreement, as well as overlap between groups of
items rated as low and high in similarity (Mitchell
and Lapata, 2008).

Secondly, phrase similarity is a task that is rather
difficult to put down precisely, especially for long
phrases. Generally, phrases can be (dis)similar in
any number of ways. Annotators commonly agree
that some sentence pairs are semantically highly
similar (private company files annual account and
private company registers annual account, Picker-
ing and Frisson 2001), and others are semantically
unrelated (man waves hand vs. employee leaves
company). In contrast, their assessments become
less confident for cases like delegate buys land and
agent sells property (Kartsaklis et al., 2013), where
there is a semantic relation other than synonymy.
Similarity is also arguably not a useful measure
when sentences are semantically deviant, as it is of-
ten the case in the datasets: how similar are private
company files annual account and private company
smooths annual account?

The third problem is that the most widely used
phrase similarity datasets are constructed in a bal-
anced fashion along psycholinguistic principles.
For instance, the adjective-noun-verb-adjective-
noun (“ANVAN”) dataset (Pickering and Frisson,
2001; Kartsaklis et al., 2013), from which the exam-
ples above are drawn, was constructed from a set of
particularly ambiguous verbs paired with strongly
disambiguating contexts. Such setups often do not
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correlate well with usefulness on more natural data.
In a previous study on lexical substitution, Kremer
et al. (2014) found that the advantage of machine
learning-based models over simple baselines was
much harder to show on a real-world corpus than
on the previously used manually constructed bench-
mark dataset (McCarthy and Navigli, 2009).

In this paper, we pursue the idea that lexical sub-
stitution (McCarthy and Navigli, 2009) is a more
suitable evaluation task for CDSMs. Lexical sub-
stitution is the task of finding meaning-preserving
substitutes for a target word in context: e.g., the
word submits is a legitimate substitute for files in
private company files annual account, but not in
office clerk files old papers. Lexical substitution
provides a frame for comparing synonyms in con-
text, and disambiguating the context-appropriate
sense of polysemous words. Since this is a prob-
lem CDSMs can account for, lexical substitution
seems a suitable task for testing and comparing dif-
ferent CDSMs. Additionally, lexical substitution is
a more natural task than similarity ratings, it makes
it possible to evaluate meaning composition at the
level of individual words, and provides a common
ground to compare CDSMs with dedicated lexical
substitution models.

2 The ANVAN-LS Dataset

To perform more realistic evaluations for CDSMs,
we would like to test them on a sample of actual
human utterances rather than hand-selected exam-
ples. That being said, for the evaluation to be use-
ful, the structures on which we evaluate should
be relatively uniform and limited, at least initially
while moving from artificial to natural datasets. We
thus construct a dataset1 for English that strikes a
balance between these factors: we maintain the
adjective-noun-verb-adjective-noun (ANVAN) for-
mat, but our phrases are based on corpus sentences,
and some or all words in the ANVAN can form the
targets of lexical substitution ranking tasks.

Sampling ANVAN Queries. The starting point
of our corpus construction is the English CoInCo
corpus (Kremer et al., 2014), which consists of
roughly 2,500 sentences taken from the news and
fiction section of the MASC corpus and provides
manually annotated lexical substitutes for all con-
tent words (nouns, adjectives, verbs, and adverbs).

1The corpus is freely available at http://www.
ims.uni-stuttgart.de/forschung/ressourcen/
korpora/ANVAN-LS.html

We extracted all clauses from CoInCo that met
the following requirements: (1) the dependency
structure of the clause includes an ANVAN struc-
ture; (2) at least one constituent word of the AN-
VAN sub-clause has at least two human-provided
single-word substitutes that exceeded a minimal
frequency threshold (more than 5 occurrences in
a large corpus, cf. Section 3); (3) the POS tags
were correct. This resulted in 165 ANVAN phrases,
which contained an average of 4.4 (out of 5) tar-
get words with substitutes, for a total of 732 target
words for lexical substitution.

An issue that required additional consideration
was the adjective positions of the ANVANs. In the
CoInCo, we found a substantial number of noun-
noun compounds whose modifiers were tagged as
adjectives. Conversely, many adjective modifiers
in the corpus were substituted with nouns by hu-
man annotators. To account for this variability, we
extended the ANVAN schema conservatively by
allowing nouns to fill the A position if it was ob-
served in the large corpus robustly as a modifier
(i.e., as part of at least 100 N-N bigram types, each
of which occurred at least 300 times).

Building Lexical Substitution Tasks. For each
of the 732 target words, we constructed a lexical
substitution query by pairing the target with two
correct substitutes and two confounders (see Ta-
ble 1). Since substitutes provided by more annota-
tors in CoInCo tend to be more reliable, we picked
the two most frequently given substitutes for each
target. In the case of ties, we chose the lemma with
the highest corpus frequency.

To acquire challenging confounders, we re-
trieved the 20 most similar lemmas with the same
part of speech for each target (according to the un-
igram space; cf. Section 3) and then eliminated
all annotator-provided substitutes for this target.
From the remainder, we chose the two most closely
matched by corpus frequency to the frequencies
of the two chosen annotator-provided substitutes.
Given the relatively high number of human substi-
tutes in CoInCo, this results in highly similar, but
contextually inappropriate confounders. Finally,
the acquired confounders were manually checked
to make sure that the automatic selection process
did not yield a context-appropriate substitute or a
semantically unrelated term. In such cases, the next
best candidate (by lemma similarity and frequency)
was chosen.
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target construction arm build large airfield
substitute1 construction branch build large airfield
substitute2 construction part build large airfield
confounder1 construction back build large airfield
confounder2 construction hand build large airfield

Table 1: ANVAN-LS lexical substitution example

3 Experimental Setup

Task and Evaluation. We evaluate models on
ANVAN-LS in the form of a ranking task for each
query: models are supposed to rank the correct sub-
stitutes for each target higher than its confounders.
Our evaluation measure is the mean average preci-
sion (MAP) of all queries. In our case,

MAP =
1

N

N∑

i=1

4∑

k=1

Pli(k)∆rli(k)

where k is the rank in the 4-item list l of substi-
tution candidates, Pl(k) is the precision at cut-off
point k in list l, the ∆rl(k) is the change in recall
from items k−1 to k in l, andN is the total number
of ANVAN queries. We calculate MAP both over-
all, and by target positions in ANVAN, to obtain
more detailed insights into performance depending
on part of speech and word position.

Corpus and Semantic Space. Following Baroni
and Zamparelli (2010) and Paperno et al. (2014),
we use a concatenation of the ukWaC, BNC, and
English Wikipedia corpora (around 2.8G words).
We build a square co-occurrence matrix, using
the complete vocabulary of our ANVAN sentence
dataset, and a set of the most frequent content
words in our corpus, for a total of 30K words. In
addition, we built two co-occurrence matrices of
bigrams, composed of all predicates (adjectives and
verbs) in our vocabulary and their most frequent
noun co-occurrents, as observed in the corpus, with
a threshold of 300. The bigrams were observed in
co-occurrence with the aforementioned 30K vocab-
ulary and most frequent corpus terms, resulting in
a 650K-by-30K matrix for A-N and N-N bigrams
and a 620K-by-30K matrix for V-N bigrams.

For all three matrices, the 3-word-window co-
occurrence counts were transformed with PPMI
and reduced to 300 dimensions with SVD. All mod-
els were built with DISSECT (Dinu et al., 2013).

CDSMs. We consider two component-wise
CDSMs: the simple additive and multiplicative
models (Mitchell and Lapata, 2008), defined as

2S

catch ×−→ear+
2O

catch ×−−−→sound+
−−−→
catch

{
2S

catch ×−→ear +−−−→catch,
2O

catch}

−→
ear {−−−→catch,

2S

catch,
2O

catch}

−−−→
sound

Figure 1: Example for Practical Lexical Function
model composition for ear catch sound

p = u⊕ v, where ⊕ is either component-wise ad-
dition or multiplication. We also work with two
variants of the Practical Lexical Function model
(PLF), which are derived from the Lexical Func-
tion Model (LF, Baroni and Zamparelli (2010)),
which represents predicates (verbs and adjectives
in our case) as matrices to be multiplied with vector
representations of their nominal arguments. More
specifically, when applied to an ANVAN sentence
(such as pointed ear catch sharp sound), the PLF
model incorporates vector representations for each
of the five constituent words, along with an ad-
jective matrix for pointed and sharp, as well as
verbsubject and verbobject matrices for the verb and
its subject and object arguments. An example of
composition for a verb with its subject and object
arguments is given in Figure 1.

Formally, the standard PLF (PLFPaperno) defines
the composition for ANVAN-style sentences as:
V 2
S ·
−→
S + V 2

O ·
−→
O +

−→
V , where −→S and −→O are the

composed A-N bigrams, A2 · −→N . The required
matrices are learned with ridge regression from
unigram and bigram vectors.

Gupta et al. (2015) pointed out that the standard
PLF “overcounts” the predicate by adding it explic-
itly, and proposed a rectified variant which simply
leaves out the function word vector −→V . We also
experiment with this model, PLFGupta.

All CDSMs rank the four candidates for each
target (cf. Table 1) by comparing the vector for the
original sentence against four sentences in which
the target is replaced by the two correct and two
incorrect substitutes. We use the raw dot product
as similarity measure, following Roller and Erk
(2016), to boost frequent candidates.

Lexical Substitution Model. As competitor, we
consider a dedicated lexical substitution model,
namely context2vec (Melamud et al., 2016). Since
it has demonstrated state-of-the-art performance on
lexical substitution and word sense disambiguation
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tasks, it is a suitable competitor model for CDSMs
on a similar problem. Context2vec uses word em-
beddings to compute a set of viable substitutes
given a context, using a bidirectional LSTM recur-
rent neural network to build a sentential context
representation. We work with two instantiations:
first, using only ANVAN as context (C2VANVAN),
and second, using the full CoInCo sentence from
which the ANVAN was extracted (C2VSent). The
first model is directly comparable to the CDSMs in
that it uses the same context information, while the
second one enables us to gauge to what extent the
models can benefit from a richer context. We let
context2vec generate 1000 substitutions for each
target word. If any substitution candidates were
not included in this list, the missing items were
defined to be tied at the last position, and the AP
was defined as the MAP of all permutations of the
missing items with respect to their ranking.

Baselines. Two baselines are defined to compare
our models against. The first is the random base-
line (Random): the MAP of all possible rankings
of two relevant and two irrelevant items, equal to
0.680. The second baseline (LemmaSim) ranks the
lemma-level similarities of the target word and its
substitutes candidates without context.

4 Results

Table 2 lists the performance of our experiments
on ANVAN-LS, first evaluated for each target word
position (top rows) and then averaged across all
target positions (bottom row). The rightmost col-
umn shows the average performance of all tested
models. Even though there is some variance in
the numbers between subject-position targets and
object-position targets, we see consistent patterns
by part of speech: adjectives are easiest to sub-
stitute, followed by nouns, while verbs are sub-
stantially more difficult. The difficulty with verbs
corresponds to the findings of Medić et al. (2017)
for Croatian, who proposed a correlation between
the syntactic valence of words and their difficulty
(but see below).

The worst model by far is LemmaSim. This is
surprising, given that Kremer et al. (2014) found
lemma-level similarity to be very competitive. Fur-
ther analysis showed that its bad performance is
due to our choice of confounders as highly similar
lemmas (cf. Section 2). An example where high
similarity indicates syntagmatic rather than paradig-
matic relatedness is ohio democrat embark over-

land trip/*itinerary/*sightseeing/journey/travel,2

where the two confounders can form noun com-
pounds with the target, like sightseeing trip. The
simple Add and Mult models also perform worse
than random, in contrast to many other studies, un-
derscoring the difficulty of performing well on our
dataset. They do relatively well for adjectives, but
worse on nouns, and Add struggles with verbs.

The PLFPaperno model performs at baseline level
overall, but shows particularly clear differences
among parts of speech. It does very well for all
adjectives and nouns, but very poorly on verbs,
where it is in fact the worst model overall, both
measured absolutely, and relatively to the overall
performance of the model. An analysis showed
that this is indeed, as Gupta et al. (2015) claim,
due to the overpowering effect of the predicate
vector which is added in the final step of the com-
position and thus tends to dominate the composed
phrase. Consequently, PLFPaperno essentially falls
back to verb lemma similarity (cf. the example
russian team win/earn/*clinch/get/*succeed gold
medal).

PLFGupta performs comparable to PLFPaperno in
all positions, but demonstrates a significant im-
provement on verbs, for example russian team
win/earn/get/*clinch/*succeed gold medal. The
PLFGupta model also outperforms the baselines,
overall and for all individual positions, it emerges
as the best performing CDSM.

Finally, the two context2vec models beat the
baseline both on all positions and overall. Interest-
ingly, C2VANVAN, which uses the same information
provided to the CDSMs, performs roughly on par
with PLFGupta, the best-scoring CDSM. Evidently,
Context2Vec (as a lexical substitution model) and
PLF (as a CDSM) perform comparably – it is not
the case that one of the two model families shows a
clear advantage over the other, given the same con-
text. C2VSent, which has access to richer context,
shows another substantial improvement. An inter-
esting difference between PLF and Context2Vec is
that the lexical substitution models – which do not
take syntactic structure into account – show less
variance among positions than the PLF, which does
take syntactic structure into account.

In their analysis of CDSM performance on a
Croatian language ANVAN dataset, Medić et al.
(2017) found a superior performance of simple

2The substitute candidates are ordered by decreasing simi-
larity, and the confounders marked with asterisks.
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Baselines CDSMs Lexical substitution All

Position Random LemmaSim Add Mult PLFPaperno PLFGupta C2VANVAN C2VSent Average

ANVAN .680 .680 .716 .715 .730 .727 .694 .707 .706
ANVAN .680 .575 .652 .633 .695 .688 .708 .744 .672
ANVAN .680 .537 .618 .670 .536 .680 .697 .723 .643
ANVAN .680 .625 .668 .668 .721 .715 .690 .710 .685
ANVAN .680 .580 .633 .666 .725 .723 .723 .772 .688

Average .680 .599 .656 .669 .681 .706 .702 .731 .678

Table 2: Evaluation results on ANVAN-LS (mean average precision)

CDSMs (such as addition) for nouns while the PLF
performed better on verbs. They attributed this to
the role of valence, arguing that the functional role
of the verbs, and the disambiguation potential of its
argument positions, is better captured by the PLF.
In contrast, the variance in performance between
word positions that we find for the different models
on the ANVAN-LS dataset indicates that the dif-
ficulty of substituting verbs might not be due to
the intrinsic factor of valence, but due to remain-
ing shortcomings in all CDSM models to properly
model predicate-argument combination.

5 Conclusion

This paper presented the case for using lexical sub-
stitution as a better evaluation setup for compo-
sitional distributional semantic models (CDSMs).
We created a new corpus, ANVAN-LS, on the basis
of a corpus with manually annotated lexical substi-
tution, and evaluated a battery of models. Our eval-
uation on this corpus (1) uses a corpus-based, rather
than manually constructed, dataset, and should be
more indicative for the performance of models on
“real-world data” than previous ANVAN-based eval-
uations; (2) is challenging, with a high baseline,
which simple CDSMs like component-wise addi-
tion and multiplication were indeed not able to beat;
(3) enables a detailed evaluation at a per-position
level; (4) makes it possible, to our knowledge for
the first time, to compare CDSMs with dedicated
lexical substitution models on par, and shows that
the two model families perform comparably when
using the same context, but differ in their perfor-
mance by position.

The last result in particular opens up a new line
of research, namely an investigation of similari-
ties and differences between the two model fam-
ilies. The improvement we observe for C2VSent
over C2VANVAN in particular calls for a move from

ANVAN-style sentences to more complex and var-
ied sentence structures. It remains to be researched
how capable CDSMs are to model meaning modu-
lation that extends beyond the immediate predicate-
argument structure (Kremer et al., 2014).

Acknowledgments. We acknowledge partial
funding by Deutsche Forschungsgemeinschaft
through SFB 732 (project D10) and by the Croatian
Science Foundation under the project UIP-2014-
09-7312. We would also like to thank Domagoj
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Abstract

We present a simple extension of the GloVe
representation learning model that begins with
general-purpose representations and updates
them based on data from a specialized domain.
We show that the resulting representations can
lead to faster learning and better results on a
variety of tasks.

1 Introduction

Many NLP tasks have benefitted from the pub-
lic availability of general-purpose vector repre-
sentations of words trained on enormous datasets,
such as those released by the GloVe (Pennington
et al., 2014) and fastText (Bojanowski et al., 2016)
teams. These representations, when used as model
inputs, have been shown to lead to faster learning
and better results in a wide variety of settings (Er-
han et al., 2009, 2010; Cases et al., 2017).

However, many domains require more special-
ized representations but lack sufficient data to train
them from scratch. We address this problem with
a simple extension of the GloVe model (Penning-
ton et al., 2014) that synthesizes general-purpose
representations with specialized data sets. The
guiding idea comes from the retrofitting work of
Faruqui et al. (2015), which updates a space of ex-
isting representations with new information from
a knowledge graph while also staying faithful to
the original space (see also Yu and Dredze 2014;
Mrkšić et al. 2016; Pilehvar and Collier 2016). We
show that the GloVe objective is amenable to a
similar retrofitting extension. We call the resulting
model ‘Mittens’, evoking the idea that it is ‘GloVe
with a warm start’ or a ‘warmer GloVe’.

Our hypothesis is that Mittens representations
synthesize the specialized data and the general-
purpose pretrained representations in a way that
gives us the best of both. To test this, we con-
ducted a diverse set of experiments. In the first, we

learn GloVe and Mittens representations on IMDB
movie reviews and test them on separate IMDB re-
views using simple classifiers. In the second, we
learn our representations from clinical text and ap-
ply them to a sequence labeling task using recur-
rent neural networks, and to edge detection using
simple classifiers. These experiments support our
hypothesis about Mittens representations and help
identify where they are most useful.

2 Mittens

This section defines the Mittens objective. We first
vectorize GloVe to help reveal why it can be ex-
tended into a retrofitting model.

2.1 Vectorizing GloVe
For a word i from vocabulary V occurring in
the context of word j, GloVe learns representa-
tionswi and w̃j whose inner product approximates
the logarithm of the probability of the words’ co-
occurrence. Bias terms bi and b̃j absorb the over-
all occurrences of i and j. A weighting function f
is applied to emphasize word pairs that occur fre-
quently and reduce the impact of noisy, low fre-
quency pairs. This results in the objective

J =
V∑

i,j=1

f (Xij)
(
w>
i w̃j + bi + b̃j − logXij

)2

where Xij is the co-occurrence of i and j. Since
logXij is only defined for Xij > 0, the sum ex-
cludes zero-count word pairs. As a result, exist-
ing implementations of GloVe use an inner loop to
compute this cost and associated derivatives.

However, since f(0) = 0, the second bracket
is irrelevant whenever Xij = 0, and so replacing
logXij with

g(Xij) =

{
k, for Xij = 0

log(Xij), otherwise

212



Vocabulary size
CPU GPU

Implementation 5K 10K 20K 5K 10K 20K

Non-vectorized TensorFlow 14.02 63.80 252.65 13.56 55.51 226.41
Vectorized Numpy 1.48 7.35 50.03 − − −
Vectorized TensorFlow 1.19 5.00 28.69 0.27 0.95 3.68
Official GloVe (in C) 0.66 1.24 3.50 − − −

Table 1: Speed comparisons. The values are seconds per iteration, averaged over 10 iterations each on 5 simulated
corpora that produced count matrices with about 10% non-zero cells. Only the training step for each model is
timed. The CPU experiments were done on a machine with a 3.1 GHz Intel Core i7 chip and 16 GB of memory,
and the GPU experiments were done on machine with a 16 GB NVIDIA Tesla V100 GPU and 61 GB of memory.
Dashes mark tests that aren’t applicable because the implementation doesn’t perform GPU computations.

(for any k) does not affect the objective and reveals
that the cost function can be readily vectorized as

J = f(X)M>M

where M = W>W̃ + b1> + 1b̃> − g(X). W

and W̃ are matrices whose columns comprise the
word and context embedding vectors, and g is ap-
plied elementwise. Because f(Xij) is a factor of
all terms of the derivatives, the gradients are iden-
tical to the original GloVe implementation too.

To assess the practical value of vectorizing
GloVe, we implemented the model1 in pure
Python/Numpy (van der Walt et al., 2011) and in
TensorFlow (Abadi et al., 2015), and we compared
these implementations to a non-vectorized Tensor-
Flow implementation and to the official GloVe C
implementation (Pennington et al., 2014).2 The
results of these tests are in tab. 1. Though the C
implementation is the fastest (and scales to mas-
sive vocabularies), our vectorized TensorFlow im-
plementation is a strong second-place finisher, es-
pecially where GPU computations are possible.

2.2 The Mittens Objective Function

This vectorized implementation makes it apparent
that we can extend GloVe into a retrofitting model
by adding a term to the objective that penalizes the
squared euclidean distance from the learned em-
bedding ŵi = wi + w̃i to an existing one, ri:

JMittens = J + µ
∑

i∈R
‖ŵi − ri‖2.

1
https://github.com/roamanalytics/mittens

2We also considered a non-vectorized Numpy implemen-
tation, but it was too slow to be included in our tests (a single
iteration with a 5K vocabulary took 2 hrs 38 mins).

Here, R contains the subset of words in the new
vocabulary for which prior embeddings are avail-
able (i.e., R = V ∩ V ′ where V ′ is the vocabulary
used to generate the prior embeddings), and µ is a
non-negative real-valued weight. When µ = 0 or
R is empty (i.e., there is no original embedding),
the objective reduces to GloVe’s.

As in retrofitting, this objective encodes two op-
posing pressures: the GloVe objective (left term),
which favors changing representations, and the
distance measure (right term), which favors re-
maining true to the original inputs. We can control
this trade off by decreasing or increasing µ.

In our experiments, we always begin with
50-dimensional ‘Wikipedia 2014 + Gigaword 5’
GloVe representations3 – henceforth ‘External
GloVe’ – but the model is compatible with any
kind of “warm start”.

2.3 Notes on Mittens Representations

GloVe’s objective is that the log probability of
words i and j co-occurring be proportional to the
dot product of their learned vectors. One might
worry that Mittens distorts this, thereby diminish-
ing the effectiveness of GloVe. To assess this, we
simulated 500-dimensional square count matrices
and original embeddings for 50% of the words.
Then we ran Mittens with a range of values of µ.
The results for five trials are summarized in fig. 1:
for reasonable values of µ, the desired correlation
remains high (fig. 1a), even as vectors with initial
embeddings stay close to those inputs, as desired
(fig. 1b).

3
http://nlp.stanford.edu/data/glove.6B.zip
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(a) Correlations between the dot product of pairs of learned
vectors and their log probabilities.
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(b) Distances between initial and learned embeddings, for
words with and without pretrained initializations. As µ gets
larger, the pressure to stay close to the original increases.

Figure 1: Simulations assessing Mittens’ faithfulness
to the original GloVe objective and to its input embed-
dings. µ = 0 is regular GloVe.

3 Sentiment Experiments

For our sentiment experiments, we train our repre-
sentations on the unlabeled part of the IMDB re-
view dataset released by Maas et al. (2011). This
simulates a common use-case: Mittens should
enable us to achieve specialized representations
for these reviews while benefiting from the large
datasets used to train External GloVe.

3.1 Word Representations

All our representations begin from a common
count matrix obtained by tokenizing the unlabeled
movie reviews in a way that splits out punctua-
tion, downcases words unless they are written in
all uppercase, and preserves emoticons and other
common social media mark-up. We say word i
co-occurs with word j if i is within 10 words to

Representations Accuracy 95% CI

Random 62.00 [61.28, 62.53]
External GloVe 72.19 −
IMDB GloVE 76.38 [75.76, 76.72]
Mittens 77.39 [77.23, 77.50]

Table 2: IMDB test-set classification results. A differ-
ence of 1% corresponds to 250 examples. For all but
‘External GloVE’, we report means (with bootstrapped
confidence intervals) over five runs of creating the em-
beddings and cross-validating the classifier’s hyperpa-
rameters, mainly to help verify that the differences do
not derive from variation in the representation learning
phase.

the left or right of j, with the counts weighted by
1/d where d is the distance in words from j. Only
words with at least 300 tokens are included in the
matrix, yielding a vocabulary of 3,133 words.

For regular GloVe representations derived from
the IMDB data – ‘IMDB GloVE’ – we train
50-dimensional representations and use the de-
fault parameters from Pennington et al. 2014:
α = 0.75, xmax = 100, and a learning rate of
0.05. We optimize with AdaGrad (Duchi et al.,
2011), also as in the original paper, training for
50K epochs.

For Mittens, we begin with External GloVe.
The few words in the IMDB vocabulary that are
not in this GloVe vocabulary receive random ini-
tializations with a standard deviation that matches
that of the GloVe representations. Informed by our
simulations, we train representations with the Mit-
tens weight µ = 0.1. The GloVe hyperparameters
and optimization settings are as above. Extend-
ing the correlation analysis of fig. 1a to these real
examples, we find that the GloVe representations
generally have Pearson’s ρ ≈ 0.37, Mittens ρ ≈
0.47. We speculate that the improved correlation
is due to the low-variance external GloVe embed-
ding smoothing out noise from our co-occurrence
matrix.

3.2 IMDB Sentiment Classification

The labeled part of the IMDB sentiment dataset
defines a positive/negative classification problem
with 25K labeled reviews for training and 25K for
testing. We represent each review by the element-
wise sum of the representation of each word in
the review, and train a random forest model (Ho,
1995; Breiman, 2001) on these representations.
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1. No/O eye/R pain/R or/O eye/R discharge/R ./O
2. Asymptomatic/D bacteriuria/D ,/O could/O be/O neurogenic/C bladder/C disorder/C ./O
3. Small/C embolism/C in/C either/C lung/C cannot/O be/O excluded/O ./O

(a) Short disease diagnosis labeled examples. ‘O’: ‘Other’; ‘D’: ‘Positive Diagnosis’; ‘C’: ‘Concern’; ‘R’: ‘Ruled Out’.

Table 3: Disease diagnosis examples.
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Figure 2: Disease diagnosis test-set accuracy as a function of training epoch, with bootstrapped confidence inter-
vals. Mitten learns fastest for all categories.

The rationale behind this experimental set-up is
that it fairly directly evaluates the vectors them-
selves; whereas the neural networks we evaluate
next can update the representations, this model re-
lies heavily on their initial values.

Via cross-validation on the training data, we op-
timize the number of trees, the number of features
at each split, and the maximum depth of each tree.
To help factor out variation in the representation
learning step (Reimers and Gurevych, 2017), we
report the average accuracies over five separate
complete experimental runs.

Our results are given in tab. 2. Mittens outper-
forms External GloVe and IMDB GloVe, indicat-
ing that it effectively combines complementary in-
formation from both.

4 Clinical Text Experiments

Our clinical text experiments begin with 100K
clinical notes (transcriptions of the reports health-
care providers create summarizing their interac-
tions with patients during appointments) from

Real Health Data.4 These notes are divided into
informal segments that loosely follow the ‘SOAP’
convention for such reporting (Subjective, Objec-
tive, Assessment, Plan). The sample has 1.3 mil-
lion such segments, and these segments provide
our notion of ‘document’.

4.1 Word Representations
The count matrix is created from the clinical text
using the specifications described in sec. 3.1, but
with the count threshold set to 500 to speed up
optimization. The final matrix has a 6,519-word
vocabulary. We train Mittens and GloVe as in
sec. 3.1. The correlations in the sense of fig. 1a
are ρ ≈ 0.51 for both GloVe and Mittens.

4.2 Disease Diagnosis Sequence Modeling
Here we use a recurrent neural network (RNN) to
evaluate our representations. We sampled 3,206
sentences from clinical texts (disjoint from the
data used to learn word representations) contain-
ing disease mentions, and labeled these mentions
as ‘Positive diagnosis’, ‘Concern’, ‘Ruled Out’, or

4
http://www.realhealthdata.com
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Subgraph Nodes Edges

disorder 72, 551 408, 411
procedure 53, 616 264, 000
finding 35, 544 76, 563
organism 33, 721 41, 090
substance 26, 207 46, 333

(a) Subgraph sizes.

Representations disorder procedure finding organism substance

Random 56.05 55.97 75.14 68.15 64.72
External GloVe 69.31 65.89 80 .72 74.12 77.58
Clinical text GloVe 66.19 64.96 79.18 73.42 73.37
Mittens 67.59 66.59 80.74 74.53 76.51

(b) Mean macro-F1 by subgraph (averages from 10 random train/test splits). Italics mark
systems for which p ≥ 0.05 in a comparison with the top system numerically, according
to a Wilcoxon signed-rank test.

Table 4: SNOMED subgraphs and results. For the ‘disorder’ graph (the largest), a difference of 0.1% corresponds
to 408 examples. For the ‘substance’ graph (the smallest), it corresponds to 46 examples.

‘Other’. Tab. 3a provides some examples. We
treat this as a sequence labeling problem, using
‘Other’ for all unlabeled tokens. Our RNN has
a single 50-dimensional hidden layer with LSTM
cells (Hochreiter and Schmidhuber, 1997), and the
inputs are updated during training.

Fig. 2 summarizes the results of these exper-
iments based on 10 random train/test with 30%
of the sentences allocated for testing. Since the
inputs can be updated, we expect all the initial-
ization schemes to converge to approximately the
same performance eventually (though this seems
not to be the case in practical terms for Random or
External GloVE). However, Mittens learns fastest
for all categories, reinforcing the notion that Mit-
tens is a sensible default choice to leverage both
domain-specific and large-scale data.

4.3 SNOMED CT edge prediction

Finally, we wished to see if Mittens representa-
tions would generalize beyond the specific dataset
they were trained on. SNOMED CT is a pub-
lic, widely-used graph of healthcare concepts and
their relationships (Spackman et al., 1997). It
contains 327K nodes, classified into 169 semantic
types, and 3.8M edges. Our clinical notes are more
colloquial than SNOMED’s node names and cover
only some of its semantic spaces, but the Mittens
representations should still be useful here.

For our experiments, we chose the five largest
semantic types; tab. 4a lists these subgraphs along
with their sizes. Our task is edge prediction: given
a pair of nodes in a subgraph, the models predict
whether there should be an edge between them.
We sample 50% of the non-existent edges to cre-
ate a balanced problem. Each node is represented
by the sum of the vectors for the words in its pri-
mary name, and the classifier is trained on the con-
catenation of these two node representations. To

help assess whether the input representations truly
generalize to new cases, we ensure that the sets
of nodes seen in training and testing are disjoint
(which entails that the edge sets are disjoint as
well), and we train on just 50% of the nodes. We
report the results of ten random train/test splits.

The large scale of these problems prohibits the
large hyperparameter search described in sec. 3.2,
so we used the best settings from those experi-
ments (500 trees per forest, square root of the total
features at each split, no depth restrictions).

Our results are summarized in tab. 4b. Though
the differences are small numerically, they are
meaningful because of the large size of the graphs
(tab. 4a). Overall, these results suggest that
Mittens is at its best where there is a highly-
specialized dataset for learning representations,
but that it is a safe choice even when seeking to
transfer the representations to a new domain.

5 Conclusion

We introduced a simple retrofitting-like extension
to the original GloVe model and showed that the
resulting representations were effective in a num-
ber of tasks and models, provided a substantial
(unsupervised) dataset in the same domain is avail-
able to tune the representations. The most natural
next step would be to study similar extensions of
other representation-learning models.
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Abstract

Automatic interpretation of the relation
between the constituents of a noun com-
pound, e.g. olive oil (source) and baby
oil (purpose) is an important task for many
NLP applications. Recent approaches are
typically based on either noun-compound
representations or paraphrases. While the
former has initially shown promising re-
sults, recent work suggests that the suc-
cess stems from memorizing single pro-
totypical words for each relation. We ex-
plore a neural paraphrasing approach that
demonstrates superior performance when
such memorization is not possible.

1 Introduction

Automatic classification of a noun-compound
(NC) to the implicit semantic relation that holds
between its constituent words is beneficial for ap-
plications that require text understanding. For in-
stance, a personal assistant asked “do I have a
morning meeting tomorrow?” should search the
calendar for meetings occurring in the morning,
while for group meeting it should look for meet-
ings with specific participants. The NC classifica-
tion task is a challenging one, as the meaning of an
NC is often not easily derivable from the meaning
of its constituent words (Spärck Jones, 1983).

Previous work on the task falls into two main
approaches. The first maps NCs to paraphrases
that express the relation between the constituent
words (e.g. Nakov and Hearst, 2006; Nulty and
Costello, 2013), such as mapping coffee cup and
garbage dump to the pattern [w1] CONTAINS [w2].
The second approach computes a representation
for NCs from the distributional representation of
their individual constituents. While this approach

∗Work done during an internship at Google.

yielded promising results, recently, Dima (2016)
showed that similar performance is achieved by
representing the NC as a concatenation of its con-
stituent embeddings, and attributed it to the lexical
memorization phenomenon (Levy et al., 2015).

In this paper we apply lessons learned from
the parallel task of semantic relation classifica-
tion. We adapt HypeNET (Shwartz et al., 2016)
to the NC classification task, using their path em-
beddings to represent paraphrases and combining
with distributional information. We experiment
with various evaluation settings, including settings
that make lexical memorization impossible. In
these settings, the integrated method performs bet-
ter than the baselines. Even so, the performance is
mediocre for all methods, suggesting that the task
is difficult and warrants further investigation.1

2 Background

Various tasks have been suggested to address
noun-compound interpretation. NC paraphrasing
extracts texts explicitly describing the implicit re-
lation between the constituents, for example stu-
dent protest is a protest LED BY, BE SPONSORED

BY, or BE ORGANIZED BY students (e.g. Nakov
and Hearst, 2006; Kim and Nakov, 2011; Hen-
drickx et al., 2013; Nulty and Costello, 2013).
Compositionality prediction determines to what
extent the meaning of the NC can be expressed
in terms of the meaning of its constituents, e.g.
spelling bee is non-compositional, as it is not re-
lated to bee (e.g. Reddy et al., 2011). In this paper
we focus on the NC classification task, which is
defined as follows: given a pre-defined set of re-
lations, classify nc = w1w2 to the relation that
holds between w1 and w2. We review the various

1The code is available at https://github.com/
tensorflow/models/tree/master/research/
lexnet_nc.
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features used in the literature for classification.2

2.1 Compositional Representations

In this approach, classification is based on a vector
representing the NC (w1 w2), which is obtained
by applying a function to its constituents’ distri-
butional representations: ~vw1 , ~vw2 ∈ Rn. Various
functions have been proposed in the literature.

Mitchell and Lapata (2010) proposed 3 simple
combinations of ~vw1 and ~vw2 (additive, multiplica-
tive, dilation). Others suggested to represent com-
positions by applying linear functions, encoded as
matrices, over word vectors. Baroni and Zam-
parelli (2010) focused on adjective-noun composi-
tions (AN) and represented adjectives as matrices,
nouns as vectors, and ANs as their multiplication.
Matrices were learned with the objective of min-
imizing the distance between the learned vector
and the observed vector (computed from corpus
occurrences) of each AN. The full-additive model
(Zanzotto et al., 2010; Dinu et al., 2013) is a sim-
ilar approach that works on any two-word compo-
sition, multiplying each word by a square matrix:
nc = A · ~vw1 +B · ~vw2 .

Socher et al. (2012) suggested a non-linear
composition model. A recursive neural network
operates bottom-up on the output of a constituency
parser to represent variable-length phrases. Each
constituent is represented by a vector that captures
its meaning and a matrix that captures how it mod-
ifies the meaning of constituents that it combines
with. For a binary NC, nc = g(W · [~vw1 ;~vw2 ]),
where W ∈ R2n×n and g is a non-linear function.

These representations were used as features in
NC classification, often achieving promising re-
sults (e.g. Van de Cruys et al., 2013; Dima and
Hinrichs, 2015). However, Dima (2016) recently
showed that similar performance is achieved by
representing the NC as a concatenation of its con-
stituent embeddings, and argued that it stems from
memorizing prototypical words for each relation.
For example, classifying any NC with the head oil
to the SOURCE relation, regardless of the modifier.

2.2 Paraphrasing

In this approach, the paraphrases of an NC, i.e.
the patterns connecting the joint occurrences of
the constituents in a corpus, are treated as fea-
tures. For example, both paper cup and steel knife

2Leaving out features derived from lexical resources (e.g.
Nastase and Szpakowicz, 2003; Tratz and Hovy, 2010).

may share the feature MADE OF. Séaghdha and
Copestake (2013) leveraged this “relational sim-
ilarity” in a kernel-based classification approach.
They combined the relational information with
the complementary lexical features of each con-
stituent separately. Two NCs labeled to the same
relation may consist of similar constituents (pa-
per-steel, cup-knife) and may also appear with
similar paraphrases. Combining the two informa-
tion sources has shown to be beneficial, but it was
also noted that the relational information suffered
from data sparsity: many NCs had very few para-
phrases, and paraphrase similarity was based on
ngram overlap.

Recently, Surtani and Paul (2015) suggested to
represent NCs in a vector space model (VSM) us-
ing paraphrases as features. These vectors were
used to classify new NCs based on the nearest
neighbor in the VSM. However, the model was
only tested on a small dataset and performed sim-
ilarly to previous methods.

3 Model

We similarly investigate the use of paraphrasing
for NC relation classification. To generate a signal
for the joint occurrences of w1 and w2, we follow
the approach used by HypeNET (Shwartz et al.,
2016). For an w1w2 in the dataset, we collect all
the dependency paths that connect w1 and w2 in
the corpus, and learn path embeddings as detailed
in Section 3.2. Section 3.1 describes the classifi-
cation models with which we experimented.

3.1 Classification Models

Figure 1 provides an overview of the models:
path-based, integrated, and integrated-NC, each
which incrementally adds new features not present
in the previous model. In the following sections, ~x
denotes the input vector representing the NC. The
network classifies NC to the highest scoring rela-
tion: r = argmaxi softmax(~o)i, where ~o is the
output layer. All networks contain a single hidden
layer whose dimension is |x|2 . k is the number of
relations in the dataset. See Appendix A for addi-
tional technical details.

Path-based. Classifies the NC based only on the
paths connecting the joint occurrences of w1 and
w2 in the corpus, denoted P (w1, w2). We define
the feature vector as the average of its path embed-
dings, where the path embedding ~p of a path p is
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Figure 1: An illustration of the classification models for the NC coffee cup. The model consists of two parts: (1) the
distributional representations of the NC (left, orange) and each word (middle, green). (2) the corpus occurrences
of coffee and cup, in the form of dependency path embeddings (right, purple).

weighted by its frequency fp,(w1,w2):

~x = ~vP (w1,w2) =

∑
p∈P (w1,w2)

fp,(w1,w2) · ~p∑
p∈P (w1,w2)

fp,(w1,w2)

Integrated. We concatenate w1 and w2’s word
embeddings to the path vector, to add distribu-
tional information: x = [~vw1 , ~vw2 , ~vP (w1,w2)].
Potentially, this allows the network to utilize
the contextual properties of each individual con-
stituent, e.g. assigning high probability to
SUBSTANCE-MATERIAL-INGREDIENT for edible
w1s (e.g. vanilla pudding, apple cake).
Integrated-NC. We add the NC’s observed vec-
tor ~vnc as additional distributional input, providing
the contexts in which w1w2 occur as an NC:
~vnc = [~vw1 , ~vw2 , ~vnc, ~vP (w1,w2)]. Like Dima
(2016), we learn NC vectors using the GloVe algo-
rithm (Pennington et al., 2014), by replacing each
NC occurrence in the corpus with a single token.

This information can potentially help clustering
NCs that appear in similar contexts despite having
low pairwise similarity scores between their con-
stituents. For example, gun violence and abortion
rights belong to the TOPIC relation and may ap-
pear in similar news-related contexts, while (gun,
abortion) and (violence, rights) are dissimilar.

3.2 Path Embeddings
Following HypeNET, for a path p composed of
edges e1, ..., ek, we represent each edge by the
concatenation of its lemma, part-of-speech tag,
dependency label and direction vectors: ~ve =
[~vl, ~vpos, ~vdep, ~vdir]. The edge vectors ~ve1 , ..., ~vek
are encoded using an LSTM (Hochreiter and
Schmidhuber, 1997), and the last output vector ~p
is used as the path embedding.

We use the NC labels as distant supervision.
While HypeNET predicts a word pair’s label from
the frequency-weighted average of the path vec-
tors, we differ from it slightly and compute the
label from the frequency-weighted average of the
predictions obtained from each path separately:

~o =

∑
p∈P (w1,w2)

fp,(w1,w2) · softmax(~p)
∑

p∈P (w1,w2)
fp,(w1,w2)

r = argmaxi ~oi

We conjecture that label distribution averaging al-
lows for more efficient training of path embed-
dings when a single NC contains multiple paths.

4 Evaluation

4.1 Dataset
We follow Dima (2016) and evaluate on the Tratz
(2011) dataset, with 19,158 instances and two lev-
els of labels: fine-grained (Tratz-fine, 37 rela-
tions) and coarse-grained (Tratz-coarse, 12 re-
lations). We report results on both versions. See
Tratz (2011) for the list of relations.

Dataset Splits Dima (2016) showed that a clas-
sifier based only on vw1 and vw2 performs on par
with compound representations, and that the suc-
cess comes from lexical memorization (Levy et al.,
2015): memorizing the majority label of single
words in particular slots of the compound (e.g.
TOPIC for travel guide, fishing guide, etc.). This
memorization paints a skewed picture of the state-
of-the-art performance on this difficult task.

To better test this hypothesis, we evaluate on 4
different splits of the datasets to train, test, and val-
idation sets: (1) random, in a 75:20:5 ratio, (2)
lexical-full, in which the train, test, and validation
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Dataset Split Best Freq Dist Dist-NC Best Comp Path Int Int-NC

Tratz-fine

Rand 0.319 0.692 0.673 0.725 0.538 0.714 0.692
Lexhead 0.222 0.458 0.449 0.450 0.448 0.510 0.478
Lexmod 0.292 0.574 0.559 0.607 0.472 0.613 0.600
Lexfull 0.066 0.363 0.360 0.334 0.423 0.421 0.429

Tratz-coarse

Rand 0.256 0.734 0.718 0.775 0.586 0.736 0.712
Lexhead 0.225 0.501 0.497 0.538 0.518 0.558 0.548
Lexmod 0.282 0.630 0.600 0.645 0.548 0.646 0.632
Lexfull 0.136 0.406 0.409 0.372 0.472 0.475 0.478

Table 1: All methods’ performance (F1) on the various splits: best freq: best performing frequency baseline (head
/ modifier),3 best comp: best model from Dima (2016).

Dataset Split Train Validation Test

TRATZ-FINE

Lexfull 4,730 1,614 869
Lexhead 9,185 5,819 4,154
Lexmod 9,783 5,400 3,975

Rand 14,369 958 3,831

TRATZ-COARSE

Lexfull 4,746 1,619 779
Lexhead 9,214 5,613 3,964
Lexmod 9,732 5,402 3,657

Rand 14,093 940 3,758

Table 2: Number of instances in each dataset split.

sets each consists of a distinct vocabulary. The
split was suggested by Levy et al. (2015), and it
randomly assigns words to distinct sets, such that
for example, including travel guide in the train set
promises that fishing guide would not be included
in the test set, and the models do not benefit from
memorizing that the head guide is always anno-
tated as TOPIC. Given that the split discards many
NCs, we experimented with two additional splits:
(3) lexical-mod split, in which the w1 words are
unique in each set, and (4) lexical-head split, in
which the w2 words are unique in each set. Ta-
ble 2 displays the sizes of each split.

4.2 Baselines

Frequency Baselines. mod freq classifies w1w2

to the most common relation in the train set for
NCs with the same modifier (w1w

′
2), while head

freq considers NCs with the same head (w′1w2).4

Distributional Baselines. Ablation of the path-
based component from our models: Dist uses only
w1 and w2’s word embeddings: ~x = [~vw1 , ~vw2 ],
while Dist-NC includes also the NC embedding:
~x = [~vw1 , ~vw2 , ~vnc]. The network architecture is
defined similarly to our models (Section 3.1).

Compositional Baselines. We re-train Dima’s
(2016) models, various combinations of NC rep-
resentations (Zanzotto et al., 2010; Socher et al.,

3In practice, in lexical-full this is a random baseline, in
lexical-head it is the modifier frequency baseline, and in
lexical-mod it is the head frequency baseline.

4Unseen heads/modifiers are assigned a random relation.

2012) and single word embeddings in a fully con-
nected network.5

4.3 Results

Table 1 shows the performance of various meth-
ods on the datasets. Dima’s (2016) compositional
models perform best among the baselines, and on
the random split, better than all the methods. On
the lexical splits, however, the baselines exhibit
a dramatic drop in performance, and are outper-
formed by our methods. The gap is larger in
the lexical-full split. Finally, there is usually no
gain from the added NC vector in Dist-NC and
Integrated-NC.

5 Analysis

Path Embeddings. To focus on the changes
from previous work, we analyze the performance
of the path-based model on the Tratz-fine ran-
dom split. This dataset contains 37 relations
and the model performance varies across them.
Some relations, such as MEASURE and PER-
SONAL TITLE yield reasonable performance (F1

score of 0.87 and 0.68). Table 3 focuses on these
relations and illustrates the indicative paths that
the model has learned for each relation. We com-
pute these by performing the analysis in Shwartz
et al. (2016), where each path is fed into the path-
based model, and is assigned to its best-scoring
relation. For each relation, we consider paths with
a score ≥ 0.8.

Other relations achieve very low F1 scores, in-
dicating that the model is unable to learn them
at all. Interestingly, the four relations with the
lowest performance in our model6 are also those
with the highest error rate in Dima (2016), very

5We only include the compositional models, and omit the
“basic” setting which is similar to our Dist model. For the
full details of the compositional models, see Dima (2016).

6LEXICALIZED, TOPIC OF COGNITION&EMOTION,
WHOLE+ATTRIBUTE&FEAT, PARTIAL ATTR TRANSFER
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Relation Path Examples

MEASURE
[w2] varies by [w1] state limit, age limit

2,560 [w1] portion of [w2] acre estate

PERSONAL TITLE
[w2] Anderson [w1] Mrs. Brown
[w2] Sheridan [w1] Gen. Johnson

CREATE-PROVIDE-GENERATE-SELL
[w2] produce [w1] food producer, drug group
[w2] selling [w1] phone company, merchandise store

[w2] manufacture [w1] engine plant, sugar company

TIME-OF1 [w2] begin [w1] morning program
[w2] held Saturday [w1] afternoon meeting, morning session

SUBSTANCE-MATERIAL-INGREDIENT
[w2] made of wood and [w1] marble table, vinyl siding

[w2] material includes type of [w1] steel pipe

Table 3: Indicative paths for selected relations, along with NC examples.

Test NC Most Similar NC

NC Label NC Label

majority party EQUATIVE minority party WHOLE+PART OR MEMBER OF
enforcement director OBJECTIVE enforcement chief PERFORM&ENGAGE IN
fire investigator OBJECTIVE fire marshal ORGANIZE&SUPERVISE&AUTHORITY
stabilization plan OBJECTIVE stabilization program PERFORM&ENGAGE IN
investor sentiment EXPERIENCER-OF-EXPERIENCE market sentiment TOPIC OF COGNITION&EMOTION
alliance member WHOLE+PART OR MEMBER OF alliance leader OBJECTIVE

Table 4: Example of NCs from the Tratz-fine random split test set, along with the most similar NC in the
embeddings, where the two NCs have different labels.

likely since they express complex relations. For
example, the LEXICALIZED relation contains non-
compositional NCs (soap opera) or lexical items
whose meanings departed from the combination of
the constituent meanings. It is expected that there
are no paths that indicate lexicalization. In PAR-
TIAL ATTRIBUTE TRANSFER (bullet train), w1

transfers an attribute to w2 (e.g. bullet transfers
speed to train). These relations are not expected
to be expressed in text, unless the text aims to ex-
plain them (e.g. train as fast as a bullet).

Looking closer at the model confusions shows
that it often defaulted to general relations like OB-
JECTIVE (recovery plan) or RELATIONAL-NOUN-
COMPLEMENT (eye shape). The latter is described
as “indicating the complement of a relational noun
(e.g., son of, price of)”, and the indicative paths
for this relation indeed contain many variants of
“[w2] of [w1]”, which potentially can occur with
NCs in other relations. The model also confused
between relations with subtle differences, such as
the different topic relations. Given that these re-
lations were conflated to a single relation in the
inter-annotator agreement computation in Tratz
and Hovy (2010), we can conjecture that even hu-
mans find it difficult to distinguish between them.

NC Embeddings. To understand why the NC
embeddings did not contribute to the classifi-
cation, we looked into the embeddings of the

Tratz-fine test NCs; 3091/3831 (81%) of them
had embeddings. For each NC, we looked for
the 10 most similar NC vectors (in terms of co-
sine similarity), and compared their labels. We
have found that only 27.61% of the NCs were
mostly similar to NCs with the same label. The
problem seems to be inconsistency of annotations
rather than low embeddings quality. Table 4 dis-
plays some examples of NCs from the test set,
along with their most similar NC in the embed-
dings, where the two NCs have different labels.

6 Conclusion

We used an existing neural dependency path
representation to represent noun-compound para-
phrases, and along with distributional information
applied it to the NC classification task. Following
previous work, that suggested that distributional
methods succeed due to lexical memorization, we
show that when lexical memorization is not pos-
sible, the performance of all methods is much
worse. Adding the path-based component helps
mitigate this issue and increase performance.
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armuid Ó Séaghdha, Stan Szpakowicz, and Tony
Veale. 2013. Semeval-2013 task 4: Free paraphrases
of noun compounds. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013).
Association for Computational Linguistics, pages
138–143. http://aclweb.org/anthology/S13-2025.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Nam Su Kim and Preslav Nakov. 2011. Large-
scale noun compound interpretation using boot-
strapping and the web as a corpus. In Pro-
ceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 648–658.
http://aclweb.org/anthology/D11-1060.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Omer Levy, Steffen Remus, Chris Biemann, and
Ido Dagan. 2015. Do supervised distribu-
tional methods really learn lexical inference re-
lations? In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 970–
976. http://www.aclweb.org/anthology/N15-1098.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence 34(8):1388–1429.

Preslav Nakov and Marti Hearst. 2006. Using verbs to
characterize noun-noun relations. In International
Conference on Artificial Intelligence: Methodology,
Systems, and Applications. Springer, pages 233–
244.

Vivi Nastase and Stan Szpakowicz. 2003. Explor-
ing noun-modifier semantic relations. In Fifth in-
ternational workshop on computational semantics
(IWCS-5). pages 285–301.

Paul Nulty and Fintan Costello. 2013. General and
specific paraphrases of semantic relations between
nouns. Natural Language Engineering 19(03):357–
384.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Siva Reddy, Diana McCarthy, and Suresh Manand-
har. 2011. An empirical study on compositional-
ity in compound nouns. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing. Asian Federation of Natural Language
Processing, Chiang Mai, Thailand, pages 210–218.
http://www.aclweb.org/anthology/I11-1024.
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A Technical Details

To extract paths, we use a concatenation of En-
glish Wikipedia and the Gigaword corpus.7 We
consider sentences with up to 32 words and depen-
dency paths with up to 8 edges, including satel-
lites, and keep only 1,000 paths for each noun-
compound. We compute the path embeddings in
advance for all the paths connecting NCs in the
dataset (§3.2), and then treat them as fixed embed-
dings during classification (§3.1).

We use TensorFlow (Abadi et al., 2016) to
train the models, fixing the values of the hyper-
parameters after performing preliminary experi-
ments on the validation set. We set the mini-batch
size to 10, use Adam optimizer (Kingma and Ba,
2014) with the default learning rate, and apply
word dropout with probability 0.1. We train up to
30 epochs with early stopping, stopping the train-
ing when the F1 score on the validation set drops
8 points below the best performing score.

We initialize the distributional embeddings with
the 300-dimensional pre-trained GloVe embed-
dings (Pennington et al., 2014) and the lemma em-
beddings (for the path-based component) with the
50-dimensional ones. Unlike HypeNET, we do
not update the embeddings during training. The
lemma, POS, and direction embeddings are initial-
ized randomly and updated during training. NC
embeddings are learned using a concatenation of
Wikipedia and Gigaword. Similarly to the origi-
nal GloVe implementation, we only keep the most
frequent 400,000 vocabulary terms, which means
that roughly 20% of the noun-compounds do not
have vectors and are initialized randomly in the
model.

7https://catalog.ldc.upenn.edu/
ldc2003t05
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Abstract

Pleonasms are words that are redundant. To
aid the development of systems that detect
pleonasms in text, we introduce an anno-
tated corpus of semantic pleonasms. We val-
idate the integrity of the corpus with inter-
annotator agreement analyses. We also com-
pare it against alternative resources in terms of
their effects on several automatic redundancy
detection methods.

1 Introduction

Pleonasm is the use of extraneous words in an
expression such that removing them would not
significantly alter the meaning of the expression
(Merriam-Webster, 1983; Quinn, 1993; Lehmann,
2005). Although pleonastic phrases may serve
literary functions (e.g., to add emphasis) (Miller,
1951; Chernov, 1979), most modern writing style
guides caution against them in favor of con-
cise writing (Hart et al., 1905; Williams, 2003;
Turabian, 2013; Gowers, 2014; Strunk, 1920).

An automatic pleonasm detector would be
beneficial for natural language processing
(NLP) applications that support student writ-
ing, such as grammar error correction (GEC)
(Han et al., 2006; Rozovskaya and Roth, 2010;
Tetreault et al., 2010; Dahlmeier and Ng, 2011),
automatic essay grading (Larkey, 1998; Landauer,
2003; Ong et al., 2014), and intelligent writing
tutors (Merrill et al., 1992; Aleven et al., 2009;
Atkinson, 2016). Pleonastic phrases may also
negatively impact NLP applications in general
because they introduce an unnecessary complexity
to the language. Their removal might facilitate
NLP tasks such as parsing, summarization,
and machine translation. However, automated
pleonasm detection is a challenging problem, in
parts because there is no appropriate resources to
support the development of such systems. While

some GEC corpora do annotate some words or
phrases as “redundant” or “unnecessary,” they are
typically a manifestation of grammar errors (e.g.,
we still have room to improve for our current
welfare system) rather than a stylistic redundancy
(e.g., we aim to better improve our welfare
system).

This paper presents a new Semantic Pleonasm
Corpus (SPC), a collection of three thousand sen-
tences. Each sentence features a pair of potentially
semantically related words (chosen by a heuris-
tic); human annotators determine whether either
(or both) of the words is redundant. The corpus
offers two improvements over current resources.
First, the corpus filters for grammatical sentences
so that the question of redundancy is separated
from grammaticality. Second, the corpus is fil-
tered for a balanced set of positive and negative ex-
amples (i.e., no redundancy). The negative exam-
ples may make useful benchmark data – because
they all contain a pair of words that are deemed to
be semantically related, a successful system can-
not rely on simple heuristics, such as semantic dis-
tances, for discrimination. We evaluate the cor-
pus in terms of inter-annotator agreement, and in
terms of its usefulness for developing automatic
pleonasm detectors.

2 Semantic Pleonasm

Although pleonasm is generally a semantic and
rhetorical concept, it could have different aspects
and be formed in different layers of language, in-
cluding morphemic (e.g., “irregardless” (Berube,
1985)) and syntactic layers (e.g., “the most un-
kindest cut of all”). Detecting and correcting
morphemic and syntactic pleonasms are more in
the scope of GEC research, especially when they
cause errors. Semantic pleonasm, on the other
hand, is “a question of style or taste, not gram-
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mar” (Evans and Evans, 1957). It occurs when the
meaning of a word (or phrase) is already implied
by other words in the sentence. For example, the
following is a grammatical sentence that has a re-
dundant word: I received a free gift. While writers
might intentionally include the redundant word for
emphasis, the overuse of pleonasm may weaken
the expression, making it “boring rather than strik-
ing the hearer.” (Fowler, 1994).

3 A Semantic Pleonasm Corpus

Semantic pleonasm is a complex linguistic phe-
nomenon; to develop a useful corpus for it, we
need to make some design decisions in terms of
a trading off between the breadth and depth of our
coverage.

3.1 Data Source

We want to start from a source that is likely to con-
tain semantic redundancies. Because good writers
are trained to guard against redundant phrasings,
professionally written text from Project Gutenberg
or the Wall Street Journal would not be appropri-
ate. Because we want to separate the issues of
grammaticality from redundancy, learner corpora
would also not be appropriate. A data source that
seems promising is amateur product reviews. The
writers tend to produce more emotional prose that
are at times exasperated or gushing; the writing
is more off-the-cuff and casual, and may contain
more redundancy. Ultimately, we chose to work
with restaurant reviews from Round Seven of the
Yelp Dataset Challenge1 because it is widely dis-
tributed.

3.2 Filtering

Although redundant words and phrases occur fre-
quently enough that exhortations to excise them
is a constant refrain in writing guides, most sen-
tences still skew toward not containing pleonasms.
Annotating all sentences would dilute the impact
of the positive examples, further complicate the
annotation scheme, and increase the cost of the
corpus creation. Thus, we opt to construct a bal-
anced corpus of positive and negative examples for
a specific kind of redundancy in a specific config-
uration. In particular, we extract all sentences that
contained a pair of adjacent words that are likely
to be semantically similar. We restrict our atten-
tion to adjacent word pairs to increase the chance

1https://www.yelp.com/dataset/challenge

of finding redundancy, since semantically related
words that are farther apart are more likely to
have different syntactic and semantic roles. To de-
termine semantic similarity, we use the TextBlob
Python interface2, which, for a given word, pro-
vides access to WordNet synsets (Miller, 1995)
corresponding to each of the word’s senses. We
compare each pair of adjacent words in the dataset
to see whether they share any synsets. Since
WordNet serves as a coarse filter, we need to fur-
ther improve recall. We select any sentences that
contains a pair of adjacent words such that one of
the words has a synset that is similar to a synset
of the other word. TextBlob provides this “simi-
lar to” functionality, which finds synsets that are
close to a given synset in WordNet’s taxonomy
tree. (note, however, that these words may not
be used in those senses in the sentence). Apply-
ing these filtering rules, we are able to eliminate
a large percentage of sentences that do not con-
tain semantic redundancy; the method also help us
identify a pair of words in each sentence that is
likely to have a redundancy. In the second step
of filtering, we manually removed sentences that
contained obvious grammatical mistakes.

3.3 Annotation
We set up a Amazon Mechanical Turk service to
determine whether the potentially redundant word
pairs are actually redundant. Because we want to
build a balanced corpus, we first perform a quick
internal first pass, marking each sentence as ei-
ther “possibly containing redundancy” or “prob-
ably not containing redundancy” so that we can
distribute the instances to the Turkers with equal
probability (they do not see our internal annota-
tions). The Turkers are given six sentences at a
time, each containing a highlighted pair of words.
The workers have to decide whether to delete the
first word, the second word, both, or neither. Then,
they indicate their confidence: “Certain,” “Some-
what certain,” or “Uncertain.” Lastly, they are
given the opportunity to provide additional expla-
nations. Each sentence has been reviewed by three
different workers. For about ninety percent of the
sentences, three annotations proved sufficient to
achieve a consensus. We collect a fourth annota-
tion for the remaining sentences, and are then able
to declare a consensus.

2http://textblob.readthedocs.io/en/dev/
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Consensus Level Fleiss’s Kappa

Word Level 0.384

Sentence Level 0.482

Table 1: Inter-Annotator Agreement

A Few Examples

• Sentence: Freshly squeezed and no additives,
just plain pure fruit pulp.
Consensus: plain is redundant.

• Sentence: It is clear that I will never have
another prime first experience like the one I
had at Chompies.
Consensus: neither word is redundant.

• Sentence: The dressing is absolutely incred-
ibly fabulously flavorful!
Consensus: both words are redundant.

3.4 Inter-Annotator Agreement

Because our corpus is annotated by many Turk-
ers, with some labeling only a handful of sen-
tences while others contributed hundreds, the typ-
ical pair-wise inter-annotated agreement is not ap-
propriate. Instead, we compute Fleiss’s Kappa
(Fleiss, 1971), which measures the degree of
agreement in classification over what would be ex-
pected by chance for more than two annotator.

We analyze agreements at two levels of gran-
ularity: word level indicates the consensus on
whether the first, second, both, or neither of
the candidates is pleonastic; sentence level indi-
cates the consensus on whether a sentence has a
pleonastic construction.

Table 1 shows that annotators are more likely
to agree whether a sentence contains a pleonasm
than exactly which words should be considered re-
dundant. In many cases, a majority consensus is
achieved with one annotator disagreeing with the
others. The result suggests that when there is a sin-
gle word redundancy, removing either of the syn-
onyms could be appropriate.

3.5 Properties

The final dataset consists of 3,019 sentences.
Their final labels are based on a majority consen-
sus: 1,283 sentences are marked as not having a
redundant word; 1,720 sentences are marked as
containing a single word redundancy; and for 16

One
Both Neither Total

First Second

955 765 16 1,283 3,019

32% 25%
1% 42% 100%

57%

Table 2: Statistics of the Semantic Pleonasm Corpus

sentences, both words are marked as redundant.
Table 2. shows the statistics of annotators consen-
sus. The corpus, including all annotations and the
final consensus, is available in JSON format from
http://pleonasm.cs.pitt.edu

4 Automatic Pleonasm Detection

Given our design choices, the current SPC is not a
large corpus; we posit that it can nonetheless serve
as a valuable resource for developing systems to
detect semantic pleonasm. For example, the ear-
lier work of Xue and Hwa (2014) might have ben-
efited from this resource. They wanted to detect
the word in a sentence that contributes the least
to the meaning of the sentence; however, their ex-
periments were hampered by a mismatch between
their intended domain and the corpus they eval-
uated on – while their model estimated a word’s
semantic redundancy, their experiments were per-
formed on NUCLE (Dahlmeier et al., 2013), a
learner corpus that focused more on grammatical
errors. Moreover, since their detector always re-
turned the word with the lowest meaning contri-
bution score, they only evaluated their model on
sentences known to contain an unnecessary word;
without appropriate negative examples, it is not
clear how to apply their system to sentences with
no redundancy. These are two use-case scenarios
that the SPC may address. To verify our claim,
we will first compare the performances of several
word redundancy metrics, including a replication
of the metric of Xue and Hwa, on our corpus with
their performances on NUCLE. We will then show
that the SPC can train a classifier that predicts
whether a sentence contains semantic pleonasm.

4.1 Pleonastic Word Detection

This experiment focuses on the positive examples
– the methods under evaluation are all metrics for
detecting the most redundant word from sentences
known to contain one. We compare the perfor-
mances of different word detectors under SPC and
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NUCLE. Note that our experimental goal is not
to obtain a method that reports a high accuracy on
SPC (we do not want a corpus that overfits to some
particular method). Rather, it is to demonstrate
that the human-annotated SPC captures aspects of
semantic redundancy that are not available in other
resources.

In order to shed lights on the differences be-
tween SPC and NUCLE, we compare them using
detectors that are formulated from different strate-
gies. First, we have replicated the metric pro-
posed by Xue and Hwa, which consists of two
main components: a language model and a word
meaning contribution model that is derived from
word alignments from machine translation3. This
method is the most focused on lexical semantic,
so we expect it to be better at detecting redundant
words on the SPC. Next, we have implemented
three simple metrics: SIM computes the seman-
tic similarity between a full sentence and that sen-
tence with the target word removed4; GEN esti-
mates the degree to which a word is general (there-
fore more likely to be redundant) by its number of
synonyms; and SMP estimates the simplicity of a
word based on an implementation of the Flesch-
Kincaid readability score (Kincaid et al., 1975).
Of these, only SIM directly models semantics; we
expect it to be better at detecting redundant words
on the SPC than the two other, more general, met-
rics. Finally, as a point of contrast, we consider a
GEC system using languagetools5 (Naber, 2003);
we expect the GEC system to be better at detecting
grammar error related redundancy found on NU-
CLE than cases of semantic redundancy found in
the SPC.

To conduct the experiment, we selected 1,140
NUCLE sentences that contain one local redun-
dancy (RLOC) error; for SPC, 1,720 sentences
with one semantic pleonasm are used. Table 3
shows the accuracy of each method under both
corpora. Our implementation of Xue and Hwa’s
model replicates their reported outcome with NU-
CLE, and, as expected, their method is more suc-
cessful on the SPC. All three simple metrics are
more successful at picking out redundant word on
the SPC than NUCLE, with SIM showing a bigger

3In our re-implementation, the language model is trained
on a portion of English Gigaword (Graff et al., 2003) using
KenLM (Heafield, 2011); the word alignments are derived
from Bing’s English-French Translator

4using sense2vec word-embeddings (Trask et al., 2015)
5https://languagetool.org/

Method NUCLE SPC

Xue&Hwa 22.8% 31.7%

SIM 11.1% 16.6%
GEN 9.6% 13.3%
SMP 16.1% 20.6%
SIM + SMP + GEN 18.2% 27.6%

ALL 31.1% 39.4%

GEC 11.9% 4.7%

Table 3: The accuracy of detecting the redundant word
in sentences with different methods under two corpora:
NUCLE and SPC. ALL is a composite metric from the
other four: Xue&Hwa + SIM + SMP + GEN .

difference than the other two. Comparing the four
methods’ between corpora differences, we see that
the method of Xue&Hwa has the most to gain,
perhaps because it has the strongest domain mis-
match. Yet, a combination of all four metrics re-
sults in an improved accuracy of 39.4%, suggest-
ing that the four strategies capture different aspect
of semantic redundancy. That this highest achiev-
ing accuracy is still quite low suggests that there is
ample room for improvement in terms of word de-
tector development. In contrast, the GEC method
performed much better on NUCLE (11.9%) than
on the SPC (4.7%). Taken as a whole, these re-
sults suggest that the SPC, while small, is a better
fit for the task of detecting semantic redundancy
than NUCLE.

4.2 Sentential Pleonasm Detection

All the methods shown in the previous experi-
ment are metrics that assign a redundancy score to
each word within a sentence; they still have to be
incorporated into an outer classifier to determine
whether the sentence indeed contains a pleonasm.
A corpus of naturally occurring text is unsuitable
for training the classifier because the distribution
is heavily skewed toward the no redundancy case.
Random down-sampling is also not ideal because
some might be too obvious (e.g., very short sen-
tences). SPC addresses this problem by filtering
for challenging negative cases: sentences that con-
tain a pair of words that are heuristically deemed
to be semantically related, but are not judged to
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Feature Description

UG the one-hot representation
(Harris and Harris, 2010) of
unigrams of the sentence

TG the one-hot representation of tri-
grams of the sentence

TFIDF the one-hot representation of
smoothed TFIDF tuples of
trigrams of the sentence

WSTAT [max(ALL), avg(ALL),
min(ALL), Len(s), LM(s)]

Table 4: Features for sentential level pleonasm detec-
tion. ALL represents the collection of word-level met-
rics: Xue&Hwa, SIM , GEN , and SMP ; Len(s) is the
number of words in sentence s; LM(s) is the trigram proba-
bility for sentence s.

Baseline
SPC

MaxEnt Naive Bayes

UG 79.2 88.4
TG 79.9 88.8
TFIDF 83.0 90.5
WSTAT 63.1 53.2
WSTAT+UG 82.3 89.2
WSTAT+TG 83.7 89.3
WSTAT+TFIDF 84.5 92.2

Table 5: The accuracy of a binary classifier using dif-
ferent feature set to predict whether a sentence contains
a pleonastic construction.

be redundant by human annotators. In this exper-
iment, we use SPC to train a binary classifier; our
feature set is summarized in Table 4.

To train the classifiers, we performed 5-fold
cross-validation on the full SPC corpus. We ex-
perimented with both a Maximum Entropy and
a Binomial Naive Bayes binary classifier. We
considered the number of features from χ2 test,
regularization coefficient, the choice of penalty
function and solver as hyperparameters and opti-
mized them using the Particle Swarm algorithm
(Clerc and Kennedy, 2002) in the Optunity6 opti-
mizer package.

Table 5 presents the results. We observe that

6https://github.com/claesenm/optunity

the three features that directly encode the words
of the sentence are more relevant (UG, TG,
TFIDF ) than the group of statistics over the word
redundancy metrics (WSTAT ). For our corpus
size, Naive Bayes seems to converge faster to the
minimum error rate than MaxEnt (Ng and Jordan,
2002). In combination, WSTAT + TFIDF gave
the highest accuracy, at around 92%. This result
also reinforces our inter-annotator agreement rate,
suggesting that determining whether a sentence
contains a semantic pleonasm is easier than
deciding which word is pleonastic.

5 Conclusion

We have introduced a semantic pleonasm corpus
in which each sentence contains a word pair that is
potentially semantically related. These sentences
are reviewed by human annotators, who determine
whether any of the words are redundant. Our cor-
pus offers two main contributions. First, as a cor-
pus that focuses on semantic similarity, it provides
a more appropriate resource for systems that aim
to detect stylistic redundancy rather than gram-
matical errors. Second, as a balanced corpus of
positive and near-miss negative examples, it al-
lows systems to evaluate their ability to detect ”no
redundancy.”
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Abstract

Semantic Verbal Fluency tests have been used
in the detection of certain clinical conditions,
like Dementia. In particular, given a sequence
of semantically related words, a large num-
ber of switches from one semantic class to an-
other has been linked to clinical conditions.
In this work, we investigate three similarity
measures for automatically identify switches
in semantic chains: semantic similarity from
a manually constructed resource, and word as-
sociation strength and semantic relatedness,
both calculated from corpora. This informa-
tion is used for building classifiers to distin-
guish healthy controls from clinical cases with
early stages of Alzheimer’s Disease and Mild
Cognitive Deficits. The overall results indi-
cate that for clinical conditions the classifiers
that use these similarity measures outperform
those that use a gold standard taxonomy.

1 Introduction
In the diagnosis of clinical conditions, language pro-
duction along with socio-educational and cognitive fac-
tors have been regarded as providing important clues
about the health of the semantic memory and of the
mental lexicon (Troyer et al., 1998). Some neuropsy-
chiatric protocols for the assessment of clinical condi-
tions like Alzheimer’s Disease (AD) and Mild Cogni-
tive Deficits (MCD) often adopt Semantic Verbal Flu-
ency (SVF) (Zhao et al., 2013), since linguistic impair-
ments in such conditions are most likely located at the
semantic level (Taler and Phillips, 2008). In these tests
participants are asked to produce words related to a
given theme (e.g. animals or supermarket items) in a
short period of time (e.g. one minute) avoiding repe-
titions. The answers tend to contain subgroups (Bous-
field and Sedgewick, 1944), referred to as clusters and
their borders as switches. For instance, a sequence like
dog, mouse, cat, horse, pig, and cow could be divided
into two clusters with a switch: pets (dog, mouse, and
cat) and farm animals (horse and pig). Clues like the
size of semantic clusters and the number of switches
(Troyer et al., 1998) have been correlated with clinical

conditions (Murphy et al., 2006; Pekkala et al., 2008;
Price et al., 2012; Bertola et al., 2014b), and, in some
cases, data derived from SVF tests have indicated de-
mentia five years before its onset (Raoux et al., 2008).

The analysis of clusters and switches requires man-
ual annotation by specialists, based on preexisting man-
ually constructed taxonomies, in a process that can be
very time consuming and prone to coverage limitations.
In this paper we investigate three similarity measures
for detecting switches in word sequences: semantic
similarity using a manually constructed resource, as
well as word association strength and semantic relat-
edness both calculated from corpora. We then apply
this information to distinguish different clinical groups
using classifiers in a fully automated way. This paper is
structured as follows: in §2, we review the detection of
neuropsychiatric diseases with SVF tests. In §3 we dis-
cuss the data and the switch detection strategies. In §4
reports results. We finish with conclusions and future
work.

2 Related Works
The cluster and switch dynamic is a classic source of
information for separating clinical groups in SVF tests,
due to their deep connections to executive functions
and semantic memory (Troyer et al., 1998). Clinical
detection approaches are widely based on SVF tests
and analyze word productivity (Murphy et al., 2006),
word repetitions (Raoux et al., 2008; Pekkala et al.,
2008; Henry and Phillips, 2006), and number of clus-
ters and switches (Gocer March and Pattison, 2006;
Price et al., 2012).

Computational approaches for prediction of switches
in SVFs have used information about semantic related-
ness from distributional semantic models (Linz et al.,
2017). Prediction of semantic clusters has been done
with clustering algorithms using LSA similarity be-
tween pairs of words. These clusters were then used to
detect bipolarity and schizophrenia (Rosenstein et al.,
2015).

SVF tests have also been computationally modeled
in terms of graphs with nodes corresponding to words
and edges to the temporal connections between them.
Topological measures, such as, the number of nodes
and edges, shortest path, diameter, and density were
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used to distinguish the control from clinical groups di-
agnosed with schizophrenia and manic depression dis-
order (Mota et al., 2012), AD and MCD (Bertola et al.,
2014b).

In this work we use similarity measures based on
the association strength between two words, their se-
mantic similarity and their semantic relatedness for
detecting switches in SVFs involving AD and MCD
groups.1

3 Methods
3.1 SVF Dataset
The SVF dataset (Bertola et al., 2014a) contains the re-
sponses of 100 participants (mean age of 75.78, sd =
7.13) of both genders and of similar levels of education.
The participants are classified into four groups of 25 in-
dividuals. One is a control group with normal cognitive
performance, and three are groups with clinical con-
ditions according to assessment guidelines (de Paula
et al., 2013; McKhann et al., 1984; Winblad et al.,
2004): Amnestic Mild Cognitive Deficit (aMCD),
Multi-domain Mild Cognitive Deficit (mMCD) and
Alzheimer’s Disease (AD). Since the groups are ho-
mogeneous, there is no significant differences between
members of the same group. Additionally, we also
considered a fifth group, the Cognitively Impaired
(CI) group, that includes randomly selected partici-
pants from the three clinical groups. The responses of
each participant are annotated following the guidelines
adopted by Troyer et al. (1998); Bertola et al. (2014b).

3.2 Switch identification
In this paper we explore different types of similarity
for detecting switches in SVF. An SVF can be divided
in semantic chains, which we define as sequences of
consecutive words whose similarity falls above a cer-
tain threshold (Morris and Hirst, 1991; Pakhomov and
Hemmy, 2014). Different semantic chains are sepa-
rated by switches2. Switches form the basis for train-
ing classifiers to distinguish control from clinical cases
in the SVF dataset (Bertola et al., 2014a). We use
Random Forest classifiers (Breiman, 2001) trained with
the following features: the number of switches, n; the
largest chain size, cmax = max(ca); the average chain

length, c̄ = 1
n+1

n+1∑
a=1

ca; the fraction of occurrence of

the smallest chain, fmin = #(cmin)/(n + 1), where
#(c) indicates the number of chains of size c in the
SVF test of a participant.

Results are reported in terms of average area under
the receiver operator characteristic curve (AUC) from

1Although lexical and distributional characteristics of
SVFs, like the total number of words and their frequencies,
may be effective indicators of clinical conditions, in this pa-
per we focus on switch information and how it can be approx-
imated.

2For simplicity sake we consider that a chain may have a
single word in which case it has length one.

10 times 10-fold-cross validation.3

To determine the effectiveness of different types of
similarity measures for switch identification we exam-
ine semantic similarity from a manually constructed
resource, as well as two measures derived from cor-
pora: word association strength, and semantic relat-
edness. Semantic similarity is determined from the
shortest path that connects two words according to the
WordNet (Fellbaum, 1998; Perkins, 2010) hypernym
taxonomy. The association strength is calculated us-
ing the positive value of the Pointwise Mutual Informa-
tion (PMI) (Church and Hanks, 1990), and the seman-
tic relatedness using the cosine similarity between two
GloVe word embeddings (Pennington et al., 2014).‘

WordNet provides a high quality manual resource
but is not available for all languages. In this work
we translated the SVF responses from Brazilian Por-
tuguese to English.4 Similarity using association
strength and semantic relatedness can be constructed
from raw corpora, which makes them an attractive al-
ternative for low-resourced languages like Portuguese.
In this work we used a corpus built from the Portuguese
Wikipedia5, which was lemmatized and had high fre-
quency function words removed. After preprocessing,
the corpus contained more than 118 million tokens, and
44,000 types. PMI for word pairs was calculated using
a sliding window of size 7 over the corpus. GloVe6

word embeddings were constructed using default pa-
rameters, with the exception of the window size and
vector dimension which were set to 7 and 300, respec-
tively.

Formally the switch is a binary function
ψ(xi) that operates on the sequence of N words
(w1, w2, · · · , wN ) produced by a subject in the SVF
test. There is a switch between consecutive words wi

and wi+1 when their similarity xi = s(wi, wi+1) falls
below a threshold, in which case ψ(xi) = 1, otherwise
ψ(xi) = 0. In this paper we explore three heuristics
for the switch function:
Detection based on the global mean. The threshold is
given by the average similarity of the list.

ψglobal(xi) = H


 1

N − 1

N−1∑

j=1

xj − xi




where H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise.
Detection based in the local mean. The threshold is
given by the average similarity of the last k pairs of
words.

ψk(xi) = H


1

k

k∑

j=1

xi−j − xi




3The models were trained with the Caret Package:
topepo.github.io/caret

4Given the limitations in WordNet coverage, animals that
were not found were replaced by similar animals found in
WordNet and with the same frequency profile.

5Wikipedia dump corpus from June of 2015
6nlp.stanford.edu/projects/glove/
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Hibrid detection. We combine the local and global ap-
proach in a voting system where a switch is considered
if it receives at least v votes from previously switch cri-
teria. Here we consider a combination of global with
locals k = 2 and 3:

ψvotv (xi) = H(ψglobal(xi) + ψ2(xi) + ψ3(xi)− v)

where v can be 1, 2 (majority voting), and 3 (total
agreement).

4 Results
Evaluation is carried out at two levels of granularity: a
rough-grained classification for the detection of a clin-
ical condition in general (control vs. CI group), and
a fine-grained classification for one of the three con-
ditions (aMCD, mMCD and AD groups). Table 3.2
displays the average AUC per heuristic for the dif-
ferent sources, with the highest scores shown in bold
along with other scores that are not statistically differ-
ent, considering p-values adjusted with the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995).
The last line of each subtable shows the scores obtained
by training the classifiers with the gold standard man-
ual annotation with the taxonomy used by Troyer et al.
(1998) (GS in the tables).

Overall, in terms of the type of similarity both
the semantic similarity (WordNet) and word associa-
tion strength (PMI) were significantly better than the
gold standard manual annotation for the rough-grained
classification and for two of the three clinical cases
(mMCD was the exception). This indicates the comple-
mentary nature of these additional types of similarity
beyond what the smaller and possibly stricter GS tax-
onomy can offer. Examining the specific groups, the
lower scores for aMCD and mMCD also seem to re-
flect the potential progression of these condition from
the control to the more severe impairments of the AD
group (aMCD < mMCD < AD).

Among the different measures, the strict total agree-
ment voting (ψvot3 ) provides the best results with as-
sociation strength for the rough-grained classification
(Table3.2(a)), and for the fine-grained classifications of
the mMCD (Table3.2(c)) and AD groups (Table3.2(d)).
These results suggest that a more conservative identifi-
cation of switches leading to larger chains provides a
better approximation for these three groups.

For the two intermediate clinical groups, aMCD and
mMCD, the use of local average information from a
small window including only the previous word (ψ1)
also produces good results. However, there is no con-
sensus regarding the source of switch identification,
as for aMCD both semantic similarity and association
strength were effective, and for mMCD it was seman-
tic relatedness that provided a better characterization of
the groups.

Finally, for the AD group various combinations of
measures and sources of semantic information lead
to effective distinction from the control group, with

the best results using the strict total agreement voting.
These results are indicative of AD as the clinical group
with strongest cognitive impairment in relation to the
control.

For a qualitative assessment of the results, we also
examine the vocabulary overlap among the groups,
using the Jaccard index as shown in Table 4, which
presents the average Jaccard index between subjects
across all groups. It shows a higher agreement among
the control than among the other groups. This is com-
patible with the discussion by Brandt and Manning
(2009) who identified a more systematic strategy for
vocabulary exploration in the control than in ‘the clini-
cal groups.

Given that the switches derived by our best mod-
els were more effective for the detection of the clini-
cal conditions than the gold standard, we explored the
idea that maybe the human annotation could be fur-
ther improved. To test that, we asked subjects to re-
annotate 594 pairs of words for which there was dis-
agreement between the gold standard and the predicted
switches. Each pair was annotated by an average of
8.1 annotators (sd = 2.28) using four context words.
When compared with the gold standard, the new anno-
tation resulted in a change of judgment for 12.7% of the
word pairs, with higher agreement with the switches
predicted by our heuristics. For instance, for ψvot3(xi)
it increased agreement in 11% for WordNet similarity,
15% for GloVe relatedness, and 16% for PMI word as-
sociation strength.

These results confirm the effectiveness of semantic
similarity and association strength as indicators of clin-
ical conditions. Moreover, the results suggest that these
measures also capture the progression of these condi-
tions and changes in strategies adopted for vocabulary
production (Brandt and Manning, 2009), since aMCD
can progress to mMCD, which may evolves to others,
such as AD and Parkinson disease.

5 Conclusions and Future Work

In this paper we examined the use of three similar-
ity measures (association strength, semantic similarity,
and semantic relatedness) for detection of switches in
SVF tests, and their effectiveness in detecting clini-
cal conditions. Random forest classifiers trained using
the predicted switches were able to successfully iden-
tify clinical conditions, and in a fine-grained evalua-
tion were particularly effective for distinguishing the
control from clinical group. Our results also outper-
formed the graph-based approach used by Bertola et al.
(2014b) over the same dataset.

Future work includes investigation of the accuracy
of these methods for different clinical conditions, and
languages. However, the results obtained here show the
potential of the method as a tool to help health profes-
sionals in diagnosing clinical groups.
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(a) CI (b) aMCD
WordNet Glove PMI WordNet Glove PMI

ψglobal 0.64 (0.22) 0.66 (0.19) 0.66 (0.19) 0.44 (0.26) 0.56 (0.28) 0.66 (0.28)
ψ1 0.65 (0.21) 0.71 (0.17) 0.68 (0.20) 0.68 (0.25) 0.50 (0.29) 0.65 (0.27)
ψ2 0.66 (0.22) 0.66 (0.19) 0.70 (0.18) 0.50 (0.30) 0.60 (0.27) 0.65 (0.27)
ψ3 0.75 (0.19) 0.68 (0.18) 0.66 (0.20) 0.59 (0.27) 0.58 (0.30) 0.57 (0.29)
ψvot1 0.74 (0.17) 0.71 (0.18) 0.62 (0.20) 0.63 (0.27) 0.62 (0.27) 0.46 (0.28)
ψvot2 0.72 (0.19) 0.55 (0.21) 0.69 (0.20) 0.64 (0.28) 0.45 (0.28) 0.63 (0.26)
ψvot3 0.72 (0.18) 0.62 (0.18) 0.76 (0.14) 0.61 (0.28) 0.40 (0.28) 0.54 (0.29)
GS 0.68 (0.17) 0.58 (0.27)

(c) mMCD (d) AD
WordNet Glove PMI WordNet Glove PMI

ψglobal 0.60 (0.27) 0.55 (0.27) 0.54 (0.30) 0.87 (0.17) 0.78 (0.24) 0.80 (0.23)
ψ1 0.56 (0.30) 0.75 (0.26) 0.66 (0.28) 0.71 (0.25) 0.81 (0.21) 0.76 (0.22)
ψ2 0.65 (0.28) 0.70 (0.25) 0.65 (0.27) 0.81 (0.21) 0.83 (0.19) 0.77 (0.25)
ψ3 0.71 (0.25) 0.51 (0.27) 0.68 (0.28) 0.91 (0.15) 0.85 (0.24) 0.82 (0.20)
ψvot1 0.70 (0.26) 0.60 (0.30) 0.56 (0.28) 0.87 (0.22) 0.86 (0.20) 0.78 (0.23)
ψvot2 0.70 (0.26) 0.46 (0.26) 0.64 (0.24) 0.89 (0.16) 0.77 (0.22) 0.77 (0.21)
ψvot3 0.67 (0.24) 0.59 (0.25) 0.73 (0.21) 0.87 (0.18) 0.84 (0.21) 0.93 (0.13)
GS 0.67 (0.24) 0.82 (0.22)

Table 1: Average scores and standard deviation for random forest classifiers trained to distinguish control from
clinical groups. Switch detection with different sources of similarity (WordNet, GloVe and PMI) as well as gold
standard taxonomy (GS). Control vs. Cognitive Impairment (CI), Control vs. Amnestic Mild Cognitive Deficit
(aMCD), Control vs. Multi-domain Mild Cognitive Deficit (mMCD) and Control vs. Alzheimer’s Disease (AD)

CTRL aMCD mMCD AD
CTRL 0.27 0.21 0.20 0.20
aMCD 0.22 0.19 0.19
mMCD 0.23 0.20
AD 0.24

Table 2: Jaccard index for vocabulary agreement be-
tween groups
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Abstract

Sluice resolution in English is the problem
of finding antecedents of wh-fronted el-
lipses. Previous work has relied on hand-
crafted features over syntax trees that scale
poorly to other languages and domains;
in particular, to dialogue, which is one of
the most interesting applications of sluice
resolution. Syntactic information is ar-
guably important for sluice resolution, but
we show that multi-task learning with par-
tial parsing as auxiliary tasks effectively
closes the gap and buys us an additional
9% error reduction over previous work.
Since we are not directly relying on fea-
tures from partial parsers, our system is
more robust to domain shifts, giving a
26% error reduction on embedded sluices
in dialogue.

1 Introduction

Sluices, also known as wh-fronted ellipses, are
questions where the specification of what is asked
for (beyond the wh-word), is elided (and thus
needs to be retrieved from context). Below we
distinguish two types of sluices: (i) embedded
sluices, and (ii) root sluices. Embedded sluices
occur in both single-authored texts and dialogue,
while root sluices are particularly frequent in dia-
logue.

(1) If [this is not practical], explain why.

(2) A: [Jennifer is looking for you/me].
B: Why?

Example 1 is an embedded sluice. In it, why
is the remnant of the embedded question, which
we understand to mean ’why this is not practical’.

Example 2 is a root sluice. Again, why is the rem-
nant of the question; however, the wh-word is not
embedded in a larger structure. In both cases, we
consider the antecedent of a wh-fronted ellipsis to
be the content in the prior discourse that most intu-
itively provides the elided material, i.e., [this is not
practical] in Example 1, and [Jennifer is looking
for you/me] in Example 2.1

Contributions This paper presents a more ro-
bust, neural model for sluice resolution in En-
glish based on multi-task learning. Our model
significantly outperforms the only previous work
on sluice resolution on available newswire cor-
pora, but also has a number of advantages over this
work. In particular, our model (a) does not require
full syntactic parsing as a pre-processing step, (b)
does not require manual feature engineering, and
(c) is more robust when evaluated on speech cor-
pora, because it is not dependent on full syntactic
parsers (a). The lack of dependence on full syn-
tactic parsers should also make it easier to transfer
our model to new languages. In addition to the im-
plementation of our architecture, which we make
publicly available, we also make a new benchmark
available for sluice resolution in English dialogue.

2 Related Work

Anand and McCloskey (2015) introduced the
problem of sluice resolution and presented the
newswire corpus which we use in our experiments
below.

Anand and Hardt (2016) presented the first, and
to the best of our knowledge only previous, sluice
resolution system. They learn a linear combina-
tion of fifteen features across five feature groups,
through a simple hill climbing procedure. Each

1In this work, we set aside cases where the discourse con-
text does not provide an explicit antecedent.
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feature is a score that represents a linguistic prop-
erty defined over syntax trees. One feature group
is distance, for example, which consists of vari-
ous features encoding tree distances between can-
didate antecedents and the sluice. Candidates are
restricted to be subtrees decorated with sentence
labels. Note that this means that the model will ig-
nore many candidates in domains where the syn-
tactic parser is unable to identify full sentence sub-
trees. The other feature groups include: ii) con-
tainment of the sluice inside the candidate, iii) dis-
course structure encoding the discourse role of the
candidate, iv) content, i.e., the semantic overlap
between the candidate and the sluice, and v) cor-
relate, i.e., semantic properties of the candidate,
which may be predictive of sluice type (tempo-
ral, reason, degree, etc.). The linear model ranks
all candidates and resolves a sluice by choosing
the highest ranking candidate. Anand and Hardt
(2016) use a slightly different metric than we do,
because they rank syntactic subtrees that are po-
tential antecedents, rather than labeling individual
words in sequence. See §4. This paper is, to the
best of our knowledge, the first to consider sluice
resolution in dialogue, but Baird et al. (2018) con-
sider sluice type classification in dialogue data.

Our work builds on recent progress in multi-
task training of neural networks. Multi-task train-
ing of neural networks goes back to Caruana
(1993), but was popularized by Collobert et al.
(2011) and Søgaard and Goldberg (2016). The
most common approach to multi-task training is to
share all hidden parameters between different net-
works trained in parallel on different, but related
datasets. The only requirement to the datasets
is that they are defined in the same input space,
and that there is a shared optimal hypothesis class
for the shared parameters (Baxter, 2000), i.e., that
there is a representation that is optimal for all
the related tasks in question. Obvious extensions
to this approach include sharing only parameters
in specific layers (Søgaard and Goldberg, 2016;
Misra et al., 2016), subspaces (Bousmalis et al.,
2016), or doing only soft sharing (Duong et al.,
2015), i.e., penalizing the `p distance between the
models.

In addition to a single-task recurrent neural net-
work baseline, we use the approach in Søgaard
and Goldberg (2016) where only initial layers are
shared, as our baseline. Our approach to sluice
resolution is largely inspired by the network archi-

tecture in Hashimoto et al. (2016).

3 Our approach

Our approach is an extension of previous work on
multi-task learning, largely inspired by Hashimoto
et al. (2016). We construct a neural architec-
ture based on recurrent neural networks (Hochre-
iter and Schmidhuber, 1997), which differ only
from the architectures discussed above in using
label embeddings that are also passed on to sub-
sequent layers, skip connections from the em-
bedding layer, and regularization. The stack-
ing on label embeddings from auxiliary tasks
makes our approach similar to stacked learning
(Wolpert, 1992) and progressive neural networks
(Rusu et al., 2016).

Unlike Hashimoto et al. (2016), we do not op-
timize for a joint optimum, only for sluice res-
olution performance. The architecture that per-
forms best on development data has two interest-
ing properties: (a) It was also the architecture that
converged the fastest. (b) It induces a linguisti-
cally motivated ordering of the auxiliary tasks in
terms of abstractness. The architecture learns part
of speech (POS) tagging at the initial layer; then
syntactic chunking, then combinatory categorial
grammar (CCG) supertags, before learning sluice
resolution at the outer layer. See Figure 1 for a
diagram of our architecture. We train our archi-
tecture by sampling from all our tasks with equal
probability. The instance loss is computed at the
appropriate level of the network, and backpropa-
gation will only affect the previous levels. All our
neural networks use 50 dimensional pre-trained
GloVe embeddings, trained by (Pennington et al.,
2014) on Wikipedia and Gigaword 5. The word
embeddings are not updated during training. Sim-
ilarly, all our networks were trained for 30 epochs.
They all use ZoneOut (Krueger et al., 2016) reg-
ularization with Z-state 0 and Z-cell 0.2 (except
the single-task baseline, which used Z-cell 0.0),
batches of 10 examples and are optimized using
the Adam optimizer (Kingma and Ba, 2014) with
initial learning rate 0.001 (except the single-task
baseline, which used a learning rate of 0.01). All
LSTMs contain 64 hidden units. All additional
hyper-parameters were tuned manually.

4 Experiments

Corpora We evaluate our models on two
datasets, the newswire corpus introduced in Anand
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Figure 1: Our architecture. Ant is for sluice an-
tecedent tagging.
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Figure 2: Graphical representation of layer Lk in
our architecture. Lk solves task k. Input to Lk:
Word wt embedded into Rn, activation ak−1

t , and
label embeddings emb<k

t . Lk outputs: estimated
label ŷkt , embedding of ŷkt in RH and LSTM acti-
vations akt .

and McCloskey (2015) (ESC) and a novel corpus
of annotated sluices, which is a small subset of the
English part of the OpenSubtitles corpus (Tiede-
mann, 2009). All models are trained on ESC and
evaluated on both datasets.

ESC consist of 3103 annotated examples of em-
bedded sluices in written language. The sluices
were collected in the New York Times section
of English Gigaword. The annotations provide
us with the antecedent, a paraphrasing without
wh-ellipsis, and automatically obtained syntactic
trees. We follow Anand and Hardt (2016) in treat-
ing the first annotator in each example as the gold-
standard.

To measure the sensitivity of our systems to do-
main shifts, we annotate a total of 2000 examples
from the OpenSubtitles corpus. 1000 examples are
root sluices, and 1000 are embedded sluices. Each
example is annotated by two annotators. Inter-
annotator scores were 0.77 for embedded sluices,
and 0.83 for root sluices.

Auxiliary Tasks We use four auxiliary tasks in
our experiments below:

POS tagging is the task of determining the
syntactic category (part of speech) of a word

in context. Our data is from the Wall Street
Journal section of the English Penn Tree-
bank, using the splits in the CONLL 2007
shared task (Nivre et al., 2007).

Chunk-ing is a partial parsing task in which
we need to identify the boundary of the main
phrases in a sentence. Our data is from the
2000 CoNLL shared task (Tjong Kim Sang
and Buchholz, 2000).

Com Sentence compression is the task of
sentence parts that can be dropped without
loosing coherence nor salient information.
We use the dataset also used in (Knight and
Marcu, 2000).

CCG super-tagging is another form of partial
parsing, using a more fine-grained tagset. We
use the CCGBank with standard splits.2

The Søgaard and Goldberg (2016) model uses
sentence compression at the lowest layer, then
chunking, and finally antecedent tagging at the
highest.

We observed a detrimental effect when includ-
ing compression in the same stack as the other
auxiliaries for the model presented here. This ef-
fect vanished when compression is placed in a sep-
arate stack.

Evaluation metrics We evaluate predicted an-
tecedents using (token-level) F1 scores. This met-
ric is motivated by the observation that annotated
spans vary in length, and that annotators often dis-
agree about the exact bracketing; it differs from
the one used in Anand and Hardt (2016), how-
ever, and we stress that our results are therefore
not directly comparable to those reported in their
paper. Moreover, Anand and Hardt (2016) used
cross-validation; we compare systems and base-
lines on a fixed split.

Baselines In addition to comparing to Anand
and Hardt (2016), the only previous work on sluice
resolution, we compare our performance to two
baseline neural network architectures: a single-
task architecture and a multi-task architecture sim-
ilar to Søgaard and Goldberg (2016).

Our first baseline is a single-task, two-layered
long-short-term memory (LSTM) network, with

2http://groups.inf.ed.ac.uk/ccg/
ccgbank.html
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NEWSWIRE DIALOGUE

Model Embedded Embedded Root

Anand and Hardt (2016) 0.67 0.23 0.06

Single-task baseline 0.54 0.41 0.28
Søgaard and Goldberg (2016) 0.64 0.41 0.20

This work 0.70 0.51 0.17

Table 1: F1 scores on embedded sluices from ESC (Newswire) and embedded and root sluices from
OpenSubtitles (Dialogue).

a projection layer and a softmax layer. Our sec-
ond baseline is a cascading, three-layered LSTM,
as described by (Klerke et al., 2016). See §3 for
hyper-parameters.

Replicability We make our corpus
splits, our annotations, our final mod-
els, and our source code available at
https://github.com/OlaRonning/
sluice_antecedent_selection.

5 Results

Scores are listed in Table 1. We first observe that
using multi-task learning closes the gap between
our neural network baselines and previous work,
providing a new state-of-the-art for sluice resolu-
tion. We also note that our model converges on the
validation set after only 5 epochs, as compared to
20-25 epochs for our neural baseline architectures.

Moving from newswire to dialogue, the gap be-
tween our system and previous work widens. This
indicates that our architecture is much more robust
to domain shifts than previous work. Our neural
baselines also do better than previous work when
doing evaluation in a cross-domain setup.

All systems perform significantly worse on out-
of-domain data than on newswire. In particular,
we see all models struggle with root sluices. Here,
interestingly, our single-task baseline actually per-
forms best of all systems, with a token-level F1
score of 0.28.

6 Error analysis

Previous work is sensitive to parse quality
Our most important observation in our error analy-
sis is that the system by Anand and Hardt (2016) is
very sensitive to the quality of the syntactic parse
trees. If we consider only test examples where
the antecedent forms a syntactic constituent, ac-

cording to the error prone parse tree, Anand and
Hardt (2016) achieve a token-level F1 score of
0.81. Antecedents need not, but are generally ex-
pected to be syntactic constituents, so the lower
performance on the rest of the examples (token-
level F1 0.53) is likely due to errors introduced by
the syntactic parser.

Long distance sluice resolution is hard Both
previous work and all our neural systems perform
relatively well on examples where the distance be-
tween sluice and antecedent is short, e.g., one or
two sentences, but none of the systems are good
at resolving sluices with three or more sentences
between sluice and antecedent. These cases are
very rare, about one percent, in ESC, and we leave
long distance sluice resolution as an open research
problem for now.

Dialogue is harder - root sluices, in particular
We also note that some errors in the dialogue cor-
pus derive from examples where the sluices do not
have any antecedents in the dialog. Here, instead,
physical interactions trigger wh-fronted ellipses;
see Example 3, for example:

(3) *A enters room*
B: What do you want ?

In order to resolve such examples, we would
need to use multi-modal input and learn from both
visual and auditory cues.

7 Conclusion

We have presented a neural architecture for En-
glish sluice resolution and shown that it outper-
forms previous work on sluice resolution. Our
approach also has several advantages over previ-
ous work; most importantly, not relying on hand-
crafted features over full syntactic trees. Instead
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we use multi-task learning to induce syntactic in-
formation in a way that does not require access
to syntactic information at test time. Not con-
ditioning on features defined over brittle syntax
trees also makes our approach less vulnerable to
domain shifts. In order to show this, we anno-
tate a new benchmark dataset for sluice resolution
in English spoken language. On spoken language
data, the gap between our architecture and previ-
ous work widens significantly. That said, sluice
resolution in spoken language is much harder than
sluice resolution in newswire for models trained
on newswire; and all the models in our experi-
ments found it particularly hard to resolve root
sluices as opposed to embedded ones. Our er-
ror analysis also indicates that long distance sluice
resolution remains an open problem.

Acknowledgments

We would like to thank Anissa Hamza for her as-
sistance with annotating, and Austin Baird for help
with the AntRank system. Thanks also to Pranav
Anand and Jim McCloskey for help with the sluic-
ing newswire data. Anders Søgaard was supported
by the European Research Council and the Innova-
tion Fund Denmark. Daniel Hardt was supported
by the U.S. National Science Foundation, grant
1451819.

References
Pranav Anand and Daniel Hardt. 2016. Antecedent

selection for sluicing: Structure and content. In
EMNLP. pages 1234–1243.

Pranav Anand and Jim McCloskey. 2015. An-
notating the implicit content of sluices. In
Proceedings of The 9th Linguistic Annotation
Workshop. Association for Computational Linguis-
tics, Denver, Colorado, USA, pages 178–187.
http://www.aclweb.org/anthology/W15-1621.

Austin Baird, Anissa Hamza, and Daniel Hardt. 2018.
Classifying Sluice Occurrences in Dialogue. In
LREC.

Jonathan Baxter. 2000. A model of inductive bias
learning. Journal of Artificial Intelligence Research
12:149–198.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain Separation Networks. In Proceed-
ings of NIPS.

Rich Caruana. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

There are some important problems in the
evaluation of word embeddings using standard
word analogy tests. In particular, in virtue
of the assumptions made by systems generat-
ing the embeddings, these remain tests over
randomness. We show that even supposing
there were such word analogy regularities that
should be detected in the word embeddings ob-
tained via unsupervised means, standard word
analogy test implementation practices provide
distorted or contrived results. We raise con-
cerns regarding the use of Principal Compo-
nent Analysis to 2 or 3 dimensions as a pro-
vision of visual evidence for the existence of
word analogy relations in embeddings. Fi-
nally, we propose some solutions to these
problems.

1 Introduction

Continuous dense representations of words, or
word embeddings, are d-dimensional vectors ob-
tained from raw unannotated text. As weight vec-
tors, they provide, given some model, predictions
of either (1) some context of a word, or (2) a
word given its context. The word embeddings
are meant to reflect distributional structure as a
proxy to semantics and syntax à la Harris (Har-
ris, 1954). A natural and desirable effect of such
context driven learning of word embeddings is dis-
tributional similarity, whereby words that are sim-
ilar to each other will tend to group together in
the target hyperspace. Thus Frenchman, Spaniard,
and Dane should group together, as should loves,
likes, and admires, or French, Spanish and Danish,
as respectively “a set of words for humans from
specific countries”, “a set of present tense transi-
tive verbs denoting fondness”, and “a set of lan-
guages”.

By employing a transfer learning approach with
the use of word embeddings in the place of one-hot

word feature vectors, word embeddings obtained
in this way have been shown to both simplify and
improve the performance of systems across a wide
range of NLP tasks. Moreover, word embeddings
trained this way and used as initial word represen-
tations are now commonly understood to improve
the learning process in neural network based sys-
tems across the same array of NLP tasks.

There has been some progress in understand-
ing why these representations work so well and
a number of simple tasks developed to evaluate
them independently such as (1) word similarity
tests, (2) synonym selection tests, and (3) word
analogy tests, in addition to a variety of possible
downstream system tests. That the distributional
representations of words should reflect semantic
similarity (i.e., as tested by (1) and (2)) is inher-
ent in the definition of the word embedding learn-
ing task. However that similar relations between
words should be described by word embeddings
obtained this way is not straightforward. There
are also standard engineering practices in analogy
evaluations that would prevent accurate analogy
testing even if it were applicable.

In this paper, we hope to survey some main
problems concerning the word analogy test as it
is currently being calculated, in three separate di-
rections:

1. Theoretical assumption misalignment: A
purely distributional hypothesis misaligns
with testing for analogy relations.

2. Poor conventional engineering choices:

(a) Word embeddings are normalised and
therefore distorted before testing.

(b) Premise vectors are excluded before
prediction.

3. Problematic visual evidence: Visualisations
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based on the output of Principal Component
Analysis (PCA) are misleading.

2 The word analogy tests and associated
benchmarking data

The word analogy assumption, introduced by
Mikolov et al. (2013b), elaborated with more pre-
cision by Levy and Goldberg (2014) and adapted
partially from Jurgens et al. (2012) goes as fol-
lows. Suppose we have representations for two
pairs of words

(a1,b1), (a2,b2) (1)

having an analogous syntactic or semantic rela-
tion: a1 is to b1 what a2 is to b2. By the
word analogy assumption, this analogous relation
should be represented in terms of some optimal
vector r:

r ≈ a1 − b1 ≈ a2 − b2 (2)

The typical example used is

r ≈ king − man ≈ queen − woman

and r approximately represents something like “is
a royal version of”. This can be rewritten as

king − man + woman ≈ queen. (3)

From this latter equation, the first standard word
analogy test arises.

The prediction test and its dataset. In the pre-
diction test, for the pairs of words in (1), evalua-
tion proceeds by using the word analogy assump-
tion

a1 − b1 + b2 ≈ a2 (4)

by means of showing that the left side of this equa-
tion (consisting of premise vectors) predicts–that
is, it is closer to–the word represented by a2 (the
gold vector) than to any other word in the vocab-
ulary, according to some distance metric, which
is generally accepted to be cosine similarity. The
micro-averaged accuracy is then reported.

The test data for the prediction test consists
of the MSR and GOOGLE datasets. The MSR
dataset has 8000 analogy questions of morpho-
syntactic nature and concerning adjectives, nouns
and verbs.1 The GOOGLE dataset consists of
19,544 analogy questions, across 14 relation
types, half of which are semantic relations and half
morpho-syntactic.

1http://research.microsoft.com/en-us/
um/people/gzweig/Pubs/myz_naacl13_test_
set.tgz

The ranking test and its dataset. In the rank-
ing test, a list of word pairs is given that hold the
same relation, but to differing degrees. The task is
to rank these pairs by order of strength of the re-
lation. Using the prediction test, this task requires
the system to calculate the prediction for each pair
of words (a,b) with respect the rest of the pairs on
the list, and average these scores for (a,b). Pairs
are ranked according to this average. The larger
the average, the more typical a pair is predicted to
be of the relation in question. Rankings are com-
pared with a gold ranking by computing the Spear-
man’s correlation rank coefficient.

The SEMEVAL 2012 Task 2 dataset is the stan-
dard word analogy ranking test test. It contains
lists of pairs for 79 semantic relations.2

Implementation considerations. In our test-
ing, out-of-vocabulary words were given the the
component-wise average word embedding. It is
important to note that in all test suites (also for
those developed within embedding learning sys-
tems), we have found two conventional engineer-
ing choices: (1) normalisation of all word embed-
dings before testing, and (2) exclusion of the pos-
sibility to predict any premise vectors. We discuss
these and other issues in the following section.

3 Problems with word analogy tests and
empirical results

We identify three types of causes for concern when
applying analogy testing, having to do with (1)
a misalignment of assumptions in generating and
testing word embeddings, (2) conventional engi-
neering choices, and (3) problematic visual evi-
dence derived from PCA for data projection to two
dimensions.

For reasons of reproducibility, we downloaded
and directly used all dimensionalities of GloVe
pretrained word embeddings generated over a
2014 Wikpedia dump and the Gigaword corpus,
combined for a 6 billion token corpus (Penning-
ton et al., 2014).3. In the tests, embeddings for
unknown words are replaced by the mean vectors.
All tests are made using a version of a freely avail-
able embedding benchmarking software that we
have extended for the purposes of this paper.4

2https://sites.google.com/site/
semeval2012task2/

3Available at http://nlp.stanford.edu/
projects/glove/

4https://github.com/natschluter/
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3.1 Misalignment of assumptions

To date, methods for generating monolingual word
embeddings purely from raw text, which make no
use of hand-crafted or other lexical resources, nor
any system of enrichment of the text, like parsers,
POS-taggers or otherwise, have been based only
on the distributional hypothesis: that words can
be described sufficiently in terms of their distri-
bution in language. Systems generating word em-
beddings in this manner use their generated repre-
sentations to predict word contexts, or vice versa.
So it is plausible that words that share much con-
textual information, and therefore much distribu-
tional information, will share similar representa-
tions and naturally group together in their hyper-
space.

Supposing that such a word embedding gen-
eration system groups together words for hu-
mans from specific countries, like Frenchman,
Spaniard, and Dane. We assume the same for the
words French, Spanish, and Danish. While the
system has probably successfully represented the
distributional character of the words by grouping
each set together, there is no reason why within
each individual group, Danish and Dane’s rela-
tive positions should be similar to that of both
pairs (Spanish, Spain) and (French, Frenchman).
The assumption of distributional similarity does
not align with the word analogy assumption.

In the extreme, we could theoretically have the
pair (Danish, Dane)’s relative position most simi-
lar to that of the shuffled pairs (French, Spaniard)
and (Spanish, Frenchman) and maintain identical
word similarity scores on average. Indeed, one
could shuffle the vector representations of all the
words considered to be synonymous from the sim-
ilarity benchmarking dataset; this would maintain
precisely the same similarity score, using a cosine
similarity metric.5 Let π : V → V be a permuta-
tion of word vectors such that similar word remain
close in the space. In particular, let’s suppose that
π shuffles the vectors of all nationalities, like Dane
and Frenchman, but maintains the same language
vectors like Danish and French. The average of
similarities remains the same, as all terms appear-

word-analogy-caveat extended from
https://github.com/kudkudak/
word-embeddings-benchmarks.

5This also works for a euclidean distance similarity met-
ric.

ing in the sum in (5) also appear in (6):

1

n(n − 1)/2

∑

i<j
i,j∈[n]

cos(ai,aj) (5)

=
1

n(n − 1)/2

∑

i<j
i,j∈[n]

cos(π(ai), π(aj)) (6)

However, the word analogy assumption is now
most certainly broken: suppose that π permutes
only two vectors, a2 and a3 and leaves all other
vectors as is:

a1 − b1 + b2 = π(a2) = a3 ̸= a2.

3.2 Conventional engineering choices

There are two conventional practices in evaluat-
ing word embeddings that we aim to show are
problematic: normalisation and the exclusion of
premise vectors in prediction.

Distortion by normalisation. It is common
practice to normalise word embeddings before
they are used, and in the case of word analogies,
before they are tested. Unfortunately, this prac-
tice distorts the original spread of the word em-
beddings, which greatly effects testing for word
analogies. In Table 1 we list the mean and vari-
ance of the norms of GloVe word vectors. We no-
tice that on average the norm of the vectors is far
from length 1, and the variance is so small that a
large majority of vectors have length larger than 1.
The word embedding learner was originally free
to and would generally make use of a much larger
portion of the hyperspace to discriminate based on
word distribution.

d mean variance

50 4.475 0.744
100 3.977 0.847
300 4.966 1.471

Table 1: Spread of norms of GloVe word vectors across
dimensions d.

We observe in Table 2 that scores change (and in
fact drop) significantly when vectors are not nor-
malised, for the GOOGLE and MSR tests. This
suggests additionally that much of the success in
analogy testing was misleading, resulting gener-
ally from collapsing the vocabulary of vectors onto
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the unit hypersphere. Any possible use of mean-
ingful collinearity by the word-embedding model
is lost after normalisation.

Exclusion of premise vectors from predictions.
Another conventional practice in evaluating word
embeddings by word analogy is the exclusion of
premise vectors from the possibility of being pre-
dicted. As we can see in the results in Table 2,
between 15-60% of the time, the system predicts
a premise vector on the GOOGLE analogy data,
for example. Upon closer analysis, we find that
99% of these latter prediction mis-hits are with the
premise in the gold vector’s own word pair; this
means that words a1,b1 in word pairs are often
so close together that they cancel each other out:
a1 − b1 ≈ 0. If the data truly scored high on the
word analogy test, it would not need to exclude
premise vectors from the possibility of prediction.

3.3 PCA to two dimensions from dimension d
can be misleading

Results of the word analogy test are often accom-
panied by a visualisation of projected word vec-
tors to the two dimensional plane using Princi-
pal Component Analysis (PCA) ((Mikolov et al.,
2013a; Sun et al., 2015) for example). Though
these are generally not claimed to be part of the
evaluation, the visualisations are included to con-
vince the reader of the quality of the word embed-
dings with respect to word analogies–the line con-
necting a1 and b1 being approximately parallel to
the line through a2 and b2 whenever word anal-
ogy recovery is optimal (as in Equation (2)).

PCA is an unsupervised approach for finding
the “core” features from the data, supposing a nor-
mal distribution feature-wise. For two dimensions,
the objective is to find the two directions e1, e2

along which the data has the highest variability,
and model the instances xk, k ∈ [N ] by the respec-
tive distances ak1, ak2 between the point xk and
lines through the mean vector, m = 1

n

∑n
k=1 xk

in the respective directions e1 and e2.
There are two main problems with this sort of

evidence. Firstly, even if word analogies as de-
scribed by Equation (4) existed in the data, it
would only be a matter of chance that apply-
ing PCA to the entire dataset would recover even
slightly these parallel (analogous) word relations
visually. That is, there is no reason to believe that
the line through the words in a pair is not almost
perpendicular to the surface they are mapped to.

Secondly, if one is tempted to apply PCA only
to the set of vectors corresponding to the two word
groups in question, it is rather straightforward to
produce the desired visualisation, so long as the
two groups are clustered together. PCA should de-
rive a surface that cuts through these two groups.
So unless there is absolutely no clustering of sim-
ilarly behaving words, PCA will give the evidence
of word analogies one desires.

d GOOGLE MSR SEMEVAL

50 46.24 35.56 13.99
H 30.43 20.36 13.99
D 20.58 10.01 14.76

H,D 17.96 6.9 14.76

100 63.19 55.09 16.53
H 33.47 24.87 16.53
D 49.92 35.58 17.12

H,D 34.44 18.06 17.12

300 71.85 61.64 17.0
H 19.42 11.85 17.0
D 65.32 51.58 16.91

H,D 25.94 12.84 16.91

Table 2: Results of the word analogy tests, also with-
out distortion through normalisation (D), without re-
moving premise vectors from the set of possible gold
vectors (H), and without either (H,D).

4 Concluding remarks

We have shown that there are serious problems
with the appropriateness and informativeness of
word analogy tests in current distributional word
embedding evaluation. The first problem that
should be addressed is the appropriateness. If
word analogies are considered important enough,
then word embedding generation systems should
start to reflect this assumption. Until then, word
analogies, as they are defined here, happen by
rather chance. Once this assumption is built into
systems, we still should put into question various
details of the tests. Is a one-hit accuracy suffi-
ciently informing on success in word analogy, or
do we need a softer measure from for example the
ranking world? These questions remain open for
future work.
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Abstract

This paper presents the first AMR parser built
on the Chinese AMR bank. By applying a
transition-based AMR parsing framework to
Chinese, we first investigate how well the tran-
sitions first designed for English AMR parsing
generalize to Chinese and provide a compar-
ative analysis between the transitions for En-
glish and Chinese. We then perform a detailed
error analysis to identify the major challenges
in Chinese AMR parsing that we hope will in-
form future research in this area.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
where the meaning of a sentence is encoded as a
rooted, directed and acyclic graph. AMR parsing
has received a significant amount of attention in
the NLP research community. Since the release of
the AMR bank a number of AMR parsers have
been developed in recent years (Flanigan et al.,
2014; Wang et al., 2015b; Artzi et al., 2015; Pust
et al., 2015; Peng et al., 2015; Zhou et al., 2016;
Goodman et al., 2016). The initial benefit of AMR
parsing has also been demonstrated in various
downstream applications such as Information Ex-
traction (Pan et al., 2015; Huang et al., 2016), Ma-
chine Comprehension (Sachan and Xing, 2016),
and Natural Language Generation (Flanigan et al.,
2016; Butler, 2016).

In this paper, we present the first AMR parser
built using the Chinese AMR Bank (Li et al.,
2016). We adopt the transition-based parsing
framework first proposed for English (Wang et al.,
2015b, 2016), where AMR parsing is modeled as
a dependency tree to AMR graph transformation
using a set of linguistically motivated actions. We
briefly describe the Chinese AMR Bank in Sec-
tion 2, present the transition-based Chinese AMR

parsing model in Section 3, report and analyze ex-
perimental results in Section 4, and conclude our
paper in Section 5.

2 The Chinese AMR Bank

In our experiment, we use a pre-release version of
the Chinese AMR Bank (Li et al., 2016)1 consist-
ing of 10,149 sentences extracted from the Chi-
nese Treebank (CTB) 8.0 (Xue et al., 2005) 2,
which mainly consists of Chinese texts of web
logs and discussion forums. The average sentence
length is 22.43 words.

Similar to English, the Chinese AMRs are
also represented as rooted, directed and acyclic
graphs that share the abstract concepts and re-
lations used in the English AMR Bank. The
sense-disambiguated predicates are drawn from
the frame files developed for the Chinese Prop-
bank(Xue and Palmer, 2009), just as the sense-
disambiguated predicates in the AMR Bank are
drawn from the Propbank (Palmer et al., 2005).
About 47% of the 10,149 sentences have re-
entrancies, meaning that they have a graph struc-
ture that cannot be represented with a tree repre-
sentation.

3 Transition-based AMR Parsing

In a transition-based AMR parsing framework an
input sentence is first parsed into a dependency
tree and then transformed into an AMR graph via
a series of transitions formulated as “actions”. The
full set of actions are summarized in Table 1, and
we refer the reader to (Wang et al., 2015b,a) for
details regarding the training procedure and de-
coding algorithm. Note that NEXT-EDGE-lr and
NEXT-NODE-lc are action to label the current node

1http://www.cs.brandeis.edu/˜clp/camr/
camr.html.

2Available at https://catalog.ldc.upenn.
edu/LDC2013T21.
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or current edge, where the candidate label is de-
fined as a parameter to the action. The INFER-
lc (ifr) is devised to predict abstract concepts that
are not aligned to any specific word in a sentence.
The rest of the actions are responsible for trans-
forming the structure of the partial graph.

4 Experiments

In this section, we present experiments designed
to probe the behavior of our Chinese AMR parser,
and where appropriate, compare it to its English
counterpart. We also devise several ablation tests
to further investigate the errors produced by our
Chinese AMR parser to gain insight that can be
used to guide future research.

4.1 Experiment Settings

We use the 10,149 sentences from the Chinese
AMR Bank and split the data according to their
original CTB8.0 document IDs, where articles
5061-5558 are used as the training set, arti-
cles 5000-5030 are used as the development set
and articles 5031-5060 are used as the test set.
The train/development/test ratio in this dataset
is 7608/1264/1277. As the data are drawn from
the Chinese Treebank where words are manu-
ally segmented, we will simply use the gold seg-
mentation in our experiments. We then process
the whole Chinese dataset using the Stanford
CoreNLP (Manning et al., 2014) toolkit to get
the POS and Named Entity tags. To get the de-
pendency parse for the Chinese data, we use the
transition-based constituent parser in (Wang and
Xue, 2014) to first parse the Chinese sentences
into constituent trees, which are then transformed
into dependency trees using the converter in the
Stanford CoreNLP toolkit. Note that this Chinese
constituent parser also uses the Chinese Treebank
8.0 to train its model. To avoid training on the
parser on AMR test set, we train the constituent
parser using a 10-fold cross-validation with each
fold parsed using a model trained on the other 9
folds. In order to compare results between Chi-
nese and English, we also train an English AMR
parsing model on the LDC2015E86 dataset used
in SemEval 2016 Task 8 with the standard split
16833/1368/1371 and the English AMR parser,
CAMR, is utilized to train the English model. All
the AMR parsing results are evaluated by the

Smatch toolkit (Cai and Knight, 2013)3.

4.2 Action Distribution

Before we train the parser, we first perform a quan-
titative comparison of the actions that are invoked
in English and Chinese AMR parsing. We run
the oracle function separately on the training data
of both languages and record the distribution of
the actions invoked, as shown in Figure 1. Note
that without any modification of the action set de-
signed for English, the “pseudo-gold” graphs gen-
erated by the oracle function have reached F1-
score of 0.99 when evaluated against gold Chi-
nese AMR graphs, and this indicates that the ac-
tion set is readily generalizable to Chinese. The
histograms in Figure 1 shows the distribution of
action types for both English and Chinese. We
leave out the NEXT-EDGE-lr and NEXT-NODE-
lc actions in the histogram as they do not trigger
structural transformations like other actions, and
thus are not our point of interest.

In Figure 1 we can see that there is a large dif-
ference in action distribution between Chinese and
English. First of all, there are a lot fewer DELETE-
NODE actions applied in the dependency-to-AMR
transformation process for Chinese, which indi-
cates that in Chinese data there is a smaller per-
centage of “stop words” that do not encode seman-
tic information. Also, in the Chinese data, more
INFER-lc actions are invoked than in English, im-
plying that Chinese AMRs use more abstract con-
cepts that don’t align to any word token.
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Figure 1: Action distribution on English and Chinese

To further investigate the different linguistic
patterns associated with each action in the two lan-
guages, for each action type t, we randomly sam-
ple 100 sentences in which action t is invoked
for both English and Chinese. We then conduct

3http://alt.qcri.org/semeval2016/
task8/data/uploads/smatch-v2.0.2.tar.gz
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Action Description
NEXT-EDGE-lr (ned) Assign the current edge with edge label lr and go to next edge.

SWAP-lr (sw) Swap the current edge, make the current dependent as the new head, and
assign edge label lr to the swapped edge.

REATTACHk-lr (reat) Reattach current dependent to node k and assign label lr to new edge.
REPLACE-HEAD (rph) Replace current head node with current dependent node.

REENTRANCEk-lr (reen) Add another head node k to current dependent and assign label lr to
edge between k and current dependent.

MERGE (mrg) Merge two nodes connected by the edge into one node.
NEXT-NODE-lc (nnd) Assign the current node with concept label lc and go to next node.
DELETE-NODE (dnd) Delete the current node and all edges associated with current node.

INFER-lc (ifr) Insert concept with label lc between current node and its parent.

Table 1: Action set in Chinese AMR Parsing, where k,lr,lc are parameters of the action.

a detailed analysis of the sampled data. We find
that MERGE is mostly responsible for combining
spans of words to form a named entity in En-
glish parsing. However, in Chinese AMR pars-
ing, in addition to forming named entity concepts,
MERGE also handles a large portion of split verb
constructions. A “split verb” is a linguistic phe-
nomenon in Chinese in which the characters in
a multi-character verb are split into two discon-
tinuous parts by other lexical items. For exam-
ple, in (1), the sentence has a split verb “帮 /help
· · · 忙/business” that are merged by the MERGE

action to form the AMR concept “帮忙-01”, as
shown in Figure 2.

In the cases of SWAP and REPLACE-HEAD, we
notice that the linguistic patterns associated with
the two actions are mostly consistent across the
two languages. For example, as we already men-
tioned, the SWAP action is used to handle the struc-
tural divergence between the dependency tree and
AMR graph of coordination constructions. This
holds for both English and Chinese. Similarly, the
REPLACE-HEAD action is designed to resolve the
structural divergence between the dependency tree
and AMR graph of propositional phrases. Based
on our analysis of sampled data, the REPLACE-
HEAD action resolves the same dependency-AMR
divergence in Chinese AMR parsing.

(1) 他1
帮

2
了

3
我

4
很

5
大

6
的

7
忙

8
。

He helped PAST me very big DE business
“He helped me a lot.”

Being able to identify the linguistic environ-
ment for each action helps us understand what
the parser actually does when actions are applied.
More importantly, making the relation between the

Figure 2: AMR for Example (1)

linguistic structure and the parser actions trans-
parent is crucial to our ability to devise effective
features for the parsing model which directly im-
pacts the performance of the parser. For exam-
ple, knowing that the MERGE action is responsi-
ble for producing concepts from split verb con-
structions helps us understand the need to design
character-level features in addition to features tar-
geting named entities.

4.3 Main results for Chinese AMR Parsing

Using the configuration in Section 4.1, we train
our Chinese AMR parser with 5 iterations and re-
port results on both the development and test set.
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Figure 3: Parsing performance on the development and
test set

Figure 3 presents the parsing performance on
the development and test set in terms of the
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Smatch score. Compared with the state of the art
in English AMR parsing, which is in the high 60
percentage points (May, 2016), this initial pars-
ing performance here is very strong, considering
the model is trained on a smaller training set. The
Chinese AMR parsing model also does not ben-
efit from the more extensive feature engineering
that has been done for English AMR parsing. For
example, the English AMR parser, CAMR, uses se-
mantic roles and coreference features that are not
available to the Chinese AMR parser. The other
important factor is that most of the Chinese lin-
guistic analyzers (dependency parsers, named en-
tity taggers, etc.) have a lower accuracy than their
English counterparts, and when used as preproces-
sors for the AMR parser, could further disadvan-
tage the Chinese AMR parsing model.

4.4 Fine-grained Error Analysis
So far, all of our experiments are evaluated using
the Smatch score, where only precision, recall and
F-score are reported based on the overall perfor-
mance of the parser. To gain more insights, we fur-
ther break down the Smatch score and report the
performance for each component using the evalu-
ation tool from Damonte et al. (2017). The evalu-
ation tool examines different aspects of the AMR
parsing result through different ablation tests that
we summarize as follows. The detailed description
of the ablation test can be found in Damonte et al.
(2017).

• Unlabeled. Smatch score obtained by ignor-
ing the edge labels (relation).

• No WSD. Smatch score without the word
sense disambiguation.

• NP (Noun Phrase)-only. Only evaluating the
noun phrases.

• Reentrancy. Only evaluating reentrancy
edges.

• Concepts. Evaluating the node labels (con-
cept).

• Named Ent. Named entity evaluation.

• Negation. Evaluation on negation detection.

• SRL. Semantic Role Labeling, which only
evaluates triples in AMR that have relations
starting with :ARG.

Note that we simply ignore the wikification
evaluation as Chinese AMRs do not have wikifi-
cation annotation at the current stage.
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Figure 4: Fine-grained AMR parsing evaluation on dev

Figure 4 shows the performance breakdown on
the Chinese and English development sets, where
we can see that the overall performance gap be-
tween English and Chinese is around 0.11 Smatch
score and there is a similar gap for Unlabeled, No
WSD and SRL evaluations. However, the largest
performance comes from Named Ent., where the
F-score for Chinese is 0.55 which is 0.25 lower
than English. This indicates that named entity is
one of the bottlenecks in Chinese AMR parsing.
This indicates that improving named entity recog-
nition, either as a preprocessing step or as an inte-
gral part of the parsing model, is crucial to Chinese
AMR parsing.

5 Conclusion

We present the first Chinese AMR parser trained
on the Chinese AMR Bank. We show that a
transition-based AMR parsing framework first
proposed for English is general enough to handle
the linguistic phenomena in Chinese and has pro-
duced a strong baseline that future research can
build on. In addition, we perform a detailed com-
parative analysis of the transition distributions for
English and Chinese as well as errors in Chinese
AMR parsing that we hope will inform future Chi-
nese AMR parsing research.
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Abstract
We propose a novel two-layered attention net-
work based on Bidirectional Long Short-Term
Memory for sentiment analysis. The novel
two-layered attention network takes advantage
of the external knowledge bases to improve the
sentiment prediction. It uses the Knowledge
Graph Embedding generated using the Word-
Net. We build our model by combining the
two-layered attention network with the super-
vised model based on Support Vector Regres-
sion using a Multilayer Perceptron network for
sentiment analysis. We evaluate our model on
the benchmark dataset of SemEval 2017 Task
5. Experimental results show that the proposed
model surpasses the top system of SemEval
2017 Task 5. The model performs significantly
better by improving the state-of-the-art system
at SemEval 2017 Task 5 by 1.7 and 3.7 points
for sub-tracks 1 and 2 respectively.

1 Introduction

With the rise of microblogging websites, people
have access and option to reach to the large crowd
using as few words as possible. Microblog and
news headlines are one of the common ways to
dispense information online. The dynamic nature
of these texts can be effectively used in the finan-
cial domain to track and predict the stock prices
(Goonatilake and Herath, 2007). These can be
used by an individual or an organization to make
an informed prediction related to any company or
stock (Si et al., 2013).

This gives rise to an interesting problem of sen-
timent analysis in financial domain. A study in-
dicates that sentiment analysis of public mood de-
rived from Twitter feeds can be used to eventu-
ally forecast movements of individual stock prices
(Smailović et al., 2014). An efficient system for
sentiment analysis is a core component of a com-
pany involved in financial stock market price pre-
diction.

Social media texts are prone to word shortening,
exaggeration, lack of grammar and appropriate
punctuations. Moreover, the word limit constraint
forces a user to limit their content and squeeze in
their opinion about companies. These inconsisten-
cies make it challenging to solve any natural lan-
guage processing tasks including sentiment analy-
sis (Khanarian and Alwarez-Melis, 2012).

Bag-of-words and named entities were used by
Schumaker and Chen (2009) for predicting stock
market. For predicting the explicit and implicit
sentiment in the financial text, de Kauter et al.
(2015) used a fine-grained sentiment annotation
scheme. Kumar et al. (2017) used a classical su-
pervised approach based on Support Vector Re-
gression for sentiment analysis in financial do-
main. Oliveira et al. (2013) relied on multiple
regression models. Akhtar et al. (2017) used
an ensemble of four different systems for pre-
dicting the sentiment. It used a combination of
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), Gated Recurrent Unit
(GRU) (Cho et al., 2014), Convolutional Neural
Network (CNN) (Kim, 2014) and Support Vector
Regression (SVR) (Smola and Schölkopf, 2004).
Yang et al. (2016) used a hierarchical attention net-
work to build the document representation incre-
mentally for document classification.

Our model focuses on interpretability and us-
age of knowledge bases. Knowledge bases have
been recognized important for natural language
understanding tasks (Minsky, 1986). Our main
contribution is a two-layered attention network
which utilizes background knowledge bases to
build good word level representation at the pri-
mary level. The secondary attention mechanism
works on top of the primary layer to build mean-
ingful sentence representations. This provides a
good intuitive working insight of the attention net-
work.
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2 Proposed Methodology

We propose a two-layered attention network
which leverages external knowledge for sentiment
analysis. It consists of a bidirectional Long Short-
Term Memory (BiLSTM) (Graves et al., 2005)
based word encoder, word level attention mech-
anism for capturing the background knowledge
and a sentence level attention mechanism aimed
at grasping the context and the important words.
The output of the two-layered attention network
is then ensembled with the output of the feature
based SVR using the Multilayer perceptron based
approach described in Akhtar et al. (2017). The
overall ensembled system is shown in Figure 2.
Each of the components is explained in the fol-
lowing subsections and an overview of the two-
layered attention network is depicted in Figure 1.

Figure 1: Two-layered attention network

2.1 Two Layered Attention Model

2.1.1 BiLSTM based word encoder
A Long-Short Term Memory (LSTM) is a special
kind of Recurrent Neural Network. It handles the
long-term dependencies where the current output
is dependent on many prior inputs. BiLSTM, in
essence, is a combination of two different LSTM
- one working in forward and the other working in
the backward direction. The contextual informa-
tion about both past and future helps in determin-
ing the current output.

The two hidden states
−→
ht and

←−
ht for forward and

backward LSTM are the information about past
and future respectively at any time step t. Their
concatenation ht = [

−→
ht ,
←−
ht] provides complete in-

formation. Each word of the sentence is fed to the
network in form of word embeddings which are
encoded using the BiLSTM.

2.1.2 Word Level Attention
External knowledge in form of Knowledge Graph
Embedding (Yang et al., 2015) or top-k simi-
lar words are captured by using the word level
attention mechanism. This serves the purpose
of primary attention which leverages the external
knowledge to get the best representation for each
word. At each time step we get V(xt) relevant
terms of each input xt with vi being the embed-
ding for each term. (Relevant terms and embed-
dings are described in next section). The primary
attention mechanism assigns an attention coeffi-
cient to each of relevant term having index i ∈
V(xt):

αti ∝ hTt Wvvi (1)

where Wv is a parameter matrix to be learned.

mt =
∑

i∈V (xt)

αtivi (2)

ĥt = mt + ht (3)

The knowledge aware vector (mt) is calculated
as Equation 2, which is concatenated with the hid-
den state vector to get the final vector representa-
tion for each word.

2.1.3 Sentence Level Attention
The secondary attention mechanism captures im-
portant words in a sentence with the help of con-
text vectors. Each final vector representing the
words is assigned a weight indicating its relative
importance with respect to other words. The at-
tention coefficient αt for each final vector repre-
sentation is calculated as:

αt ∝ ĥTt Wsus (4)

H =
∑

t

αtĥt (5)

where Ws is a parameter matrix and us is the con-
text vector to be learned. H is finally fed to a one
layer feed forward neural network.
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2.2 Relevant Terms and Embeddings
External knowledge can provide explicit infor-
mation for the model which the training data
lacks. This helps the model to make better pre-
dictions. We relied on Knowledge Graph Embed-
dings based on WordNet and Distributional The-
saurus to get relevant terms and their correspond-
ing embeddings for each word in the text.

2.2.1 Knowledge Graph Embedding
WordNet1 is a lexical database which contains
triplets in the form of (subject, relation, object).
Both subject and object are synsets in WordNet.
Each word in the text serves as the subject of the
triplet. The relevant terms for the current word
are the triplets having the current word as the sub-
ject. We then employ Knowledge Graph Embed-
dings to learn the representation of the triplet. A
100-dimensional dense vector representation for
each subject, relation and object were learned us-
ing the DistMult approach (Yang et al., 2015) and
concatenated. These served as the relevant em-
beddings. An example of triplet in WordNet is
(bronze age, part of, prehistory).

2.2.2 Distributional Thesaurus
Distributional Thesaurus (DT) (Biemann and
Riedl, 2013) is an automatically computed word
list which ranks words according to their seman-
tic similarity. We use a pre-trained DT to expand
a current word. For each current word, top-4 tar-
get words are found which are the relevant terms.
The relevant embeddings are obtained by using a
300-dimensional pre-trained Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014)
model. An example of the DT expansion of the
word ’touchpad’ is mouse, trackball, joystick and
trackpad.

2.3 Feature Based Model - SVR
The following hand-crafted features are extracted
and used to train a Support Vector Regression
(SVR).
- Tf-Idf: Term frequency-inverse document fre-
quency (Tf-Idf) reflects the importance of each
word in a document. We use Tf-Idf score as a fea-
ture value for each word.
- Lexicon Features: Sentiment lexicons are an
important resource for sentiment analysis. We em-
ploy the following lexicons: Bing Liu opinion lex-
icon (Ding et al., 2008) and MPQA subjectivity

1https://wordnet.princeton.edu

lexicon (Wilson et al., 2005), SentiWordNet (Bac-
cianella et al., 2010) and Vader sentiment (Gilbert,
2014). From the above lexicons we extracted the
agreement score (Rao and Srivastava, 2012) and
the count of the number of occurrences of all pos-
itive and negative words in the text.
- Word embedding: We use the 300-dimensional
pre-trained Word2Vec and GloVe embedding. The
sentence embedding was obtained by concatenat-
ing the embedding for all words in the sentence.

Figure 2: Multilayer perceptron based ensemble

3 Experiments

3.1 Dataset

We evaluate our proposed approach for sentiment
analysis on the benchmark datasets of SemEval-
2017 shared task 5. The task ’Fine-Grained Senti-
ment Analysis on Financial Microblogs and News’
(Keith Cortis and Davis, 2017) had two sub-tracks.
Track 1 - ’Microblog Messages’ had 1,700 and
800 train and test instances respectively. Track 2
- ’News Statements & Headlines’ had 1,142 and
491 train and test instances respectively. The task
was to predict a regression score in between -1 and
1 indicating the sentiment with -1 being negative
and +1 being positive.

3.2 Implementation Details

We implement our model using Tensorflow and
Scikit-learn on a single GPU. We use a single layer
BiLSTM with the two-layered attention mecha-
nism followed by a one layer feed forward neural
network. The number of units in each LSTM cell
of the BiLSTM was 150. The batch size was 64
and the dropout was 0.3 (Srivastava et al., 2014)
with the Adam (Kingma and Ba, 2014) optimizer.
The length of context vector in the secondary at-
tention network was 300. For each experiment,
we report the average of five random runs. Cosine
similarity is a measure of similarity. It represents
the degree of agreement between the predicted and
gold values. Cosine similarity was used for evalu-
ation as per the guideline.
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3.3 Results
We compare our system with the state-of-the-art
systems of SemEval 2017 Task 5 and the system
proposed by Akhtar et al. (2017). Table 1 shows
evaluation of our various models. Team ECNU
(Lan et al., 2017) and Fortia-FBK (Mansar et al.,
2017) were the top systems for sub-tracks 1 and
2 respectively. Team ECNU and Fortia-FBK re-
ported a cosine similarity of 0.777 and 0.745 for
sub-tracks 1 and 2 respectively. Team ECNU em-
ployed a number of systems - Support Vector Re-
gression, XGBoost Regressor, AdaBoost Regres-
sor and Bagging Regressor ensembled together.
Team Fortia-FBK used a Convolutional Neural
Network for this task. The system proposed by
Akhtar et al. utilizes an ensemble of LSTM, GRU,
CNN and a SVR and reported a cosine similarity
of 0.797 and 0.786 for the two sub-tracks.

Our proposed system has a cosine similarity
of 0.794 and 0.782 for sub-tracks 1 and 2 re-
spectively. The proposed system performs signif-
icantly better than top systems of SemEval 2017
Task 5 for both the tasks. Moreover, the sys-
tem performs at par with the system proposed by
Akhtar et al. with half the number of subsystems
involved in the ensemble. This shows that our pro-
posed system is not only robust since it performs
for both the task equally well but also powerful as
it involves fewer subcomponents while having the
same expressive power.

The two-layered attention network alone per-
forms better than the best system of SemEval 2017
Task for both the sub-track. It manages to achieve
much higher score than any of the deep learn-
ing component utilized by the system proposed by
Akhtar et al. (2017) as shown in Table 2. This
shows that the two-layered attention network helps
to reduce overall model complexity without com-
promising the performance.

Models Microblog News
Layered Attention Network
L1 Knowledge Graph Embedding 0.758 0.727
L2 Distributional Thesaurus + GloVe 0.764 0.749
L3 Distributional Thesaurus + Word2Vec 0.779 0.763
Support Vector Regression
S1 Tf-Idf + Lexicon 0.735 0.720
S2 Tf-Idf + Lexicon + GloVe 0.755 0.753
S3 Tf-Idf + Lexicon + Word2Vec 0.743 0.740
Ensemble
E1 L3 + S2 0.794 0.782

Table 1: Cosine similarity score of various models on
test dataset.

Models Microblog News
Single systems
Mansar et al. (Team Fortia-FBK) - 0.745
Akhtar et al. - LSTM 0.727 0.720
Akhtar et al. - GRU 0.721 0.721
Akhtar et al. - CNN 0.724 0.722
L3 (proposed) 0.779 0.763
Ensembled systems
Lan et al. (Team ECNU) 0.777 0.710
Akhtar et al. 0.797 0.786
E1 (proposed) 0.794 0.782

Table 2: Comparison with the state-of-the-art systems.

3.4 Error Analysis

We performed error analysis and observed that the
proposed system faces difficulty at times. Follow-
ing are the situations when the system failed and
incorrectly predicted values of the opposite polar-
ity:
• Sometimes the system fails to identify an inten-
sifier. In the example below, ’pure’ is used as an
intensifier.
Text : Pure garbage stock
Actual: -0.946 Predicted: 0.042
• The system fails when it does not have enough
real-world information. In the example below, a
low share price is a good opportunity to buy for
an individual but from a company’s point of view,
a low share price does not indicate a prosperous
situation.
Text : Good opportunity to buy
Actual: -0.771 Predicted: 0.260

4 Conclusion

In this paper, we proposed an ensemble of a novel
two-layered attention network and a classical su-
pervised Support Vector Regression for sentiment
analysis. The two-layered attention network has
an intuitive working. It builds the representa-
tion hierarchically from word to sentence level uti-
lizing the knowledge bases. The proposed sys-
tem performed remarkably well on the benchmark
datasets of SemEval 2017 Task 5. It outperformed
the existing top systems for both the sub-tracks
comfortably. Experimental results demonstrate
that the system improves the state-of-the-art sys-
tem of SemEval 2017 Task 5 by 1.7 and 3.7 points
for sub-tracks 1 and 2 respectively. This robust
system can be effectively used as a submodule in
an end-to-end stock market price prediction sys-
tem.
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Abstract

Books have the power to make us feel happi-
ness, sadness, pain, surprise, or sorrow. An
author’s dexterity in the use of these emotions
captivates readers and makes it difficult for
them to put the book down. In this paper, we
model the flow of emotions over a book us-
ing recurrent neural networks and quantify its
usefulness in predicting success in books. We
obtained the best weighted F1-score of 69%
for predicting books’ success in a multitask
setting (simultaneously predicting success and
genre of books).

1 Introduction

Books have the power to evoke a multitude of
emotions in their readers. They can make readers
laugh at a comic scene, cry at a tragic scene and
even feel pity or hate for the characters. Specific
patterns of emotion flow within books can com-
pel the reader to finish the book, and possibly pur-
sue similar books in the future. Like a musical ar-
rangement, the right emotional rhythm can arouse
readers, but even a slight variation in the composi-
tion might turn them away.

Vonnegut (1981) discussed the potential of plot-
ting emotions in stories on the “Beginning-End”
and the “Ill Fortune-Great Fortune” axes. Reagan
et al. (2016) used mathematical tools like Singular
Value Decomposition, agglomerative clustering,
and Self Organizing Maps (Kohonen et al., 2001)
to generate basic shapes of stories. They found
that stories are dominated by six different shapes.
They even correlated these different shapes to the
success of books. Mohammad (2011) visualized
emotion densities across books of different gen-
res. He found that the progression of emotions
varies with the genre. For example, there is a
stronger progression into darkness in horror sto-
ries than in comedy. Likewise, Kar et al. (2018)

showed that movies having similar flow of emo-
tions across their plot synopses were assigned sim-
ilar set of tags by the viewers.

Figure 1: Flow of emotions in Alice in Wonderland.

As an example, in Figure 1, we draw the flow
of emotions across the book: Alice in Wonder-
land. The plot shows continuous change in trust,
fear, and sadness, which relates to the main char-
acter’s getting into and out of trouble. These pat-
terns present the emotional arcs of the story. Even
though they do not reveal the actual plot, they in-
dicate major events happening in the story.

In this paper, we hypothesize that readers en-
joy emotional rhythm and thus modeling emotion
flows will help predicting a book’s potential suc-
cess. In addition, we show that using the entire
content of the book yields better results. Consid-
ering only a fragment, as done in earlier work that
focuses mainly on style (Maharjan et al., 2017;
Ashok et al., 2013), disregards important emo-
tional changes. Similar to Maharjan et al. (2017),
we also find that adding genre as an auxiliary task
improves success prediction.

2 Methodology

We extract emotion vectors from different
chunks of a book and feed them to a recurrent

The source code and data for this paper can be down-
loaded from https://github.com/sjmaharjan/
emotion flow

259



neural network (RNN) to model the sequential
flow of emotions. We aggregate the encoded
sequences into a single book vector using an
attention mechanism. Attention models have been
successfully used in various Natural Language
Processing tasks (Wang et al., 2016; Yang et al.,
2016; Hermann et al., 2015; Chen et al., 2016;
Rush et al., 2015; Luong et al., 2015). This final
vector, which is emotionally aware, is used for
success prediction.

Representation of Emotions: NRC Emotion
Lexicons provide ∼14K words (Version 0.92)
and their binary associations with eight types of
elementary emotions (anger, anticipation, joy,
trust, disgust, sadness, surprise, and fear) from
the Hourglass of emotions model with polarity
(positive and negative) (Mohammad and Turney,
2013, 2010). These lexicons have been shown
to be effective in tracking emotions in literary
texts (Mohammad, 2011).

Inputs: Let X be a collection of books, where
each book x ∈ X is represented by a sequence
of n chunk emotion vectors, x = (x1, x2, ..., xn),
where xi is the aggregated emotion vector for
chunk i, as shown in Figure 2. We divide the book
into n different chunks based on the number of
sentences. We then create an emotion vector for
each sentence by counting the presence of words
of the sentence in each of the ten different types
of emotions of the NRC Emotion Lexicons. Thus,
the sentence emotion vector has a dimension of 10.
Finally, we aggregate these sentence emotion vec-
tors into a chunk emotion vector by taking the av-
erage and standard deviation of sentence vectors in
the chunk. Mathematically, the ith chunk emotion
vector (xi) is defined as follows:

xi =

[∑N
j=1 sij

N
;

√∑N
j=1 (sij − s̄i)2

N

]
(1)

where, N is the total number of sentences, sij
and s̄i are the jth sentence emotion vector and
the mean of the sentence emotion vectors for the
ith chunk, respectively. The chunk vectors have
a dimension of 20 each. The motivation behind
using the standard deviation as a feature is to
capture the dispersion of emotions within a chunk.

Model: We then use bidirectional Gated Recurrent
Units (GRUs) (Bahdanau et al., 2014) to summa-

Figure 2: Multitask Emotion Flow Model.

rize the contextual emotion flow information from
both directions. The forward and backward GRUs
will read the sequence from x1 to xn, and from xn
to x1, respectively. These operations will compute
the forward hidden states (

−→
h1, . . . ,

−→
hn) and back-

ward hidden states (
←−
h1, . . . ,

←−
hn). The annotation

for each chunk xi is obtained by concatenating its
forward hidden states

−→
hi and its backward hidden

states
←−
hi , i.e. hi=[

−→
hi ;
←−
hi ]. We then learn the rela-

tive importance of these hidden states for the clas-
sification task. We combine them by taking the
weighted sum of all hi and represent the final book
vector r using the following equation:

r =
∑

i

αihi (2)

αi =
exp(score(hi))∑
i′ exp(score(hi′))

(3)

score(hi) = vT selu(Wahi + ba) (4)

where, αi are the weights, Wa is the weight
matrix, ba is the bias, v is the weight vector,
and selu (Klambauer et al., 2017) is the nonlin-
ear activation function. Finally, we apply a lin-
ear transformation that maps the book vector r
to the number of classes. In case of the single
task (ST) setting, where we only predict success,
we apply sigmoid activation to get the final pre-
diction probabilities and compute errors using bi-
nary cross entropy loss. Similarly, in the multitask
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(MT) setting, where we predict both success and
genre (Maharjan et al., 2017), we apply a softmax
activation to get the final prediction probabilities
for the genre prediction. Here, we add the losses
from both tasks, i.e. Ltotal=Lsuc + Lgen (Lsuc and
Lgen are success and genre tasks’ losses, respec-
tively), and then train the network using backprop-
agation.

3 Experiments

3.1 Dataset
We experimented with the dataset introduced
by Maharjan et al. (2017). The dataset consists of
1,003 books from eight different genres collected
from Project Gutenberg1. The authors considered
only those books that were at least reviewed by ten
reviewers. They categorized these books into two
classes, Successful (654 books) and Unsuccessful
(349 books), based on the average rating for the
books in Goodreads2 website. They considered
only the first 1K sentences from each book.

3.2 Baselines
We compare our proposed methods with the fol-
lowing baselines:
Majority Class: The majority class in training
data is success. This baseline obtains a weighted
F1-score of 0.506 for all the test instances.
SentiWordNet+SVM: Maharjan et al. (2017)
used SentiWordNet (Baccianella et al., 2010) to
compute the sentiment features along with counts
of different Part of Speech (PoS) tags for every
50 consecutive sentences (20 chunks from 1K sen-
tences) and used an SVM classifier.
NRC+SVM: We concatenate the chunk emotion
vectors (xi) created using the NRC lexicons and
feed them to the SVM classifier. We experiment
by varying the number of book chunks.

These baseline methods do not incorporate the
sequential flow of emotions across the book and
treat each feature independently of each other.

3.3 Experimental Setup
We experimented with the same random stratified
splits of 70:30 training to test ratio as used by Ma-
harjan et al. (2017). We use the SVM algorithm
for the baselines and RNN for our proposed emo-
tion flow method. We tuned the C hyperparameter
of the SVM classifier by performing grid search

1https://www.gutenberg.org/
2https://www.goodreads.com/

on the values (1e{-4,...,4}), using three fold cross
validation on the training split. For the experi-
ments with RNNs, we first took a random strat-
ified split of 20% from the training data as vali-
dation set. We then tuned the RNN hyperparam-
eters by running 20 different experiments with a
random selection of different values for the hy-
perparameters. We tuned the weight initialization
(Glorot Uniform (Glorot and Bengio, 2010), Le-
Cun Uniform (LeCun et al., 1998)), learning rate
with Adam (Kingma and Ba, 2015) {1e-4,. . . ,1e-
1}, dropout rates {0.2,0.4,0.5}, attention and re-
current units {32, 64}, and batch-size {1, 4, 8}
with early stopping criteria.

4 Results

Book Content 1000 sents All
Methods Chunks ST MT ST MT
Majority Class - 0.506 0.506 0.506 0.506
SentiWordNet + SVM 20 0.582 0.610 - -
NRC + SVM 10 0.526 0.597 0.541 0.641
NRC + SVM 20 0.537 0.590 0.577 0.604
NRC + SVM 30 0.587 0.576 0.595 0.600
NRC + SVM 50 0.611 0.586 0.597 0.636
Emotion Flow 10 0.632 0.643 0.650 0.660
Emotion Flow 20 0.612 0.639 0.640 0.668
Emotion Flow 30 0.630 0.657 0.662 0.677
Emotion Flow 50 0.656 0.666 0.674 0.690*

Table 1: Weighted F1-scores for success classification
in single task (ST) and multi task (MT) settings with
varying chunk sequences when using all the book or
only the first 1K sentences. ∗p < 0.05 (McNemar sig-
nificance test between Emotion Flow (chunks 50, MT,
All) and NRC+SVM (chunk 10, MT, All))

Table 1 presents the results. Our proposed
method performs better than different baseline
methods and obtains the highest weighted F1-
score of 0.690. The results highlight the impor-
tance of taking into account the sequential flow
of emotions across books to predict how much
readers will like a book. We obtain better perfor-
mance when we use an RNN to feed the sequences
of emotion chunk vectors. The performance de-
creases with the SVM classifier, which discards
this sequential information by treating each fea-
ture independently of each other. Moreover, in-
creasing the granularity of the emotions by in-
creasing the number of chunks seems to be help-
ful for success prediction. However, we see a
slight decrease in performance beyond 50 chunks
(weighted F1 score of 0.662 and 0.664 for 60 and
100 chunks, respectively).

The results also show that the MT setting is ben-
eficial over the ST setting, whether we consider
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the first 1K sentences or the entire book. This find-
ing is akin to Maharjan et al. (2017). Similar to
them, we suspect the auxiliary task of genre clas-
sification is acting as a regularizer.

Considering only the first 1K sentences of
books may miss out important details, especially
when the only input to the model is the distribution
of emotions. It is necessary to include information
from later chapters and climax of the story as they
gradually reveal the answers to the suspense, the
events, and the emotional ups and downs in char-
acters that build up through the course of the book.
Accordingly, our results show that it is important
to consider emotions from the entire book rather
than from just the first 1K sentences.

5 Attention Analysis
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Figure 3: Comparison of the Emotion Flow with and
without attention mechanism for different chunk se-
quences.

From Figure 3, we see that using the attention
mechanism to aggregate vectors is better than just
concatenating the final forward and backward hid-
den states to represent the book in both ST and
MT settings. We also observe that the multitask
approach performs better than the singe task one
regardless of the number of chunks and the use of
attention.

Figure 4: Attention weights visualization per genre.

Figure 4 plots the heatmap of the average at-
tention weights for test books grouped by their
genre. The model has learned that the last two to
three chunks that represent the climax, are most
important for predicting success. Since this is a
bidirectional RNN model, hidden representations
for each chunk carry information from the whole
book. Thus, using only the last chunks will proba-
bly result in lower performance. Also, the weights
visualization shows an interesting pattern for Po-
etry. In Poetry, emotions are distributed across
the different regions. This may be due to sudden
important events or abrupt change in emotions.
For Short stories, initial chunks also receive some
weights, suggesting the importance of the premise.

6 Emotion Analysis
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Figure 5: Feature ranking with information gain.

Climax Emotions: Since the last chunk is as-
signed more weights than other chunks, we used
information gain to rank features of that chunk.
From Figure 5, we see that features capturing the
variation of different emotions are ranked higher
than features capturing the average scores. This
suggests that readers tend to enjoy emotional ups
and downs portrayed in books, making the stan-
dard deviation features more important than the
average features for the same emotions.

Table 2 shows the mean (µ) and standard devi-
ation (σ) for different emotions extracted for all
the data, and further categorized by Successful
and Unsuccessful label from the last chunk. We
see that authors generally end books with higher
rates of positive words (µ = 0.888) than negative
words (µ = 0.599) and the difference is significant
(p < 0.001). Similarly the means for anticipation,
joy, trust, and fear are higher than for sadness,
surprise, anger, and disgust. This further vali-
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Anger Anticipation Disgust Fear Joy Sadness Surprise Trust
Dataset µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Corpus 0.248 0.249 0.414 0.372 0.179 0.200 0.340 0.327 0.399 0.431 0.323 0.309 0.225 0.191 0.492 0.441
Successful 0.270 0.263 0.447 0.374 0.194 0.207 0.377 0.353 0.435 0.416 0.358 0.334 0.236 0.207 0.517 0.427
Unsuccessful 0.207 0.214 0.351 0.359 0.153 0.183 0.270 0.258 0.331 0.451 0.258 0.243 0.205 0.155 0.445 0.463

Table 2: Mean (µ) and standard deviation (σ) for eight type of emotions for the last chunk.

dates that authors prefer happy ending. Moving
on to Successful and Unsuccessful categories, we
see that the means for Successful books are higher
than Unsuccessful books for anger, anticipation,
disgust, fear, joy, and sadness (highly significant,
p < 0.001). We observe the same pattern for trust,
and surprise, although the p value is only p < 0.02
in this case. Moreover, the standard deviations
for all emotions are significantly different across
the two categories (p < 0.001). Thus, emotion
concentration (µ) and variation (σ) for Successful
books are higher than for Unsuccessful books for
all emotions in the NRC lexicon.
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Figure 6: Emotion flow for four cluster centroids in the
dataset. The two curves on top match the “Fall to Rise”
shape and the two at the bottom match the “Tragedy”
one defined in Reagan et al. (2016).

Emotion Shapes: We visualize the prominent
emotion flow shapes in the dataset using K-means
clustering algorithm. We took the average joy
across 50 chunks for all books and clustered them
into 100 different clusters. We then plotted the
smoothed centroid of clusters having ≥ 20 books.
We found two distinct shapes ( “Man in the hole”
(fall to rise) and “Tragedy” or “Riches to rags”
(fall)). Figure 6 shows such centroid plots. The
plot also shows that the “Tragedy” shapes have
an overall lower value of joy than the “Man in
the hole” shapes. Upon analyzing the distribu-

tion of Successful and Unsuccessful books within
these shapes, we found that the “Man in the hole”
shapes have a higher number of successful books
whereas, the “Tragedy” shapes have the opposite.

7 Conclusions and Future Work

In this paper, we showed that modeling emotions
as a flow, by capturing the emotional content at
different stages, improves prediction accuracy. We
learned that most of the attention weights are given
to the last fragment in all genres, except for Po-
etry where other fragments seem to be relevant as
well. We also showed empirically that adding an
attention mechanism is better than just considering
the last forward and backward hidden states from
the RNN. We found two distinct emotion flow
shapes and found that the clusters with “Tragedy”
shape had more unsuccessful books than success-
ful ones. In future work, we will be exploring
how we can use these flows of emotions to detect
important events that result in suspenseful scenes.
Also, we will be applying hierarchical methods
that take in the logical grouping of books (se-
quence of paragraphs to form a chapter and se-
quence of chapters to form a book) to build books’
emotional representations.
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Abstract

Aspect-based Sentiment Analysis is a fine-
grained task of sentiment classification for
multiple aspects in a sentence. Present neural-
based models exploit aspect and its contextual
information in the sentence but largely ignore
the inter-aspect dependencies. In this paper,
we incorporate this pattern by simultaneous
classification of all aspects in a sentence along
with temporal dependency processing of their
corresponding sentence representations using
recurrent networks. Results on the benchmark
SemEval 2014 dataset suggest the effective-
ness of our proposed approach.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is a
fine-grained task of sentiment classification. Sen-
timentally involved sentences in reviews, debates,
etc., often comprise of multiple aspects that have
varied sentiment polarities. An important sub-
task of ABSA is aspect or aspect-term classifi-
cation which involves predicting sentiment of as-
pects embodied in a sentence (Young et al., 2017).
Present works in the literature approach this task
by analyzing associations between aspects and
their contexts provided in the sentence. In this
work, we argue that to classify an aspect into sen-
timent categories, knowledge of surrounding as-
pects, their sentiment orientation, and resulting
inter-dependencies, is beneficial.

Inter-aspect dependencies abound in sentences
with multiple aspects. Largely ignored in present

∗⋆ means authors contributed equally.

literature, these dependencies may reveal them-
selves in many forms, such as a) Incomplete in-
formation, where a certain aspect does not contain
enough contextual information to convey the sen-
timent. In such cases, the surrounding aspects and
their sentiment tone become crucial to fill the con-
textual gap. As an example, in the sentence The
menu is very limited - I think we counted 4 or 5
entries., the subsentence I think ... entries contain-
ing aspect entries does not provide the required
sentiment unless considered with the aspect menu.
Here, the negative sentiment of menu induces en-
tries to have the same sentiment. b) Sentiment in-
fluence in conjunctions, in which, the sentiment of
an aspect in a sentence influences the succeeding
aspects due to the presence of conjunctions. In
particular, for sentences containing conjunctions
like and, not only, also, but, however, though, etc.,
aspects tend to share/contrast their sentiments. In
the sentence Food is usually very good, though I
wonder about freshness of raw vegetables, the as-
pect raw vegetables does not have any sentiment
marker linked to it. However, the positive senti-
ment of food due to the word good and presence
of conjunction though determines the sentiment of
raw vegetables to be negative. Thus, aspects when
arranged as a sequence, reveal high correlation and
interplay of sentiments.

In this paper, we facilitate such phenomena by
proposing a neural network where the information
is shared among the aspects by means of a Long
Short-Term Memory (LSTM) network (Hochre-
iter and Schmidhuber, 1997). In other words,
we model the sequential relationship between the
aspects as per their occurrence in the sentence.
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Specifically, our model first takes a sentence along
with all of its aspect-terms and then generates
the sentential representations relative to each as-
pect to get better aspect-oriented features (Tang
et al., 2016a). This is done using an attention-
based LSTM network, where the attention mech-
anism enables the model to focus on key parts
of the sentence that modulate the sentiment of
the aspects. To further guide the attention pro-
cess the model incorporates aspect information
at the word-level by concatenating aspect repre-
sentations with each word (Wang et al., 2016).
Finally, to capture the inter-aspect dependencies,
the aspect-based sentential representations are or-
dered as a sequence and temporally modeled using
another LSTM. Each timestep of this LSTM corre-
sponds to a particular aspect. The hidden state out-
put for each timestep is then projected to a dense
layer and fed to a softmax classifier to predict the
polarities of the corresponding aspect. To the best
of our knowledge, use of inter-aspect dependen-
cies in neural models is unprecedented and fills a
significant gap in the literature.

In the remaining paper, Section 2 first provides
a summary of existing works; Section 3 then de-
scribes the proposed approach in detail; Section 4
gives training and dataset details followed by re-
sults and a qualitative case study. Finally, Sec-
tion 5 concludes the paper.

2 Related Works

Traditional methods in this field leveraged sen-
timent lexicons to solve this task (Rao and
Ravichandran, 2009; Perez-Rosas et al., 2012)
whereas present methods have transitioned to
neural-based approaches. Tang et al. 2016a intro-
duced the idea of aspect-based sentential represen-
tations which generates a custom representation of
the sentence based on the aspect. This approach
has been heavily adapted by modern works. Wang
et al. 2016 built on this framework and introduced
attention mechanism for generating these senten-
tial features. They also incorporated aspect infor-
mation into the attention module by concatenat-
ing them with the words. More recently, Ma et al.
2017 proposed a model where both context and as-
pect representations interact with each other’s at-
tention mechanism to generate the overall repre-
sentation. Tay et al. 2017 proposed word-aspect
associations using circular correlation as an im-
provement over Wang et al.’s work. ABSA has

also been approached from a question-answering
perspective where memory networks have played
a major role (Tang et al., 2016b; Li et al., 2017).
Our work is different from all these works since
we train all aspects of a particular sentence to-
gether and capitalize on inter-aspect dependency
modeling which they ignore.

3 Proposed Approach

Let us take a sentence S = [w1, ...,wn] having
n words. Each word is represented as a low-
dimensional real-valued vector of size dem, called
word embedding. To get the embeddings, we use
the pre-trained Glove vectors (Pennington et al.,
2014) having dem = 300. We can thus represent S
as a matrix of dimensions Rdem×n.

The sentence S also contains m aspect-terms
(or aspects), where for each i ∈ [1,m], as-
pect Ai is a multi-word subsequence of S, i.e.,∃j ∈ [1, n], such that, Ai = [wj , ...,wj+∣Ai∣−1] ∈
Rdem×∣Ai∣. All the aspects A1, ...,Am are enumer-
ated as per their order of occurrence in the sen-
tence. The goal is to determine the sentiment label
for each of these m aspects belonging to S.

The proposed model comprises two distinct
phases (Figure 1). The first phase involves the
generation of aspect-based sentential representa-
tions s1, ..., sm, where, vector si is created by cou-
pling aspectAi with sentence S. The second phase
models the inter-aspect dependencies in a sentence
using an LSTM which is followed by the senti-
ment prediction for all the aspects.

3.1 Phase 1: Aspect-based sentential
representations

Below, we describe the methodology to generate
the ith aspect-based sentential representation si
for aspect Ai and sentence S.

Given sentence S and aspect-termAi, the model
first generates the aspect representation ti. This
is done by passing Ai through an LSTM, named
LSTMa, having internal dimension da. LSTMa’s
final hidden state vector h∣Ai∣

a ∈ Rda is taken to be
this representation, i.e., ti = h∣Ai∣

a .
Following this, an attention-based LSTM model

is used to create si using S and ti (Wang et al.,
2016). First, each word vector wj in S is con-
catenated with aspect ti to create a comprehensive
feature vector xji = (wj ; ti) ∈ R(dem+da), where
; is the concatenation operator. We then take this
new sequence representationXi = [x1i , ..., xni ] and
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Figure 1: Overall architecture of the proposed method. The aspect-based sentential representation generator is
described in the right end of the figure.

apply an LSTM, named LSTMs with dimension
ds, to model the long-term temporal dependen-
cies within the sentence. The hidden state mem-
ory vectors across all n timesteps result in matrix
Hi = [h1s, ..., hns ] ∈ Rds×n.

Attention: Attention mechanism is applied on
Hi to get an attention vector α, which is in
turn used to generate a weighted representation
of Hi. We use this weighted representation to be
the ith aspect’s sentential representation si. Pre-
vious concatenations of words with the aspect-
representations infuse aspect information into the
attention process. This enables the attention mech-
anism to focus on relevant segments in the sen-
tence with respect to the aspect. The overall atten-
tion mechanism to generate si is summarized as:

M = tanh(Hi.Wh) (1)

α = softmax(MT .Wb) (2)

si =H.αT (3)

where, Wh ∈ Rn×1 and Wb ∈ Rds×n are projec-
tion parameters to be learnt during training and ds
is the dimension of the final sentence vector, i.e.,
si ∈ Rds .

The overall process described above is individ-
ually applied to all m aspects to get sentential rep-
resentations s1, ..., sm.

3.2 Phase 2: Inter-aspect relationship
To capture the implicit inter-aspect dependencies,
we model the sentential representations as a se-
quence [s1, ..., sm], following the order of occur-
rence of their corresponding aspect-terms in sen-

tence S. An LSTM, named LSTMad with dimen-
sion dad is then applied on this sequence and at
each of the ith timestep, its hidden state is pro-
jected to another vector having dimensions equal
to the number of classes to predict. Finally, soft-
max operation is applied on this vector to get the
prediction probabilities for the sentiment of this
ith aspect-term for sentence S. The transitions are
as follows:

[had1 , ..., hadm] = LSTMad([s1, ..., sm]) (4)

ŷi = softmax(Wad.hadi) (5)

Here, ŷi ∈ RC is the predicted probability distri-
bution for the ith aspect of sentence S where C is
the number of sentiment classes. Wad ∈ RC×dad is
a parameter and softmax(xi) = exi/∑j e

xj .

Loss Function: We use categorical cross-
entropy as the loss function which is averaged over
all aspects for a sentence. Thus, stochastic loss for
sentence S is calculated as:

Loss = −1
m

m∑
i=1

C∑
j=1yi,j log2(ŷi,j) + λ∣∣ θ ∣∣2 (6)

Here, m is the number of aspects for a sentence
and C is the number of sentiment categories. yi
is the one-hot vector ground truth of ith aspect of
sentence S and ŷi,j is its predicted probability of
belonging to sentiment class j. λ is the L2 - reg-
ularization term and θ is the parameter set, i.e.,
θ = {W[h,b,ad], LSTM[t,s,ad]}, where LSTM[]
represents the internal parameters of that LSTM.

4 Experimentation

Training details: To perform experiments and
subsequent hyperparameter tuning, we first split
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the training set randomly in the ratio 9 ∶ 1 to get
a held-out validation set. For optimization, we use
the Adam optimizer (Kingma and Ba, 2014) hav-
ing learning rate 0.01. Embedding dimensions are
set as follows, da = 100, ds and dad = 300. To
facilitate batch processing, we attach dummy as-
pects in sentences with lesser aspects and also pro-
vide masking schemes. For termination, we use
the early-stopping procedure with a patience value
of 10 that is monitored on the validation loss.

Dataset: We conduct our experiments using the
dataset for SemEval 2014 Task 4 containing cus-
tomer reviews on restaurants and laptops. Each
review has one or more aspects with their corre-
sponding polarities. The polarity of an aspect can
be positive, negative, neutral or conflict; however,
we consider the first three labels for classification.
Table 1 contains the statistics for the dataset.

4.1 Results

Table 2 presents the results of our proposed model
along with state-of-the-art methods. Our model
significantly surpasses the performance of ATAE-
LSTM (Wang et al., 2016). Given that ATAE’s
architecture has a strong correlation to our aspect-
based sentential generator (see Figure 1), their
work can be categorized as a baseline to our
model. This reinforces our hypothesis that a model
capable of capturing inter-aspect dependencies in-
deed performs better. We also compare our model
to the recently proposed IAN (Ma et al., 2017). On
both datasets, our model performs competitively
with IAN and produces nominal improvement.
Given that IAN explores the inter-dependencies of
aspects with their contexts, while we try to model
inter-dependencies between aspects, an interesting
direction would be to explore the IAN modeled in
our proposed setting (Phase 2 of Figure 1). We set
this path as an option for future research.

Table 1 also presents variations of our proposed

Data
Aspect Labels No. of

reviewsPositive Negative Neutral

Rest.
Train 2148 790 628 1977

Test 725 195 196 600

Laptop
Train 974 839 450 1462

Test 340 125 169 411
∗ Rest. = Restaurant

Table 1: Labels and review statistics for the dataset Se-
mEval 2014.

Models
Attn. Fusion 3-way classification

Rest. Laptop

LSTM 7 - 74.3 66.5
AE-LSTM 3 Concat 76.6 68.9
ATAE-LSTM 3 Concat 77.2 68.7
IAN 3 - 78.6 72.1
Our Model 3 Hadamard 73.42 63.7
Our Model 7 Concat 74.5 69.6
Our Model 3 Concat 79.0 72.5
* Attn. = Attention, Rest. = Restaurant

Table 2: Accuracies for three-way classification on the
Restaurant and Laptop SemEval 2014 dataset.

model. Specifically, we try out variants (a) With-
out attention: in this setting, we omit the attention
mechanism while generating aspect-based senten-
tial representation si (Equation 1-3). Instead, we
define si to be hns , i.e., the last hidden state vec-
tor of LSTMs with input S and Ai. However, re-
moving attention brings degradation in the perfor-
mance of our model on the Restaurant and Laptop
dataset by 4% and 3%, respectively. This signi-
fies the importance of an attention mechanism to
derive the aspect-based sentential representations.
(b) With hadamard fusion: instead of concate-
nation of wj and ti, we use the hadamard prod-
uct which is the element wise multiplication of
the vectors. Although this variation reduces the
total parameter sizes of the network, it still does
not benefit the model and gives a poorer perfor-
mance to simple concatenation. Numerous other
fusion methods such as tensor fusion (Zadeh et al.,
2017), compact bilinear pooling (Gao et al., 2016),
attention-based fusion (Poria et al., 2017; Haz-
arika et al., 2018), etc. are applicable, whose anal-
yses, however, is not the focus of this paper.

4.2 Case Study

A qualitative study on the test set classifications
by our model reveals its capability to learn inter-
aspect dependencies (Section 1). For the sentence
I love the keyboard and the screen, the model cor-
rectly identifies the sentiment of screen as positive
which is hinted by positive aspect keyboard and
conjunction and. In another case, for the sentence
The best thing about this laptop is the price along
with some of the newer features, aspect features
is correctly classified as positive which is influ-
enced by aspect price and positive word best. This
shows that our model is performing well in clas-
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sifying joint aspects having conjunctions. For the
slightly harder case of tackling incomplete infor-
mation, our model fares well in sentences having
this pattern. For example, one of the sentence Boot
up slowed significantly after all windows updates
were installed has aspect windows update which
does not have a clear sentiment orientation but is
implicitly dependent on the aspect boot up hav-
ing a negative sentiment. This was also correctly
classified by our model. Moreover, the above ex-
amples were incorrectly classified by ATAE. This
reaffirms our hypothesis that the ability to learn
inter-aspect dependencies is a crucial factor in the
task of ABSA.

5 Conclusion

In this paper, we present a way to incorporate
inter-aspect dependencies in the task of Aspect-
based Sentiment Analysis. Our results suggest
that capturing such information indeed improves
the task of prediction. Through this work, we
hope that future attempts by researchers include
this idea in their methods.
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Abstract

In recent past, social media has emerged as
an active platform in the context of health-
care and medicine. In this paper, we present a
study where medical user’s opinions on health-
related issues are analyzed to capture the med-
ical sentiment at a blog level. The medical sen-
timents can be studied in various facets such as
medical condition, treatment, and medication
that characterize the overall health status of the
user. Considering these facets, we treat anal-
ysis of this information as a multi-task clas-
sification problem. In this paper, we adopt a
novel adversarial learning approach1 for our
multi-task learning framework to learn the sen-
timent’s strengths expressed in a medical blog.
Our evaluation shows promising results for our
target tasks.

1 Introduction

“Can someone help me please????”. These
types of queries have swamped the web with the
phenomenal rise in social media contents almost
in every domain including health care. Generally,
the users posts seeking for health-related informa-
tion, sharing medical experiences and opinions of
other users (i.e., patients, health professional or
doctors). With the enormous amount of posts in-
creasing day after day, it is difficult for the health
professionals to read and answer every post. It
would be helpful to have a sentiment analyzer
that could study the user’s sentiment associated
with the post related to his/her health-status. In
this paper, we make an attempt to capture medical
sentiment (MS) by analyzing the subjectivity
expressions describing a patient’s medical con-
ditions at the blog level. MS can be studied as
an event that characterizes the patient’s medical
condition, in which the patient expresses stance

1The reader is encouraged to contact the authors regarding
the availability of data and source code

towards clinical and social situations. The notion
of sentiment in medical context unlike traditional
sentiment analysis (SA) is more granular which
can be studied after considering various aspects
(Denecke and Deng, 2015) that can directly
impact the users’ health conditions, such as:
(1) Changes in the medical condition (e.g.,
Sentiment can be observed as a change in a
patient’s medical condition which can improve or
worsen over a time.)
(2) Severity of the medical condition that im-
pacts patient life (e.g., severe headache impacts
the patient’s life more than a mild headache.)
(3) Outcome of a treatment (e.g., there may
be positive or negative impacts in a patient’s
treatment.)

In the current study, the problem of medical
sentiment identification is addressed by exploiting
two important associated aspects as shown in
Figure-1 and leveraging their synergies in a deep
multi-task learning framework. In recent years,
neural network models have gained their popular-
ity for solving problems in several domains (Misra
et al., 2016; Luong et al., 2015), as they facilitate
an efficient way of amalgamating information
from several tasks. This method of multi-task
learning provides advantages in (1) minimizing
the number of parameters and (2) reducing the
risk of over-fitting. The aim of multi-task learning
(MTL) is to efficiently enhance the system per-
formance by integrating the other similar tasks.
The primal factor of MTL is the sharing scheme
in latent feature space. Most of the existing
methods on multi-task classification attempt to
divide the features of different tasks based on
task-specific and task-invariant feature space,
considering only parameters of some components
that could be shared. The major drawback of
this mechanism is that the common feature space
often incorporates some redundant task-variant
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Figure 1: Exemplar description of medical blog-text from two different medical aspects (medical condition and
medication). The texts in bold indicates the sentiment word.

features, while certain common features could
also lie in the task specific feature space, leading
to feature redundancy.
Adversarial learning (Goodfellow et al., 2014)
is the process of learning a model to correctly
classify both unmodified data and adversarial
data through the regularization method. It can
be used to combat this issue by ensuring the
mutual representation between the task that could
inherently disjoint task-specific and task-invariant
feature space. This helps in eliminating redundant
features from the feature space.

Motivated by the success of adversarial learn-
ing in several classification tasks (Miyato et al.,
2016; Ge et al., 2017), we adopt the adversarial
multi-learning framework to capture the MS in
various medical aspects.

Contribution: (i) a description of the medical-
sentiment classification task by mining medical
blogs using users sentiments towards medical con-
dition and medication, and (ii) a method for anal-
ysis of medical sentiments over various aspects
by exploiting the multi-task adversarial training
framework which enables multiple aspects of MS
tasks to be jointly trained.

2 Related Works

In the recent past, there has been a significant
growth in the studies to analyze the sentiment of
users in a healthcare/medical domain. The study
conducted by Denecke and Deng (2015) provides
the quantitative assessment of sentiment across the
clinical narrative and social media sources. To-
wards this, they created a domain-specific corpus
from MIMIC II database containing clinical doc-

uments (nurse letters, radiology reports, and dis-
charge summaries). They also studied users self
reported drug reviews on blogs (WebMD, Dru-
gRating) to asses the possible medical sentiments.
Majority of the current research in medical sen-
timent analysis are focused on understanding the
mental health disorder, mainly depression. Several
shared tasks (Losada et al., 2017; Hollingshead
et al., 2017) have also been organized to study
the patient health-related opinions on social me-
dia. The challenge defined in Milne et al. (2016)
aims to automatically classify the user posts from
an online mental health forum into four differ-
ent categories (crisis/red/amber/green) according
to how urgently the post needs the attention.
Shickel et al. (2016) introduced the notion of ap-
plying sentiment analysis to the mental health
domain by defining new polarity classification
scheme. They split the traditional ‘neutral’ class
into both a dual polarity sentiment (both positive
and negative) and a ‘neither positive nor nega-
tive’ sentiment class. Some of the other prominent
works in the opinion mining in medical setting, in-
cludes studies by (Bobicev et al., 2012; Sokolova
and Bobicev, 2011; Ali et al., 2013).
In the study conducted by (Pestian et al., 2012),
authors analyzed the emotions and sentiment of
suicide notes. The other study in medical senti-
ment analysis includes the work of Bobicev et al.
(2014), where they analyzed sequences of senti-
ments (encouragement, gratitude, confusion, facts,
and endorsement) in In Vitro Fertilization (IVF)
medical forum.
In terms of methods, majority of the work utilizes
machine learning technique (SVM, naive Bayes,
logistic regression) by exploiting features such as
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Figure 2: Architecture of proposed methodology

bigram, trigram, parts of speech. Also, there has
been predominant use of general sentiment lexi-
con, however their analysis shows that it does not
help in capturing the medical sentiment. More do-
main specific knowledge is also embedded using
medical knowledge graph such as UMLS to iden-
tify the medical condition and treatment (Sokolova
et al., 2013).

3 Overview of the proposed model

We formulate the MS analysis problem as a multi-
task classification problem.
Problem Statement: Let us assume that a blog-
text P consisting of k sentences i.e., P =
{s1, s2 . . . sk} and the set of tasks, T = {t1, t2}
be given. Let the data set of task t ∈ T be
Dt = {(xnt , ynt ) : n = 1 . . . Nt}, where xnt de-
notes a blog-text P with the corresponding label
ynt from a task t having Nt instances. The task is
to predict ȳt such that ȳt = argmaxyt{p(yt|xt)}.

We clearly illustrate the two tasks related to MS
identification in Figure-1.

In this section, we present an overview of the
proposed model for multi-task medical sentiment
classification. We use the bi-directional gated re-
current units (Bi-GRU) (Chung et al., 2014) to en-
code the blog-text as it is computationally cheaper
than long short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997). The updates for Bi-GRU
units can be computed by

ht = BiGRU(ht−1, xt) (1)

where, ht and ht−1 are the hidden units at time t
and (t− 1), respectively. xt is the input at time t.

3.1 Classification of Medical Blog
Let us assume that a blog-text P having k sen-
tences and word sequence w = {w1, w2, . . . wl}
be given. The embedding layer is used to find out
the vector representation xi ∈ Rd×V from a d di-
mensional pre-trained word embedding of vocab-
ulary V . Each word wi ∈ w will be represented
by its respective word embedding xi . The hid-
den units hl learned at the last time step (l) of
sequence are considered as the encoding of the
medical blog, P . The representations hl generated
from the Eq 1 are fed to a fully connected softmax
layer to generate the probability distribution over
the given classes.

ȳ = softmax(hTl W + z) (2)

Here, W and z are weight matrix and bias vec-
tor, respectively. The term ȳ denotes the predicted
probability distribution.
Loss Function: Cross entropy is used to define
the loss function. Given a training dataset D =
{(xi, yi) : i = 1 . . . N}, the network parame-
ters are trained to minimize the cross entropy of
the predicted probability distributions (ȳ) and true
probability distributions (y) over the C number of
classes.

L(y, ȳ) = −
N∑

i=1

C∑

j=1

yji log(ȳji ) (3)

The above loss function can be extended for our
problem in the following ways:

Lmtask = λ1L(y1, ȳ1) + λ2L(y2, ȳ2) (4)

where λ1 and λ2 are the weight factors for the
task ‘Medical condition’ and ‘Medication’, re-
spectively.
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Task 1: Medical Condition
Total
blog-post Exist Recover Deteriorate Avg # of

sentences
Avg # of
words

5188 2396 703 2089 10 192
Task 2: Medication

Total
blog-post Effective Ineffective Serious Adverse

Effect
Avg # of
sentences

Avg # of
words

2301 462 613 1,226 9 176

Table 1: Dataset statistics for Task 1 and Task 2

Features for multi-task learning: The multi-task
learning is governed by sharing the latent fea-
tures over different tasks. In the proposed neu-
ral network based model, the features are the
hidden states of BiGRU at the end of sequence.
Motivated by the shared-private feature sharing
scheme in (Liu et al., 2017), for each task we
define two feature spaces; task-specific and task-
invariant. Mathematically, for a given blog-text
P of task t, we can compute its task-specific fea-
tures htl = BiGRU(htl−1, xl) and task-invariant
features f tl = BiGRU(f tl−1, xl). Subsequently,
the final features will be the concatenation of both
features.

3.2 Adversarial Training
Although the feature sharing scheme separates
the features into two features spaces, but there
is no guarantee that contamination will not be
made. Inspired by adversarial networks, we follow
the generative-discriminative strategy to avoid the
contamination in features space in which a BiGRU
works as generator (G) to generate task-invariant
features. A discriminator model (D) is used to
map the task-invariant features of a blog-text into
a probability distribution. It is mainly a multi-
layer perceptron classifier which classifies a blog
sentence into its respective tasks. The adversar-
ial loss is used to train the model which produces
task-invariant features such that a classifier can-
not reliably predict the task based on these fea-
tures. Similar to (Goodfellow et al., 2014; Liu
et al., 2017), we use the following adversarial loss
function

Ladv = min
G

(
max
D

(

T∑

t=1

Nt∑

i=1

dtilog[D(G(xt))])
)

(5)
where dti is the gold label indicating the type of the
current task. Based on the recent work (Bousmalis
et al., 2016; Liu et al., 2017) on shared-private la-
tent space analysis, we introduce another diver-
gence loss function Ldiv to castigate the redun-
dant features and encourage the task-invariant and
task-specific feature extractors to encode different

aspects of the inputs. The divergence loss func-
tion can be computed as Ldiv =

∑T
t=1‖F tTHt‖F ,

where F t andHt are two matrices, where rows are
task-invariant and task-specific features of a blog-
text from a task t. The ‖.‖F denotes the Frobe-
nius norm of the matrix. The final loss function
L = α1Lmtask + α2Ladv + α3Ldiv is used as un-
derlying loss function to train the network. Here
α1, α2 and α3 are the hyper-parameters of the net-
works.

4 Dataset and Experimental Setup

We generate a corpus2 of 7, 490 blog-text col-
lected on four popular groups, namely Depres-
sion, Allergy, Asthma, and Anxiety. Out of total
blog-text, 5, 188 blogs concern about the medi-
cal conditions and 2, 302 are classified as medi-
cation. We provide the detailed dataset statistics
for both the task is presented in Table-1. A team
of three annotators 3 independently annotated the
user posts with three classes on both the classifica-
tion strategies. The Cohen’s kappa approach (Co-
hen, 1960) was used to measure the inter-annotator
agreement. We observe high agreement ratio of
0.79 (task 1) and 0.84 (task 2) for exact match-
ing of the class w.r.t each blog post. We have
performed 5-fold cross-validation experiment on
both the datasets. The pre-trained embeddings
(Mikolov et al., 2013) of dimension 300 were used
in the experiments. The dimension of Bi-GRU
hidden unit is set to 100 via grid search, on the
basis of cross-validation performance. We choose
the same value of 0.5 for both the weight factors
λ1 and λ2 to impose equal importance on both the
tasks. Training was performed using stochastic
gradient descent over mini-batches of size 50 con-
sidering the Adadelta (Zeiler, 2012) update rule
with an initial learning rate of 0.01. The min-max
optimization is performed with the help of gradi-
ent reversal layer (Ganin et al., 2016). As a regu-
larizer, we use dropout (Hinton et al., 2012) with a
probability of 0.5. We train the network with 130
epochs. The optimal 4 hyper-parameter values are
obtained via a grid search for α1, α2, and α3 over
the best cross-validation performance.

2Accepted at LREC-2018; entitled “Medical Sentiment
Analysis using Social Media: Towards building a Patient As-
sisted System” and will be publicly available.

3undergraduate students with the medical knowledge
4α1 = 0.88, α2 = 0.12 and α3 = 0.03
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Models Task 1: Medical Condition Task 2: Medication
Precision Recall F-Score Precision Recall F-Score

Baseline 1: MT-LSTM 63.40 61.38 62.37 88.23 77.38 82.45
Baseline 2: ST-LSTM 63.19 62.47 62.83 85.94 77.46 81.48
Proposed Approach 66.82 63.61 65.18 85.83 81.79 83.76

Table 2: Performance comparisons of our proposed approach with baselines.

4.1 Performance Evaluation
In order to show the effectiveness of our proposed
method, we chose the neural network models pop-
ular in single task and multitask setting for our
specified problem of text classification.
Baseline 1: Single Task-LSTM
Baseline 2: Multi Task-LSTM (Liu et al., 2016).
Table-2 reports the results of our proposed ap-
proach with baselines system. From the results,
we observe that the performance on both the tasks
significantly increase with the introduction of ad-
versarial learning in multi-task framework. More
specifically, compared to baseline 1, we observe
the performance improvement of 2.81 and 1.31 F-
score points on Task 1 & 2, respectively. In multi-
task framework (Baseline 2), our system achieves
the improvements of 2.35 and 2.28 F-score points
on Task 1 & 2, respectively. We also analyze that
mere introduction of multi-task framework some-
times may cause a drop in performance. This is be-
cause of the shared feature-space which includes
both private and shared features leading to redun-
dancy. Statistical significance test shows that the
improvements over both the baselines are statisti-
cally significant as (p-value < 0.05).

4.2 Analysis
Our analysis on medical blog-text discovers
that unlike traditional SA study on social media
text, SA on medical text owes several unique
challenges which have formed the major causes
of the errors:
(1) Usually, the user present the health related
information in a more elusive way which requires
deeper analysis of metaphor and sarcasm. For
example:
“ Lol I’m just a big ball of anxiety fun.”,
“ My head is like air.”
(2) MS is often presented implicitly which need
to be inferred, for instance, from the medical
concepts used in documents. Implicit MS (Exist)
present in the blog are for example:
“It almost feels like im half awake and half
asleep.”

(3) The usage of abbreviated and short words
have become ubiquitous in medical blog text. For
e.g.,“Cit” for the “Citopram”.
(4) The context scope of a sentiment changes
extensively from a single phrase to multiple
sentences. Moreover, adversative transitive
words were widely used to link these phrases or
sentences. The medical sentiment was bounded
and implied by these inter and intra- sentence
discourse relations. For example:
“The thoughts are of anything which is quite
good. I have an anxiety disorder but I can’t
cope with it...”

5 Conclusion and Future Work

In this paper, we have introduced different aspects
of sentiments in the context of medicine such as
‘medication’ and ‘medical condition’ instead of
conventional polarity to judge user’s health sta-
tus. For this, we have utilized highly representa-
tive medical blog text to validate our study. We
have proposed a robust sentiment-sensitive multi-
task framework, settling on adversarial learning to
capture the medical sentiment in the user’s blog-
post. We were able to obtain significant per-
formance improvements over the state-of-the-art
baseline system in all the cases. In future, we plan
to address the implicit and sarcastic medical senti-
ments that account to the majority of the errors.
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Abstract

While neural networks have been shown to
achieve impressive results for sentence-level
sentiment analysis, targeted aspect-based sen-
timent analysis (TABSA) — extraction of fine-
grained opinion polarity w.r.t. a pre-defined
set of aspects — remains a difficult task.
Motivated by recent advances in memory-
augmented models for machine reading, we
propose a novel architecture, utilising exter-
nal “memory chains” with a delayed mem-
ory update mechanism to track entities. On
a TABSA task, the proposed model demon-
strates substantial improvements over state-of-
the-art approaches, including those using ex-
ternal knowledge bases.1

1 Introduction

Targeted aspect-based sentiment analysis
(TABSA) is the task of identifying fine-grained
opinion polarity towards a specific aspect as-
sociated with a given target. The task requires
classification of opinions on different entities
across a range of different attributes, with the
expectation that there will be no overt opinion
expressed on a given entity for many attributes.
This can be seen in Example (1), e.g., where
opinions on the aspects SAFETY and PRICE are
expressed for entity LOC1 but not entity LOC2:2

(1) LOC1 is your best bet for secure although
expensive and LOC2 is too far.

Target Aspect Sentiment

LOC1 SAFETY positive
LOC1 PRICE negative
LOC2 TRANSIT-LOCATION negative

1Code available at https://github.com/
liufly/delayed-memory-update-entnet.

2Note that in our dataset, all entity mentions have been
pre-nomalised to LOCn, where n is an index.

The earliest work on (T)ABSA relied heavily
on feature engineering (Wagner et al., 2014; Kir-
itchenko et al., 2014), but more recent work based
on deep learning has used models such as LSTMs
to automatically learn aspect-specific word and
sentence representations (Tang et al., 2016a).

Despite these successes, keeping track of mul-
tiple entity–aspect pairs remains a difficult task,
even for an LSTM. As reported in Saeidi et al.
(2016), a target-dependent biLSTM is ineffective,
both in terms of aspect detection and sentiment
classification, compared to a simple logistic re-
gression model with n-gram features. Intuitively,
we would expect that a model which better cap-
tures linguistic structure via the original word se-
quencing should perform better, which provides
the motivation for this research.

More recently, successful works in (T)ABSA
have explored the idea of leveraging external
memory (Tang et al., 2016b; Chen et al., 2017).
Their models are largely based on memory net-
works (Weston et al., 2015), originally developed
for reasoning-focused machine reading compre-
hension tasks. In contrast to memory networks,
where each input sentence/word occupies a mem-
ory slot and is then accessed via attention indepen-
dently, recent advances in machine reading sug-
gest that processing inputs sequentially is bene-
ficial to overall performance (Seo et al., 2017;
Henaff et al., 2017).

However, successful machine reading models
may not be directly applicable to TABSA due to
the key difference in the granularity of inputs be-
tween the two tasks: on the Children’s Book Test
corpus (CBT), for example, competitive models
take as input a window of text, centred around can-
didate entities, with crucial information contained
within that window (Hill et al., 2015; Henaff et al.,
2017). In TABSA, given the fine-grained nature
of the task, it is common practice for models to
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operate at the word- rather than chunk/sentence-
level. It is not uncommon to see examples like
Example (1), where the sentence starts with LOC1,
but the negative PRICE sentiment towards the en-
tity is not expressed until much later. Moreover,
phrases such as best bet and although play the role
of triggers, indicating that succeeding tokens bear
aspect/sentiment signal. This key difference ne-
cessitates the ability to model the delayed activa-
tion of memory updates.

In this work, we propose a novel model ar-
chitecture for TABSA, augmented with multiple
“memory chains”, and equipped with a delayed
memory update mechanism, to keep track of nu-
merous entities independently. We evaluate the
effectiveness of the proposed model over the task
of TABSA, and achieve substantial improvements
over a number of baselines, including one incor-
porating external knowledge bases, setting a new
state of the art in both sentiment classification and
aspect detection.

2 Methodology

Task description. In TABSA, a sentence s
typically consists of a sequence of words:
{w1, . . . , wi, . . . , wm} where wi denotes words
interleaved with one or more targets (t), which
we assume to be pre-identified as with LOC1
and LOC2 in Example (1). Following Saeidi
et al. (2016), we frame the task as a 3-class
classification problem: given a sentence s, a
pre-identified set of target entities T and fixed
set of aspects A, predict the sentiment polarity
y ∈ {positive, negative, none} over the full set
of target–aspect pairs {(t, a) : t ∈ T, a ∈
A}. For example, (LOC1,SAFETY) has gold-
standard polarity positive, while (LOC1,TRANSIT-
LOCATION) has polarity none.

Proposed model. To this end, we design a neu-
ral network architecture, capable of tracking and
updating the states of entities at the right time with
external memory, making it a natural fit for the
task. Specifically, our model maintains a number
of “memory chains” hj , one for each entity with
the key kj and dynamically updates the states (hj)
of them as it progresses through the sentence with
the help of the delay recurrence dj , taking previ-
ous activations into account. An illustration of our
model is provided in Figure 1.

wi

φ

GRU
key kj

delay dj
i−1

h̃j
i

dj
i

σL

C

�
update
gate
gji

+
memory hj

i−1

hj
i

Figure 1: Illustration of our model with a single mem-
ory chain at time i. σ, φ and GRU represent Equa-
tions (2), (3) and (4), while circled nodes L, C, � and
+ depict the location, content terms, Hadamard prod-
uct, and addition, resp.

Delayed memory update. Update of each
memory chain is controlled by a gating mecha-
nism, consisting of three components: the “con-
tent” term wi · hj

i−1 , the “location” term wi · kj

and the “delay” term v ·dj
i where dj

i carries knowl-
edge regarding previous activation of the gate and
v is a trainable parameter vector. All three terms
may lead to the activation of gji , but differ in how
they turn the gate on. While the “location” term
causes the gate to open for memory chains whose
keys (kj) match the input, the “content” term trig-
gers the activation when the content of the entities
(hj

i−1) matches the input. The delay term models
how and when the gate was turned on in the past
with a GRU (Chung et al., 2014) and how past ac-
tivations should influence the current one.

More formally, with arrows denoting processing
direction, the update gate is defined as:

−→g j
i = σ(wi ·

−→
h j

i−1 + wi · kj +−→v · −→d j
i ) (2)

where −→g j
i is the update gate value for the j-th

memory at time i,3 kj is the embedding for the j-
th entity (key),

−→
h j

i−1 is the hidden memory repre-
sentation responsible for keeping track of the state
of the j-th entity (content), and σ is the sigmoid
activation function. The delay recurrence

−→
d j

i is
defined as:

−→̃
h j

i = φ(
−→
U
−→
h j

i−1 +
−→
V kj +

−→
Wwi) (3)

−→
d j

i =
−−→
GRU(

−→̃
h j

i ,
−→
d j

i−1) (4)

3While −→g j
i could instead be a vector for finer-grained

control, following Henaff et al. (2017), we use a scalar for
simplicity.
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where
−→̃
h j

i is the new candidate memory vector to
be incorporated into the existing memory

−→
h j

i−1

to form the new memory
−→
h j

i , φ is the paramet-
ric ReLU activation function (He et al., 2015), and−→
U ,
−→
V and

−→
W are trainable weight matrices.

Once the update gate value has been computed,
the j-th memory is then updated according to the
intensity of −→g j

i :
−→̊
h j

i =
−→
h j

i−1 +−→g j
i �
−→̃
h j

i (5)

where � is the Hadamard product, and
−→̊
h j

i is the
unnormalised memory representation for the j-th
entity.

Essentially, gate −→g j
i determines how much the

j-th memory should be updated, factoring in three
elements: (1) how similar the current input wi is to
the entity being tracked (kj); (2) how related the
current input wi is to the state of the j-th entity
(
−→
h j

i−1); and (3) how past activation should influ-
ence the current one. Update of the memory of an
entity is only triggered when the gate is activated.

Normalisation. Following the update, the
model performs a normalisation step, allowing

the memory to forget:
−→
h j

i =
−→̊
h j

i/‖
−→̊
h j

i‖ where

‖
−→̊
h j

i‖ denotes the Euclidean norm of
−→̊
h j

i . As all
information stored in

−→
h j

i is constrained to be of

unit length, when new information
−→̃
h j

i is added
to the existing memory

−→
h j

i−1, the cosine distance
between the original and updated memory de-
creases, allowing the model to forget information
deemed out-of-date.

Bi-directionality. We apply the above steps both
forward and backward over the sentence, enabling
the model to capture sentiment terms appearing
before and after its associated entity. The memory
representation incorporating contexts from both
directions is obtained by hj

i =
−→
h j

i +
←−
h j

i , with←−
h j

i computed analogously to
−→
h j

i .

Final classifier. Our model predicts the senti-
ment polarity ŷ to the given target t and aspect
a embeddings by incorporating the states of all
tracked entities in the form of a weighted sum u:

pj = softmax
(

(kj)>Watt

[
t
a

])
(6)

u =
∑

j

pjhj
m (7)

where [ ] denotes concatenation, m is sentence
length, and Watt is a trainable weight matrix.
Here, the values of both t and a take the em-
bedding values of their corresponding words (i.e.
t and a are drawn from the same embedding
matrix as are the input words wi). In the case
of multi-word aspect expressions (e.g. TRANSIT-
LOCATION), we take the mean of the embeddings
of the constituent words. We then transform u to
get:

ŷ = softmax(Rφ(Hu + a)) (8)

Training is carried out based on cross entropy loss.

L = CrossEntropy(y, ŷ) (9)

Comparision with EntNet. While our model
is largely inspired by Recurrent Entity Networks
(EntNets: Henaff et al. (2017)), it differs in
three main respects. First, we explicitly model
the delay of activation of the update gates gj with
the GRU in Equations (2) and (4) as opposed to
making hj

i implicitly assume the same responsi-
bility in EntNets. Admittedly, for EntNets
on bAbI and CBT, given the coarse-grained na-
ture and the difference in the granularity of inputs
(sentences vs. words), the demand for modelling
delayed memory update is less obvious. With this
delayed gate activation mechanism, we essentially
decouple the duty of capturing transitions of acti-
vations between steps from the task of entity state
tracking. That is, hj

t is now dedicated to keep-
ing track of the state of the j-th entity only and
released from the burden of monitoring the acti-
vation of the update gate. Second, tailoring to the
task of TABSA, we incorporate not only the target
t but also the aspect a when trying to determine
the attention in the softmax function. Third, the
proposed model is bi-directional.

3 Experiments

3.1 Experimental Setup
Dataset. To test the effectiveness of our model,
we use Sentihood, a dataset constructed by
Saeidi et al. (2016) for the purpose of detecting
aspects and identifying sentiments for each target–
aspect pair, consisting of 5, 215 sentences, 3, 862
of which contain a single target, and the remainder
multiple targets. Each sentence is annotated with
a list of tuples {(t, a, y)} with each identifying the
sentiment polarity y towards a specific aspect a of
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Model
Aspect Sentiment

Acc. F1 AUC Acc. AUC

LR (Saeidi et al., 2016) — 39.3 92.4 87.5 90.5
LSTM-Final (Saeidi et al., 2016) — 68.9 89.8 82.0 85.4
LSTM-Loc (Saeidi et al., 2016) — 69.3 89.7 81.9 83.9
LSTM+TA+SA (Ma et al., 2018) 66.4 76.7 — 86.8 —
SenticLSTM (Ma et al., 2018) 67.4 78.2 — 89.3 —
EntNet† 66.3 69.8 89.5 87.6 89.7
Our model† 73.5 78.5 94.4 91.0 94.8

Table 1: Performance on Sentihood. We take the results reported in Saeidi et al. (2016) and Ma et al. (2018),
resp; Bold = best performance; “—” = not reported; † = average performance over 5 runs.

a given target t in s. Ultimately, given a sentence
s, we are interested in both detecting the mention
of an aspect a for target t (a label other than none),
and also identifying the specific sentiment y w.r.t.
the target–aspect pair. A detailed description of
the task is presented in Section 2.

Model configuration. We initialise our model
with GloVe (300-D, trained on 42B tokens, 1.9M
vocab, not updated during training: Pennington
et al. (2014)) 4 and pre-process the corpus with to-
kenisation using NLTK (Bird et al., 2009) and case
folding. Training is carried out over 800 epochs
with the FTRL optimiser (McMahan et al., 2013)
and a batch size of 128 and learning rate of 0.05.
We use the following hyper-parameters for weight
matrices in both directions: R ∈ R300×3, H, U,
V, W are all matrices of size R300×300, v ∈ R300,
and hidden size of the GRU in Equation (4) is 300.
Dropout is applied to the output of φ in the final
classifier (Equation (8)) with a rate of 0.2. More-
over, we employ the technique introduced by Gal
and Ghahramani (2016) where the same dropout
mask is applied to the input wi at every step with
a rate of 0.2. Lastly, to curb overfitting, we reg-
ularise the last layer (Equation (8)) with an L2

penalty on its weights: λ‖R‖ where λ = 0.001.
We empirically set the number of memory

chains to 6, with the keys of two of them set to
the same embeddings as the target words LOC1
and LOC2, resp., and the other 4 chains with free
key embeddings which are updated during train-
ing, and therefore free to capture any entities.5

4http://nlp.stanford.edu/data/glove.
42B.300d.zip

5In line with the findings of Henaff et al. (2017) that ty-
ing key vectors damages model performance, we observed
similar performance deterioration when using tied keys only.
While we also experimented with various configurations (all

Consistent with Saeidi et al. (2016), we tackle
the data unbalanced problem (none� positive +
negative) by sampling the same number of training
instances within a batch randomly from each class.

Evaluation. We benchmark against baseline
systems presented in the works of Saeidi et al.
(2016) and Ma et al. (2018): (1) LR: a logistic re-
gression classifier with n-gram and POS tag fea-
tures; (2) LSTM-Final: a biLSTM taking the
final states as representations; (3) LSTM-Loc: a
biLSTM taking the states at the location where
target t is mentioned as representations; (4)
LSTM+TA+SA: a biLSTM equipped with complex
target and sentence-level attention mechanisms;
(5) SenticLSTM: an improved version of (4) in-
corporating the SenticNet external knowledge
base (Cambria et al., 2016). We additionally im-
plement a bi-directional EntNet with the same
hyper-parameter settings and GloVe embeddings
as our model (Henaff et al., 2017).

In terms of evaluation, we adopt the stan-
dard 70/10/20 train/validation/test split, and re-
port the test performance corresponding to the
model with the best validation score. Following
Saeidi et al. (2016), we consider the top 4 aspects
only (GENERAL, PRICE, TRANSIT-LOCATION,
and SAFETY) and employ the following evalua-
tion metrics: macro-average F1 and AUC for as-
pect detection ignoring the none class, and accu-
racy and macro-average AUC for sentiment clas-
sification. Following Ma et al. (2018), we also
report strict accuracy for aspect detection, as the
fraction of sentences where all aspects are detected
correctly.

tied vs. all free), this hybrid setup results in the best perfor-
mance on the validation set.
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Figure 2: Example of the gate value gt averaged across
memory chains, forward and backward, in EntNet vs.
our model.

3.2 Results

The experimental results are presented in Table 1.

State-of-the-art results. Our model achieves
state-of-the-art results for both aspect detection
and sentiment classification. It is impressive that
the proposed model, equipped only with domain-
independent general-purpose GloVe embeddings,
outperforms SenticLSTM, an approach heavily
reliant on external knowledge bases and domain-
specific embeddings.

EntNet vs. our model. We see consistent per-
formance gains for our model in both aspect de-
tection and sentiment classification, compared to
EntNet, esp. for aspect detection, underlining
the benefit of delayed update gate activation.

3.3 Discussion

To better understand what the model has learned,
we visualise the average gate value gt in Figure 2,
where colour intensity indicates how much mem-
ory is updated. Observe that, while updated less by
the mention of LOC1, our model carries out mem-
ory updates upon seeing lovely town and plenty
of restaurants, key phrases associated with as-
pects such as GENERAL and DINNING. Perhaps
even more importantly, despite the distance be-
tween LOC1 and the final portion of the sentence,
our model recognises the relevance to TRANSIT-
LOCATION and keeps the update gates open to
track this particular aspect, as opposed to EntNet
where the last phase is overlooked. The ultimate
prediction for the TRANSIT-LOCATION aspect of
LOC1 is correct with our model (positive), but not
detected by EntNet (none), resulting in a false
negative. More interestingly, with EntNet, once
distant from a target, it can be frequently observed
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Figure 3: Sensitivity study of model performance to
# of memory chains n. Note that we report average
performance over 5 runs with standard deviation.

that the activation rate of gt tends to drop, a ten-
dency not so apparent with our model.

In Figure 3, we further study the sensitivity
of model performance to the number of mem-
ory chains n (2 of which are constrained to
track LOC1 and LOC2, the rest are unconstrained
chains). Observe that, when n < 5, the model suf-
fers from insufficient capacity (not enough mem-
ory chains) to capture the various aspects required
by the task, with aspect detection F1 remaining be-
low 78. In particular, when n = 2 (no uncon-
strained chains), model performance drops sub-
stantially to a F1 of 76.6 ± 0.4. Once n ≥ 5,
aspect detection F1 increases to around 78, and is
quite stable even with as many as n = 10 chains.

4 Conclusion

In this paper, we have proposed a model which
is capable of dynamically tracking entities with a
delayed memory update mechanism, and demon-
strated the effectiveness of the method over the
task of targeted aspect-based sentiment analysis.
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Abstract

We combine two of the most popular ap-
proaches to automated Grammatical Er-
ror Correction (GEC): GEC based on Sta-
tistical Machine Translation (SMT) and
GEC based on Neural Machine Translation
(NMT). The hybrid system achieves new
state-of-the-art results on the CoNLL-2014
and JFLEG benchmarks. This GEC system
preserves the accuracy of SMT output and,
at the same time, generates more fluent sen-
tences as it typical for NMT. Our analysis
shows that the created systems are closer
to reaching human-level performance than
any other GEC system reported so far.

1 Introduction

Currently, the most effective GEC systems are
based on phrase-based statistical machine trans-
lation (Rozovskaya and Roth, 2016; Junczys-
Dowmunt and Grundkiewicz, 2016; Chollampatt
and Ng, 2017). Systems that rely on neural ma-
chine translation (Yuan and Briscoe, 2016; Xie
et al., 2016; Schmaltz et al., 2017; Ji et al., 2017)
are not yet able to achieve as high performance
as SMT systems according to automatic evalua-
tion metrics (see Table 1 for comparison on the
CoNLL-2014 test set). However, it has been shown
that the neural approach can produce more fluent
output, which might be desirable by human eval-
uators (Napoles et al., 2017). In this work, we
combine both MT flavors within a hybrid GEC sys-
tem. Such a GEC system preserves the accuracy of
SMT output and at the same time generates more
fluent sentences achieving new state-of-the-art re-
sults on two different benchmarks: the annotation-
based CoNLL-2014 and the fluency-based JFLEG
benchmark. Moreover, comparison with human
gold standards shows that the created systems are

R&R’16

JD
&G’16

This
work

Y&B’16

Sch
.&

al.
’17

Ji&
al.

’17

This
work

Y&al.
’17

Ch.&
Ng’1

7

This
work

40

45

50

55

M2

SMT NMT Hybrid

Figure 1: Comparison of SMT, NMT and hybrid GEC
systems on the CoNLL-2014 test set (M2).

closer to reaching human-level performance than
any other GEC system described in the literature
so far.

Using consistent training data and preprocess-
ing (§ 2), we first create strong SMT (§ 3) and
NMT (§ 4) baseline systems. Then, we experiment
with system combinations through pipelining and
reranking (§ 5). Finally, we compare the perfor-
mance with human annotations and identify issues
with current state-of-the-art systems (§ 6).

2 Data and preprocessing

Our main training data is NUCLE (Dahlmeier et al.,
2013). English sentences from the publicly avail-
able Lang-8 Corpora (Mizumoto et al., 2012) serve
as additional training data.

We use official test sets from two CoNLL shared
tasks from 2013 and 2014 (Ng et al., 2013, 2014)
as development and test data, and evaluate using
M2 (Dahlmeier and Ng, 2012). We also report
results on JFLEG (Napoles et al., 2017) with the
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Corpus Sentences Tokens

NUCLE 57,151 1,162K
Lang-8 NAIST 1,943,901 25,026K
CoNLL-2013 (dev) 1,381 29K
CoNLL-2014 (test) 1,312 30K
JFLEG Dev 754 14K
JFLEG Test 747 13K

Table 1: Statistics for training and testing data sets.

GLEU metric (Napoles et al., 2015). The data set
is provided with a development and test set split.
All data sets are listed in Table 1.

We preprocess Lang-8 with the NLTK tokenizer
(Bird and Loper, 2004) and preserve the original
tokenization in NUCLE and JFLEG. Sentences are
truecased with scripts from Moses (Koehn et al.,
2007). For dealing with out-of-vocabulary words,
we split tokens into 50k subword units using Byte
Pair Encoding (BPE) by Sennrich et al. (2016b).
BPE codes are extracted only from correct sen-
tences from Lang-8 and NUCLE.

3 SMT systems

For our SMT-based systems, we follow recipes
proposed by Junczys-Dowmunt and Grundkiewicz
(2016), and use a phrase-based SMT system with
a log-linear combination of task-specific features.
We use word-level Levenshtein distance and edit
operation counts as dense features (Dense), and cor-
rection patterns on words with one word left/right
context on Word Classes (WC) as sparse features
(Sparse). We also experiment with additional
character-level dense features (Char. ops). All
systems use a 5-gram Language Model (LM) and
OSM (Durrani et al., 2011) both estimated from
the target side of the training data, and a 5-gram
LM and 9-gram WCLM trained on Common Crawl
data (Buck et al., 2014).

Experiment settings Translation models are
trained with Moses (Koehn et al., 2007), word-
alignment models are produced with MGIZA++
(Gao and Vogel, 2008), and no reordering models
are used. Language models are built using KenLM
(Heafield, 2011), while word classes are trained
with word2vec1.

We tune the systems separately for M2 and
GLEU metrics. MERT (Och, 2003) is used for
tuning dense features and Batch Mira (Cherry and
Foster, 2012) for sparse features. For M2 tunning

1https://github.com/dav/word2vec

CoNLL JFLEG
System P R M2 GLEU

SMT Dense 56.91 30.25 48.38 54.68
+ Sparse 60.28 29.40 49.82 55.25

+ Char. ops 60.27 30.21 50.27 55.79

Table 2: Results for SMT baseline systems on the
CoNLL-2014 (M2) and JFLEG Test (GLEU) sets.

we follow the 4-fold cross-validation on NUCLE
with adapted error rate recommended by Junczys-
Dowmunt and Grundkiewicz (2016). Models evalu-
ated on GLEU are optimized on JFLEG Dev using
the GLEU scorer, which we added to Moses. We
report results for models using feature weights av-
eraged over 4 tuning runs.

Results Other things being equal, using the orig-
inal tokenization, applying subword units, and
extending edit-based features result in a similar
system to Junczys-Dowmunt and Grundkiewicz
(2016): 49.82 vs 49.49 M2 (Table 2).

The phrase-based SMT systems do not deal well
with orthographic errors (Napoles et al., 2017) —
if a source word has not been seen in the train-
ing corpus, it is likely copied as a target word.
Subword units can help to solve this problem par-
tially. Adding features based on character-level edit
counts increases the results on both test sets.

A result of 55.79 GLEU on JFLEG Test is al-
ready 2 points better than the GLEU-tuned NMT
system of Sakaguchi et al. (2017) and only 1 point
worse than the best reported result by Chollampatt
and Ng (2017) with their M2-tuned SMT system,
even though no additional spelling correction has
been used at this point. We experiment with spe-
cialized spell-checking methods in later sections.

4 NMT systems

The model architecture we choose for our NMT-
based systems is an attentional encoder-decoder
model with a bidirectional single-layer encoder and
decoder, both using GRUs as their RNN variants
(Sennrich et al., 2017). A similar architecture has
been already tested for the GEC task by Sakaguchi
et al. (2017), but we use different hyperparameters.

To improve the performance of our NMT models,
similarly to Xie et al. (2016) and Ji et al. (2017), we
combine them with an additional large-scale lan-
guage model. In contrast to previous studies, which
use an n-gram probabilistic LM, we build a 2-layer
Recurrent Neural Network Language Model (RNN
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CoNLL JFLEG
System P R M2 GLEU

NMT 66.61 17.58 42.76 50.08
NMT + RNN-LM 61.05 26.71 48.56 56.04
NMT×4 71.10 15.42 41.29 50.30
NMT×4 + RNN-LM 60.27 30.08 50.19 56.74

Table 3: Results for NMT systems on the CoNLL-2014
(M2) and JFLEG Test (GLEU) sets.

LM) with GRU cells which we train again on En-
glish Common Crawl data (Buck et al., 2014).

Experimental settings We train with the Marian
toolkit (Junczys-Dowmunt et al., 2018) on the same
data we used for the SMT baselines, i.e. NUCLE
and Lang-8. The RNN hidden state size is set to
1024, embedding size to 512. Source and target
vocabularies as well as subword units are the same.

Optimization is performed with Adam (Kingma
and Ba, 2014) and the mini-batch size fitted into
4GB of GPU memory. We regularize the model
with scaling dropout (Gal and Ghahramani, 2016)
with a dropout probability of 0.2 on all RNN in-
puts and states. Apart from that we dropout entire
source and target words with probabilities of 0.2
and 0.1 respectively. We use early stopping with a
patience of 10 based on the cross-entropy cost on
the CoNLL-2013 test set. Models are validated and
saved every 10,000 mini-batches. As final mod-
els we choose the one with the best performance
on the development set among the last ten model
check-points based on the M2 or GLEU metrics.

Size of RNN hidden state and embeddings, target
vocabulary, and optimization options for the RNN
LM are identical to those used for our NMT models.
Decoding is done by beam search with a beam size
of 12. We normalize scores for each hypothesis by
sentence length.

Results A single NMT model achieves lower per-
formance than the SMT baselines (Table 3). How-
ever, the M2 score of 42.76 for CoNLL-2014 is
already higher than the best published result of
41.53 M2 for a strictly neural GEC system of Ji
et al. (2017) that has not been enhanced by an addi-
tional language model.

Our RNN LM is integrated with NMT models
through ensemble decoding (Sennrich et al., 2016a).
Similarly to Ji et al. (2017), we choose the weight
of the language model using grid search on the
development set2. This strongly improves recall,

2Used weights are 0.2 and 0.25 for M2 and GLEU evalua-
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Figure 2: Contribution of a language model (LM) for
SMT and NMT GEC systems.

and thus boosts the results significantly on both test
sets (+5.8 M2 and +5.96 GLEU).

An ensemble of four independently trained mod-
els3 (NMT×4), on the other hand, increases preci-
sion at the expense of recall, which may even lead
to a performance drop. Adding the RNN LM to that
ensemble balances this negative effect, resulting in
50.19 M2. These are by far the highest results re-
ported on both benchmarks for pure neural GEC
systems.

Comparison to SMT systems With model en-
sembling, the neural systems achieve performance
similar to SMT baselines (Figure 2). A stripped-
down SMT system without CCLM, quite surpris-
ingly gives better results on JFLEG than the NMT
system, and the opposite is true for CoNLL-2014.
The reason for the lower performance on JFLEG
might be a large amount of spelling errors, which
are more efficiently corrected by the SMT system
using subword units.

If both systems are enhanced by a large-scale
language model, the neural system outperforms
the SMT system on JFLEG and it is competitive
with SMT systems on CoNLL-2014. However, it
is not known if the results would preserve if the
NMT model is combined with a probabilistic n-
gram LM instead as it has been proposed in the
previous works (Xie et al., 2016; Ji et al., 2017).

tion, respectively.
3Each model is weighted equally during decoding.
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CoNLL JFLEG
System P R M2 GLEU

Best SMT 60.27 30.21 50.27 55.79
→ Pip. NMT 60.25 34.80 52.56 57.21
→ Pip. NMT+LM 58.87 39.23 53.51 58.83

+ Res. RNN-LM 70.97 24.86 51.77 56.97
+ Res. NMT 70.40 26.69 53.03 57.21
+ Res. NMT+LM 71.40 28.60 54.95 57.53

→ Pip. NMT+LM 65.73 33.36 55.05 58.83
+ Spell SMT 70.80 30.57 56.05 60.09
→ Pip. NMT+LM 66.77 34.49 56.25 61.50

Table 4: Results for hybrid SMT-NMT systems on the
CoNLL-2014 (M2) and JFLEG Test (GLEU) sets.

5 Hybrid SMT-NMT systems

We experiment with pipelining and rescoring meth-
ods in order to combine our best SMT and NMT
GEC systems4.

SMT-NMT pipelines The output corrected by
an SMT system is passed as an input to the NMT en-
semble with or without RNN LM5. In this case the
NMT system serves as an automatic post-editing
system. Pipelining improves the results on both
test sets by increasing recall (Table 4). As the per-
formance of the NMT system without a RNN LM
is much lower than the performance of the SMT
system alone, this implies that both approaches
produce complementary corrections.

Rescoring with NMT Rescoring of an n-best list
obtained from one system by another is a com-
monly used technique in GEC, which allows to
combine multiple different systems or even differ-
ent approaches (Hoang et al., 2016; Yannakoudakis
et al., 2017; Chollampatt and Ng, 2017; Ji et al.,
2017). In our experiments, we generate a 1000
n-best list with the SMT system and add separate
scores from each neural component. Scores of
NMT models and the RNN LM are added in the
form of probabilities in negative log space. The
re-scored weights are obtained from a single run
of the Batch Mira algorithm (Cherry and Foster,
2012) on the development set.

As opposed to pipelining, rescoring improves
precision at the expense of recall and is more ef-
fective for the CoNLL data resulting in up to 54.95
M2. On JFLEG, rescoring only with the RNN LM

4The best system combinations are chosen again based on
the development sets, i.e. CoNLL-2013 and JFLEG Dev. We
omit these results as they are highly overestimated.

5We did not observed any improvements if the order of the
systems is reversed.

CoNLL-10 JFLEG
System P R M2 GLEU

Human Avg. 73.17 68.75 72.15 62.38

Ch&Ng’17 79.46 43.73 68.29 56.78
Ratio (%) 1.08 0.64 94.66 91.02

This work 83.15 46.97 72.04 61.50
Ratio (%) 1.14 0.68 99.85 98.59
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Figure 3: Comparison with human annotators. The fig-
ure presents average M2 and GLEU scores with stan-
dard deviations.

produces similar results as rescoring with the NMT
ensemble. However, the best result for rescoring is
lower than for pipelining on that test set. It seems
the SMT system is not able to produce as diversi-
fied corrections in an n-best list as those generated
by the NMT ensemble.

Spelling correction and final results Pipelining
the NMT-rescored SMT system and the NMT sys-
tem leads to further improvement. We believe this
can be explained by different contributions to pre-
cision and recall trade-offs for the two methods,
similar to effects observed for the combination of
the NMT ensemble and our RNN LM.

On top of our final hybrid system we add a spell-
checking component, which is run before pipelin-
ing. We use a character-level SMT system follow-
ing Chollampatt and Ng (2017) which they deploy
for unknown words in their word-based SMT sys-
tem. As our BPE-based SMT does not really suffer
from unknown words, we run the spell-checking
component on words that would have been seg-
mented by the BPE algorithm. This last system
achieves the best results reported in this paper:
56.25 M2 on CoNLL-2014 and 61.50 GLEU on
JFLEG Test.
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System Example

Source but now every thing is change , the life becom more dificullty .
Best SMT But now everything is changed , the life becom more dificullty .
Best NMT But now everything is changing , the life becomes more difficult .
Pipeline But now everything is changed , the life becomes more difficult .
Rescoring But now everything has changed , the life becom more dificullty .

+ Pipeline But now everything has changed , the life becomes more difficult .

Reference 1 Now everything has changed , and life becomes more difficult .
Reference 2 Everything has changed now and life has become more difficult .
Reference 3 But now that everything changes , life becomes more difficult .
Reference 4 But now that everything is changing , life becomes more difficult .

Table 5: System outputs for the example source sentence from the JFLEG Test set.

6 Analysis and future work

For both benchmarks our systems are close to au-
tomatic evaluation results that have been claimed
to correspond to human-level performance on the
CoNLL-2014 test set and on JFLEG Test.

Example outputs Table 5 shows system outputs
for an example source sentence from the JFLEG
Test corpus that illustrate the complementarity of
the statistical and neural approaches. The SMT
and NMT systems produce different corrections.
Rescoring is able to generate a unique correction
(is change→has changed), but it fails in generating
some corrections from the neural system, e.g. mis-
spellings (becom and dificullty). Pipelining, on the
other hand, may not improve a local correction
made by the SMT system (is changed). The combi-
nation of the two methods produces output, which
is most similar to the references.

Comparison with human annotations Bryant
and Ng (2015) created an extension of the CoNLL-
2014 test set with 10 annotators in total, JFLEG
already incorporates corrections from 4 annotators.
Human-level results for M2 and GLEU were cal-
culated by averaging the scores for each annotator
with regard to the remaining 9 (CoNLL) or 3 (JF-
LEG) annotators, respectively.

Figure 3 contains human level scores, our results,
and previously best reported results by Chollampatt
and Ng (2017). Our best system reaches nearly
100% of the average human score according to M2

and nearly 99% for GLEU being much closer to
that bound than previous works6.

6During the camera-ready preparation, Chollampatt and
Ng (2018) have published a GEC system based on a multi-
layer convolutional encoder-decoder neural network with a
character-based spell-checking module improving the previ-
ous best result to 54.79 M2 on CoNLL-2014 and 57.47 GLEU
on JFLEG Test.

Further inspection reveals, however, that the pre-
cision/recall trade-off for the automatic system in-
dicates lower coverage compared to human cor-
rections — lower recall is compensated with high
precision7. Automatic systems might, for example,
miss some obvious error corrections and therefore
easily be distinguishable from human references.
Future work would require a human evaluation ef-
fort to draw more conclusions.
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Abstract

We examine the problem of question answer-
ing over knowledge graphs, focusing on sim-
ple questions that can be answered by the
lookup of a single fact. Adopting a straight-
forward decomposition of the problem into en-
tity detection, entity linking, relation predic-
tion, and evidence combination, we explore
simple yet strong baselines. On the popular
SIMPLEQUESTIONS dataset, we find that ba-
sic LSTMs and GRUs plus a few heuristics
yield accuracies that approach the state of the
art, and techniques that do not use neural net-
works also perform reasonably well. These re-
sults show that gains from sophisticated deep
learning techniques proposed in the literature
are quite modest and that some previous mod-
els exhibit unnecessary complexity.

1 Introduction

There has been significant recent interest in sim-
ple question answering over knowledge graphs,
where a natural language question such as “Where
was Sasha Vujacic born?” can be answered via the
lookup of a simple fact—in this case, the “place
of birth” property of the entity “Sasha Vujacic”.
Analysis of an existing benchmark dataset (Yao,
2015) and real-world user questions (Dai et al.,
2016; Ture and Jojic, 2017) show that such ques-
tions cover a broad range of users’ needs.

Most recent work on the simple QA task in-
volves increasingly complex neural network (NN)
architectures that yield progressively smaller gains
over the previous state of the art (see §2 for more
details). Lost in this push, we argue, is an under-
standing of what exactly contributes to the effec-
tiveness of a particular NN architecture. In many
cases, the lack of rigorous ablation studies further
compounds difficulties in interpreting results and
credit assignment. To give two related examples:
Melis et al. (2017) reported that standard LSTM

architectures, when properly tuned, outperform
some more recent models; Vaswani et al. (2017)
showed that the dominant approach to sequence
transduction using complex encoder–decoder net-
works with attention mechanisms work just as
well with the attention module only, yielding net-
works that are far simpler and easier to train.

In line with an emerging thread of research that
aims to improve empirical rigor in our field by fo-
cusing on knowledge and insights, as opposed to
simply “winning” (Sculley et al., 2018), we take
the approach of peeling away unnecessary com-
plexity until we arrive at the simplest model that
works well. On the SIMPLEQUESTIONS dataset,
we find that baseline NN architectures plus sim-
ple heuristics yield accuracies that approach the
state of the art. Furthermore, we show that a com-
bination of simple techniques that do not involve
neural networks can still achieve reasonable ac-
curacy. These results suggest that while NNs do
indeed contribute to meaningful advances on this
task, some models exhibit unnecessary complex-
ity and that the best models yield at most modest
gains over strong baselines.

2 Related Work

The problem of question answering on knowledge
graphs dates back at least a decade, but the most
relevant recent work in the NLP community comes
from Berant et al. (2013). This thread of work
focuses on semantic parsing, where a question is
mapped to its logical form and then translated to
a structured query, cf. (Berant and Liang, 2014;
Reddy et al., 2014). However, the more recent
SIMPLEQUESTIONS dataset (Bordes et al., 2015)
has emerged as the de facto benchmark for evalu-
ating simple QA over knowledge graphs.

The original solution of Bordes et al. (2015) fea-
tured memory networks, but over the past several
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years, researchers have applied many NN archi-
tectures for tackling this problem: Golub and He
(2016) proposed a character-level attention-based
encoder-decoder framework; Dai et al. (2016) pro-
posed a conditional probabilistic framework using
BiGRUs. Lukovnikov et al. (2017) used a hierar-
chical word/character-level question encoder and
trained a neural network in an end-to-end man-
ner. Yin et al. (2016) applied a character-level
CNN for entity linking and a separate word-level
CNN with attentive max-pooling for fact selec-
tion. Yu et al. (2017) used a hierarchical resid-
ual BiLSTM for relation detection, the results
of which were combined with entity linking out-
put. These approaches can be characterized as ex-
ploiting increasingly sophisticated modeling tech-
niques (e.g., attention, residual learning, etc.).

In this push toward complexity, we do not be-
lieve that researchers have adequately explored
baselines, and thus it is unclear how much var-
ious NN techniques actually help. To this end,
our work builds on Ture and Jojic (2017), who
adopted a straightforward problem decomposition
with simple NN models to argue that attention-
based mechanisms don’t really help. We take this
one step further and examine techniques that do
not involve neural networks. Establishing strong
baselines allows us to objectively quantify the con-
tribution of various deep learning techniques.

3 Approach

We begin with minimal preprocessing on ques-
tions: downcasing and tokenizing based on the
Penn TreeBank. As is common in the literature,
we decompose the simple QA problem into four
tasks: entity detection, entity linking, relation pre-
diction, and evidence integration, detailed below.
All our code is available open source on GitHub.1

3.1 Entity Detection
Given a question, the goal of entity detection is to
identify the entity being queried. This is naturally
formulated as a sequence labeling problem, where
for each token, the task is to assign one of two tags,
either ENTITY or NOTENTITY.

Recurrent Neural Networks (RNNs): The most
obvious NN model for this task is to use RNNs;
we examined both bi-directional LSTM and GRU
variants over an input matrix comprised of word
embeddings from the input question. Following

1http://buboqa.io/

standard practice, the representation of each to-
ken is a concatenation of the hidden states from
the forward and backward passes. This representa-
tion is then passed through a linear layer, followed
by batch normalization, ReLU activation, dropout,
and a final layer that maps into the tag space. Note
that since we’re examining baselines, we do not
layer a CRF on top of the BiLSTM (Lample et al.,
2016; Ma and Hovy, 2016).

Conditional Random Fields (CRFs): Prior to the
advent of neural techniques, CRFs represented the
state of the art in sequence labeling, and therefore
it makes sense to explore how well this method
works. We specifically adopt the approach of
Finkel et al. (2005), who used features such as
word positions, POS tags, character n-grams, etc.

3.2 Entity Linking

The output of entity detection is a sequence of
tokens representing a candidate entity. This still
needs to be linked to an actual node in the knowl-
edge graph. In Freebase, each node is denoted by a
Machine Identifier, or MID. Our formulation treats
this problem as fuzzy string matching and does not
use neural networks.

For all the entities in the knowledge graph
(Freebase), we pre-built an inverted index over n-
grams n ∈ {1, 2, 3} in an entity’s name. At link-
ing time, we generate all corresponding n-grams
from the candidate entity and look them up in the
inverted index for all matches. Candidate entity
MIDs are retrieved from the index and appended
to a list, and an early termination heuristic similar
to Ture and Jojic (2017) is applied. We start with
n = 3 and if we find an exact match for an entity,
we do not further consider lower-order n-grams,
backing off otherwise. Once all candidate entities
have been gathered, they are then ranked by Lev-
enshtein Distance to the MID’s canonical label.

3.3 Relation Prediction

The goal of relation prediction is to identify the re-
lation being queried. We view this as classification
over the entire question.

RNNs: Similar to entity detection, we explored
BiLSTM and BiGRU variants. Since relation pre-
diction is over the entire question, we base the
classification decision only on the hidden states
(forward and backward passes) of the final token,
but otherwise the model architecture is the same
as for entity detection.
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Convolutional Neural Networks (CNNs): An-
other natural model is to use CNNs, which have
been shown to perform well for sentence clas-
sification. We adopt the model of Kim (2014),
albeit slightly simplified in that we use a single
static channel instead of multiple channels. Fea-
ture maps of widths two to four are applied over
the input matrix comprised of input tokens trans-
formed into word embeddings, followed by max
pooling, a fully-connected layer and softmax to
output the final prediction. Note this is a “vanilla”
CNN without any attention mechanism.

Logistic Regression (LR): Before the advent of
neural networks, the most obvious solution to sen-
tence classification would be to apply logistic re-
gression. We experimented with two feature sets
over the questions: (1) tf-idf on unigrams and bi-
grams and (2) word embeddings + relation words.
In (2), we averaged the word embeddings of each
token in the question, and to that vector, we con-
catenated the one-hot vector comprised of the top
300 most frequent terms from the names of the re-
lations (e.g., people/person/place of birth), which
serve as the dimensions of the one-hot vector.
The rationale behind this hybrid representation is
to combine the advantages of word embeddings
in capturing semantic similarity with the ability
of one-hot vectors to clearly discriminate strong
“cue” tokens in the relation names.

3.4 Evidence Integration

Given the top m entities and r relations from the
previous components, the final task is to integrate
evidence to arrive at a single (entity, relation) pre-
diction. We begin by generating m × r (entity,
relation) tuples whose scores are the product of
their component scores. Since both entity detec-
tion/linking and relation prediction are performed
independently, many combinations are meaning-
less (e.g., no such relation exists for an entity in
the knowledge graph); these are pruned.

After pruning, we observe many scoring ties,
which arise from nodes in the knowledge graph
that share the exact same label, e.g., all persons
with the name “Adam Smith”. We break ties by fa-
voring more “popular” entities, using the number
of incoming edges to the entity in the knowledge
graph (i.e., entity in-degree) as a simple proxy. We
further break ties by favoring entities that have a
mapping to Wikipedia, and hence are “popular”.
Note that these heuristics for breaking scoring ties

are based on the structure of the knowledge graph,
as neither of these signals are available from the
surface lexical forms of the entities.

4 Experimental Setup

We conducted evaluations on the SIMPLEQUES-
TIONS dataset (Bordes et al., 2015), comprised
of 75.9k/10.8k/21.7k training/validation/test ques-
tions. Each question is associated with a (sub-
ject, predicate, object) triple from a Freebase sub-
set that answers the question. The subject is given
as an MID, but the dataset does not identify the
entity in the question, which is needed for our for-
mulation of entity detection. For this, we used the
names file by Dai et al. (2016) to backproject the
entity names onto the questions to annotate each
token as either ENTITY or NOTENTITY. This in-
troduces some noise, as in some cases there are
no exact matches—for these, we back off to fuzzy
matching and project the entity onto the n-gram
sequence with the smallest Levenshtein Distance
to the entity name. As with previous work, we re-
port results over the 2M-subset of Freebase.

For entity detection, we evaluate by extract-
ing every sequence of contiguous ENTITY tags
and compute precision, recall, and F1 against the
ground truth. For both entity linking and relation
prediction, we evaluate recall at N (R@N ), i.e.,
whether the correct answer appears in the top N
results. For end-to-end evaluation, we follow the
approach of Bordes et al. (2015) and mark a pre-
diction as correct if both the entity and the relation
exactly match the ground truth. The main metric
is accuracy, which is equivalent to R@1.

Our models were implemented in PyTorch
v0.2.0 with CUDA 8.0 running on an NVIDIA
GeForce GTX 1080 GPU. GloVe embed-
dings (Pennington et al., 2014) of size 300 served
as the input to our models. We used negative
log likelihood loss to optimize model parameters
using Adam, with an initial learning rate of
0.0001. We performed random search over hy-
perparameters, exploring a range that is typical of
NNs for NLP applications; the hyperparameters
were selected based on the development set.
In our final model, all LSTM and GRU hidden
states sizes and MLP hidden sizes were set to
300. For the CNNs, we used a size 300 output
channel. Dropout rate for the CNNs was 0.5 and
0.3 for the RNNs. For the CRF implementation,
we used the Stanford NER tagger (Finkel et al.,
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R@N BiLSTM CRF
1 67.8 [67.5 68.0] 66.6

5 82.6 [82.3 82.7] 81.3

20 88.7 [88.5 88.8] 87.4

50 91.0 [90.8 91.1] 89.8

Table 1: Results for entity linking on the validation set,
given the underlying entity detection model.

Model R@1 R@5
BiGRU 82.3 [82.0 82.5] 95.9 [95.7 96.1]

CNN 82.8 [82.5 82.9] 95.8 [95.7 96.1]

LR (tf-idf) 72.4 87.6
LR (GloVe+rel) 74.7 92.2
Ture and Jojic (2017) 81.6 -

Table 2: Results for relation prediction on the valida-
tion set using different models.

2005). For LR, we used the scikit-learn package
in Python. For Levenshtein Distance, we used
the ratio function in the “fuzzywuzzy” Python
package. Evidence integration involves crossing
m candidate entities with r candidate relations,
tuned on the validation set.

5 Results

We begin with results on individual components.
To alleviate the effects of parameter initializa-
tion, we ran experiments with n different ran-
dom seeds (n = 20 for entity detection and n =
50 for relation prediction). Following Reimers
and Gurevych (2017), and due to questions about
assumptions of normality, we simply report the
mean as well as the minimum and maximum
scores achieved in square brackets.

For entity detection, on the validation set,
the BiLSTM (which outperforms the BiGRU)
achieves 93.1 [92.8 93.4] F1, compared to the CRF
at 90.2. Entity linking results (R@N ) are shown
in Table 1 for both the BiLSTM and the CRF.
We see that entity linking using the CRF achieves
comparable accuracy, even though the CRF per-
forms slightly worse on entity detection alone; en-
tity linking appears to be the bottleneck. Error
analysis shows that there is a long tail of highly-
ambiguous entities—that is, entities in the knowl-
edge graph that have the same label—and that
even at depth 50, we are unable to identify the cor-
rect entity (MID) more than 10% of the time.

Results of relation prediction are shown in Ta-
ble 2 on the validation set. Ture and Jojic (2017)
conducted the same component-level evaluation,
the results of which we report (but none else that

Entity Relation Acc.
BiLSTM BiGRU 74.9 [74.6 75.1]

BiLSTM CNN 74.7 [74.5 74.9]

BiLSTM LR (tf-idf) 68.3 [68.2 68.5]

BiLSTM LR (GloVe+rel) 70.9 [70.8 71.1]

CRF BiGRU 73.7 [73.4 73.9]

CRF CNN 73.6 [73.4 73.7]

CRF LR (tf-idf) 67.3
CRF LR (GloVe+rel) 69.9

Previous Work
Bordes et al. (2015) 62.7
Golub and He (2016) 70.9
Lukovnikov et al. (2017) 71.2
Dai et al. (2016) 75.7
Yin et al. (2016) 76.4
Yu et al. (2017) 77.0
Ture and Jojic (2017) 86.8

Table 3: End-to-end answer accuracy on the test set
with different model combinations, compared to a se-
lection of previous results reported in the literature.

we could find). We are able to achieve slightly bet-
ter accuracy. Interestingly, we see that the CNN
slightly outperforms the BiGRU (which beats the
BiLSTM slightly; not shown) on R@1, but both
give essentially the same results for R@5. Com-
pared to LR, it seems clear that for this task NNs
form a superior solution.

Finally, end-to-end results on the test set are
shown in Table 3 for various combinations of en-
tity detection/linking and relation prediction. We
found that crossing 50 candidate entities with five
candidate relations works the best. To compute
the [min, max] scores, we crossed 10 randomly-
selected entity models with 10 relation models.
The best model combination is BiLSTM (for en-
tity detection/linking) and BiGRU (for relation
prediction), which achieves an accuracy of 74.9,
competitive with a cluster of recent top results.
Ture and Jojic (2017) reported a much higher ac-
curacy, but we have not been able to replicate their
results (and their source code does not appear to be
available online). Setting aside that work, we are
two points away from the next-highest reported re-
sult in the literature.

Replacing the BiLSTM with the CRF for en-
tity detection/linking yields 73.7, which is only
a 1.2 absolute decrease in end-to-end accuracy.
Replacing the BiGRU with the CNN for rela-
tion prediction has only a tiny effect on accu-
racy (0.2 decrease at most). Results show that
the baselines that don’t use neural networks (CRF
+ LR) perform surprisingly well: combining LR
(GloVe+rel) or LR (td-idf) for relation prediction
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with CRFs for entity detection/linking achieves
69.9 and 67.3, respectively. Arguably, the former
still takes advantages of neural networks since it
uses word embeddings, but the latter is unequivo-
cally a “NN-free” baseline. We note that this fig-
ure is still higher than the original Bordes et al.
(2015) paper. Cast in this light, our results sug-
gest that neural networks have indeed contributed
to real and meaningful improvements in the state
of the art according to this benchmark dataset, but
that the improvements directly attributable to neu-
ral networks are far more modest than previous pa-
pers may have led readers to believe.

One should further keep in mind an impor-
tant caveat in interpreting the results in Table 3:
As Reimers and Gurevych (2017) have discussed,
non-determinism associated with training neural
networks can yield significant differences in accu-
racy. Crane (2018) further demonstrated that for
answer selection in question answering, a range
of mundane issues such as software versions can
have a significant impact on accuracy, and these
effects can be larger than incremental improve-
ments reported in the literature. We adopt the
emerging best practice of reporting results from
multiple trials, but this makes comparison to pre-
vious single-point results difficult.

It is worth emphasizing that all NN models
we have examined can be characterized as “Deep
Learning 101”: easily within the grasp of a student
after taking an intro NLP course. Yet, our strong
baselines compare favorably with the state of the
art. It seems that some recent models exhibit un-
necessary complexity, in that they perform worse
than our baseline. State-of-the-art NN architec-
tures only improve upon our strong baselines mod-
estly, and at the cost of introducing significant
complexity—i.e., they are “doing a lot” for only
limited gain. In real-world deployments, there are
advantages to running simpler models even if they
may perform slightly worse. Sculley et al. (2014)
warned that machine-learned solutions have a ten-
dency to incur heavy technical debt in terms of on-
going maintenance costs at the systems level. The
fact that Netflix decided not to deploy the winner
of the Netflix Prize (a complex ensemble of many
different models) is a real-world example.

6 Conclusions

Moving forward, we are interested in more for-
mally characterizing complexity–accuracy trade-

offs and their relation to the amount of training
data necessary to learn a model. It is perhaps
self-evident that our baseline CNNs and RNNs
are “less complex” than other recent models de-
scribed in the literature, but how can we compare
model complexity objectively in a general way?
The number of model parameters provides only a
rough measure, and does not capture the fact that
particular arrangements of architectural elements
make certain linguistic regularities much easier to
learn. We seek to gain a better understanding of
these tradeoffs. One concrete empirical approach
is to reintroduce additional NN architectural ele-
ments in a controlled manner to isolate their con-
tributions. With a strong baseline to build on, we
believe that such studies can be executed with suf-
ficient rigor to yield clear generalizations.

To conclude, we offer the NLP community three
points of reflection: First, at least for the task of
simple QA over knowledge graphs, in our rush
to explore ever sophisticated deep learning tech-
niques, we have not adequately examined simple,
strong baselines in a rigorous manner. Second, it
is important to consider baselines that do not in-
volve neural networks, even though it is easy to
forget that NLP existed before deep learning. Our
experimental results show that, yes, deep learning
is exciting and has certainly advanced the state of
the art, but the actual improvements are far more
modest than the literature suggests. Finally, in our
collective frenzy to improve results on standard
benchmarks, we may sometimes forget that the ul-
timate goal of science is knowledge, not owning
the top entry in a leaderboard.
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Abstract

Entrainment has been shown to occur for vari-
ous linguistic features individually. Motivated
by cognitive theories regarding linguistic en-
trainment, we analyze speakers’ overall en-
trainment behaviors and search for an under-
lying structure. We consider various measures
of both acoustic-prosodic and lexical entrain-
ment, measuring the latter with a novel ap-
plication of two previously introduced meth-
ods in addition to a standard high-frequency
word measure. We present a negative result
of our search, finding no meaningful correla-
tions, clusters, or principal components in var-
ious entrainment measures, and discuss practi-
cal and theoretical implications.

1 Introduction

Entrainment, also called accommodation or align-
ment, is the tendency of human interlocutors to
adapt their behavior to each other to become
more similar. This affects many linguistic fea-
tures such as referring expressions (Brennan and
Clark, 1996), phonetics (Pardo, 2006), syntax (Re-
itter et al., 2006), linguistic style (Niederhoffer
and Pennebaker, 2002), turn-taking (Levitan et al.,
2011), and prosody (Levitan and Hirschberg,
2011) as well as non-linguistic behavior (Char-
trand and Bargh, 1999). It has also been linked to
external aspects of the conversation such as task
success (Reitter and Moore, 2007; Nenkova et al.,
2008) and social factors (Ireland et al., 2011; Lev-
itan et al., 2012).

The study of entrainment thus far has been
fragmented, with researchers considering numer-
ous individual features and measuring similarity
in various ways, but few searching for correla-
tions or other structure. For instance, both Ward
and Litman (2007) and Fusaroli and Tylén (2016)
measured lexical as well as acoustic-prosodic en-
trainment but neither paper investigated correla-

tions between these measures. There are two re-
cent exceptions to this overall pattern. Mukherjee
et al. (2017) found a correlation between speak-
ers’ prosodies becoming more similar over time
and their fundamental frequencies varying in syn-
chrony. Rahimi et al. (2017) also showed cor-
relations, between lexical and acoustic-prosodic
entrainment in group conversations. However,
neither considered more complex structure and
Rahimi et al., while including lexical features, fo-
cus on high-frequency and topic words alone.

We take a broad view of entrainment, analyz-
ing 18 sets of measurements in four different ways
on two corpora to uncover structure, hoping to
find higher-level behaviors that explain observed
variability between speakers. This is motivated
by several cognitive theories that purport to ex-
plain linguistic entrainment. Pickering and Gar-
rod (2004), for instance, claim that it serves dia-
log success and that “alignment at one level leads
to alignment at other levels”. According to Char-
trand and Bargh (1999), entrainment is based on
a link between perception and behavior and corre-
lates with “greater perceptual activity directed at
the other person”. Giles et al. (1991), lastly, argue
that adaptive behavior is meant to increase or de-
crease “interpersonal differences” of the interlocu-
tors. All these theories implicitly postulate that en-
trainment can be considered a single latent behav-
ior or a structured collection of behaviors. Here,
we look for evidence that entrainment behaviors
can be explained by an underlying structure, par-
ticularly one that spans multiple features. Practi-
cally, it would be useful for downstream analysis
to need to consider only a small set of higher-level
behaviors rather than each basic entrainment mea-
sure in the search for interactions with quality met-
rics.

Our analysis is based on two corpora of dyadic
conversation. The first is the Objects Games por-
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(a) local similarity (b) global similarity (c) synchrony (d) convergence

Figure 1: Depictions of measures of acoustic-prosodic entrainment, following (Levitan and Hirschberg, 2011).
The axes represent time (x) and feature value (y), blue and red lines two speakers in conversation.

Linguistic Level Measure Reference
Prosody

(pitch, rate,
intensity)

local similarity and convergence
Levitan and Hirschberg (2011)global similarity and convergence

synchrony

Lexical
Perplexity (PPL)

Gravano et al. (2014)
Kullback-Leibler divergence (KLD)

High-frequency words (HFW) Nenkova et al. (2008)

Table 1: Overview of our entrainment measures, five per acoustic-prosodic feature, three lexical ones.

tion of the Columbia Games Corpus (Gravano
and Hirschberg, 2011), CGC, which comprises
12 sessions with 14 identical tasks each, a to-
tal of about four hours of speech. Second, we
use the Switchboard Corpus (Godfrey and Hol-
liman, 1993), SBC, which contains over 2000
free conversations about given topics with a to-
tal of more than 200 hours of speech. Both cor-
pora are fully orthographically transcribed and
acoustic-prosodic features were extracted using
Praat (Boersma and Weenink, 2001).

2 Methods

2.1 Acoustic-prosodic entrainment

We consider three acoustic-prosodic features:
pitch (fundamental frequency in Hz), intensity
(loudness in dB), and speech rate (in syllables per
second). The arithmetic mean for each feature
is determined at the level of an interpausal unit
(IPU), a maximal segment of speech by a single
speaker without a pause of 50ms or more. A max-
imal sequence of IPUs by one speaker, without in-
terruption by the other, is called a turn.

The measures of acoustic-prosodic entrainment
we use were defined by Levitan and Hirschberg
(2011). Two speakers exhibit local similarity if
their feature values differ little at turn exchanges
and local convergence if that difference decreases
over time. Global similarity is defined by a small
difference in mean feature values over an entire
task or session while global convergence is a de-
creasing difference in means from the first to the

second half of a session. Synchrony, lastly, ex-
ists if both speakers’ feature values rise and fall
together at turn exchanges. Figure 1 illustrates
these different types of entrainment. Each allows
us to numerically quantify a type of likeness of
the speakers’ prosodies. Those numeric values are
then normalized and finally correlated, treated as
coordinates in a feature space, etc.

2.2 Lexical entrainment
We apply three different measures of similarity
based on the lemmata, i.e., canonical forms, of
the words each speaker used throughout a session.
The first two measures were used by Gravano et al.
(2014) to compare ToBI annotations of CGC but,
to our knowledge, have not been used before in
the context of lexical entrainment. The third was
defined by Nenkova et al. (2008) and shown to cor-
relate with task success in CGC and perceived nat-
uralness in SBC.

For the perplexity measure, PPL, we use
SRILM (Stolcke, 2002) to build a trigram lan-
guage model for each speaker, predict their part-
ner’s utterances with it, and compute the negated
perplexity. For the second measure, KLD, we
compute the negated Kullback-Leibler diver-
gence between pairs of unigram distributions of
partners’ words. Lastly, for the high-frequency
words measure, HFW, we compute, for each word
w out of the 25 most frequent words in the respec-
tive overall corpus, the fraction of each speaker’s
words which are w. The sum of the negated abso-
lute differences for the 25 pairs of fractions is our
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third measure of similarity for a pair of speakers.
Table 1 gives an overview of all our entrainment
measures.

2.3 Normalization

We apply z-score normalization by gender to our
acoustic-prosodic features. That is, for each fea-
ture value we subtract the gender mean and then
divide by gender standard deviation.

We normalize local similarity at each turn ex-
change using similarity of either IPU at the ex-
change with 10 randomly chosen, non-adjacent
IPUs from the same session as a baseline. Sim-
ilarly, global similarity and the lexical measures
are normalized using similarity with non-partner
speech as a baseline. For each speaker A we com-
pare their similarity with partner B with the sim-
ilarity with all non-partners C with whom A was
never paired and who had the same role (CGC) or
talked about the same topic (SBC) as B.

To control for the effect of complexity of speech
on the lexical measures, we weight the non-partner
similarities by how closely the entropy of the non-
partner’s language model matches that of the ac-
tual partner.

2.4 Analysis

The main purpose of our analysis is to look for
structure in an array of entrainment measures.
However, we first check whether similarity is sig-
nificantly greater for partners than non-partners
for our lexical measures since PPL and KLD have
not previously been used for lexical entrainment
and Nenkova et al. (2008) did not report a signifi-
cance test for HFW.

We look for structure in our entrainment mea-
sures in four different ways. At the simplest
level, we check for pairwise linear correlations
by computing Pearson’s correlation coefficient be-
tween each pair of entrainment behaviors. Sec-
ond, we treat each entrainment behavior as binary
(present if the speaker is more similar to the part-
ner than to the baseline), and use χ2 tests to in-
vestigate whether certain behaviors are dispropor-
tionately likely to co-occur. Third, we represent
each speaker as a point in a continuous space de-
fined by our entrainment measures and attempt to
cluster these points to identify common complex
entrainment behaviors. Fourth, we apply principal
component analysis (PCA).

3 Results

3.1 Lexical entrainment significance

For each of our lexical entrainment measures, we
use t-tests to check whether partner similarities are
significantly greater than non-partner similarities,
which we consider to be evidence of entrainment.
For CGC, we find significance for PPL (p < .001)
and KLD (p < .01) but not for HFW (p > .25)
while for SBC we find all three to be highly sig-
nificant (p < 10−6). It is worth mentioning that
the greater significance for SBC is attributable to
the size of the corpus alone, as the average differ-
ences in similarities are comparable in both cor-
pora. That is, even though conversations in SBC
are less restricted than in CGC, the partner vs. non-
partner comparison is still “fair”.

3.2 Pearson correlation coefficients between
entrainment measures

To check for simple linear correlations, we com-
pute Pearson’s r for each pair of entrainment mea-
sures. Due to the large number of correlation tests,
we control for false discovery rate (FDR) (Ben-
jamini and Hochberg, 1995) at .05 to reduce the
probability of Type I error.

In both corpora we find strong correlations be-
tween local similarity and synchrony for each
acoustic-prosodic feature (r between +0.64 and
+0.95). This simply results from the measures’
definitions: close feature values at turn exchanges
throughout a session imply synchronous variation.
In CGC, we find no other significant correlations.

In SBC, more results are significant due to the
greater number of samples. Most correlations,
however, are very weak, with only a few reach-
ing |r| > 0.1, all between pairs of measurements
on the same feature. Specifically, we find corre-
lations between local and global convergence for
each prosodic feature (+0.14 ≤ r ≤ +0.47) and
local and global similarity on pitch (r = +0.16)
and intensity (r = +0.26). We also find our
lexical measures to be correlated with each other
(+0.16 ≤ r ≤ +0.58).

We conclude that, contrary to our expectations,
entrainment does not correlate across features and
even within features this simplest kind of struc-
ture is barely present. We note that Rahimi et al.
(2017), controlling less strictly for Type I error,
did find correlations between lexical and acoustic-
prosodic measures.
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(a) (b)

Figure 2: Silhouette scores for k-means clustering for 2 ≤ k ≤ 40 (a) and 3D projection based on first three
principal components (b) of 2433 SBC sessions in 18D space defined by entrainment measures.

3.3 χ2 tests

To check for co-occurrence of different entrain-
ment behaviors, we note, for each conversation:
whether local and global partner similarity are
greater than the respective non-partner similar-
ity; whether the Pearson r defining synchrony and
convergence is positive or not; whether global
similarity is greater in the second half than in
the first; and whether each of the lexical simi-
larity measures between partners is greater than
between non-partners. Then we use χ2 tests to
check whether some behaviors are disproportion-
ately likely to co-occur.

For SBC, we consider all of our entrainment
measures at the session level. For CGC, we an-
alyze conversations at the task level as only this
gives us a sufficient number of samples (149 us-
able tasks after excluding 19 with too little speech
by at least one speaker). We also do not analyze
local or global convergence for this corpus since
they are not meaningful at the task level and do not
consider the lexical measures because there are too
few utterances per task to make use of them.

We find significant deviations from expected
frequencies only for those few pairs of measure-
ments which we found to be correlated according
to Pearson’s r in Section 3.2. We conclude that
there is no significant co-occurrence of entrain-
ment across features.

3.4 Clustering of entrainment measures

Next, we attempt to find structure in entrainment
behavior through clustering of measurements. We
analyze the same measurements as in Section 3.3,

treating each task/session as a point in a continu-
ous 9D/18D space, respectively, and use k-means
clustering to group points in this space. In addi-
tion to the normalization described in Section 2.3,
we apply z-score normalization per measure be-
fore clustering, which is a best practice.

Figure 2a shows the silhouette scores for var-
ious numbers of clusters k (solid line) for SBC.
This score, which ranges from -1 to +1, com-
pares the similarity of points in the same cluster
with those in other clusters, with higher values for
greater similarity within than across clusters. For
comparison, we compute clusters after shuffling
within columns of our data to remove correlations
and cluster dummy data randomly sampled from
standard normal distributions, the same distribu-
tion as our real data after normalization. The sil-
houette score is low for all values of k but for low
values of k the scores achieved for the real data
are greater than for the control data. The same
pattern is present in CGC, with a maximum score
for k = 2 of .165 versus .13 for the shuffled data.

For k = 2, we find that the clusters significantly
separate gender pairs, for both corpora, according
to χ2 analysis. However, the same can be achieved
with many randomly chosen cluster centroids. Be-
cause of this and the low silhouette scores, we con-
clude that the entrainment behaviors explored here
cannot be meaningfully grouped into clusters.

3.5 Principal component analysis
Lastly, we use PCA on the same data as in Section
3.4. We find that all nine dimensions are needed
to retain 99% of the variance in CGC, seven to re-
tain 95% and six to retain 90%. For SBC, we find
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that all 18 dimensions are needed to retain 99%
of variance, 15 for 95% and 13 for 90%. These
reductions can mostly be attributed to the correla-
tions between local similarity and synchrony per
feature and between the lexical measures. Thus,
the analysis again confirms a lack of correlation
across features since more significant dimension-
ality reduction would otherwise be possible. A
plot of our SBC data in 3D, shown in Figure 2b,
retains 31% of the variance and visually confirms
our finding of a lack of clusters.

4 Discussion and Conclusion

We present a corpus analysis using four different
approaches to discover an underlying structure or
collection of latent behaviors in 18 measures of
acoustic-prosodic and lexical entrainment across
two corpora. We find virtually no evidence of
links between entrainment on different features,
whether in the form of correlations or other com-
mon, complex behaviors.

While it is difficult to prove a negative, our re-
sults are strong enough to rule out at least the ex-
istence of any clear and strong structure. This is
contrary to the expectations we had based on cog-
nitive theory. It appears that entrainment, rather
than a single behavior or a structured collection
of behaviors, is a set of behaviors which are
only loosely linked and perhaps independently ex-
plained by the competing theories. Practically, we
had hoped to simplify and motivate downstream
uses of entrainment measures, but our findings
suggest that they must be considered separately.

Although we expected to find complex behav-
ior, at least the absence of entrainment across all
features simultaneously can be explained with past
research. As far as entrainment is based on “at-
tention”, as Chartrand and Bargh (1999) suggest,
this attention seems to be targeted and does not
appear to result in entrainment on several features
together. Alternatively, the absence of correla-
tions may be explained by the fact that not all
perception necessarily leads to a change in pro-
duction, as Kraljic et al. (2008) found. More-
over, it has long been known that “too much” en-
trainment can be perceived negatively as mock-
ing or patronizing (Giles and Smith, 1979). Fur-
thermore, entrainment may be constrained by the
need to achieve the communicative goal. Fusaroli
and Tylén (2016), for instance, speculate based
on their findings that “interpersonal synergies such

as procedural scripts and routines [. . .] guide and
constrain other central linguistic processes such as
alignment”. Lastly, there might be cognitive and
physiological limits to speakers’ ability to vary
each feature individually or all at the same time.

Nonetheless, it remains surprising that we find a
more general lack of structure, so the potential rea-
sons warrant discussion. Entrainment is measured
in various ways, even with regard to the same fea-
tures. Therefore, it would be possible to continue
our search using different entrainment measures
on our features. However, all our measures mean-
ingfully and diversely capture entrainment. Thus,
it seems unlikely that alternative measures would
yield fundamentally different outcomes, such as
strong correlations across features. Similarly, we
believe the analytical tools we employ are well-
suited and further analysis of the same features
and measures would not produce disparate results.
Since we only considered low-level features, it
is, however, conceivable that more latent structure
might yet be found for entrainment at higher lev-
els, such as emotional coloring and linguistic style.

Despite the fact that our result is negative, we
consider it a starting point of inquiry, not an end.
We intend to investigate higher-level features and
perhaps additional corpora to confirm or qualify
our findings. Beyond that, our result raises the
question which principles govern the emergence
of entrainment on one feature over another in a
given conversation. As a first attempt to find an
answer, we plan to use asymmetrical, speaker-
specific measures of entrainment and analyze the
consistency of each individual’s entrainment be-
havior across sessions.
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Abstract

Distributional data tells us that a man can swal-
low candy, but not that a man can swallow a
paintball, since this is never attested. How-
ever both are physically plausible events. This
paper introduces the task of semantic plau-
sibility: recognizing plausible but possibly
novel events. We present a new crowdsourced
dataset of semantic plausibility judgments of
single events such as man swallow paintball.
Simple models based on distributional repre-
sentations perform poorly on this task, despite
doing well on selection preference, but inject-
ing manually elicited knowledge about entity
properties provides a substantial performance
boost. Our error analysis shows that our new
dataset is a great testbed for semantic plausi-
bility models: more sophisticated knowledge
representation and propagation could address
many of the remaining errors.

1 Introduction

Intuitively, a man can swallow a candy or paint-
ball but not a desk. Equally so, one cannot plausi-
bly eat a cake and then hold it. What kinds of se-
mantic knowledge are necessary for distinguishing
a physically plausible event (or event sequence)
from an implausible one? Semantic plausibility
stands in stark contrast to the familiar selectional
preference (Erk and Padó, 2010; Van de Cruys,
2014) which is concerned with the typicality of
events (Table 1). For example, candy is a typical
entity for man-swallow-* but paintball is not, even
though both events are plausible physically. Also,
some events are physically plausible but are never
stated because humans avoid stating the obvious.
Critically, semantic plausibility is sensitive to cer-
tain properties such as relative object size that are
not explicitly encoded by selectional preferences
(Bagherinezhad et al., 2016). Therefore, it is cru-
cial that we learn to model these dimensions in ad-
dition to using classical distributional signals.

man-swallow-* PREFERRED? PLAUSIBLE?

-candy 3 3

-paintball 7 3

-desk 7 7

Table 1: Distinguishing semantic plausibility from se-
lectional preference. candy is selectionally preferred
because it is distributionally common patient in the
event man-swallow-*, as opposed to the bizarre and
rarely seen (if at all) patient paintball. However
both are semantically plausible according to our world
knowledge: they are small-sized objects that are swal-
lowable by a man. desk is both distributionally unlikely
and implausible (i.e. oversized for swallowing).

Semantic plausibility is pertinent and crucial in
a multitude of interesting NLP tasks put forth
previously, such as narrative schema (Chambers,
2013), narrative interpolation (Bowman et al.,
2016), story understanding (Mostafazadeh et al.,
2016), and paragraph reconstruction (Li and Ju-
rafsky, 2017). Existing methods for these tasks,
however, draw predominantly (if not only) on dis-
tributional data and produce rather weak perfor-
mance. Semantic plausibility over subject-verb-
object triples, while simpler than these other tasks,
is a key building block that requires many of
the same signals and encapsulates complex world
knowledge in a binary prediction problem.

In this work, we show that world knowledge in-
jection is necessary and effective for the seman-
tic plausibility task, for which we create a ro-
bust, high-agreement dataset (details in section 3).
Employing methods inspired by the recent work
on world knowledge propagation through distribu-
tional context (Forbes and Choi, 2017; Wang et al.,
2017), we accomplish the goal with minimal effort
in manual annotation. Finally, we perform an in-
depth error analysis to point to future directions of
work on semantic plausibility.
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2 Related Work

Simple events (i.e. S-V-O) have seen thor-
ough investigation from the angle of selectional
preference. While early works are resource-
based (Resnik, 1996; Clark and Weir, 2001),
later work shows that unsupervised learning
with distributional data yields strong performance
(O’Seaghdha, 2010; Erk and Padó, 2010), which
has recently been further improved upon with neu-
ral approaches (Van de Cruys, 2014; Tilk et al.,
2016). Distribution-only models however, as will
be shown, fail on the semantic plausibility task we
propose.

Physical world knowledge modeling appears
frequently in more closely related work. Bagher-
inezhad et al. (2016) combine computer vision and
text-based information extraction to learn the rel-
ative sizes of objects; Forbes and Choi (2017)
crowdsource physical knowledge along specified
dimensions and employ belief propagation to learn
relative physical attributes of object pairs. Wang
et al. (2017) propose a multimodal LDA to learn
the definitional properties (e.g. animal, four-
legged) of entities. Zhang et al. (2017) study
the role of common-sense knowledge in natural
language inference, which is inherently between-
events rather than single-event focused. Prior
work does not specifically handles the (single-
event) semantic plausibility task and related ef-
forts do not necessarily adapt well to this task, as
we will show, suggesting that new approaches are
needed.

3 Data

To study the semantic plausibility of S-V-O events,
specifically physical semantic plausibility, we cre-
ate a dataset1 through Amazon Mechanical Turk
with the following criteria in mind: (i) Robust-
ness: Strong inter-annotator agreement; (ii) Di-
versity: A wide range of typical/atypical, plau-
sible/implausible events; (iii) Balanced: Equal
number of plausible and implausible events.

In creating physical events, we work with a
fixed vocabulary of 150 concrete verbs and 450
concrete nouns from Brysbaert et al. (2014)’s
word list, with a concreteness threshold of 4.95
(scale: 0-5). We take the following steps:

1Link: https://github.com/suwangcompling/
Modeling-Semantic-Plausibility-NAACL18/
tree/master/data.

(a) Have Turkers write down plausible or im-
plausible S-V and V-O selections;

(b) Randomly generate S-V-O triples from col-
lected S-V and V-O pairs;

(c) Send resulting S-V-O triples to Turkers to fil-
ter for ones with high agreement (by majority
vote).

(a) ensures diversity and the cleanness of data
(compared with noisy selectional preference data
collected unsupervised from free text): the Turk-
ers are instructed (with examples) to (i) consider
both typical and atypical selections (e.g. man-
swallow-* with candy or paintball); (ii) disregard
metaphorical uses (e.g. feel-blue or fish-idea).
2,000 pairs are collected in the step, balancing typ-
ical and atypical pairs. In (b), we manually fil-
ter error submissions in triple generation. For (c),
5 Turkers provide labels, and we only keep the
ones that have ≥ 3 majority votes, resulting with
3,062 triples (of 4,000 annotated triples, plausible-
implausible balanced), with 100% ≥ 3 agree-
ment, 95% ≥ 4 agreement, and 90% 5 agree-
ment.

To empirically show the failure of distribution-
only methods, we run Van de Cruys (2014)’s neu-
ral net classifier (hereforth NN), which is one of
the strongest models designed for selectional pref-
erence (Figure 1, left-box). Let x be the concate-
nation of the embeddings of the three words in an
S-V-O triple. The prediction P (y|x) is computed
as follows:

P (y = 1|x) = σ2(W2σ1(W1x)) (1)

where σ is a nonlinearity, W are weights, and we
use 300D pretrained GloVe vectors (Pennington
et al., 2014). The model achieves an accuracy of
68% (logistic regression baseline: 64%) after fine-
tuning, verifying the intuition that distributional
data alone cannot satisfactorily capture the seman-
tics of physical plausibility.

4 World Knowledge Features

Recognizing that a distribution-alone method
lacks necessary information, we collect a set of
world knowledge features. The feature types de-
rive from inspecting the high agreement event
triples for knowledge missing in distributional
selection (e.g. relative sizes in man-swallow-
paintball/desk). Previously, Forbes and Choi
(2017) proposed a three level (3-LEVEL) featur-
ization scheme, where an object-pair can take 3
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values for, e.g. relative size: {−1, 0, 1} (i.e. lesser,
similar, greater). This method, however, does not
explain many cases we observed. For instance,
man-hug-cat/ant, man is larger than both cat and
ant, but the latter event is implausible. 3-LEVEL is
also inefficient: k objects incur O(k2) elicitations.
We thus propose a binning-by-landmark method,
which is sufficiently fine-grained while still being
efficient and easy for the annotator: given an entity
n, the Turker decides to which of the landmarks n
is closest to. E.g., for SIZE, we have the landmarks
{watch, book, cat, person, jeep, stadium}, in as-
cending sizes. If n = dog, the Turker may put n
in the bin corresponding to cat. The features2 are
listed with their landmarks as follows:
• SENTIENCE: rock, tree, ant, cat, chimp, man.
• MASS-COUNT: milk, sand, pebbles, car.
• PHASE: smoke, milk, wood.
• SIZE: watch, book, cat, person, jeep, stadium.
• WEIGHT: watch, book, dumbbell, man, jeep, stadium.
• RIGIDITY: water, skin, leather, wood, metal.

5 Turkers provide annotations for all 450 nouns,
and we obtained 93% ≥ 3 agreement, 85% ≥ 4
agreement, and 79% 5 agreement.

Our binning is sufficiently granular, which is
crucial for semantic plausibility of an event in
many cases. E.g. for man-hug-cat/ant, man, cat
and ant fall in the 4th, 3rd and 1st bin, which
suffices to explain why man-hug-cat is plausible
while man-hug-ant is not. Compared to past work
(Forbes and Choi, 2017), it is efficient. Each entity
only needs one assignment in comparison to the
landmarks to be located in a “global scale” (e.g.
from the smallest to the largest objects), and even
for extreme granularity, it only takes O(k log k)
comparisons. It is also intuitive: differences in
bins capture the intuition that one can hug smaller
objects as long as those objects are not too small.

5 Models

We answer two questions: (i) Does world knowl-
edge improve the accuracy of semantic plausibil-
ity classification? (ii) Can we minimize effort in
knowledge feature annotation by learning from a

2We experimented with numerous feature types, e.g. size,
temperature, shape, etc. and kept the subset that contributes
most substantially to semantic plausibility classification.
More details on the feature types in supplementary ma-
terial (https://github.com/suwangcompling/
Modeling-Semantic-Plausibility-NAACL18/
tree/master/supplementary).

Figure 1: Model architecture (example input: man-
swallow-paintball). Left box: Van de Cruys (2014)’s
neural net (NN, embeddings only); Right box: world
knowledge feature net WK with different modeling
choices (Section 5). Only SIZE, WEIGHT, RIGIDITY
are shown; the rest receive the same treatment. NN +
WK: embedding and world knowledge combined.

small amount of training data?
For question (i), we experiment with various

methods to incorporate the features on top of the
embedding-only NN (Section 3). Our architecture3

is outlined in Figure 1, where we ensemble the
NN (left-box) and another feedforward net for fea-
tures (WK, right-box) to produce the final predic-
tion. For the feature net, the relative physical at-
tributes of the subject-object pair can be encoded
in 3-LEVEL (Section 4) or the bin difference (BIN-
DIFF) scheme.4 For BIN-DIFF, given the two en-
tities in an S-V-O event (i.e. S, O) ant and man,
which are in the bins of the landmark watch (i.e.
the 1st) and that of person (i.e. the 4th), the pair
ant-man gets a BIN-DIFF value of 1−4 = −3. Ex-
emplifying the featurization function f(s, o) with
SIZE:

f3-L(SIZE(s), SIZE(o)) ∈ {−1, 0, 1} (2)

fBIN(SIZE(s), SIZE(o)) = BIN(s)− BIN(o) (3)

Then, given a featurization scheme, we may feed
raw feature values (RAW VEC, for 3-LEVEL, e.g.
concatenation of -1, 0 or 1 of all feature types,
in that order, and in one-hot format), or feature
embeddings (EMBEDDING, e.g. concatenation of
embeddings looked up with feature values). Fi-

3More configuration details in supplementary material.
4We also tried using bin numbers directly, however it does
not produce ideal results (classification accuracy between 3-
LEVEL and BIN-DIFF). Thus for brevity we drop this setup.
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MODELS 5% 20%

Label Spreading (Zhu et al., 2004) 0.56 0.59
Factor Graph (Forbes and Choi, 2017) 0.69 0.71
Multi-LDA (Wang et al., 2017) 0.64 0.72

Logistic Regression 0.72 0.83
Factor Graph (initialized with our LR) 0.72 0.84
Ordinal-LR 0.76 0.88

MODELS
5% 20%

3-L BIN 3-L BIN

Logistic Regression 0.61 0.21 0.68 0.26
Ordinal-LR 0.66 0.32 0.76 0.40

Table 2: Feature Propagation. Top-table: results
on Forbes and Choi (2017)’s 2.5k object pair data;
Bottom-table: results on our 10k object pair data.

nally, let aNN,aWK be the penultimate-layer vec-
tors of NN and WK (see Figure 1), we affine trans-
form their concatenation to predict label ŷ with
argmax on the final softmax layer:

ŷ = argmax
y

softmax(σ(W [aNN;aWK] + b)) (4)

where σ is a ReLU nonlinearity. We will only re-
port the results from the best-performing model
configuration, which has BIN-DIFF + EMBED-
DING. The model will be listed below as NN
+ WK-GOLD (i.e. with GOLD, Turker-annotated
World Knowledge features).

For question (ii), we select a data-efficient fea-
ture learning model. Following Forbes and Choi
(2017) we evaluate the models with 5% or 20%
of training data. We experiment with several pre-
viously proposed techniques: (a) label spreading;
(b) factor graph; (c) multi-LDA. As a baseline
we employ a simple but well-tuned logistic re-
gressor (LR). We also initialize the factor graph
with this LR, on account of its unexpectedly strong
performance.5 Finally, observing that the feature
types are inherently ordinal (e.g. SIZE from small
to large), we also run ordinal logistic regression
(Adeleke and Adepoju, 2010). For model selec-
tion we first evaluate the object-pair attribute data
collected by Forbes and Choi (2017), 2.5k pairs
labeled in the 3-LEVEL scheme. We then com-
pared the the LR and Ordinal-LR (our strongest
models6 in this experiment) on 10k randomly gen-
erated object-pairs from our annotated nouns. The
results are summarized in Table 2, where we see

5We verified our setup with the authors and they attributed the
higher performance of our LR to hyperparameter choices.

6Because the factor graph + LR gives very slight improve-
ment, for simplicity we choose LR instead.

MODELS ACCURACY

Random 0.50
LR baseline 0.64
NN (Van de Cruys, 2014) 0.68
NN + WK-GOLD 0.76

NN + WK-PROP
5% 20%

3-L BIN 3-L BIN

0.69 0.70 0.71 0.74

Table 3: Semantic Plausibility (binary) Classification.
The average of 10-fold CV (splitting on the total 3,062
entries). The neural classifier injected with full an-
notation of world knowledge (i.e. NN + WK-GOLD)
performs substantially better, and the performance re-
tainment is rather strong with propagated features (by
Ordinal-LR) from small fractions of gold annotation
(i.e. in NN + WK-PROP).

(i) 3-LEVEL propagation is much easier; (ii) our
object-pairs are more challenging, likely due to
sparsity with larger vocabulary size; (iii) ordinal-
ity information contributes substantially to perfor-
mance. The model that uses propagated features
(w/ Ordinal-LR) will be listed as NN + WK-PROP.

6 Semantic Plausibility Results

We evaluate the models on the task of classifying
our 3,062 S-V-O triples by semantic plausibility
(10-fold CV, taking the average over 20 runs with
the same random seed). We compare our three
models in the 3-LEVEL and BIN-DIFF schemes,
with NN + WK-PROP evaluated in 5% and 20%
training conditions. The results are outlined in Ta-
ble 3. Summarizing our findings: (i) world knowl-
edge undoubtedly leads to a strong performance
boost (∼8%); (ii) BIN-DIFF scheme works much
better than 3-LEVEL — it manages to outperform
the latter even with much weaker propagation ac-
curacy; (iii) the accuracy loss with propagated fea-
tures seems rather mild with 20% labeled training
and the best scheme.

7 Error Analysis

To understand what challenges remain in this task,
we run the models above 200 times (10-fold CV,
random shuffle at each run), and inspect the top
200 most frequently misclassified cases. The per-
centage statistics below are from counting the er-
ror cases.

In the cases where NN misclassifies while NN
+ WK-GOLD correctly classifies, 60% relates to
SIZE and WEIGHT (e.g. missing man-hug-ant
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(bad) or dog-pull-paper (good)). PHASE takes up
18% (e.g. missing monkey-puff-smoke (good)).
This validates the intuition that distributional con-
texts do not encode these types of world knowl-
edge.

For cases often misclassified by all the models, we
observe two main types of errors: (i) data sparsity;
(ii) highly-specific attributes.

Data sparsity (32%). man-choke-ant, e.g., is a
singleton big-object-choke-small-object instance,
and there are no distributionally similar verbs that
can help (e.g. suffocate); For sun-heat-water, be-
cause the majority of the actions in the data are
limited to solid objects, the models tend to predict
implausible for whenever a gas/liquid appears as
the object.

Highly-specific attributes (68%). “long-tailed”
physical attributes which are absent from our fea-
ture set are required. To exemplify a few:7

• edibility (21%). *-fry-egg (plausible) and
*-fry-cup (implausible) are hard to distin-
guish because egg and cup are similar in
SIZE/WEIGHT/..., however introducing large
free-text data to help learn edibility mis-
guides our model to mind selectional prefer-
ence, causing mislabeling of other events.
• natural vs. artificial (18%). Turkers of-

ten think creating natural objects like moon
or mountain is implausible but creating
an equally big (but artificial) object like
skyscraper is plausible.
• hollow objects (15%). plane-contain-shell

and purse-contain-scissors are plausible,
but the hollow-object-can-contain-things at-
tribute is failed to be captured.
• forefoot dexterity (5%). horse-hug-man is

implausible but bear-hug-man is plausible;
For *-snatch-watch, girl is a plausible sub-
ject, but not pig. Obviously the dexterity of
the forefoot of the agent matters here.

The analysis shows that the task and the dataset
highlights the necessity for more sophisticated
knowledge featurization and cleverer learning
techniques (e.g. features from computer vision,
propagation methods with stronger capacity to
generalize) to reduce the cost of manual annota-
tion.
7Percentages calculated with the 68% as the denominator.
Full list in supplementary material.

8 Conclusion

We present the novel task of semantic plausibil-
ity, which forms the foundation of various inter-
esting and complex NLP tasks in event seman-
tics (Bowman et al., 2016; Mostafazadeh et al.,
2016; Li and Jurafsky, 2017). We collected a
high-quality dedicated dataset, showed empiri-
cally that the conventional, distribution data only
model fails on the task, and that clever world
knowledge injection can help substantially with
little annotation cost, which lends initial empiri-
cal support for the scalability of our approach in
practical applications, i.e. labeling little but prop-
agating well approximates performance with full
annotation. Granted that annotation-based injec-
tion method does not cover the full spectrum of
leverageable world knowledge information (alter-
native/complementary sources being images and
videos, e.g. Bagherinezhad et al. 2016), it is in-
deed irreplaceable in some cases (e.g. features
such as WEIGHT or RIGIDITY are not easily learn-
able through visual modality), and in other cases
presents a low-cost and effective option. Finally,
we also discovered the limitation of existing meth-
ods through a detailed error analysis, and thereby
invite cross-area effort (e.g. multimodal knowl-
edge features) in the future exploration in auto-
mated methods for semantic plausibility learning.
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Abstract

Intent detection and slot filling are two main
tasks for building a spoken language under-
standing(SLU) system. Multiple deep learning
based models have demonstrated good results
on these tasks . The most effective algorithms
are based on the structures of sequence to se-
quence models (or ”encoder-decoder” mod-
els), and generate the intents and semantic
tags either using separate models((Yao et al.,
2014; Mesnil et al., 2015; Peng and Yao, 2015;
Kurata et al., 2016; Hahn et al., 2011)) or a
joint model ((Liu and Lane, 2016a; Hakkani-
Tür et al., 2016; Guo et al., 2014)). Most of
the previous studies, however, either treat the
intent detection and slot filling as two sepa-
rate parallel tasks, or use a sequence to se-
quence model to generate both semantic tags
and intent. Most of these approaches use one
(joint) NN based model (including encoder-
decoder structure) to model two tasks, hence
may not fully take advantage of the cross-
impact between them. In this paper, new
Bi-model based RNN semantic frame pars-
ing network structures are designed to per-
form the intent detection and slot filling tasks
jointly, by considering their cross-impact to
each other using two correlated bidirectional
LSTMs (BLSTM). Our Bi-model structure
with a decoder achieves state-of-the-art result
on the benchmark ATIS data (Hemphill et al.,
1990; Tur et al., 2010), with about 0.5% intent
accuracy improvement and 0.9 % slot filling
improvement.

1 Introduction

The research on spoken language understanding
(SLU) system has progressed extremely fast dur-
ing the past decades. Two important tasks in an
SLU system are intent detection and slot filling.
These two tasks are normally considered as paral-
lel tasks but may have cross-impact on each other.
The intent detection is treated as an utterance clas-
sification problem, which can be modeled using

conventional classifiers including regression, sup-
port vector machines (SVMs) or even deep neu-
ral networks (Haffner et al., 2003; Sarikaya et al.,
2011). The slot filling task can be formulated as
a sequence labeling problem, and the most pop-
ular approaches with good performances are us-
ing conditional random fields (CRFs) and recur-
rent neural networks (RNN) as recent works (Xu
and Sarikaya, 2013).

Some works also suggested using one joint
RNN model for generating results of the two tasks
together, by taking advantage of the sequence
to sequence(Sutskever et al., 2014) (or encoder-
decoder) model, which also gives decent results as
in literature(Liu and Lane, 2016a).

In this paper, Bi-model based RNN structures
are proposed to take the cross-impact between two
tasks into account, hence can further improve the
performance of modeling an SLU system. These
models can generate the intent and semantic tags
concurrently for each utterance. In our Bi-model
structures, two task-networks are built for the pur-
pose of intent detection and slot filling. Each
task-network includes one BLSTM with or with-
out a LSTM decoder (Hochreiter and Schmidhu-
ber, 1997; Graves and Schmidhuber, 2005).

The paper is organized as following: In sec-
tion 2, a brief overview of existing deep learn-
ing approaches for intent detection and slot fill-
ings are given. The new proposed Bi-model based
RNN approach will be illustrated in detail in sec-
tion 3. In section 4, two experiments on different
datasets will be given. One is performed on the
ATIS benchmark dataset, in order to demonstrate
a state-of-the-art result for both semantic parsing
tasks. The other experiment is tested on our inter-
nal multi-domain dataset by comparing our new
algorithm with the current best performed RNN
based joint model in literature for intent detection
and slot filling.
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2 Background

In this section, a brief background overview on
using deep learning and RNN based approaches
to perform intent detection and slot filling tasks is
given. The joint model algorithm is also discussed
for further comparison purpose.

2.1 Deep neural network for intent detection

Using deep neural networks for intent detection
is similar to a standard classification problem, the
only difference is that this classifier is trained un-
der a specific domain. For example, all data in
ATIS dataset is under the flight reservation do-
main with 18 different intent labels. There are
mainly two types of models that can be used: one
is a feed-forward model by taking the average of
all words’ vectors in an utterance as its input, the
other way is by using the recurrent neural network
which can take each word in an utterance as a vec-
tor one by one (Xu and Sarikaya, 2014).

2.2 Recurrent Neural network for slot filling

The slot filling task is a bit different from intent
detection as there are multiple outputs for the task,
hence only RNN model is a feasible approach for
this scenario. The most straight-forward way is
using single RNN model generating multiple se-
manctic tags sequentially by reading in each word
one by one (Liu and Lane, 2015; Mesnil et al.,
2015; Peng and Yao, 2015). This approach has
a constrain that the number of slot tags generated
should be the same as that of words in an utter-
ance. Another way to overcome this limitation
is by using an encoder-decoder model containing
two RNN models as an encoder for input and a
decoder for output (Liu and Lane, 2016a). The ad-
vantage of doing this is that it gives the system ca-
pability of matching an input utterance and output
slot tags with different lengths without the need of
alignment. Besides using RNN, It is also possible
to use the convolutional neural network (CNN) to-
gether with a conditional random field (CRF) to
achieve slot filling task (Xu and Sarikaya, 2013).

2.3 Joint model for two tasks

It is also possible to use one joint model for intent
detection and slot filling (Guo et al., 2014; Liu and
Lane, 2016a,b; Zhang and Wang, 2016; Hakkani-
Tür et al., 2016). One way is by using one en-
coder with two decoders, the first decoder will
generate sequential semantic tags and the second
decoder generates the intent. Another approach

is by consolidating the hidden states information
from an RNN slot filling model, then generates
its intent using an attention model (Liu and Lane,
2016a). Both of the two approaches demonstrates
very good results on ATIS dataset.

3 Bi-model RNN structures for joint
semantic frame parsing

Despite the success of RNN based sequence to se-
quence (or encoder-decoder) model on both tasks,
most of the approaches in literature still use one
single RNN model for each task or both tasks.
They treat the intent detection and slot filling
as two separate tasks. In this section, two new
Bi-model structures are proposed to take their
cross-impact into account, hence further improve
their performance. One structure takes the advan-
tage of a decoder structure and the other doesn’t.
An asynchronous training approach based on two
models’ cost functions is designed to adapt to
these new structures.

3.1 Bi-model RNN Structures
A graphical illustration of two Bi-model structures
with and without a decoder is shown in Figure 1.
The two structures are quite similar to each other
except that Figure 1a contains a LSTM based de-
coder, hence there is an extra decoder state st to
be cascaded besides the encoder state ht.
Remarks:
The concept of using information from multiple-
model/multi-modal to achieve better performance
has been widely used in deep learning (Dean et al.,
2012; Wang, 2017; Ngiam et al., 2011; Srivas-
tava and Salakhutdinov, 2012), system identifica-
tion (Murray-Smith and Johansen, 1997; Naren-
dra et al., 2014, 2015) and also reinforcement
learning field recently (Narendra et al., 2016;
Wang and Jin, 2018). Instead of using collective
information, in this paper, our work introduces a
totally new approach of training multiple neural
networks asynchronously by sharing their internal
state information.

3.1.1 Bi-model structure with a decoder
The Bi-model structure with a decoder is shown as
in Figure 1a. There are two inter-connected bidi-
rectional LSTMs (BLSTMs) in the structure, one
is for intent detection and the other is for slot fill-
ing. Each BLSTM reads in the input utterance se-
quences (x1, x2, · · · , xn) forward and backward,
and generates two sequences of hidden states hft
and hbt. A concatenation of hft and hbt forms a
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Figure 1: Bi-model structure

final BLSTM state ht = [hft, hbt] at time step t.
Hence, Our bidirectional LSTM fi(·) generates a
sequence of hidden states (hi1, h

i
2, · · · , hin), where

i = 1 corresponds the network for intent detection
task and i = 2 is for the slot filling task.

In order to detect intent, hidden state h1t is com-
bined together with h2t from the other bidirectional
LSTM f2(·) in slot filling task-network to generate
the state of g1(·), s1t , at time step t:

s1t = φ(s1t−1, h
1
n−1, h

2
n−1)

y1intent = argmax
ŷ1n

P (ŷ1n|s1n−1, h
1
n−1, h

2
n−1)

(1)

where ŷ1n contains the predicted probabilities for
all intent labels at the last time step n.

For the slot filling task, a similar network struc-
ture is constructed with a BLSTM f2(·) and a
LSTM g2(·). f2(·) is the same as f1(·), by reading
in the a word sequence as its input. The difference
is that there will be an output y2t at each time step
t for g2(·), as it is a sequence labeling problem. At
each step t:

s2t = ψ(h2t−1, h
1
t−1, s

2
t−1, y

2
t−1)

y2t = argmax
ŷ2t

P (ŷ2t |h1t−1, h
2
t−1, s

2
t−1, y

2
t−1)

(2)

where y2t is the predicted semantic tags at time step
t.

3.1.2 Bi-Model structure without a decoder
The Bi-model structure without a decoder is
shown as in Figure 1b. In this model, there is no
LSTM decoder as in the previous model.

For the intent task, only one predicted output la-
bel y1intent is generated from BLSTM f1(·) at the
last time step n, where n is the length of the ut-
terance. Similarly, the state value h1t and output
intent label are generated as:

h1t = φ(h1t−1, h
2
t−1)

y1intent = argmax
ŷ1n

P (ŷ1n|h1n−1, h
2
n−1)

(3)

For the slot filling task, the basic structure of
BLSTM f2(·) is similar to that for the intent de-
tection task f1(·), except that there is one slot tag
label y2t generated at each time step t. It also
takes the hidden state from two BLSTMs f1(·) and
f2(·), i.e. h1t−1 and h2t−1, plus the output tag y2t−1

together to generate its next state value h2t and also
the slot tag y2t . To represent this as a function
mathematically:

h2t = ψ(h2t−1, h
1
t−1, y

2
t−1)

y2t = argmax
ŷ2t

P (ŷ2t |h1t−1, h
2
t−1, y

2
t−1)

(4)

3.1.3 Asynchronous training
One of the major differences in the Bi-model
structure is its asynchronous training, which trains
two task-networks based on their own cost func-
tions in an asynchronous manner. The loss func-
tion for intent detection task-network is L1, and
for slot filling is L2. L1 and L2 are defined using
cross entropy as:

L1 , −
k∑

i=1

ŷ1,iintent log(y
1,i
intent) (5)

and

L2 , −
n∑

j=1

m∑

i=1

ŷ2,ij log(y2,ij ) (6)

where k is the number of intent label types, m is
the number of semantic tag types and n is the num-
ber of words in a word sequence. In each train-
ing iteration, both intent detection and slot filling
networks will generate a groups of hidden states
h1 and h2 from the models in previous iteration.
The intent detection task-network reads in a batch
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of input data xi and hidden states h2, and gener-
ates the estimated intent labels ŷ1intent. The intent
detection task-network computes its cost based on
function L1 and trained on that. Then the same
batch of data xi will be fed into the slot filling task-
network together with the hidden state h1 from in-
tent task-network, and further generates a batch of
outputs y2i for each time step. Its cost value is then
computed based on cost function L2, and further
trained on that.

The reason of using asynchronous training ap-
proach is because of the importance of keeping
two separate cost functions for different tasks. Do-
ing this has two main advantages:
1. It filters the negative impact between two tasks
in comparison to using only one joint model, by
capturing more useful information and overcom-
ing the structural limitation of one model.
2. The cross-impact between two tasks can only
be learned by sharing hidden states of two models,
which are trained using two cost functions sepa-
rately.

4 Experiments

In this section, our new proposed Bi-model struc-
tures are trained and tested on two datasets, one
is the public ATIS dataset (Hemphill et al., 1990)
containing audio recordings of flight reservations,
and the other is our self-collected datset in three
different domains: Food, Home and Movie. The
ATIS dataset used in this paper follows the same
format as in (Liu and Lane, 2015; Mesnil et al.,
2015; Xu and Sarikaya, 2013; Liu and Lane,
2016a). The training set contains 4978 utterance
and the test set contains 893 utterance, with a to-
tal of 18 intent classes and 127 slot labels. The
number of data for our self-collected dataset will
be given in the corresponding experiment sections
with a more detailed explanation. The perfor-
mance is evaluated based on the classification ac-
curacy for intent detection task and F1-score for
slot filling task.

4.1 Training Setup

The layer sizes for both the LSTM and BLSTM
networks in our model are chosen as 200. Based
on the size of our dataset, the number of hidden
layers is chosen as 2 and Adam optimization is
used as in (Kingma and Ba, 2014). The size of
word embedding is 300, which are initialized ran-
domly at the beginning of experiment.

4.2 Performance on the ATIS dataset

Our first experiment is conducted on the ATIS
benchmark dataset, and compared with the current
existing approaches, by evaluating their intent
detection accuracy and slot filling F1 scores. A

Model F1 Score Intent Accuracy

Recursive NN 93.96% 95.4%
(Guo et al., 2014)

Joint model with recurrent intent
and slot label context

94.47% 98.43%

(Liu and Lane, 2016b)
Joint model with recurrent slot

label context
94.64% 98.21%

(Liu and Lane, 2016b)
RNN with Label Sampling 94.89% NA

(Liu and Lane, 2015)
Hybrid RNN 95.06% NA

(Mesnil et al., 2015)
RNN-EM 95.25% NA

(Peng and Yao, 2015)
CNN CRF 95.35% NA

(Xu and Sarikaya, 2013)
Encoder-labeler Deep LSTM 95.66% NA

(Kurata et al., 2016)
Joint GRU Model (W) 95.49% 98.10%

(Zhang and Wang, 2016)
Attention Encoder-Decoder NN 95.87% 98.43%

(Liu and Lane, 2016a)
Attention BiRNN 95.98% 98.21%

(Liu and Lane, 2016a)

Bi-model without a decoder 96.65% 98.76%
Bi-model with a decoder 96.89% 98.99%

Table 1: Performance of Different Models on ATIS
Dataset

detailed comparison is given in Table 1. Some
of the models are designed for single slot filling
task, hence only F1 scores are given. It can
be observed that the new proposed Bi-model
structures outperform the current state-of-the-art
results on both intent detection and slot filling
tasks, and the Bi-model with a decoder also
outperform that without a decoder on our ATIS
dataset. The current Bi-model with a decoder
shows the state-of-the-art performance on ATIS
benchmark dataset with 0.9% improvement on F1
score and 0.5% improvement on intent accuracy.
Remarks:
1. It is worth noticing that the complexities of
encoder-decoder based models are normally
higher than the models without using encoder-
decoder structures, since two networks are
used and more parameters need to be updated.
This is another reason why we use two models
with/without using encoder-decoder structures to
demonstrate the new bi-model structure design.
It can also be observed that the model with a
decoder gives a better result due to its higher
complexity.
2. It is also shown in the table that the joint
model in (Liu and Lane, 2015, 2016a) achieves
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better performance on intent detection task with
slight degradation on slot filling, so a joint model
is not necessary always better for both tasks.
The bi-model approach overcomes this issue by
generating two tasks’ results separately.
3. Despite the absolute improvement of intent
accuracy and F1 scores are only 0.5% and 0.9%
on ATIS dataset, the relative improvement is not
small. For intent accuracy, the number of wrongly
classified utterances in test dataset reduced
from 14 to 9, which gives us the 35.7% relative
improvement on intent accuracy. Similarly, the
relative improvement on F1 score is 22.63%.

4.3 Performance on multi-domain data

In this experiment, the Bi-model structures are fur-
ther tested on an internal collected dataset from
our users in three domains: food, home and movie.
There are 3 intents for each domain, 15 semantic
tags in food domain, 16 semantic tags in home do-
main, 14 semantic tags in movie domain. The data
size of each domain is listed as in Table 2, and the
split is 70% for training, 10% for validation and
20% for test.

Due to the space limitation, only the best per-
formed semantic frame parsing model on ATIS
dataset in literature,i.e. attention based BiRNN
(Liu and Lane, 2016a) is used for comparison with
our Bi-model structures. Table 2 shows a perfor-

Domain SLU model Size F1
Score

Accuracy

Movie
Attention BiRNN 979 92.1% 92.86%

Bi-model without a
decoder

979 93.3% 94.89%

Bi-model with a decoder 979 93.8% 95.91%

Food
Attention BiRNN 983 92.3% 98.48%

Bi-model without a
decoder

983 93.6% 98.98%

Bi-model with a decoder 983 95.8% 99.49%

Home
Attention BiRNN 689 96.5% 97.83%

Bi-model without a
decoder

689 97.8% 98.55%

Bi-model with a decoder 689 98.2% 99.27%

Table 2: Performance Comparison between Bi-model
Structures and Attention BiRNN

mance comparison in three domains of data. The
Bi-model structure with a decoder gives the best
performance in all cases based on its intent accu-
racy and slot filling F1 score. The intent accuracy
has at least 0.5% improvement, the F1 score im-
provement is around 1% to 3% for different do-
mains.

5 Conclusion

In this paper, a novel Bi-model based RNN seman-
tic frame parsing model for intent detection and
slot filling is proposed and tested. Two substruc-
tures are discussed with the help of a decoder or
not. The Bi-model structures achieve state-of-the-
art performance for both intent detection and slot
filling on ATIS benchmark data, and also surpass
the previous best SLU model on the multi-domain
data. The Bi-model based RNN structure with a
decoder also outperforms the Bi-model structure
without a decoder on both ATIS and multi-domain
data.
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Abstract

Taxonomies are often used to look up the con-
cepts they contain in text documents (for in-
stance, to classify a document). The more
comprehensive the taxonomy, the higher re-
call the application has that uses the taxonomy.
In this paper, we explore automatic taxonomy
augmentation with paraphrases. We compare
two state-of-the-art paraphrase models based
on Moses, a statistical Machine Translation
system, and a sequence-to-sequence neural
network, trained on a paraphrase datasets with
respect to their abilities to add novel nodes to
an existing taxonomy from the risk domain.
We conduct component-based and task-based
evaluations. Our results show that paraphras-
ing is a viable method to enrich a taxonomy
with more terms, and that Moses consistently
outperforms the sequence-to-sequence neural
model. To the best of our knowledge, this is
the first approach to augment taxonomies with
paraphrases.

1 Introduction

Taxonomies are resources for organizing knowl-
edge and are often used in a wide range of tasks
such as document classification, search and natu-
ral language understanding, among others. Since
developing taxonomies is a time consuming pro-
cess, there has been a significant body of work on
their automatic construction. However, even with
the application of automatic methods, a taxonomy
may not cover all concepts of interest due to is-
sues in bootstrapping the automatic construction,
for example the selection of seed terms, the cover-
age of the data used for mining the taxonomy, or
balancing the trade-off between quality and recall.

∗work conducted whilst the author was at Thomson
Reuters.

In this work, we investigate the automatic aug-
mentation of an existing taxonomy using genera-
tive paraphrasing. We train a statistical machine
translation model and a sequence-to-sequence
neural network based model on a subset of the
Paraphrase Database (PPDB 2.0). We use the two
models to augment an automatically mined taxon-
omy of risk terms based on (Leidner and Schilder,
2010).

The research questions we address in this work
are the following:

• RQ1 Can the models generate high quality
paraphrases for automatically augmenting a
taxonomy?

• RQ2 How much does the coverage of the tax-
onomy increase?

• RQ3 Which model is best for generating
paraphrases?

We answer these research questions by assessing
the quality of the generated risk phrases and quan-
tifying the number of additional sentences that the
generated paraphrases match in a large corpus of
news articles.

2 Related Work

Paraphrase Generation. Identifying and gen-
erating paraphrases has received significant atten-
tion, being useful in applications ranging from nat-
ural language understanding, to query expansion
for example (Madnani and Dorr, 2010; Androut-
sopoulos and Malakasiotis, 2010).

A number of works treat paraphrase generation
as a special case of machine translation, learning
to generate paraphrases based on a large number of
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aligned sentence pairs from news articles (Quirk
et al., 2004), extracting paraphrases from a bilin-
gual parallel corpus (Bannard and Callison-Burch,
2005), or training statistical machine translation
models on news headlines (Wubben et al., 2010).

Building on the recent advances in neural net-
works for machine translation, seq2seq models
with attention representing input as a sequence
of characters (Hasan et al., 2016), or with more
layers and residual connections (Prakash et al.,
2016) have been trained to generate paraphrases.
Mallinson, Sennrich and Lapata (2017) applied
the bilingual pivoting approach (Bannard and
Callison-Burch, 2005) with neural machine trans-
lation, where the input sequence is mapped to a
number of translations in different languages, and
then these translations are mapped back to the
original language.

Taxonomy Construction & Expansion Since
manually creating knowledge structures, such as
taxonomies, is a time consuming process, there ex-
ist several methods to automate it (Medelyan et al.,
2013). Meng et al. (2015) employ techniques for
automatically mining taxonomies in combination
with crowd-sourcing to achieve greater coverage.
Subramaniam, Nanavati and Mukherjea (2010)
study the problem of merging one ontology into
another one, thus asymmetrically extending one
of the taxonomies. Harpy (Grycner and Weikum,
2014) addresses the sparsity of subsumption hi-
erarchy of Patty, a large repository of relational
paraphrases (Nakashole et al., 2013). Wang et
al. (2014) automatically extend a taxonomy by
identifying missing categories and predict the op-
timal structure based on a hierarchical Dirichlet
model. The automatic placement of new con-
cepts in a taxonomy has also been investigated as
a shared task in SemEval 2016 (Jurgens and Pile-
hvar, 2016). However, to the best of our knowl-
edge, there is no work that applies generative para-
phrasing to expand a taxonomy.

3 Paraphrase Generation

In this work we approach the task of generat-
ing phrasal paraphrases as monolingual transla-
tion and we train two state-of-the-art models (Sec-
tion 3.1) on an existing corpus of English phrasal
paraphrases (Section 3.2).

3.1 Models

The two models we train for paraphrase genera-
tion are based on Moses (Koehn et al., 2007) and
attention-based sequence-to-sequence (seq2seq)
neural networks (Bahdanau et al., 2015).

Moses is an open-source implementation of sta-
tistical machine translation models. While it sup-
ports the use of additional structure such as depen-
dency trees, we focus on phrase-based translation
in this work and a tri-gram language model learned
from the set of target paraphrases.

The attention-based seq2seq model consists of
a bi-directional LSTM encoder and an LSTM de-
coder which uses an attention mechanism to learn
which input words are the most important for each
output word.

3.2 Training and Evaluation

For training the paraphrase generation models, we
use a subset of the Paraphrase Database (PPDB
2.0) corpus. The PPDB 2.0 data set is a large-scale
phrasal paraphrase data set that has been mined
automatically based on (Bannard and Callison-
Burch, 2005), and refined with machine learning
based ranking of paraphrases based on human gen-
erated ground-truth and assignment of textual en-
tailment labels for each paraphrase pair. In this
work, we used the large pack of lexical (single
word to single word) and phrasal (multi-word to
single or multi-word) paraphrases1. Because the
data set was automatically generated, some of the
paraphrase pairs are not true paraphrases. In our
experiments, we kept only pairs that do not con-
tain numeric digits. We also use the textual en-
tailment labels with which paraphrase pairs in the
data set are annotated and keep the pairs labeled as
equivalent. We split the remaining data in 757,300
training data points and 39,325 test data points.
The splitting is performed by first creating a graph
where phrases are nodes and edges exist between
the two phrases in a paraphrase pair. In this graph,
we identify connected components and we assign
all data points within each connected component
to either the training or the test sets. This process
guarantees independence between the training and
the test sets.

To train Moses, we precomputed a tri-gram lan-
guage from the target phrases in the training data

1PPDB 2.0 is made available in packs of increasing size,
where each pack contains a list of paraphrases, ordered in de-
creasing order of the score described in (Pavlick et al., 2015).
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set and used the MERT optimizer. To train the
seq2seq model, we used a batch size of 256 train-
ing samples, 100-unit LSTM cells for both the en-
coder and the decoder, dropout with keep proba-
bility 0.8 at the output of cells, a bidirectional en-
coder, greedy 1-best search output generation cri-
teria, and an additive attention function (Bahdanau
et al., 2015). For representing words, we used 100
dimensional pre-trained GloVe embeddings (Pen-
nington et al., 2014). We trained using the Adam
optimizer and a learning rate of 0.001 and let the
models train for 200,000 steps (a step is an itera-
tion over a batch of training points).

For evaluation we used the BLEU score (Pap-
ineni et al., 2002; Chen and Cherry, 2014). BLEU
is calculated on tokenized data using the imple-
mentation provided in the nltk framework2 with
NIST geometric sequence smoothing. Moses
achieved a BLEU score of 0.4098 compared to
0.3156 obtained by the seq2seq model. The differ-
ence in BLEU score shows that Moses is substan-
tially better than the seq2seq model for the subset
of PPDB 2.0 we used.

4 Taxonomy Augmentation Evaluation

After training the paraphrase generation models,
we focus on augmenting the taxonomy of risks.
The risk taxonomy has been automatically mined
based on the method described in (Leidner and
Schilder, 2010) and subsequently has been man-
ually filtered to keep high quality risk terms, re-
sulting in 2,824 terms.

For each term in the risk taxonomy, we apply
the two paraphrase generation models to obtain a
maximum of top 10 paraphrased risk terms. Fig-
ure 1 shows the number of generated paraphrases
that are also in the original list of risk phrases.
While our end goal is to generate phrases that are
not in the original list of phrases, a large number of
generations already appearing in the list of high-
quality and manually filtered list of risk phrases
is an indication of the quality of the paraphrases.
As we can see from Figure 1, Moses outperforms
with a wide margin the seq2seq model in gener-
ating paraphrases already in the taxonomy. Ta-
ble 1 shows examples of generated paraphrases by
Moses and seq2seq.

Furthermore, we have manually annotated the
top-1 generated paraphrases that were not already
in the original risk taxonomy. Each paraphrased

2http://www.nltk.org/
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Figure 1: Number of top-k generated paraphrases al-
ready in the list of risk phrases.

risk term was annotated as valid when it can di-
rectly replace the original risk term, noisy when
the meaning of the paraphrase is close to the mean-
ing of the original term or the paraphrase has ad-
ditional terms, and invalid when the paraphrase is
not suitable for substituting the original risk term.
Table 2 shows for both models the number of para-
phrases that were not in the original taxonomy and
that were annotated with a given label.

Even though both the BLEU score and the num-
ber of paraphrases that were already in the orig-
inal risk taxonomy demonstrate that Moses per-
forms better than seq2seq in our setting, we have
also looked how often a paraphrase generated with
seq2seq was annotated as being better than the
paraphrase generated by Moses. For example, this
is the case when one model generates a paraphrase
that is annotated as valid and the other model gen-
erates for the input risk term a paraphrase that is
annotated as noisy or invalid. We have observed
that in 1211 cases, the paraphrase generated by
Moses was better than the paraphrase generated
by seq2seq. On the other hand, seq2seq was better
only in 58 cases.

We have also looked at the lexical diversity of
the generated paraphrases. We define lexical di-
versity as the fraction of tokens in a paraphrase
that were not in the original risk phrase. Table 3
shows that the seq2seq model results in higher lex-
ical diversity than Moses for both the valid and
noisy paraphrases.

Finally, we have looked at the number of sen-
tences matched by the original risk phrases and the
generated paraphrases in large corpus of approxi-
mately 14 million news articles. The original list
of risk phrases matches 23,110,506 sentences. As
Table 4 demonstrates, the valid paraphrases gen-
erated by Moses match an additional 5.2M sen-
tences that were not matched by any entry in the
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Risk Term Moses seq2seq
wind-blown debris wind-blown rubble buildings
unexpected entry of competitors unpredicted entrance of competitors accident
trafficked people trafficking in persons victims of human trafficking
demolished razed demolition
committed fraud fraud committed the fight against fraud
genetically modified food gm food genetically engineered

Table 1: Examples of paraphrases generated by Moses and seq2seq.

Model Valid Noisy Invalid
Moses 1,337 337 327
seq2seq 419 175 2,042

Table 2: Number of generated paraphrases annotated
as valid, noisy or invalid.

Model Diversity (valid) Diversity (noisy)
Moses 0.5455 (1,337) 0.3952 (337)
seq2seq 0.6991 (419) 0.6969 (175)

Table 3: Lexical diversity of generated valid and noisy
paraphrases in terms of fraction of tokens that are not
in the original risk phrase.

Model Valid Noisy
Moses 5,197,781 1,868,734
seq2seq 1,751,745 749,886

Table 4: The number of sentences from the news
archive matching at least one of the generated valid
or noisy risk paraphrases, which were not already
matched by a risk phrase in the original taxonomy.

original taxonomy, corresponding to an expansion
of coverage by 22%. The valid paraphrases gener-
ated by seq2seq match 1.8M additional sentences,
expanding coverage by 7.6%. A smaller increase
in coverage can be achieved if we consider noisy
paraphrases as well, 8.1% for Moses and 3.2% for
seq2seq. However, these additional sentences may
contain significantly more noise.

Overall, we have seen that the application of
paraphrase generation can expand an existing tax-
onomy of risk terms with high quality phrases,
where 67% of the added terms by Moses have
been assessed as valid paraphrases (RQ1). This
has led to an increase of the coverage of the tax-
onomy by 22% (RQ2). The experimental results
also demonstrate that Moses outperforms the neu-
ral network-based model in this setting (RQ3).

5 Discussion

Domain-specific paraphrases. During the an-
notation of the generated paraphrases by the two
models, we have observed a number of cases,
which were annotated as invalid because the gen-
erated paraphrase, although it was grammatically
correct and meaningful, it did not correspond to
the original term in the domain of risk manage-
ment. For example, the phrase “screening risk”,
which refers to risks in the process of perform-
ing background checks, was paraphrased to “pro-
jection risk” by one of the models. Even though
the latter is a grammatically correct phrase, it does
not have the same meaning in the context of risk
management. Similarly, the word concentrations
has been replaced by the word levels in the phrase
“sector concentrations”, which may be more ap-
propriate as a replacement in the domain of chem-
istry. A more appropriate word to replace level
would be focus. To address this issue of domain
specific paraphrasing, one possible solution is to
use a domain-specific corpus to train the language
model used in Moses, or to pre-train the weights
of the LSTM cells in the encoder and decoder of
seq2seq in the context of a language modelling
task (Dai and Le, 2015).

Grammatical diversity. We have quantified
lexical diversity as the fraction of new words in the
generated paraphrases. Another aspect of diver-
sity, however, is grammatical diversity. For exam-
ple, it would be interesting to quantify diversity in
terms of the number of the classes of paraphrasing
phenomena defined by Bhagat and Hovy (2013).

6 Conclusions

In this work we have looked at the problem of au-
tomatically augmenting a taxonomy by generating
paraphrases of the terms in the taxonomy. Using
a subset of PPDB 2.0, a data set of paraphrases,
we have trained a statistical machine translation
model based on Moses and a second one based on
sequence-to-sequence neural network-based mod-
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els. Our evaluation results show that Moses out-
performs seq2seq in our setting and it augments
the taxonomy with 67% of high quality terms,
leading to an increase of coverage by 22%.

For future work, we want to investigate the im-
pact of using pre-trained weights to initialize the
LSTM cells in the seq2seq model from a language
modelling task, as well the grammatical diversity
of generated paraphrases.
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Abstract

This paper introduces a new dataset of term an-
notation. Given that even experts vary signifi-
cantly in their understanding of termhood, we
offer a novel perspective to explore the com-
mon, natural understanding of what constitutes
a term: Laypeople annotate single-word and
multi-word terms, across four domains and
across four task definitions. Analyses based on
inter-annotator agreement offer insights into
differences in term specificity, term granular-
ity and subtermhood.

1 Introduction

Terms are linguistic units which characterize a
specific topic domain, and their identification is
relevant for a number of NLP tasks, such as in-
formation retrieval and automatic translation. Not
only the automatic extraction of terms is a chal-
lenging task, but also their manual definition and
identification: while we find a range of gold
standard corpora for the evaluation of term ex-
traction systems for English (Kim et al., 2003;
Bernier-Colborne and Drouin, 2014; Zadeh and
Schumann, 2016) and to a lesser extent also for
German (Arcan et al., 2014; Arcan, 2017; Hätty
et al., 2017), these benchmark datasets vary hugely
in terms of granularity of term definition, topic
and thematic focus. All datasets have in com-
mon that they have been annotated by domain ex-
perts and/or by terminologists, which is consid-
ered a necessary requirement for term evaluation
(Castellvı́, 1999; Gouws et al., 2007). However,
Estopà (2001) shows that even experts with dif-
ferent perspectives on terminology (e.g., termi-
nologists, domain experts, translators and docu-
mentalists) vary significantly in their annotation
of terms. Moreover, although individual studies
describe different layers of terminology (Trimble,
1985; Roelcke, 1999), there is a lack of empirical

studies. This raises the question whether there is
a common, natural understanding of what consti-
tutes a term, and to what extent this term is asso-
ciated to a domain.

In this study, we examine the concept of termi-
nology from a new perspective. Differently to pre-
vious annotation studies, we investigate judgments
of laypeople, rather than experts, and specify on
analyzing their (dis-)agreements on common as-
sumptions and core issues in term identification:
the word classes of terms, the identification of am-
biguous terms, and the relations between complex
terms and possibly included subterms. To ensure a
broad understanding of term identification, we de-
signed four different tasks to address the granular-
ities of term concepts, and we performed all anno-
tations across four different domains in German:
diy, cooking, hunting, chess. Finally, we compare
the annotations to the output of an unsupervised
hybrid term extraction system.

2 Material and Tasks

Domains The data for term identification com-
prise German open-source texts from the web-
sites wikiHow1, Wikibooks2 and Wikipedia. All
texts have been pos-tagged with the Tree Tag-
ger (Schmid, 1994); compound splitting was per-
formed with Compost (Cap, 2014) and manually
post-edited. In total, the text basis consists of 20
texts (five per domain) with ≈5 sentences each.
All texts together contain 3,075 words, distributed
over the following four domains:

• diy: ”do it yourself” (708 words)
• cooking (624 words)
• hunting (900 words)
• chess (843 words)

1https://de.wikihow.com/
2https://www.wikibooks.org/
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Figure 1: Example of WebAnno annotation for DS (top) and GL (bottom).

Term Identification Tasks In order to investi-
gate the effect of term definition on their identifi-
cation, we specified the following four tasks:

• highlight domain-specific phrases (DS)
• create an index (IND)
• define unknown words for creating a transla-

tion lexicon (TR)
• create a glossary (GL)

We assumed the four tasks to provide different
strengths of associating the terms with the do-
mains: DS and IND were expected to demand
a broad range of terms that characterize the do-
mains. TR and GL were expected to have a focus
on unknown and ambiguous terms.

20 annotators were asked to perform only one of
the identification tasks, which resulted in five an-
notations per task. In addition, we asked two anno-
tators to perform all four tasks, to check whether
the inter-annotator agreement differs in the two se-
tups. Since the latter annotation setup did not ex-
hibit systematic differences to the original setup,
we merged the results of all seven annotations.

Annotation was done using WebAnno (Yimam
et al., 2013), a general-purpose web-based annota-
tion tool. We allowed annotations of single words,
multi-words, and links between terms in case of
nonadjacent term constituents. An example of two
annotations is shown in figure 1. In addition to
the actual annotation, annotators were asked to
rate their knowledge about the respective domains.
Overall, cooking was rated as best-known domain,
with a mean of 6.86 on a scale from 1 (unknown)
to 10 (well-known), followed by diy (5.18), chess
(4.05) and hunting (1.90).

3 Analyses of Term Identification

In the following, we analyze word forms anno-
tated as terms, across tasks and across domains.
As the central means in our analyses, we make
use of the agreement between annotators. We rely

on simple agreement (how many of the 7 anno-
tators per task agreed?), the Jaccard index and
the chance-corrected agreement measure Fleiss’ κ
(Fleiss, 1971). We start with various single-word
type-based evaluations in sections 3.1 and 3.2, and
then explore multi-words in section 3.3.

3.1 Agreement across Tasks and Domains
Table 1 shows the number of type-based term an-
notations per task with the highest agreements, i.e.
where all annotators (7) or most annotators (6 or
5) agreed. In line with our intuition, the number of
identified terms is highest for DS, and lowest for
GL, with IND and TR in between.

task DS IND TR GL
agree = 7 (all) 203 66 94 27
agree ≥ 6 315 111 173 68
agree ≥ 5 400 148 247 117

Table 1: Number of identified terms per task.

This trend is still obvious when including all an-
notated terms (i.e., all term types annotated by at
least one annotator): Figure 2 shows the Jaccard
index across tasks and domains, i.e., the intersec-
tion of the annotations divided by their union. DS
again receives the highest values, GL the lowest.
DS and GL thus seem to represent the extremes of
the tasks, with DS providing the broadest and GL
the narrowest definition of terminology.

Figure 2: Jaccard index across tasks and domains.
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Across the tasks and different scopes of the
terms, there is a clear tendency for the same terms
to receive high vs. low agreement. This effect is
shown in figure 3, where all annotated term types
are depicted in a four-dimensional space (x-, y-
and z-axis plus the 4th dimension in colour). Each
dimension represents one task, the value in each
dimension represents the agreement on terms for
this task (max. 7). We clearly observe an upward-
moving tendency for term agreement across all di-
mensions, i.e., across the four tasks, annotators
(dis-)agreed on the same terms to a similar de-
gree. We conclude that annotators have similar in-
tuitions about a term’s domain specificity regard-
less of the term identification task.

Figure 3: Term agreement across tasks.

Figure 4 depicts the interaction between tasks
and domains even more clearly: While Fleiss’ κ
for DS is in general very high across domains, and
also IND and TR are well-agreed upon for diy (and
TR for hunting), the κ values for GL are particu-
larly low, and so is IND for cooking and chess, and
TR for chess.

Figure 4: Fleiss’ κ across tasks and domains.

3.2 Term Identification across Word Classes

Traditionally, mostly nouns are perceived as terms
(Bourigault, 1992; Justeson and Katz, 1995), and
consequently annotation and extraction of terms
is often restricted to noun phrases (Bernth et al.,
2003; Kim et al., 2003). However, according to
Estopà (2001) and others, terminology should not
be restricted to noun phrases. Figure 5 shows that
both views have a point. The figure shows the
number of term type annotations for nouns, verbs
and adjectives across the 28 annotated datasets (7
annotators × 4 domains). For example, roughly
300 noun types received a total of 5 term annota-
tions across the four tasks DS, IND, TR and GL.

Figure 5: Annotations per part-of-speech.

We can see that in our dataset nouns are indeed
preferred by our non-expert annotators. However,
when looking at a smaller amount of annotations,
the number of annotated verbs and adjectives in-
creases. Looking into the data revealed that 70%
and 58% of the annotated verbs and adjectives ap-
pear in multi-word terms (MWTs). One reason
for this is their participation in annotated activi-
ties such as großes Loch reparieren (‘repair a big
hole’) or Eigelb schaumig schlagen (‘beat the egg
yolk until fothy’).

3.3 Complex Terms and Subterms

The fact that multi-word terms often contain sub-
terms is a distinct attribute, frequently exploited by
automatic term extraction methods relying on term
constituent phrases for computing a termhood
score (Frantzi et al., 1998; Nakagawa and Mori,
2003). In our study, 468 single-word terms, 138
closed compounds and 692 MWT types were an-
notated across annotators. Since German con-
tains many closed compounds, treating them sepa-
rately from MWTs (consisting of several separated
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words) is especially interesting: a compound term
candidate is either annotated completely or not at
all. Regarding MWTs, it is possible that only a
subterm is annotated. For example, the compound
Rohholz (’raw wood’) cannot be separated, while
annotators might mark only Holz as subterm of the
MWT rohes Holz.

Table 2 shows aspects of multi-word and com-
pound term types in relation to their number of an-
notations (7 annotators × 4 domains, i.e. a maxi-
mum of 28 annotations), across tasks and domains.
We group the number of annotations into three cat-
egories: no concordance (<2), minimum concor-
dance (≥2) and majority concordance (>14). For
most MWTs (426), there is no concordance, and
only a few MWTs were found in the majority of
the 28 annotations (11). Compound terms show
the opposite behaviour. Slightly more than half of
the compounds (76) were found in the majority of
the 28 annotations, while only 6 compounds ap-
peared in only one annotation. Thus, annotators
are confident in identifying compound terms, but
not MWTs.

no. of annotations <2 ≥2 > 14
MWTs 426 266 11

compounds 6 132 76

Table 2: Annotation of compounds and MWTs.

We then analysed the annotation concordance
of complex term components, and their likelihood
to represent a subterm, cf. table 3. For that, we
extracted all annotated single-word terms (SWTs)
which were not also annotated as part of a com-
plex term. We thus obtained the number of an-
notations for the SWTs only. While for MWTs
the proportion of subterms is relatively high across
categories (45.83–49.23%), the number of com-
pound subterms is rather low for low-concordance
cases (16.67%) and increases radically for higher-
concordance cases (up to 40.37%).

no. of annotations <2 ≥2 > 14
MWTs

% of subterms 49.23 57.40 45.83
∅ annot. on subterms 7.53 7.26 6.0

compounds
% of subterms 16.67 31.76 40.37

∅ annot. on subterms 1.0 9.59 10.23

Table 3: Annotation of compound and MWT subterms.

Table 3 also illustrates that the average number
of annotations per subterm drops for MWTs with
an increasing concordance. Compounds, again,
behave in the opposite way. Thus, the less con-
fidence there is for an MWT, the more confidence
we find in its subterms. For the closed compounds,
this effect cannot be perceived.

3.4 Ambiguity

A peculiarity of many terminologies are general-
language words with a specialized meaning in one
or more domains. For example, the English noun
solution has a general-language sense as well as
domain-specific senses in mathematics and chem-
istry (Baker, 1988). Ambiguous vocabulary is also
present across our domains, e.g., Fuchsschwanz
(‘ripsaw’ vs. ‘foxtail’) in diy and ansprechen
(‘identify game’ vs. ‘address so.’) in hunting.

In order to analyze the identification of am-
biguous terms, we first looked up the general-
language and domain-specific senses of all hunt-
ing and chess terms from our dataset in Wik-
tionary3, Duden4, and the Wikipedia disambigua-
tion pages. We did this for hunting and chess, be-
cause only these domains are consistently spec-
ified in the sense definitions. We identified 18
terms for hunting and 15 for chess.

Table 4 shows the average agreement on these
ambiguous words, across tasks. For example, on
average 5.32 annotators out of 7 agreed on the 18
hunting term types in the DS task. The table shows
that the average agreement is higher for DS than
for the other three tasks.

domain DS IND TR GL
hunting 5.32 3.74 4.12 3.44
chess 5.08 3.72 3.75 2.93

Table 4: Average agreement on ambiguous words.

We conclude that when it comes to a stricter
sense of termhood the domain-specific sense
might be perceived by the annotators, but the
general-language sense impedes them to accept
the same strength of termhood for the ambiguous
term as for other, more domain-specific terms.

3http://www.wiktionary.org/
4https://www.duden.de/
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4 Automatic Term Extraction

In a final step, we compared the identification of
terms in our dataset against the identification done
by state-of-the-art term extraction approaches. We
used the hybrid term-candidate extractor for the
diy domain described in Schäfer et al. (2015) and
Rösiger et al. (2016). After lemmatization and
pos-tagging, the system extracts terms with prede-
fined linguistic filters. For term candidate ranking,
standard termhood measures are applied, cf. an
overview in Schäfer et al. (2015).

Approximately half of our annotated terms were
found by the term extractor (due to predefined lin-
guistic patterns for extraction). Based on the mea-
sure scores, we applied Spearman’s rank-order
correlation coefficient ρ (Siegel and Castellan,
1988) to compare against a ranking based on anno-
tator agreement. The best ρ values were 0.51 and
0.44 for two corpus-comparison extraction meth-
ods; these are statistically significant (p< 0.01).

When inspecting the ranked list, we observed
that the term extractors rank compounds and
MWTs higher than the laypeople do. Although
the automatic extractors only use statistics over the
whole word forms, ρ increases when adding sub-
term scores to compounds and MWTs. This again
indicates the importance of subterms within com-
plex terms for an annotator’s decision.

5 Conclusion

This paper presented a new dataset of term an-
notation and a study about term identification by
laypeople, across four domains and four task defi-
nitions. We found that laypeople generally share
a common understanding of termhood and term
association with domains, as reflected by inter-
annotator agreement. Furthermore,

1. high inter-annotator variance for more spe-
cific tasks,

2. little awareness of the degree of termhood of
ambiguous terms, and

3. low agreement on multi-word terms with
high reliance on subterms

showed that laypeople’s judgments deteriorate for
specific and potentially unknown terms.

The dataset with the lapeople term
annotations is publicly available at
www.ims.uni-stuttgart.de/data/
term-annotation-laypeople.
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Abstract

In this paper, we propose a novel embedding
model, named ConvKB, for knowledge base
completion. Our model ConvKB advances
state-of-the-art models by employing a convo-
lutional neural network, so that it can capture
global relationships and transitional character-
istics between entities and relations in knowl-
edge bases. In ConvKB, each triple (head en-
tity, relation, tail entity) is represented as a 3-
column matrix where each column vector rep-
resents a triple element. This 3-column matrix
is then fed to a convolution layer where multi-
ple filters are operated on the matrix to gener-
ate different feature maps. These feature maps
are then concatenated into a single feature vec-
tor representing the input triple. The feature
vector is multiplied with a weight vector via
a dot product to return a score. This score
is then used to predict whether the triple is
valid or not. Experiments show that ConvKB
achieves better link prediction performance
than previous state-of-the-art embedding mod-
els on two benchmark datasets WN18RR and
FB15k-237.

1 Introduction

Large-scale knowledge bases (KBs), such as
YAGO (Suchanek et al., 2007), Freebase (Bol-
lacker et al., 2008) and DBpedia (Lehmann et al.,
2015), are usually databases of triples represent-
ing the relationships between entities in the form
of fact (head entity, relation, tail entity) denoted as
(h, r, t), e.g., (Melbourne, cityOf, Australia). These
KBs are useful resources in many applications
such as semantic searching and ranking (Kasneci
et al., 2008; Schuhmacher and Ponzetto, 2014;
Xiong et al., 2017), question answering (Zhang
et al., 2016; Hao et al., 2017) and machine reading
(Yang and Mitchell, 2017). However, the KBs are

still incomplete, i.e., missing a lot of valid triples
(Socher et al., 2013; West et al., 2014). There-
fore, much research work has been devoted to-
wards knowledge base completion or link predic-
tion to predict whether a triple (h, r, t) is valid or
not (Bordes et al., 2011).

Many embedding models have proposed to
learn vector or matrix representations for entities
and relations, obtaining state-of-the-art (SOTA)
link prediction results (Nickel et al., 2016a).
In these embedding models, valid triples obtain
lower implausibility scores than invalid triples.
Let us take the well-known embedding model
TransE (Bordes et al., 2013) as an example. In
TransE, entities and relations are represented by k-
dimensional vector embeddings. TransE employs
a transitional characteristic to model relationships
between entities, in which it assumes that if (h, r, t)
is a valid fact, the embedding of head entity h plus
the embedding of relation r should be close to the
embedding of tail entity t, i.e. vh + vr ≈ vt (here,
vh, vr and vt are embeddings of h, r and t respec-
tively). That is, a TransE score ‖vh + vr − vt‖p
of the valid triple (h, r, t) should be close to 0 and
smaller than a score ‖vh′ + vr′ − vt′‖p of an in-
valid triple (h’, r’, t’). The transitional characteris-
tic in TransE also implies the global relationships
among same dimensional entries of vh, vr and vt.

Other transition-based models extend TransE to
additionally use projection vectors or matrices to
translate head and tail embeddings into the rela-
tion vector space, such as: TransH (Wang et al.,
2014), TransR (Lin et al., 2015b), TransD (Ji
et al., 2015), STransE (Nguyen et al., 2016b) and
TranSparse (Ji et al., 2016). Furthermore, DIST-
MULT (Yang et al., 2015) and ComplEx (Trouil-
lon et al., 2016) use a tri-linear dot product to com-
pute the score for each triple. Recent research
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has shown that using relation paths between en-
tities in the KBs could help to get contextual in-
formation for improving KB completion perfor-
mance (Lin et al., 2015a; Luo et al., 2015; Guu
et al., 2015; Toutanova et al., 2016; Nguyen et al.,
2016a). See other embedding models for KB com-
pletion in Nguyen (2017).

Recently, convolutional neural networks
(CNNs), originally designed for computer vision
(LeCun et al., 1998), have significantly received
research attention in natural language processing
(Collobert et al., 2011; Kim, 2014). CNN learns
non-linear features to capture complex relation-
ships with a remarkably less number of parameters
compared to fully connected neural networks.
Inspired from the success in computer vision,
Dettmers et al. (2018) proposed ConvE—the first
model applying CNN for the KB completion task.
In ConvE, only vh and vr are reshaped and then
concatenated into an input matrix which is fed to
the convolution layer. Different filters of the same
3 × 3 shape are operated over the input matrix
to output feature map tensors. These feature
map tensors are then vectorized and mapped into
a vector via a linear transformation. Then this
vector is computed with vt via a dot product to
return a score for (h, r, t). See a formal definition
of the ConvE score function in Table 1. It is
worth noting that ConvE focuses on the local
relationships among different dimensional entries
in each of vh or vr, i.e., ConvE does not observe
the global relationships among same dimensional
entries of an embedding triple (vh, vr, vt), so that
ConvE ignores the transitional characteristic in
transition-based models, which is one of the most
useful intuitions for the task.

In this paper, we present ConvKB—an embed-
ding model which proposes a novel use of CNN
for the KB completion task. In ConvKB, each
entity or relation is associated with an unique k-
dimensional embedding. Let vh, vr and vt denote
k-dimensional embeddings of h, r and t, respec-
tively. For each triple (h, r, t), the corresponding
triple of k-dimensional embeddings (vh, vr, vt)
is represented as a k × 3 input matrix. This in-
put matrix is fed to the convolution layer where
different filters of the same 1 × 3 shape are used
to extract the global relationships among same di-
mensional entries of the embedding triple. That
is, these filters are repeatedly operated over ev-
ery row of the input matrix to produce different

Model The score function f(h, r, t)

TransE ‖vh + vr - vt‖p
DISTMULT 〈vh,vr,vt〉
ComplEx Re (〈vh,vr,vt〉)
ConvE g (vec (g (concat (v̂h, v̂r) ∗Ω))W ) · vt
ConvKB concat (g ([vh,vr,vt] ∗Ω)) ·w

Table 1: The score functions in previous SOTA models
and in our ConvKB model. ‖v‖p denotes the p-norm
of v. 〈vh,vr,vt〉 =

∑
i vhivrivti denotes a tri-linear

dot product. g denotes a non-linear function. ∗ denotes
a convolution operator. · denotes a dot product. concat
denotes a concatenation operator. v̂ denotes a 2D re-
shaping of v. Ω denotes a set of filters.

feature maps. The feature maps are concatenated
into a single feature vector which is then computed
with a weight vector via a dot product to produce
a score for the triple (h, r, t). This score is used to
infer whether the triple (h, r, t) is valid or not.

Our contributions in this paper are as follows:

• We introduce ConvKB—a novel embedding
model of entities and relationships for knowl-
edge base completion. ConvKB models the
relationships among same dimensional en-
tries of the embeddings. This implies that
ConvKB generalizes transitional characteris-
tics in transition-based embedding models.

• We evaluate ConvKB on two benchmark
datasets: WN18RR (Dettmers et al., 2018)
and FB15k-237 (Toutanova and Chen, 2015).
Experimental results show that ConvKB ob-
tains better link prediction performance than
previous SOTA embedding models. In partic-
ular, ConvKB obtains the best mean rank and
the highest Hits@10 on WN18RR, and pro-
duces the highest mean reciprocal rank and
highest Hits@10 on FB15k-237.

2 Proposed ConvKB model

A knowledge base G is a collection of valid fac-
tual triples in the form of (head entity, relation,
tail entity) denoted as (h, r, t) such that h, t ∈ E
and r ∈ R where E is a set of entities and R is a
set of relations. Embedding models aim to define a
score function f giving an implausibility score for
each triple (h, r, t) such that valid triples receive
lower scores than invalid triples. Table 1 presents
score functions in previous SOTA models.

We denote the dimensionality of embeddings by
k such that each embedding triple (vh, vr, vt) are
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Figure 1: Process involved in ConvKB (with the em-
bedding size k = 4, the number of filters τ = 3 and the
activation function g = ReLU for illustration purpose).

viewed as a matrix A = [vh,vr,vt] ∈ Rk×3. And
Ai,: ∈ R1×3 denotes the i-th row of A. Suppose
that we use a filter ω ∈ R1×3 operated on the
convolution layer. ω is not only aimed to exam-
ine the global relationships between same dimen-
sional entries of the embedding triple (vh, vr, vt),
but also to generalize the transitional characteris-
tics in the transition-based models. ω is repeatedly
operated over every row of A to finally generate a
feature map v = [v1, v2, ..., vk] ∈ Rk as:

vi = g (ω ·Ai,: + b)

where b ∈ R is a bias term and g is some activation
function such as ReLU.

Our ConvKB uses different filters ∈ R1×3 to
generate different feature maps. Let Ω and τ de-
note the set of filters and the number of filters,
respectively, i.e. τ = |Ω|, resulting in τ feature
maps. These τ feature maps are concatenated into
a single vector ∈ Rτk×1 which is then computed
with a weight vector w ∈ Rτk×1 via a dot prod-
uct to give a score for the triple (h, r, t). Figure 1
illustrates the computation process in ConvKB.

Formally, we define the ConvKB score function
f as follows:

f(h, r, t) = concat (g ([vh,vr,vt] ∗Ω)) ·w

where Ω and w are shared parameters, indepen-

Dataset | E | | R | #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 2: Statistics of the experimental datasets.

dent of h, r and t; ∗ denotes a convolution opera-
tor; and concat denotes a concatenation operator.

If we only use one filter ω (i.e. using τ = 1)
with a fixed bias term b = 0 and the activa-
tion function g(x) = |x| or g(x) = x2, and fix
ω = [1, 1,−1] and w = 1 during training, Con-
vKB reduces to the plain TransE model (Bordes
et al., 2013). So our ConvKB model can be viewed
as an extension of TransE to further model global
relationships.

We use the Adam optimizer (Kingma and Ba,
2014) to train ConvKB by minimizing the loss
function L (Trouillon et al., 2016) with L2 regu-
larization on the weight vector w of the model:

L =
∑

(h,r,t)∈{G∪G′}
log
(
1 + exp

(
l(h,r,t) · f (h, r, t)

))

+
λ

2
‖w‖22

in which, l(h,r,t) =
{

1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′

here G′ is a collection of invalid triples generated
by corrupting valid triples in G.

3 Experiments

3.1 Datasets

We evaluate ConvKB on two benchmark datasets:
WN18RR (Dettmers et al., 2018) and FB15k-
237 (Toutanova and Chen, 2015). WN18RR and
FB15k-237 are correspondingly subsets of two
common datasets WN18 and FB15k (Bordes et al.,
2013). As noted by Toutanova and Chen (2015),
WN18 and FB15k are easy because they contain
many reversible relations. So knowing relations
are reversible allows us to easily predict the ma-
jority of test triples, e.g. state-of-the-art results
on both WN18 and FB15k are obtained by us-
ing a simple reversal rule as shown in Dettmers
et al. (2018). Therefore, WN18RR and FB15k-
237 are created to not suffer from this reversible
relation problem in WN18 and FB15k, for which
the knowledge base completion task is more real-
istic. Table 2 presents the statistics of WN18RR
and FB15k-237.
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Method WN18RR FB15k-237
MR MRR H@10 MR MRR H@10

IRN (Shen et al., 2017) – – – 211 – 46.4
KBGAN (Cai and Wang, 2018) – 0.213 48.1 – 0.278 45.8
DISTMULT (Yang et al., 2015) [?] 5110 0.43 49 254 0.241 41.9
ComplEx (Trouillon et al., 2016) [?] 5261 0.44 51 339 0.247 42.8
ConvE (Dettmers et al., 2018) 5277 0.46 48 246 0.316 49.1
TransE (Bordes et al., 2013) (our results) 3384 0.226 50.1 347 0.294 46.5
Our ConvKB model 2554 0.248 52.5 257 0.396 51.7
KBLRN (Garcı́a-Durán and Niepert, 2017) – – – 209 0.309 49.3
R-GCN+ (Schlichtkrull et al., 2017) – – – – 0.249 41.7
Neural LP (Yang et al., 2017) – – – – 0.240 36.2
Node+LinkFeat (Toutanova and Chen, 2015) – – – – 0.293 46.2

Table 3: Experimental results on WN18RR and FB15k-237 test sets. MRR and H@10 denote the mean reciprocal
rank and Hits@10 (in %), respectively. [?]: Results are taken from Dettmers et al. (2018) where Hits@10 and MRR
are rounded to 2 decimal places on WN18RR. The last 4 rows report results of models that exploit information
about relation paths (KBLRN , R-GCN+ and Neural LP) or textual mentions derived from a large external corpus
(Node+LinkFeat). The best score is in bold, while the second best score is in underline.

3.2 Evaluation protocol
In the KB completion or link prediction task (Bor-
des et al., 2013), the purpose is to predict a missing
entity given a relation and another entity, i.e, infer-
ring h given (r, t) or inferring t given (h, r). The
results are calculated based on ranking the scores
produced by the score function f on test triples.

Following Bordes et al. (2013), for each valid
test triple (h, r, t), we replace either h or t by
each of other entities in E to create a set of cor-
rupted triples. We use the “Filtered” setting pro-
tocol (Bordes et al., 2013), i.e., not taking any
corrupted triples that appear in the KB into ac-
counts. We rank the valid test triple and corrupted
triples in ascending order of their scores. We em-
ploy three common evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR), and Hits@10
(i.e., the proportion of the valid test triples ranking
in top 10 predictions). Lower MR, higher MRR or
higher Hits@10 indicate better performance.

3.3 Training protocol
We use the common Bernoulli trick (Wang et al.,
2014; Lin et al., 2015b) to generate the head or
tail entities when sampling invalid triples. We also
use entity and relation embeddings produced by
TransE to initialize entity and relation embeddings
in ConvKB. We employ a TransE implementation
available at: https://github.com/datquocnguyen/
STransE. We train TransE using a grid search
of hyper-parameters: the dimensionality of em-
beddings k ∈ {50, 100}, SGD learning rate

∈ {1e−4, 5e−4, 1e−3, 5e−3}, l1-norm or l2-norm,
and margin γ ∈ {1, 3, 5, 7}. The highest Hits@10
scores on the validation set are when using l1-
norm, learning rate at 5e−4, γ = 5 and k = 50
for WN18RR, and using l1-norm, learning rate at
5e−4, γ = 1 and k = 100 for FB15k-237.

To learn our model parameters including en-
tity and relation embeddings, filters ω and the
weight vector w, we use Adam (Kingma and
Ba, 2014) and select its initial learning rate ∈
{5e−6, 1e−5, 5e−5, 1e−4, 5e−4}. We use ReLU
as the activation function g. We fix the batch
size at 256 and set the L2-regularizer λ at 0.001
in our objective function. The filters ω are ini-
tialized by a truncated normal distribution or by
[0.1, 0.1,−0.1]. We select the number of filters
τ ∈ {50, 100, 200, 400, 500}. We run ConvKB
up to 200 epochs and use outputs from the last
epoch for evaluation. The highest Hits@10 scores
on the validation set are obtained when using k
= 50, τ = 500, the truncated normal distribu-
tion for filter initialization, and the initial learning
rate at 1e−4 on WN18RR; and k = 100, τ = 50,
[0.1, 0.1,−0.1] for filter initialization, and the ini-
tial learning rate at 5e−6 on FB15k-237.

3.4 Main experimental results

Table 3 compares the experimental results of our
ConvKB model with previous published results,
using the same experimental setup. Table 3 shows
that ConvKB obtains the best MR and highest
Hits@10 scores on WN18RR and also the highest
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MRR and Hits@10 scores on FB15k-237.
ConvKB does better than the closely related

model TransE on both experimental datasets, es-
pecially on FB15k-237 where ConvKB gains sig-
nificant improvements of 347 − 257 = 90 in
MR (which is about 26% relative improvement)
and 0.396 − 0.294 = 0.102 in MRR (which
is 34+% relative improvement), and also ob-
tains 51.7 − 46.5 = 5.2% absolute improve-
ment in Hits@10. Previous work shows that
TransE obtains very competitive results (Lin et al.,
2015a; Nickel et al., 2016b; Trouillon et al., 2016;
Nguyen et al., 2016a). However, when compar-
ing the CNN-based embedding model ConvE with
other models, Dettmers et al. (2018) did not exper-
iment with TransE. We reconfirm previous find-
ings that TransE in fact is a strong baseline model,
e.g., TransE obtains better MR and Hits@10 than
ConvE on WN18RR.

ConvKB obtains better scores than ConvE on
both datasets (except MRR on WN18RR and MR
on FB15k-237), thus showing the usefulness of
taking transitional characteristics into accounts. In
particular, on FB15k-237, ConvKB achieves im-
provements of 0.394 − 0.316 = 0.078 in MRR
(which is about 25% relative improvement) and
51.7 − 49.1 = 2.6% in Hits@10, while both
ConvKB and ConvE produce similar MR scores.
ConvKB also obtains 25% relatively higher MRR
score than the relation path-based model KBLRN
on FB15k-237. In addition, ConvKB gives bet-
ter Hits@10 than KBLRN , however, KBLRN gives
better MR than ConvKB. We plan to extend Con-
vKB with relation path information to obtain bet-
ter link prediction performance in future work.

4 Conclusion

In this paper, we propose a novel embedding
model ConvKB for the knowledge base comple-
tion task. ConvKB applies the convolutional neu-
ral network to explore the global relationships
among same dimensional entries of the entity and
relation embeddings, so that ConvKB generalizes
the transitional characteristics in the transition-
based embedding models. Experimental results
show that our model ConvKB outperforms other
state-of-the-art models on two benchmark datasets
WN18RR and FB15k-237. Our code is available
at: https://github.com/daiquocnguyen/ConvKB.

We also plan to extend ConvKB for a new appli-
cation where we could formulate data in the form

of triples. For example, inspired from the work
by Vu et al. (2017) for search personalization, we
can also apply ConvKB to model user-oriented re-
lationships between submitted queries and docu-
ments returned by search engines, i.e. modeling
triple representations (query, user, document).
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
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Abstract
Cross-language article linking (CLAL) is the
task of finding corresponding article pairs of
different languages across encyclopedias. This
task is a difficult disambiguation problem in
which one article must be selected among sev-
eral candidate articles with similar titles and
contents. Existing works focus on engineer-
ing text-based or link-based features for this
task, which is a time-consuming job, and some
of these features are only applicable within
the same encyclopedia. In this paper, we
address these problems by proposing cross-
encyclopedia entity embedding. Unlike other
works, our proposed method does not rely on
known cross-language pairs. We apply our
method to CLAL between English Wikipedia
and Chinese Baidu Baike. Our features im-
prove performance relative to the baseline by
29.62%. Tested 30 times, our system achieved
an average improvement of 2.76% over the
current best system (26.86% over baseline), a
statistically significant result.

1 Introduction

Online encyclopedias now make vast amounts of
information and human knowledge available to
internet users around the world in various lan-
guages. However, information resources are not
evenly distributed across all languages. To facil-
itate international knowledge sharing, the task of
cross-language article linking (CLAL) aims to cre-
ate links between encyclopedia articles in different
languages that describe the same content. CLAL
has been applied in several fields such as named
entity translation (Lee and Hwang, 2013), cross-
language information retrieval (Nguyen et al.,
2009), and multilingual knowledge base creation
(Lehmann et al., 2015).

Much CLAL research has been carried out on
Wikipedia, one of the largest multilingual online

∗corresponding author

encyclopedias. Articles in Wikipedia are partly
structured, usually containing a title, table of con-
tents, main context, related images, media files,
categories, and infoboxes (structured metadata ta-
bles). Wikipedia articles may also have inter-
language links to corresponding articles in other
language versions. However, these links are man-
ually created, so some articles lack inter-language
links. Several approaches (Sorg and Cimiano,
2008; Oh et al., 2008; Bennacer et al., 2015) have
been proposed to automatically generate inter-
language links between different language ver-
sions of Wikipedia. The main challenge in this
task is the distinction of ambiguous candidate arti-
cles with similar titles or contents. Most previous
work on CLAL has used hand-crafted features for
each encyclopedia, which is unscalable.

In this paper, we propose a method to learn
cross-encyclopedia entity embedding (CEEE) on
English Wikipedia and Chinese Baidu Baike. Ev-
ery article (entity) in the two encyclopedias is
represented by an embedding so that correspond-
ing articles are placed closer together in the vec-
tor space. To acquire the training data without
human annotation, we also offer a way to dis-
cover article correspondence among different en-
cyclopedias. A set of evaluations carried out
on the CLAL task between English Wikipedia
and Chinese Baidu Baike show that our embed-
ding method improves performance relative to the
baseline by 29.62%, which represents a statisti-
cally significant improvement over the current best
system (26.86% relative improvement). To the
best of our knowledge, this is the first work to
learn cross-encyclopedia bilingual entity embed-
ding without relying on existing manually labeled
cross-language links.
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2 Related Work

2.1 Cross-language article linking
Previous Wikipedia-only CLAL studies have re-
lied on existing inter-language links and have fo-
cused on using text-based features or link-based
features in classifiers. For example, Wang et al.’s
(2012) cross-language link similarity work can
only be used for linking cross-language Wikipedia
articles. Sorg and Cimiano (2008) assumed that
given a cross-language pair a and b, the articles
linked to a in encyclopedia A are more likely to
be linked to the articles linked to b in encyclope-
dia B. They then designed link-based features on
that assumption. Oh et al. (2008) relied on text-
based features. They first constructed a translation
dictionary from cross-language links. They then
translated English terms into Japanese and de-
signed features based on edit distance. Bennacer
et al. (2015) used BabelNet (Navigli and Ponzetto,
2012) to select candidate articles with similar se-
mantics in the target language. They then ranked
the candidates based on cross-language link simi-
larity. Unlike the above studies, we aim to carry
out CLAL between different encyclopedia plat-
forms, English and Baidu Baike; therefore we can-
not use existing inter-language links.

Because much of the previous Wikipedia-
only CLAL research cannot be directly ap-
plied to cross-platform linking, Wang et al.
(2014) developed an SVM-based approach with
content-similarity-based features to link articles in
Wikipedia and Baidu Baike. In this work, they
relied on Google Translate to translate Chinese
terms into English. They then designed title-based
and content-based features based on both the En-
glish and translated Chinese articles.

2.2 Entity Embedding
With recent work on word embedding, there has
also been more interest in learning entity embed-
ding. Hu et al. (2015) modeled Wikipedia’s cate-
gory structure in their entity embedding. Li et al.
(2016) extended Hu et al.’s (2015) work to include
category embedding in addition to entity embed-
ding. They further extended the model by inte-
grating category structure to capture meaningful
semantic relationships between entities and cate-
gories. Yamada et al. (2016) learned joint em-
bedding for words and entities. Tsai and Roth
(2016) proposed a way to learn multilingual em-
bedding of words and entities. They first learned

monolingual entity and word embedding from the
Wikipedia corpus with the skip-gram word em-
bedding model by replacing entity mentions with
special symbols. They then used canonical corre-
lation analysis (CCA) to project different embed-
dings on the same space, learning the CCA model
using the existing Wikipedia cross-language links
as the training data.

3 Methods

Given an article from a knowledge base (KB),
CLAL aims to find the article’s corresponding ar-
ticle in another KB of a different language. Corre-
sponding articles are defined as articles describing
the same entity in different languages. We base
our CLAL system on Wang et al.’s (2014) work
because theirs is the only previous CLAL system
designed for a cross-encyclopedia setting.

Following Wang et al.’s (2014) example, we
also divide CLAL into two stages: candidate se-
lection and candidate ranking. The candidates
for each Wikipedia article are selected with the
Lucene search engine, and the queries and doc-
uments are translated with the Google Translate
API. We then train an SVM classifier with the
same features described in Wang et al.’s (2014)
paper. The given English Wikipedia article and
a candidate Baidu article are denoted as w and b.
Wang et al.’s (2014) features are as follows:

• BM25: w’s title is translated into Chinese and
then used as a query to retrieve articles from
Baidu Baike with the Lucene search engine.
The returned BM25 score corresponding to b
is treated as the value of b’s BM25 feature.

• Hypernym translation (HT): Supposing the
given English title is e and that e’s hyper-
nym is h, this feature is defined as the log fre-
quency of h’s Chinese translation in the can-
didate Chinese article.

• English title occurrence (ETO): Whether or
not w’s title appears in the first sentence of b
is regarded as the value of b’s ETO feature.

After replicating Wang et al.’s (2014) system,
we add our proposed cross-encyclopedia entity
embedding (CEEE) feature, the construction of
which is detailed in the following sections.
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3.1 Cross-Encyclopedia Entity Embedding
Model

Similar to (Mikolov et al., 2013), our model learns
the entity representation that are useful for pre-
dicting the target entity given the context en-
tity. Within an online encyclopedia, each en-
tity is linked with one or more other entities by
hyperlinks. For example, the “Food” article in
English Wikipedia is linked with the “Plant” ar-
ticle. We treat every article as context entity and
the hyper-linked article in a context entity as tar-
get entity. Given a set of target-context entity
pairs EST = {(t, c)} where every context entity
c comes from the encyclopedia S and every tar-
get entity t comes from the encyclopedia T , we
learn the embeddings of entities by maximizing
the training objective:

LST =
1

|EST |
Σ(t,c)∈EST logP (t|c). (1)

The probability of a target entity given a certain
context entity is defined with the softmax function
to represent the probability distribution over the
entity space ε of the online encyclopedia which
the target entity t is residing in:

P (t|c) =
exp(vt � vc)

Σe∈εexp(ve � vc)
, (2)

where vt, vc ⊂ IRd is the embedding of an en-
tity, d is the size of the embedding and � is the
dot product operation. Using the link structure
of Wikipedia and Baidu Baike, we have compiled
two sets of entity pairs, EWW and EBB, for train-
ing Wikipedia and Baidu entity embeddings, re-
spectively.

3.2 Training Data Compilation for
Cross-Encyclopedia Entity Embedding

To acquire the training data for cross-encyclopedia
bilingual entity embeddings, we first translate
all categories of Baidu Baike into English and
then collect a set of common category labels be-
tween English Wikipedia and Baidu Baike by ex-
act string match. There are 6,297 common cate-
gories between Wikipedia and Baidu. If there is
no common category then the category is labeled
as null. Next, we compile a set of entity pairs from
Wikipedia and Baidu articles that share at least 1
common category label. The intuition behind the
proposed method is that semantically correlated

entities tend to share common category labels, and
so do cross-lingual entities.

We then compile another two sets of entity
pairs, EWB and EBW to learn meaningful cross-
encyclopedia entity embeddings. The entity pairs
in both sets are identical, except the roles are
changed. Specifically, in EBW the Wikipedia en-
tity is the target while the Baidu entity is the con-
text, and in EWB the roles are reversed.

3.3 Learning Cross-Encyclopedia Entity
Embedding

Since there are millions of entities in both
Wikipedia and Baidu, we adopt negative sampling
to speed up the training process. We set the neg-
ative sample size to 100 during training. We fur-
ther filter out entities that are only linked to 9 or
fewer other entities. Given the two embedding
matrices mW ⊂ IR|W|×d and mB ⊂ IR|B|×d, cor-
responding to Wikipedia and Baidu, we train the
CEEE model with the following 4 tasks: (1) to
predict any Baidu article given a Wikipedia article
as context by optimizing LWB, (2) to predict any
Wikipedia article given a Baidu article as context
by optimizing LBW , (3) to predict any Wikipedia
article given another Wikipedia article as context
by optimizing LWW , and (4) to predict any Baidu
article given another Baidu article as context by
optimizing LBB. During task (3), only mW is up-
dated, and during task (4), only mB is updated.
Every task iterates through its corresponding set of
entity pairs. The four tasks repeat 50 times each.
The embeddings are updated by stochastic gradi-
ent descent with a batch size of 1280 entity pairs.
The learning rate is set to 0.1, and entity embed-
dings are randomly initialized. We also normalize
the embeddings to the unit vector every 10 batches
during training as Xing et al. (2015) did to improve
entity similarity measurement. We set the embed-
ding size d to 100 for the following experiments.

After training, the learned embedding matrices
are ready to be used. The similarity score of a
Wikipedia entity and a Baidu entity is obtained by
calculating the cosine value of their corresponding
vectors in the learned embedding matrices. Sup-
posing the embedding vectors corresponding to
the English Wikipedia article and the Baidu arti-
cle are vw and vb, the feature value is defined as
follows:{ vw·vb

|vw||vb| if both vw and vb are available
−1 otherwise

(3)
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Table 1: Cross-language article linking performance
the first dataset. “MRR (adding CEEE)” column shows
the MRR and performance gain. The last column
shows t-values. The p-value of every configuration is
less than 0.001. Hence, we conclude that CEEE is ef-
fective in improving performance.

Configuration MRR MRR
(adding CEEE)

BM25 .6146 .7418(+.1272) -29.6
BM25 + HT .7457 .7944(+.0487) -16.5

BM25 + ETO .6469 .7604(+.1135) -34.1
BM25 + HT + ETO .7542 .7967(+.0425) -14.9

Table 2: Cross-language article linking performance of
the second dataset. “MRR (adding CEEE)” column
shows the MRR and performance gain. The last col-
umn shows t-values. The p-value of every configura-
tion is less than 0.001.

Configuration MRR MRR
(adding CEEE)

BM25 .6093 .6762(+.0669) -11.3
BM25 + HT .6611 .6918(+.0307) -9.1

BM25 + ETO .6466 .6933(+.0467) -13.8
BM25 + HT + ETO .6606 .6989(+.0383) -13.5

Table 3: Performance comparison of CLAL methods.
The mean MRR of our system is significantly greater
than that of Wang et al.’s (2014), t-value = −7.6 and
= −4.5, respectively. The p-values are less than 0.001
for both datasets.

Dataset System MRR Relative
Improvement

1st
BM25 (Baseline) .6146

Our system .7967 29.62%
Wang et al. 2014 .7797 26.86%

2nd
BM25 (Baseline) .6093

Our system .6989 14.70%
Wang et al. 2014 .6874 12.81%

4 Experiments

Following the same procedure used in (Wang
et al., 2014), we downloaded the entire English
Wikipedia dump and obtained 4M entities and
0.9M categories. We also crawled 6M Baidu
Baike articles, which contain 50 thousand distinct
category labels. Within Wikipedia and Baidu,
there are 68M training pairs for Wikipedia and
20M for Baidu. After matching common cate-
gories, we extracted 54M bilingual entity pairs.
To generate the gold standard evaluation sets of
correct English and Chinese article pairs, we auto-
matically collect English-Chinese inter-language
links from Wikipedia. For pairs that have both
English and Chinese articles, the Chinese arti-
cle title is regarded as the translation of the En-
glish one. Next, we check if there is a Chinese
article in Baidu Baike with exactly the same ti-

tle as the one in Chinese Wikipedia. If so, the
corresponding English Wikipedia article and the
Baidu Baike article are paired in the gold standard.
We create two different datasets for our experi-
ments. For the first dataset, we select the top 500
English-Chinese article pairs with the highest page
view counts in Baidu Baike. This set represents
the articles people in China are most interested
in. The second dataset is based on random selec-
tion. We first randomly select 3500 Wikipedia ar-
ticles and link them to Baidu Baike articles using
English-Chinese Wikipedia inter-links and redi-
rect pages. To eliminate rarely-viewed articles,
the 3500 English-Chinese article pairs are sorted
in decreasing order based on click count statistics
of the article in English Wikipedia in 2012. The
top 1000 English-Baidu article pairs are retained
as the second dataset. For statistical generality,
the data set is randomly split 4:1 (training:test) 30
times. The final evaluation results are calculated
as the mean of the average of these 30 sets.

4.1 Cross-language article linking

The recall scores of the two datasets are 0.8953
and 0.8383, which is the upper bound of the
system’s performance. Since the candidate se-
lection process relies heavily on translation, we
think the difference between the two recall scores
is due to the poor translation of unpopular con-
tent. We report the performance of ranking
in terms of mean reciprocal rank (MRR).In Ta-
ble 1, Column 2 (MRR) shows the performance
of four feature configurations in the first dataset,
BM25(Baseline), BM25+HT, BM25+ETO, and
BM25+HT+ETO. To show CEEE’s effectiveness,
we list the performance before and after adding
CEEE, including performance gain in parentheses.
For the first dataset, we can see that CEEE boosts
the baseline configuration by a significant margin.
Using all three features, BM25+HT+ETO, the sys-
tem achieves an MRR of 0.7967, which is the best
score among all configurations. All configurations
achieve statistically significant performance gains
after adding CEEE.

Since the second dataset consists of seldom-
read articles, we assume that some of the trans-
lations will be incorrect due to lack of popular-
ity, and this may negatively impact system per-
formance. Looking at the results of the second
dataset in Table 2, we can see that HT and CEEE
do not make the same improvement as they did in
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the first dataset, since both of them heavily rely on
Google Translate results. The MRR/recall ratio of
the second dataset is slightly better than that of the
first dataset with the BM25 configuration. We be-
lieve this is because there are more ambiguous ar-
ticles in the first dataset than in the second dataset.
For example, “The Hunger Games” is an article
describing the trilogy of novels in Wikipedia. But
its Baike candidates include several articles with
identical titles, such as the first novel of the tril-
ogy, the movies series, and video games. The
results suggest that translation quality affects our
system’s performance, and that the candidate se-
lection process is also impacted by the popularity
of the query article.

In Table 3, we compare our work with the
state-of-the-art system developed by (Wang et al.,
2014). Our features improve performance rela-
tive to the baseline by 29.62% and 14.70% for
the first and second datasets, respectively, which
represents a statistically significant improvement
over Wang et al.’s (2014) best system (26.86%
and 12.81% relative improvement for the two
datasets). It’s worth noting that (Wang et al.,
2014) utilized another feature based on topic mod-
els which requires known cross-language links.

All the experiments above treat the cosine sim-
ilarity between the query and each candidate em-
bedding as a feature for the SVM classifier. Next,
we show the results on the first dataset when us-
ing the embedding vector as the feature vector for
the SVM classifier. More specifically, the CEEE
feature is a vector of 200 dimensions. We get an
MRR of 0.6352 when the classifier only takes the
embedding vector as input, which is a significant
gain compared to the MRR of BM25. However,
when CEEE is used to measure query-candidate
cosine similarity, we only get an MRR of 0.4629.
This suggests that CEEE has learned a sufficiently
accurate mapping between Wikipedia and Baidu
Baike, but there is still room for improvement.

5 Discussion

According to (Wang et al., 2014), one common
CLAL error type is due to several articles having
the same title. These same-title articles are entities
belonging to different categories or one entity with
several duplicate articles. Our best system config-
uration with the CEEE similarity feature fixed 21
such errors made by Wang et al.’s (2014) system.
For example, for the English article Frankenstein

(novel), Wang’s system ranks the Chinese article
科学怪人(movie) as number one, but our sys-
tem ranks the correct Chinese article 弗兰肯斯
坦(novel) first. We then refer the set of these 21
errors as “Successfully corrected set (SCS).” Al-
though our proposed CEEE feature can effectively
disambiguate articles with the same title, it still
failed to correct 90 of Wang’s errors and gener-
ated 6 new ones. The set of the 90 uncorrected
errors and the set of the six new errors are referred
to as “Uncorrected set (US)” and “Mistakenly cor-
rected set (MCS),” respectively. For example, the
English article “British Museum” is still mistak-
enly linked to “英国科学博物馆(Science Mu-
seum, London)”, when the correct corresponding
article is in fact “大英博物馆”.

We propose that the farther a concept is from
the bilingual pairs used to train CEEE, the more
likely it is to be linked to a non-corresponding ar-
ticle. To test this hypothesis, we calculated the link
distance between each of the pairs above to the
nearest training pair. Then, we calculate the av-
erage distance for SCS, US, and MCS. The results
show that SCS has the least link distance, followed
by US, and then MCS, which is consistent with
our hypothesis. This finding suggests that in order
to improve CLAL performance, we can introduce
more cross-lingual pairs into the training data. In
our future work, we plan to apply other lexical re-
sources such as WordNet to find synonyms instead
of simple string matching.

6 Conclusion

We describe a method to learn bilingual entity em-
bedding for cross-encyclopedia CLAL. The em-
bedding model is designed to encode both mono-
lingual and bilingual entity structure so that re-
lated entities will be close to each other in the
vector space. To acquire the training data with-
out human annotation, we also offer a way to
discover article correspondence among different
encyclopedias. Our results show that using our
proposed embedding outperforms the current best
cross-encyclopedia CLAL system by statistically
significant margin. Further investigations suggest
that the proposed embedding can help to disam-
biguate candidates with the same title.
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Nacéra Bennacer, Mia Johnson Vioulès, Maximil-
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Abstract

Identifying the most dominant and central
event of a document, which governs and con-
nects other foreground and background events
in the document, is useful for many applica-
tions, such as text summarization, storyline
generation and text segmentation. We ob-
served that the central event of a document
usually has many coreferential event mentions
that are scattered throughout the document for
enabling a smooth transition of subtopics. Our
empirical experiments, using gold event coref-
erence relations, have shown that the central
event of a document can be well identified by
mining properties of event coreference chains.
But the performance drops when switching to
system predicted event coreference relations.
In addition, we found that the central event can
be more accurately identified by further con-
sidering the number of sub-events as well as
the realis status of an event.

1 Introduction

According to the grounding principles (Grimes,
1975), a document consists of foreground events
that form the skeleton of the story and move the
story forward, and background events that add
supportive information. Studies have shown that
a foreground event tends to be the most impor-
tant event in a sentence, which is usually the event
that appears in the main clause, is active voiced,
and has a high transitivity1 (Decker, 1985). But
among multiple foreground events, which one is
most central to the overall story? We propose a
new task of detecting the most dominant event in
a news article, which is an event assumed to gov-
ern and connect other foreground events and back-
ground events. In other words, removal of the cen-
tral event can break the entirety of a document and

1High transitivity events have certain properties, are voli-
tional, affirmative, realis etc.

Figure 1: An example document to illustrate the cen-
tral event of a document. Red colored words are
foreground events, blue colored words are background
events and mentions of the central event are in bold.

decompose the document into sections describing
disjoint sets of situations. Identifying the central
event of a document is clearly important for a wide
range of NLP applications, including text summa-
rization, storyline generation and text segmenta-
tion.

The intuitive observation is that the central
event of a document usually has a large number
of coreferential event mentions and those coref-
erential mentions are spread throughout the doc-
ument. In Figure 1, the paragraphs 1-4 each de-
scribe a relatively independent subtopic and the re-
peated mentions of the central event “demonstra-
tion” throughout the document enable a smooth
flow of information. For the same reason, identi-
fying the central event facilitates partitioning text
into coherent segments. But note that, the central
event may not be the most newsworthy event that
serves as the trigger for writing an article, and thus
may not appear in the title or in the first sentence
of a new article. As illustrated in this example, the
trigger event is “protesters leave capitol”, while
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the central event is “demonstration”, the event that
effectively connects other foreground events and
background events and makes the story an entirety.

To systematically verify these observations, we
annotated central events in news articles taken
from two publicly available datasets, the richer
event description (RED) (O’Gorman et al., 2016)
and KBP 2015 (Mitamura et al., 2015) corpora.
While whether each news article has only one cen-
tral event is arguable, our two annotators agreed
on the same central event in 97 out of 104 (93%)
documents that we annotated. We then designed
several rule-based methods to identify the central
event by exploiting human annotated event coref-
erence relations. Experimental results showed that
indeed in around 75% of the documents in both
corpora, the central event either has the largest
number of coreferential event mentions or has the
largest stretch size (i.e., the number of sentences
between the first mention and the last mention of
the central event) in the discourse. In addition,
we found that the central event can be more accu-
rately identified by further considering the num-
ber of sub-events as well as the realis status of
an event, which indicate if an event is an actual
specific event or a generic event etc. The evalua-
tion shows that the insightful rules outperform sev-
eral strong baseline approaches, including several
heuristic based methods and random walk based
event ranking methods, as well as two regression
classifiers that integrate these rules as features.

2 Related Work

Many previous works studied the parameters
that determine the overall quality of an individ-
ual event, including actualization (Tasaku, 1981),
transitivity (Hopper and Thompson, 1980; Tsun-
oda, 1985) and the broader concept of eventive-
ness (Monahan and Brunson, 2014). However,
these atomic qualities defined for an individual
event are inadequate in distinguishing the key
foreground event in a document.

In concurrent works, Decker (1985); Kay and
Aylett (1996) focused on distinguishing fore-
ground events from background events in a sen-
tence and proposed that the most important event
within a sentence is usually the event that appears
in the main clause, is active voiced, and has a high
transitivity. Upadhyay et al. (2016) applied these
rules to identifying the trigger event of a news ar-
ticle by identifying the most important event in a

human-generated document summary.
Recognizing document-level central events has

been shown important for text summarization. Fi-
latova and Hatzivassiloglou (2004a,b) used nor-
malized frequencies of co-referential event men-
tions as parameters to prioritize events to be in-
cluded in a summary and found that this helped in
generating better text summaries, despite its being
an elementary measure. Our experiments showed
that in addition to the number of co-referential
event mentions, discourse layout features includ-
ing both the stretch of an event chain and early
presences of event mentions are key factors in
identifying the central event of a document.

Graph-based methods (Mihalcea and Tarau,
2004) have been widely used to identify keywords
and phrases in a document by constructing a word/
phrase graph and applying random walk algo-
rithms (Brin and Page, 2012) on the graph. We im-
plemented random walk based methods for iden-
tifying the central event as well, which however
did not perform well. Mainly, the random walk
based ranking strategy determines the importance
of an events based on the importance of its related
events in a document graph, which does not ef-
fectively capture discourse layout features of co-
referential event mentions, which are important
for identifying the central event of a document.

3 Central Event Annotations

We annotated central events for 30 news articles
from the RED corpus2 and 74 news articles from
the KBP 2015 corpus3. We asked two annotators
to identify the most dominant event that connects
other foreground and background events. Both
the documents and the gold event mentions for
each document inherited from the previous RED
and KBP annotations were provided to annotators.
The annotators were instructed to select only one
event as the central event. For 26 documents from
the RED corpus and 71 documents from the KBP

2The RED corpus contains 95 documents in total. How-
ever, 65 documents are news summaries, discussion forum
posts or web posts. The central event as defined should only
be considered for natural coherent texts, therefore, the anno-
tations were only conducted for the 30 news articles in the
corpus.

3The KBP 2015 corpus contains 158 documents, where
81 are news articles and the remaining are discussion forum
posts. Then in 7 out of the 81 news articles, annotators unan-
imously found that the central event was not of one of the
interested event types in KBP and was not tagged in the KBP
annotations. Therefore, our annotators skipped the 7 docu-
ments.
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corpus, both annotators identified the same central
event. For the other 7 documents, where the two
annotators disagreed on the central event, we kept
the annotations from the first annotator.

4 Characteristics of Central Events

We analyzed the distributional properties of cen-
tral events in the first 10 documents from the RED
corpus. The findings are summarized below.
Frequent and Extended Repetitions: As shown
in Figure 1, the central event is usually repeated
throughout the document. This observation can
also be accounted to the way humans produce and
comprehend language. Language is inherently se-
quential and a writer repeats the same event to re-
mind the readers about the main event. Therefore,
the frequent and extended repetitions of the cen-
tral event facilitate to minimize the cognitive effort
needed by the reader for understanding a text.
Early Presences: News articles mostly begin with
a summary of important events and continue to
elaborate them in subsequent paragraphs. To some
extent, the objective of initial paragraphs is to di-
rect readers’ attention toward the main subject.
Therefore, while the central event may not always
appear in the title or in the first sentence of a new
article, the central event often appears early in the
beginning paragraphs.
Sub-events: Being the most dominant event in a
document, the central event often has many sub-
events that are present to elaborate and support the
central event.
Event Realis Status: Central events are usually
specific and have actually occurred. This event at-
tribute has been defined as the contextual modality
in RED corpus4 and realis status in KBP corpus5

and we observed that this attribute is “Actual” for
the majority of central events.

5 Central Event Identification

Inspired by the identified characteristics of central
events, we designed rule-based classifiers that rely
on the following four ranking critera.
Size Rank: calculated using the number of coref-
erential event mentions in a event coreference
chain. The event having the largest number of
coreferential mentions is ranked the highest.

4defines 4 types of contextual modality, namely, actual,
hypothetical, uncertain/ hedged and generic

5defines 3 realis status types, namely, actual, generic and
other

Stretch Rank: based on the number of sentences
between the first and the last mention of an event.
The event with the largest stretch size is ranked the
highest.

Position Rank: based on the sentence number in
which an event was first mentioned. This measure
is to capture the characteristic that central events
tend to appear early in a document.

Enriched Size Rank: This rank is based on the
sum of the number of coreferential mentions for
an event and the number of its sub-events.

Input: central event candidates, EZ , ET , EP , EE , ER

Output: Ecenter

Ecenter := φ
Coreference
Ecenter := EZ ∩ ET ∩ EP

if Ecenter == φ: Ecenter := (EZ ∪ ET ) ∩ EP

if Ecenter == φ: Ecenter := EP

return Ecenter

Coreference + Subevent
Ecenter := EZ ∩ ET ∩ EP ∩ EE

ifEcenter == φ: Ecenter := (EZ ∪ET )∩EP ∩EE

if Ecenter == φ: Ecenter := EP ∩ EE

if Ecenter == φ: Ecenter := EP

return Ecenter

Coreference + Subevent + Realis
Ecenter := EZ ∩ ET ∩ EP ∩ EE ∩ ER

if Ecenter == φ: Ecenter := (EZ ∪ ET ) ∩ EP ∩
EE ∩ ER

if Ecenter == φ: Ecenter := EP ∩ EE ∩ ER

if Ecenter == φ: Ecenter := EP ∩ EE

if Ecenter == φ: Ecenter := EP

return Ecenter

5.1 Rule Based Classifiers

First, we identify central event candidates by re-
quiring their size rank in the top three positions.
Note that more than three events may be selected
if there are ties in any of the top three positions.
Then, we identify the central event in the can-
didate set by requiring different combinations of
the highest ranks, including the highest size rank
EZ , highest stretch rank ET , highest position rank
EP and highest enriched size rank EE . In addi-
tion, we identify an event set ER which includes
events whose contextual modality or realis status
is “Actual” and use the set for constraining central
event identification. Specifically, we define three
rule based classifiers which begin with strict rules
followed by relaxed rules in subsequent passes.
The system Coreference uses size, stretch and
position ranks, Coreference + Subevent consid-
ers enriched size rank as well, and Coreference +
Subevent + Realis further combines realis status
with each rank in favor of specific events.
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5.2 Statistical Regression Classifiers

We trained a linear as well as a nonlinear regres-
sion classifier to integrate the same set of rank-
ing rules as features for identifying central events,
by using the standard ordinary least squares linear
regression (Galton, 1886) model and the epsilon-
support vector regression (SVR) (Vapnik, 1995)
model with radial basis function kernel respec-
tively. Input to both the linear and nonlinear
regression classifiers consists of 20 (19) dimen-
sional vector, 4 dimensional categorical vector for
each of the size, stretch, position and enriched
size ranks and 4 (3) dimensional categorical vec-
tor for realis attribute for RED (KBP) corpus. The
models were implemented using scikit-learn mod-
ule (Pedregosa et al., 2011). The SVR classifier
uses rbf kernel with γ coefficient of 0.05 and all
other parameters are left to be the default values.

5.3 Coreference: Predicted

We further used system predicted coreference re-
lations to calculate size, stretch and position ranks
and used them to identify central events, where
coreference relations were predicted by a neural
network based pairwise classifier using event lem-
mas, parts-of-speech tags and event arguments as
features. The classifier was trained on the corpus
used in the Event Nugget Detection and Corefer-
ence task in the TAC KBP 2016 (Ellis et al., 2015).

Specifically, the classifier uses a common neu-
ral layer shared between two event mentions that
embed event lemma and parts-of-speech tags and
then calculates cosine similarity, absolute and eu-
clidean distances between two event embeddings.
Classifier also includes a neural layer component
to embed event arguments that are overlapped be-
tween the two event mentions. Its output layer
takes the calculated cosine similarity, euclidean
and absolute distances between event mention em-
beddings as well as the embedding of the over-
lapped event arguments as input, and output a con-
fidence score to indicate the similarity of the two
event mentions6. We used 300 dimensional word
embeddings (Pennington et al., 2014) and one hot
377 dimensional pos tag embeddings. In addition,
we used (Lewis et al., 2015) for semantic role la-
beling to obtain event arguments.

6We implemented our classifier using the Keras li-
brary (Chollet, 2015)

7Corresponding to the unique 36 POS tags based on the
Stanford POS tagger (Toutanova et al., 2003) and an addi-
tional ’padding’.

6 Evaluation

6.1 Baseline Systems

Three Heuristics Based Classifiers: The three
systems Main event: Headline, First event: First
sentence and Main event: First sentence chose the
main event (syntactic root) in headline, the first
event in the first sentence and the main event (syn-
tactic root) in the first sentence as the center event
respectively.

Random Walk Based Ranking Systems: imple-
mented the random walk based vertex ranking al-
gorithm (Mihalcea and Tarau, 2004) on graphs
generated using human annotated event relations.
The motivation is to decide the importance of an
event mention within an event graph of a docu-
ment8 based on the importance of its related event
mentions9. The system Random walk: All Re-
lations uses coreference, sub-event, set/ member,
temporal and causal relations to build the graph
while the system Random walk: Coref+SE only
considers event coreference and sub-event rela-
tions. We evaluate both systems on documents
from the RED corpus only as it extensively an-
notates event relations which yields a connected
graph for each document. However, the graphs
generated for documents in the KBP corpus often
contain many disconnected components and thus
are not suitable for these systems.

6.2 Results

We evaluated all the systems using the rest 20 doc-
uments from the RED corpus and all the 74 docu-

8We build an event graph for a document by using undi-
rected edges for coreference relations and directed edges for
other relations including set/ member, sub-event, temporal
and causal relations. This is mainly meant to retain the sym-
metrical property of coreference relations. Moreover, since
coreference link can easily create cycles in the graph, we uti-
lize its transitivity property and link all the coreferent event
mentions to its first instance in the document only.

9We rank event mentions by using the vertex scoring al-
gorithm proposed in Brin and Page (2012).

S(Vi) = (1− d) + d
∑

j=IN(Vi)

1

|OUT (Vj)|
S(Vj) (1)

where IN(Vi) andOUT (Vj) represent the set of event men-
tions that are predecessors and successors to Vi respectively.
Also, d is a damping vector that is kept 0.85 in our exper-
iments. We initially assign random values to all the event
mentions in an event graph and then update scores for all
event nodes using equation 1 after each iteration. Compu-
tation stops when the sum of differences between the scores
computed for all event mentions at two successive iterations
reduces below 0.01.
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Model Rec Prec F1
Richer Event Description (RED)

Main event: Headline 45.0 45.0 45.0
First event: First sentence 10.0 10.0 10.0
Main event: First sentence 40.0 40.0 40.0
Random walk: All Relations 40.0 40.0 40.0
Random walk: Coref+SM 45.0 45.0 45.0
Coreference 75.0 55.55 63.82
Coreference + Subevent 75.0 62.5 68.18
Coreference + Subevent + Realis 80.0 66.67 72.73
Linear Regression 63.33 63.33 63.33
SVR 66.67 66.67 66.67
Coreference: Predicted 45.0 45.0 45.0

KBP 2015
Main event: Headline 45.94 45.94 45.94
First event: First sentence 39.19 39.19 39.19
Main event: First sentence 39.19 39.19 39.19
Coreference 77.03 54.81 64.04
Coreference + Subevent 77.03 60.0 67.46
Coreference + Subevent + Realis 78.37 66.67 72.05
Linear Regression 66.21 61.25 63.63
SVR 67.56 62.5 64.93
Coreference: Predicted 48.65 45.56 47.05

Table 1: Experimental Results.

ments from the KBP 2015 corpus. The two regres-
sion classifiers were evaluated using 5-fold cross-
validation on each corpus. We expect a system to
identify only one central event for each document.
If a system predicts more than one central event,
we will penalize the system on precision strictly
and treat each wrongly predicted event as a false
hit. Table 1 shows the comparison results.

The heuristic based systems obtained a low re-
call on both corpora, which indicates that simple
heuristics miss a large proportion of cases. Both
random walk based systems suffered from a low
recall of 40-45% as well when applied to the RED
corpus, due to the fact that graph-based ranking
models do not effectively capture discourse layout
features of co-referential event mentions.

In contrast, the rule based system Coreference
achieved the recall above 75% on both corpora
when using annotated event coreference relations.
The system Coreference + Subevent + Realis
further improves the precision of central event
identification by over 11% on both corpora af-
ter considering subevents and the realis status in
the rules, which facilitate accurate identification
of the central event among multiple foreground
events. The high recall and precision indicate that
the insightful rules exploiting properties of event
chains are able to capture the overall texture in
the discourse. Then compared with rule based

systems, the two statistical classifiers that inte-
grate the same set of rules as features do not fur-
ther improve the central event identification per-
formance. But when using system predicted noisy
event coreference relations, the rule based system
Coreference: Predicted performed dramatically
worse than its counterpart using gold event chains
(system Coreference + Subevent + Realis). This
is unsurprising though considering the relatively
low performance of current event coreference res-
olution systems.

6.3 Analysis

To gain a better understanding of how noise in sys-
tem predicted event coreference links influences
central event identification performance, we an-
alyzed the documents where the system Coref-
erence: Predicted failed to identify the central
event. We found that both types of event coref-
erence resolution errors, missed coreference links
as well as wrong links, cause problems, especially
in calculating the Size Rank and the Stretch Rank
for an event. Specifically, the first type of errors
can demote both ranks of the correct central event
while the second type of errors can wrongly pro-
mote one of the two ranks for non-central events.

7 Conclusions

We have presented a new task of identifying the
central event for a document. Based on our an-
notations, we discussed the role of central events
in enabling a coherent discourse and the distri-
butional characteristics of central events. We es-
pecially emphasized on the importance of event
coreference in identifying central events. Inspired
by these observations, we designed a rule-based
classifier that achieved high recall and precision
in identifying central events. The low perfor-
mance of the classifier using system predicted
event coreference relations indicates that signifi-
cant efforts are needed to further improve event
coreference resolution performance in the future.

Acknowledgments

This work was partially supported by the National
Science Foundation via NSF Award IIS-1755943.
Disclaimer: the views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of NSF or the U.S. Government.

344



References
Sergey Brin and Lawrence Page. 2012. Reprint of: The

anatomy of a large-scale hypertextual web search
engine. Computer networks 56(18):3825–3833.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Nan Decker. 1985. The use of syntactic clues in dis-
course processing. In Proceedings of the 23rd an-
nual meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 315–323.

Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster,
Zhiyi Song, Ann Bies, and Stephanie Strassel. 2015.
Overview of linguistic resources for the tac kbp 2015
evaluations: Methodologies and results. In Proceed-
ings of TAC KBP 2015 Workshop, National Institute
of Standards and Technology. pages 16–17.

Elena Filatova and Vasileios Hatzivassiloglou. 2004a.
Event-based extractive summarization. In Pro-
ceedings of ACL Workshop on Summarization.
Barcelona, Spain., volume 111.

Elena Filatova and Vasileios Hatzivassiloglou. 2004b.
A formal model for information selection in multi-
sentence text extraction. In Proceedings of the
20th international conference on Computational
Linguistics. Association for Computational Linguis-
tics, page 397.

Francis Galton. 1886. Regression towards mediocrity
in hereditary stature. The Journal of the Anthro-
pological Institute of Great Britain and Ireland
15:246–263.

Joseph Evans Grimes. 1975. The thread of discourse,
volume 207. Walter de Gruyter.

Paul J Hopper and Sandra A Thompson. 1980. Tran-
sitivity in grammar and discourse. language pages
251–299.

Roderick Kay and Ruth Aylett. 1996. Transitivity and
foregrounding in news articles: Experiments in in-
formation retrieval and automatic summarising. In
Proceedings of the 34th Annual Meeting on Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, Stroudsburg, PA, USA,
ACL ’96, pages 369–371. https://doi.org/
10.3115/981863.981918.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a* ccg parsing and semantic role labelling. In
EMNLP. pages 1444–1454.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In EMNLP. volume 4, pages
404–411.

Teruko Mitamura, Zhengzhong Liu, and Eduard Hovy.
2015. Overview of tac kbp 2015 event nugget track.
In Text Analysis Conference.

Sean Monahan and Mary Brunson. 2014. Qualities of
eventiveness. In Proceedings of the Second Work-
shop on EVENTS: Definition, Detection, Corefer-
ence, and Representation. pages 59–67.

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. Computing News Storylines page 47.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Tsunoda Tasaku. 1981. Split case-marking patterns in
verb-types and tense/aspect/mood. Linguistics 19(5-
6):389–438.

K. Toutanova, D. Klein, C. Manning, and Y. Singer.
2003. Feature-Rich Part-of-Speech Tagging with
a Cyclic Dependency Network. In Proceedings of
HLT-NAACL 2003.

Tasaku Tsunoda. 1985. Remarks on transitivity. Jour-
nal of linguistics pages 385–396.

Shyam Upadhyay, Christos Christodoulopoulos, and
Dan Roth. 2016. ” making the news”: Identifying
noteworthy events in news articles. In Proceedings
of the Fourth Workshop on Events. pages 1–7.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

345



Proceedings of NAACL-HLT 2018, pages 346–351
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Improve Neural Entity Recognition via Multi-Task Data Selection and
Constrained Decoding

Huasha Zhao1, Yi Yang1,2 ∗, Qiong Zhang1, and Luo Si1

1Alibaba Group, San Mateo, CA
{huasha.zhao, qz.zhang, luo.si}@alibaba-inc.com

2Nanjing University, Nanjing, Jiangsu, China
yangyi868@gmail.com

Abstract

Entity recognition is a widely benchmarked
task in natural language processing due to
its massive applications. The state-of-the-art
solution applies a neural architecture named
BiLSTM-CRF to model the language se-
quences. In this paper, we propose an entity
recognition system that improves this neural
architecture with two novel techniques. The
first technique is Multi-Task Data Selection,
which ensures the consistency of data distri-
bution and labeling guidelines between source
and target datasets. The other one is con-
strained decoding using knowledge base. The
decoder of the model operates at the docu-
ment level, and leverages global and external
information sources to further improve perfor-
mance. Extensive experiments have been con-
ducted to show the advantages of each tech-
nique. Our system achieves state-of-the-art re-
sults on the English entity recognition task in
KBP 2017 official evaluation, and it also yields
very strong results in other languages.

1 Introduction

Entity Recognition (ER) is a fundamental task in
Natural Language Processing (NLP). The task in-
cludes named entity recognition and nominal en-
tity recognition. ER is the building blocks for
higher level applications such as natural language
understanding, question answering, machine read-
ing comprehension, etc. They are usually treated
as sequence labeling problems. Although the
topics have been studied extensively for the past
several decades, development of neural network
and deep learning based methods in recent years
(Lample et al., 2016; Ma and Hovy, 2016; Yang
et al., 2017; Kenton Lee and Zettlemoyer, 2017;
Xinchi Chen, 2017) significantly improves the
previous state-of-the-art.

∗ Work was done while doing internship at Alibaba.

A popular neural architecture for ER is
BiLSTM-CRF (Lample et al., 2016). The archi-
tecture has been shown to achieve best perfor-
mance on many sequence labeling tasks. In ad-
dition, the architecture can be easily extended to
model different sources of training data. In real
world applications, it is important to include exter-
nal data sources for model training, because using
only domain-specific data for training is usually
not enough to achieve best performance. For ex-
ample, in the case of KBP 2016 tracks, both the
1st and the 2nd teams (ranking in the NERC evalu-
ation) use external data source (Liu et al., 2016;
Xu et al., 2017) for model training. The chal-
lenge here is to transfer knowledge from external
data source to target data source. Multi-Task (MT)
BiLSTM-CRF architecture (Yang et al., 2017) is
designed for this knowledge transfer.

In this work, we develop an ER model based
on the MT BiLSTM-CRF architecture, with ad-
ditional entity embeddings and domain adaption.
Two novel methods are proposed to further im-
prove the model performance.

Multi-Task Data Selection

To ensure homogeneity between source and target
training data, adaptive training data selection is ap-
plied to source data during multi-task learning, to
filter out instances with different distribution and
misaligned annotation guideline. Data selection
is interleaved with model training iteratively, and
this training process terminates until convergence.

Constrained Decoding using Knowledge Base

Knowledge-based constraints are enforced at de-
coding time. The goal is to capture document level
contexts given those knowledge. For example, a
phrase is likely to be an entity if it is detected in
another sentence in the same document. It also
helps detect related mentions, such as the mention
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Figure 1: Neural architectures for mention detection
and classification. a) Single-task model. b) Multi-task
model with domain adaptions.

apple is more likely to be a ORG when it occurs
in the same discussion forum with Apple Inc.

2 Related Works

There are many works in literature applying neu-
ral networks to ER problems (Lample et al., 2016;
Ma and Hovy, 2016; Yang et al., 2017; Peng and
Dredze, 2016). The baseline model of this work
is mostly closed to (Yang et al., 2017). However,
we introduce additional channel in the embedding
layer(Peng and Dredze, 2016).

The idea of multi-task data selection is derived
from topics of data selection (Moore and Lewis,
2010) and instance weighting (Jiang and Zhai,
2007) from the transfer learning community. Dif-
ferent from previous work, we propose an adaptive
selection approach interleaved with MT BiLSTM-
CRF model training. Decoding with global con-
straints has been studied in (Yarowsky, 1993; Kr-
ishnan and Manning, 2006). Here we share simi-
lar ideas with previous work, but explore the use
of external knowledge base (Radford et al., 2015)
as constraints.

3 Approach

This section describes the baseline model used for
the ER task. We first describe a slight variant
of BiLSTM-CRF and its MT version for transfer
learning. For the sake of brevity, discussions of
the basis theory of MT learning are skipped and
more details can be found in (Zhang and Yang,
2017). Then we present in details how data selec-
tion and constrained decoding are applied to fur-
ther improve the model performance.

3.1 BiLSTM-CRF

BiLSTM-CRF is a widely adopted neural archi-
tecture for sequence labeling problems including
ER. BiLSTM-CRF is a hierarchical model and the
architecture is illustrated in Figure 1(a).

The first layer of the model maps words to
their embeddings. Let x = (x1, · · · , xn) de-
note a sentence composed of n words in a se-
quence, with x′is as their word/character embed-
ding combinations. In the second layer, word em-
beddings are encoded using a bidirectional-LSTM
network, and the output is h = (h1, · · · , hn),
where ht = BiLSTM(x, t). The encodings are
further passed to a fully connection network, to
compute CRF features φ(x) = G · h, and finally
objective to optimize is the CRF likelihood defined
as the following,

p(y|x; θ) =
∏n

i=1 exp(θ · f(yi−1, yi, φ(x)))
Z

,

where y are predicted labels and Z is the nor-
malizing constant.

3.1.1 Entity Embeddings
We extend the BiLSTM-CRF model by adding en-
tity embedding channel to the embedding layer.
As a result, xi is the concatenation of word em-
bedding, character embedding and its entity em-
bedding, xi = [ωi, ci, gi]. Entity embeddings
are derived from a noisy gazetteer created using
Wikipedia articles. The gazetteer is derived from
the word-entity statistics from (Pan et al., 2017).
More specifically, each coordinate of the entity
embedding is the probability distribution of a word
occurring as the corresponding entity type.

3.1.2 Domain Adaption
To explore external datasets, we apply MT
BiLSTM-CRF with domain adaptions, as illus-
trated in Figure 1(b). The fully connection layer
are adapted to different datasets. The CRF features
are computed separately, i.e. φT (x) = GT · h,
φS(x) = GS · h for target and source dataset
respectively. The loss function p(y|x; θT ) and
p(y|x; θS) are optimized in alternating order.

3.2 Multi-task Data Selection

Multi-task training can alleviate some of the prob-
lem caused by data heterogeneity between target
and source. This section presents an adaptive data
selection algorithm during multi-task training that
further removes noisy data from source dataset.

The data selection procedure is described in de-
tails in Algorithm 1. At each iteration, data se-
lection from the source domain is interleaved with
model parameter updates. Training data is selected
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Algorithm 1 Multi-task Data Selection
Input: Target training dataset (x,y) ∈ T , source

training dataset (x′,y′) ∈ S.
Initialize: Strain ← S; X S = {x′ : (x′,y′) ∈
S}.

Repeat:
1. Train the model for one iteration, by opti-

mizing the following instance weighted object
function,

J =
∑

(x,y)∈T
p(y|x; θT )+

∑

(x′,y′)∈Strain
p(y′|x′; θS);

2. Compute consistency score for each training
example in S,

s(x) = max
i

∑

j

p(xi = j) log
p(xi = j)

q(xi = j)
,

where p(xi) ∼ softmax(φT (xi)) and
q(xi) ∼ softmax(φS(xi)));

3. Construct Ssame , Sdiff by the following,
Ssame = {x ∈ X S : s(x) < α} and
Sdiff = {x ∈ X S : s(x) > β};
Thresholds α and β are manually set that de-
termine the selection/exclusion of a data point.

4. Update source training set Strain,
Strain ← Strain ∪ Ssame \ Sdiff .
In the new training set, data with different dis-
tributions are eliminated.

Until: |Sdiff | < k
Return: the final BiLSTM-CRF model.

based on a consistency score, which measures the
similarity between target and source data distri-
bution. Specifically, the consistency score is de-
rived from the KL divergence between φT (x) and
φS(x) for every word in the sentence in the source
training data. According to step 4, data that are
not consistent with the target are eliminated from
the training dataset. The iterations terminate un-
til there is few additional data to filter out, up to a
manually-tuned threshold.

3.3 Constrained Decoding using Knowledge
Base

It has been well studied that non-local informa-
tion can be used to help improve entity recogni-
tion performance (Radford et al., 2015) (Krishnan

and Manning, 2006). Here we describe a globally
constrained decoding (Graves et al., 2012) method
used in our model. In particular, we use external
knowledge information to guide the decoding pro-
cess at the document level.

3.3.1 Knowledge Base
An external knowledge base is built from
Wikipedia articles (Radford et al., 2015) (Dalton
et al., 2014). For each Wikipedia entity, we first
extract all its aliases from the redirects, and then
build a cluster of the mentions for the this entity
which includes all its aliases. Our goal is that
given a document mentions Microsoft, the knowl-
edge base can help identify the other mentions
such as MS Corp. The knowledge base can be nat-
urally extended to include related entities (using
anchor texts), instead of only aliases of the same
entity, in the cluster; we leave this to the future
works.

Then we apply global decoding with constraint
C, such that all mentions that belong to the same
cluster should be labeled as the same entity type
within a single document,

y1:N = argmax
C

p(y1:N|x1:N; θ),

where subscripts 1 : N are indices of sentences
within the same document. We use a greedy algo-
rithm for decoding.

4 Experiments

This section presents experiments results of our
methods on the KBP 2016 and 2017 evaluation
datasets. We focus on Engilsh (ENG) and Man-
darin Chinese (CMN) ER tasks, which include
both named entity recognition (NAM) and nom-
inal entity recognition (NOM). The neural models
are implemented using Tensorflow (Abadi et al.,
2016). Dropout and gradient clipping are applied
when necessary to avoid numerical issues during
training. Performance numbers are reported using
the NERC F1 score as defined in (Ji et al., 2016).

4.1 Datasets
KBP 2015 data is used for evaluation on the 2016
evaluation dataset. Both datasets are used for
training for KBP 2017 evaluation. We also lever-
age external data sources to improve model per-
formance. Unlike (Liu et al., 2016), manual anno-
tation is not feasible to us due to budget limit, we
instead use ACE (Walker et al., 2006) and ERE
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Method NAM NOM Overall
baseline (ENG) 0.809 0.587 0.748

+ EE (ENG) 0.842 0.587 0.770
baseline (CMN) 0.822 0.305 0.727

+ EE (CMN) 0.851 0.305 0.752

Table 1: Effectiveness of additional entity embeddings
(EE) in model embedding layer.

(Song et al., 2015) entity annotations as source
datasets. It is worth noting that annotation guide-
lines are different from one dataset to another, es-
pecially for nominal entity annotations.

4.2 Baseline

The baseline is a BiLSTM-CRF model with word
and character embeddings which simply combines
source and target data as training data. GloVe vec-
tors (Pennington et al., 2014) are used as word em-
beddings. NAM and NOM models are trained sep-
arately with individually tuned parameters.

4.3 Results

First, we examine the performance impact of en-
tity embedding. As shown in Table 1, entity em-
bedding is very useful for both NAM and NOM
prediction tasks, and for both languages. It pro-
vides an overall performance improvement of 2.2
F1 points. Since the entity embeddings are de-
rived from soft gazetteer features, this experiment
confirms again the usefulness of gazetteer even in
neural network models. In theory, the entity em-
beddings should have been already captured by the
model itself; the additional predictability of the
entity embeddings actually comes from the exter-
nal dataset (Wikipedia) where the embeddings are
derived from.

Next the effectiveness of Multi-Task Data Se-
lection is evaluated. Results in Table 2 show that
both MT and MTDS can significantly improve
NOM detection over the baseline, and adaptive
data selection in MTDS further improves over the
MT model. However, there is no gain at all for
NAM detection for both languages. We manually
evaluate the source and target datasets, and find
that the annotation guideline and data distribution
of NAM data are quite the similar while there are
some significant differences for NOM data. No-
tably, many of the plural form nouns are marked
as nominal entities in the ACE dataset while in our
target KBP tasks plural nouns are not labeled as

Method NAM NOM Overall
baseline+EE (ENG) 0.842 0.587 0.770

+MT (ENG) 0.842 0.626 0.786
+MTDS (ENG) 0.842 0.634 0.788

baseline+EE (CMN) 0.851 0.305 0.752
+MT (CMN) 0.851 0.351 0.756

+MTDS (CMN) 0.851 0.364 0.758

Table 2: Effectiveness of Multi-Task Data Selection
(MTDS).

entities in general.

Table 3 presents the performance impact of
knowledge based constrained decoding. It is worth
noting that the performance gain in the Chinese
language is more limited in comparison with En-
glish. The primary reason behind this is that
the English Wikipedia site is more comprehen-
sive than its Chinese counterpart. Constrained de-
coding does not change the NOM performance
because only name mentions are included in the
knowledge base.

Method NAM NOM Overall
baseline+EE (ENG) 0.842 0.587 0.770

+CD (ENG) 0.851 0.587 0.778
baseline+EE (CMN) 0.851 0.305 0.752

+CD (CMN) 0.855 0.305 0.754

Table 3: Effectiveness of Constrained Decoding (CD)
using Knowledge Base.

Finally, we use model ensemble to further im-
prove model scores. Four models are combined
together for final evaluation. Majority vote is ap-
plied to produce final results. We presents the
evaluation results on both KBP 2016 and 2017
datasets in Table 4, and compare them with state-
of-the-art scores (Ji et al., 2016) (Ji et al., 2017).
Our system ranks 1st in the English entity recogni-
tion task in the official evaluation in 2017. We also
perform very strongly in the Chinese language as
well: the best team applies many hand-tuned rules
in the evaluation (Ji et al., 2017), while our model
is free of rules. It also can be concluded from
the table that the additional training data for KBP
2016 increases the overall model performance by
0.7 F1 points.
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Year/Language Our F1 Best F1
2016/ENG 0.804 0.772
2017/ENG

(Official evaluation)
0.811 0.811

2017/CMN 0.769 0.780

Table 4: Performance comparison between 2016 and
2017 datasets.

5 Conclusion and Future Works

This paper presents novel methods to improve
neural entity recognition tasks. Multi-task data
selection removes noise from training data, while
constrained decoding further improves the model
by exploiting global and external information
sources. Extensive experiments show the effec-
tiveness of the methods. Work needs to be done
to justify in theoretic foundation the adaptive data
selection algorithm. Furthermore, runtime and
computational complexity of the system should be
studied. We also plan to extend the knowledge
base cluster to include related entities.
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Abstract

We propose a novel approach to semi-
supervised learning for information extrac-
tion that uses ladder networks (Rasmus et al.,
2015). In particular, we focus on the task of
named entity classification, defined as iden-
tifying the correct label (e.g., person or or-
ganization name) of an entity mention in a
given context. Our approach is simple, effi-
cient and has the benefit of being robust to
semantic drift, a dominant problem in most
semi-supervised learning systems. We empiri-
cally demonstrate the superior performance of
our system compared to the state-of-the-art on
two standard datasets for named entity classi-
fication. We obtain between 62% and 200%
improvement over the state-of-art baseline on
these two datasets.

1 Introduction

Training machine learning systems with limited
supervision is one of the fundamental challenges
in natural language processing (NLP), as anno-
tated data is often scarce and generating it requires
costly human supervision. Semi-supervised learn-
ing addresses this challenge by combining lim-
ited supervision with a large, unannotated dataset,
thereby mitigating the supervision cost.

For NLP, bootstrapping is a popular approach
to semi-supervised learning due its relative sim-
plicity coupled with reasonable performance (Ab-
ney, 2007). However, a crucial limitation of boot-
strapping, which is typically iterative, is that, as
learning advances, the task often drifts seman-
tically into a related but different space, e.g.,
from learning women names into learning flower
names (McIntosh, 2010; Yangarber, 2003).

In this paper, we propose an effective technique
for semi-supervised learning for information ex-
traction (IE), which obviates the need for an it-
erative approach, thereby mitigating the problem
of semantic drift. Our technique is based on the

recently proposed ladder networks (LNs) (Ras-
mus et al., 2015; Valpola, 2014). Ladder net-
works are deep denoising auto-encoders which
have skip connections and reconstruction targets
in the intermediate layers. Ladder networks are
closely related to hierarchical latent variable mod-
els (Rasmus et al., 2015; Valpola, 2014). The
lateral skip connections relieve the pressure on
lower layers of the encoder to encode all la-
tent information, thereby making the architec-
ture modular in design, similar to a factor graph.
The integration of the encoder-decoder framework
as a neural network, allows one to use back-
propagation for training, thereby not having to rely
on intractable inference as in a standard graphi-
cal model. Furthermore, LNs have been shown
to achieve state-of-the-art performance in image
recognition tasks (Rasmus et al., 2015).

To the best of our knowledge, our work is one
of the first applications of LN to any NLP task.
Specifically, our contributions are as follows:

(1) We provide a novel application of LNs to an IE
task, in particular semi-supervised named entity
classification (NEC). Our approach is simple: we
concatenate embeddings of entity mentions with
that of its context1 and feed the resulting vectors
into the LN’s denoising auto-encoder.

(2) We empirically demonstrate, for the task of
semi-supervised NEC on two standard datasets –
CoNLL (Tjong Kim Sang and De Meulder, 2003)
and Ontonotes (Pradhan et al., 2013) – that we
obtain a classification accuracy of 66.11% and
63.12% with minimal supervision on only 0.3%
and 0.6% of the data, respectively. These results
compare favorably against the accuracy of state-
of-the-art bootstrapping algorithms of 40.74% and
21.06% on the same datasets. Further, in our ex-
periments we observed an almost 7-fold decrease

1A context consists of all the patterns of n-grams within
a certain window around the corresponding entity mention.
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in training time compared to an iterative bootstrap-
ping system.

(3) Lastly, we also provide empirical evidence that
our approach is robust to the phenomenon of se-
mantic drift. We obtain consistently better ac-
curacy compared to traditional bootstrapping al-
gorithms and label propagation, when initialized
with identical supervision. We also demonstrate
the reduction in semantic drift by measuring the
purity of the entity pools with respect to a cate-
gory as the algorithm advances (§4).

2 Related Work

There is a long line of work in semi-supervised
learning for NLP (Zhu, 2005; Abney, 2007). This
encompasses many different types of techniques
such as self-training or bootstrapping (Carlson
et al., 2010a,b; McIntosh, 2010; Gupta and Man-
ning, 2015, inter alia), co-training (Blum and
Mitchell, 1998), or graph-based methods such as
label propagation (Delalleau et al., 2005). Perhaps
the most popular approach among them is self-
training, or bootstrapping, which has been used
in many applications, including information ex-
traction (Carlson et al., 2010a; Gupta and Man-
ning, 2014, 2015), lexicon acquisition (Neelakan-
tan and Collins, 2015), named entity classifica-
tion (Collins and Singer, 1999) and sentiment
analysis (Rao and Ravichandran, 2009). However,
most of these approaches are iterative, and suffer
from semantic drift (Komachi et al., 2008).

Auto-encoder frameworks have been getting a
lot of attention in the machine learning community
recently. Such framewoks include recursive auto-
encoders (Socher et al., 2011), denoising auto-
encoders (Vincent et al., 2008), etc. They are
primarily used as a pre-training mechanism be-
fore supervised training. Recently, such networks
have also been used for semi-supervised learning
as they are more amenable to combining super-
vised and unsupervised components of the objec-
tive functions (Zhai and Zhang, 2015).

Ladder networks (LN) are stacked denoising
auto-encoders with skip-connections in the in-
termediate layers (Rasmus et al., 2015; Valpola,
2014). LNs have been shown to produce state-of-
the-art performance on both supervised and semi-
supervised tasks on the MNIST dataset in image
processing. Our work is among the first to apply
LNs to NLP. While similar in spirit to Zhang et al.
(2017), the only other work we found that applies

a denoising auto-encoder to a semi-supervised
spelling correction task, our work is much sim-
pler, since it uses a multi-layer perceptron instead
of convolution-deconvolution operations. Further,
we demonstrate that LNs perform very well on a
complex IE task, considerably outperforming sev-
eral state-of-the-art approaches.

3 Approach

We apply the proposed semi-supervised learning
approach to the task of NEC, defined as identify-
ing the correct label of an entity mention in a given
context. In our setting, the context of a mention is
defined as all the patterns that match the specific
mention. Please refer to the right half of Figure 1
for an example sentence snippet, an entity mention
(in boldface) and its context. Using these as input,
the classifier must infer that the mention’s correct
label is person.2

For the NEC task, the embedding of a men-
tion and its context is concatenated to produce X
which is input to the ladder network to predict a
label y for the particular entity mention.

Initializing the network

We initialize the words in the entities and patterns
around them with pre-trained word embeddings.
To obtain a single embedding for an entity mention
and its context we: (a) average word embeddings
to obtain a single embedding for the entity men-
tion and each of its patterns; and (b) average the
resulting pattern embeddings to produce the em-
bedding of the corresponding context. We then
concatenate the mention’s embedding and context
embedding to be given as input to the ladder net-
work. This process is depicted schematically in
the right part of Figure 1.

Architecture of the ladder network

Ladder Network (Rasmus et al., 2015) is a neu-
ral network architecture designed to use unsuper-
vised learning as a scaffolding for the supervised
task. It is a denoising autoencoder (DAE) with
noise introduced in every layer. It consists of
two sets of encoders, a clean one and another cor-
rupted with noise, and a decoder. In addition, there

2Note that the NEC task can be defined at mention level,
as defined above, or at entity level, i.e., identify all labels that
apply to all mentions of a given entity. (e.g., “Washington” =
{person, location}. Here we focus on mention classifi-
cation, although in some of our evaluations we revert to entity
classification, to be able to compare against other approaches.
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... profits grew by 10% in the last quarter said Ann Stephens , the president of the ...

[Ann Stephens]
[quarter said @ENTITY , president] [said @ENTITY , president] [@ENTITY , president of the]

Figure 1: Architecture of the ladder network (Rasmus et al., 2015) (left) and of the network initialization com-
ponent for the NEC task (right). LN is a deep denoising auto-encoder with lateral skip connections between the
layers. The input to our LN is an entity mention along with its context, averaged and concatenated vector ini-
tialized with pre-trained embeddings for every token (§3). We introduce noise in the network by perturbing the
embeddings with standard Gaussian noise with fixed stdev.

are skip connections between the encoder and de-
coder. The ladder network is defined as follows:

X̃, Z̃(1), . . . Z̃(L), ỹ = fcorr(X) (1)

X,Z(1), . . . Z(L), y = fclean(X) (2)

X̂, Ẑ(1), . . . Ẑ(L) = g(Z̃(1), . . . Z̃(L)) (3)

where X , X̃ and X̂ is an input datapoint, its
corrupted version, and its reconstruction, respec-
tively; Z(l) and Z̃(l) are clean and corrupted hid-
den representations in the l-th layer; and, lastly,
y, ỹ are the clean and corrupted activations, con-
verted to a probability distribution over the label
set (using a softmax layer). For our NEC task,
X is the concatenation of an entity mention and
its context embedding vectors generated as men-
tioned previously, and y represents one of the pre-
dicted mention labels (e.g. person).

We introduce noise in this architecture by per-
turbing the embeddings with a standard Gaussian
noise with a fixed standard deviation.

The objective function is a combination of a
supervised training cost and unsupervised recon-
struction costs at each layer (including the hidden
layers):

Cost = −
N∑

n=1

logP (ỹn = y∗n|Xn)+

M∑

n=N+1

L∑

l=1

λlReconstCost(Z
(l)
n , Ẑ(l)

n ) (4)

where the first term is the supervised cross-
entropy based on the N labeled datapoints
(X1, y

∗
1), (X2, y

∗
2), . . . (XN , y

∗
n), and the second

term is the reconstruction loss on the M un-
labeled datapoints XN+1, XN+2, . . . XN+M , for
each layer l. Typically M � N .

Pezeshki et al. (2016) analyze the different ar-
chitectural aspects of LN and note that the lat-
eral connections and corresponding reconstruction
costs (second term in Eq. 4) are critical for semi-
supervised learning. In other words, it is important
for unlabeled data to be used for regularization to
be able to learn good abstractions in the different
layers. We have similar observations for the NEC
task (see Experiments). The overall architecture
of LN is shown in the left part of Figure 1.

4 Experiments

Datasets: We used two datasets, the CoNLL-
2003 shared task dataset (Tjong Kim Sang and
De Meulder, 2003), which contains 4 entity types,
and the OntoNotes dataset (Pradhan et al., 2013),
which contains 113, both of which are bench-
mark datasets for supervised named entity recog-
nition (NER). These datasets contain marked en-
tity boundaries with labels for each marked entity.
Here we only use the entity boundaries but not the
labels of these entities during the training of our
bootstrapping systems. To simulate learning from
large texts, we tuned hyper parameters on develop-
ment, but ran the actual experiments on the train
partitions.

Baselines: We compared against 2 baselines:

Explicit Pattern-based Bootstrapping (EPB):
this system is our implementation of the state-of-
the-art bootstrapping system of Gupta and Man-
ning (2015), adapted to NEC. The algorithm
grows a pool of known entities and patterns for

3We excluded numerical categories such as DATE.
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Figure 2: Overall results on the CoNLL (left) and Ontonotes (right) datasets. Throughput is the number of entities
classified, and precision is the proportion of entities that were classified correctly.

each category of interest, from a few seed ex-
amples per category, by iterating between pattern
promotion and entity promotion. The former is
implemented using a ranking formula driven by
the point-wise mutual information (PMI) between
each pattern with the corresponding category; the
top ranked patterns are promoted to the pattern
pool in each iteration. The latter component pro-
motes entities using a classifier that estimates the
likelihood of an entity belonging to each class.
Our feature set includes, for each category c: (a)
edit distance between the candidate entity e and
known entities for c; (b) the PMI (with c) of the
patterns in the pool of c that matched e in the train-
ing documents; and (c) similarity between e and
entities in c’s pool in some semantic space.4 Enti-
ties classified with the highest confidence for each
class are promoted to the corresponding pool after
each epoch.

Label Propagation (LP): we used the imple-
mentation available in the scikit-learn pack-
age of the LP algorithm (Zhu and Ghahramani,
2002).5 In each bootstrapping epoch, we run LP,
select the entities with the lowest entropy, and add
them to their top category. Each entity is repre-
sented by a feature vector that contains the co-
occurrence counts of the entity and each of the pat-
terns that matches it in text.6

Settings: For each entity mention, we consider a
n-gram window of size 4 on either side as a pat-
tern. We initialized the mention and contexts em-
beddings input to the ladder network as well as
the baseline system with pre-trained embeddings
from Levy and Goldberg (2014) (size 300d) as this

4We used pre-trained word representations, averaged for
multi-word entities, to compute cosine similarities between
pairs of entities.

5
http://scikit-learn.org/stable/modules/generated/

sklearn.semi_supervised.LabelPropagation.html
6We experimented with other feature values, e.g., pattern

PMI scores, but all performed worse than raw counts.

gave us improved results on the baseline compared
to vanilla word2vec initialization. We used a
600d dimensional embedding for each datapoint
(300 each from entity and context concatenated).
We used a 3-layer ladder network with dimen-
sions 600-500-K where K is the number of labels
present in the dataset. Further, we used a standard
Gaussian noise with stdev = 0.3 for the corrupted
encoder and reconstruction cost for the 3-layers
were 1000-10-0.1. We set the supervised exam-
ples (mentions along their corresponding contexts
and labels) randomly. For CoNLL we used 40 and
Ontonotes 440 examples, with equal representa-
tion from their labels’ set. To compare with the
baselines, which classify entities rather than men-
tions, we sorted the predictions returned by the LN
in decreasing order of their activation scores and
chose the most confident entity label (when all its
mention scores were averaged). We ran the base-
lines until they predicted labels for all the entities.
For the baselines, in each iteration we promoted
100 entities per category.7 For a fair comparison,
we used the same set of entity mentions as seeds
(selected randomly) for each of our experiments.

Figure 2 shows the precision vs. throughput
curves for the baselines and our LN approach. We
see that on both the datasets the LN outperforms
the baselines by a large margin. Further we no-
tice that the LN is reasonably stable for most of
the precision/recall curve whereas EPB degrades
quickly. Iterative bootstrapping approaches inher-
ently suffer from semantic drift: as the iterations
progress the learned model begins to drift into a
different semantic space due to incomplete statis-
tics and ambiguity (McIntosh, 2010; Yangarber,
2003). These results parallel other previous obser-
vations that semantic drift is an inherent problem
in iterative bootstrapping approaches (Komachi

7We also ran a cautious approach of promoting 10 enti-
ties per category per iteration and noticed that the former had
better performance.
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Figure 3: Avoiding semantic drift: Comparison of pool purity between ladder and EPB on the CoNLL dataset.

et al., 2008). The figure empirically demonstrates
that, in contrast, the paradigm of semi-supervised
learning based on ladder networks is more ef-
fective in combating semantic drift. Further, we
empirically observed a speedup of almost 7x in
training a ladder network compared to an iterative
bootstrapping approach.

Table 1 lists the accuracy of the LN approach on
all the data points, as we varied the amount of su-
pervision. As expected, as we increase the amount
of supervision, we observe improvements in accu-
racy. More importantly, the table shows that LN
outperforms the overall accuracy of EPB (right-
most points in Figure 2) with much fewer annota-
tions (e.g., with 55 annotations in OntoNotes, LN
outperforms the performance of EPB with 440 an-
notated examples).

Figure 3 shows the purity of entity pools for a
given label vs. confidence scores of the entity pre-
dictions sorted in decreasing order for the CoNLL
dataset.8 Purity is defined here as the precision of
an entity pool for a given category. In the EPB
setting, this is equivalent to computing the preci-
sion at the stage of entity promotion in a particular
epoch. In LNs, we sort the entity predictions in de-
crease order of their confidence scores and create
bins of size 100 for this comparison.We notice that
for every category, LN maintains a higher over-
all purity over EPB, the best iterative bootstrap-
ping baseline, demonstrating that the entity pools
are less polluted by noisy entries, thereby reduc-
ing semantic drift. It is also important to observe
that LN inherently captures the bias in the training
data, by predicting more entities in the PER cate-
gory, as this is the most frequently occurring label
in the dataset.

5 Conclusion

We discussed a novel application of ladder net-
works to the task of lightly supervised named en-
tity classification. Our approach concatenates em-
beddings of entity mentions with their contexts

8In the appendix, a similar analysis is presented on the
Ontonotes dataset.

CoNLL OntoNotes
Num. labels Accuracy Num. labels Accuracy

20 46.46 55 26.04
40 66.46 110 48.53
80 75.37 220 59.66
160 81.11 440 73.10
320 80.94 880 73.58
640 82.51 1760 73.23
1280 81.22 3520 73.77
2560 81.34 7040 73.31
5120 81.26 14080 82.47

10240 81.91 28160 83.32

Table 1: Num. of annotated labels vs. overall accuracy.
# of mention labels - CoNLL: 13200; OntoNotes:
67000

and feeds the resulting vectors into the LN’s de-
noising auto-encoder. We demonstrate that our
system outperforms state-of-the-art iterative boot-
strapping approaches by approximately 62% and
200% on two benchmark datasets. Furthermore,
our approach mitigates the issue of semantic drift
as it is not iterative in nature, unlike traditional
bootstrapping.

As part of future investigation, we will experi-
ment with other types of encoders such as convo-
lutional and recurrent networks. Furthermore, we
aim to scale this approach to larger datasets. The
approach presented in the paper is broad in scope.
Application of this framework to other tasks in
natural language processing such as relation ex-
traction, sentiment analysis, and fine-grained en-
tity typing, where obtaining supervised training
data is hard, is another interesting avenue for fur-
ther research. For example, relation extraction can
be modeled similarly to the NEC task described
here, as a feed forward network over embeddings
of the entity mentions participating in the rela-
tion and of the lexico-syntactic patterns connect-
ing them.
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Figure 4: Avoiding semantic drift: Comparison of pool purity between ladder and EPB on the Ontonotes dataset.
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A Purity on Ontonotes

Figure 4 shows the purity of the entity pools on the
Ontonotes dataset (Purity is defined in §4). From
these graphs, we can observe that LN has a higher
overall purity compared to EPB for all categories,
which indicates that it suffers less from the prob-
lem of semantic drift. Further, we observe that
LN predicts more PERSON and ORG entities as
these as the most frequently appearing types in this
dataset. In other words, LN follows closely the
underlying distribution of the data when making
predictions, unlike EPB.
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Abstract

Supervised event extraction systems are lim-
ited in their accuracy due to the lack of avail-
able training data. We present a method for
self-training event extraction systems by boot-
strapping additional training data. This is
done by taking advantage of the occurrence
of multiple mentions of the same event in-
stances across newswire articles from multi-
ple sources. If our system can make a high-
confidence extraction of some mentions in
such a cluster, it can then acquire diverse train-
ing examples by adding the other mentions as
well. Our experiments show significant per-
formance improvements on multiple event ex-
tractors over ACE 2005 and TAC-KBP 2015
datasets.

1 Introduction

Event extraction is a challenging task, which aims
to discover event triggers in a sentence and classify
them by type. Training an event extraction system
requires a large dataset of annotated event triggers
and their types in a sentence. Unfortunately, be-
cause of the large amount of different event types,
each with its own set of annotation rules, such
manual annotation is both time-consuming and ex-
pensive. As a result, popular event datasets, such
as ACE (Walker et al., 2006) and TAC-KBP (Mi-
tamura et al., 2015), are small (e.g., the median
number of positive examples per subtype is only
65 and 86, respectively) and biased towards fre-
quent event types, such as Attack.

When an event occurs, there are often multiple
parallel descriptions of that event (Figure 1) avail-
able somewhere on the Web due to the large num-
ber of different news sources. Some descriptions
are simple, explaining in basic language the event
that occurred. These are often easier for exis-
ting extraction systems to identify. Meanwhile,

1) LSU fires head coach Les Miles after 12 seasons.
2) Les Miles is out at LSU after 12 seasons in Baton
Rouge.
3) On Sunday morning, LSU athletic director Joe Alleva
told Les Miles that the coach would no longer represent
Louisiana State.

Figure 1: Example of a cluster of paraphrases. Shared
entities are bolded, and the triggers are italicized.
Some, such as the first sentence, are very simple. Oth-
ers, like the third sentence are more difficult.

other descriptions might use more complex lan-
guage that falls outside the scope of typical event
extractors, but which, if identified, could serve as
valuable training data for said systems.

We automatically generate labeled training data
for event trigger identification leveraging this
wealth of event descriptions1. Specifically, we first
group together paraphrases of event mentions. We
then use the simple examples in each cluster to as-
sign a label to the entire cluster. This simplifies the
task of extracting events from difficult examples;
rather than having to identify whether an event oc-
curs, and which word serves as a trigger for that
event, our system needs only to identify the most
likely trigger for the given event. Finally, we com-
bine the new examples with the original training
set and retrain the event extractor.

Our experiments show that this data can be
used with limited amounts of gold data to achieve
significant improvement over both standard and
neural event extraction systems. In particular, it
achieves 1.1 and 1.3 point F1 improvements over a
state-of-the-art system in trigger identification on
TAC-KBP and ACE data respectively. Moreover,
we show how the benefit of our method varies as a
function of the amount of fully-supervised training
data and the number of additional heuristically-
labeled examples.

1The generated data and our code can be found at
https://github.com/jferguson144/NewsCluster
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2 Approach

Our goal is to automatically add high quality la-
beled examples, which can then be used as addi-
tional training data to improve the performance of
any event extraction model. Our data generation
process has three steps. The first is to identify clus-
ters of news articles all describing the same event.
The second step is to run a baseline system over
the sentences in these clusters to identify events
found in each cluster. Finally, once we have iden-
tified an event in one article in a cluster, our sys-
tem scans through the other articles in that cluster
choosing the most likely trigger in each article for
the given event type.
Cluster Articles In order to identify groups of
articles describing the same event instance, we use
an approach inspired by the NewsSpike idea intro-
duced in Zhang et al. (2015). The main intuition is
that rare entities that are mentioned a lot on a sin-
gle date are more indicative that two articles are
covering the same event. We assign a score, S,
to each pair of articles, (ai, aj) appearing on the
same day, for whether or not they cover the same
event, as follows:

S(ai, aj) =
∑

e∈Eai∩Eaj

count(e, dateai,aj )
count(e, corpus)

, (1)

where Ea is the list of named entities for the ar-
ticle a, and count is the number of times the en-
tity appears on the given date, or in the whole cor-
pus. This follows from the intuition above by re-
ducing the weight given to common entities. For
example, United States appears 367k times in the
corpus, so it is not uncommon for it to appear
hundreds of times on a single day, and articles
mentioning it could be covering completely dif-
ferent topics. Meanwhile Les Miles appears only
1.6k times in the corpus, so when there are hun-
dreds of mentions involving Les Miles on a sin-
gle day, it is much more likely that he participated
in some event. Accumulating these counts over
all shared entities between two articles thus indi-
cates whether the articles are covering the same
event. We then group all articles that cover the
same event according to this score into clusters.
Label Clusters Then, given clusters of articles,
we run a baseline extractor which was trained on
what limited amount of fully-supervised training
data is available. The hope is that one or more
of a cluster’s sentences will use language similar

enough to our training data that the extractor can
make an accurate prediction. Our system keeps
any cluster in which the baseline system identifies
at least some threshold, θevent, of event mentions
for a single event type, and labels those clusters
with the identified type.
Assign Triggers After labeling, the event clus-
ters are comprised of articles in which at least one
sentence should contain event mentions of the la-
beled type. Because most current event extrac-
tion systems require labeled event triggers for sen-
tences, we identify those sentences and the event
triggers therein so that we can run the baseline
systems. For each sentence we identify the most
likely trigger by checking the similarity of the
word embeddings to the canonical vector for that
event. This vector is computed as the average of
the embeddings of the event triggers, vt, in the
gold training data: vevent = 1

|Tevent|
∑

t∈Tevent

vt,

where Tevent is the set of triggers for this event
in the gold training data. If the maximum similar-
ity is greater than some threshold, θsim, the sen-
tence and the corresponding trigger are added to
the training data.
Event Trigger Identification Systems Event
extraction tasks such as ACE and TAC-KBP have
frequently been approached with supervised ma-
chine learning systems based on hand-crafted fea-
tures, such as the system adapted from Li et al.
(2013) which we make use of here. Recently,
state-of-the-art results have been obtained with
neural-network-based systems (Nguyen et al.,
2016; Chen et al., 2015; Feng et al., 2016). Here,
we make use of two systems whose implementa-
tions are publicly available and show that adding
additional data would improve their performance.

The first system is the joint recurrent neural
net (JRNN) introduced by Nguyen et al. (2016).
This model uses a bi-directional GRU layer to en-
code the input sentence. It then concatenates that
with the vectors of words in a window around the
current word, and passes the concatenated vec-
tors into a feed-forward network to predict trig-
ger types for each token. Because we are only
classifying triggers, and not arguments, we don’t
include the memory vectors/matrices, which pri-
marily help improve argument prediction, or the
argument role prediction steps of that model.

The second is a conditional random field (CRF)
model with the trigger features introduced by Li
et al. (2013). These include lexical features, such

360



as tokens, part-of-speech tags, and lemmas, syn-
tactic features, such as dependency types and arcs
associated with each token, and entity features,
including unigrams/bigrams normalized by entity
types, and the nearest entity in the sentence. In
particular, we use the Evento system from Fergu-
son et al. (2017).

3 Experimental Setup
Labeled Datasets We make use of two labeled
datasets: ACE-2005 and TAC-KBP 2015. For the
ACE data, we use the same train/development/test
split as has been previously used in (Li et al.,
2013), consisting of 529 training documents, 30
development documents, and a test set consisting
of 40 newswire articles containing 672 sentences.
For the TAC-KBP 2015 dataset, we use the offi-
cial train/test split as previously used in Peng et al.
(2016) consisting of 158 training documents and
202 test documents. ACE contains 33 event types,
and TAC-KBP contains 38 event types.

For our approach, we use a collection of news
articles scraped from the web. These articles
were scraped following the approach described in
Zhang and Weld (2013). The process involves
collecting article titles from RSS news seeds, and
then querying the Bing news search with these ti-
tles to collect additional articles. This process was
repeated on a daily basis between January 2013
and February 2015, resulting in approximately 70
million sentences from 8 million articles. Al-
though the seed titles were collected during that
two year period, the search results include articles
from prior years with similar titles, so the articles
range from 1970 to 2015.

Evaluation We report the micro-averaged F1
scores over all events. A trigger is considered
correctly labeled if both its offsets and event type
match those of a reference trigger.

Implementation details For creating the
automatically-generated data, we set thresholds
θevent and θsim to 2 and 0.4 respectively, which
were selected according to validation data. We
use CoreNLP (Manning et al., 2014) for named
entity recognition, and we use a pre-trained
Word2Vec model (Mikolov et al., 2013) for the
vector representations.

For the JRNN model, we follow the parameter
settings of (Nguyen et al., 2016) and use a context
window of 2 for context words, and a feed-forward
neural network with one hidden layer for trigger

ACE TAC-KBP
P R F1 P R F1

CRF

0% 62.9 70.0 66.3 53.5 52.3 52.9
10% 64.5 69.8 67.0 59.9 49.3 54.1∗
20% 65.1 70.2 67.6∗ 59.3 49.2 53.8
30% 65.1 69.9 67.4 58.1 49.4 53.4

JRNN

0% 65.7 72.9 69.1 68.8 49.2 57.3
10% 67.4 72.7 69.9 65.4 52.1 58.0
20% 67.6 73.5 70.4∗ 65.3 52.8 58.4∗
30% 67.5 73.3 70.3 64.7 52.9 58.2

HNN 84.6 64.9 73.4 - - -
SSED - - - 69.9 48.8 57.5

Table 1: Results after adding varying amounts of
automatically-generated news data. Percentages indi-
cate the amount of additional data relative to the size
of the gold training data. Using a modest amount of
semi-supervised data improves extractor performance
on both ACE & TAC-KBP events. * indicates that the
difference in F1 relative to training with just the gold
data is statistically significant (p < 0.05).

prediction with hidden layer size of 300. Finally,
for training, We apply the stochastic gradient de-
scent algorithm with mini-batches of size 50 and
the AdaDelta update rule (Zeiler, 2012) with L2

regularization. For the CRF model, we maximize
the conditional log likelihood of the training data
with a loss function via softmax-margin (Gimpel
and Smith, 2010). We optimize using AdaGrad
(Duchi et al., 2011) with L2 regularization.

4 Experiments
Varying Amounts of Additional Data In
this section we show that the addition of
automatically-generated training examples im-
proves the performance of both systems we
tested it on. We sample examples from the
automatically-generated data, limiting the total
number of positive examples to a specific number.
In order to avoid biasing the system in favor of a
specific event type, we ensure that the additional
data has a uniform distribution of event types. We
run 10 trials at each point, and report average re-
sults.

Table 1 reports the results of adding varying
amounts of our generated data to both CRF and
JRNN systems. We observe that that adding any
amount of heuristically-generated data improves
performance. Optimal performance, however, is
achieved fairly early in both datasets. This is likely
due to the domain mismatch between the gold and
additional data. For reference purposes, we also
include the result of using the HNN model from
(Feng et al., 2016) and the SSED system from
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Figure 2: Adding a reasonable amount (200 examples
per event) of semi-supervised data on top of limited
amounts of gold training data improves performance
across the board, but the gain is dramatic when the
number of supervised examples is extremely small.

(Sammons et al., 2015), which are the best re-
ported results on the ACE-2005 and TAC-KBP
2015 corpora respectively. These systems could
also benefit from our additional data since our ap-
proach is system independent.

Varying Amounts of Supervised Data In
this section we evaluate how the benefit of
adding semi-supervised data varies given differ-
ent amounts of gold (supervised) data to start. We
conjecture that semi-supervision will be more ben-
eficial when gold data is very limited, but the con-
clusion isn’t obvious, since semi-supervision is
more likely to add noisy examples in this case.
Specifically, we limit the number of positive gold
examples for each event by randomly sampling
the overall set. We then add in the same amount
of automatically-generated data to each trial. We
again run 10 trials for each size, and report the av-
erage.

The results for this experiment using the CRF
model can be seen in figure 2: training with large
amounts of semi-supervised data improves per-
formance considerably when limited gold train-
ing data is available, but those gains diminish with
more high-quality supervised data. We observe the
same trend for the JRNN system as well.

Discussion We randomly selected 100 examples
from the automatically-generated data and manu-
ally annotated them. For each example that did
not contain a correctly labeled event mention, we
further annotated where in the pipeline an error oc-
curred to cause the incorrect labeling. This break-
down can be seen in table 2. As observed in the ta-
ble, the errors are mainly due to the incorrect event
identification or trigger assignment.

Correct 72

Incorrect
clustering 5
event identification 13
trigger assignment 10

Table 2: The results of manually labeling 100 examples
that were automatically-generated using JRNN as the
supervised system.

Incorrect clustering refers to cases in which a
sentence does not cover the same topic as other
sentences in its cluster. This was primarily caused
by entities participating in multiple events around
the same time period. For example, this occurred
in sentences from the 2012 US presidential elec-
tion coverage involving Barack Obama and Mitt
Romney.

Incorrect event identification refers to clusters
that were incorrectly labeled by the supervised
system. The primary reason for these errors is
due to domain mismatch between the news arti-
cles and the gold data. For example, our system
identifies the token shot in Bubba Watson shot a
67 on Friday as an attack event trigger. Because
the gold data does not contain examples involv-
ing sports, the baseline system mistakenly identi-
fies a paraphrase of the above sentence as an at-
tack event, and our system is not able to fix that
mistake. However, this problem can be solved by
training the baseline extractor on the same domain
as the additional data.

Incorrect trigger assignment refers to errors in
which a sentence is correctly identified as con-
taining an event mention, but the wrong token is
selected as a trigger. The most common source
of this error is tokens that are strongly associ-
ated with multiple events. For example, shoot-
ing is strongly associated with both attack and die
events, but only actually indicates an attack event.

Looking through the correct examples, the data
collection process is able to identify uncommon
triggers that do not show up in the baseline train-
ing data. For example, it correctly identifies “of-
fload” as a trigger for Transfer-Ownership in Bar-
clays is to offload part of its Spanish business to
Caixabank. Despite the trigger identification step
having no context awareness, the process is also
able to correctly identify triggers that rely on con-
text, such as “contributions” triggering Transfer-
Money in Chatwal made $188,000 of illegal cam-
paign contributions to three U.S. candidates via
straw donors.
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5 Related Work

A challenge in event extraction is the relatively
small number of labeled training examples avail-
able. Researchers have dealt with this by framing
event extraction in a way that allows them to rely
heavily on systems built for dependency parsing
(McClosky et al., 2011) and semantic role labeling
(Peng et al., 2016). Unlike these researchers, we
join a line of work that attempts to directly harvest
additional training examples for use in traditional
event extraction systems.

Distant supervision is one source of additional
data that has been successfully applied to rela-
tion extraction tasks (Riedel et al., 2010; Hoff-
mann et al., 2011; Mintz et al., 2009), which align
a background knowledge base to an accompany-
ing corpus of natural language documents. For
event extraction, such data sources are not as eas-
ily available since there are no pre-existing stores
of tuples of attacks, movements or meetings.

Other work has generated additional data by us-
ing a pattern-based model of event mentions and
bootstrapping on top of a small set of seed exam-
ples. Huang and Riloff (2012) begin with a set of
nouns that are specific to certain event roles and
extract patterns based on the contexts in which
those words appear. Li et al. (2014) extracted
additional patterns using various event inference
mechanisms.

The work most similar to ours is that of Liao and
Grishman (2010, 2011) to identify articles from a
corpus which described the same event instances
found in training examples. These articles are then
used in self-training an ACE-trained system af-
ter being filtered to select passages with consis-
tent roles and triggers. Their method provides a
2.7 point boost to F1, but their baseline system re-
sults are much lower than ours (54.1 vs 69.1) and it
is unclear what improvement their method would
have on a state-of-the-art extractor. In addition,
their system attempts to identify relevant articles
that describe event instances already present in
their training data, while we attempt to find clus-
ters of sentences describing a common event, at
least one of which we can confidently label.

The use of parallel news streams to acquire
event extraction training data in an unsupervised
fashion was explored in (Zhang et al., 2015),
whose clustering methods we have adapted here.
Unlike Zhang et al., we have a defined event on-
tology for which we are acquiring data, rather than

attempting to learn event types from the data. Fur-
thermore, we use an extractor trained on fully-
supervised examples to filter clusters, in contrast
to Zhang et al., whose method is completely un-
supervised, which allows us to relax some of the
assumptions made by Zhang et al. and consider
“spikes” of individual entities as opposed to pairs.

6 Conclusion

We present a method for self-training event extrac-
tion systems by taking advantage of parallel men-
tions of the same event instance in newswire text.
By examining clusters of sentences which produce
at least two extractions of the same event type and
assigning a trigger label to each sentence via word
embedding similarity, we add diverse training ex-
amples to our dataset. Our experiments show a 1.3
point F1 increase in trigger labeling for a state-of-
the-art baseline system on ACE, and a 1.1 point in-
crease on TAC-KBP. For future research, this work
can be applied to arbitrary event extraction models
to improve performance, or make up for a lack of
training data. The code and data are publicly avail-
able at our github repository.
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Abstract

Relation classification is an important seman-
tic processing task in the field of natural lan-
guage processing. In this paper, we propose
the task of relation classification for Chinese
literature text. A new dataset of Chinese liter-
ature text is constructed to facilitate the study
in this task. We present a novel model, named
Structure Regularized Bidirectional Recurrent
Convolutional Neural Network (SR-BRCNN),
to identify the relation between entities. The
proposed model learns relation representations
along the shortest dependency path (SDP)
extracted from the structure regularized de-
pendency tree, which has the benefits of re-
ducing the complexity of the whole model.
Experimental results show that the proposed
method significantly improves the F1 score by
10.3, and outperforms the state-of-the-art ap-
proaches on Chinese literature text1.

1 Introduction

Relation classification is the task of identifying
the semantic relation holding between two nom-
inal entities in text. Recently, neural networks
are widely used in relation classification. Wang
et al. (2016) proposes a convolutional neural net-
work with two levels of attention. Zhang et al.
(2015) uses bidirectional long short-term mem-
ory networks to model the sentence with sequen-
tial information. Bunescu and Mooney (2005)
first uses SDP between two entities to capture
the predicate-argument sequences. Wang et al.
(2017) explores the idea of incorporating syntac-
tic parse tree into neural networks. Liu et al.
(2017) proposes a noise-tolerant method to deal
with wrong labels in distant-supervised relation
extraction with soft labels. In recent years, we

1The Chinese literature text corpus for relation classi-
fication, developed and used by this paper, is available
at https://github.com/lancopku/Chinese-Li
terature-NER-RE-Dataset

have seen a move towards deep learning archi-
tectures. Liu et al. (2015) develops dependency-
based neural networks. Xu et al. (2015) applies
long short term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) based recurrent neural net-
works (RNNs) along with the SDP.

In this paper, we focus on relation classification
of Chinese literature text, which to our knowledge
has not been studied before, due to the challenge.
Chinese literature text tends to express intuitions
and feelings. It has a wide range of topics. Many
literature articles express feelings in a subtle and
special way, making it more difficult to recognize
entities. Chinese literature text is not organized
very logically, whether among paragraphs or sen-
tences. They tend to use various and flexible forms
of sentences to create free feelings. The sentences
are not associated with each other by evident con-
junctions. Besides, Chinese is a topic-prominent
language, the subject is usually covert and the us-
age of words is relatively flexible.

In short, sentences of Chinese literature text
contain many non-essential words, and embody
very complex and flexible structures. Existing
methods make intensive use of the syntactical in-
formation, such as part-of-speech tags, and depen-
dency relations. However, the automatically gen-
erated information is not reliable and of poor qual-
ity for Chinese literature text. It is of great chal-
lenge for the existing methods to achieve satisfy-
ing performance.

To mitigate the noisy syntactical information,
we propose to apply structure regularization to the
structures used in relation classification. Recently,
many existing systems on structured prediction fo-
cus on increasing the level of structural depen-
dencies within the model. However, the theoret-
ical and experimental study of Sun (2014a) sug-
gests that complex structures are tend to increase
the overfitting risk, and can potentially be harm-
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我[Person]便是那时候随了父母[Person]建设国营农场的梦想,来到

西洞庭的

At that time, I[Person] came to West Dongting with my parents'[Person] dream 

of building a state farm.

她[Person]用一片青菜叶[Thing]托着几块臭豆腐款款地送回你的手中,然后

踽踽前行

She[Person] handed you several pieces of stinky tofu using a cabbage leaf[Thing],

then traveled forward.

Family

Family

Use

Use

Figure 1: Examples from the Chinese literature text corpus.

ful to the model accuracy. As pointed out by Sun
(2014a), complex structural dependencies have a
drawback of increasing the generalization risk, be-
cause more complex structures are easier to suffer
from overfitting.

In this paper, we focus on the study of applying
structure regularization to the relation classifica-
tion task of Chinese literature text. To summarize,
the contributions of this paper are as follows:

• To our knowledge, we are the first to develop
a corpus of Chinese literature text for relation
classification. The corpus contains 837 arti-
cles. It helps alleviate the dilemma of the lack
of corpus in Chinese Relation Classification.

• We develop the tree-based structure regular-
ization methods and make progress on the
task of relation classification. The method
of structure regularization is normally used
on the structure of sequences, while we find
a way to realize it on the structure of trees.
Comparing to the original model, apply-
ing structure regularization substantially im-
proves the F1 score by 10.3.

2 Chinese Literature Text Corpus

In Figure 1, we show two examples from the an-
notated corpus. We label the entities and relations
of the text on a sentence level. There are 6 kinds of
entities and 9 kinds of relations. Details of the tags
are shown in Table 1. The task aims at predicting
the labels of these relations, given the sentences as
well as the entities and their types. The corpus is
part of the work of Xu et al. (2017).

We obtain over 1,000 Chinese prose articles
from the Internet and then filter and extract 837
articles. Articles that are too short or too noisy are
not included. Due to the difficulty of tagging Chi-
nese prose text, we divide the annotation process
into three steps.

First, we attempt to annotate the raw articles
based on defined entity and relation tags. Second,
we design several generic disambiguation rules to
ensure the consistency of annotation guidelines.
For example, remove all adjective words and only
tag “entity header” when tagging entities (e.g.,
change “a girl in red cloth” to “girl”). In this stage,
we re-annotate all articles and correct all inconsis-
tency entities based on the heuristic rules. Even
though the heuristic tagging process significantly
improves dataset quality, it is too hard to handle
all inconsistency cases based on limited heuris-
tic rules. Finally, we introduce a machine auxil-
iary tagging method. The core idea is to train a
model to learn annotation guidelines on the subset
of the corpus and produce predicted tags on the
rest data. The predicted tags are used to be com-
pared with the gold tags to discovery inconsistent
entities, which largely reduce annotators’ efforts.
After all annotation steps, we also manually check
all entities and relations to ensure the correctness
of corpus.

In prior work, Chinese literature text corpus is
very rare. Many tasks cannot achieve a satisfy-
ing result on Chinese literature text compared to
other corpus. However, understanding Chinese lit-
erature text is of great importance to Chinese liter-
ature research.
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Tag Description Example %
Located locate in 幽兰(orchid)-山谷(valley) 37.43

Part-Whole be a part of 花(flower)-仙人掌(cactus) 23.76
Family be family members 母亲(mother)-奶奶(grandmother) 10.25

General-Special be a general range and a special kind of it 鱼(fish)-鲫鱼(carp) 6.99
Social be socially related 母亲(mother)-邻里(neighbour) 6.02

Ownership be in possession of 村民(villager)-旧屋(house) 5.10
Use do something with 爷爷(grandfather)-毛笔(brush) 4.76

Create make happen or exist 男人(man)-陶器(pottery) 2.93
Near a short distance away 山(hill)-县城(town) 2.76

Table 1: The set of relation tags. The last column indicates each tag’s relative frequency in the full
annotated data.

3 Structure Regularized BRCNN

3.1 Basic BRCNN

The Bidirectional Recurrent Convolutional Neural
Network (BRCNN) model is used to learn repre-
sentations with bidirectional information along the
shortest dependency path (SDP).

Given a sentence and its dependency tree, we
build our neural network on its SDP extracted
from tree. Along the SDP, recurrent neural net-
works are applied to learn hidden representations
of words and dependency relations, respectively.
A convolution layer is applied to capture local
features from hidden representations of every two
neighbor words and the dependency relations be-
tween them. A max pooling layer thereafter gath-
ers information from local features of the SDP and
the inverse SDP. We have a softmax output layer
after pooling layer for classification in the unidi-
rectional model RCNN.

On the basis of RCNN model, we build a bidi-
rectional architecture BRCNN taking the SDP and
the inverse SDP of a sentence as input. Dur-
ing the training stage of a (K+1)-relation task,
two fine-grained softmax classifiers of RCNNs do
a (2K+1)-class classification respectively. The
pooling layers of two RCNNs are concatenated
and a coarse-grained softmax output layer is fol-
lowed to do a (K+1)-class classification. The fi-
nal (2K+1)-class distribution is the combination
of two (2K+1)-class distributions provided by fine
grained classifiers during the testing stage.

We use two bidirectional LSTMs to capture the
features of words and relations separately. After
we obtain representations of words and relations,
we concatenate them to get a representation of a
complete dependency unit. The hidden state of
a relation is denoted as rab. Words on its sides
have the hidden states denoted as ha and hb. [ha

hab hb] denotes the representation of a dependency
unit Lab. Then we utilize a convolution layer upon
the concatenation. We have

Lab = f(Wcon · [ha ⊕ h′ab ⊕ hb] + bcon) (1)

where Wcon is the weight matrix and bcon is a bias
term. We choose tanh as our activation function
and apply max pooling following the activation.

Two RCNNs pick up information along the SDP
and its reverse. A coarse-grained softmax classi-
fier is applied on the global representations

−→
G and←−

G . Two fine-grained softmax classifier are applied
to to give a more detailed prediction of 2K+1 class.

−→y = softmax(Wf ·
−→
G + bf ) (2)

←−y = softmax(Wf ·
←−
G + bf ) (3)

During training, our objective is the penalized
cross-entropy of three classifiers. Formally,

J =
2K+1∑

i=1

−→
ti log

−→yi +
2K+1∑

i=1

←−
ti log

←−yi

+

K∑

i=1

ti log yi + λ · ‖θ‖2
(4)

When decoding, the final prediction is a combina-
tion of −→y and←−y

ytest = α · −→y + (1− α) · z(←−y ) (5)

where α is the fraction of the composition of dis-
tributions. We apply a function z to transform←−y
to a corresponding forward distribution like −→y .

3.2 Structure Regularized BRCNN
The basic BRCNN model can handle the task to
some extent, but there still remains some weak-
ness, especially dealing with long sentences with
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Models Information F1 Score

Baselines

SVM Word embeddings, NER, WordNet, HowNet, 48.9(Hendrickx et al., 2010) POS, dependency parse, Google n-gram
RNN Word embeddings 48.3

(Socher et al., 2011) + POS, NER, WordNet 49.1
CNN Word embeddings 47.6

(Zeng et al., 2014) + word position embeddings, NER, WordNet 52.4
CR-CNN Word embeddings 52.7

(dos Santos et al., 2015) + word position embeddings 54.1
SDP-LSTM Word embeddings 54.9

(Xu et al., 2015) + POS + NER + WordNet 55.3
DepNN Word embeddings, WordNet 55.2(Liu et al., 2015)
BRCNN Word embeddings 55.0

(Cai et al., 2016) + POS, NER, WordNet 55.6

Our Model SR-BRCNN Word embeddings 65.2 (+9.6)
+ POS, NER, WordNet 65.9 (+10.3)

Table 2: Comparison of relation classification systems on Chinese literature text.

complicated structures. The SDP generated from a
more complicated dependency tree consists more
irrelevant words. Sun (2014b) shows both theoret-
ically and empirically that structure regularization
can effectively control overfitting risk and lead to
better performance. Sun et al. (2017a) and Sun
et al. (2017b) also show that complex structure
models are prone to the structure-based overfit-
ting. Therefore, we propose the structure regular-
ized BRCNN.

We conduct structure regularization on the de-
pendency tree of the sentences. Based on the
heuristic rules, several nodes in the dependency
tree are selected. The subtrees of these selected
nodes are cut from the whole dependency tree.
With these selected nodes as the roots, these sub-
trees form a forest. The forest will be connected
by lining the roots of the trees of the forest. Tradi-
tional SDP is extracted directly from the depen-
dency tree, while in our model, the SDP is ex-
tracted from the final forest. We call these kinds of
SDPs as SR-SDPs. We build our BRCNN model
on the SR-SDP.

3.3 Various Structure Regularization
Methods

We experiment with three kinds of regularization
rules. First, the punctuation is a natural break
point of the sentence. The resulting subtrees usu-
ally keep similar syntax to traditional dependency
trees. Another popular method to regularize the
structure is to decompose the structure randomly.
In our model, we randomly select several nodes in
the dependency tree and then cut the subtrees un-
der these nodes. Finally we decide to cut the de-
pendency tree by prepositions. Especially in Chi-

a

b c

d e

f g

(a) The dependency
tree and the SDP be-
fore flattening.

a

b c

d

e

f g

(b) The dependency tree
and the SDP after flatten-
ing.

Figure 2: An example of the proposed method. The
two words in circles are the entities, and the thick
edges form the SDP. By flattening the dependency
tree, the path becomes shorter.

nese literature text, there usually are many deco-
rations to describe the entities, and the using of
prepositional phrases is very common for that pur-
pose. So we also try to decompose the dependency
trees using prepositions.

4 Experiments

We evaluate our model on the Chinese literature
text corpus. It contains 9 distinguished types of
relations among 837 articles. The dataset contains
695 articles for training, 58 for validation, and 84
for testing.

4.1 Experiment settings

We use pre-trained word embeddings, which are
trained on Gigaword with word2vec (Mikolov
et al., 2013). Word embeddings are 200-
dimensional. The embeddings of relation are ini-
tialized randomly and are 50-dimensional. The
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hidden layers of LSTMs to extract information
from entities and relations are the same as the em-
bedding dimension of entities and relations. We
applied L2 regularization to weights in neural net-
works and dropout to embeddings with a keep
probability 0.5. AdaDelta (Zeiler, 2012) is used
for optimization.

4.2 Experimental Results
Table 2 compares our SR-BRCNN model with
other state-of-the-art methods on the corpus of
Chinese literature text, including the basic BR-
CNN method (Cai et al., 2016). Structure regular-
ization helps improve the result substantially. The
method of structure regularization could prevent
the overfitting of poor quality SDPs.

4.3 Analysis: Effect of SR
Figure 2a and Figure 2b show an example of struc-
ture regularized SDP. The relation is between the
two circled elements. The main idea of the method
is to avoid the incorrect structure from the depen-
dency trees generated by the parser. The SDP in
Figure 2a is longer than the SR-SDP in Figure 2b.
However, the dependency tree of the example is
not completely correct. The longer the SDP is, the
more incorrect information the model learns.

The structure regularized BRCNN has shown
obvious improvements. We attribute the improve-
ments to the simplified structures that generated
by structure regularization. The internal relations
of components of a sentence are more obscure
due to the feature of Chinese literature text. By
conducting structure regularization on the depen-
dency tree, we get several subtrees with simpler
structure, and then we extract SDP from the lined
forests. In most cases, the distance between two
entities will be shortened along the new SR-SDP.
Without the redundant information along the orig-
inal SDP. The model that benefits from the inten-
sive dependencies will capture more effective in-
formation for classification.

4.4 Analysis: Effect of Different
Regularization Methods

The punctuation is a natural break point of the sen-
tence, which makes subtrees more like the tradi-
tional dependency trees in the aspect of integrity.
However, the original dependency trees cannot be
sufficiently regularized. Despite its drawbacks,
this method still shows obvious improvements on
the model and leads to further experiments.

Classifier F1 score
BRCNN 55.6
SR by punctuation 59.7
SR by random 62.4
SR by preposition 65.9

Table 3: Different structure regularization results
on Chinese literature text.

Regularizing the structure by decomposing the
structure randomly will solve the insufficient de-
composition problems. The method of structure
regularization has shown that the degree of loss of
information is not a serious problem. It gives a
slightly better result compared to cutting depen-
dency trees by punctuations.

A more elaborate method is to cut the depen-
dency tree by prepositions. In Chinese literature
text, prepositional phrases are used frequently.
Cutting by prepositions will regularize the tree
more sufficiently. Meanwhile, the subtrees un-
der the prepositional nodes are usually internally
linked.

5 Conclusions

In this paper, we present a novel model, Structure
Regularized BRCNN, to classify the relation of
two entities in a sentence. We demonstrate that
tree-based structure regularization can help im-
prove the results, while the method is normally
used in sequence-based models before. The pro-
posed structure regularization method makes the
SDP shorter and contain less noise from the un-
reliable parse trees. This leads to substantial im-
provements on the relation classification results.
The results also show how different ways of regu-
larization act in the model of BRCNN.

We also develop a corpus on Chinese literature
text focusing on the task of Relation Classifica-
tion. The new corpus is large enough for us to
train models and verify the models.
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Abstract
Medical professionals search the published lit-
erature by specifying the type of patients, the
medical intervention(s) and the outcome mea-
sure(s) of interest. In this paper we demon-
strate how features encoding syntactic patterns
improve the performance of state-of-the-art se-
quence tagging models (both linear and neu-
ral) for information extraction of these medi-
cally relevant categories. We present an anal-
ysis of the type of patterns exploited, and
the semantic space induced for these, i.e., the
distributed representations learned for iden-
tified multi-token patterns. We show that
these learned representations differ substan-
tially from those of the constituent unigrams,
suggesting that the patterns capture contextual
information that is otherwise lost.

1 Introduction
The efficacy of medical treatments depends on pa-
tient characteristics, treatment administration de-
tails (e.g., dosage) and the measures or outcomes
used to quantify treatment success. These crite-
ria should be precisely defined when searching
the medical literature (Richardson et al., 1995;
Heneghan and Badenoch, 2013; Miller and For-
rest, 2001). Unfortunately, these aspects are not
usually described in a structured way. Abstracts
with explicit category headings (Nakayama et al.,
2005) partially address this, but these are not stan-
dardized nor uniform. Automated solutions are
thus emerging to better support medical search,
including methods for: identifying sentences con-
taining key pieces of clinical information (Wallace
et al., 2016); summarization (Sarker et al., 2016);
identifying contradictory claims in medical arti-
cles (Alamri and Stevenson, 2016); and informa-
tion retrieval system prototypes that harness this
type of information (Boudin et al., 2010a,b).

∗* now at Google Inc.

Several studies have assessed the use of the
PICO framework (Huang et al., 2006; Demner-
Fushman and Lin, 2007). Our task is also to iden-
tify spans of text describing PICO elements i.e.,
the participants (P), interventions (I)/comparators
(C), and outcomes (O) in the abstracts of ar-
ticles reporting findings from randomized con-
trolled trails (RCTs). We exploit the availabil-
ity of structured abstracts in the medical domain:
from these coarse (multi-)sentence labels we de-
rive patterns typically used in bootstrap meth-
ods for entity recognition and relation extraction
(Carlson et al., 2010). We incorporate these pat-
terns into supervised sequence labeling models to
improve the identification of P, I and O spans in
new texts. Below we show examples of each ex-
traction type: patterns are bolded and target PICO
description spans italicized. The extracted pat-
terns disambiguate fairly well the type of infor-
mation expressed in the segment when individual
words (e.g., “children”), do not. (P) The trial in-
cluded 230 children with Stage-IV lymphoblastic
leukemia ...

(I) In Group I, the children were treated with
prednisone ...

(O) .. reported that Group 2 children underwent
fewer isolated bone marrow relapses ..

We explore three strategies for exploiting ex-
tracted patterns in a state-of-the-art LSTM-CRF
sequence tagging model (Lample et al., 2016;
Ma and Hovy, 2016): as additional features at the
CRF layer; as one-hot indicators concatenated to
distributed representations of words; and as indi-
vidual units embedded in a semantic space shared
with words. The second representation improves
recall for two extraction tasks, and the third im-
proves precision for all three tasks. We analyze the
induced semantic space to show that patterns cap-
ture contextual information that is otherwise lost.

371



2 Data

For training sequence tagging models we use a
corpus of 4,741 medical article abstracts with
manual crowd-sourced annotations for P, I, and
O sequences. For testing we use a set of 191 ab-
stracts annotated for P, I, and O by medical profes-
sionals. There are 18,849 (831), 44,329 (1,808),
41,454 (1,711) variable length sequences for P, I,
and O in the training (testing) data.1

For minimally supervised extraction of n-gram
patterns, we use structured abstracts in which
the authors describe different aspects of their
work under targeted headings. We retrieved the
headings and associated sections automatically
from abstracts in XML format (downloaded from
PubMed2). In general abstracts are structured id-
iosyncratically (often as Introduction, Methods,
Results, Discussion). We capitalized on the minor-
ity of abstracts that used the explicit Participants,
Intervention and Outcome headings. We obtained
50,000 segments for each of these three categories.

3 Patterns extraction and analysis
We extract syntactic patterns associated with each
of the extraction types using AutoSlog-TS (Riloff,
1996), which consumes two sets of text: one rel-
evant to an extraction domain and one irrelevant.
In our case the relevant sets are the 50K P, I, and
O sections, respectively, from the structured ab-
stracts described above. The irrelevant set is a mix
of 25K of the other two categories.

AutoSlog-TS generates n-gram patterns from
input texts that capture the context of all noun
phrases appearing as subject, direct and indirect
object, or in a prepositional phrase. Each of these
patterns is scored with the estimated probability
that it occurred in an instance from the relevant
set (out of all occurrences of the pattern), scaled
by the number of times the pattern occurs (Riloff
and Phillips, 2004). Common patterns that tend to
occur in relevant sentences thus receive relatively
high scores. We filter out patterns that contain
digits, and those that occur fewer than 10 times
in the structured abstract texts. Of the remaining
patterns, we preserve those with probability 0.8 or

1The complete details of the corpus, along with inter-
annotator analysis and links for download of the full cor-
pus will be described in a forthcoming paper and eventually
made available here: http://www.byronwallace.
com/EBM_abstracts_data.

2https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

higher of occurring with the relevant class. This
yields 3,499, 3,898 and 2,386 patterns associated
with P, I and O, respectively.

The vast majority of patterns are bigrams: 90%
for P, 81% for I and 86% O. Fewer than 0.5%
of the n-grams for each type are trigrams, and the
remaining are unigrams. Examples of extracted
patterns include: women who, years of and di-
agnosed with for P; patients received and per-
formed after for I; and scale of, patients reported
and rate of for O.

The majority (82.86%) of the extracted n-gram
patterns comprise a combination of a content word
and a function/stopword token.3 For example,
the patterns patients with, patients who or pa-
tients from are associated with the condition that
a patient had, while patients were, patients in
or patients received describe the treatment they
received. Function words provide disambiguat-
ing context for otherwise ambiguous words; this
aids text classification and information retrieval
(Riloff, 1995), and here we use them to improve
sequence tagging models.

4 Patterns + linear CRF
For supervised IE models, we first consider in-
cluding n-gram patterns as features in a linear-
chain CRF (Lafferty et al., 2001). The standard
set of token-level features used in the model in-
clude word identity, POS tag (from CoreNLP), and
a list of binary features indicating whether the to-
ken is a digit, title (i.e., the first token only is up-
percase), uppercase word, hyphenated word, or if
the token is a punctuation mark (colon, fullstop or
another symbol). In addition, features for the cur-
rent token include the identity of the previous and
next words, and the immediately preceeding and
following bi- and trigrams.

For the pattern-augmented CRF (CRF-
Pattern), we add nine binary features that
indicate if the current token and the immediately
preceeding/following bigrams are one of the
AutoSlog-TS patterns associated with a given
extraction type.4 There are three indicators, for
P, I and O respectively. For the context bigrams,
a feature is 1 if the bigram is one of the bigram
patterns associated with this extraction type,
0 otherwise. The remaining three indicators
have value 1 if the current token is one of the

3We use stopwords from CoreNLP (Manning et al., 2014).
4We ignore trigram patterns as they constitute <0.5% of

identified patterns.
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Precision Recall F1
Model P I O P I O P I O
CRF 70.29 47.01 64.78 38.75 43.89 10.47 49.95 45.39 18.02

CRF-Pattern 73.3 52.1 66.37 40.62 45.41 44.07 52.27 48.52 52.96
LSTM-CRF 62.27 52.37 47.91 49.48 40.49 36.16 55.14 45.67 41.21

LSTM-CRF-Pattern (best) 76.10 58.25 44.66 64.75 43.39 35.20 69.97 49.74 39.69
Before CRF 61.87 38.65 46.27 41.45 23.8 37.27 49.64 29.55 41.28

Before BiLSTM 76.10 58.25 44.66 64.75 43.39 35.20 69.97 49.74 39.69
Embedding 55.18 51.07 44.30 54.24 47.41 41.60 54.71 49.17 42.91

Table 1: Models for extracting Participants, Intervention and Outcomes with and without pattern features, evalu-
ated via token-level precision, recall and F1 scores. The first and second groups of rows report results for CRF and
LSTM-CRF models without and with pattern features. The bottom group reports results achieved using different
means of incorporating pattern features in neural models.

unigram patterns associated with a given type.
For example, the nine features for the token
“chronic” in the sequence patients with chronic
sinus issues will be [1,0,0—0,0,0—0,0,0] because
patients with is one of the bigrams associated with
the P type, the word ”chronic” does not match any
of the unigram patterns and “sinus issues” does
not match any of the bigram patterns. Table 1
(top) reports the performance on the test data of
the original CRF model, and the one augmented
with pattern features. Including patterns yields
consistent and considerable improvements in both
precision and recall.

5 Patterns + LSTM-CRF
LSTM-CRF models (Lample et al., 2016; Ma and
Hovy, 2016) for sequence tagging are general in
that they do not require feature engineering. In-
stead, the features representing each token in the
CRF are generated by a bi-directional LSTM. To
generate this representation the LSTM consumes
distributed word representations as input and out-
puts vector representations describing words in
context (the bi-LSTM runs one LSTM in each
direction, concatenating outputs). This vector is
passed to a CRF layer for prediction. Character-
level information for each word is incorporated
by running a bi-LSTM over the characters of each
word (Lample et al., 2016). We used the IO tag-
ging scheme. We set the hidden state dimensions
to 200 and dropout to 0.5. We did not perform
gradient clipping. We used the Adam optimizer
(Kingma and Ba, 2014) with learning rate = 0.001.

We consider three alternatives for extending this
model with patterns. The first two use the indica-
tor features describing the presence of patterns in
the context, similar to those we described above
for the linear CRF model. The difference is where
these features are introduced: immediately before
the CRF layer, concatenated with the output of the

LSTMs (Before CRF), or as part of the input to
the LSTM, concatenated to the distributed word
and character representations (Before LSTM). We
use Moen and Ananiadou (2013)’s release of 200
dimensional word vectors trained over 5.5 billion
words from medical articles as pre-trained word
embeddings as input to the LSTM. We use the
same set of hyperparamaters for the LSTM as used
in Lample et al. (2016), and do not optimize these
for the present extraction tasks. The third alter-
native (Embedding) treats the patterns as collo-
cations; we derive embedded representations for
them as a unit, the way collocations are treated in
Mikolov et al. (2013b). In training and during pre-
diction each occurrence of a pattern in the input is
treated as a single token with a corresponding dis-
tributed representation. Character-level represen-
tations are concatenated to word representations
and the output of the LSTM cells is passed to the
CRF to make predictions (as above).

For these embeddings, we collected 6 million
PubMed abstracts (∼1.4 billion words) filtering
for only Human RCTs and used this to train word
vectors using the Word2Vec tool (Mikolov et al.,
2013a), inducing 200-dimensional vectors using
the Skip-Gram model, where our vocabulary now
consists of the learned n-gram patterns as single
units, along with other unigrams. We then test
these embedding representations by using them as
input to our neural model for the structured pre-
diction task.

6 Discussion of results
Table 1 reports the performance of the LSTM-
CRF model achieved using each of the three strate-
gies for incorporating pattern features discussed
above. Inserting the pattern indicator features be-
fore the CRF layer yields the worst performance.
Compared to the generic LSTM-CRF model, its
F -measure is lower or the same for all three ex-
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n-gram similar to n-gram similar to unigram
have children 1: marry 2: conceive 3: breast-feed 1: adults 2: adolescents 3: toddlers

4: be pregnant 5: have surgery 4: youngsters 5: school-age
condition at 1: status at 2: features at 3: outcome at 1: circumstance 2: conditions 3: malady

4: qol at 5: outcomes 4: ailment 5: situation
filled with 1: covered with 2: mixed with 3: sealed with 1: sealed 2: obturated 3: enclosed

4: suspended 5: immersed in 4: enclosing 5: fill
side effects 1: toxicities 2: side-effect 3: complications 1: effect 2: Effects 3: action

4: AEs 5: nausea 4: impact 5: influence

Table 2: Example illustrating the shift in semantic space realized using pattern embeddings. For each of the listed
n-grams, we report the top 5 most similar words to: (1) the n-gram pattern embedding, and, (2) the most relevant
constituent n-gram i.e., the word in bold font.

traction categories, P, I, O.
Including the pattern features as input to the

LSTM or as part of the embedding leads to sub-
stantial improvements over the baseline model,
and this despite the smaller dataset over which pat-
tern embeddings were learned: compared to the
LSTM-CRF without pattern features, the former
markedly improves precision for P and I, while the
latter improves the recall for all three types. In
terms of F -measure, best results for P and I are
achieved by inserting the pattern features as in-
put to the LSTM, with about 15% and 4% abso-
lute improvement. For O, the best F -measure is
achieved by incorporating patterns as part of the
embeddings, yielding 1% absolute improvement.

The linear CRF and its variant enriched with
pattern feature has the best precision, outperform-
ing the LSTM-CRF models, but worse recall. It
may still be useful for scenarios in which high pre-
cision extraction is needed.

7 Semantics of pattern embeddings
We established that syntactic patterns can
markedly improve the extraction of patient,
intervention and outcome descriptions in medical
abstracts. We now turn to an analysis of how
the patterns fit into the semantic space of word
embeddings. Our goal is to quantify the extent to
which including pattern representations changes
which words will be considered similar to the
pattern, but not to the words that compose it.

To this end, we find the ten words most similar
(under cosine similarity) to each pattern, and those
most similar to the individual words these com-
prise, in the embedding space. We analyze the size
of the intersection of these two sets for all patterns
(∼10,000). To simplify the comparison we con-
sider only the constituent word that has the largest
intersection of similar words with the pattern of
interest. The size of the intersection theoretically
ranges from 0 to 10, but on average there is only

Figure 1: Scatter of PCA-reduced embeddings clus-
tered using K-means. <> brackets show the syntactic
pattern n-grams given by Autoslog-TS that are embed-
ding in the same space as unigrams.

one word overlap between the words most similar
with the pattern and those most similar with the
constituent word. For the majority (61%) of the
pattern–constituent word pairs, there is no over-
lap between the top 10 most similar words. To
make this discussion more concrete, Table 2 pro-
vides examples of the top 5 most similar words
to select bigram patterns and the constituent uni-
gram with greatest overlap, shown in italics. The
patterns encode disambiguating context that was
previously lost in unigram representations.

Finally, we present a scatter of learned embed-
dings, reduced via IncrementalPCA5 in Figure 1.
Embedded patterns cluster more intuitively than
their content words alone. For example, the pat-
terns injection of and administration of cluster
together, along with other topically similar uni-
grams such as infusion and intravenous that may
all correspond to Intervention terms. Similarly,
side effect is very different from its constituent
words side or effect, and moreover, clusters with
actual side effects like headache and fatigue that
patients may suffer from in the course of a trial.

5We use the implementation in scikit-learn (Pedregosa
et al., 2011).
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Precision Recall F1
Model P I O P I O P I O

LSTM-CRF 62.27 52.37 47.91 49.48 40.49 36.16 55.14 45.67 41.21
LSTM-CRF (Bigrams) 64.41 53.37 43.20 50.33 41.24 37.32 59.91 46.52 40.04
LSTM-CRF (Autoslog) 76.10 58.25 44.66 64.75 43.39 35.20 69.97 49.74 39.69

Table 3: Results to illustrate syntactic nature of Autoslog bigrams. Row 1 shows results of baseline model with no
added features. Row 2 shows results of the model that uses all bigrams as features and Row 3 shows results of the
model that uses only Autoslog extracted bigrams as features. Features are added before the LSTM, as incorporated
in the best working model from Table 1.

8 Syntactic patterns vs bigrams

Our experiments show that using these bigram fea-
tures extracted by AutoSlog improves model pre-
dictions. AutoSlog takes a fundamentally syntax-
driven approach to identifying patterns, which
suggests the discovered patterns (and associated
performance boost) is due to exploiting syntax.
However, the performance gains could also be due
to additional contextual information that bigrams
and larger n-grams provide over unigrams alone,
rather than their syntactic properties.

We therefore performed an experiment to assess
the influence of the syntactic AutoSlog bigrams,
as compared to general bigram features. We con-
sider the same data used as input to AutoSlog,
i.e., 50,000 segments for the three categories P,
I, and O. In the same setup, we decompose sen-
tences within each category into bigrams, and col-
lect bigram counts in the respective categories. We
calculate precision for each category by collaps-
ing the other two categories, similar to the Au-
toSlog procedure. We use the same threshold val-
ues as AutoSlog for filtering, i.e., we remove bi-
grams that occur fewer than 10 times or that have
a score <0.8 of occuring with the target class out
of all occurrences. This procedure for identifying
predictive bigrams yields a notably larger number
of bigrams (30k) than AutoSlog (∼10K). Table
3 shows that while using generic bigrams as fea-
tures sometimes leads to small improvements, the
AutoSlog induced pattern bigrams result in sub-
stantially better performance. This suggests that
the exploitation of syntactic structure in identify-
ing patterns is indeed important. We also com-
pare the performance of word2vec embeddings for
unigrams and bigrams, and extended with collo-
cations and syntactic patterns, trained on exactly
the same data. In the experiments reported in Ta-
ble 1, the unigram embeddings are trained on a
larger dataset of generic medical text while the
patterns are trained on a smaller set of medical ab-

stracts describing RCTs. In addition here we com-
pare the AutoSlog patterns with collocations dis-
covered by word2vec. Representing collocations
leads to markedly lower F-score (Table 4). Rep-
resenting bigrams leads to prediction performance
better than that with collocations, but worse than
unigrams.

Standard unigram representations that we
trained work better than the off-the-shelf medi-
cal representations, possibly because they were
trained specifically on abstracts of papers report-
ing the conduct and results of RCTs and thus bet-
ter fit the abstracts we are analyzing. Most impor-
tantly, the LSTM-CRF with syntactic pattern em-
beddings results in the best observed performance.

Embedding Vocabulary P I O
Unigram 947,670 54.31 46.19 42.68
Bigram 9,326,144 52.01 43.71 38.77

collocation 1,254,863 50.31 40.21 40.21
Pattern 949,112 54.71 47.68 42.27

Table 4: LSTM-CRF predictions on word embeddings
trained on the same 6 million documents. Column 1
shows the type of embedding, column 2 shows the size
of the vocabulary and columns 3-5 show F1 score.

9 Conclusions
We presented a method for exploiting abun-
dant unlabeled biomedical texts to generate min-
imally supervised extraction patterns that improve
generic supervised models for sequence tagging
in this domain. We explored alternative ways to
incorporating the patterns in both linear and neu-
ral tagging models. In the latter, we analyzed the
changes in semantic space that likely explain the
observed gains in predictive performance.
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Abstract

Automatically identifying definitional knowl-
edge in text corpora (Definition Extraction or
DE) is an important task with direct appli-
cations in, among others, Automatic Glos-
sary Generation, Taxonomy Learning, Ques-
tion Answering and Semantic Search. It is
generally cast as a binary classification prob-
lem between definitional and non-definitional
sentences. In this paper we present a set of
neural architectures combining Convolutional
and Recurrent Neural Networks, which are
further enriched by incorporating linguistic in-
formation via syntactic dependencies. Our ex-
perimental results in the task of sentence clas-
sification, on two benchmarking DE datasets
(one generic, one domain-specific), show that
these models obtain consistent state of the
art results. Furthermore, we demonstrate that
models trained on clean Wikipedia-like defini-
tions can successfully be applied to more noisy
domain-specific corpora.

1 Introduction

Dictionaries and glossaries are among the most
important sources of meaning for humankind.
Compiling, updating and translating them has tra-
ditionally been left mostly to domain experts and
professional lexicographers. However, the last
two decades have witnessed a growing interest in
automating the construction of lexicographic re-
sources.

Analogously, in Natural Language Processing
(NLP), lexicographic resources have proven use-
ful for a myriad of tasks, for example Word Sense
Disambiguation (Banerjee and Pedersen, 2002;
Navigli and Velardi, 2005; Agirre and Soroa,
2009; Camacho-Collados et al., 2015), Taxonomy
Learning (Velardi et al., 2013; Espinosa-Anke
et al., 2016b) or Information Extraction (Richard-
son et al., 1998; Delli Bovi et al., 2015). Moreover,

lexicographic information such as definitions con-
stitutes the cornerstone of important language re-
sources for NLP, such as WordNet (Miller et al.,
1990), BabelNet (Navigli and Ponzetto, 2012),
Wikidata (Vrandečić and Krötzsch, 2014) and ba-
sically any Wikipedia-derived resource.

In this context, systems able to address the prob-
lem of Definition Extraction (DE), i.e., identifying
definitional information spanning in free text, are
of great value both for computational lexicogra-
phy and for NLP. In the early days of DE, rule-
based approaches leveraged linguistic cues ob-
served in definitional data (Rebeyrolle and Tan-
guy, 2000; Klavans and Muresan, 2001; Malaisé
et al., 2004; Saggion and Gaizauskas, 2004; Stor-
rer and Wellinghoff, 2006). However, in order
to deal with problems like language dependence
and domain specificity, machine learning was in-
corporated in more recent contributions (Del Gau-
dio et al., 2013), which focused on encoding infor-
mative lexico-syntactic patterns in feature vectors
(Cui et al., 2005; Fahmi and Bouma, 2006; West-
erhout and Monachesi, 2007; Borg et al., 2009),
both in supervised and semi-supervised settings
(Reiplinger et al., 2012; Faralli and Navigli, 2013).

On the other hand, while encoding definitional
information using deep learning techniques has
been addressed in the past (Hill et al., 2015; No-
raset et al., 2016), to the best of our knowledge
no previous work has tackled the problem of DE
by reconciling both the linguistic lessons learned
in the past decades (e.g., the importance of lex-
ico syntactic patterns or long-distance relations
between definiendum and definiens)1 and the pro-
cessing potential of neural networks.

Thus, we propose to bridge this gap by learn-
ing high level features over candidate definitions

1Traditionally, a definienidum is a term being defined,
whereas the definiens refers to its differentiable characteris-
tics.
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via convolutional filters, and then apply recurrent
neural networks to learn long term dependencies
over these feature maps. Without preprocessing
and only taking pretrained embeddings as input,
it is already possible to consistently obtain state
of the art results in two benchmarking datasets
for DE (one generic, one domain-specific). Fur-
ther improvements over this simple model are ob-
tained by incorporating syntactic information by
composing and embedding head-modifier syntac-
tic dependencies and dependency labels. One in-
teresting side result of our experiments is the ob-
servation that a model trained only on canonical
wikipedia-like definitions performs significantly
better in a domain-specific academic setting than a
model that has been trained on that domain, which
somewhat contradicts previously assumed notions
about the creativity of academic authors when pre-
senting and describing novel terminology.2

2 Method

The impact of deep learning methods in NLP is
today indisputable. The utilization of neural net-
works has improved the state of the art almost sys-
tematically in a wide number of tasks, from lan-
guage modeling (Bengio et al., 2003; Yih et al.,
2011; Mikolov et al., 2013) to text classification
(Kim, 2014) or machine translation (Bahdanau
et al., 2014), among many others.

In this paper we leverage two of the most popu-
lar architectures in deep learning for NLP with the
goal to predict, given an input sentence, its proba-
bility of including definitional knowledge. In our
best performing model we take advantage of Con-
volutional Neural Networks (CNNs) to learn lo-
cal features via convolved filters (LeCun et al.,
1998), and then apply to the learned feature maps
a Bidirectional Long Short Term Memory (blstm)
network (Hochreiter and Schmidhuber, 1997). In
this way, we aim at capturing ngram-wise features
(Zhou et al., 2015), which may be strong indica-
tors of definitional patterns (e.g., the classic X is
a Y pattern), combined with the learning of long-
term sequential dependencies over these learned
feature maps.

Following standard notation for sentence mod-
eling via CNNs (Kim, 2014), we let xi ∈ Rk be
the k-dimensional word vector associated to the i-
th word in an input sentence S. We use as pre-

2Code available at bitbucket.org/
luisespinosa/neural_de

trained embeddings the word2vec (Mikolov et al.,
2013) vectors trained with negative sampling on
the Google News corpus3. Each sentence is repre-
sented as an n× k matrix S , where n is the size of
the longest sentence in the corpus (using padding
where necessary). The convolution layer applies a
filter wj ∈ R(h+1)k to each ngram window of h+1
tokens. Specifically, writing xi:i+h for the con-
catenation of the word vectors xi,xi+1, ...,xi+h,
we have:

cij = f (wj · xi:i+h + bj)

where bj ∈ R is a bias term and f is the ReLu ac-
tivation function (Nair and Hinton, 2010). In total,
we use 100 such convolutional features, i.e. we use
the vector ci =

[
ci1, c

i
2, · · · , ci100

]
to encode the ith

ngram. We empirically set the length h+1 of each
ngram to 3. To reduce the size of the representa-
tion, we then use a max pooling layer with a pool
size of 4. Let us write di =

[
di1, d

i
2, · · · , di97

]
,

where dij = max(dij , d
i+1
j , di+2

j , di+3
j ). The in-

put sentence S is then represented as the sequence
d1,d5,d9, ...,dn−3, which is used as the input
to a bidirectional LSTM (BLSTM) layer. Finally,
the output vectors of the final states for both di-
rections of this BLSTM are connected to a single
neuron with a sigmoid activation function. In all
the experiments reported in this paper, we classify
a sentence as definitional when the output of this
neuron yields a value which is at least 0.5.

2.1 Incorporating Syntactic Information

The role of syntax has been extensively stud-
ied for improving semantic modeling of domain
terminologies. Examples where syntactic cues
are leveraged include medical acronym expansion
(Pustejovsky et al., 2001), hyponym-hypernym
extraction and detection (Hearst, 1992; Shwartz
et al., 2016), and definition extraction either from
the web (Saggion and Gaizauskas, 2004), schol-
arly articles (Reiplinger et al., 2012), and more
recently from Wikipedia-like definitions (Boella
et al., 2014).

However, the interplay between syntactic infor-
mation and the generalization potential of neural
networks remains unexplored in definition mod-
eling, although intuitively it seems reasonable to
assume that a syntax-informed architecture should
have more tools at its disposal for discriminating

3code.google.com/archive/p/word2vec/

379



between definitional and non-definitional knowl-
edge. As an example of the importance of syntax
in encyclopedic definitions, among the definitions
contained in the WCL definition corpus (see Sec-
tion 3.1), 71% of them include the lexico-syntactic

pattern noun
subj←−−is dobj−−→ noun. To explore the

potential of syntactic information, we represent
dependency-based phrases by embedding them in
the same vector space as the pretrained word em-
beddings introduced above. This approach draws
from previous work on modeling phrases by com-
posing their parts and the relations that link them
(Socher et al., 2011, 2013, 2014).

Specifically, let Sd be the list of head-modifier
relations obtained by parsing4 sentence S. Each
relation r in Sd is a head-modifier tuple 〈h,m, l〉.
Here l denotes the dependency label of the rela-
tion (e.g., nsubj), which we represent as the vector
r = 1

2(h+m), with h and m the vector represen-
tations of words h andm respectively. This setting
for composing first-order head-modifier relations
is similar to the one proposed in Dyer et al. (2015)
for dependency parsing. This leads to a repre-
sention of the sentence as a sequence r1, ..., r|Sd|,
which preserves the original order of head words.
The intuition is that this “coarser” grained sort-
ing5 provides integrated semantic-syntactic infor-
mation that can be leveraged both by the convo-
lutional feature extraction step, and more impor-
tantly, by the sequential BLSTM module.

Then, for each sentence we concatenate the
dependency-based representation r1, ..., r|Sd| to
the word vector sequence x1, ...,xn, to obtain the
input to the convolutional layer of our model. It
is worth mentioning that we tried different merg-
ing schemes (concatenation, but also dot product
and averaging) at different layers, and found that
the best way to inform our neural definition ex-
tractor is to encode this syntactic information ex-
plicitly at input time. Finally, we also explore the
effect of enriching the input representation with
the information of the dependency label. For each
sentence, we enrich each head-modifier mean vec-
tor ri by concatenating them a one-hot representa-
tion of their corresponding dependency label. The
search space of these labels is 46 (e.g., nsubj or
dobj). An illustrative diagram of our proposed ar-
chitecture is provided in Figure 1.

4We use the dependency parser provided in the SpaCy
NLP library: spacy.io.

5It is coarser because in a dependency tree modifiers nat-
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Figure 1: Architecture of our proposed definition ex-
traction model. Input may be either simple pretrained
embeddings or syntactically enriched representations
(separated by the dotted line).

3 Evaluation

3.1 Evaluation data

WCL: The WCL (World-Class Lattices) dataset
(Navigli et al., 2010) consists of manually anno-
tated Wikipedia definitions and distractors (1,871
and 2,847 respectively). These distractors are sen-
tences that also include the term (i.e., the Wikpe-
dia page title) and are what the authors call “syn-
tactically plausible false definitions”. The style
of the definitions is fairly consistent, and follows
in most cases the Aristotelian genus et differentia
structure of a definition (A is a B which C). We
list below both an example definition and one of
its distractors:

3 The Amiga is a family of personal computers
originally developed by Amiga Corporation.

7 Development on the Amiga began in 1982
with Jay Miner as the principal hardware de-
signer.

W00: Introduced in Jin et al. (2013), this cor-
pus consists of a collection of 731 definition sen-
tences compiled from the ACL-ARC anthology
(Bird et al., 2008), and 1454 distractors. Their
style is different6, as they are used mostly for
introducing and describing novel terminology in
NLP research papers. Let us show an example for
each sentence class:

urally lose their original order.
6In lexicographic terms, most definitions in this dataset

would be classified either as extensional (definition without
hypernym) or functional (define something by what it does.
instead of what it is).
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3 Our system, SNS (pronounced “essence”),
retrieves documents related to an unre-
stricted user query and summarizes a subset
of them as selected by the user.

7 The senses with the highest confidence scores
are the senses that contribute the most to the
maximization function for the set .

3.2 Baselines

Let us provide a succint description of each com-
peting baseline. (1) WCL: An algorithm that
learns word-class lattices for modeling higher-
level features over shallow parsing and part
of speech (Navigli and Velardi, 2010). (2)
DefMiner: A CRF-based sequential modeling
system trained with lexical, terminological and
structural (e.g., document position) features (Jin
et al., 2013). (3) B&DC: A binary classifier
trained with dependency paths over input sen-
tences (Boella et al., 2014). (4) E&S: A sys-
tem based on more complex dependency-based
features (Espinosa-Anke and Saggion, 2014). (5)
LSTM-POS: An LSTM-based system which rep-
resents each sentence as a mixture of infrequent
words and frequent words’ associated part-of-
speech (Li et al., 2016).

As for our proposed models, we include results
for a CNN architecture alone (CNN), as well as
for the proposed CNN and BLSTM (C-BLSTM)
combination. For both architectures, subscripts d
or l denote the syntactically informed variant with-
out and with one-hot label encoding information,
respectively. Finally, among the many hyperpa-
rameters that can be explored, we report the im-
pact of the dimensionality of the output vectors of
the BLSTM layer, with sizes of 100 and 300. We
did not attempt to tune the other hyperparameters.

Experiment 1: In-domain 10-fold CV
In this experiment, we compare the performance
of different configurations of our proposed model
with previous contributions in a 10-fold cross val-
idation (CV) setting. The experimental results,
listed in Table 1, show that a fairly simple CNN ar-
chitecture with no preprocessing already achieves
remarkably strong results, especially for the WCL
dataset. Among our proposed systems, the overall
best performance in Wikipedia definitions is ob-
tained by the CNNl configuration. However, in-
corporating a BLSTM layer contributes towards
the best performing model on the NLP-specific

WCL W00

P R F1 P R F1

WCL 98.8 60.7 75.2 - - -

DefMiner 92.0 79.0 85.0 - - -

B&DC 88.0 76.0 81.6 - - -

E&S 85.9 85.3 85.4 - - -

LSTM-POS 90.4 92.0 91.2 - - -

CNN 91.1 92.0 91.5 33.5 68.7 44.8

CNNd 90.6 90.9 90.7 34.2 69.4 45.8

CNNl 94.2 94.2 94.2 42.8 65.5 51.3

C-BLSTM100 93.3 91.8 92.5 46.1 68.7 54.5

C-BLSTM100d 93.2 92.2 92.6 52.0 67.6 57.4

C-BLSTM100l 93.2 92.7 92.9 51.7 66.2 57.3

C-BLSTM300 93.4 92.3 92.7 48.9 64.5 54.0

C-BLSTM300d 94.3 91.0 92.6 47.3 64.0 51.9

C-BLSTM300l 94.0 90.7 92.5 50.0 64.5 53.8

Table 1: Comparative results between previous con-
tributions and different configurations of our proposed
contribution.

dataset (C-BLSTM100d). Several conclusions can
be drawn from these results. First, CNNs are ca-
pable of capturing a great deal of Wikipedia-like
definitional information. This probably owes to
the fairly recurrent linguistic structure of these
definitions. On the contrary, however, LSTMs
seem necessary in more complex scenarios, e.g.,
in those presented in the W00 dataset. Here, we
argue that long term dependencies may play an
important role, for example, for capturing cases
where a full-fledged definitions appear spanning
only over the last tokens of a sentence. Finally,
syntax seems to help for most configurations, and
for both datasets, although the difference is more
pronounced in the more challenging W00 dataset.

These differences in performance are, however,
small enough to make it difficult to draw strong
conclusions other than that neural network archi-
tectures are a sensible choice for this task, and
that syntax can play an important role depending
on the type of data to be processed. It is impor-
tant to highlight, finally, that depending on the ap-
plication, one may be more interested in having
an almost perfect precision (as in the system de-
scribed in Navigli and Velardi (2010)). For auto-
matic glossary generation from text, on the other
hand, having a more balanced model, with high re-
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call at the expense of only slightly lower precision,
may be preferred, as automatic glossaries usually
undergo a human post-editing and revision step.

Experiment 2: Cross-domain DE

In this experiment we assess the performance of a
cross-domain model on the W00 dataset (cf. Sec-
tion 3.1). The main goal is to verify to what ex-
tent a model trained only on Wikipedia-like def-
initions can do well in a domain-specific setting.
To this end, we apply our best performing config-
uration trained on the whole WCL corpus to the
W00 dataset (WCL>W00), and compare it with
the performance of our best configuration as per
10-fold CV (C-BLSTM100d, see Table 1). This
experiment is important, for example, for learn-
ing what would be more appropriate if we were
to aim at constructing domain-specific glossaries
or at extracting highly specific semantic relations
from a domain terminology.

System Precision Recall F-Score
C-BLSTM100d 52.0 67.6 57.4
WCL>W00 69.0 71.0 70.0

Table 2: Results of our proposed model (with two dif-
ferent training schemes) on the NLP-specific W00 def-
inition dataset.

The results in Table 2 reveal that, despite differ-
ences in style, a system modeled over encyclope-
dic definitions outperforms a neural model trained
only on these idiosyncratic definitions. This might
be due to several reasons. First, because of the
slightly smaller size of this dataset. And second,
the more noisy nature of the corpus may pose a
stronger challenge for a neural model to identify
recurrent definitional patterns. Still, our experi-
mental results seem to suggest that these patterns
do exist, as evidenced by the strong performance
of the Wikipedia-trained model.

Qualitative Evaluation

We run our best performing model over a subset
of the ACL-ARC anthology (Bird et al., 2008),
specifically the subcorpus described in (Espinosa-
Anke et al., 2016a), which removed noisy sen-
tences as produced by the pdf to text conversion.

In Table 3 we show three high quality defini-
tions discovered by our model, as well as three
false positives. We may highlight the somewhat
surprising remarkable capacity of the model to
identify definitions beyond the is-a pattern (e.g.,

using the verb ‘mean’) and with long-distance de-
pendencies between subject and object. As for the
incorrect cases, we find that for this model to be
used in the automatic glossary construction task,
in addition to further refinement, it would have to
be coupled with a term extraction system so that
only definitions associated to meaningful domain
terms are extracted.

compositional grammar means that the

semantics of a a phrase is composed of

the semantics of the subphrases

f-score is the harmonic mean of recall

(r) and precision (p) percentages

silc is a language and encoding

identification system developed by

the rali laboratory at the university

of montreal

the main lesson is that complex

sentences are analysed with a proper

understanding without sacrificing

efficiency

a simple spell correction is a part

of the system (essentially 1 character

errors)

the segmentation of a translation

memory is a key feature for our system

Table 3: Examples of extracted definitions with over
0.9 confidence from a subset of the ACL-ARC corpus.

4 Conclusion

We have presented and evaluated a neural model
based on CNNs and Bidirectional LSTMs which
obtains state of the art results on two well known
definition extraction datasets. From our experi-
ments, it stems that: (1) Neural network archi-
tectures perform well for identifying definitional
text snippets in corpora, more so with syntactic in-
formation; (2) A model trained on Wikipedia is
competitive even in a domain-specific setting; and
(3) More complex linguistic structures seem to be
better captured with more complex models. As
for future work, it would be interesting to explore
whether meaningful further gains can be obtained
by performing hyperparameter tuning.
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Abstract

We propose an efficient dynamic oracle for
training the 2-Planar transition-based parser,
a linear-time parser with over 99% cover-
age on non-projective syntactic corpora. This
novel approach outperforms the static train-
ing strategy in the vast majority of languages
tested and scored better on most datasets than
the arc-hybrid parser enhanced with the Swap
transition, which can handle unrestricted non-
projectivity.

1 Introduction

Linear-time greedy transition-based parsers such
as arc-eager, arc-standard and arc-hybrid (Nivre,
2003, 2004; Kuhlmann et al., 2011) are widely
used for dependency parsing due to their efficiency
and performance, but they cannot deal with non-
projective syntax. To address this, various exten-
sions have been proposed, involving new trans-
itions (Attardi, 2006; Nivre, 2009; Fernández-
González and Gómez-Rodrı́guez, 2012), data
structures (Gómez-Rodrı́guez and Nivre, 2010;
Pitler and McDonald, 2015) or pre and postpro-
cessing (Nivre and Nilsson, 2005). Among these
extensions, the 2-Planar parser (Gómez-Rodrı́guez
and Nivre, 2010) has attractive properties, as it (1)
keeps the original worst-case linear time, (2) has
close to full coverage of non-projective phenom-
ena, and (3) needs no pre- or post-processing.

Dynamic oracles (Goldberg and Nivre, 2012)
are known to improve the accuracy of greedy pars-
ers by enabling more robust training, by explor-
ing configurations beyond the gold path. While
dynamic oracles have been defined for many
transition-based algorithms (Goldberg and Nivre,
2013; Goldberg et al., 2014; Gómez-Rodrı́guez
et al., 2014; Gómez-Rodrı́guez and Fernández-
González, 2015; de Lhoneux et al., 2017), none
is available so far for the 2-Planar system. The

lack of the arc-decomposability property, which
can be used to derive dynamic oracles for parsers
that have it, makes the obtention of one non-trivial.

To fill this gap, we define an efficient dy-
namic oracle for the 2-Planar transition-based
parser, using similar loss calculation techniques as
described in (Gómez-Rodrı́guez and Fernández-
González, 2015) for the non-arc-decomposable
Covington parser (Covington, 2001). Training the
2-Planar parser with this novel strategy achieves
accuracy gains in the vast majority of datasets
tested. In addition, we empirically compare our
novel approach to the most similar existing altern-
ative:1 the arc-hybrid parser with a swap trans-
ition trained with a static-dynamic oracle, recently
introduced by de Lhoneux et al. (2017); which
can handle unrestricted non-projective dependen-
cies inO(n2) worst-case time in theory, but expec-
ted linear time in practice (Nivre, 2009). Our ap-
proach outperforms this swap-based system on av-
erage over a standard set of dependency treebanks.

2 The 2-Planar parser

We briefly sketch the 2-Planar transition sys-
tem, which was defined by Gómez-Rodrı́guez
and Nivre (2010, 2013) under the transition-based
parsing framework (Nivre, 2008) and is based on
the arc-eager algorithm (Nivre, 2003), keeping
its linear time complexity. It works by building,
in a single pass, two non-crossing graphs (called
planes) whose union provides a dependency parse
in the set of 2-planar (or pagenumber-2) graphs,
which is known to cover over 99% of parses in a
large number of real treebanks (Gómez-Rodrı́guez
and Nivre, 2010; Gómez-Rodrı́guez, 2016).

Parser configurations have the form c =

1Although the two-register parser by Pitler and McDonald
(2015) is even closer to ours in terms of the transition system
(being based on arc-eager and running in linear time), no dy-
namic oracle is known for it, to the best of our knowledge.
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〈Σ1,Σ2, B,A〉, where Σ1 and Σ2 are, respect-
ively, the active stack and inactive stack and are
tied to each of the planes or pages of the output
graph, B is a buffer of unread words, and A the
set of dependency arcs built so far. For an in-
put string w1 · · ·wn, the parser starts at config-
uration cs(w1 . . . wn) = 〈[ ], [ ], [w1 . . . wn], ∅〉,
applying transitions until a terminal configuration
〈Σ1,Σ2, [ ], A〉 is reached, andA yields the output.

Figure 1 shows the parser’s transitions. The
Shift transition pops the first (leftmost) word in
the buffer, and pushes it to both stacks; the Reduce
transition pops the top word from the active stack,
implying that we have added all arcs to or from it
on the plane tied to that stack; and the Left-Arc and
Right-Arc transitions create a leftward or right-
ward dependency arc connecting the first word in
the buffer to the top of the active stack. Finally,
the Switch transition makes the active stack inact-
ive and vice versa, changing the plane the parser is
working with. Transitions that violate the single-
head or acyclicity constraints are disallowed, so
that the output is a forest. Finally, to guarantee the
termination of the parsing process, two consecut-
ive Switch transitions are not allowed.

3 A dynamic oracle

We now define an efficient dynamic oracle to train
the 2-Planar algorithm, which operates under the
assumption of a fixed assignment of arcs to planes.

Following Goldberg and Nivre (2013), if the
Hamming loss (L) between trees t and tG is the
amount of words with a different head in t and tG,
then implementing a dynamic oracle reduces to
defining a loss function `(c) which, given a parser
configuration c and a gold tree tG, computes the
minimum loss between tG and a tree reachable
from c.2 We call this the minimum loss of config-
uration c, `(c) = mint|c t L(t, tG). A correct dy-
namic oracle will return the set of transitions τ that
do not increase this loss (i.e., `(τ(c))− `(c) = 0),
thus leading to the best parse reachable from c.

For parsers that are arc-decomposable3, `(c)
can be obtained by counting gold arcs that are not
individually reachable from c, which is trivial in
most parsers. Unfortunately, the 2-Planar parser

2We say that an arc set X is reachable from config-
uration c, and we write c  X , if there is some (pos-
sibly empty) path of transitions from c to some configuration
c′ = 〈Σ1,Σ2, B,A′〉, with X ⊆ A′.

3i.e., if every individual arc of X is reachable from a given
configuration c, the set X as a whole is reachable from c.

is non-arc-decomposable. To show this, it suffices
to consider any configuration where an incorrect
arc created in A forms a cycle together with a set
of otherwise reachable gold arcs, just as in the
proof of non-arc-decomposability for Covington
provided by Gómez-Rodrı́guez and Fernández-
González (2015). In fact, the same counter-
example provided there also works for this parser.

Note, however, that non-arc-decomposability in
the 2-Planar parser not only comes from cycles
(as in Covington) but also from situations where,
due to a poor assignment of planes to already-built
arcs, no possible plane assignment allows building
a set of pending gold arcs. Thus, the loss calcula-
tion technique of the Covington dynamic oracle is
not directly applicable to the 2-Planar parser.

However, if we statically choose a canonical
plane assignment and we calculate loss with re-
spect to that assignment (i.e., creating a correct arc
in the non-canonical plane incurs loss), then the
Covington technique, based on counting individu-
ally unreachable arcs and then correcting for the
presence of cycles, works for the 2-Planar parser.
This is the idea of our dynamic oracle, which
therefore is a correct dynamic oracle only with re-
spect to a preset criterion for plane assignment,
and not for all the possible plane assignments that
would produce the gold dependency structure.

In particular, given a 2-planar gold dependency
tree whose set of arcs is tG, we need to divide it
into two gold arc sets t1G and t2G, associated with
each plane.4 In this paper, we take as canonical the
division provided by the static oracle of Gómez-
Rodrı́guez and Nivre (2010), which prefers to
build arcs in the active plane to minimize the num-
ber of Switch transitions needed.5

Once the plane assignment is set, we can associ-
ate individually unreachable arcs to a plane. Then,
we can calculate configuration loss as:

`(c) = |U1(c, t1G) ∪ U2(c, t2G)|
+ nc(A ∪ (I1(c, t1G) ∪ I2(c, t2G)))

4In practice, for gold parses that are not 2-planar, some
arcs will need to be discarded, so that t1G ∪ t2G will be a 2-
planar subset of tG. Note that in this case, our oracle is cor-
rect with respect to this 2-planar subset, but it does not guar-
antee minimum loss with respect to the original non-2-planar
graph (in the same way as existing projective dynamic oracles
do not guarantee it with respect to non-projective trees).

5Our dynamic oracle can work with any plane assignment
criterion. We chose this one for simplicity, for direct compar-
ability to the existing static oracle, and because it has been
shown to be learnable in practice.
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Shift: 〈Σ1,Σ2, wi|B,A〉 ⇒ 〈Σ1|wi,Σ2|wi, B,A〉
Reduce: 〈Σ1|wi,Σ2, B,A〉 ⇒ 〈Σ1,Σ2, B,A〉
Left-Arc: 〈Σ1|wi,Σ2, wj |B,A〉 ⇒ 〈Σ1|wi,Σ2, wj |B,A ∪ {wj → wi}〉

only if @wk | wk → wi ∈ A (single-head) and wi →∗ wj 6∈ A (acyclicity).

Right-Arc: 〈Σ1|wi,Σ2, wj |B,A〉 ⇒ 〈Σ1|wi,Σ2, wj |B,A ∪ {wi → wj}〉
only if @wk | wk → wj ∈ A (single-head) and wj →∗ wi 6∈ A (acyclicity).

Switch: 〈Σ1,Σ2, B,A〉 ⇒ 〈Σ2,Σ1, B,A〉

Figure 1: Transitions of the 2-Planar dependency parser. The notation wi →∗ wj ∈ A means that there is a
(possibly empty) directed path from wi to wj in A.

where for i ∈ {1, 2}, each set Ii(c, tiG) = {x →
y ∈ tiG | c  (x → y)} is the set of indi-
vidually reachable arcs of tiG from configuration
c; Ui(c, tiG) is the set of individually unreachable
arcs of tiG from c, defined as tiG \ Ii(c, tiG); and
nc(G) denotes the number of cycles in a graph G.

To compute the sets of individually unreach-
able arcs Ui(c, tiG) from a configuration c =
〈Σ1,Σ2, B,A〉, we examine gold arcs. A gold arc
x → y ∈ tiG will be in Ui(c, tiG) if it is not in
A∩ tiG (the set of already-built arcs from the plane
of interest), and at least one of the following holds:

• min(x, y) 6∈ Σi ∪ B ∨max(x, y) 6∈ B, (i.e.,
min(x, y) must be in plane i’s stack or in the
buffer, and max(x, y) must be in the buffer
so that the arc x→ y can still be built),

• there is some z 6= 0, z 6= x such that z →
y ∈ A, (i.e., we cannot create x→ y because
it would violate the single-head constraint),

• x and y are on the same weakly connected
component of A (i.e., we cannot create x →
y due to the acyclicity constraint).

• x → y ∈ A ∩ t3−iG (i.e., the arc was already
erroneously created in the other plane and,
therefore, is unreachable in plane i).

Once we have Ui(c, tiG) for each of the two
planes, Ii(c, tiG) can be obtained as tiG \Ui(c, tiG).
Finally, since the graph A ∪ I1(c, t1G) ∪ I2(c, t2G)
has in-degree 1, the algorithm by Tarjan (1972)
can be used to implement the function nc to count
its cycles in O(n) time. For this reason, the full
loss calculation runs in linear time as well.6

6The check for acyclicity using weakly connected com-
ponents has no impact on the complexity: when weakly con-
nected components are represented using path compression

Given a plane assignment, `(c) is an exact ex-
pression of the loss of a configuration of the 2-
Planar parser as expressed in Figure 1, without
the control constraint that forbids two consecut-
ive Switch transitions. This can be proven us-
ing the same reasoning as for the Covington loss
expression of (Gómez-Rodrı́guez and Fernández-
González, 2015). Thus, the computation of `(c)
provides a complete and correct dynamic oracle
for this parser under a given plane assignment, by
directly evaluating `(τ(c)) − `(c) for each trans-
ition τ . However, to make the oracle correct for
the practical version, where consecutive Switch
transitions are disallowed, we need to modify the
cost calculation for the Switch transition.

In particular, applying a Switch transition does
not affect the loss, so `(Switch(c)) − `(c) is al-
ways 0. Indeed, if Switch transitions are always
allowed, their cost is zero because they can always
be undone and thus never affect the reachability
of any arcs. However, when consecutive Switch
transitions are banned to ensure parser termina-
tion, choosing to Switch can have consequences
as, in the resulting configuration, the parser will
be forced to take one of the other four transitions,
which may lead to suboptimal outcomes compared
to not having switched.

To address this, we compute the cost of Switch
transitions instead as min({`(τ(Switch(c))) −
`(c)|τ 6= Switch}), i.e., the minimum number of
gold arcs missed after being forced to apply one of
the other four transitions after Switch (if this cost
is 0, then switching stacks is an optimal choice).
Adding this modification makes the dynamic or-
acle correct for the practical version of the parser

and union by rank, the relevant operations run in amort-
ized inverse Ackermann time, meaning that they behave as
constant time for all practical purposes, like in (Gómez-
Rodrı́guez and Nivre, 2013)
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that disallows consecutive Switch transitions.

Regularization While the above dynamic oracle
is theoretically correct, we noticed experimentally
that the Switch transition tends to switch stacks
very frequently during training, due to explora-
tion. This leads the parser to learn unnecessarily
long and complex transition sequences that change
planes more than needed, harming accuracy.

To avoid this, we add a regularization term to
`(c) representing the transition sequence length
from c to its minimum-loss reachable tree(s), to
discourage unnecessarily long sequences. This
amounts to penalizing the Switch transition if
there is any zero-cost transition available in the
active plane and changing planes will delay its
application. Thus, arcs assigned to the currently
active plane will be built before switching if pos-
sible, enforcing a global arc creation order. This is
similar to the prioritization of monotonic paths in
(Honnibal et al., 2013, §6), as they also penalize
unneeded actions that will need to be undone later.

4 Experiments

4.1 Data and Evaluation

We conduct our experiments on the commonly-
used non-projective benchmark compounded of
nine datasets from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and all datasets
from the CoNLL-XI shared task (Nivre et al.,
2007).7 We also use the Stanford Dependencies
(de Marneffe and Manning, 2008) conversion (us-
ing the Stanford parser v3.3.0)8 of the WSJ Penn
Treebank (PTB-SD) (Marcus et al., 1993) with
standard splits. Labelled and Unlabelled Attach-
ment Scores (LAS and UAS) are computed includ-
ing punctuation for all datasets except for the PTB
where, following common practice, the punctu-
ation is excluded. We train our system for 15 it-
erations and choose the best model according to
development set accuracy. Statistical significance
is calculated using a paired test with 10,000 boot-
strap samples.

4.2 Model

We implement both the static oracle and the dy-
namic oracle with aggressive exploration for the

7We use for evaluation the latest version for each lan-
guage, i.e., if a language appeared in both CoNLL-X and
CoNLL-XI, we use the CoNLL-XI dataset.

8https://nlp.stanford.edu/software/
lex-parser.shtml

2-Planar parser under the neural network archi-
tecture proposed by Kiperwasser and Goldberg
(2016). We also add the static-dynamic arc-hybrid
parser with Swap transition (de Lhoneux et al.,
2017), implemented under the same framework to
perform a fair comparison.

The neural network architecture used in this
paper is taken from Kiperwasser and Goldberg
(2016). We use the same BiLSTM-based featur-
ization method that concatenates the representa-
tions of the top 3 words on the active stack and
the leftmost word in the buffer for the arc-hybrid
and 2-Planar algorithms, and we add the top 2
words on the inactive stack for the latter. Follow-
ing Kiperwasser and Goldberg (2016), we also in-
clude the BiLSTM vectors of the rightmost and
leftmost modifiers of words from the stacks, as
well as the leftmost modifier of the first word in
the buffer. We initialize word embeddings with
100-dimensional GloVe vectors (Pennington et al.,
2014) for English and use 300-dimensional Face-
book vectors (Bojanowski et al., 2016) for other
languages. The other parameters of the neural net-
work keep the same values as in (Kiperwasser and
Goldberg, 2016).

4.3 Results

Table 1 shows that the 2-Planar parser trained with
a dynamic oracle outperforms the static training
strategy in terms of UAS in 15 out of 20 languages,
with 8 of these improvements statistically signific-
ant (α = .05), and one statistically significant de-
crease. When comparing with the enhanced arc-
hybrid system in Table 2, our approach provides a
better UAS in 12 out of 20 datasets tested, achiev-
ing statistically significant (α = .05) gains in ac-
curacy on 7 of them, and significant losses on 3 of
them.

We could not find a clear pattern to explain why
the 2-Planar algorithm outperforms arc-hybrid
plus Swap in some languages and vice versa. The
latter seems to work better on treebanks with less
non-projectivity such as the English, Chinese and
Japanese datasets, and worse on those with higher
amounts like Turkish, Dutch or Basque. However,
some cases like Czech or Catalan go against this
trend. From (Gómez-Rodrı́guez and Nivre, 2010),
we also know that the Dutch and German tree-
banks have a relatively high proportion of non-
2-planar trees, but the 2-Planar parser seems to
be a better option on them than the extended arc-
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2-Planar 2-Planar
static dynamic

Language UAS LAS UAS LAS
Arabic 83.20 73.48 82.96 73.24
Basque 77.61 69.94 78.11 70.11
Catalan 92.50 87.92 93.70∗ 88.48∗
Chinese 85.95 80.97 87.08∗ 81.73∗
Czech 84.67 78.56 85.29 79.40
English 89.57 88.69 90.87∗ 90.03∗
Greek 81.93 74.23 82.06 74.79
Hungarian 81.50 75.94 82.48∗ 76.97∗
Italian 86.85 82.36 87.24 82.38
Turkish 81.68 73.59 81.48 73.61
Bulgarian 93.14 89.74 93.23 89.97
Danish 88.31 84.23 88.57 84.76
Dutch 85.51 81.63 86.50∗ 82.70∗
German 90.80 88.71 90.71 88.51
Japanese 92.51 90.56 93.19∗ 90.65∗
Portugue. 88.68 85.12 89.02∗ 85.92∗
Slovene 78.67 70.49 79.30 70.86
Spanish 83.63∗ 79.79∗ 82.42 78.68
Swedish 89.92 85.48 89.83 85.40
PTB-SD 93.59 91.60 93.96∗ 92.06∗

Average 86.51 81.65 86.90 82.01

Table 1: Parsing accuracy of the 2-Planar parser trained
with static and dynamic oracles on CoNLL-XI (first
block), CoNLL-X (second block) and PTB-SD (third
block) datasets. Best results for each language are
shown in boldface. Statistically significant improve-
ments (α = .05) are marked with ∗.

hybrid system that can handle unrestricted non-
projectivity. The reasons, beyond the scope of this
research, might be related to different dependency
length distributions or non-projective topologies.

We noticed that, in general, the 2-Planar parser
has higher precision on non-projective arcs and the
enhanced arc-hybrid parser has a better recall.

5 Conclusion

We present an efficient dynamic oracle to train
the 2-Planar transition-based parser, which is cor-
rect with respect to a given plane assignment, and
results in notable gains in accuracy. The parser
trained with this dynamic oracle performs better
on average than an expected linear-time parser
supporting unrestricted non-projectivity.

2-Planar AHybridSwap
dynamic static-dynamic

Language UAS LAS UAS LAS
Arabic 82.96∗ 73.24∗ 80.74 70.69
Basque 78.11∗ 70.11∗ 75.60 68.70
Catalan 93.70∗ 88.48 93.12 88.06
Chinese 87.08 81.73 87.31 82.02
Czech 85.29 79.40 85.71∗ 80.08∗
English 90.87 90.03 91.37 90.37
Greek 82.06 74.79 83.72∗ 76.33∗
Hungarian 82.48 76.97 82.20 76.88
Italian 87.24∗ 82.38∗ 86.24 81.48
Turkish 81.48∗ 73.61∗ 77.44 69.22
Bulgarian 93.23 89.97 93.17 89.62
Danish 88.57 84.76 88.65 84.60
Dutch 86.50∗ 82.70∗ 84.24 81.04
German 90.71 88.51 90.60 88.39
Japanese 93.19 90.65 93.40 91.47∗
Portugue. 89.02 85.92 88.78 85.48
Slovene 79.30∗ 70.86 77.68 70.61
Spanish 82.42 78.68 83.98∗ 80.15∗
Swedish 89.83 85.40 89.92 85.18
PTB-SD 93.96 92.06 93.83 91.93
Average 86.90 82.01 86.39 81.62

Table 2: Parsing accuracy of the 2-Planar parser trained
with the dynamic oracle and the arc-hybrid parser with
the Swap transition trained with a static-dynamic oracle
on CoNLL-XI (first block), CoNLL-X (second block)
and PTB-SD (third block) datasets. Best results for
each language are in boldface. Statistically significant
improvements (α = .05) are marked with ∗.
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Abstract

We evaluate the performance of state-of-the-
art algorithms for automatic cognate detec-
tion by comparing how useful automatically
inferred cognates are for the task of phyloge-
netic inference compared to classical manually
annotated cognate sets. Our findings suggest
that phylogenies inferred from automated cog-
nate sets come close to phylogenies inferred
from expert-annotated ones, although on av-
erage, the latter are still superior. We con-
clude that future work on phylogenetic recon-
struction can profit much from automatic cog-
nate detection. Especially where scholars are
merely interested in exploring the bigger pic-
ture of a language family’s phylogeny, algo-
rithms for automatic cognate detection are a
useful complement for current research on lan-
guage phylogenies.

1 Introduction

The task of cognate detection, i.e., the search for
genetically related words in different languages,
has traditionally been regarded as a task that is
barely automatable. During the last decades,
however, automatic cognate detection approaches
since Covington (1996) have been constantly im-
proved following the work of Kondrak (2002),
both regarding the quality of the inferences (List
et al., 2017b; Jäger et al., 2017), and the sophisti-
cation of the methods (Hauer and Kondrak, 2011;
Rama, 2016; Jäger et al., 2017), which have been
expanded to account for the detection of partial
cognates (List et al., 2016b), language specific
sound-transition weights (List, 2012) or the search
of cognates in whole dictionaries (St Arnaud et al.,
2017).

Despite the progress, none of the automated
cognate detection methods have been used for
the purpose of inferring phylogenetic trees us-
ing modern Bayesian phylogenetic methods (Yang

and Rannala, 1997) from computational biology.
Phylogenetic trees are hypotheses of how sets of
related languages evolved in time. They can in
turn be used for testing additional hypotheses of
language evolution, such as the age of language
families (Gray and Atkinson, 2003; Chang et al.,
2015), their spread (Bouckaert et al., 2012; Gray
et al., 2009), the rates of lexical change (Greenhill
et al., 2017), or as a proxy for tasks like cognate
detection and linguistic reconstruction (Bouchard-
Côté et al., 2013). By plotting shared traits on a
tree and testing how they could have evolved, trees
can even be used to test hypotheses independent
from language evolution, such as the universality
of typological statements (Dunn et al., 2011), or
the ancestry of cultural traits (Jordan et al., 2009).

In the majority of these approaches, schol-
ars infer phylogenetic trees with help of expert-
annotated cognate sets which serve as input to
the phylogenetic software which usually follows
a Bayesian likelihood framework. Unfortunately,
expert cognate judgments are only available for
a small number of language families which look
back on a long tradition of classical comparative
linguistic research (Campbell and Poser, 2008).
Despite the claims that automatic cognate detec-
tion is useful for linguists working on less well
studied language families, none of the papers ac-
tually tested, if automated cognates can be used
instead as well for the important downstream task
of Bayesian phylogenetic inference. So far, schol-
ars have only tested distance-based approaches
to phylogenetic reconstruction (Wichmann et al.,
2010; Rama and Borin, 2015; Jäger, 2013), which
employ aggregated linguistic distances computed
from string similarity algorithms to infer phyloge-
netic trees.

In order to test whether automatic cognate de-
tection is useful for phylogenetic inference, we
collected multilingual wordlists for five different
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language families (230 languages, cf. section 2.1)
and then applied different cognate detection meth-
ods (cf. section 2.2) to infer cognate sets. We
then applied the Bayesian phylogenetic inference
procedure (cf. section 3) to the automated and
the expert-annotated cognate sets in order to infer
phylogenetic trees. These trees were then evalu-
ated against the family gold standard trees, based
on external linguistic knowledge (Hammarström
et al., 2017), using the Generalized Quartet Dis-
tance (cf. section 4.1). The results are provided in
table 3 and the paper is concluded in section 5.

To the best of our knowledge, this is the first
study in which the performance of several auto-
matic cognate detection methods on the down-
stream task of phylogenetic inference is com-
pared. While we find that on average the trees
inferred from the expert-annotated cognate sets
come closer to the gold standard trees, the trees in-
ferred from automated cognate sets come surpris-
ingly close to the trees inferred from the expert-
annotated ones.

Dataset Mngs. Lngs. AMC

Austronesian 210 45 0.79
Austro-Asiatic 200 58 0.90
Indo-European 208 42 0.95
Pama-Nyungan 183 67 0.89
Sino-Tibetan 110 64 0.91

Table 1: Datasets used in our study. The second, third,
and fourth columns show the number of number of
meanings, languages and average mutual coverage for
each language family respectively.

2 Materials and Methods

2.1 Datasets

Our wordlists were extracted from publicly avail-
able datasets from five different language fami-
lies: Austronesian (Greenhill et al., 2008), Austro-
Asiatic (Sidwell, 2015), Indo-European (Dunn,
2012), Pama-Nyungan (Bowern and Atkinson,
2012), and Sino-Tibetan (Peiros, 2004). In order
to make sure that the datasets were amenable for
automatic cognate detection, we had to make sure
that the transcriptions employed are readily rec-
ognized, and that the data is sufficient for those
methods which rely on the identification of regu-
lar sound correspondences. The problem of tran-
scriptions was solved by applying intensive semi-

automatic cleaning. In order to guarantee an op-
timal data size, we selected a subset of languages
from each dataset, which would guarantee a high
average mutual coverage (AMC). AMC is calcu-
lated as the average proportion of words shared by
all language pairs in a given dataset. All analy-
ses were carried out with version 2.6.2 of LingPy
(List et al., 2017a). Table 1 gives an overview on
the number of languages, concepts, and the AMC
score for all datasets.1

2.2 Automatic Cognate Detection

The basic workflow for automatic cognate detec-
tion methods applied to multilingual wordlists has
been extensively described in the literature (Hauer
and Kondrak, 2011; List, 2014). The workflow can
be divided into two major steps: (a) word simi-
larity calculation, and (b) cognate set partitioning.
In the first step, similarity or distance scores for
all word pairs in the same concept slot in the data
are computed. In the second step, these scores are
used to partition the words into sets of presum-
ably related words. Since the second step is a mere
clustering task for which many solutions exist, the
most crucial differences among algorithms can be
noted for step (a).

For our analysis, we tested six different meth-
ods for cognate detection: The Consonant-
Class-Matching (CCM) Method (Turchin et al.,
2010), the Normalized Edit Distance (NED) ap-
proach (Levenshtein, 1965), the Sound-Class-
Based Aligmnent (SCA) method (List, 2014), the
LexStat-Infomap method (List et al., 2017b), the
SVM method (Jäger et al., 2017), and the Online
PMI approach (Rama et al., 2017).

The CCM approach first reduces the size of the
alphabets in the phonetic transcriptions by map-
ping consonants to consonant classes and discard-
ing vowels. Assuming that different sounds which
share the same sound class are likely to go back to
the same ancestral sound, words which share the
first two consonant classes are judged to be cog-
nate, while words which differ regarding their first
two classes are regarded as non-cognate.

1In order to allow for an easy re-use of our datasets,
we linked all language varieties to Glottolog (Hammarström
et al., 2017) and all concepts to Concepticon (List et al.,
2016a). In addition to the tabular data formats required to run
the analyses with our software tools, we also provide the data
in form of the format specifications suggested by the Cross-
Linguistic Data Formats initiative (Forkel et al., 2017). Data
and source code are provided along with the supplementary
material accompanying this paper.
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The NED approach first computes the normal-
ized edit distance (Nerbonne and Heeringa, 1997)
for all word pairs in given semantic slot and
then clusters the words into cognate sets using a
flat version of the UPGMA algorithm (Sokal and
Michener, 1958) and a user-defined threshold of
maximal distance among the words. We follow
List et al. (2017b) in setting this threshold to 0.75.

The SCA approach is very similar to NED, but
the pairwise distances are computed with help of
the Sound-Class-Based Phonetic Alignment algo-
rithm (List, 2014) which employs an extended
sound-class model and a linguistically informed
scoring function. Following List et al. (2017b),
we set the threshold for this approach to 0.45.

The LexStat-Infomap method builds on the
SCA method by employing the same sound-
class model, but individual scoring functions are
inferred from the data for each language pair
by applying a permutation method and comput-
ing the log-odds scores (Eddy, 2004) from the
expected and the attested distribution of sound
matches (List, 2014). While SCA and NED em-
ploy flat UGPMA clustering for step 2 of the
workflow, LexStat-Infomap further uses the In-
fomap community detection algorithm (Rosvall
and Bergstrom, 2008) to partition the words into
cognate set. Following List et al. (2017b), we set
the threshold for LexStat-Infomap to 0.55.

The OnlinePMI approach (Rama et al., 2017)
estimates the sound-pair PMI matrix using the
online procedure described in Liang and Klein
(2009). The approach starts with an empty PMI
matrix and a list of synonymous word pairs from
all the language pairs. The approach proceeds by
calculating the PMI matrix from alignments cal-
culated for each minibatch of word pairs using the
current PMI matrix. Then the calculated PMI ma-
trix for the latest minibatch is combined with the
current PMI matrix. This procedure is repeated
for a fixed number of iterations. We employ the
final PMI matrix to calculate pairwise word sim-
ilarity matrix for each meaning. In an additional
step, the similarity score was transformed into a
distance score using the sigmoid transformation:
1.0−(1+exp(−x))−1 The word distance matrix is
then supplied as an input to the Label Propagation
algorithm (Raghavan et al., 2007) to infer cognate
clusters. We set the threshold for the algorithm to
be 0.5.

For the SVM approach (Jäger et al., 2017) a

linear SVM classifier was trained with PMI sim-
ilarity (Jäger, 2013), LexStat distance, mean word
length, distance between the languages as features
on cognate and non-cognate pairs extracted from
word lists from Wichmann and Holman (2013)
and List (2014). The details of the training dataset
are given in table 1 in Jäger et al. (2017). We used
the same training settings as reported in the paper
to train our SVM model. The trained SVM model
is then employed to compute the probability that a
word pair is cognate or not. The word pair proba-
bility matrix is then given as input to InfoMap al-
gorithm for inferring word clusters. The threshold
for InfoMap algorithm is set to 0.57 after cross-
validation experiments on the training data.

We evaluate the quality of the inferred cog-
nate sets using the above described methods us-
ing B-cubed F-score (Amigó et al., 2009) which is
widely used in evaluating the quality of automat-
ically inferred cognate clusters (Hauer and Kon-
drak, 2011). We present the cognate evaluation
results in table 2. The SVM system is the best
in the case of Austro-Asiatic and Pama-Nyungan
whereas LexStat algorithm performs the best in
the case of rest of the datasets. This is surpris-
ing since LexStat scores are used as features for
SVM and we expect the SVM system to perform
better than LexStat in all the language families.
On the other hand, both OnlinePMI and SCA sys-
tems perform better than the algorithmically sim-
pler systems such as CCM and NED. Given these
F-scores, we hypothesize that the cognate sets out-
put from the best cognate identification systems
would also yield the high quality phylogenetic
trees. However, we find the opposite in our phylo-
genetic experiments.

3 Bayesian Phylogenetic Inference

The objective of Bayesian phylogenetic inference
is based on the Bayes rule in 1.

f(τ, v, θ|X) =
f(X|τ, v, θ)f(τ, v, θ)

f(X)
(1)

where X is the data matrix, τ is the topology of
the tree, v is the vector of branch lengths, and θ is
the substitution model parameters. The data ma-
trix X is a binary matrix of dimensions N × C
where N is the number of languages and C is the
number of cognate clusters in a language family.
The posterior distribution f(τ, v, θ|X) is difficult
to calculate analytically since one has to sum over
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

CCM 0.71 0.7 0.75 0.74 0.48
NED 0.73 0.77 0.69 0.53 0.49
SCA 0.76 0.78 0.81 0.71 0.56
LexStat 0.76 0.84 0.83 0.84 0.6
OnlinePMI 0.76 0.81 0.82 0.72 0.56
SVM 0.82 0.81 0.79 0.86 0.5

Table 2: B-cubed F-scores for different cognate detection methods across the language families.

all the possible topologies ( (2N−3)!
2N−2(N−2)! ) to com-

pute the marginal in the denominator. However,
posterior probability of all the parameters of inter-
est (here, Ψ = {τ, v, θ}) can be computed from
samples drawn using a Markov chain Monte Carlo
(MCMC) method. Typically, Metropolis-Hastings
(MH) algorithm is the MCMC algorithm used to
sample phylogenies from the posterior distribution
(Huelsenbeck et al., 2001).

The MH algorithm constructs a Markov chain
of the parameters’ states by proposing change to
a single parameter or a block of parameters in Ψ.
The current state Ψ in the Markov chain has a pa-
rameter θ and a new value θ∗ is proposed from
a distribution q(θ∗|θ), then θ∗ is accepted with a
probability

r =
f(X|τ, v, θ∗)
f(X|τ, v, θ)

f(θ∗)
f(θ)

q(θ|θ∗)
q(θ∗|θ) (2)

The likelihood of the data f(X|Ψ) is computed
using the Felsenstein’s pruning algorithm (Felsen-
stein, 1981) also known as sum-product algorithm
(Jordan et al., 2004). We assume that τ, θ, v are
independent of each other.

4 Experiments

In this section, we report the experimental settings,
the evaluation measure, and the results of our ex-
periments.

All our Bayesian analyses use binary datasets
with states 0 and 1. We employ the Generalized
Time Reversible Model (Yang, 2014, chapter 1)
for computing the transition probabilities between
individual states. The rate variation across sites
is modeled using a four category discrete Γ distri-
bution (Yang, 1994). We follow Lewis (2001) and
Felsenstein (1992) in correcting the likelihood cal-
culation for ascertainment bias resulting from un-
observed 0 patterns. We used a uniform tree prior
(Ronquist et al., 2012) in all our analyses which
constructs a rooted tree and draws internal node
heights from uniform distribution. In our analysis,

we assumes a Independent Gamma Rates relaxed
clock model (Lepage et al., 2007) where the rate
for a branch j of length bj in the tree is drawn
from a Gamma distribution with mean 1 and vari-
ance σ2IG/bj where σ2IG is a parameter sampled in
the MCMC analysis.

We infer τ, v, θ from two independent random
starting points and sample every 1000th state in
the chain until the phylogenies from the two inde-
pendent runs do not differ beyond 0.01. For each
dataset, we ran the chains for 15 million genera-
tions and threw away the initial 50% of the chain’s
states as part of burnin. After that we computed
the generalized quartet distance from each of the
posterior trees to the gold standard tree described
in subsection 4.1. All our experiments are per-
formed using MrBayes 3.2.6 (Zhang et al., 2015).

4.1 GQD

Pompei et al. (2011) introduced Generalized Quar-
tet Distance (GQD) as an extension to Quartet Dis-
tance (QD) in order to compare binary trees with
a polytomous tree, since gold standard trees can
have non-binary internal nodes. It was widely
used for comparing inferred language phylogenies
with gold standard phylogenies (Greenhill et al.,
2010; Wichmann et al., 2011; Jäger, 2013).

QD measures the distance between two trees
in terms of the number of different quartets (Es-
tabrook et al., 1985). A quartet is defined as a
set of four leaves selected from a set of leaves
without replacement. A tree with n leaves has(n
4

)
quartets in total. A quartet defined on four

leaves a, b, c, d can have four different topologies:
ab|cd, ac|bd, ad|bc, and ab × cd. The first three
topologies have an internal edge separating two
pairs of leaves. Such quartets are called as but-
terflies. The fourth quartet has no internal edge
and as such is known as star quartet. Given a tree
τ with n leaves, the quartets can be partitioned
into sets of butterflies, B(τ), and sets of stars,
S(τ). Then, the QD between τ and τg is defined
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

Expert cognate sets 0.0081 ± 0.001 0.1056 ± 0.0118 0.0249 ± 0.0079 0.1384 ± 0.0225 0.0561 ± 0.0123

CCM 0.0243 ± 0.018 0.0854 ± 0.0176 0.0369 ± 0.0148 0.1617 ± 0.0162 0.1424 ± 0.027
NED 0.0265 ± 0.007 0.0458 ± 0.0152 0.046 ± 0.0132 0.196 ± 0.0166 0.1614 ± 0.0282
SCA 0.0152 ± 0.0035 0.0514 ± 0.013 0.0256 ± 0.009 0.166 ± 0.0153 0.0704 ± 0.0206
LexStat 0.0267 ± 0.0085 0.0848 ± 0.0226 0.0314 ± 0.0091 0.1507 ± 0.0143 0.0786 ± 0.0209
OnlinePMI 0.0158 ± 0.0048 0.1056 ± 0.0198 0.0457 ± 0.0135 0.1717 ± 0.0185 0.1184 ± 0.031
SVM 0.0146 ± 0.0039 0.0989 ± 0.0224 0.0452 ± 0.011 0.1827 ± 0.0237 0.1199 ± 0.0269

Table 3: The mean and standard deviation for each method and family is computed from 7500 posterior trees. The
automatic methods which comes closest to the gold standard phylogeny is shaded in gray, and where the expert
cognate sets perform best, this is indicated with a bold font.

as 1 − |S(τ)∩S(τg)|+|B(τ)∩B(τg)|
(n4)

. The QD formu-

lation counts the butterflies in an inferred tree τ
as errors. The tree τ should not be penalized if
an internal node in the gold standard tree τg is m-
ary. To this end, Pompei et al. (2011) defined a
new measure known as GQD to discount the pres-
ence of star quartets in τg. GQD is defined as
DB(τ, τg)/B(τg) where DB(.) is the number of
different butterflies between τ, τg.

We extracted gold standard trees from Glottolog
(Hammarström et al., 2017) for the purpose of
evaluating the inferred posterior trees from each
automated cognate identification system. We note
that the Bayesian inference procedure produces
rooted trees with branch lengths whereas the gold
standard trees do not have any branch lengths. Al-
though there exist other linguistic phylogenetic in-
ference algorithms such as those of Ringe et al.
(2002) we do not test the algorithms due to the
non-availability and scalability of the software to
datasets with more than twenty languages.

4.2 Results

The results of our experiments are given in table
3. A average lower GQD score implies that the
inferred trees are closer to the gold standard phy-
logeny than a higher average GQD score. Except
for Austronesian, Bayesian inference based on ex-
pert cognate sets yields trees that are very close
to the gold standard tree. Surprisingly, algorith-
mically simple systems such as NED and CCM
show better performance than the machine-learned
SVM model except from Sino-Tibetan. SCA is
a subsystem of LexStat but emerges as the win-
ner in two language families (Indo-European and
Sino-Tibetan). Given that SCA is outperformed
by SVM and LexStat in automatic cognate detec-
tion, this is very surprising, and further research
is needed to find out, why the simpler models

perform well on phylogenetic reconstruction. Al-
though our results indicate that expert-coded cog-
nate sets are generally more suitable for phyloge-
netic reconstruction, we can also see that the dif-
ference to trees inferred from automated cognate
sets is not very large.

5 Conclusion

In this paper, we carried out a preliminary evalu-
ation of the usefulness of automated cognate de-
tection methods for phylogenetic inference. Al-
though the cognate sets predicted by automated
cognate detection methods yield phylogenetic
trees that come close to expert trees, there is
still room for improvement, and future research is
needed to further enhance automatic cognate de-
tection methods. However, as our experiments
show, expert-annotated cognate sets are also not
free from errors, and it seems likewise useful to
investigate, how the consistency of cognate cod-
ing by experts could be further improved.

As future work, we intend to create a cognate
identification system that combines the output of
different algorithms in a more systematic way. We
intend to infer cognate sets from the combined
system and use them to infer phylogenies and eval-
uate the inferred phylogenies against the gold stan-
dard trees.
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Abstract

This work introduces a new strategy to com-
pare the numerous conventions that have been
proposed over the years for expressing de-
pendency structures and discover the one for
which a parser will achieve the highest pars-
ing performance. Instead of associating each
sentence in the training set with a single gold
reference, we propose to consider a set of ref-
erences encoding alternative syntactic repre-
sentations. Training a parser with a dynamic
oracle will then automatically select among all
alternatives the reference that will be predicted
with the highest accuracy. Experiments on the
UD corpora show the validity of this approach.

1 Introduction

Multiple annotation conventions have been pro-
posed over the years for representing dependency
structures (Hajič et al., 2001; De Marneffe et al.,
2014). The divergence between annotation guide-
lines can result from the theoretical linguistic prin-
ciples governing the choices of head status and de-
pendency inventories, the tree-to-dependency con-
version scheme or arbitrary decisions regarding
closed class words, such as interjections or discur-
sive markers, the syntactic role of which is debat-
able. Several works have shown that the choice of
a dependency structure can have a large impact on
parsing performance (Silveira and Manning, 2015;
de Lhoneux and Nivre, 2016; Kohita et al., 2017)
and on the performance of downstream applica-
tions (Elming et al., 2013).

A natural way to decide which syntactic repre-
sentation is the best is to choose the one for which
a standard parser will achieve the highest parsing
performance (Schwartz et al., 2012; Husain and
Agrawal, 2012; Noro et al., 2005). Implement-
ing this general principle faces two challenges: i)
defining a learning criterion that can predict which
dependency structure will be the easiest to learn ii)

finding a way to explore a potentially large num-
ber of annotation schemes that describe all combi-
nations of several design decisions.

This work shows that the dynamic oracle of
Goldberg and Nivre (2013) can straightforwardly
uncover the most learnable dependency represen-
tation among a predefined set of possible refer-
ences.1 Rather than associating each sentence in
the training set to a single reference, we propose
to consider a set of references encoding alterna-
tive syntactic representations. Training a parser
with a dynamic oracle will then automatically se-
lect among all alternatives the reference that will
be predicted with the highest accuracy.

This article is organized as follows: we first re-
view standard structural transformations studied in
the literature that will be used to build a treebank
annotated with multiple references (§2). We then
show how the dynamic oracle of Goldberg and
Nivre (2013) can be used to train a parser when
each sentence is associated to a set of references
and explain how it can be used to define a learn-
ability criteria (§3). An experimental evaluation of
our approach is presented in §4.

2 Dependency Transformations

In this section, we explain how to automatically
transform the reference UD treebanks (Nivre et al.,
2016), to build corpora in which each sentence is
annotated by a set of possible trees.

The UD project aims at developing cross-
linguistically consistent treebank annotations for
many languages by harmonizing annotation
schemes between languages and converting exist-
ing treebanks to this new scheme. Several recent
papers (Kohita et al., 2017; de Lhoneux and Nivre,
2016; Silveira and Manning, 2015; Popel et al.,

1Contrary to unsupervised parsing, our approach does not
aim at discovering a dependency structure and rather relies
on the existence of several hand-crafted references.
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2013) have investigated whether the choices made
to increase the sharing of structures between lan-
guages hurt parsing performance and have iden-
tified a variety of choice points in which more
than one design could be advocated. Most of
these points are related to the issue of headness:
contrary to most works in theoretical linguistic,
UD assumes that function words should be cate-
gorically subordinated to content words to maxi-
mize the similarity of dependency trees across lan-
guages (Osborne and Maxwell, 2015).

The alternative representations we consider are
summarized in Table 1. They mostly consist in
demoting the lexical head and making it depen-
dent on a functional head. We designed a set
of handcrafted rules2 to convert dependencies be-
tween these two schemes. Each application of a
rule creates a new tree in the set of references that
is being built. As shown in Figure 1, the result-
ing set of references encodes all possible combi-
nations of the considered transformations.

... pour la peine ...

case

det

root

... pour la peine ...

case

det

root

... pour la peine ...

detcase

root

... pour la peine ...

case det

root

Figure 1: Examples of all the annotations generated by
applying the rules of Table 1. The UD reference is in
solid black.

3 Training a Dependency Parser with
Multiple References

Dynamic Oracle In a transition-based parser
(Nivre, 2008), a parse is computed by perform-
ing a sequence of transitions building the parse
tree in an incremental fashion. A partially built
dependency tree is represented by a configuration
c; when in c, applying a transition t results in the
parser moving to a new configuration denoted c◦t.

At each step of the parsing process, every pos-
sible transition is scored by a classifier (e.g. a lin-
ear model), given a feature representation of c and

2A more detailed description of the transformations can
be found in (Wisniewski and Lacroix, 2017). The source code
is freely available on the first author web site.

Algorithm 1: Training on one sentence with
multiple references (see text for notations).

Input: W the input sentence, T the set of gold trees
1 c← INITIAL(W )
2 while ¬TERMINAL(c) do
3 CORRECT ← {t|∃T ∈ T ,ORACLE(t, c, T ) = 0}
4 tp ← argmaxt∈LEGAL(c) w · φ(c, t)
5 to ← argmaxt∈CORRECT(c) w · φ(c, t)
6 if tp /∈ CORRECT then
7 UPDATE (w, φ(c, to), φ(c, tp))
8 tnext ← to
9 else

10 tnext ← tp

11 T ← {T ∈ T |ORACLE(tnext, c, T ) = 0}
12 c← c ◦ tnext

model parameters w; the score of a derivation (a
sequence of transitions) generating a given parse
tree is the sum of its transition scores. Parsing
thus amounts to finding, starting from the initial
configuration INITIAL(W ), the derivation having
the highest score, typically using greedy or beam
search.3

Algorithm 1 formalizes the training procedure
when the dynamic4 oracle of Goldberg and Nivre
(2013) is used: for each sentence, a parse tree is
built incrementally and at each step, if the pre-
dicted transition prevents the creation of a gold
dependency, the parameters are updated, accord-
ing, for instance, to the perceptron rule (l.7). Er-
roneous transitions can efficiently be found us-
ing the ORACLE(t, c, T ) function formally defined
in (Goldberg and Nivre, 2013) as computing the
number of dependencies of a gold parse tree T that
can no longer be predicted when a transition t is
applied in configuration c.

During training, it often happens that several
transitions are equally good: in such situations, the
training algorithm breaks ties among oracle tran-
sitions according to the model current prediction
(l.5). As suggested in the imitation learning litera-
ture (Daumé III and Marcu, 2005; Ross and Bag-
nell, 2010), this strategy enables to sample those
configurations that will be the most similar to the
ones seen when predicting a new dependency tree:

3In this work we only consider greedy parsers. Extending
the proposed approach to beam parsers would prevent dis-
carding a reference because one of the its transition is too
hard to predict (i.e. has a very low score), which would, intu-
itively, results in even better predictions.

4Algorithm 1 only uses the non-deterministic property of
the oracle and not its completeness. Even if we use the most
common term, ‘dynamic oracle’, our approach only requires
the former property.
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Syntactic Functions Annotation Scheme

Relation UD labels UD Alternative

Clause mark

to read to readsubordinates

Determiners det

the book the book
Noun mwe+goeswith,

John Jr. Doe John Jr. Doesequences name

Case case

of Earth of Earthmarking

Coordinations cc+conj
me and you me and you

Copulas cop+auxpass
is nice is nice

Table 1: Annotation schemes in the UD treebanks and standard alternatives.

it is a way to let the parser explore more specif-
ically the part of the search space it prefers and
is more likely to see at test time (Aufrant et al.,
2017). Using a dynamic oracle usually results in
substantial improvements in accuracy compared to
static oracles.

Considering Multiple References Implement-
ing the training algorithm described above only re-
quires the ability to detect whether a transition will
cause an erroneous dependency. It can naturally
be extended to the case of multiple references: a
transition is considered correct as long as it can
predict at least one of the gold trees; when moving
to a new configuration, trees that can no longer be
generated are removed from the set of references,
in order to make sure the parser will not mix the
dependencies of two gold trees (l.11).

Upon full completion of parsing, there will re-
main only one surviving reference that has been
selected according to the model current predic-
tions. This reference corresponds to the depen-
dency structure that is the most similar to the hy-
pothesis the parser would have predicted at test
time and can therefore be described as the refer-
ence the parser prefers: intuitively, Algorithm 1
will thus identify the reference that will be pre-
dicted with the highest accuracy.

4 Experiments

Data We separately apply to the 7 dependen-
cies considered the transformations described in
Section 2 on the 38 languages of the UD project

(v1.3), resulting in 266 transformed corpora.5 To
evaluate the ability of the proposed method to
identify the ‘best’ dependency structure, we con-
sider fully as well as partially transformed sen-
tences: a sentence with n dependencies of interest
will generate 2n references.

For each condition (i.e. a language and a trans-
formation), a dependency parser is trained using
(a) the original data annotated with UD conven-
tion, (b) ‘transformed’ data in which each sentence
is associated to a reference in which all dependen-
cies of interest have been transformed and (c) the
data associated with a set of reference containing
all the partially transformed references (including
the original and transformed references).

Parser We use our own implementation of an
arc-eager unlabeled dependency parser with a dy-
namic oracle and an averaged perceptron, using
the features described in (Zhang and Nivre, 2011)
which have been designed for English and have
not been adapted to the specificities of the other
languages.6 Training stops when the UAS esti-
mated on the validation set has converged.

Impact of Transformations Figure 2 shows
the distribution of differences in UAS between a
parser trained on the original data (setting (a)) and
a parser trained on the transformed data (setting
(b)). To evaluate the proposed transformations, we
follow the approach introduced in (Schwartz et al.,

544 transformed corpora were identical to the original cor-
pora as the transformation can not be applied (e.g. there are
no multi-word expression in Chinese).

6Note that the proposed approach can be apply to other
transition systems and classifiers.
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2012) consisting in comparing the original and the
transformed data on their respective references.

As expected, the annotation scheme has a large
impact on the quality of the prediction, with
an average difference in scores of 0.66 UAS
points and variations as large as 8.1 UAS points.
These results show that, contrary to general be-
lief (Schwartz et al., 2012; Kohita et al., 2017),
the UD scheme is not sub-optimal for monolin-
gual parsing: the difference in UAS is negative in
93 conditions and positive in 129. Table 2 details
for each dependency the when the UD scheme re-
sults in better predictions.

6 4 2 0 2 4 6 8 10
Difference in UAS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

tri
bu

tio
n

Figure 2: Distribution of differences between the UAS
achieved on the UD and transformed corpora. Positive
values indicate better prediction performance with UD
annotations.

case 44.7% mark 58.3% det 80.5%
cc 89.4% mwe 50.0% name 45.8%
cop 25.0%

Table 2: Percentage of times a parser trained and eval-
uated on UD data (setting (a)) outperforms a parser
trained and evaluated on transformed data (setting (b)).

Training with Multiple References To assess
the impact of training with multiple references
(setting (c)), we first evaluate the capacity of Al-
gorithm 1 to consistently select a single annota-
tion scheme during training. We count, in each
conditions, the number of times the reference that
has survived training was following the original
scheme and the number of times it was following
the transformed scheme. For 74.7% of the condi-
tions, the reference that has survived training was
following the same annotation scheme for more
than 70% of the training examples. This obser-
vation proves the ability of the parser to commit
itself to a single annotation scheme.

Learnability Criterion The training procedure
proposed in this article was designed to uncover
the dependency structure that will optimize pars-
ing accuracy. In this section we evaluate whether
this goal is achieved, by counting the number of
conditions in which the annotation scheme that has
survived training the most often (in setting (c)) is
indeed the one that achieves the best performance
on the test set, as evaluated by testing a parser in
settings (a) and (b).

We will consider, as baselines, two measures
of the ‘learnability’ of a treebank, the predictabil-
ity of an annotation scheme (Schwartz et al.,
2012) and the derivation perplexity (Søgaard and
Haulrich, 2010). Contrary to our approach, these
two measures aims at deciding which of two an-
notations schemes will achieve the best parsing
accuracy without actually training and testing a
parser. The predictability is defined as the en-
tropy of the conditional distribution of the depen-
dent PoS knowing the head PoS. The derivation
perplexity is the perplexity of 3-gram language
model estimated on a corpus in which the words
of a sentence appear in the order in which they are
attached to their head.7

Table 3 reports the number of times, averaged
over languages and transformations, that each
measure of learnability is able to predict which of
two competing annotation schemes will yield the
best parsing performance. These results clearly
show that the approach we propose to evaluate
the ‘learnability’ of an annotation scheme outper-
forms existing criteria and is able to select the an-
notation convention that achieves the highest pars-
ing performance.

metric learnability
predictability 64.8%
derivation complexity 62.6%
multiple references 76.3%

Table 3: Number of times a given learnability mea-
sure is able to predict which annotation scheme will
result in the best parsing performance. ‘multiple
references’ corresponds to the approach proposed
in this work.

7Similarly to (Søgaard and Haulrich, 2010), we consider
a trigram language model but use Witten-Bell smoothing as
many corpora are too small to use Kneser-Ney smoothing.
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5 Conclusion

This work introduces a new strategy to compare
the numerous representations that have been pro-
posed over the years for expressing dependency
structures and discover the one that is easiest to
learn. Experiments with the popular transition-
based parser on the UD corpora show the validity
of the proposed approach.

In future work, we would like to evaluate the
impact of annotation conventions on other kind of
parsers and to find the properties of a dependency
tree that facilitate its prediction. We also plan to
find ways to easily annotate sentences with multi-
ple references (e.g. by indicating that the head of
word can be chosen arbitrarily) and eliminate the
constraint that references should be trees.
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Gómez Guinovart, Berta Gonzáles Saavedra, Nor-
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Simkó, Kiril Simov, Aaron Smith, Carolyn Spadine,
Alane Suhr, Umut Sulubacak, Zsolt Szántó, Takaaki
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Abstract
In formal logic-based approaches to Recogniz-
ing Textual Entailment (RTE), a Combinatory
Categorial Grammar (CCG) parser is used to
parse input premises and hypotheses to obtain
their logical formulas. Here, it is important
that the parser processes the sentences consis-
tently; failing to recognize a similar syntactic
structure results in inconsistent predicate argu-
ment structures among them, in which case the
succeeding theorem proving is doomed to fail-
ure. In this work, we present a simple method
to extend an existing CCG parser to parse a set
of sentences consistently, which is achieved
with an inter-sentence modeling with Markov
Random Fields (MRF). When combined with
existing logic-based systems, our method al-
ways shows improvement in the RTE experi-
ments on English and Japanese languages.

1 Introduction

While today’s neural network-based syntactic
parsers (Dyer et al., 2016; Dozat and Manning,
2017; Yoshikawa et al., 2017) have proven suc-
cessful on sentence level modeling, it is still chal-
lenging to accurately process texts that go beyond
a single sentence (e.g. coreference resolution, dis-
course structure analysis). In this work we focus,
among others, on the consistent analysis of multi-
ple sentences in a document. This is as an impor-
tant problem in reasoning tasks as other document
analysis.

RTE is an elemental technology for semantic
analysis of multiple sentences, where, given a text
(T) and a hypothesis (H), a system determines if
T entails H. Existing methods based on formal
logic (Bos, 2008; Martı́nez-Gómez et al., 2017;
Abzianidze, 2017) obtain logical formulas for T
and H using an off-the-shelf CCG parser, and then
feed them to a theorem prover. The standard ap-
proach to mapping CCG trees onto logical formu-
las is to assign λ-terms to the words in a sentence

(a) An example semantic template:
V ⊢ S\NP : λF.(∃x.(F (x) ∧ ∃e.V (e, x)))

(b) T: A man is exercising

NP (S\NP)/(S\NP) S\NP
>

S\NP
<

S :
∃x.(man(x) ∧ ∃e.exercise(e, x))

H: There is a man exercising

NP S\NP/NP NP/N N /N N

...
S :

∃x.(man(x) ∧ exercise(x))

Figure 1: (a) An example semantic template for verbs
V that associates a CCG category S\NP with a λ-
term. (b) A logical formula of a sentence is obtained
at the root of a tree by composing λ-terms of all words
following CCG combinatory rules. In this Figure, hy-
pothesis H is wrongly parsed (See the text for details).

and combine them in a bottom-up fashion (Fig-
ure 1a). Here, when the parser fails to make con-
sistent analyses for T and H, the succeeding in-
ference component is also doomed to failure. In
Figure 1b, when the parser wrongly analyzes “man
exercising” in H as “man” modifying “exercising”,
the entailment relation cannot be established, due
to the different argument structures of exercise
in the resulting formulas.

While it is ideal to enhance the overall per-
formance of a parser, it is not cheaply obtain-
able. Additionally, neural network-based parsers
are susceptible to subtle changes in the input and
thus hard to inspect and modify its parameters to
change its prediction. Due to this, we cannot ex-
pect that a particular pair of words across multiple
sentences be always analyzed in a consistent man-
ner.

In this work, we solve the inconsistency prob-
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lem above by adapting the inter-sentence model of
Rush et al. (2012) to CCG parsing. Their moti-
vation is to exploit the similarities among test sen-
tences to overcome situations where the amount of
the training data is scarce or its domain is differ-
ent from the test data. The method based on dual
decomposition tries to find parse trees for a set of
sentences that agree with an MRF, which encour-
ages the assignment of a similar structure to simi-
lar contexts.

In our approach, we aim to eliminate wrong
logical formulas such as in Figure 1 by reward-
ing consistent CCG parses across sentences. This,
in turn, is achieved by rewarding the consistent
assignment of categories to the terminals. This
works for CCG parsing, as its derivation is mostly
determined by the terminal categories. The key of
our approach is that by combining A* parsing of
Yoshikawa et al. (2017) with dual decomposition,
we can keep small the latency incurred by the use
of the iterative algorithm.

We conducted experiments using two state-
of-the-art logic-based systems (Martı́nez-Gómez
et al., 2017; Abzianidze, 2017) and two RTE
datasets for English and Japanese languages. Our
method always shows improvement compared to
the baselines.

2 Method

We describe our approach of modeling the
inter-consistencies among CCG trees Y =
⟨y1, . . . , yN ⟩ for sentences X = ⟨x1, . . . , xN ⟩
(§2.1), 1 A* parsing method for each yi (§2.2) and
joint decoding of the MRF and A* parsing using
dual decomposition (§2.3).

2.1 Document Consistencies with MRF

To model inter-consistencies among CCG parses,
we adapt the global MRF model of Rush et al.
(2012). See Figure 2 for an example MRF. Our
MRF encourages the assignment of similar cate-
gories to the words appearing in similar contexts.

Firstly we construct a graphical representation
of an MRF. For each context (unigram surface
form in the case of Figure 2) c ∈ C, we have a
set Wc of indices ⟨s, t⟩ that appear in c, where s is
a sentence index and t a word index on sentence

1 In this work, we focus on the inconsistency problem of
premises and hypotheses of RTE task, and thus X does not
contain sentences from any “training data”, as was done in
Rush et al. (2012). Exploiting external resources in the same
manner is also an interesting future direction.

H: There is no man exercising

T: A man is exercising

c3c2c1

Figure 2: An MRF graph is made up of cliques each
consisting of one context node (∈ C; circles) and word
nodes (∈ W ; rectangles) instantiating that context.
As such, each clique expresses the interdependencies
among words appearing across sentences.

s. Let W =
∪

c∈C Wc. We define an undirected
graph G = ⟨V, E⟩, whose vertices are V = C∪W
and edges E = {⟨w, c⟩ : c ∈ C, w ∈ Wc}. See
Figure 2 for an MRF graph constructed for an ex-
ample RTE problem.

We assign to each node in the graph a label
from a set of CCG categories T , so as to max-
imize the global consistency score g. By com-
bining g with local CCG parsing for each y, we
aim to obtain globally consistent trees Y (§2.3).
We define label assignment z to nodes in V as
z = ⟨z1, ..., z|W |, z′

1, ..., z
′
|C|⟩ ∈ T |W | × T ′|C|,

where T ′ = T ∪ {NULL}. In the following, zw

denotes the element in z at the index correspond-
ing to w ∈ W (similarly z′

c for c ∈ C). Following
Rush et al. (2012), we allow NULL label for con-
text nodes. This works as a switch to “turn off”
the consistency constraints to the connected nodes.
Then, in the set Z(X) of all possible zs for X , we
look for z∗ = arg max

z∈Z(X)
g(z), where g(z) is2:

g(z) =
∑

w∈W

fw(zw) +
∑

(w,c)∈E

fw,c(zw, z′
c).

To reward the consistent assignment of categories
among connected nodes, fw,c is defined as follow:

fw,c(zw, z′
c) =





δ1 if zw = z′
c

δ2 if simpl(zw) = simpl(z′
c)

δ3 if z′
c = NULL

0 otherwise,

where δ1 ≥ δ2 ≥ δ3 and simpl removes feature
values from a category (e.g. simpl(Sdcl\NP ) =
S\NP ). for fw, we use log Ptag obtained by CCG

2 We omit unary terms fc for c ∈ C, as we set them 0.
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parser (§2.2). We tune δis based on the RTE per-
formance on the development set.

Since the above MRF g(z) has a simple naı̈ve
Bayes structure, we can compute argmax using
dynamic programming.

2.2 A* CCG Parsing

To parse a sentence, we use the state-of-the-art
A* parsing method of Yoshikawa et al. (2017),
which treats a CCG tree y as a tuple ⟨c, h⟩ of cate-
gories c = ⟨c1, . . . , cM ⟩ and dependency structure
h = ⟨h1, . . . , hM ⟩, where each hi is a head index.
They model a tree with a locally factored model;
the probability of a CCG tree is the product of the
probabilities of the categories ptag and the depen-
dency heads pdep of all words in x:

p(y|x) =
∏

i∈[1,M ]

ptag(ci|x)
∏

i∈[1,M ]

pdep(hi|x).

Note that the most computationally heavy part of
their method is the calculation of Ptag|dep, which
needs to be done only once in our extension with
dual decomposition. The additional computational
cost of our method is rather small, as it depends
on the number of times to run A* algorithm on the
precomputed Ptag|dep, which is quite efficient.3

The probability P (Y |X) of parses Y for X un-
der this model is simply the product of all yis:

Y ∗ = arg max
Y ∈Y(X)

P (Y |X)

= arg max
Y ∈Y(X)

∑

yi∈Y

log p(yi|xi),

where Y(X) is the space of all possible parses for
X .

2.3 Dual Decomposition

To obtain CCG parses Y for sentences X that are
optimal in terms of both the global consistency
model (§2.1) and the local parsing model (§2.2),
we solve the following problem using dual decom-
position:

(Y ∗, z∗) = arg max
Y ∈Y(X),z∈Z(X)

P (Y |X) + g(z)

s.t. ∀⟨s, t⟩ ∈ W zs,t = cs,t,

3 The supertagger of depccg processes 54 sentences per
second while its A* decoder 2463 sentences per second. This
is measured on SICK test set consisting of 9854 sentences
using 2.20 GHz Intel Xeon CPUs with 16 cores.

Algorithm 1 Joint CCG parsing and global MRF
decoding

▷ J : a set of pairs of word nodes and categories in MRF
▷ α: step size (0.0 < α ≤ 1.0)
Let J = {⟨w, c⟩|w ∈W, c ∈ T }
Let 1c(z) = 1 if z equals to c else 0

u
(1)
w,c ← 0 ∀⟨w, c⟩ ∈ J

for k = 1, . . . , K do
z(k) ← arg max

z∈Z(X)

g(z) +
∑

⟨w,c⟩∈J

u
(k)
w,c1c(zw)

Y (k) ← arg max
Y ∈Y(X)

P (Y |X)−
∑

⟨w,c⟩∈J

u
(k)
w,c1c(cw)

if z
(k)
w = c

(k)
w for all w ∈W then

return ⟨z(k), Y (k)⟩
u

(k+1)
w,c ← u

(k)
w,c+α(1c(z

(k)
w )−1c(c

(k)
w )) ∀⟨w, c⟩ ∈ J

return ⟨z(K), Y (K)⟩

where cs,t is the category assigned on t’th word in
ys. The condition in the equation states that the
decoded Y ∗ and z∗ must agree in the category as-
signment to word nodes in the MRF. Alg. 1 shows
the pseudocode for dual decomposition applied to
our method. Note that all the decoding subprob-
lems can be kept intact even when added the La-
grangian multiplier u of dual decomposition.

3 Experiments

3.1 Experimental Settings

English In English experiment, we test the per-
formance of ccg2lambda (Martı́nez-Gómez et al.,
2017) and LangPro (Abzianidze, 2017) on SICK
dataset (Marelli et al., 2014)4. As mentioned ear-
lier, these systems try to prove whether T en-
tails H, by applying a theorem prover to the log-
ical formulas converted from the CCG trees. We
report results for ccg2lambda with the default
settings (with SPSA abduction; Martı́nez-Gómez
et al. (2017)) and results for two versions of Lang-
Pro, one which is described in Abzianidze (2015)
(henceforth we refer to it as LangPro15) and the
other in Abzianidze (2017) (LangPro17).5 Briefly,
the difference between the two versions is that
LangPro17 is more robust to parse errors. See
the paper for the detail. For the CCG parser in
§2.2, we use depccg6 with an MRF in §2.1. We

4 We also conducted experiments on FraCaS
dataset (Cooper et al., 1996). For ccg2lambda, we found no
improvements in RTE performance with our MRF, while for
LangPro, we found that MRF guides to solve additional two
problems.

5 We report the scores for LangPro improved from the
reviewed version, which we obtained from the author through
the personal communication after the acceptance.

6https://github.com/masashi-y/depccg
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Method Accuracy Precision Recall
LangPro15 (Abzianidze, 2015)
EasyCCG 79.05 98.00 52.67
depccg 80.37 97.94 55.81
depccg + MRF 80.88 97.91 57.03

LangPro17 (Abzianidze, 2017)
EasyCCG 81.04 97.47 57.69
depccg 81.53 97.51 58.81
depccg + MRF 81.61 97.52 59.00

ccg2lambda (Martı́nez-Gómez et al., 2017)
EasyCCG 81.59 97.73 58.48
depccg 81.95 97.19 59.98
depccg + MRF 82.86 97.14 62.18

Table 1: RTE results on test section of SICK

compare our results with depccg without the MRF
and baselines reported in the above papers that use
EasyCCG (Lewis and Steedman, 2014).

In MRF, a context node is constructed when
two or more words from both T and H share
the same surface form. Exceptionally, some
pairs of categories are allowed to be aligned with
score δ1: a pair of noun modifier (N/N ) and
verb tense (Sng\NP ), which are categories for
present participles, and a pair of nominal modi-
fier (N/N ) and noun (N ). In the experiment us-
ing ccg2lambda the pairs of categories of tran-
sitive and intransitive verbs, ((SX\NP )/NP ,
SX\NP ) and ((SX\NP )/PP , SX\NP ), for any
feature X are also allowed with δ1.

For the hyperparamters, we conducted grid
search over [0.0, 0.1, . . . , 0.9] for each δi in the
MRF s.t. δ1 ≥ δ2 ≥ δ3 and found that δ1 =
0.9, δ2 = 0.1, δ3 = 0.0 works the best on SICK
trial set. We set α = 0.0002 and K = 500 in
Alg. 1. We decay α by 0.9 in every iteration.

Japanese In Japanese experiment, we eval-
uate ccg2lambda’s performance on JSeM
dataset (Kawazoe et al., 2017). To construct an
MRF graph, we processed RTE problems with
kuromoji7 and made a context node for a noun
or a verb followed by an adverb. The reason
why we use bigram POS tag-based context is
that the graph construction based on the surface
form has resulted in poor RTE performance, by
overgenerating MRF constraints. This may be
due to the fact that Japanese sentences are usually
tokenized into smaller units. We used depccg and
the same hyperparameters as English experiment.

7http://www.atilika.org/

Method Accuracy Precision Recall
jigg 75.0 92.7 65.4
depccg 67.87 88.34 56.77
depccg + MRF 71.31 88.88 62.24

Table 2: RTE results using ccg2lambda on JSeM

3.2 Results and Error Analysis
We show the results on SICK in Table 1. Our MRF
consistently contributes to the improvement of the
accuracies for both ccg2lambda and LangPro. We
observe the same tendency in the scores for all sys-
tems; with MRF, both the accuracy and recall for
the systems moderately improve and the systems
using depccg have higher recall and lower preci-
sion compared to the ones with EasyCCG (with
LangPro17 it marks higher precision as well).

In SICK, there are many instances of the con-
struction shown in Figure 1 (“There is no man ex-
ercising”, “There is no dog barking”, etc.), whose
correct reading is that the last verb (e.g. exer-
cising) is a present participle modifying a noun
(e.g. man). EasyCCG and default depccg wrongly
parse the last phrase (man exercising) as N/N N ,
where man modifies exercising. Our method cor-
rectly predicts N Sng\NP , by utilizing the paired
sentence (e.g. “A man is exercising”), in which the
role of exercising is less ambiguous.

Given that the strength of LangPro17 is its ro-
bustness to parse errors such as PP-attachment, the
larger gain in the accuracy for LangPro15 (roughly
0.5 versus 0.1 point up) indicates that our method
is also robust in handling well-known difficult
parsing problems. The example (a) in Table 3 is a
case of coordinate construction. Baseline depccg
wrongly coordinates crocheting with a noun sofa,
while our method successfully resolves the correct
coordinate structure by assigning Sng\NP to the
word (hence attaching it to sitting). Example (b) is
one of the cases of PP-attachment that our method
successfully resolved. Our method relocates the
two PPs in T in their correct places. As in the
example in Figure 1, our method corrects cases
like (a) and (b) by using the structure of the less
ambiguous counterpart as a guide. In the case of
(c), the existing parsers misclassify outdoors in T
as a noun and turns the verb run into a transitive
verb. With our method, intransitive verb run in H
works as a soft constraint on the verb in T and cor-
rects its structure successfully. However, there are
some cases where using only surface forms as a
cue forces the assignment of categories which is
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Sentences

(a)
T: The girl is sitting on the couch and is [Sng\NP crocheting]
H: The girl is sitting on the sofa and crocheting
crocheting: 7 N ; 3 Sng\NP

(b)

T: A veteran is showing different things from a war to some people
H: Different things [(NP\NP )/NP from] a war are being shown [((S\NP )\(S\NP ))/NP to] some people by a veteran
from: 7 ((S\NP )\(S\NP ))/NP ; 3 (NP\NP )/NP
to: 7 (NP\NP )/NP ; 3 ((S\NP )\(S\NP ))/NP

(c)
T: A few man in a competition are [Sng\NP running] outside
H: A few man in a competition are running outdoors
running: 7 (Sng\NP )/NP ; 3Sng\NP

(d)
T: A man is [(Sng\NP )/NP eating] some food
H: The person is eating
eating: 3 Sng\NP ; 7 (Sng\NP )/NP

Table 3: Example parse results in SICK test set. (a), (b), (c) With the global MRF model, words in bold font
previously assigned a wrong category (7) have been assigned a correct one (3). (d) is a case where the MRF is too
strict and leads to the wrong assignment.

consistent but not desirable. In example (d), eat is
used as a transitive verb in T and as an intransitive
verb in H; thus it should have different categories.

We show the results on JSeM in Table 2. The
RTE performance for Japanese language has im-
proved consistently across all the scores when we
add an MRF. However all the scores with depccg
(with or without MRF) lag behind the scores re-
ported in Mineshima et al. (2016), which uses a
CCG parser implemented in Jigg (Noji and Miyao,
2016). We hypothesize that this is due to the fact
that the previous work created the semantic tem-
plates for this language by analyzing parse outputs
by Jigg and this resulted in a kind of “overfitting”
in the templates.

In the above experiments, our method worked
well, mainly due to the fact that the sentences in
these datasets have comparably simple structure.
However, in other datasets, there are naturally
more complex cases as in Table 3 (d), where we
want different syntactic analyses for occurences of
words with the same surface form. We can counter
these cases by simply extending the definition of
“context” by N-grams or the use of POS tag as
we did in the Japanese experiment. Developing a
machine learning-based method that selects which
contexts to use and set δis automatically is also an
important future work.

4 Conclusion and Future Work

In this work, by modeling the inter-consistencies
of multiple sentences in CCG parsing, we have
successfully improved the performance of the for-
mal logic-based methods to RTE. Still, there can

be pairs of words in more complex RTE problems
that should not have the same category but that
our method wrongly force them to. This is mainly
due to the fact that we hand-tuned rules to con-
struct context nodes. In future work, we extend
the method so that it learns when to set an MRF
constraint.
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Abstract

Because the most common transition systems
are projective, training a transition-based de-
pendency parser often implies to either ignore
or rewrite the non-projective training exam-
ples, which has an adverse impact on accu-
racy. In this work, we propose a simple mod-
ification of dynamic oracles, which enables
the use of non-projective data when training
projective parsers. Evaluation on 73 tree-
banks shows that our method achieves signif-
icant gains (+2 to +7 UAS for the most non-
projective languages) and consistently outper-
forms traditional projectivization and pseudo-
projectivization approaches.

1 Introduction

Because of their efficiency and ease of imple-
mentation, transition-based parsers are the most
common systems for dependency parsing. How-
ever, efficiency comes at a price, namely a loss in
expressivity: while graph-based parsers are able
to produce any tree spanning the input sentence,
many transition-based systems are restricted to
projective trees. Informally, a dependency tree is
non-projective if at least one dependency crosses
another arc (see Figure 1).

What1 do2 I3 need4 to5 do6 ?7

dobj

aux

nsubj

root

mark

xcomp

punct

Figure 1: An example of non-projectivity: the tree is

made non-projective by the dependency What
x

do.

The inability to generate non-projective trees is
an obvious issue for accuracy: at test time, a pro-
jective parser is guaranteed to be wrong for all the

non-projective dependencies, a limitation already
pointed out several times (Nivre, 2009; Lacroix
and Béchet, 2014). In this paper, we show that
the impact can also be severe at training time.
This is because the standard training procedure as-
sumes that the reference tree is within reach of the
parser, which is not the case for non-projective ex-
amples. Therefore, projective parsers cannot make
any use of such samples and common practice is
to filter them out, thereby wasting potentially valu-
able training material. Depending on the annota-
tion schemes and languages, between 5 and 10%
of the training set are typically discarded.1

Several strategies have been proposed to over-
come the projectivity constraint. One line of re-
search is to sacrifice parsing efficiency and intro-
duce special transition systems capable to build
non-projective dependencies (Covington, 2001;
Nivre, 2009). Another approach introduces non-
projective dependencies by post-processing the
output projective trees. This is the case of the
pseudo-projectivization method (Nivre and Nils-
son, 2005), which encodes crossings in augmented
relation labels and makes all examples projec-
tive. The accuracy on projective dependencies
alone can also be maximized by projectivizing all
training examples prior to training, using Eisner
(1996)’s decoder.

In this work, we propose an alternative strategy:
we show (§3) that it is possible, with a small mod-
ification of the dynamic oracle of Goldberg and
Nivre (2012), to directly train a projective parser
with non-projective examples. While our ap-
proach remains unable to produce non-projective
trees, it still results in significant improvements

1In UD 1.2, examples with non-projective dependencies
represent 4.96% of trees (0.48% of dependencies) for En-
glish, 12.45% (0.83%) for French, 8.19% (0.33%) for Ara-
bic. However, the numbers rise for some languages such as
Dutch (30.87%, 4.10%) or Ancient Greek (63.22%, 9.78%).
See Straka et al. (2015) for complete data on 37 treebanks.
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on the overall UAS (§4), and consistently outper-
forms the (pseudo-)projectivization approaches.

2 Training transition-based parsers

2.1 Parsing with a transition system

In transition-based parsing (Nivre, 2003), depen-
dency trees are built incrementally, in a shift-
reduce manner: to parse a sentence, a sequence
of transitions (the derivation) is applied on the in-
ternal state of the parser (the configuration), con-
sisting typically in a stack and a buffer of unpro-
cessed words. In the ARCEAGER transition sys-
tem (Nivre, 2004), four actions are available, one
for each possible transition (see Table 1).

At parsing time, each transition to follow is pre-
dicted in turn by a classifier, typically an averaged
perceptron (Collins and Roark, 2004) or a neural
network (Chen and Manning, 2014; Dyer et al.,
2015; Andor et al., 2016), based on features ex-
tracted from the current parser configuration.

Compared to other parsing frameworks, such as
graph-based parsing (McDonald et al., 2005), a
major advantage of transition-based parsing is its
computational efficiency: the processing time of a
sentence is linear in its length.

2.2 Training with dynamic oracles

The classifier used to predict the actions is typi-
cally trained in an online fashion, using a dataset
consisting of input sentences and reference parse
trees. Various strategies have been envisioned
to generate, based on that data, pairs of positive
(gold) and negative (predicted) parser configura-
tions with which to update the model. A recent
and successful proposal uses so-called dynamic
oracles (Goldberg and Nivre, 2012): the training
example is parsed by the model, and for each pre-
dicted configuration in the resulting derivation, the
dynamic oracle computes a reference action, tai-
lored to the current configuration.

In practice, the reference is defined as an action
which does not degrade the accuracy on that sen-
tence: if a transition prevents a gold arc from be-
ing produced later (such as attaching a token to the
wrong head), it is incorrect, but no error is flagged
if that arc was already unreachable (for instance if
the true head was already removed from the stack).

Formally, if each configuration is associated
with a UASmax, the maximum UAS value that
can be achieved by any of its successor deriva-
tions, then the action cost is defined as the differ-

ence between the current UASmax and the future
UASmax (once the corresponding action has been
applied). The best decision in that situation is the
one which ensures the best future UAS, ie. which
leaves UASmax unchanged and has zero cost. By
definition of UASmax, in all configurations at least
one action has zero cost; there may even be sev-
eral in case of spurious ambiguities. Hence, when
asked for a reference action, the dynamic oracle
simply returns the set of zero-cost actions.

The core of the method is thus the computa-
tion of action costs. In order to simplify it, Gold-
berg and Nivre (2013) introduce the concept of
arc decomposition: a transition system is arc-
decomposable if in every configuration, all the
gold dependencies that are still reachable can be
reached simultaneously by the same derivation. It
ensues that for such systems, the action cost is
simply the number of gold arcs that the action ex-
plicitly forbids, which are in general straightfor-
ward to enumerate. For instance in ARCEAGER,
the REDUCE action (which pops the topmost stack
element s) has a cost of 1 for each child of s still in
the buffer, since they no longer can get their true
head (Goldberg and Nivre, 2013).

Arc-decomposability does not always hold,
however, in which case there are extra costs
to take into account: by definition of non-arc-
decomposable systems, some arcs are incompat-
ible (they are not unreachable, they can simply not
be reached together). Therefore, at some point,
adding a gold arc will imply renouncing to another
gold arc, thereby inserting an error. It is however
incorrect to assign this cost to the given action,
since it is due to a much earlier action which in-
troduced the incompatibility.2 As exemplified by
Goldberg et al. (2014) and Gómez-Rodrı́guez and
Fernández-González (2015), it is not impossible to
derive dynamic oracles for non-arc-decomposable
systems, but taking this kind of incompatibilities
into account makes the computation of their action

2A straightforward example of non-arc-decomposable
system is the ARCSTANDARD system (Nivre, 2003). It con-
sists in three actions: SHIFT (the same as in ARCEAGER),
and LEFT and RIGHT actions, which link the two topmost
stack elements in either direction, and then remove the child
from the stack. For the reference tree ‘The

x
bag

x
fell’, in

the configuration where the buffer is empty and the stack is

[The bag fell], the only way to output the bag
x

fell depen-
dency is consequently to attach (and pop) ‘bag’ immediately,
thereby renouncing to its child ‘The’, even tough it is cur-
rently reachable (with RIGHT+LEFT). In this configuration
all decisions seem to degrade the UAS, but the actual error
was done when SHIFTing ‘fell’ before attaching ‘The’.
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SHIFT [S] (σ, b|β, P ) ⇒ (σ|b, β, P ) if b is a word
LEFT [L] (σ|s, b|β, P ) ⇒ (σ, b|β, P + (b→ s)) if s is a word and s is unattached
RIGHT [R] (σ|s, b|β, P ) ⇒ (σ|s|b, β, P + (s→ b))
REDUCE [RE] (σ|s, β, P ) ⇒ (σ, β, P ) if s is attached

Table 1: The ARCEAGER transition system: semantics and preconditions of each action. σ stands for the stack, s
for the topmost stack element, β stands for the buffer, b for the first buffer element, and P is the partially built tree.

costs much more complex.

3 Using dynamic oracles to train on
non-projective data

The reason why dynamic oracles can help solving
the non-projectivity issue is that non-projective ex-
amples, in this framework, are not different from
projective ones: the cost is well-defined for any ac-
tion, and by definition there is always at least one
zero-cost action. So, all training examples are us-
able by design, regardless of their projectivity. The
issue rather resides in deriving a sound definition
of the cost, which covers non-projective cases;3 in
the current state of the art, the dynamic oracles
derived for projective systems are only sound for
projective examples, though (see Figure 2).

w1 w2 | w3

stack buffer

Figure 2: A configuration where all actions have non-
zero cost (thereby contradicting its definition), for a
non-projective reference tree (see dotted edges), when
using the standard ARCEAGER dynamic oracle. The
action cost is 2 for SHIFT (only w2 can be correctly
attached, by applying L+L+L afterwards), 2 for LEFT
(L+S+L correctly attaches w1 only) and 1 for RIGHT
(RE+L+L correctly attaches both w2 and w3).

One way to look at non-projective examples is
as a set of configurations containing arc incom-
patibilities: when two crossing edges are reach-
able, only one can actually belong to the final out-
put. Yet, this is a known setting: with non-arc-
decomposable systems, some erroneous configu-
rations face the same issue. Hence, from the ora-
cle point of view, the initial empty configuration
already comes with embedded ‘past errors’ (the
incompatibilities due to edge crossings). As in
non-arc-decomposable systems, the cost incurred
by these incompatibilities is not due to actions to

3Exhaustive search would be a straightforward strategy to
compute exact action costs in any setting, but it is computa-
tionally too expensive.

come, but should be attributed to previous actions,
taken in a fictive history before the initial config-
uration. As such, the natural behavior of dynamic
oracles is to ignore this cost. Hence, using the
same methodology as for non-arc-decomposable
systems, it is formally possible to define dynamic
oracles for non-projective examples. But it implies
enumerating all non-projective arc incompatibili-
ties in an arbitrary parser configuration (and prov-
ing exhaustivity), which is a difficult task and re-
mains, to date, an open question.

Instead of deriving exact costs, we propose here
a straightforward strategy which approximates the
action costs for non-projective examples: using
the usual cost computation, but defining the ora-
cles as minimum-cost actions instead of zero-cost
ones. Indeed, when the parser ends up in a config-
uration where all decisions appear erroneous, the
part of the cost which is common to all actions
should in fact have been taken care of in the past;
with this minimum-cost approach, it is ignored. In
Figure 2, the RIGHT action is chosen as reference
by the minimum-cost criterion, thereby acknowl-
edging the fact that non-projectivity by itself in-
curs a cost of 1. This oracle generalizes the zero-
cost one, as they are equivalent on projective trees.

Compared to an exact oracle, this approximated
cost biases the oracle towards delaying the reso-
lution of incompatibilities (like the SHIFT action
in Figure 3). A few updates are consequently un-
sound, but empirically their impact remains small
compared to the benefits of making more exam-
ples usable, as will be assessed in the next section.

w1 | w2 w3 w4

stack buffer

Figure 3: A configuration where action cost is poorly
approximated, for a non-projective reference tree (see
dotted edges). All gold arcs are reachable, but at most
two can be reached simultaneously. The cost computed
for LEFT is 2, 1 for RIGHT and 0 for SHIFT, even
though all actions lead to a tree with two gold arcs.
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% non-projective sentences # training sentences

µ > 50% 25-50% 10-25% < 10% > 500 < 500
# corresponding treebanks: [73] [1] [9] [32] [31] [57] [16]

PANPARSER – greedy ARCEAGER

Static oracle (only projective snt.) 78.28 56.23 76.22 75.49 82.47 81.34 67.37
Static oracle + projectivized snt. +0.31 +2.12 +1.54 +0.15 +0.06 +0.50 -0.36

Dynamic oracle (only projective snt.) 78.94 57.75 76.99 76.26 82.97 81.92 68.34
Dynamic oracle + projectivized snt. +0.32 +1.06 +1.04 +0.52 -0.11 +0.24 +0.61
Dynamic oracle + pseudo-proj. snt. +0.26 +2.01 +1.49 +0.19 -0.07 +0.47 -0.45
Dynamic oracle + non-projective snt. +0.48 +2.43 +1.83 +0.44 +0.07 +0.52 +0.36

PANPARSER – beam ARCEAGER

Global dynamic oracle (only projective snt.) 79.77 57.12 78.28 76.83 83.96 83.12 67.84
Global dynamic oracle + non-projective snt. 80.40 61.49 80.11 77.54 84.04 83.63 68.87

+0.63 +4.38 +1.84 +0.71 +0.07 +0.51 +1.03

PANPARSER – greedy ARCHYBRID

Static oracle (only projective snt.) 75.71 53.08 73.66 73.19 79.63 78.29 66.51

Dynamic oracle (only projective snt.) 76.51 54.23 74.61 73.96 80.41 79.23 66.81
Dynamic oracle + non-projective snt. +0.55 +3.08 +2.16 +0.33 +0.22 +0.53 +0.61

MALTPARSER – greedy ARCEAGER

Baseline (only projective snt.) 72.88 57.88 71.74 69.99 76.68 76.82 58.87
+ pseudo-projectivized sentences +0.37 +5.84 +1.41 +0.19 +0.08 +0.48 -0.01
+ non-proj. output (pseudo-proj. + deproj.) +0.45 +6.83 +1.69 +0.25 +0.09 +0.59 -0.04

UDPIPE – tuned hyperparameters

Baseline (proj. and non-proj. parsers) 79.47 66.99 81.20 75.51 83.45 83.67 64.48

Table 2: Comparison on Universal Dependencies 2.0 of various strategies to handle non-projective training exam-
ples, depending on the non-projectivity rate and on treebank size. We report the average UAS over the correspond-
ing sets of languages. All UAS gains are computed with respect to their ‘only projective snt.’ baseline.

4 Experiments

The benefits of non-projective examples for train-
ing projective parsers are evaluated on the 73 tree-
banks of the UD 2.0 (Nivre et al., 2017b,a). Three
methods to exploit non-projective trees (instead
of discarding them) are contrasted: learning on
the trees projectivized using Eisner (1996)’s algo-
rithm, learning on pseudo-projectivized examples
(Nivre and Nilsson, 2005) and learning on the non-
projective trees, with the minimum-cost oracle de-
scribed in §3. Projectivization is based on Yoav
Goldberg’s code.4 For pseudo-projectivization,
the MALTPARSER 1.9 implementation is used,
with the head encoding scheme. For parsing, we
use PANPARSER (Aufrant and Wisniewski, 2016),
our own open source5 implementation of a greedy
ARCEAGER parser (using an averaged perceptron
and a dynamic oracle).

4https://www.cs.bgu.ac.il/˜yoavg/
software/projectivize

5https://perso.limsi.fr/aufrant

As shown in Table 2, it is empirically better to
handle non-projective sentences with minimum-
cost dynamic oracles than to discard them all; but
this strategy also outperforms projectivization and
pseudo-projectivization. As expected, the gains of
all methods increase when the proportion of non-
projectivity increases, i.e. when more examples
would have been discarded.

The minimum-cost technique is notably effec-
tive on the least projective treebanks, which cor-
respond to ancient languages like Ancient Greek
(63% of non-projective examples, with a gain of
+2.4 UAS, compared to +1.1 and +2.0 for projec-
tivization and pseudo-projectivization) and Latin
(41%, +2.0 vs +0.4/+2.8); but it also achieves large
improvements for modern languages with less
non-projectivity, such as Dutch-LassySmall (30%,
+7.0 vs +5.7/+3.3), Belarusian (17%, +5.2 vs
+2.2/+4.4) and Turkish (11%, +2.3 vs +1.9/+1.3).

Apart from higher gains on average, the ad-
vantage of the minimum-cost strategy is that

416



it is consistently beneficial, whereas pseudo-
projectivization is detrimental for small treebanks.
A plausible explanation is that arbitrarily rewriting
the trees introduces inconsistencies in the training
material, which are only alleviated when data is
large enough. In that regard, the opposite effects
of projectivization (detrimental with a static ora-
cle, beneficial with a dynamic one) highlight the
limited reliability of such transformations.

The minimum-cost strategy is also applied to
an improved version of PANPARSER, using beam
search and a dynamic oracle extended to global
training (Aufrant et al., 2017), with a beam
of size 8 and the max-violation strategy. The
minimum-cost criterion appears particularly fit for
that setting, with even larger gains (+0.63 UAS on
average) despite a higher baseline.

Comparison with other parsers For illustra-
tive purposes, similar experiments are conducted
with other parsing systems: the ARCHYBRID ver-
sion of PANPARSER, MALTPARSER and UDPIPE.
MALTPARSER is the original implementation of
the ARCEAGER system, but differs from ours in
several ways, notably feature templates and the or-
acle (which is not dynamic, but precomputed stat-
ically); to help comparison, additional results are
reported for PANPARSER without dynamic ora-
cles. UDPIPE is a state-of-the-art neural parser in-
cluding both projective and non-projective parsing
systems; we use version 1.1 (Straka and Straková,
2017) with Straka (2017)’s set of tuned hyperpa-
rameters, but without their pre-trained word em-
beddings, for fair comparison.

The ARCHYBRID results show that the gains
achieved by the minimum-cost criterion are not
specific to the ARCEAGER system: despite differ-
ent baseline scores, the proposed strategy yields
similar improvements.

Compared to MALTPARSER, our ARCEAGER

baseline appears much stronger (+5.4 UAS) on the
downsized datasets; but the gains achieved when
exploiting the non-projective trees (with pseudo-
projectivization) are similar in both implementa-
tions. There is one exception, Ancient Greek (the
only treebank with more than 50% non-projective
sentences), for which the MALTPARSER gains
are way larger than those of PANPARSER; but
this treebank seems particular in several regards6

6The baseline MALTPARSER already behaves differently
for that language: it slightly outperforms the baseline PAN-
PARSER instead of underperforming it by a large margin.

and consequently does not question the superior-
ity of the minimum-cost oracle over the pseudo-
projectivization strategy, measured even in An-
cient Greek for PANPARSER.

Table 2 also reports the gains achieved by
MALTPARSER when pseudo-projectivization is
followed by deprojectivization of the output. Plain
comparison of this line with the minimum-cost
strategy is delicate, because it does not result
from better training only, but also from a gain
in expressivity: it is able to retrieve even non-
projective dependencies. But it is interesting to see
that deprojectivization only marginally improves
over pseudo-projectivization alone: most of the
gain actually resides in the treebank augmentation
rather than in retrieving non-projective dependen-
cies. Besides, the minimum-cost strategy outper-
forms even the deprojectivized results.

Finally, measures with UDPIPE reveal that,
even though it benefits a lot from its higher ex-
pressivity (as it uses non-projective systems for
the most non-projective treebanks), it achieves low
accuracies on small treebanks and is thus outper-
formed on average by the beam version of PAN-
PARSER (+0.30 UAS) – and the minimum-cost cri-
terion significantly widens that gap (+0.97 UAS).

5 Conclusion

This work has addressed the restriction of projec-
tive parsers to train only on projective examples.
We have explained how the dynamic oracle frame-
work can help overcoming this issue, and shown
that a simple modification of the framework (us-
ing minimum-cost actions as references instead
of zero-cost ones) enables a seamless use of non-
projective examples. Compared to the traditional
(pseudo-)projectivization approaches, this method
provides higher and more reliable improvements
over the filtering baseline.
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Abstract
We generalize Cohen, Gómez-Rodríguez,
and Satta’s (2011) parser to a family of
non-projective transition-based dependency
parsers allowing polynomial-time exact infer-
ence. This includes novel parsers with better
coverage than Cohen et al. (2011), and even a
variant that reduces time complexity to Opn6q,
improving on prior bounds. We hope that this
piece of theoretical work inspires design of
novel transition systems with better coverage
and better run-time guarantees.

1 Introduction

Non-projective dependency trees are those con-
taining crossing edges. They account for 12.59%
of all training sentences in the annotated Uni-
versal Dependencies (UD) 2.1 data (Nivre et al.,
2017), and more than 20% in each of 10 languages
among the 54 in UD 2.1 with training treebanks.
But modeling non-projectivity is computationally
costly (McDonald and Satta, 2007).

Some transition-based dependency parsers have
deduction systems that use dynamic programming
to enable exact inference in polynomial time and
space (Huang and Sagae, 2010; Kuhlmann et al.,
2011). For non-projective parsing, though, the
only tabularization of a transition-based parser is,
to our knowledge, that of Cohen et al. (2011).
They define a deduction system for (an isomor-
phic variant of) Attardi’s (2006) transition sys-
tem, which covers a subset of non-projective trees.
The exact inference algorithm runs in Opn7q time,
where n denotes sentence length.

In this paper, we show how Cohen et al.’s (2011)
system can be modified to generate a new fam-
ily of deduction systems with corresponding tran-
sition systems. In particular, we present three
novel variants of the degree-2 Attardi parser, sum-
marized in Fig. 1 (our technique can also be ap-
plied to generalized Attardi (2006) systems; see

§3.2). The first two bring non-projective cover-
age for UD 2.1 to as high as 95.99% by adding
extra transitions, and yet retain the same time
complexity. The third reduces time complex-
ity for exact inference to Opn6q and space com-
plexity from Opn5q to Opn4q, while still improv-
ing empirical coverage from 87.24% to 93.16%.1

Code and full statistics for all treebanks can
be found at https://github.com/tzshi/
nonproj-dp-variants-naacl2018.

These theoretical improvements are a step to-
wards making recent state-of-the-art results in
transition-based parsing with exact inference (Shi
et al., 2017) extensible to practical non-projective
parsing, by exemplifying the design of transi-
tion systems with better coverage on highly non-
projective datasets and, for one variant, bringing
the runtime complexity one level closer to feasi-
bility.

2 Transition-based Parsing

We first introduce necessary definitions and nota-
tion.

2.1 A General Class of Transition Systems

A transition system is given by a 4-tuple
pC, T, cs, Cτ q, where C is a set of configurations,
T is a set of transition functions between config-
urations, cs is an initialization function mapping
an input sentence to an initial configuration, and
Cτ Ă C defines a set of terminal configurations.

1Faster exact inference algorithms have been defined for
some sets of mildly non-projective trees (e.g. Pitler et al.
(2013); see Gómez-Rodríguez (2016) for more), but lack an
underlying transition system. Having one has the practical
advantage of allowing generative models, as in Cohen et al.
(2011), and transition-based scoring functions, which have
yielded good projective-parsing results (Shi et al., 2017); plus
the theoretical advantage of providing a single framework
supporting greedy, beam-search, and exact inference.
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System Reduce Transitions
Non-proj.
Coverage

Time
Complexity

Max.
Degree

Attardi (2006) O6 O5 O4 >4ê Ú 87.24% Opn7q 2

Var. 1: ALLDEG1 O6 O5 O4 >4ê Ú 93.32% Opn7q 2

Var. 2: ALL O6 O5 O4 >4ê Ú 95.99% Opn7q 3

Var. 3: ALLs0s1 O6 O5 O4 >4ê ÚO4 93.16% Opppn6qqq 2

stack buffer

Figure 1: Attardi’s (2006) transition system of degree 2 and our variants. Solid arrows denote the inven-
tory of reduce transitions; each arrow points from the head to the modifier of the edge created by that
transition. The degree of a transition is the distance between the head and modifier. Green highlights
the single degree-3 transition. Thick arrows and gray dotted arrows represent additional and deleted
transitions with respect to the original Attardi (2006) system. Coverage refers to the percentage of non-
projective sentences (a total of 76,084 extracted from 604,273 training sentences in UD 2.1) that the
systems are able to handle.

We employ a tripartite representation for con-
figurations: pσ, β, Aq, where the three elements
are as follows. σ and β are disjoint lists called
the stack and buffer, respectively. Each depen-
dency arc ph,mq in the resolved arcs set A has
head h and modifier m. For a length-n input
sentence w, the initial configuration is cspwq “
prs, r0, 1, ..., ns, Hq where the 0 in the initial buffer
denotes a special node representing the root of the
parse tree. All terminal configurations have an
empty buffer and a stack containing only 0.

Indexing from 0, we write si and bj to denote
item i on the stack (starting from the right) and
item j on the buffer (from the left), respectively.
We use vertical bars to separate different parts of
the buffer or stack. For example, when concerned
with the top three stack items and the first item on
the buffer, we may write σ|s2|s1|s0 and b0|β.

2.2 Attardi’s (2006) System

We now introduce the widely-used Attardi (2006)
system, which includes transitions that create arcs
between non-consecutive subtrees, thus allowing it
to produce some non-projective trees. To simplify
exposition, here we present Cohen et al.’s (2011)
isomorphic version.

The set of transitions consists of a shift transi-
tion (sh) and four reduce transitions (re). A shift
moves the first buffer item onto the stack:

shrpσ, b0|β,Aqs “ pσ|b0, β, Aq.
A reduce transition reh,m creates a dependency

arc between h (head) and m (modifier) and re-
duces m. For example,

res0,s1rpσ|s1|s0, β, Aqs “ pσ|s0, β, A Y tps0, s1quq .

Row 1 of Fig. 1 depicts the four Attardi reduces.
The distance between h and m in a reh,m tran-

sition is called its degree. A system limited to
degree-1 transitions can only parse projective sen-
tences. As shown in Fig. 1, Attardi’s (2006)
system has two degree-2 transitions (res0,s2 and
res2,s0) that allow it to cover 87.24% of the non-
projective trees in UD 2.1. More generally, an At-
tardi system of degree D adds res0,sD and resD,s0

to the system of degree D ´ 1.

3 Improving Coverage

A key observation is that a degree-D Attardi sys-
tem does not contain all possible transitions of
degree within D. Since prior empirical work
has ascertained that transition systems using more
transitions with degree greater than 1 can han-
dle more non-projective treebank trees (Attardi,
2006; Gómez-Rodríguez, 2016), we hypothesize
that adding some of these “missing” reduce transi-
tions into the system’s inventory should increase
coverage. The challenge is to simultaneously
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maintain run-time guarantees, as there exists a
known trade-off between coverage and complex-
ity (Gómez-Rodríguez, 2016). We want to use
Cohen et al.’s (2011)’s exact-inference algorithm
for Attardi-based degree-D non-projective depen-
dency parsing systems, which was previously ana-
lyzed as having Opn3D`1q time complexity.2 Our
contribution is systems that improve the degree-2
Attardi (2006) system’s non-projective coverage,
and yet (i) one has degree 3 but still the same
Opn7q runtime as Cohen et al. (2011), rather than
Opn3¨3`1q; and (ii) another has degree 2 but bet-
ter runtime than Cohen et al.’s (2011) system.

Here, we first sketch the existing exact inference
algorithm,3 and then present our variants.

3.1 Cohen et al.’s (2011) Exact Inference
The main idea of the algorithm is to group tran-
sition sequences into equivalence classes and con-
struct longer sequences from shorter ones. For-
mally, for m ě 1, Cohen et al. (2011) define
a length-m computation as a sequence of m ap-
plications of transitions to configurations: c0

t1ÝÑ
c1 ¨ ¨ ¨ tmÝÑ cm, where ti P T and tipci´1q “ ci

for i P 1..m. As depicted in Fig. 2, a length-
m I-computation rh1, i, h2, h3, js is any length-m
computation where (1) c0 “ pσ|h1, i|β, Aq and
cm “ pσ|h2|h3, j|β1, A1q for some σ, β, β1, A,
and A1; and (2) for all k P 1..m, ck’s stack has σ
as base and length at least |σ| ` 2. Only condition
(1) is relevant to this paper:4 it states that the net
effect of an I-computation is to replace the right-
most item h1 on the stack with items h2 and h3,
while advancing the buffer-start from i to j.

The dynamic programming algorithm is speci-
fied as a deduction system, where each transition
corresponds to a deduction rule. The shift rule is:

sh :
rh1, i, h2, h3, js

rh3, j, h3, j, j ` 1s .

Each reduce rule combines two I-computations
into a larger I-computation, e.g. (see Fig. 3):

res0,s1 :
rh1, i, h2, h3, ks rh3, k, h4, h5, js

rh1, i, h2, h5, js ,

2While Opn7q or Opn10q is not practical, the result is
still impressive, since the search space is exponential. Cohen
et al. (2011) were inspired by Huang and Sagae’s (2010) and
Kuhlmann et al.’s (2011) dynamic-programming approach
for projective systems.

3See Cohen et al. (2011) for full description.
4Condition (2) is used for proving completeness of the de-

duction system (Cohen et al., 2011).

Figure 2: From Cohen et al. (2011, Fig. 2):
schematic of I-computation rh1, i, h2, h3, js.

Figure 3: Illustration of deduction rule res0,s1 .

with the side condition that h4 modifies h5.
5 Other

reduce transitions have similar deduction rules,
with the same two premises, but a different con-
clusion depending on the reduced stack item. As
an illustration:

res2,s0 :
rh1, i, h2, h3, ks rh3, k, h4, h5, js

rh1, i, h2, h4, js .

The goal of deduction is to produce the I-
computation rϵ, 0, ϵ, 0, ϵs, using the shift and re-
duce deduction rules starting from the axiom
rϵ, 0, ϵ, 0, 1s, corresponding to the first and manda-
tory shift transition moving the root node from
buffer to stack. ϵ stands for an empty stack or
buffer. As analyzed by Cohen et al. (2011), di-
rect tabularization for this deduction system takes
Opn5q space and Opn8q time. With adaptation
of the “hook trick” described in Eisner and Satta
(1999), we can reduce the running time to Opn7q.

3.2 Our New Variants
In this section, we modify Cohen et al.’s (2011) set
of reduce deduction rules to improve coverage or

5This side condition can be interpreted as a grammar rule
(for a recognizer) or as an edge to be scored and added to the
parse tree (for a parser).
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time complexity. Since each such deduction rule
corresponds to a reduce transition, each revision to
the deduction system yields a variant of Attardi’s
(2006) parser. In other words, generalization of
the deduction system gives rise to a family of non-
projective transition-based dependency parsers.

We first explain why there are exactly nine
reduce transitions R “ tres0,s1 , res1,s0 , res0,s2 ,
res2,s0 , res1,s2 , res2,s1 , reb0,s0 , reb0,s1 , reb0,s2u that
can be used in Cohen et al.’s (2011) exact infer-
ence algorithm, without allowing a reduction with
head bi for i ě 1.6 (Note that Cohen et al.’s
(2011) reduce rules are precisely the first four el-
ements of R.) From Fig. 3 we infer that the con-
catenation of I-computations rh1, i, h2, h3, ks and
rh3, k, h4, h5, js yields a configuration of the form
pσ|h2|h4|h5, j|β,Aq. For the application of a re-
duce rule to yield a valid I-computation, by condi-
tion (1) of the I-computation definition, first, the
head and modifier must be selected from the “ex-
posed” elements h2, h4, h5, and j, corresponding
to s2, s1, s0, b0, respectively; and second, the mod-
ifier can only come from the stack. R is precisely
the set of rules satisfying these criteria. Further,
every reduce transition from R is compatible with
Eisner and Satta’s (1999) “hook trick”. This gives
us the satisfactory result that the Opn7q running
time upper bound still holds for transitions in R,
even though one of them has degree 3.

Next, we consider three notable variants within
the family of R-based non-projective transition-
based dependency parsers. They are given in
Fig. 1, along with their time complexities and em-
pirical coverage statistics. The latter is computed
using static oracles (Cohen et al., 2012) on the
UD 2.1 dataset (Nivre et al., 2017).7 We report
the global coverage over the 76,084 non-projective
sentences from all the training treebanks.

One might assume that adding more degree-
1 transitions wouldn’t improve coverage of trees
with non-crossing edges. On the other hand,
since their addition doesn’t affect the asymptotic
run-time, we define ALLDEG1 to include all
five degree-1 transitions from R into the Attardi
(2006) system. Surprisingly, using ALLDEG1 im-
proves non-projective coverage from 87.24% to
93.32%.

Furthermore, recall that we argued above that,

6Such reductions might prove interesting in the future.
7We also compare results from symbolic execution of the

dynamic programming algorithms on short sentences as a
double check.

by construction, using any of the transitions in
R still preserves the original Opn7q run-time up-
per bound for Cohen et al.’s (2011) exact infer-
ence algorithm. We therefore define ALL to in-
clude all 9 reduce transitions in R; it runs in time
Opn7q despite the fact that reb0,s2 P R has de-
gree 3, a significant improvement over the best
previously-known bound for degree-3 systems of
Opn10q. Moreover, as shown in Fig. 1, this variant
improves non-projective coverage to 95.54%.

Now, if our goal is to reduce run-time, we can
start with an Attardi (2006) system of degree 1 in-
stead of 2, which, as previously mentioned, can
only handle projective sentences, but which has
runtime Opnp3¨1q`1q “ Opn4q. Reasoning about
the analog of R with respect to Kuhlmann et al.’s
(2011) exact inference algorithm — the projective
predecessor of Cohen et al. (2011) — brings us
to the degree-2 set of reduce rules tres0,s1 , res1,s0 ,
reb0,s1u. This system, however, can only handle
leftward non-projective arcs.

Instead, we return to ALL, but discard transi-
tions reducing s2, thus deriving ALLs0s1, which
still produces both left and right non-projective
arcs, but has a run-time lower than Opn7q,
which we show as follows. Since s2 cannot
be reduced, when concatenating rh1, i, h2, h3, ks
and rh3, k, h4, h5, js, the larger I-computation
we deduce will be either rh1, i, h2, h4, js or
rh1, i, h2, h5, js, so that the first three indices of
the conclusion item remain the same as those of
the first premise. In addition, the only remaining
deduction rule, a shift, produces deduction items
of the form rh1, j, h1, j, j ` 1s. Hence, all deriv-
able items will be of the form rh1, i, h1, h3, js,
with only four unique indices, instead of five.
It follows that the exact inference algorithm for
this variant runs in Opn6q time, improving from
Opn7q. The tabularization takes Opn4q space, a
reduction from the original Opn5q as well. In
terms of empirical coverage, this new system can
handle 93.16% of the non-projective sentences in
UD 2.1, more than Attardi’s (2006) system, but
fewer than our other two variants.

Generally, for a degree-D Attardi (2006)-based
system, one may apply our first two variants to im-
prove its non-projective coverage while maintain-
ing the previously-analyzed Opn3D`1q time com-
plexity, or the third variant to reduce its time com-
plexity down to Opn3Dq, and space complexity
from Opn2D`1q to Opn2Dq.
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4 Conclusion

We have introduced a family of variants of Co-
hen et al.’s (2011) Attardi-based transition sys-
tem and its associated dynamic programming al-
gorithm. Among these, we have highlighted novel
algorithms that (1) increase non-projective cov-
erage without affecting computational complexity
for exact inference, and (2) improve the time and
space complexity for exact inference, even while
providing better coverage than the original parser.
Specifically, our ALLs0s1 runs in Opn6q time and
Opn4q space (improving from Opn7q and Opn5q,
respectively) while providing coverage of 93.16%
of the non-projective sentences in UD 2.1.

Exact inference for transition-based parsers has
recently achieved state-of-the-art results in projec-
tive parsing (Shi et al., 2017). The complexity im-
provements achieved in this paper are a step to-
wards making their exact-inference, projective ap-
proach extensible to practical, wide-coverage non-
projective parsing.
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Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victo-
ria Bobicev, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Aljoscha Burchardt, Marie
Candito, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
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Abstract
One of the outstanding properties of multi-
word expressions (MWEs), especially verbal
ones (VMWEs), important both in theoretical
models and applications, is their idiosyncratic
variability. Some MWEs are always contin-
uous, while some others admit certain types
of insertions. Components of some MWEs
are rarely or never modified, while some oth-
ers admit either specific or unrestricted modi-
fication. This unpredictable variability profile
of MWEs hinders modeling and processing
them as “words-with-spaces” on the one hand,
and as regular syntactic structures on the other
hand. Since variability of MWEs is a matter of
scale rather than a binary property, we propose
a 2-dimensional language-independent mea-
sure of variability dedicated to verbal MWEs
based on syntactic and discontinuity-related
clues. We assess its relevance with respect
to a linguistic benchmark and its utility for
the tasks of VMWE classification and variant
identification on a French corpus.

1 Introduction

Multiword expressions (MWEs), in particular ver-
bal ones (VMWEs), are groups of words whose
meaning does not derive from the meaning of their
components and from their syntactic structure in
a regular way (Gross, 1982), like pay a visit and
take the cake ‘be the most remarkable of its kind’.
MWEs exhibit some degree of variability. On
the one hand, they allow internal inflection (paid
many visits), insertions (pay annual visits) and
syntactic transformations (visits paid last month ).
On the other hand, they can block variation that
is usual/typical for ordinary expressions with the
same syntactic structure, such as inflection (#take
a turn1 vs. take turns), diathesis alternation (#he
cast the die vs. the die is cast ‘the point of no re-
treat is passed’), or adjunction of modifiers (#take

1We use # to signal a loss of idiomatic meaning.

the sweet cake). This leads to variation schemes
which are specific to subclasses of MWE, that is,
MWE variability is idiosyncratic.

Variability, also known as flexibility, has been
considered a key property of MWEs in linguistic
studies (Gross, 1988; Tutin, 2016; Nunberg et al.,
1994; Sheinfux et al., 2017). It was also high-
lighted as a major challenge in NLP models and
applications (Constant et al., 2017). Variants are
pervasive (Jacquemin, 2001) and hinder straight-
forward search of MWE citation forms in a cor-
pus (Nissim and Zaninello, 2013). They introduce
discontinuities which challenge sequence labeling
approaches. Even when employing parsers to cope
with discontinuities, MWE recognizers can still
fail to capture some syntactic transformations such
as complex determiners, which can break a direct
link between a verb and a noun in a dependency
tree (pay a series of visits). These facts have im-
portant implications for downstream tasks and ap-
plications, e.g. parsers can heavily suffer from in-
correctly identified MWEs (Baldwin et al., 2004).

The restricted variability of MWEs as compared
to their regular counterparts can also be seen as an
advantage in their automatic discovery (Weller and
Heid, 2010; Tsvetkov and Wintner, 2014; Buljan
and Šnajder, 2017). Substitution-based MWE dis-
covery techniques based on lexico-semantic vari-
ability have been largely explored (Pearce, 2001;
Farahmand and Henderson, 2016). Morphologi-
cal and syntactic variability, however, have rarely
been studied for MWE discovery (Ramisch et al.,
2008) and even less so for in-context identification
(Fazly et al., 2009).

Given the importance of MWE variability (Con-
stant et al., 2017) as well as its gradual nature,
especially for VMWEs, we suggest that this phe-
nomenon should be subject to measurement. This
paper presents measures of VMWE variability
based on variant-to-variant similarity, taking syn-
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tactic variability and linear discontinuity into ac-
count (Sec. 2–3).2 Our proposal is evaluated on
a French corpus (Sec. 4). We assess the rele-
vance of our measure with respect to a linguistic
benchmark (Sec.5), and we study its usability for
VMWE classification (Sec. 6) and variant identifi-
cation (Sec. 7). Then, we conclude and sketch per-
spectives to extend our proposal to other languages
and to an unsupervised framework (Sec. 8).

2 Variant-to-variant similarity

To capture the variability of a VMWE, we rely
on pairwise comparison of its occurrences. Fig. 1
shows the dependency trees of sentences contain-
ing two variants, henceforth V1 and V2, of pren-
dre une décision ‘to take a decision’. V1 and V2
exhibit some common and some divergent syntac-
tic and linear properties. For instance, the noun
decision governs a determiner (det) and an adjec-
tival modifier (amod) both in V1 and in V2, and
a relative clause (acl:relcl) in V2. The verb take
governs a nominal subject (nsubj), an object (obj)
and adverbial modifiers (adv) in both V1 and V2,
and an auxiliary (aux) in V2. External elements
are inserted between the lexicalized ones in both
variants. Their POS are adv (twice), det and adj
in V1, and pron, propn, aux and adv in V2, i.e. one
POS (adv) is shared.3

In order to measure both these common char-
acteristics and discrepancies, we define the sim-
ilarity of two VMWE variants on the basis of
the similarity of their components and of the ex-
ternal inserted elements. A lexicalized compo-
nent, or simply a component, of a VMWE E is
the one which is realized by the same lexeme
in any variant of E.4 All variants of E neces-
sarily have the same number of lexicalized com-
ponents, which are lemmatized and lexicograph-
ically sorted, yielding a canonical form of E =
(C1, C2, . . . , Cn) which uniquely represents it.5

By Cj
i we denote the form that component i takes

in variant j. For instance, in Fig. 1 C1 = décision,
C2 = prendre, E = (décision, prendre), C1

1 =
décision, C2

1 = décisions, C1
2 = prennent and

C2
2 = prises. Similarity of objects (components or

2Morphological variability is disregarded in this paper, as
it did not prove influential in the experiments described here.

3POS, morphological features and dependencies from
UD: http://universaldependencies.org.

4Lexicalized components are highlighted in bold.
5 We neglect rare cases of VMWEs sharing a canonical

form, e.g. fermer les yeux ‘close the eyes’⇒‘pretend not to
see’ vs. fermer l’oeil ‘close the eye’⇒‘have a nap’.

VMWEs) is measured by the Sørensen–Dice co-
efficient, which is defined as S(O1, O2) = 2 ×
|P (O1) ∩ P (O2)|/(|P (O1)| + |P (O2)|), where
P (O1) and P (O2) denote the sets of (relevant)
properties exhibited by objects O1 and O2. We
now define two variant-to-variant similarity mea-
sures: syntactic – focusing on the outgoing depen-
dencies – and linear – based on insertions.

2.1 Syntactic similarity
Syntactic similarity SS is based on the depen-
dencies between a VMWE and its external ele-
ments. It allows us to account for long-distance
arguments and modifiers not necessarily included
between the lexicalized components. The simi-
larity of each pair of lexicalized components is
calculated first, and then averaged for the whole
VMWE. For each component, the set of outgo-
ing dependencies is considered and relations of the
same type are counted once. In the two sentences
given in Fig. 1, the syntactic similarity of the noun
C1 and the verb C2 is:

SS(C1
1 , C

2
1 ) =

2× |{amod,det}|
|{acl:relcl,amod,det}|+ |{amod,det}|

=
4

5

SS(C1
2 , C

2
2 ) =

2× |{adv,nsubj,obj}|
|{adv,nsubj,obj}|+ |{adv,aux,nsubj,obj}|

=
6

7

Variant-to-variant syntactic similarity is the
weighted average of the per-component scores:

SS(V1, V2) =

n∑

i=1

wi × SS(C1
i , C

2
i )

where weights w1, . . . , wn sum up to 1. For in-
stance, with uniform weights w1 = w2 =

1
2 :

SS(V1, V2) =
1

2
× 4

5
+

1

2
× 6

7
=

29

35

2.2 Linear similarity
Linear similarity SL is defined for two VMWE
variants in terms of the POS of the elements in-
serted between the lexicalized components. The
number of insertions for the same POS is disre-
garded. In this way we focus on the quality of ad-
mitting an insertion of a certain POS, rather than
on their count. For example, the two adv inser-
tions in V1 (vraiment ‘really’ and pas ‘NEG ’) are
only counted once:
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Ils ne prennent vraiment pas une bonne décision
They NEG take really.ADV NEG.ADV a.DET good.ADJ decision

nsubj
adv adv

adv det
amod

obj
root

Voici les sages décisions que Jean a aussitôt prises
Here the wise decisions that.PRON John.PROPN has.AUX at once.ADV taken

det
amod

obj obj
nsubj

aux
adv

acl:relclroot

Figure 1: Two POS-tagged and dependency-parsed occurrences of prendre une décision ‘take a decision’.

SL(V1, V2) =
2× |{adv}|

|{adj,adv,det}|+ |{adv,aux,pron,propn}|

=
2

7

3 VMWE variability

Given the two similarity measures SS and SL be-
tween variants V1 and V2 of a VMWEE, the rigid-
ity scores of E are the averages of all pairs of
E’s variants. For example, if take decision oc-
curs 6 times, we average the scores SS and SL

of
(
6
2

)
= 15 pairs:

RY (E) =
1(
m
2

) ×
m−1∑

i=1

m∑

j=i+1

SY (Vi(E), Vj(E))

where Y ∈ {S,L}, m is the number of E’s vari-
ants in the corpus, and Vi(E) is the i’th variant.

Note that the rigidity measures defined above
range from 0 to 1. The variability of E can,
thus, be defined as the complement of rigidity:
V Y
X (E) = 1 − RY

X(E). Experiments were per-
formed in order to estimate the relevance and util-
ity of these measures. Parameter values were cho-
sen empirically and are presented in Appendix A.
In the long run, these parameters should be esti-
mated experimentally, possibly in an application-
specific manner.

4 Corpus

We use the French part of the PARSEME corpus6

manually annotated for VMWEs in 18 languages
(Savary et al., 2017). Among its 4 VMWE cate-
gories two are particularly relevant:

• Light-verb constructions (LVCs): combinations
of the type Verb-(Adp)-(Det)-Noun where the
verb is semantically void and the noun bears the
meaning, e.g. faire un voeu ‘make a wish’.
6
http://hdl.handle.net/11372/LRT-2282

• Idioms (IDs): verbal phrases of various syn-
tactic structures, often with non-compositional
meaning and admitting both literal and
idiomatic reading e.g. perdre pied ‘lose
foot’⇒‘lose self-confidence’

The VMWEs annotations in the corpus are ac-
companied by morphological and a syntactic lay-
ers, as shown in Fig. 1. In the morphological
layer, lemmas, POS and morphological features
are assigned to each token. The syntactic layer
represents syntactic dependencies between tokens.
Both result from manual annotation and use UD
tagsets. The corpus is divided into a training
corpus (TrC) and a test corpus (TeC). TrC con-
tains 17,880 sentences, 450,221 tokens, and 4,462
VMWE occurrences, including 1,786 occurrences
of 502 unique IDs and 1,362 occurrences of 672
unique LVCs. On average, each ID has 3.6 vari-
ants and each LVC has 2 variants. The frequency
of individual VMWEs varies greatly (from 1 to
172) and so does the reliability of the variability
estimation of each MWE. Hence, only the most
frequent VMWEs are considered in Sec. 6.

5 Linguistic relevance

It order to estimate the relevance of our mea-
sures, we refer to an existing corpus study by
Tutin (2016). There, 30 French VMWEs of the
form Verb-(Det)-Noun are studied with respect to
5 morpho-syntactic variation types. This yields 6
variability levels depending on how many of the 5
variability types a VMWE exhibits. This is illus-
trated in Tab. 1 with three VMWEs which stand at
distinct levels of the variability spectrum.

Tutin’s variability types are defined in terms
of complex linguistic phenomena, such as ad-
mitting passivization and relative constructions,
which have to be validated manually. We, con-
versely, are in need of fully automatic procedures.
Therefore we capture the VMWE variability in
distinct ways. It is interesting to see how far both
approaches agree on their conclusions.
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Variability type Examples
Noun’s
number
inflection

prendre la/les décision(s) ‘take the decision(s) ’
fermer la/les porte(s) ‘close the door(s) ’
donner lieu/# lieux ‘give place(s) ’

Passivization
décision prise ‘decision taken’
porte fermée ‘door closed ’
#lieu donné ‘place given’

Noun’s
determiner
variation

prendre la/ma/cette décision ‘take the/my/this decision’
#fermer une/ma/cette porte ‘close the/my/this door’
#donner un/mon/ce lieu ‘give a/my/this place’

Relative
construction

la décision qu’il prend ‘the decision which he takes’
#la porte qu’il ferme ‘the door which he closes’
#lieu qu’il donne ‘place which it gives’

Adjunction
of noun
modifiers

prendre une grande décision ‘take a great decision’
#fermer la grande porte ‘close the great door’
#donner un grand lieu ‘give a great place’

Table 1: Tutin’s variability types for prendre une
décision ‘take a decision’⇒‘make a decision’ (level
5), fermer la porte ‘close the door’⇒‘hinder’ (level
2), donner lieu ‘give place’⇒‘lead to’ (level 0).

Tutin’s variability level 0 1 2 3 4 5 All
# TrC VMWEs 6 3 2 3 1 3 18
# TrC occurrences 69 114 8 18 7 54 270
Aggregated level S0−1 S2−4 S5 S

Table 2: Distribution of the VMWEs extracted from the
PARSEME training corpus into Tutin’s classes.

To this aim, we extract from TrC all occur-
rences of the 30 VMWEs covered by Tutin and
retain those with at least 2 occurrences (measur-
ing similarity requires two variants at least). Tab. 2
shows the distribution of the resulting set S of 18
VMWEs into Tutin’s levels. While their corpus
frequency is relatively high at levels 0, 1 and 5,
it is low at levels 2, 3 and 4. Therefore we ag-
gregate neighbor levels into 3 subsets: S0−1, S2−4

and S5. For each VMWE in S we calculate V L

and V S with weight wi = 1 for the noun and 0
for the verb and the determiner (if any). As shown
by the corresponding boxplots in Fig. 2 (a–b), V L

tends to increase with Tutin’s level. That is to
say, the more variable VMWEs are (as judged by
a linguist expert on the basis of a manual corpus
study), the higher is their automatically calculated
linear variability value. Tutin’s extreme levels 0–1
and 5 are particularly well discriminated by V L.7

No interesting tendency could be observed for the
syntactic variability of the noun. We hypothesize
that different outgoing dependencies have differ-
ent roles in modeling syntactic variability. For in-
stance in aller dans le bon sens ‘go to the right di-
rection’⇒‘evolve positively’, the dependency be-
tween the noun and the modifier bon ‘good ’ prob-
ably tells us more about the rigidity of this VWME
than its case-marking preposition dans ‘in’ or its

7Wilcoxon-Mann-Whitney (WMW) test confirms that S5

differs from S0−1 with significance at α = 0.05.

Figure 2: Tukey boxplots of V L and V S (y-axis) as a
function of Tutin’s levels (x-axis).

Figure 3: Tukey boxplots of V L (y-axis) as a function
of VMWE categories (x-axis).

determiner le ‘the’. In future work, we would like
to address experimental estimation of weights for
different dependency relations in SS .

6 VMWE classification

LVCs are known to have a relatively regular mor-
phosyntactic behavior as compared to IDs, which
tend to be more rigid. We expect our variabil-
ity measures to help discriminate these categories.
We selected those VMWEs whose frequency in
TrC was higher than 9, i.e. 12 IDs and 17 LVCs.8

We then calculated V S and V L for each selected
VMWE. As shown in Fig. 3, a strong ID vs. LVC
discriminative power can be attributed especially
to V L, given that the variability of IDs never ex-
ceeds 0.3, while it reaches 0.94 for LVCs.9

7 Identification of VMWE variants

As shown by Fazly et al. (2009), English MWEs
exhibit lower variability than non-MWEs. Thus,
variability measures can help identify MWEs in
running text. We test this hypothesis for French
using SL and SS , which model variant similarity
differently from this seminal work. To this aim,
we adapted the method proposed by Savary and

8This threshold is a trade-off between keeping enough
variant pairs to be compared to capture the variability profile
of a VMWE, and enough VMWEs to evaluate V S and V L.
Increasing this value e.g. to 19 would yield at least 190 com-
parisons per VMWE (vs. 45 here) but keep only 8 VMWEs.

9These results are statistically significant at α = 0.01 ac-
cording to the WMW test.
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Figure 4: VMWE identification with SL : Tukey box-
plots of False vs. True positives

Cordeiro (2018) to consider all VMWEs of the
form Verb-(Det)-Noun annotated in TrC and ex-
tract their candidate occurrences in TeC. For in-
stance, if TrC contains the expression e perdre
pied ‘lose foot’⇒‘lose self-confidence’, then the
extracted TeC candidates, noted Cand(e), con-
tain true variants of e (e.g. ces obstacles me font
perdre pied ‘these obstacles make me lose my
self-confidence’), literal readings of e (e.g. il a
perdu le pied gauche ‘he lost his left foot’), and
coincidental occurrences of e’s components (e.g.
traces des pieds de l’enfant perdu ‘traces of the lost
child’s feet’). Our hypothesis is that SS and SL

should be able to distinguish true VMWEs from
literal and accidental occurrences, thus being use-
ful for supervised VMWE identification. More
precisely, we hypothesise that the more a candi-
date resembles a known VMWE occurrence, the
more chances it has to be a VMWE.

We extracted 195 candidates c ∈ Cand(e) from
TeC. For each candidate c, we calculated the min-
imum similarities SL(e, c), SS(e, c) and the aver-
age of both SL−S(e, c) over all occurrences of e
in TrC.10 Interesting results were obtained mainly
with SL. Fig. 4 shows pairwise comparison of the
minimal value of SL(e, c) when IDs and LVCs are
considered jointly (boxplots 1–2), or separately
(boxplots 3–6). In each case SL clearly delimits
false from true positives.11

8 Conclusions and future work

We defined syntactic and linear measures of
VMWE variability. They use pairwise similarity
based on expert linguistic knowledge. We showed
their statistically significant correlation with a lin-
guistic benchmark. We also discovered that linear

10In this section, all similarities S are estimated as the av-
erage of the four coefficients presented in App. B.

11This is confirmed by the WMW test with significancy at
α = 0.01 for both IDs and LVCs.

similarity proves useful in VMWE classification
and identification, which is particularly interesting
in comparison to the seminal work by Fazly et al.
(2009), who do not consider this kind of similarity.

These definitions and estimations should be fur-
ther improved to deal with other MWE categories,
not only verb-noun combinations. Our similarity
measures rely on language-independent assump-
tions: they can be applied to any MWE-annotated
corpus containing POS tags and dependency trees.
If these morphosyntactic annotations use the uni-
fied UD tagsets, cross-language MWE variability
studies can be carried out. Therefore, our experi-
ments will be extended to all languages accounted
for in the PARSEME corpus. Task-specific pa-
rameter tuning should show which parameters are
shared by all/many languages and/or tasks, and
which have to be language- and task-specific.
Morphological variability, including both inflec-
tion and derivation (as in refaire appel ‘re-make
appeal ’⇒‘to call on again’), temporarily aban-
doned for French, could be examined in a multi-
lingual context. Finally, the measures should be
adapted to an unsupervised context, to scale them
up to larger VMWE vocabularies and languages
with no MWE-annotated corpora. For instance,
MWE variant candidates could be extracted from
automatically parsed text, using lists of known
MWE lemmas (Savary and Cordeiro, 2018).

We believe that with these extensions our vari-
ability measures will offer a unified framework
for describing variability profiles of MWEs, which
should be useful both in theoretical and applied
research. They could help: (i) disambiguate lit-
eral vs. idiomatic readings of VMWEs, (ii) con-
flate variants of the same MWE to reduce informa-
tion variation in text, (iii) measure the sensitivity
of NLP tools to variability, (iv) define variability-
specific evaluation measures in MWE identifica-
tion to boost the efficient recognition of variants.
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A Parameter weights

Weigths of lexicalized components : ’VERB’: 0
’NOUN’: 1 ’DET’: 0

Features for SL : ’ADJ’: 1 ’ADV’: 1 ’INTJ’:
1 ’NOUN’: 1 ’CCONJ’: 1 ’NUM’: 1 ’PROPN’:
1 ’VERB’: 1 ’AUX’: 1 ’SCONJ’: 1 ’ADP’: 1
’PRON’: 1 ’X’: 1 ’PART’: 1 ’SYM’: 1 ’DET’: 1
’ ’: 0 ’PUNCT’: 0

Features for SS : ’aux:pass’: 1 ’nmod:poss’: 1
’nummod’: 1 ’det’: 1 ’nsubj:pass’: 1 ’acl:relcl’: 1
’amod’: 1 ’acl’: 1 ’expl’: 0 ’xcomp’: 0 ’root’: 0
’iobj’: 0 ’goeswith’: 0 ’advcl’: 0 ’appos’: 0 ’com-
pound’: 0 ’fixed’: 0 ’obl’: 0 ’mark’: 0 ’parataxis’:
0 ’punct’: 0 ’csubj’: 0 ’nmod’: 0 ’flat:name’: 0
’orphan’: 0 ’discourse’: 0 ’ ’: 0 ’flat:foreign’: 0
’dep’: 0 ’cop’: 0 ’aux’: 0 ’dislocated’: 0 ’obj’: 0
’advmod’: 0 ’conj’: 0 ’vocative’: 0 ’reparandum’:
0 ’nsubj’: 0 ’case’: 0 ’cc’: 0 ’ccomp’: 0
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B Similarity coefficients used in the
variant-to-variant similarity

Similarity between two datasets X and Y is given
by the following formulae:

card(X ∩ Y) = a

card(X ∪ Y) = a + b + c

card(X) = a + b

card(Y) = a + c

Jaccard : a
a+b+c

Sørensen-Dice : 2a
2a+b+c

Sneath-Sokal : a
a+2(b+c)

Cosinus : a√
((a+b).(a+c))

The variant-to-variant similarity defined in
Sec. 7 uses the arithmetic mean of these four coef-
ficients.
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Abstract

We address the task of detecting foiled im-
age captions, i.e. identifying whether a cap-
tion contains a word that has been deliber-
ately replaced by a semantically similar word,
thus rendering it inaccurate with respect to the
image being described. Solving this problem
should in principle require a fine-grained un-
derstanding of images to detect linguistically
valid perturbations in captions. In such con-
texts, encoding sufficiently descriptive image
information becomes a key challenge. In this
paper, we demonstrate that it is possible to
solve this task using simple, interpretable yet
powerful representations based on explicit ob-
ject information. Our models achieve state-
of-the-art performance on a standard dataset,
with scores exceeding those achieved by hu-
mans on the task. We also measure the upper-
bound performance of our models using gold
standard annotations. Our analysis reveals that
the simpler model performs well even without
image information, suggesting that the dataset
contains strong linguistic bias.

1 Introduction

Models tackling vision-to-language (V2L) tasks,
for example Image Captioning (IC) and Visual
Question Answering (VQA), have demonstrated
impressive results in recent years in terms of au-
tomatic metric scores. However, whether or not
these models are actually learning to address the
tasks they are designed for is questionable. For ex-
ample, Hodosh and Hockenmaier (2016) showed
that IC models do not understand images suffi-
ciently, as reflected by the generated captions. As
a consequence, in the last few years many diagnos-
tic tasks and datasets have been proposed aiming
at investigating the capabilities of such models in
more detail to determine whether and how these
models are capable of exploiting visual and/or lin-
guistic information (Shekhar et al., 2017b; John-

son et al., 2017; Antol et al., 2015; Chen et al.,
2015; Gao et al., 2015; Yu et al., 2015; Zhu et al.,
2016).

FOIL (Shekhar et al., 2017b) is one such
dataset. It was proposed to evaluate the ability of
V2L models in understanding the interplay of ob-
jects and their attributes in the images and their
relations in an image captioning framework. This
is done by replacing a word in MSCOCO (Lin
et al., 2014) captions with a ‘foiled’ word that is
semantically similar or related to the original word
(substituting dog with cat), thus rendering the im-
age caption unfaithful to the image content, while
yet linguistically valid. Shekhar et al. (2017b) re-
port poor performance for V2L models in classi-
fying captions as foiled (or not). They suggested
that their models (using image embeddings as in-
put) are very poor at encoding structured visual-
linguistic information to spot the mismatch be-
tween a foiled caption and the corresponding con-
tent depicted in the image.

In this paper, we focus on the foiled captions
classification task (Section 2), and propose the use
of explicit object detections as salient image cues
for solving the task. In contrast to methods from
previous work that make use of word based in-
formation extracted from captions (Heuer et al.,
2016; Yao et al., 2016; Wu et al., 2018), we use
explicit object category information directly ex-
tracted from the images. More specifically, we use
an interpretable bag of objects as image represen-
tation for the classifier. Our hypothesis is that, to
truly ‘understand’ the image, V2L models should
exploit information about objects and their rela-
tions in the image and not just global, low-level
image embeddings as used by most V2L models.

Our main contributions are:

1. A model (Section 3) for foiled captions clas-
sification using a simple and interpretable
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object-based representation, which leads to
the best performance in the task (Section 4);

2. Insights on upper-bound performance for
foiled captions classification using gold stan-
dard object annotations (Section 4);

3. An analysis of the models, providing insights
into the reasons for their strong performance
(Section 5).

Our results reveal that the FOIL dataset has a very
strong linguistic bias, and that the proposed simple
object-based models are capable of finding salient
patterns to solve the task.

2 Background

In this section we describe the foiled caption clas-
sification task and dataset.

We combine the tasks and data from Shekhar
et al. (2017b) and Shekhar et al. (2017a). Given
an image and a caption, in both cases the task
is to learn a model that can distinguish between
a REAL caption that describes the image, and a
FOILed caption where a word from the original
caption is swapped such that it no longer describes
the image accurately. There are several sets of
‘foiled captions’ where words from specific parts
of speech are swapped:

• Foiled Noun: In this case a noun word in the
original caption is replaced with another sim-
ilar noun, such that the resultant caption is
not the correct description for the image. The
foiled noun is obtained from list of object an-
notations from MSCOCO (Lin et al., 2014)
and nouns are constrained to the same super-
category;

• Foiled Verb: Here, verb is foiled with a sim-
ilar verb. The similar verb is extracted using
external resources;

• Foiled Adjective and Adverb: Adjectives
and adverbs are replaced with similar adjec-
tives and adverbs. Here, the notion of similar-
ity again is obtained from external resources;

• Foiled Preposition: Prepositions are directly
replaced with functionally similar preposi-
tions.

The Verb, Adjective, Adverb and Preposition
subsets were obtained using a slightly different

methodology (see Shekhar et al. (2017a)) than that
used for Nouns (Shekhar et al., 2017b). Therefore,
we evaluate these two groups separately.

3 Proposed Model

For the foiled caption classification task (Sec-
tion 3.1), our proposed model uses information
from explicit object detections as an object-based
image representation along with textual represen-
tations (Section 3.2) as input to several different
classifiers (Section 3.3).

3.1 Model definition

Let y ∈ {REAL, FOIL} denote binary class la-
bels. The objective is to learn a model that com-
putes P (y|I;C), where I and C correspond to the
image and caption respectively. Our model seeks
to maximize a scoring function θ:

y = argmax θ(I;C) (1)

3.2 Representations

Our scoring function θ takes in image features
and text features (from captions) and concatenates
them. We experiment with various types of fea-
tures.

For the image side, we propose a bag of ob-
jects representation for 80 pre-defined MSCOCO
categories. We consider two variants: (a) Object
Mention: A binary vector where we encode the
presence/absence of instances of each object cate-
gory for a given image; (b) Object Frequency: A
histogram vector where we encode the number of
instances of each object category in a given image.

For both features, we use Gold MSCOCO ob-
ject annotations as well as Predicted object detec-
tions using YOLO (Redmon and Farhadi, 2017)
pre-trained on MSCOCO to detect instances of the
80 categories.

As comparison, we also compute a stan-
dard CNN-based image representation, using the
POOL5 layer of a ResNet-152 (He et al., 2016)
CNN pre-trained on ImageNet. We posit that our
object-based representation will better capture se-
mantic information corresponding to the text com-
pared to the CNN embeddings used directly as a
feature by most V2L models.

For the language side, we explore two features:
(a) a simple bag of words (BOW) representation
for each caption; (b) an LSTM classifier based
model trained on the training part of the dataset.
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PoS Type Trainfoil Testfoil Total Train Total Test

Noun 153,229 75,278 306,458 150,556
Verb 6,314 2,788 60,262 33,616

Adjective 15,640 9,009 73,057 42,163
Adverb 1,011 451 53,381 30,738

Preposition 8,733 5,551 77,002 46,018

Table 1: Dataset statistics for different foiled parts of
speech. The superscript foil indicates the number of
foiled captions.

Our intuition is that an image descrip-
tion/caption is essentially a result of the interac-
tion between important objects in the image (this
includes spatial relations, co-occurrences, etc.).
Thus, representations explicitly encoding object-
level information are better suited for the foiled
caption classification task.

3.3 Classifiers

Three types of classifiers are explored: (a) Mul-
tilayer Perceptron (MLP): For BOW-based text
representations, a two 100-dimensional hidden
layer MLP with ReLU activation function is
used with cross-entropy loss, and is optimized
with Adam (learning rate 0.001); (b) LSTM
Classifier: For LSTM-based text representa-
tions, a uni-directional LSTM classifier is used
with 100-dimensional word embeddings and 200-
dimensional hidden representations. We train it
using cross-entropy loss and optimize it using
Adam (learning rate 0.001). Image representa-
tions are appended to the final hidden state of
the LSTM; (c) Multimodal LSTM (MM-LSTM)
Classifier: As above, except that we initialize the
LSTM with the image representation instead of
appending it to its output. This can also be seen
as am image grounded LSTM based classifier.

4 Experiments

Data: We use the dataset for nouns from
Shekhar et al. (2017b)1 and the datasets for other
parts of speech from Shekhar et al. (2017a) 2.
Statistics about the dataset are given in Table 1.
The evaluation metric is accuracy per class and the
average (overall) accuracy over the two classes.

Performance on nouns: The results of our ex-
periments with foiled nouns are summarized in Ta-
ble 2. First, we note that the models that use Gold

1https://foilunitn.github.io/
2The authors have kindly provided us the datasets.

Feats Overall Real Foil

Blind (LSTM only)† 55.62 86.20 25.04
HieCoAtt† 64.14 91.89 36.38

CNN + BOW MLP 88.42 86.89 89.97
Predict Mention + BOW MLP 94.94 95.68 94.23

Predict Freq + BOW MLP 95.14 95.82 94.48
Gold Mention + BOW MLP 95.83 96.30 95.36

Gold Freq + BOW MLP 96.45 96.04 96.85

CNN + LSTM 87.45 86.78 88.14
Predict Freq + LSTM 85.99 85.17 86.81
Gold Freq + LSTM 87.38 86.62 88.18

Predict Freq + MM-LSTM 87.90 86.73 88.95
Gold Freq + MM-LSTM 89.02 88.35 89.72

Human (majority)† 92.89 91.24 94.52

Table 2: Accuracy on Nouns dataset. † are taken di-
rectly from Shekhar et al. (2017b). HieCoAtt is the
state of the art reported in the paper.

bag of objects information are the best performing
models across classifiers. We also note that the
performance is better than human performance.
We hypothesize the following reasons for this:
(a) human responses were crowd-sourced, which
could have resulted in some noisy annotations; (b)
our gold object-based features closely resembles
the information used for data-generation as de-
scribed in Shekhar et al. (2017b) for the foil noun
dataset. The models using Predicted bag of ob-
jects from a detector are very close to the perfor-
mance of Gold. The performance of models us-
ing simple bag of words (BOW) sentence repre-
sentations and an MLP is better than that of mod-
els that use LSTMs. Also, the accuracy of the
bag of objects model with Frequency counts is
higher than with the binary Mention vector, which
only encodes the presence of objects. The Multi-
modal LSTM (MM-LSTM) has a slightly better
performance than LSTM classifiers. In all cases,
we observe that the performance is on par with
human-level accuracy. Our overall accuracy is
substantially higher than that reported in Shekhar
et al. (2017b). Interestingly, our implementation
of CNN+LSTM produced better results than their
equivalent model (they reported 61.07% vs. our
87.45%). We investigate this further in Section 5.

Performance on other parts of speech: For
other parts of speech, we fix the image representa-
tion to Gold Frequency, and compare results us-
ing the BOW-based MLP and MM-LSTM. We
also compare the scores to the state of the art re-
ported in Shekhar et al. (2017a). Note that this

435



Classifier Overall Real Foil
V

B
Gold Freq + BOW MLP 84.03 97.38 70.68
Gold Freq + MM-LSTM 87.90 99.48 76.32

HieCoAtt† 81.79 - 57.94

A
D

J Gold Freq + BOW MLP 87.74 96.96 78.52
Gold Freq + MM-LSTM 92.29 85.82 98.77

HieCoAtt† 86.00 - 80.05

A
D

V Gold Freq + BOW MLP 54.99 98.49 11.48
Gold Freq + MM-LSTM 56.55 99.45 13.65

HieCoAtt† 53.40 - 14.73

PR
E

P Gold Freq + BOW MLP 75.53 92.61 58.45
Gold Freq + MM-LSTM 89.74 95.59 83.89

HieCoAtt† 74.91 - 61.92

Table 3: Accuracy on Verb, Adjective, Adverb and
Preposition datasets, using Gold Frequency as the im-
age representation. † is the best performing model as
reported in Shekhar et al. (2017a).

model does not use gold object information and
may thus not be directly comparable – we how-
ever recall that only a slight drop in accuracy was
found for our models when using predicted object
detections rather than gold ones. Our findings are
summarized in Table 3. The classification perfor-
mance is not as high as it was for the nouns dataset.
Noteworthy is the performance on adverbs, which
is significantly lower than the performance across
other parts of speech. We hypothesize that this
is because of the imbalanced distribution of foiled
and real captions in the dataset. We also found that
the performance of LSTM-based models on other
parts of speech datasets are almost always better
than BOW-based models, indicating the necessity
of more sophisticated features.

5 Analysis

In this section, we attempt to better understand
why our models achieve such a high accuracy.

5.1 Ablation Analysis

We first perform ablation experiments with our
proposed models over the Nouns dataset (FOIL).
We compute image-only models (CNN or Gold
Frequency) and text-only models (BOW or
LSTM), and investigate which components of our
model (text or image/objects) contribute to the
strong classification performance (Table 4). As ex-
pected, we cannot classify foiled captions given
only image information (global or object-level),
resulting in chance-level performance.

On the other hand, text-only models achieve a

very high accuracy. This is a central finding, sug-
gesting that foiled captions are easy to detect even
without image information. We also observe that
the performance of BOW improves by adding ob-
ject Frequency image information, but not CNN
image embeddings. We posit that this is because
there is a tighter correspondence between the bag
of objects and bag of word models. In the case
of LSTMs, adding either image information helps
slightly. The accuracy of our models is substan-
tially higher than that reported in Shekhar et al.
(2017b), even for equivalent models.

We note, however, that while the trends of im-
age information is similar for other parts of speech
datasets, the performance of BOW based models
are lower than the performance of LSTM based
models. The anomaly of improved performance
of BOW based models seems heavily pronounced
in the nouns dataset. Thus, we further analyze our
model in the next section to shed light on whether
the high performance is due to the models or the
dataset itself.

Image Text Overall Real Foil

CNN - 50.01 64.71 35.31
Gold Freq - 50.04 53.10 47.00

M
L

P - BOW 89.33 88.32 90.34
CNN BOW 88.42 86.89 89.97

Gold Freq BOW 96.45 96.04 96.85

L
ST

M - LSTM 85.07 85.52 84.66
CNN LSTM 87.38 86.62 88.18

Gold Freq LSTM 87.45 86.78 88.14

Table 4: Ablation study on FOIL (Nouns).

5.2 Feature Importance Analysis
We apply Local Interpretable Model-agnostic Ex-
planations (Ribeiro et al., 2016) to further under-
stand the strong performance of our simple classi-
fier on the Nouns dataset (FOIL) without any im-
age information. We present an example in Fig-
ure 1. We use MLP with BOW only (no image
information) as our classifier. As the caption is
correctly predicted to be foiled, we observe that
the most important feature for classification is the
information on the word ball, which also happens
to be the foiled word. We further analyzed the
chances of this happening on the entire test set.
We found that 96.56% of the time the most impor-
tant classification feature happens to be the foiled
word. This firmly indicates that there is a very
strong linguistic bias in the training data, despite
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Figure 1: Classifier’s prediction for the foiled caption:
The classifier is able to correctly classify the foiled cap-
tion and uses the foiled word as the trigger for classifi-
cation.

the claim in Shekhar et al. (2017b) that special at-
tention was paid to avoid linguistic biases in the
dataset.3 We note that we were not able to de-
tect the linguistic bias in the other parts of speech
datasets.

6 Conclusions

We presented an object-based image representa-
tion derived from explicit object detectors/gold an-
notations to tackle the task of classifying foiled
captions. The hypothesis was that such mod-
els provide the necessary semantic information
for the task, while this informaiton is not ex-
plicitly present in CNN image embeddings com-
monly used in V2L tasks. We achieved state-
of-the-art performance on the task, and also pro-
vided a strong upper-bound using gold annota-
tions. A significant finding is that our simple
models, especially for the foiled noun dataset,
perform well even without image information.
This could be partly due to the strong linguis-
tic bias in the foiled noun dataset, which was
revealed by our analysis on our interpretable
object-based models. We release our analysis
and source code at https://github.com/
sheffieldnlp/foildataset.git.
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Abstract

We combine a neural image captioner with a
Rational Speech Acts (RSA) model to make a
system that is pragmatically informative: its
objective is to produce captions that are not
merely true but also distinguish their inputs
from similar images. Previous attempts to
combine RSA with neural image captioning
require an inference which normalizes over the
entire set of possible utterances. This poses
a serious problem of efficiency, previously
solved by sampling a small subset of possible
utterances. We instead solve this problem by
implementing a version of RSA which oper-
ates at the level of characters (“a”,“b”,“c”, . . . )
during the unrolling of the caption. We find
that the utterance-level effect of referential
captions can be obtained with only character-
level decisions. Finally, we introduce an au-
tomatic method for testing the performance of
pragmatic speaker models, and show that our
model outperforms a non-pragmatic baseline
as well as a word-level RSA captioner.

1 Introduction

The success of automatic image captioning
(Farhadi et al., 2010; Mitchell et al., 2012; Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015)
demonstrates compellingly that end-to-end statis-
tical models can align visual information with lan-
guage. However, high-quality captions are not
merely true, but also pragmatically informative
in the sense that they highlight salient properties
and help distinguish their inputs from similar im-
ages. Captioning systems trained on single images
struggle to be pragmatic in this sense, producing
either very general or hyper-specific descriptions.

In this paper, we present a neural image caption-
ing system1 that is a pragmatic speaker as defined
by the Rational Speech Acts (RSA) model (Frank
and Goodman, 2012; Goodman and Stuhlmüller,

1The code is available at https://github.com/
reubenharry/Recurrent-RSA

Figure 1: Captions generated by literal (S0) and prag-
matic (S1) model for the target image (in green) in the
presence of multiple distractors (in red).

2013). Given a set of images, of which one is the
target, its objective is to generate a natural lan-
guage expression which identifies the target in this
context. For instance, the literal caption in Fig-
ure 1 could describe both the target and the top two
distractors, whereas the pragmatic caption men-
tions something that is most salient of the target.
Intuitively, the RSA speaker achieves this by rea-
soning not only about what is true but also about
what it’s like to be a listener in this context trying
to identify the target.

This core idea underlies much work in refer-
ring expression generation (Dale and Reiter, 1995;
Monroe and Potts, 2015; Andreas and Klein, 2016;
Monroe et al., 2017) and image captioning (Mao
et al., 2016a; Vedantam et al., 2017), but these
models do not fully confront the fact that the
agents must reason about all possible utterances,
which is intractable. We fully address this prob-
lem by implementing RSA at the level of charac-
ters rather than the level of utterances or words:
the neural language model emits individual char-
acters, choosing them to balance pragmatic infor-
mativeness with overall well-formedness. Thus,
the agents reason not about full utterances, but
rather only about all possible character choices, a
very small space. The result is that the information
encoded recurrently in the neural model allows us
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to obtain global pragmatic effects from local de-
cisions. We show that such character-level RSA
speakers are more effective than literal captioning
systems at the task of helping a reader identify the
target image among close competitors, and outper-
form word-level RSA captioners in both efficiency
and accuracy.

2 Bayesian Pragmatics for Captioning

In applying RSA to image captioning, we think
of captioning as a kind of reference game. The
speaker and listener are in a shared context con-
sisting of a set of images W , the speaker is pri-
vately assigned a target image w⇤ 2 W , and the
speaker’s goal is to produce a caption that will en-
able the listener to identify w⇤. U is the set of
possible utterances. In its simplest form, the lit-
eral speaker is a conditional distribution S0(u|w)
assigning equal probability to all true utterances
u 2 U and 0 to all others. The pragmatic listener
L0 is then defined in terms of this literal agent and
a prior P (w) over possible images:

L0(w|u) / S0(u|w) ⇤ P (w)P
w02W S0(u|w0) ⇤ P (w0)

(1)

The pragmatic speaker S1 is then defined in terms
of this pragmatic listener, with the addition of a ra-
tionality parameter ↵ > 0 governing how much it
takes into account the L0 distribution when choos-
ing utterances. P (u) is here taken to be a uniform
distribution over U :

S1(u|w) / L0(w|u)↵ ⇤ P (u)P
u02U L0(w|u0)↵ ⇤ P (u0)

(2)

As a result of this back-and-forth, the S1 speaker is
reasoning not merely about what is true, but rather
about a listener reasoning about a literal speaker
who reasons about truth.

To illustrate, consider the pair of images 2a and
2b in Figure 2. Suppose that U = {bus, red bus}.
Then the literal speaker S0 is equally likely to
produce bus and red bus when the left image 2a
is the target. However, L0 breaks this symme-
try; because red bus is false of the right bus,
L0(2a|bus) = 1

3 and L0(2b|bus) = 2
3 . The S1

speaker therefore ends up favoring red bus when
trying to convey 2a, so that S1(red bus|2a) = 3

4
and S1(bus|2a) = 1

4 .

Figure 2: Captions for the target image (in green).

3 Applying Bayesian Pragmatics to a
Neural Semantics

To apply the RSA model to image captioning, we
first train a neural model with a CNN-RNN archi-
tecture (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015). The trained model can be considered an
S0-style distribution P (caption|image) on top of
which further listeners and speakers can be built.
(Unlike the idealized S0 described above, a neu-
ral S0 will assign some probability to untrue utter-
ances.)

The main challenge for this application is that
the space of utterances (captions) U will be very
large for any suitable captioning system, making
the calculation of S1 intractable due to its normal-
ization over all utterances. The question, there-
fore, is how best to approximate this inference.
The solution employed by Monroe et al. (2017)
and Andreas and Klein (2016) is to sample a small
subset of probable utterances from the S0, as an
approximate prior upon which exact inference can
be performed. While tractable, this approach has
the shortcoming of only considering a small part
of the true prior, which potentially decreases the
extent to which pragmatic reasoning will be able
to apply. In particular, if a useful caption never
appears in the sampled prior, it cannot appear in
the posterior.

3.1 Step-Wise Inference

Inspired by the success of the “emittor-
suppressor” method of Vedantam et al. (2017),
we propose an incremental version of RSA.
Rather than performing a single inference over
utterances, we perform an inference for each step
of the unrolling of the utterance.

We use a character-level LSTM, which defines
a distribution over characters P (u|pc, image),
where pc (“partial caption”) is a string of char-
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acters constituting the caption so far and u is the
next character of the caption. This is now our S0:
given a partially generated caption and an image, it
returns a distribution over which character should
next be added to the caption. The advantage of
using a character-level LSTM over a word-level
one is that U is much smaller for the former (⇡30
vs. ⇡20, 000), making the ensuing RSA model
much more efficient.

We use this S0 to define an L0 which takes a
partial caption and a new character, and returns a
distribution over images. The S1, in turn, given a
target image w⇤, performs an inference over the
set of possible characters to determine which is
best with respect to the listener choosing w⇤.

At timestep t of the unrolling, the listener L0

takes as its prior over images the L0 posterior from
timestep (t � 1). The idea is that as we proceed
with the unrolling, the L0 priors on which image
is being referred to may change, which in turn
should affect the speaker’s actions. For instance,
the speaker, having made the listener strongly in
favor of the target image, is less compelled to con-
tinue being pragmatic.

3.2 Model Definition

In our incremental RSA, speaker models take both
a target image and a partial caption pc. Thus,
S0 is a neurally trained conditional distribution
St

0(u|w, pct), where t is the current timestep of the
unrolling and u is a character.

We define the Lt
0 in terms of the St

0 as follows,
where ip is a distribution over images representing
the L0 prior:

Lt
0(w|u, ipt, pct) / St

0(u|w, pct) ⇤ ipt(w) (3)

Given an St
0 and Lt

0, we define St
1 and Lt

1 as:

St
1(u|w, ipt, pct) /

St
0(u|w, pct) ⇤ Lt

0(w|u, ipt, pct)
↵ (4)

Lt
1(w|u, ipt, pct) /

Lt
0(w|u, ipt, pct) ⇤ St

0(u|w, pct) (5)

Unrolling To perform greedy unrolling (though
in practice we use a beam search) for either S0

or S1, we initialize the state as a partial caption
pc0 consisting of only the start token and a uni-
form prior over the images ip0. Then, for t > 0,
we use our incremental speaker model S0 or S1 to

generate a distribution over the subsequent charac-
ter St(u|w, ipt, pct), and add the character u with
highest probability density to pct, giving us pct+1.
We then run our listener model L1 on u, to obtain a
distribution ipt+1 = Lt

1(w|u, ipt, pct) over images
that the L0 can use at the next timestep.

This incremental approach keeps the inference
itself very simple, while placing the complexity of
the model in the recurrent nature of the unrolling.2

While our S0 is character-level, the same incre-
mental RSA model works for a word-level S0, giv-
ing rise to a word-level S1. We compare character
and word S1s in section 4.2.

As well as being incremental, these definitions
of St

1 and Lt
1 differ from the typical RSA de-

scribed in section 2 in that St
1 and Lt

1 draw their
priors from St

0 and Lt
0 respectively. This general-

izes the scheme put forward for S1 by Andreas and
Klein (2016). The motivation is to have Bayesian
speakers who are somewhat constrained by the
S0 language model. Without this, other methods
are needed to achieve English-like captions, as in
Vedantam et al. (2017), where their equivalent of
the S1 is combined in a weighted sum with the S0.

4 Evaluation

Qualitatively, Figures 1 and 2 show how the S1

captions are more informative than the S0, as a re-
sult of pragmatic considerations. To demonstrate
the effectiveness of our method quantitatively, we
implement an automatic evaluation.

4.1 Automatic Evaluation

To evaluate the success of S1 as compared to
S0, we define a listener Leval(image|caption) /
PS0(caption|image), where PS0(caption|image) is
the total probability of S0 incrementally generat-
ing caption given image. In other words, Leval

uses Bayes’ rule to obtain from S0 the posterior
probability of each image w given a full caption u.

The neural S0 used in the definition of Leval
must be trained on separate data to the neural S0

used for the S1 model which produces captions,
since otherwise this S1 production model effec-
tively has access to the system evaluating it. As
Mao et al. (2016b) note, “a model might ‘com-

2The move from standard to incremental RSA can be un-
derstood as a switching of the order of two operations; instead
of unrolling a character-level distribution into a sentence level
one and then applying pragmatics, we apply pragmatics and
then unroll. This generalizes to any recursive generation of
utterances.
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municate’ better with itself using its own language
than with others”. In evaluation, we therefore split
the training data in half, with one part for training
the S0 used in the caption generation model S1

and one part for training the S0 used in the caption
evaluation model Leval.

We say that the caption succeeds as a referring
expression if the target has more probability mass
under the distribution Leval(image|caption) than
any distractor.

Dataset We train our production and evaluation
models on separate sets consisting of regions in
the Visual Genome dataset (Krishna et al., 2017)
and full images in MSCOCO (Chen et al., 2015).
Both datasets consist of over 100,000 images of
common objects and scenes. MSCOCO provides
captions for whole images, while Visual Genome
provides captions for regions within images.

Our test sets consist of clusters of 10 images.
For a given cluster, we set each image in it as the
target, in turn. We use two test sets. Test set 1
(TS1) consists of 100 clusters of images, 10 for
each of the 10 most common objects in Visual
Genome.3 Test set 2 (TS2) consists of regions in
Visual Genome images whose ground truth cap-
tions have high word overlap, an indicator that
they are similar. We again select 100 clusters of
10. Both test sets have 1,000 items in total (10
potential target images for each of 100 clusters).

Captioning System Our neural image caption-
ing system is a CNN-RNN architecture4 adapted
to use a character-based LSTM for the language
model.

Hyperparameters We use a beam search with
width 10 to produce captions, and a rationality pa-
rameter of ↵ = 5.0 for the S1.

4.2 Results

As shown in Table 1, the character-level S1 obtains
higher accuracy (68% on TS1 and 65.9% on TS2)
than the S0 (48.9% on TS1 and 47.5% on TS2),
demonstrating that S1 is better than S0 at referring.

Advantage of Incremental RSA We also ob-
serve that 66% percent of the times in which the
S1 caption is referentially successful and the S0

3Namely, man, person, woman, building, sign, table, bus,
window, sky, and tree.

4https://github.com/yunjey/
pytorch-tutorial/tree/master/tutorials/
03-advanced/image_captioning

Model TS1 TS2

Char S0 48.9 47.5
Char S1 68.0 65.9
Word S0 57.6 53.4
Word S1 60.6 57.6

Table 1: Accuracy on both test sets.

caption is not, for a given image, the S1 caption is
not one of the top 50 S0 captions, as generated by
the beam search unrolling at S0. This means that
in these cases the non-incremental RSA method
of Andreas and Klein (2016) could not have gen-
erated the S1 caption, if these top 50 S0 captions
were the support of the prior over utterances.

Comparison to Word-Level RSA We compare
the performance of our character-level model to a
word-level model.5 This model is incremental in
precisely the way defined in section 3.2, but uses a
word-level LSTM so that u 2 U are words and U
is a vocabulary of English. It is evaluated with an
Leval model that also operates on the word level.

Though the word S0 performs better on both test
sets than the character S0, the character S1 outper-
forms the word S1, demonstrating the advantage
of a character-level model for pragmatic behavior.
We conjecture that the superiority of the character-
level model is the result of the increased number
of decisions where pragmatics can be taken into
account, but leave further examination for future
research.

Variants of the Model We further explore the
effect of two design decisions in the character-
level model. First, we consider a variant of S1

which has a prior over utterances determined by
an LSTM language model trained on the full set
of captions. This achieves an accuracy of 67.2%
on TS1. Second, we consider our standard S1 but
with unrolling such that the L0 prior is drawn uni-
formly at each timestep rather than determined by
the L0 posterior at the previous step. This achieves
an accuracy of 67.4% on TS1. This suggests that
neither this change of S1 nor L0 priors has a large
effect on the performance of the model.

5Here, we use greedy unrolling, for reasons of efficiency
due to the size of U for the word-level model, and set ↵ = 1.0
from tuning on validation data. For comparison, we note that
greedy character-level S1 achieves an accuracy of 61.2% on
TS1.
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5 Conclusion

We show that incremental RSA at the level of char-
acters improves the ability of the neural image
captioner to refer to a target image. The incre-
mental approach is key to combining RSA with
language models: as utterances become longer,
it becomes exponentially slower, for a fixed n,
to subsample n% of the utterance distribution
and then perform inference (non-incremental ap-
proach). Furthermore, character-level RSA yields
better results than word-level RSA and is far more
efficient.
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Abstract
Visual reasoning with compositional natu-
ral language instructions, e.g., based on the
newly-released Cornell Natural Language Vi-
sual Reasoning (NLVR) dataset, is a challeng-
ing task, where the model needs to have the
ability to create an accurate mapping between
the diverse phrases and the several objects
placed in complex arrangements in the image.
Further, this mapping needs to be processed to
answer the question in the statement given the
ordering and relationship of the objects across
three similar images. In this paper, we propose
a novel end-to-end neural model for the NLVR
task, where we first use joint bidirectional at-
tention to build a two-way conditioning be-
tween the visual information and the language
phrases. Next, we use an RL-based pointer
network to sort and process the varying num-
ber of unordered objects (so as to match the
order of the statement phrases) in each of the
three images and then pool over the three de-
cisions. Our model achieves strong improve-
ments (of 4-6% absolute) over the state-of-the-
art on both the structured representation and
raw image versions of the dataset.

1 Introduction

Visual Reasoning (Antol et al., 2015; Andreas
et al., 2016; Bisk et al., 2016; Johnson et al., 2017)
requires a sophisticated understanding of the com-
positional language instruction and its relationship
with the corresponding image. Suhr et al. (2017)
recently proposed a challenging new NLVR task
and dataset in this direction with natural and com-
plex language statements that have to be classified
as true or false given a multi-image set (shown in
Fig. 1). Specifically, each task instance consists of
an image with three sub-images and a statement
which describes the image. The model is asked to
answer the question whether the given statement
is consistent with the image or not.

To solve the task, the designed model needs to
fuse the information from two different domains,

There is at least one tower which has blocks of 
 all three colors 

There is a box with a yellow circle, a yellow  
square and two black items. 

At least one of tower with exactly three blocks  
has a blue block in the middle

Answer: True Answer: True

There is a black block attach to a yellow block  
that is attach to a blue block.Answer: False Answer: True

Figure 1: NLVR task: given an image with 3 sub-
images and a statement, the model needs to predict
whether the statement correctly describes the image or
not. We show 4 such examples which our final BiATT-
Pointer model correctly classifies but the strong base-
line models do not (see Sec. 5).

the visual objects and the language, and learn ac-
curate relationships between the two. Another dif-
ficulty is that the objects in the image do not have a
fixed order and the number of objects also varies.
Moreover, each statement reasons for truth over
three sub-images (instead of the usual single im-
age setup), which also breaks most of the exist-
ing models. In our paper, we introduce a novel
end-to-end model to address these three problems,
leading to strong gains over the previous best
model. Our pointer network based LSTM-RNN
sorts and learns recurrent representations of the
objects in each sub-image, so as to match it bet-
ter with the order of the phrases in the language
statement. For this, it employs an RL-based pol-
icy gradient method with a reward extracted from
the subsequent comprehension model. With these
strong representations of the visual objects and the
statement units, a joint-bidirectional attention flow
model builds consistent, two-way matchings be-
tween the representations in different domains. Fi-
nally, since the scores computed by the bidirec-
tional attention are about the three sub-images,
a pooling combination layer over the three sub-
image representations is required to give the final
score of the whole image.

On the structured-object-representation version
of the dataset, our pointer-based, end-to-end bidi-
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rectional attention model achieves an accuracy of
73.9%, outperforming the previous (end-to-end)
state-of-the-art method by 6.2% absolute, where
both the pointer network and the bidirectional at-
tention modules contribute significantly. We also
contribute several other strong baselines for this
new NLVR task based on Relation Networks (San-
toro et al., 2017) and BiDAF (Seo et al., 2016).
Furthermore, we also show the result of our joint
bidirectional attention model on the raw-image
version (with pixel-level, spatial-filter CNNs) of
the NLVR dataset, where our model achieves an
accuracy of 69.7% and outperforms the previous
best result by 3.6%. On the unreleased leader-
board test set, our model achieves an accuracy of
71.8% and 66.1% on the structured and raw-image
versions, respectively, leading to 4% absolute im-
provements on both tasks.

2 Related work
Besides the NLVR corpus with a focus on com-
plex and natural compositional language (Suhr
et al., 2017), other useful visual reasoning datasets
have been proposed for navigation and assem-
bly tasks (MacMahon et al., 2006; Bisk et al.,
2016), as well as for visual Q&A tasks which fo-
cus more on complex real-world images (Antol
et al., 2015; Johnson et al., 2017). Specifically
for the NLVR dataset, previous models have in-
corporated property- and count-based features of
the objects and the language (Suhr et al., 2017),
or extra semantic parsing (logical form) annota-
tions (Goldman et al., 2017) – we focus on end-to-
end models for this visual reasoning task.

Attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015; Xu et al., 2015) has been
widely used for conditioned language generation
tasks. It is further used to learn alignments be-
tween different modalities (Lu et al., 2016; Wang
and Jiang, 2016; Seo et al., 2016; Andreas et al.,
2016; Chaplot et al., 2017). In our work, a bidirec-
tional attention mechanism is used to learn a joint
representation of the visual objects and the words
by building matchings between them.

Pointer network (Vinyals et al., 2015) was in-
troduced to learn the conditional probability of an
output sequence. Bello et al. (2016) extended this
to near-optimal combinatorial optimization via re-
inforcement learning. In our work, a policy gra-
dient based pointer network is used to “sort” the
objects conditioned on the statement, such that the
sequence of ordered objects is sent to the subse-

quent comprehension model for a reward.

3 Model

The training datum for this task consists of the
statement s, the structured-representation objects
o in the image I , and the ground truth label y
(which is 1 for true and 0 for false). Our BiATT-
Pointer model (shown in Fig. 2) for the structured-
representation task uses the pointer network to sort
the object sequence (optimized by policy gradi-
ent), and then uses the comprehension model to
calculate the probability P (s, o) of the statement
s being consistent with the image. Our CNN-
BiATT model for the raw-image I dataset version
is similar but learns the structure directly via pixel-
level, spatial-filter CNNs – details in Sec. 5 and
the appendix. In the remainder of this section,
we first describe our BiATT comprehension model
and then the pointer network.

3.1 Comprehension Model with Joint
Bidirectional Attention

We use one bidirectional LSTM-RNN (Hochre-
iter and Schmidhuber, 1997) (denoted by LANG-
LSTM) to read the statement s = w1, w2, . . . , wT,
and output the hidden state representations {hi}.
A word embedding layer is added before the
LSTM to project the words to high-dimension vec-
tors {w̃i}.
h1,h2, . . . , hT = LSTM (w̃1, w̃2, . . . , w̃T) (1)

The raw features of the objects in the j-th sub-
image are {ojk} (since the NLVR dataset has 3 sub-
images per task). A fully-connected (FC) layer
without nonlinearity projects the raw features to
object embeddings {ejk}. We then go through all
the objects in random order (or some learnable or-
der, e.g., via our pointer network, see Sec. 3.2)
by another bidirectional LSTM-RNN (denoted by
OBJ-LSTM), whose output is a sequence of vec-
tors {gjk}which is used as the (left plus right mem-
ory) representation of the objects (the objects in
different sub-images are handled separately):

ejk = W ojk + b (2)

gj1, g
j
2, . . . , g

j
Nj

= LSTM (ej1, e
j
2, . . . , e

j
Nj

) (3)

where Nj is the number of the objects in jth sub-
image. Now, we have two vector sequences for
the representations of the words and the objects,
using which the bidirectional attention then calcu-
lates the score measuring the correspondence be-
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Figure 2: Our BiATT-Pointer model with a pointer network and a joint bidirectional attention module.

tween the statement and the image’s object struc-
ture. To simplify the notation, we will ignore the
sub-image index j. We first merge the LANG-
LSTM hidden outputs {hi} and the object-aware
context vectors {ci} together to get the joint rep-
resentation {ĥi}. The object-aware context vector
ci for a particular word wi is calculated based on
the bilinear attention between the word representa-
tion hi and the representations of the objects {gk}:

αi,k = softmaxk (hᵀi B1 gk) (4)

ci =
∑

k

αi,k · gk (5)

ĥi = relu (WLANG [hi; ci; hi−ci; hi◦ci]) (6)

where the symbol ◦ denotes element-wise multi-
plication.

Improvement over BiDAF The BiDAF model
of Seo et al. (2016) does not use a full object-
to-words attention mechanism. The query-to-
document attention module in BiDAF added the
attended-context vector to the document represen-
tation instead of the query representation. How-
ever, the inverse attention from the objects to the
words is important in our task because the repre-
sentation of the object depends on its correspond-
ing words. Therefore, different from the BiDAF
model, we create an additional ‘symmetric’ atten-
tion to merge the OBJ-LSTM hidden outputs {gk}
and the statement-aware context vectors {dk} to-
gether to get the joint representation {ĝk}. The
improvement (6.1%) of our BiATT model over the
BiDAF model is shown in Table 1.

βk,i = softmaxi
(
gᵀk B2 hi

)
(7)

dk =
∑

i

βk,i · hi (8)

ĝk = relu (WOBJ [gk; dk; gk−dk; gk◦dk]) (9)

These above vectors {ĥi} and {ĝk} are the rep-
resentations of the words and the objects which

are aware of each other bidirectionally. To make
the final decision, two additional bidirectional
LSTM-RNNs are used to further process the above
attention-based representations via an additional
memory-based layer. Lastly, two max pooling
layers over the hidden output states create two
single-vector outputs for the statement and the
sub-image, respectively:

h̄1, h̄2, . . . , h̄T = LSTM(ĥ1, ĥ2, . . . , ĥT) (10)

ḡ1, ḡ2, . . . , ḡN = LSTM(ĝ1, ĝ2, . . . , ĝN) (11)

h̄ = ele max
i

{
h̄i
}

(12)

ḡ = ele max
k
{ḡk} (13)

where the operator ele max denotes the element-
wise maximum over the vectors. The final scalar
score for the sub-image is given by a 2-layer MLP
over the concatenation of h̄ and ḡ as follows:

score = W2 tanh
(
W1[h̄; ḡ] + b1

)
(14)

Max-Pooling over Sub-Images In order to ad-
dress the 3 sub-images present in each NLVR
task, a max-pooling layer is used to combine the
above-defined scores of the sub-images. Given
that the sub-images do not have any specific order-
ing among them (based on the data collection pro-
cedure (Suhr et al., 2017)), a pooling layer is suit-
able because it is permutation invariant. Moreover,
many of the statements are about the existence of
a special object or relationship in one sub-image
(see Fig. 1) and hence the max-pooling layer ef-
fectively captures the meaning of these statements.
We also tried other combination methods (mean-
pooling, concatenation, LSTM, early pooling on
the features/vectors, etc.); the max pooling (on
scores) approach was the simplest and most effec-
tive method among these (based on the dev set).

The overall probability that the statement cor-
rectly describes the full image (with three sub-
images) is the sigmoid of the final max-pooled
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score. The loss of the comprehension model is the
negative log probability (i.e., the cross entropy):

P (s, o) =σ

(
max
j

scorej
)

(15)

L(s, o, y) =− y logP (s, o)

− (1− y) log(1− P (s, o)) (16)

where y is the ground truth label.

3.2 Pointer Network
Instead of randomly ordering the objects, humans
look at the objects in an appropriate order w.r.t.
their reading of the given statement and after the
first glance of the image. Following this idea,
we use an additional pointer network (Vinyals
et al., 2015) to find the best object ordering for the
subsequent language comprehension model. The
pointer network contains two RNNs, the encoder
and the decoder. The encoder reads all the objects
in a random order. The decoder then learns a per-
mutation π of the objects’ indices, by recurrently
outputting a distribution over the objects based on
the attention over the encoder hidden outputs. At
each time step, an object is sampled without re-
placement following this distribution. Thus, the
pointer network models a distribution p(π | s, o)
over all the permutations:

p(π | s, o) =
∏

i

p (π(i) | π(< i), s, o) (17)

Furthermore, the appropriate order of the objects
depends on the language statement, and hence the
decoder importantly attends to the hidden outputs
of the LANG-LSTM (see Eqn. 1).

The pointer network is trained via reinforce-
ment learning (RL) based policy gradient opti-
mization. The RL loss LRL(s, o, y) is defined
as the expected comprehension loss (expectation
over the distribution of permutations):

LRL(s, o, y) = Eπ∼p(·|s,o)L(s, o[π], y) (18)

where o[π] denotes the permuted input objects for
permutation π, and L is the loss function defined
in Eqn. 16. Suppose that we sampled a permu-
tation π∗ from the distribution p(π|s, o); then the
above RL loss could be optimized via policy gra-
dient methods (Williams, 1992). The reward R is
the negative loss of the subsequent comprehension
model L(s, o[π∗], y). A baseline b is subtracted
from the reward to reduce the variance (we use the

self-critical baseline of Rennie et al. (2016)). The
gradient of the loss LRL could then be approxi-
mated as:

R =− L(s, o[π∗], y) (19)

∇θLRL(s, o, y) ≈ − (R− b)∇θ log p(π∗ | s, o)
+∇θL(s, o[π∗], y) (20)

This overall BiATT-Pointer model (for the
structured-representation task) is shown in Fig. 2.

4 Experimental Setup

We evaluate our model on the NLVR dataset (Suhr
et al., 2017), for both the structured and raw-image
versions. All model tuning was performed on the
dev set. Given the fact that the dataset is balanced
(the number of true labels and false labels are
roughly the same), the accuracy of the whole cor-
pus is used as the metric. We only use the raw fea-
tures of the statement and the objects with mini-
mal standard preprocessing (e.g., tokenization and
UNK replacement; see appendix for reproducibil-
ity training details).

5 Results and Analysis

Results on Structured Representations Dataset:
Table 1 shows our primary model results. In terms
of previous work, the state-of-the-art result for
end-to-end models is ‘MAXENT’, shown in Suhr
et al. (2017).1 Our proposed BiATT-Pointer model
(Fig. 2) achieves a 6.2% improvement on the pub-
lic test set and a 4.0% improvement on the unre-
leased test set over this SotA model. To show the
individual effectiveness of our BiATT and Pointer
components, we also provide two ablation results:
(1) the bidirectional attention BiATT model with-
out the pointer network; and (2) our BiENC base-
line model without any attention or the pointer
mechanisms. The BiENC model uses the similar-
ity between the last hidden outputs of the LANG-
LSTM and the OBJ-LSTM as the score (Eqn. 14).

Finally, we also reproduce some recent popu-
lar frameworks, i.e., Relationship Network (San-
toro et al., 2017) and BiDAF model (Seo et al.,
2016), which have been proven to be successful in
other machine comprehension and visual reason-
ing tasks. The results of these models are weaker
than our proposed model. Reimplementation de-
tails are shown in the appendix.

1There is also recent work by Goldman et al. (2017), who
use extra, manually-labeled semantic parsing data to achieve
a released/unreleased test accuracy of 80.4%/83.5%, resp.
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Model Dev Test-P Test-U
STRUCTURED REPRESENTATIONS DATASET

MAXENT (Suhr et al., 2017) 68.0% 67.7% 67.8%
MLP (Suhr et al., 2017) 67.5% 66.3% 65.3%
ImageFeat+RNN (Suhr et al., 2017) 57.7% 57.6% 56.3%
RelationNet (Santoro et al., 2017) 65.1% 62.7% -
BiDAF (Seo et al., 2016) 66.5% 68.4% -
BiENC Model 65.1% 63.4% -
BiATT Model 72.6% 72.3% -
BiATT-Pointer Model 74.6% 73.9% 71.8%

RAW IMAGE DATASET
CNN+RNN (Suhr et al., 2017) 56.6% 58.0% 56.3%
NMN (Suhr et al., 2017) 63.1% 66.1% 62.0%
CNN-BiENC Model 58.7% 58.7% -
CNN-BiATT Model 66.9% 69.7% 66.1%

Table 1: Dev, Test-P (public), and Test-U (unreleased) results of our model on the structured-representation and
raw-image datasets, compared to the previous SotA results and other reimplemented baselines.

The top of the three towers  
are not the same. Correct Answer: True There are 2 boxes with  

at least 2 blue items. Correct Answer: True

There is a blue object  
touching the base. Correct Answer: FalseThere are at least three yellow objects  

touching any edge. Correct Answer: True

Negative Examples

Figure 3: Incorrectly-classified examples.

Results on Raw Images Dataset: To further show
the effectiveness of our BiATT model, we apply
this model to the raw image version of the NLVR
dataset, with minimal modification. We simply
replace each object-related LSTM with a visual
feature CNN that directly learns the structure via
pixel-level, spatial filters (instead of a pointer net-
work which addresses an unordered sequence of
structured object representations). As shown in
Table 1, this CNN-BiATT model outperforms the
neural module networks (NMN) (Andreas et al.,
2016) previous-best result by 3.6% on the public
test set and 4.1% on the unreleased test set. More
details and the model figure are in the appendix.
Output Example Analysis: Finally, in Fig. 1,
we show some output examples which were suc-
cessfully solved by our BiATT-Pointer model but
failed in our strong baselines. The left two ex-
amples in Fig. 1 could not be handled by the Bi-
ENC model. The right two examples are incorrect
for the BiATT model without the ordering-based
pointer network. Our model can quite successfully
understand the complex meanings of the attributes
and their relationships with the diverse objects, as
well as count the occurrence of and reason over
objects without any specialized features.

Next, in Fig. 3, we also show some negative ex-
amples on which our model fails to predict the cor-
rect answer. The top two examples involve com-

plex high-level phrases e.g., “touching any edge”
or “touching the base”, which are hard for an end-
to-end model to capture, given that such state-
ments are rare in the training data. Based on the re-
sult of the validation set, the max-pooling layer is
selected as the combination method in our model.
The max-pooling layer will choose the highest
score from the sub-images as the final score. Thus,
the layer could easily handle statements about
single-subimage-existence based reasoning (e.g.,
the 4 positively-classified examples in Fig. 1).
However, the bottom two negatively-classified ex-
amples in Fig. 3 could not be resolved because
of the limitation of the max-pooling layer on sce-
narios that consider multiple-subimage-existence.
We did try multiple other pooling and combination
methods, as mentioned in Sec. 3.1. Among these
methods, the concatenation, early pooling and
LSTM-fusion approaches might have the ability
to solve these particular bottom-two failed state-
ments. In our future work, we are addressing mul-
tiple types of pooling methods jointly.

6 Conclusion
We presented a novel end-to-end model with joint
bidirectional attention and object-ordering pointer
networks for visual reasoning. We evaluate our
model on both the structured-representation and
raw-image versions of the NLVR dataset and
achieve substantial improvements over the previ-
ous end-to-end state-of-the-art results.
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A Supplementary Material

A.1 CNN-BiATT Model Details
As shown in Fig. 4, we apply our BiATT model
to the raw image dataset with minimal modifica-
tion. The visual input of the model for this task
is changed from the unordered structured repre-
sentation set of objects o to the raw image pix-
els I . Hence, we replace all object-related LSTMs
(e.g., the OBJ-LSTM and the LSTM-RNN in the
bidirectional attention in Fig. 2) with visual fea-
ture convolutional neural networks (CNNs) that
directly learn the structure via pixel-level, spa-
tial filters (instead of a pointer network which ad-
dresses an unordered sequence of structured object
representations).
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Figure 4: Our CNN-BiATT model for the raw-image dataset version replaces every object-related LSTM-RNN
with a spatial-filter convolutional neural network (CNN). The CNN for the raw image-pixels is a pretrained ResNet-
v2-101. A 3-layers CNN with relu activation is used in the bidirectional attention.

The training datum for the NLVR raw-image
version consists of the statement s, the image I
and the ground truth label y. The image I con-
tains three sub-images x1, x2 and x3. We will
use x to indicate any sub-image. The superscript
which indicates the index of the sub-image is ig-
nored to simplify the notation. The representation
of the statement {hi} is calculated by the LANG-
LSTM as before. For the image representation, we
project the sub-image to a sequence of feature vec-
tors (i.e., the feature map) {al : l = 1, . . . , L} cor-
responding to the different image locations. L =
m × m is the size of the features and m is the
width and height of the feature map. The projec-
tion consists of ResNet-V2-101 (He et al., 2016)
and a following fully-connected (FC) layer. We
only use the blocks in the ResNet before the aver-
age pooling layer and the output of the ResNet is
a feature map of size m×m×2048.

f1, . . . , fL = ResNet(x) (21)

al = relu(Wx fl + bx) (22)

The joint-representation of the statement {ĥi} is
the combination of the LANG-LSTM hidden out-
put states {hi} and the image-aware context vec-
tors {ci}:

αi,l = softmaxl (h
ᵀ
i B1 al) (23)

ci =
∑

l

αi,l · al (24)

ĥi = relu (WLANG [hi; ci; hi−ci; hi◦ci]) (25)

The joint-representation of the image {âl} is cal-

culated in the same way:

βl,i = softmaxi
(
aᵀl B2 hi

)
(26)

dl =
∑

i

βl,i · hi (27)

âl = relu (WIMG [al; dl; al−dl; al◦dl]) (28)

The joint-representation of the statement is further
processed by a LSTM-RNN. Different from our
BiATT model, a 3-layers CNN is used for model-
ing the joint-representation of the image {âl}. The
output of the CNN layer is another feature map
{āl}. Each CNN layer has kernel size 3 × 3 and
uses relu as the activation function, and then we
finally use element-wise max operator similar to
Sec. 3.1:

h̄1, h̄2, . . . , h̄T = LSTM(ĥ1, ĥ2, . . . , ĥT) (29)

ā1, ā2, . . . , āL’ = CNN(â1, â2, . . . , âL) (30)

h̄ = ele max
i

{
h̄i
}

(31)

ā = ele max
l
{āl} (32)

At last, we use the same method as our BiATT
model to calculate the score and the loss function:

score(s, x) =W2 tanh
(
W1[h̄; ā] + b1

)
(33)

P (s, I) =σ

(
max
j

score(s, xj)

)
(34)

L(s, I, y) =− y logP (s, I)

− (1− y) log(1− P (s, I)) (35)

A.2 Reimplementation Details for
Relationship Network and BiDAF
Models

We reimplement a Relationship Network (San-
toro et al., 2017), using a three-layer MLP with
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256 units per layer in the G-net and a three-layer
MLP consisting of 256, 256 (with 0.3 dropout),
and 1 units with ReLU nonlinearities for F-net.
We also reimplement a BiDAF model (Seo et al.,
2016) using 128-dimensional word embedding,
256-dimensional LSTM-RNN and 0.3 dropout
rate. A max pooling layer on top of the model-
ing layer of BiDAF is used to merge the hidden
outputs to a single vector.

A.3 Experimental Setup and Training Details
for Our BiATT-Pointer, BiENC, and
CNN-BiATT Models

A.3.1 BiATT-Pointer

For preprocessing, we replace the words whose
occurrence is less than 3 with the “UNK” token.
We create a 9 dimension vector as the feature of
each object. This feature contains the location
(x, y) in 2D coordinate, the size of the object and
two 3-dimensional hot vectors for the shape and
the color. The (x, y) coordinates are normalized
to the range [−1, 1].

For the model hyperparameters (all lightly
tuned on dev set), the dimension of the word
embedding is 128, and the number of units in
an LSTM cell is 256. The word embedding is
trained from scratch. The object feature is pro-
jected to a 64-dimensional vector. The dimensions
of joint representation ĥi and ĝk are both 512. The
first fully-connected layer in calculating the sub-
images score has 512 units. All the trainable vari-
ables are initialized with the Xavier initializer. To
regularize the training process, we add a dropout
rate 0.3 to the hidden output of the LSTM-RNNs
and before the last MLP layer which calculates the
score for sub-images. We also clip the gradients by
their norm to avoid gradient exploding. The losses
are optimized by a single Adam optimizer and the
learning rate is fixed at 1e-4.

For the pointer network, we sample the objects
following the distribution of the objects at each de-
coder step during training. In inference, we select
the object with maximum probability. We use the
self-critical baseline (Rennie et al., 2016) to sta-
bilize the RL training, where the final score in in-
ference (choosing object with maximum probabil-
ity) is subtracted from the reward. To reduce the
number of parameters, we share the weight of the
fully-connected layer which projects the raw ob-
ject feature to the high dimensional vector in the
pointer encoder, the pointer decoder, and the OBJ-

LSTM. The pointer decoder attends to the hidden
outputs of the LANG-LSTM using bilinear atten-
tion (Luong et al., 2015).

A.3.2 CNN-BiATT
We initialize our model with weights of the pub-
lic pretrained ResNet-V2-101 (based on the Ima-
geNet dataset) and freeze it during training. The
ResNet projects the sub-image to a feature map of
10× 10 × 2048. The feature map is normalized
to a mean of 0 and a standard deviation of 1 be-
fore feeding into the FC layer. The fully connected
layer after the ResNet has 512 units. Each layer of
the 3-layers CNN in the bidirectional attention has
kernel size 3× 3 with 512 filters and no padding.

A.3.3 BiENC
The BiENC model uses LANG-LSTM and OBJ-
LSTM to read the statement and the objects. A
bilinear form calculates the similarity between the
last hidden outputs of the two LSTM-RNNs. The
similarity is directly used as the score of the sub-
image. The CNN-BiENC model replaces the OBJ-
LSTM with a CNN.
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Abstract

We propose a novel data augmentation for
labeled sentences called contextual augmen-
tation. We assume an invariance that sen-
tences are natural even if the words in the
sentences are replaced with other words with
paradigmatic relations. We stochastically re-
place words with other words that are pre-
dicted by a bi-directional language model at
the word positions. Words predicted accord-
ing to a context are numerous but appropri-
ate for the augmentation of the original words.
Furthermore, we retrofit a language model
with a label-conditional architecture, which al-
lows the model to augment sentences without
breaking the label-compatibility. Through the
experiments for six various different text clas-
sification tasks, we demonstrate that the pro-
posed method improves classifiers based on
the convolutional or recurrent neural networks.

1 Introduction

Neural network-based models for NLP have been
growing with state-of-the-art results in various
tasks, e.g., dependency parsing (Dyer et al., 2015),
text classification (Socher et al., 2013; Kim, 2014),
machine translation (Sutskever et al., 2014). How-
ever, machine learning models often overfit the
training data by losing their generalization. Gener-
alization performance highly depends on the size
and quality of the training data and regulariza-
tions. Preparing a large annotated dataset is very
time-consuming. Instead, automatic data augmen-
tation is popular, particularly in the areas of vi-
sion (Simard et al., 1998; Krizhevsky et al., 2012;
Szegedy et al., 2015) and speech (Jaitly and Hin-
ton, 2015; Ko et al., 2015). Data augmentation is
basically performed based on human knowledge
on invariances, rules, or heuristics, e.g., “even if a
picture is flipped, the class of an object should be
unchanged”.

arethe fantasticactors

positive

performances

films

movies

stories

…

the performances are fantastic

the films are fantastic

the movies are fantastic

the stories are fantastic

…

positive

the actors are fantastic positive

Figure 1: Contextual augmentation with a bi-
directional RNN language model, when a sentence
“the actors are fantastic” is augmented by replacing
only actors with words predicted based on the context.

However, usage of data augmentation for NLP
has been limited. In natural languages, it is very
difficult to obtain universal rules for transforma-
tions which assure the quality of the produced data
and are easy to apply automatically in various do-
mains. A common approach for such a transfor-
mation is to replace words with their synonyms se-
lected from a handcrafted ontology such as Word-
Net (Miller, 1995; Zhang et al., 2015) or word sim-
ilarity calculation (Wang and Yang, 2015). Be-
cause words having exactly or nearly the same
meanings are very few, synonym-based augmen-
tation can be applied to only a small percentage
of the vocabulary. Other augmentation methods
are known but are often developed for specific do-
mains with handcrafted rules or pipelines, with the
loss of generality.

In this paper, we propose a novel data aug-
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mentation method called contextual augmenta-
tion. Our method offers a wider range of sub-
stitute words by using words predicted by a bi-
directional language model (LM) according to the
context, as shown in Figure 1. This contextual pre-
diction suggests various words that have paradig-
matic relations (Saussure and Riedlinger, 1916)
with the original words. Such words can also be
good substitutes for augmentation. Furthermore,
to prevent word replacement that is incompatible
with the annotated labels of the original sentences,
we retrofit the LM with a label-conditional archi-
tecture. Through the experiment, we demonstrate
that the proposed conditional LM produces good
words for augmentation, and contextual augmen-
tation improves classifiers using recurrent or con-
volutional neural networks (RNN or CNN) in var-
ious classification tasks.

2 Proposed Method

For performing data augmentation by replac-
ing words in a text with other words, prior
works (Zhang et al., 2015; Wang and Yang, 2015)
used synonyms as substitute words for the origi-
nal words. However, synonyms are very limited
and the synonym-based augmentation cannot pro-
duce numerous different patterns from the origi-
nal texts. We propose contextual augmentation, a
novel method to augment words with more varied
words. Instead of the synonyms, we use words that
are predicted by a LM given the context surround-
ing the original words to be augmented, as shown
in Figure 1.

2.1 Motivation

First, we explain the motivation of our pro-
posed method by referring to an example with a
sentence from the Stanford Sentiment Treebank
(SST) (Socher et al., 2013), which is a dataset of
sentiment-labeled movie reviews. The sentence,
“the actors are fantastic.”, is annotated with a pos-
itive label. When augmentation is performed for
the word (position) “actors”, how widely can we
augment it? According to the prior works, we can
use words from a synset for the word actor ob-
tained from WordNet (histrion, player, thespian,
and role player). The synset contains words that
have meanings similar to the word actor on aver-
age.1 However, for data augmentation, the word

1 Actually, the word actor has another synset containing
other words such as doer and worker. Thus, this synonym-

actors can be further replaced with non-synonym
words such as characters, movies, stories, and
songs or various other nouns, while retaining the
positive sentiment and naturalness. Considering
the generalization, training with maximum pat-
terns will boost the model performance more.

We propose using numerous words that have the
paradigmatic relations with the original words. A
LM has the desirable property to assign high prob-
abilities to such words, even if the words them-
selves are not similar to the original word to be
replaced.

2.2 Word Prediction based on Context

For our proposed method, we requires a LM for
calculating the word probability at a position i
based on its context. The context is a sequence of
words surrounding an original word wi in a sen-
tence S, i.e., cloze sentence S\{wi}. The calcu-
lated probability is p(·|S\{wi}). Specifically, we
use a bi-directional LSTM-RNN (Hochreiter and
Schmidhuber, 1997) LM. For prediction at posi-
tion i, the model encodes the surrounding words
individually rightward and leftward (see Figure 1).
As well as typical uni-directional RNN LMs, the
outputs from adjacent positions are used for cal-
culating the probability at target position i. The
outputs from both the directions are concatenated
and fed into the following feed-forward neural net-
work, which produces words with a probability
distribution over the vocabulary.

In contextual augmentation, new substitutes for
word wi can be smoothly sampled from a given
probability distribution, p(·|S\{wi}), while prior
works selected top-K words conclusively. In this
study, we sample words for augmentation at each
update during the training of a model. To control
the strength of augmentation, we introduce tem-
perature parameter τ and use an annealed distri-
bution pτ (·|S\{wi}) ∝ p(·|S\{wi})1/τ . If the
temperature becomes infinity (τ →∞), the words
are sampled from a uniform distribution. 2 If it
becomes zero (τ → 0), the augmentation words
are always words predicted with the highest prob-
ability. The sampled words can be obtained at one
time at each word position in the sentences. We re-
place each word simultaneously with a probability

based approach further requires word sense disambiguation
or some rules for selecting ideal synsets.

2 Bengio et al. (2015) reported that stochastic replace-
ments with uniformly sampled words improved a neural
encoder-decoder model for image captioning.
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as well as Wang and Yang (2015) for efficiency.

2.3 Conditional Constraint
Finally, we introduce a novel approach to address
the issue that context-aware augmentation is not
always compatible with annotated labels. For un-
derstanding the issue, again, consider the exam-
ple, “the actors are fantastic.”, which is annotated
with a positive label. If contextual augmentation,
as described so far, is simply performed for the
word (position of) fantastic, a LM often assigns
high probabilities to words such as bad or terrible
as well as good or entertaining, although they are
mutually contradictory to the annotated labels of
positive or negative. Thus, such a simple augmen-
tation can possibly generate sentences that are im-
plausible with respect to their original labels and
harmful for model training.

To address this issue, we introduce a condi-
tional constraint that controls the replacement of
words to prevent the generated words from revers-
ing the information related to the labels of the sen-
tences. We alter a LM to a label-conditional LM,
i.e., for position i in sentence S with label y, we
aim to calculate pτ (·|y, S\{wi}) instead of the de-
fault pτ (·|S\{wi}) within the model. Specifically,
we concatenate each embedded label y with a hid-
den layer of the feed-forward network in the bi-
directional LM, so that the output is calculated
from a mixture of information from both the label
and context.

3 Experiment

3.1 Settings
We tested combinations of three augmentation
methods for two types of neural models through
six text classification tasks. The corresponding
code is implemented by Chainer (Tokui et al.,
2015) and available 3.

The benchmark datasets used are as follows:
(1, 2) SST is a dataset for sentiment classifica-
tion on movie reviews, which were annotated with
five or two labels (SST5, SST2) (Socher et al.,
2013). (3) Subjectivity dataset (Subj) was anno-
tated with whether a sentence was subjective or
objective (Pang and Lee, 2004). (4) MPQA is an
opinion polarity detection dataset of short phrases
rather than sentences (Wiebe et al., 2005). (5) RT
is another movie review sentiment dataset (Pang

3https://github.com/pfnet-research/
contextual_augmentation

and Lee, 2005). (6) TREC is a dataset for clas-
sification of the six question types (e.g., person,
location) (Li and Roth, 2002). For a dataset with-
out development data, we use 10% of its training
set for the validation set as well as Kim (2014).

We tested classifiers using the LSTM-RNN or
CNN, and both have exhibited good performances.
We used typical architectures of classifiers based
on the LSTM or CNN with dropout using hyperpa-
rameters found in preliminary experiments. 4 The
reported accuracies of the models were averaged
over eight models trained from different seeds.

The tested augmentation methods are: (1)
synonym-based augmentation, and (2, 3) con-
textual augmentation with or without a label-
conditional architecture. The hyperparameters of
the augmentation (temperature τ and probability
of word replacement) were also selected by a grid-
search using validation set, while retaining the
hyperparameters of the models. For contextual
augmentation, we first pretrained a bi-directional
LSTM LM without the label-conditional architec-
ture, on WikiText-103 corpus (Merity et al., 2017)
from a subset of English Wikipedia articles. After
the pretraining, the models are further trained on
each labeled dataset with newly introduced label-
conditional architectures.

3.2 Results

Table 1 lists the accuracies of the models with or
without augmentation. The results show that our
contextual augmentation improves the model per-
formances for various datasets from different do-
mains more significantly than the prior synonym-
based augmentation does. Furthermore, our label-
conditional architecture boosted the performances
on average and achieved the best accuracies. Our
methods are effective even for datasets with more
than two types of labels, SST5 and TREC.

4 An RNN-based classifier has a single layer LSTM and
word embeddings, whose output is fed into an output affine
layer with the softmax function. A CNN-based classifier
has convolutional filters of size {3, 4, 5} and word embed-
dings (Kim, 2014). The concatenated output of all the fil-
ters are applied with a max-pooling over time and fed into
a two-layer feed-forward network with ReLU, followed by
the softmax function. For both the architectures, training was
performed by Adam and finished by early stopping with val-
idation at each epoch.

The hyperparameters of the models and training were se-
lected by a grid-search using baseline models without data
augmentation in each task’s validation set individually. We
used the best settings from the combinations by changing the
learning rate, unit or filter size, embedding dimension, and
dropout ratio.
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Models STT5 STT2 Subj MPQA RT TREC Avg.
CNN 41.3 79.5 92.4 86.1 75.9 90.0 77.53
w/ synonym 40.7 80.0 92.4 86.3 76.0 89.6 77.50
w/ context 41.9 80.9 92.7 86.7 75.9 90.0 78.02

+ label 42.1 80.8 93.0 86.7 76.1 90.5 78.20
RNN 40.2 80.3 92.4 86.0 76.7 89.0 77.43
w/ synonym 40.5 80.2 92.8 86.4 76.6 87.9 77.40
w/ context 40.9 79.3 92.8 86.4 77.0 89.3 77.62

+ label 41.1 80.1 92.8 86.4 77.4 89.2 77.83

Table 1: Accuracies of the models for various bench-
marks. The accuracies are averaged over eight models
trained from different seeds.

For investigating our label-conditional bi-
directional LM, we show in Figure 2 the top-10
word predictions by the model for a sentence from
the SST dataset. Each word in the sentence is fre-
quently replaced with various words that are not
always synonyms. We present two types of pre-
dictions depending on the label fed into the con-
ditional LM. With a positive label, the word “fan-
tastic” is frequently replaced with funny, honest,
good, and entertaining, which are also positive ex-
pressions. In contrast, with a negative label, the
word “fantastic” is frequently replaced with tired,
forgettable, bad, and dull, which reflect a negative
sentiment. At another position, the word “the” can
be replaced with “no” (with the seventh highest
probability), so that the whole sentence becomes
“no actors are fantastic.”, which seems negative as
a whole. Aside from such inversions caused by
labels, the parts unrelated to the labels (e.g., “ac-
tors”) are not very different in the positive or neg-
ative predictions. These results also demonstrated
that conditional architectures are effective.

4 Related Work

Some works tried text data augmentation by us-
ing synonym lists (Zhang et al., 2015; Wang and
Yang, 2015), grammar induction (Jia and Liang,
2016), task-specific heuristic rules (Fürstenau
and Lapata, 2009; Kafle et al., 2017; Silfver-
berg et al., 2017), or neural decoders of au-
toencoders (Bergmanis et al., 2017; Xu et al.,
2017; Hu et al., 2017) or encoder-decoder mod-
els (Kim and Rush, 2016; Sennrich et al., 2016;
Xia et al., 2017). The works most similar to our
research are Kolomiyets et al. (2011) and Fadaee
et al. (2017). In a task of time expression recog-
nition, Kolomiyets et al. replaced only the head-
words under a task-specific assumption that tem-
poral trigger words usually occur as headwords.
They selected substitute words with top-K scores
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Figure 2: Words predicted with the ten highest prob-
abilities by the conditional bi-directional LM applied
to the sentence “the actors are fantastic”. The squares
above the sentence list the words predicted with a pos-
itive label. The squares below list the words predicted
with a negative label.

given by the Latent Words LM (Deschacht and
Moens, 2009), which is a LM based on fixed-
length contexts. Fadaee et al. (2017), focusing
on the rare word problem in machine transla-
tion, replaced words in a source sentence with
only rare words, which both of rightward and left-
ward LSTM LMs independently predict with top-
K confidences. A word in the translated sentence
is also replaced using a word alignment method
and a rightward LM. These two works share the
idea of the usage of language models with our
method. We used a bi-directional LSTM LM
which captures variable-length contexts with con-
sidering both the directions jointly. More impor-
tantly, we proposed a label-conditional architec-
ture and demonstrated its effect both qualitatively
and quantitatively. Our method is independent
of any task-specific knowledge, and effective for
classification tasks in various domains.

We use a label-conditional fill-in-the-blank con-
text for data augmentation. Neural models us-
ing the fill-in-the-blank context have been invested
in other applications. Kobayashi et al. (2016,
2017) proposed to extract and organize informa-
tion about each entity in a discourse using the con-
text. Fedus et al. (2018) proposed GAN (Goodfel-
low et al., 2014) for text generation and demon-
strated that the mode collapse and training insta-

455



bility can be relieved by in-filling-task training.

5 Conclusion

We proposed a novel data augmentation using nu-
merous words given by a bi-directional LM, and
further introduced a label-conditional architecture
into the LM. Experimentally, our method pro-
duced various words compatibly with the labels
of original texts and improved neural classifiers
more than the synonym-based augmentation. Our
method is independent of any task-specific knowl-
edge or rules, and can be generally and easily used
for classification tasks in various domains.

On the other hand, the improvement by our
method is sometimes marginal. Future work will
explore comparison and combination with other
generalization methods exploiting datasets deeply
as well as our method.

Acknowledgments

I would like to thank the members of Preferred
Networks, Inc., especially Takeru Miyato and Yuta
Tsuboi, for helpful comments. I would also like to
thank anonymous reviewers for helpful comments.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS, pages 1171–1179.

Toms Bergmanis, Katharina Kann, Hinrich Schütze,
and Sharon Goldwater. 2017. Training data aug-
mentation for low-resource morphological inflec-
tion. In CoNLL SIGMORPHON, pages 31–39.

Koen Deschacht and Marie-Francine Moens. 2009.
Semi-supervised semantic role labeling using the la-
tent words language model. In EMNLP, pages 21–
29.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL, pages 334–343.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In ACL, pages 567–573.

William Fedus, Ian Goodfellow, and Andrew M. Dai.
2018. MaskGAN: Better text generation via filling
in the . In ICLR.

Hagen Fürstenau and Mirella Lapata. 2009. Semi-
supervised semantic role labeling. In EACL, pages
220–228.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In NIPS, pages 2672–2680.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In ICML, pages 1587–
1596.

Navdeep Jaitly and Geoffrey E Hinton. 2015. Vo-
cal tract length perturbation (vtlp) improves speech
recognition. In ICML.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In ACL, pages 12–22.

Kushal Kafle, Mohammed Yousefhussien, and Christo-
pher Kanan. 2017. Data augmentation for visual
question answering. In INLG, pages 198–202.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In EMNLP, pages
1317–1327.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and
Sanjeev Khudanpur. 2015. Audio augmentation
for speech recognition. In INTERSPEECH, pages
3586–3589.

Sosuke Kobayashi, Naoaki Okazaki, and Kentaro Inui.
2017. A neural language model for dynamically rep-
resenting the meanings of unknown words and enti-
ties in a discourse. In IJCNLP, pages 473–483.

Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and
Kentaro Inui. 2016. Dynamic entity representation
with max-pooling improves machine reading. In
Proceedings of NAACL-HLT, pages 850–855.

Oleksandr Kolomiyets, Steven Bethard, and Marie-
Francine Moens. 2011. Model-portability experi-
ments for textual temporal analysis. In ACL, pages
271–276.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In NIPS, pages 1097–
1105.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING, pages 1–7.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture
models. In ICLR.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

456



Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL, pages 115–
124.

Charles Bally Albert Sechehaye Saussure, Ferdi-
nand de and Albert Riedlinger. 1916. Cours de lin-
guistique generale. Lausanne: Payot.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL, pages 86–96.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation
for morphological reinflection. In CoNLL SIGMOR-
PHON, pages 90–99.

Patrice Y. Simard, Yann A. LeCun, John S. Denker, and
Bernard Victorri. 1998. Transformation Invariance
in Pattern Recognition — Tangent Distance and Tan-
gent Propagation. Springer Berlin Heidelberg.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP, pages 1631–1642.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. 2015. Going deeper with convolutions. In
CVPR.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on LearningSys in NIPS 28.

William Yang Wang and Diyi Yang. 2015. That’s
so annoying!!!: A lexical and frame-semantic em-
bedding based data augmentation approach to au-
tomatic categorization of annoying behaviors using
#petpeeve tweets. In EMNLP, pages 2557–2563.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation, 39(2):165–210.

Yingce Xia, Tao Qin, Wei Chen, Jiang Bian, Nenghai
Yu, and Tie-Yan Liu. 2017. Dual supervised learn-
ing. In ICML, pages 3789–3798.

Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan.
2017. Variational autoencoder for semi-supervised
text classification. In AAAI, pages 3358–3364.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS, pages 649–657.

457



Proceedings of NAACL-HLT 2018, pages 458–463
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Cross-lingual Learning-to-Rank with Shared Representations

Shota Sasaki1, Shuo Sun2, Shigehiko Schamoni3, Kevin Duh2, Kentaro Inui1,4
1Tohoku University, 2Johns Hopkins University, 3Heidelberg University, 4RIKEN AIP
{sasaki.shota,inui}@ecei.tohoku.ac.jp, ssun32@jhu.edu,
schamoni@cl.uni-heidelberg.de, kevinduh@cs.jhu.edu

Abstract

Cross-lingual information retrieval (CLIR) is
a document retrieval task where the docu-
ments are written in a language different from
that of the user’s query. This is a chal-
lenging problem for data-driven approaches
due to the general lack of labeled training
data. We introduce a large-scale dataset de-
rived from Wikipedia to support CLIR re-
search in 25 languages. Further, we present
a simple yet effective neural learning-to-rank
model that shares representations across lan-
guages and reduces the data requirement. This
model can exploit training data in, for exam-
ple, Japanese-English CLIR to improve the re-
sults of Swahili-English CLIR.

1 Introduction

Multilingual document collections are becoming
prevalent. Thus an important application is cross-
lingual information retrieval (CLIR), i.e. docu-
ment retrieval which assumes that the language of
the user’s query does not match that of the doc-
uments. For example, imagine an investor who
wishes to monitor consumer sentiment of an inter-
national brand in Twitter conversations around the
world. She might issue a query string in English,
and desire all relevant tweets in any language.

There are two main approaches to building
CLIR systems. The modular approach involves a
pipeline of two components: translation (machine
translation or bilingual dictionary look-up) and
monolingual information retrieval (IR). These ap-
proaches may be further divided into the document
translation and query translation approaches (Nie,
2010). In the former, one translates all foreign-
language documents to the language of the user
query prior to IR indexing; in the latter, one in-
dexes foreign-language documents and translates
the query. In both, the idea is to solve the trans-
lation problem separately, so that CLIR becomes

document retrieval in the monolingual setting.
A distinctly different way to build CLIR sys-

tems is what may be called the direct model-
ing approach (Bai et al., 2010; Sokolov et al.,
2013). This assumes the availability of CLIR
training examples of the form (q, d, r), where q
is an English query, d is a foreign-language doc-
ument, a r is the corresponding relevance judg-
ment for d with respect to q. One directly builds
a retrieval model S(q, d) that scores the query-
document pair. While q and d are in different
languages, the model directly learns both trans-
lation and retrieval relevance on the CLIR train-
ing data. Compared to the modular approach, di-
rect modeling is advantageous in that it focuses
on learning translations that are beneficial for re-
trieval, rather than translations that preserve sen-
tence meaning/structure in bitext.

However, there exist no large-scale CLIR
dataset that can support direct modeling ap-
proaches in a wide variety of languages. To obtain
relevance judgments, one typically needs a bilin-
gual speaker who can read a foreign-language doc-
ument and assess whether it is relevant for a given
English query. This can be an expensive process.
Here, we present a large-scale dataset that is auto-
matically constructed from Wikipedia: it can sup-
port training and evaluation of CLIR systems be-
tween English queries and documents in 25 other
languages (Section 2). The data is of sufficient
size for direct modeling, and can also serve as an
wide-coverage evaluation data for the modular ap-
proaches.1

To demonstrate the utility of the data, we further
present experiments for CLIR in low-resource lan-
guages. First, we introduce a neural CLIR model
based on the direct modeling approach (Section

1To facilitate CLIR research, the dataset is publicly
available at http://www.cs.jhu.edu/˜kevinduh/
a/wikiclir2018/.
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Figure 1: CLIR data construction process: From an
English article (E1), we extract the English query. Us-
ing the inter-language link, we obtain the most relevant
foreign-language document (F1). Any article that has
mutual links to and from F1 are labeled as slightly rel-
evant (F2). All other articles are not relevant (F3). The
data is a set of tuples: (English query q, foreign doc-
ument d, relevance judgment r), where r ∈ {0, 1, 2}
represents the three levels of relevance.

3.1). We then show how we can bootstrap CLIR
models for languages with less training data by an
appropriate use of paramater sharing among dif-
ferent language pairs (Section 3.2). For exam-
ple, using the training data for Japanese-English
CLIR, we can improve the Mean Average Pre-
cision (MAP) results of a Swahili-English CLIR
system by 5-7 points (Section 4).

2 Large-Scale CLIR Dataset

We construct a large-scale CLIR data from
Wikipedia. The idea is to exploit inter-language
links: from an English page, we extract a sentence
as query, and label the linked foreign-document
pages as relevant. See Figure 1 for an illustration.

This data construction process is similar to
(Schamoni et al., 2014) who made an English-
German CLIR dataset, but ours is at a larger scale.
Specifically, we use Wikipedia dumps released on
August 23, 2017. English queries are obtained
by extracting the first sentence of every English
Wikipedia article. The intuition is that the first
sentence is usually a well-defined summary of its
corresponding article and should be thematically
related for articles linked to it from another lan-
guage. Similar to (Schamoni et al., 2014), title
words from the query sentences are removed, be-
cause they may be present across different lan-
guage editions. This deletion prevents the task
from becoming an easy keyword matching task.

For practical purposes, each document is lim-
ited to the first 200 words of the article. Empty
documents and category pages are filtered. Cur-
rently, our dataset consists of more than 2.8 mil-

Language #Doc #Query #SR
Arabic 535 324 194
Catalan 548 339 625
Chinese 951 463 462
Czech 386 233 720
Dutch 1908 687 1646
Finnish 418 273 665
French 1894 1089 4048
German 2091 938 4612
Italian 1347 808 2635
Japanese 1071 426 2912
Korean 394 224 343
Norwegian-Nynorsk 133 99 150
Norwegian-Bokmål 471 299 663
Polish 1234 693 1777
Portuguese 973 611 1130
Romanian 376 199 251
Russian 1413 664 1656
Simple English 127 114 135
Spanish 1302 781 2113
Swahili 37 22 35
Swedish 3785 639 1430
Tagalog 79 48 23
Turkish 295 185 195
Ukrainian 704 348 565
Vietnamese 1392 354 257

(All numbers are in units of one thousand)

Table 1: CLIR dataset statistics. For each language X,
we show the total number of documents in language
X and the number of English queries. The number
of ”most relevant” documents is by definition equal to
#Query. The number of ”slightly relevant” documents
is shown in the column #SR.

lion English queries and relevant documents from
25 other selected languages (see Table 1).

In sum, we have created a CLIR dataset that is
large-scale in terms of both the amount of exam-
ples as well as the number of languages. This can
be used in two scenarios: (1) one mixed-language
collection where an English query may retrieve
relevant documents in multiple languages. (2) 25
independent datasets for training and evaluating
CLIR on English queries against one foreign lan-
guage collection. In the experiments in Section 4,
we will utilize the dataset in terms of scenario (2).2

2For extensibility purposes, these experiments use only
half of the data, randomly sampled by query (the held-out
data is reserved for other uses). Also it only considers binary
relevance (most relevant vs not relevant) for simplicity. The
exact data splits will be provided along with the data release.
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3 Direct Modeling for CLIR

3.1 Neural Ranking Model
Given an English query q and a foreign-language
document d, our models compute the relevance
score S(q, d). First, we represent each word as
n-dimensional vectors, so q and d are represented
as matrices Q ∈ Rn×|q| and D ∈ Rn×|d|, where
|q| and |d| are the numbers of tokens in q and d:

Q = [Eq(q1);Eq(q2); ...;Eq(q|q|)]

D = [Ed(d1);Ed(d2); ...;Ed(d|d|)]

qi and di denote the i-th term in q and d. E is em-
bedding function which transforms each term to a
dense n-dimensional vector as its representation.
; is the concatenation operator. Then, we apply
convolutional feature map3 to these matrices, fol-
lowed by tanh activation and average-pooling to
obtain each representation vector q̂ and d̂.

q̂ = CNNq(Q); d̂ = CNNd(D) (1)

Next, we define two variations in calculating
S(q, d). The first is a cosine model which com-
putes cosine similarity between q̂ and d̂:

Scos(q, d) = cossim(q̂, d̂) (2)

The second is a deep model with a fully con-
nected layer on top of the concatenation of q̂ and
d̂ (a 200-dimensional vector):

Sdeep(q, d) = tanh(O · hTvec) (3)

= tanh(O · relu(W · [q̂; d̂]T))

Here, O ∈ R1×h and W ∈ Rh×200 are the deep
model parameters, and h is the number of dimen-
sions of the hidden state, hvec ∈ R1×h. For reg-
ularization, we set dropout rate as 0.5 (Srivastava
et al., 2014) at the hidden layer.

In the training phase, we minimize pairwise
ranking loss, which is widely used for learning-
to-rank (Pang et al., 2016; Guo et al., 2016; Hui
et al., 2017; Xiong et al., 2017; Dehghani et al.,
2017), defined as follows:

L = max
{

0, 1− (S(q, d+)− S(q, d−))
}

(4)

where d+ and d− are relevant and non-relevant
document respectively. We fix only the word em-
beddings and tune the other parameters.

3The n× 4 convolution window has filter size of 100 and
takes a stride of 1.

Figure 2: Illustration of the proposed method. On low
resource dataset (e.g. Swahili-English), the parame-
ters of the CNN for encoding query (CNNEn) and
the parameters of the fully connected layer (OEn−Sw,
WEn−Sw) are initialized by the ones pre-trained on
high resource dataset (e.g. Japanese-English).

Ja De Fr
Scos(q, d): cos 59/74 49/66 55/70
Sdeep(q, d): h=100 61/75 64/77 69/81
Sdeep(q, d): h=200 68/80 67/79 74/84
Sdeep(q, d): h=300 70/82 70/81 74/84
Sdeep(q, d): h=400 73/83 71/82 75/85
Sdeep(q, d): h=500 73/84 70/81 76/85

Table 2: P@1/MAP performance (0-100 range, in
percent) of the cosine model and the deep model with
different hidden state size on high resource datasets.
Best value in each column is highlighted in bold.

We note there are many other ranking models
that can be adapted to CLIR (Huang et al., 2013;
Shen et al., 2014; Xiong et al., 2017; Mitra et al.,
2017); they have a common framework in extract-
ing features from both query and document and
optimizing scores S(q, d) via some ranking loss.

3.2 Sharing Representations

Training a network like the deep model generally
requires a nontrivial amount of data. To address
the data requirement for low-resource languages,
we propose a simple yet effective method that
shares representations across CLIR models trained
in different language-pairs. Basically, we use the
same architecture as the deep model (Sdeep(q, d),
Equation 3). However, we use the parameters
trained on a high-resource dataset (e.g Japanese-
English) to initialize the parameters for a low-
resource language-pair (e.g. Swahili-English).

Figure 2 illustrates the idea: Concretely, we ini-
tialize the parameters of the CNN for encoding
query (CNNq) and the parameters of the fully
connected layer (O, W ) by using the pre-trained
parameters. When training on low-resource data,

460



Tl Sw De (subsample) Fr (subsample)
In Sh ∆ In Sh ∆ In Sh ∆ In Sh ∆

cos 51/68 50/67 -/- 51/67 49/65 -/- 40/59 38/56 -/- 46/63 43/60 -/-
h=100 34/50 48/62 +/+ 46/62 46/62 =/= 39/55 46/62 +/+ 40/57 46/62 +/+
h=200 44/58 55/67 +/+ 47/63 52/67 +/+ 41/57 48/63 +/+ 43/60 51/66 +/+
h=300 42/57 49/63 +/+ 50/65 58/70 +/+ 44/60 50/65 +/+ 49/65 51/66 +/+
h=400 49/63 57/69 +/+ 51/66 60/73 +/+ 45/61 51/66 +/+ 47/64 56/70 +/+
h=500 51/64 54/67 +/+ 53/68 56/69 +/+ 44/60 49/65 +/+ 47/63 51/66 +/+

Table 3: P@1/MAP performances on low resource datasets. ∆ columns show the comparison between the basic
deep models with in-language training (In) and the deep models with sharing parameters (Sh); + indicates Sh
outperforms In, and - indicates the In outperforms Sh. Best value in each dataset is highlighted in bold.

we fix only the word embedding, and tune the pa-
rameters of CNNs and the fully connected layer.

The intuition behind this is that our direct
modeling approach enforces q̂ and d̂ to become
language-independent representations of the query
and document. The parameters O and W in the
deep layer can therefore be used for any language-
pair. Note for the cosine model, we can also share
parameters for CNNq.

4 Experiment Results

Setup: We use datasets of 3 high-resource lan-
guages (Japanese [Ja], German [De], French
[Fr]) and 2 low-resource languages (Tagalog [Tl],
Swahili [Sw]). We also subsample German and
French data to be equivalent to the size of Swahili,
in order to compare training size effects. Word
embedding with dimension 100 for each language
is trained on Wikipedia corpus, using word2vec
SGNS (Mikolov et al., 2013). The size of hidden
states in the deep model is {100, 200, 300, 400,
500}. We adopt Adam (Kingma and Ba, 2014)
for optimization, train for 20 epochs and pick the
best epoch based on development set loss. For
the proposed method of parameter sharing, we use
the weight parameters pre-trained on Japanese-
English dataset to initialize parameters.
High-resource results: Table 2 shows the P@1
(precision at top position) and MAP (mean aver-
age precision) for datasets consisting of on the or-
der of 100k+ training queries. The deep models
outperformed the cosine models under all condi-
tions, suggesting that the fully connected layer can
exploit the large training set in learning more ex-
pressive scoring functions.
Low-resource results: Table 3 shows the results
on the low resource datasets under two conditions:
training on only the language-pair of interest (in-

language), or additionally sharing parameters us-
ing a pre-trained Japanese-English model. For the
in-language case, we observe the cosine model
outperforms the deep model. In contrast to the
high-resource results, this implies that deep mod-
els, which have a lot of parameters, only become
effective if provided with sufficient training data.

For the sharing case, the deep models with pa-
rameter sharing outperformed the basic deep mod-
els trained only on in-language data under almost
all conditions. This indicates that our sharing
method reduces training data requirement. Im-
portantly, by sharing parameters, the deep models
are now able to outperform the cosine model and
achieve the best results on all datasets.4

5 Conclusion and Future Work

We introduce a large-scale CLIR dataset in 25 lan-
guages. This enables the training and evaluation
of direct modeling approaches in CLIR. We also
present a neural ranking model with shared rep-
resentations, and demonstrate its effectiveness in
bootstrapping CLIR in low-resource languages.

Future work includes: (a) expansion of the
dataset to more languages, (b) extraction of differ-
ent types of queries and relevant judgments from
Wikipedia, and (c) development of other rank-
ing models. Importantly, we also plan to evalu-
ate our models on standard CLIR test sets such
as TREC (Schäuble and Sheridan, 1997), NTCIR
(2007), FIRE (2013) and CLEF (2016). This will
help answer the question of whether knowledge

4Sharing representations with the cosine models did not
help; we hypothesize that cross-lingual sharing only works
if given sufficient model expressiveness. We also tried the
shared deep models on high resource datasets (e.g. using
Japanese parameters on the full French dataset without sub-
sampling). As expected, results did not change significantly.
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learned from automatically-generated datasets can
be transferred to a wide range of CLIR problems.
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Abstract

Relying entirely on an attention mechanism,
the Transformer introduced by Vaswani et
al. (2017) achieves state-of-the-art results for
machine translation. In contrast to recurrent
and convolutional neural networks, it does
not explicitly model relative or absolute po-
sition information in its structure. Instead,
it requires adding representations of abso-
lute positions to its inputs. In this work
we present an alternative approach, extend-
ing the self-attention mechanism to efficiently
consider representations of the relative posi-
tions, or distances between sequence elements.
On the WMT 2014 English-to-German and
English-to-French translation tasks, this ap-
proach yields improvements of 1.3 BLEU and
0.3 BLEU over absolute position representa-
tions, respectively. Notably, we observe that
combining relative and absolute position rep-
resentations yields no further improvement in
translation quality. We describe an efficient
implementation of our method and cast it as an
instance of relation-aware self-attention mech-
anisms that can generalize to arbitrary graph-
labeled inputs.

1 Introduction

Recent approaches to sequence to sequence learn-
ing typically leverage recurrence (Sutskever et al.,
2014), convolution (Gehring et al., 2017; Kalch-
brenner et al., 2016), attention (Vaswani et al.,
2017), or a combination of recurrence and atten-
tion (Bahdanau et al., 2014; Cho et al., 2014; Lu-
ong et al., 2015; Wu et al., 2016) as basic building
blocks. These approaches incorporate information
about the sequential position of elements differ-
ently.

Recurrent neural networks (RNNs) typically
compute a hidden state ht, as a function of their
input at time t and a previous hidden state ht−1,
capturing relative and absolute positions along the

time dimension directly through their sequential
structure. Non-recurrent models do not necessar-
ily consider input elements sequentially and may
hence require explicitly encoding position infor-
mation to be able to use sequence order.

One common approach is to use position encod-
ings which are combined with input elements to
expose position information to the model. These
position encodings can be a deterministic func-
tion of position (Sukhbaatar et al., 2015; Vaswani
et al., 2017) or learned representations. Convolu-
tional neural networks inherently capture relative
positions within the kernel size of each convolu-
tion. They have been shown to still benefit from
position encodings (Gehring et al., 2017), how-
ever.

For the Transformer, which employs neither
convolution nor recurrence, incorporating explicit
representations of position information is an espe-
cially important consideration since the model is
otherwise entirely invariant to sequence ordering.
Attention-based models have therefore used posi-
tion encodings or biased attention weights based
on distance (Parikh et al., 2016).

In this work we present an efficient way of
incorporating relative position representations in
the self-attention mechanism of the Transformer.
Even when entirely replacing its absolute position
encodings, we demonstrate significant improve-
ments in translation quality on two machine trans-
lation tasks.

Our approach can be cast as a special case of ex-
tending the self-attention mechanism of the Trans-
former to considering arbitrary relations between
any two elements of the input, a direction we plan
to explore in future work on modeling labeled, di-
rected graphs.
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2 Background

2.1 Transformer
The Transformer (Vaswani et al., 2017) em-
ploys an encoder-decoder structure, consisting of
stacked encoder and decoder layers. Encoder
layers consist of two sublayers: self-attention
followed by a position-wise feed-forward layer.
Decoder layers consist of three sublayers: self-
attention followed by encoder-decoder attention,
followed by a position-wise feed-forward layer.
It uses residual connections around each of the
sublayers, followed by layer normalization (Ba
et al., 2016). The decoder uses masking in its self-
attention to prevent a given output position from
incorporating information about future output po-
sitions during training.

Position encodings based on sinusoids of vary-
ing frequency are added to encoder and decoder
input elements prior to the first layer. In contrast
to learned, absolute position representations, the
authors hypothesized that sinusoidal position en-
codings would help the model to generalize to se-
quence lengths unseen during training by allowing
it to learn to attend also by relative position. This
property is shared by our relative position repre-
sentations which, in contrast to absolute position
representations, are invariant to the total sequence
length.

Residual connections help propagate position
information to higher layers.

2.2 Self-Attention
Self-attention sublayers employ h attention heads.
To form the sublayer output, results from each
head are concatenated and a parameterized linear
transformation is applied.

Each attention head operates on an input se-
quence, x = (x1, . . . , xn) of n elements where
xi ∈ Rdx , and computes a new sequence z =
(z1, . . . , zn) of the same length where zi ∈ Rdz .

Each output element, zi, is computed as
weighted sum of a linearly transformed input el-
ements:

zi =

n∑

j=1

αij(xjW
V ) (1)

Each weight coefficient, αij , is computed using
a softmax function:

αij =
exp eij∑n
k=1 exp eik

And eij is computed using a compatibility func-
tion that compares two input elements:

eij =
(xiW

Q)(xjW
K)T√

dz
(2)

Scaled dot product was chosen for the compat-
ibility function, which enables efficient computa-
tion. Linear transformations of the inputs add suf-
ficient expressive power.
WQ, WK , W V ∈ Rdx×dz are parameter matri-

ces. These parameter matrices are unique per layer
and attention head.

3 Proposed Architecture

3.1 Relation-aware Self-Attention

We propose an extension to self-attention to con-
sider the pairwise relationships between input ele-
ments. In this sense, we model the input as a la-
beled, directed, fully-connected graph.

The edge between input elements xi and xj is
represented by vectors aVij , a

K
ij ∈ Rda . The mo-

tivation for learning two distinct edge represen-
tations is that aVij and aKij are suitable for use in
eq. (3) and eq. (4), respectively, without requiring
additional linear transformations. These represen-
tations can be shared across attention heads. We
use da = dz .

We modify eq. (1) to propagate edge informa-
tion to the sublayer output:

zi =

n∑

j=1

αij(xjW
V + aVij) (3)

This extension is presumably important for
tasks where information about the edge types se-
lected by a given attention head is useful to down-
stream encoder or decoder layers. However, as ex-
plored in 4.3, this may not be necessary for ma-
chine translation.

We also, importantly, modify eq. (2) to consider
edges when determining compatibility:

eij =
xiW

Q(xjW
K + aKij )

T

√
dz

(4)

The primary motivation for using simple addi-
tion to incorporate edge representations in eq. (3)
and eq. (4) is to enable an efficient implementation
described in 3.3.
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Figure 1: Example edges representing relative posi-
tions, or the distance between elements. We learn rep-
resentations for each relative position within a clipping
distance k. The figure assumes 2 <= k <= n − 4.
Note that not all edges are shown.

3.2 Relative Position Representations

For linear sequences, edges can capture infor-
mation about the relative position differences be-
tween input elements. The maximum relative po-
sition we consider is clipped to a maximum abso-
lute value of k. We hypothesized that precise rel-
ative position information is not useful beyond a
certain distance. Clipping the maximum distance
also enables the model to generalize to sequence
lengths not seen during training. Therefore, we
consider 2k + 1 unique edge labels.

aKij = wK
clip(j−i,k)

aVij = wV
clip(j−i,k)

clip(x, k) = max(−k,min(k, x))

We then learn relative position representations
wK = (wK

−k, . . . , w
K
k ) and wV = (wV

−k, . . . , w
V
k )

where wK
i , w

V
i ∈ Rda .

3.3 Efficient Implementation

There are practical space complexity concerns
when considering edges between input elements,
as noted by Veličković et al. (2017), which consid-
ers unlabeled graph inputs to an attention model.

For a sequence of length n and h attention
heads, we reduce the space complexity of storing
relative position representations from O(hn2da)
to O(n2da) by sharing them across each heads.
Additionally, relative position representations can
be shared across sequences. Therefore, the over-
all self-attention space complexity increases from
O(bhndz) to O(bhndz + n2da). Given da = dz ,
the size of the relative increase depends on n

bh .
The Transformer computes self-attention effi-

ciently for all sequences, heads, and positions in

a batch using parallel matrix multiplication opera-
tions (Vaswani et al., 2017). Without relative posi-
tion representations, each eij can be computed us-
ing bh parallel multiplications of n×dz and dz×n
matrices. Each matrix multiplication computes eij
for all sequence positions, for a particular head
and sequence. For any sequence and head, this
requires sharing the same representation for each
position across all compatibility function applica-
tions (dot products) with other positions.

When we consider relative positions the repre-
sentations differ with different pairs of positions.
This prevents us from computing all eij for all
pairs of positions in a single matrix multiplication.
We also want to avoid broadcasting relative po-
sition representations. However, both issues can
be resolved by splitting the computation of eq. (4)
into two terms:

eij =
xiW

Q(xjW
K)T + xiW

Q(aKij )
T

√
dz

(5)

The first term is identical to eq. (2), and can be
computed as described above. For the second term
involving relative position representations, tensor
reshaping can be used to compute n parallel multi-
plications of bh×dz and dz×nmatrices. Each ma-
trix multiplication computes contributions to eij
for all heads and batches, corresponding to a par-
ticular sequence position. Further reshaping al-
lows adding the two terms. The same approach
can be used to efficiently compute eq. (3).

For our machine translation experiments, the re-
sult was a modest 7% decrease in steps per sec-
ond, but we were able to maintain the same model
and batch sizes on P100 GPUs as Vaswani et
al. (2017).

4 Experiments

4.1 Experimental Setup

We use the tensor2tensor 1 library for training and
evaluating our model.

We evaluated our model on the WMT 2014
machine translation task, using the WMT 2014
English-German dataset consisting of approxi-
mately 4.5M sentence pairs and the 2014 WMT
English-French dataset consisting of approxi-
mately 36M sentence pairs.

1The tensor2tensor library is available at https://
github.com/tensorflow/tensor2tensor.
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Model Position Information EN-DE BLEU EN-FR BLEU
Transformer (base) Absolute Position Representations 26.5 38.2
Transformer (base) Relative Position Representations 26.8 38.7
Transformer (big) Absolute Position Representations 27.9 41.2
Transformer (big) Relative Position Representations 29.2 41.5

Table 1: Experimental results for WMT 2014 English-to-German (EN-DE) and English-to-French (EN-FR) trans-
lation tasks, using newstest2014 test set.

For all experiments, we split tokens into a
32,768 word-piece vocabulary (Wu et al., 2016).
We batched sentence pairs by approximate length,
and limited input and output tokens per batch to
4096 per GPU. Each resulting training batch con-
tained approximately 25,000 source and 25,000
target tokens.

We used the Adam optimizer (Kingma and Ba,
2014) with β1 = 0.9, β2 = 0.98, and ε = 10−9.
We used the same warmup and decay strategy for
learning rate as Vaswani et al. (2017), with 4,000
warmup steps. During training, we employed la-
bel smoothing of value εls = 0.1 (Szegedy et al.,
2016). For evaluation, we used beam search with
a beam size of 4 and length penalty α = 0.6 (Wu
et al., 2016).

For our base model, we used 6 encoder and de-
coder layers, dx = 512, dz = 64, 8 attention
heads, 1024 feed forward inner-layer dimensions,
and Pdropout = 0.1. When using relative posi-
tion encodings, we used clipping distance k = 16,
and used unique edge representations per layer and
head. We trained for 100,000 steps on 8 K40
GPUs, and did not use checkpoint averaging.

For our big model, we used 6 encoder and de-
coder layers, dx = 1024, dz = 64, 16 attention
heads, 4096 feed forward inner-layer dimensions,
and Pdropout = 0.3 for EN-DE and Pdropout = 0.1
for EN-FR. When using relative position encod-
ings, we used k = 8, and used unique edge repre-
sentations per layer. We trained for 300,000 steps
on 8 P100 GPUs, and averaged the last 20 check-
points, saved at 10 minute intervals.

4.2 Machine Translation

We compared our model using only relative po-
sition representations to the baseline Transformer
(Vaswani et al., 2017) with sinusoidal position en-
codings. We generated baseline results to iso-
late the impact of relative position representations
from any other changes to the underlying library
and experimental configuration.

For English-to-German our approach improved
performance over our baseline by 0.3 and 1.3
BLEU for the base and big configurations, respec-
tively. For English-to-French it improved by 0.5
and 0.3 BLEU for the base and big configurations,
respectively. In our experiments we did not ob-
serve any benefit from including sinusoidal posi-
tion encodings in addition to relative position rep-
resentations. The results are shown in Table 1.

4.3 Model Variations
We performed several experiments modifying var-
ious aspects of our model. All of our experi-
ments in this section use the base model configura-
tion without any absolute position representations.
BLEU scores are calculated on the WMT English-
to-German task using the development set, new-
stest2013.

We evaluated the effect of varying the clipping
distance, k, of the maximum absolute relative po-
sition difference. Notably, for k ≥ 2, there does
not appear to be much variation in BLEU scores.
However, as we use multiple encoder layers, pre-
cise relative position information may be able to
propagate beyond the clipping distance. The re-
sults are shown in Table 2.

k EN-DE BLEU
0 12.5
1 25.5
2 25.8
4 25.9
16 25.8
64 25.9
256 25.8

Table 2: Experimental results for varying the clipping
distance, k.

We also evaluated the impact of ablating each of
the two relative position representations defined in
section 3.1, aVij in eq. (3) and aKij in eq. (4). Includ-
ing relative position representations solely when
determining compatibility between elements may
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be sufficient, but further work is needed to deter-
mine whether this is true for other tasks. The re-
sults are shown in Table 3.

aVij aKij EN-DE BLEU
Yes Yes 25.8
No Yes 25.8
Yes No 25.3
No No 12.5

Table 3: Experimental results for ablating relative po-
sition representations aVij and aKij .

5 Conclusions

In this paper we presented an extension to self-
attention that can be used to incorporate rela-
tive position information for sequences, which im-
proves performance for machine translation.

For future work, we plan to extend this mecha-
nism to consider arbitrary directed, labeled graph
inputs to the Transformer. We are also inter-
ested in nonlinear compatibility functions to com-
bine input representations and edge representa-
tions. For both of these extensions, a key consid-
eration will be determining efficient implementa-
tions.
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Abstract

Text segmentation, the task of dividing a doc-
ument into contiguous segments based on its
semantic structure, is a longstanding challenge
in language understanding. Previous work
on text segmentation focused on unsupervised
methods such as clustering or graph search,
due to the paucity in labeled data. In this
work, we formulate text segmentation as a
supervised learning problem, and present a
large new dataset for text segmentation that
is automatically extracted and labeled from
Wikipedia. Moreover, we develop a segmen-
tation model based on this dataset and show
that it generalizes well to unseen natural text.

1 Introduction

Text segmentation is the task of dividing text into
segments, such that each segment is topically co-
herent, and cutoff points indicate a change of topic
(Hearst, 1994; Utiyama and Isahara, 2001; Brants
et al., 2002). This provides basic structure to a
document in a way that can later be used by down-
stream applications such as summarization and in-
formation extraction.

Existing datasets for text segmentation are small
in size (Choi, 2000; Glavaš et al., 2016), and are
used mostly for evaluating the performance of seg-
mentation algorithms. Moreover, some datasets
(Choi, 2000) were synthesized automatically and
thus do not represent the natural distribution of
text in documents. Because no large labeled
dataset exists, prior work on text segmentation
tried to either come up with heuristics for iden-
tifying whether two sentences discuss the same
topic (Choi, 2000; Glavaš et al., 2016), or to model
topics explicitly with methods such as LDA (Blei
et al., 2003) that assign a topic to each paragraph
or sentence (Chen et al., 2009).

∗Both authors contributed equally to this paper and the
order of authorship was determined randomly.

Recent developments in Natural Language Pro-
cessing have demonstrated that casting problems
as supervised learning tasks over large amounts
of labeled data is highly effective compared to
heuristic-based systems or unsupervised algo-
rithms (Mikolov et al., 2013; Pennington et al.,
2014). Therefore, in this work we (a) formulate
text segmentation as a supervised learning prob-
lem, where a label for every sentence in the docu-
ment denotes whether it ends a segment, (b) de-
scribe a new dataset, WIKI-727K, intended for
training text segmentation models.

WIKI-727K comprises more than 727,000 doc-
uments from English Wikipedia, where the table
of contents of each document is used to automat-
ically segment the document. Since this dataset
is large, natural, and covers a variety of topics,
we expect it to generalize well to other natural
texts. Moreover, WIKI-727K provides a better
benchmark for evaluating text segmentation mod-
els compared to existing datasets. We make WIKI-
727K and our code publicly available at https:
//github.com/koomri/text-segmentation.

To demonstrate the efficacy of this dataset, we
develop a hierarchical neural model in which a
lower-level bidirectional LSTM creates sentence
representations from word tokens, and then a
higher-level LSTM consumes the sentence repre-
sentations and labels each sentence. We show that
our model outperforms prior methods, demon-
strating the importance of our dataset for future
progress in text segmentation.

2 Related Work

2.1 Existing Text Segmentation Datasets

The most common dataset for evaluating perfor-
mance on text segmentation was created by Choi
(2000). It is a synthetic dataset containing 920
documents, where each document is a concatena-
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tion of 10 random passages from the Brown cor-
pus. Glavaš et al. (2016) created a dataset of their
own, which consists of 5 manually-segmented
political manifestos from the Manifesto project.1

(Chen et al., 2009) also used English Wikipedia
documents to evaluate text segmentation. They de-
fined two datasets, one with 100 documents about
major cities and one with 118 documents about
chemical elements. Table 1 provides additional
statistics on each dataset.

Thus, all existing datasets for text segmentation
are small and cannot benefit from the advantages
of training supervised models over labeled data.

2.2 Previous Methods

Bayesian text segmentation methods (Chen et al.,
2009; Riedl and Biemann, 2012) employ a gener-
ative probabilistic model for text. In these mod-
els, a document is represented as a set of topics,
which are sampled from a topic distribution, and
each topic imposes a distribution over the vocab-
ulary. Riedl and Biemann (2012) perform best
among this family of methods, where they define
a coherence score between pairs of sentences, and
compute a segmentation by finding drops in coher-
ence scores between pairs of adjacent sentences.

Another noteworthy approach for text segmen-
tation is GRAPHSEG (Glavaš et al., 2016), an un-
supervised graph method, which performs com-
petitively on synthetic datasets and outperforms
Bayesian approaches on the Manifesto dataset.
GRAPHSEG works by building a graph where
nodes are sentences, and an edge between two
sentences signifies that the sentences are semanti-
cally similar. The segmentation is then determined
by finding maximal cliques of adjacent sentences,
and heuristically completing the segmentation.

3 The WIKI-727K Dataset

For this work we have created a new dataset,
which we name WIKI-727K. It is a collection of
727,746 English Wikipedia documents, and their
hierarchical segmentation, as it appears in their ta-
ble of contents. We randomly partitioned the doc-
uments into a train (80%), development (10%),
and test (10%) set.

Different text segmentation use-cases require
different levels of granularity. For example, for
segmenting text by overarching topic it makes
sense to train a model that predicts only top-level

1https://manifestoproject.wzb.eu

segments, which are typically vary in topic – for
example, “History”, “Geography”, and “Demo-
graphics”. For segmenting a radio broadcast into
separate news stories, which requires finer gran-
ularity, it makes sense to train a model to pre-
dict sub-segments. Our dataset provides the entire
segmentation information, and an application may
choose the appropriate level of granularity.

To generate the data, we performed the follow-
ing preprocessing steps for each Wikipedia docu-
ment:

• Removed all photos, tables, Wikipedia tem-
plate elements, and other non-text elements.
• Removed single-sentence segments, docu-

ments with less than three segments, and doc-
uments where most segments were filtered.
• Divided each segment into sentences using

the PUNKT tokenizer of the NLTK library
(Bird et al., 2009). This is necessary for the
use of our dataset as a benchmark, as with-
out a well-defined sentence segmentation, it
is impossible to evaluate different models.

We view WIKI-727K as suitable for text seg-
mentation because it is natural, open-domain, and
has a well-defined segmentation. Moreover, neu-
ral network models often benefit from a wealth of
training data, and our dataset can easily be further
expanded at very little cost.

4 Neural Model for Text Segmentation

We treat text segmentation as a supervised learn-
ing task, where the input x is a document, rep-
resented as a sequence of n sentences s1, . . . , sn,
and the label y = (y1, . . . , yn−1) is a segmentation
of the document, represented by n− 1 binary val-
ues, where yi denotes whether si ends a segment.

We now describe our model for text segmen-
tation. Our neural model is composed of a hi-
erarchy of two sub-networks, both based on the
LSTM architecture (Hochreiter and Schmidhuber,
1997). The lower-level sub-network is a two-layer
bidirectional LSTM that generates sentence repre-
sentations: for each sentence si, the network con-
sumes the words w(i)

1 , . . . , w
(i)
k of si one by one,

and the final sentence representation ei is com-
puted by max-pooling over the LSTM outputs.

The higher-level sub-network is the segmenta-
tion prediction network. This sub-network takes a
sequence of sentence embeddings e1, . . . , en as in-
put, and feeds them into a two-layer bidirectional
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Figure 1: Our model contains a sentence embedding
sub-network, followed by a segmentation prediction
sub-network which predicts a cut-off probability for
each sentence.

LSTM. We then apply a fully-connected layer on
each of the LSTM outputs to obtain a sequence
of n vectors in R2. We ignore the last vector (for
en), and apply a softmax function to obtain n − 1
segmentation probabilities. Figure 1 illustrates the
overall neural network architecture.

4.1 Training
Our model predicts for each sentence si, the prob-
ability pi that it ends a segment. For an n-sentence
document, we minimize the sum of cross-entropy
errors over each of the n− 1 relevant sentences:

J(Θ) =
n−1∑

i=1

[−yi log pi − (1− yi) log (1− pi)] .

Training is done by stochastic gradient descent in
an end-to-end manner. For word embeddings, we
use the GoogleNews word2vec pre-trained model.

We train our system to only predict the top-level
segmentation (other granularities are possible). In
addition, at training time, we removed from each
document the first segment, since in Wikipedia it is
often a summary that touches many different top-
ics, and is therefore less useful for training a seg-
mentation model. We also omitted lists and code
snippets tokens.

4.2 Inference
At test time, the model takes a sequence of word
embeddings divided into sentences, and returns a
vector p of cutoff probabilities between sentences.
We use greedy decoding, i.e., we create a new seg-
ment whenever pi is greater than a threshold τ . We

optimize the parameter τ on our validation set, and
use the optimal value while testing.

5 Experimental Details

We evaluate our method on the WIKI-727 test
set, Choi’s synthetic dataset, and the two small
Wikipedia datasets (CITIES, ELEMENTS) intro-
duced by Chen et al. (2009). We compare our
model performance with those reported by Chen
et al. (2009) and GRAPHSEG. In addition, we
evaluate the performance of a random baseline
model, which starts a new segment after every sen-
tence with probability 1

k , where k is the average
segment size in the dataset.

Because our test set is large, it is difficult to
evaluate some of the existing methods, which are
computationally demanding. Thus, we introduce
WIKI-50, a set of 50 randomly sampled test doc-
uments from WIKI-727K. We use WIKI-50 to
evaluate systems that are too slow to evaluate on
the entire test set. We also provide human seg-
mentation performance results on WIKI-50.

We use the Pk metric as defined in Beeferman
et al. (1999) to evaluate the performance of our
model. Pk is the probability that when passing a
sliding window of size k over sentences, the sen-
tences at the boundaries of the window will be in-
correctly classified as belonging to the same seg-
ment (or vice versa). To match the setup of Chen
et al. (2009), we also provide the Pk metric for a
sliding window over words when evaluating on the
datasets from their paper. Following (Glavaš et al.,
2016), we set k to half of the average segment size
in the ground-truth segmentation. For evaluations
we used the SEGEVAL package (Fournier, 2013).

In addition to segmentation accuracy, we also
report runtime when running on a mid-range lap-
top CPU.

We note that segmentation results are not al-
ways directly comparable. For example, Chen
et al. (2009) require that all documents in the
dataset discuss the same topic, and so their method
is not directly applicable to WIKI-50. Neverthe-
less, we attempt a comparison in Table 2.

5.1 Accuracy

Comparing our method to GRAPHSEG, we can
see that GRAPHSEG gives better results on the
synthetic Choi dataset, but this success does not
carry over to the natural Wikipedia data, where
they underperform the random baseline. We ex-
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WIKI-727K CHOI MANIFESTO CITIES ELEMENTS
Documents 727,746 920 5 100 118
Segment Length2 13.6 ± 20.3 7.4 ± 2.96 8.99 ± 10.8 5.15 ± 4.57 3.33 ± 3.05
Segments per document2 3.48 ± 2.23 9.98 ± 0.12 127 ± 42.9 12.2 ± 2.79 6.82 ± 2.57
Real-world 3 7 3 3 3
Large variety of topics 3 7 7 7 7

Table 1: Statistics on various text segmentation datasets.

WIKI-727K WIKI-50 CHOI CITIES ELEMENTS
Pk variant sentences sentences sentences sentences words sentences words
(Chen et al., 2009) - - - - 22.1 - 20.1
GraphSeg - 63.56 5.6-7.2 39.95 - 49.12 -
Our model 22.13 18.24 26.263 19.68 18.14 41.63 33.82
Random baseline 53.09 52.65 49.43 47.14 44.14 50.08 42.80
Human performance - 14.97 - - - - -

Table 2: Pk Results on the test set.

plain this by noting that since the dataset is syn-
thetic, and was created by concatenating unre-
lated documents, even the simple word count-
ing method in Choi (2000) can achieve reason-
able success. GRAPHSEG uses a similarity mea-
sure between word embedding vectors to surpass
the word counting method, but in a natural docu-
ment, word similarity may not be enough to detect
a change of topic within a single document. At
the word level, two documents concerning com-
pletely different topics are much easier to differ-
entiate than two sections in one document.

We compare our method to Chen et al. (2009)
on the two small Wikipedia datasets from their pa-
per. Our method outperforms theirs on CITIES

and obtains worse results on ELEMENTS, where
presumably our word embeddings were of lower
quality, having been trained on Google News,
where one might expect that few technical words
from the domain of Chemistry are used. We con-
sider this result convincing, since we did not ex-
ploit the fact that all documents have similar struc-
ture as Chen et al. (2009), and did not train specif-
ically for these datasets, but still were able to
demonstrate competitive performance.

Interestingly, human performance on WIKI-50
is only slightly better than our model. We assume
that because annotators annotated only a small
number of documents, they still lack familiarity
with the right level of granularity for segmenta-
tion, and are thus at a disadvantage compared to
the model that has seen many documents.

5.2 Run Time

Our method’s runtime is linear in the number of
words and the number of sentences in a docu-

ment. Conversely, GRAPHSEG has a much worse
asymptotic complexity ofO(N3+V k) whereN is
the length of the longest sentence, V the number of
sentences, and k the largest clique size. Moreover,
neural network models are highly parallelizable,
and benefit from running on GPUs.

In practice, our method is much faster than
GRAPHSEG. In Table 3 we report the average run
time per document on WIKI-50 on a CPU.

WIKI-50
Our model (CPU) 1.6
GRAPHSEG (CPU) 23.6

Table 3: Average run time in seconds per document.

6 Conclusions

In this work, we present a large labeled dataset,
WIKI-727K, for text segmentation, that enables
training neural models using supervised learning
methods. This closes an existing gap in the lit-
erature, where thus far text segmentation models
were trained in an unsupervised fashion.

Our text segmentation model outperforms prior
methods on Wikipedia documents, and performs
competitively on prior benchmarks. Moreover, our
system has linear runtime in the text length, and
can be run on modern GPU hardware. We argue
that for text segmentation systems to be useful in
the real world, they must be able to segment ar-
bitrary natural text, and this work provides a path
towards achieving that goal.

In future work, we will explore richer neural
models at the sentence-level. Another important

2Statistics on top-level segments.
3We optimized τ by cross validation on the CHOI dataset.
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direction is developing a structured global model
that will take all local predictions into account and
then perform a global segmentation decision.
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Abstract
Most real world language problems require
learning from heterogenous corpora, raising
the problem of learning robust models which
generalise well to both similar (in domain) and
dissimilar (out of domain) instances to those
seen in training. This requires learning an
underlying task, while not learning irrelevant
signals and biases specific to individual do-
mains. We propose a novel method to optimise
both in- and out-of-domain accuracy based on
joint learning of a structured neural model with
domain-specific and domain-general compo-
nents, coupled with adversarial training for
domain. Evaluating on multi-domain lan-
guage identification and multi-domain senti-
ment analysis, we show substantial improve-
ments over standard domain adaptation tech-
niques, and domain-adversarial training.

1 Introduction

Heterogeneity is pervasive in NLP, arising from
corpora being constructed from different sources,
featuring different topics, register, writing style,
etc. An important, yet elusive, goal is to produce
NLP tools that are capable of handling all types of
texts, such that we can have, e.g., text classifiers
that work well on texts from newswire to wikis
to micro-blogs. A key roadblock is application
to new domains, unseen in training. Accordingly,
training needs to be robust to domain variation,
such that domain-general concepts are learned in
preference to domain-specific phenomena, which
will not transfer well to out-of-domain evaluation.
To illustrate, Bitvai and Cohn (2015) report learn-
ing formatting quirks of specific reviewers in a re-
view text regression task, which are unlikely to
prove useful on other texts.

This classic problem in NLP has been tack-
led under the guise of “domain adaptation”, also
known as unsupervised transfer learning, us-
ing feature-based methods to support knowledge

transfer over multiple domains (Blitzer et al.,
2007; Daumé III, 2007; Joshi et al., 2012;
Williams, 2013; Kim et al., 2016). More recently,
Ganin and Lempitsky (2015) proposed a method
to encourage domain-general text representations,
which transfer better to new domains.

Inspired by the above methods, in this paper
we propose a novel technique for multitask learn-
ing of domain-general representations.1 Specifi-
cally, we propose deep learning architectures for
multi-domain learning, featuring a shared rep-
resentation, and domain private representation.
Our approach generalises the feature augmenta-
tion method of Daumé III (2007) to convolu-
tional neural networks, as part of a larger deep
learning architecture. Additionally, we use ad-
versarial training such that the shared represen-
tation is explicitly discouraged from learning do-
main identifying information (Ganin and Lempit-
sky, 2015). We present two architectures which
differ in whether domain is conditioned on or gen-
erated, and in terms of parameter sharing in form-
ing private representations.

We primarily evaluate on the task of lan-
guage identification (“LangID”: Cavnar and Tren-
kle (1994)), using the corpora of Lui and Baldwin
(2012), which combine large training sets over a
diverse range of text domains. Domain adapta-
tion is an important problem for this task (Lui and
Baldwin, 2014; Jurgens et al., 2017), where text
resources are collected from numerous sources,
and exhibit a wide variety of language use. We
show that while domain adversarial training over-
all improves over baselines, gains are modest.
The same applies to twin shared/private architec-
tures, but when the two methods are combined, we
observe substantial improvements. Overall, our

1Code, data and evaluation scripts available at
https://github.com/lrank/Domain_Robust_
Text_Representation.git
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methods outperform the state-of-the-art (Lui and
Baldwin, 2012) in terms of out-of-domain accu-
racy. As a secondary evaluation, we use the Multi-
Domain Sentiment Dataset (Blitzer et al., 2007),
where we once again observe a clear advantage
for our approaches, illustrating the potential of our
technique more broadly in NLP.

2 Multi-domain Learning

A primary consideration when formulating mod-
els of multi-domain data is how best to use the do-
main. Basic methods might learn several separate
models, or simply ignore the domain and learn a
single model. Neither method is ideal: the for-
mer fails to share statistics between the models to
capture the general concept, while the latter dis-
cards information that can aid classification, e.g.,
domain-specific vocabulary or class skew.

To address these issues, we propose two archi-
tectures as illustrated in Figure 1 (a and b), param-
eterised as a convolutional network (CNN) over
the input instance, chosen based on the success
of CNNs for text categorisation problems (Kim,
2014); note, however, that our method is general
and can be applied with other network types. Both
representations are based on the idea of twin rep-
resentations of each instance,2 denoted shared and
private representations, which are trained to cap-
ture domain-general versus domain-specific con-
cepts, respectively. This is achieved using various
loss functions, most notably an adversarial loss to
discourage learning of domain-specific concepts
in the shared representations. The two architec-
tures differ in whether the domain is provided as
an input (COND) or an output (GEN). Below, we
elaborate on the details of the two models.

2.1 Domain-Conditional Model (COND)

The first model, illustrated in Figure 1a, includes a
collection of domain-specific CNNs, and for each
training instance x, the domain-specific CNNpdi
is used to compute its private representation hp.
In this manner, the model conditions on the do-
main identifier. The COND model also computes
a shared representation, hs, directly from x, using
a shared CNNs, and the two representations are
concatenated together to form input to linear soft-
max classification function c for predicting class
label y. Thus far, the approach resembles Daumé

2This differs from standard architectures, e.g., ‘baseline’
in Figure 1c, which uses a single representation.
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(a) Domain-conditional (COND) model.
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(b) Domain-generative (GEN) model.
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(c) Baseline CNN model with adversarial loss.

Figure 1: Proposed model architectures, showing a sin-
gle training instance (xi, yi) with domain di, and base-
line model with domain adversarial loss. CNN denotes
a convolutional network, D indicates a discriminator (d
for domain adversarial and g for domain generation),
and red dashed and blue lines denote adversarial and
standard loss, resp.

III (2007), a method for multitask learning based
on feature augmentation in a linear model, which
works by replicating the input features to create
both general shared features, and domain-specific
features. Note that the approaches differ in that our
method uses deep learning to form the two repre-
sentations, in place of feature replication.

Adversarial Supervision A key challenge for
the COND model is that the ‘shared’ representation
can be contaminated by domain-specific concepts.
To address this, we borrow ideas from adversar-
ial learning (Goodfellow et al., 2014; Ganin et al.,
2016). The central idea is to learn a good general
representation (suitable for the shared component)
to maximize end task performance, yet obscure the
domain information, as modelled by a discrimi-
nator, Ds. This reduces the domain-specific in-
formation in the shared representation, however
note that important domain-specific components
can still be captured in the private representation.

Overall, this results in the training objective:

LCOND = min
θc,θs,{θp· }

max
θd
X (y|Hs,Hp,d; θc)

− λdX (d|Hs; θd)
(1)
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where X denotes the cross-entropy classification
loss, Hs = {hsi (xi)}ni=1 are the shared represen-
tations for the training set of n instances, and like-
wise Hp = {hpi (xi, di)}ni=1 are the private rep-
resentations, which are both functions of θs and
{θp· }, respectively. Note the negative sign of the
adversarial loss (referred to as d), and the max-
imisation with respect to the discriminator param-
eters θd. This has the effect of learning a max-
imally accurate discriminator wrt θd, while mak-
ing it maximally inaccurate wrt representation Hs,
and is implemented using a gradient reversal step
during backpropagation (Ganin et al., 2016).

Minimum Entropy Inference As COND condi-
tions on the domain, this imposes the requirement
that the domain of the test data is known (and cov-
ered in training), which is incompatible with our
goal of unsupervised adaptation. To deal with this
situation, we consider each domain in the test set
as belonging to one of the training domains, and
then select the domain with the minimum entropy
classification distribution. This is based on an as-
sumption that a closely matching domain should
be able to make confident predictions.3

2.2 Domain-Generative Model (GEN)

The second model is based on generation of,
rather than conditioning on, the domain, which al-
lows the model to learn domain signals that trans-
fer across some, but not all, domains. Most com-
ponents are common with the COND model as de-
scribed in §2.1, including the use of private and
shared representations, their use in the classifica-
tion output, and the adversarial loss based on dis-
criminating the domain from the shared represen-
tation. There are two key differences: (1) the pri-
vate representation, hp, is computed using a single
CNNp, rather than several domain-specific CNNs,
which confers benefits of domain-generalisation,
a more compact model, and simpler test infer-
ence;4 and (2) the private representation is used
to positively predict the domain, which further en-
courages the split between domain general and
domain-specific aspects of the representation.

3The minimum entropy method is quite effective, trailing
oracle selection by only 0.8% accuracy.

4The domain need not be known for test examples, so the
model can be used directly.

GEN has the following training objective,

LGEN = min
θc,θs,θp,θg

max
θd
X (y|Hs,Hp; θc)

− λdX (d|Hs; θd) + λgX (d|Hp; θg)
(2)

where notation follows that used in §2.1, with the
exception of Hp = {hpi (xi)}ni=1 that is redefined,
with hpi (xi) a function of θp, and the addition of
the last term to capture the generation loss g. The
same gradient reversal method from §2.1 is used
during training for the adversarial component.

3 Experiments

3.1 Language Identification

To evaluate our approach, we first consider the lan-
guage identification task.

Data We follow the settings of Lui and Bald-
win (2012), involving 5 training sets from 5 differ-
ent domains with 97 languages in total: Debian,
JRC-Acquis, Wikipedia, ClueWeb and RCV2,
derived from Lui and Baldwin (2011).5 We evalu-
ate accuracy on seven holdout benchmarks: Eu-
roGov, TCL, Wikipedia26 (all from Baldwin
and Lui (2010)), EMEA (Tiedemann, 2009), Eu-
roPARL (Koehn, 2005), T-BE (Tromp and Pech-
enizkiy, 2011), and T-SC (Carter et al., 2013).

Documents are tokenized as a byte sequence
(consistent with Lui and Baldwin (2012)), and
truncated or padded to a length of 1k bytes.7

Hyper-parameters We perform a grid search
for the hyper-parameters, and selected the follow-
ing settings to optimise accuracy over heldout data
from each of the training domains. All byte to-
kens are mapped to byte embeddings, which are
random initialized with size 300. We use the filter
sizes of 2, 4, 8, 16 and 32, with 128 filters for each,
to capture n-gram features of different lengths. A
dropout rate of 0.5 was applied to all the repre-
sentation layers. We set the factors λd and λg
to 10−3. All the models are optimized using the
Adam Optimizer (Kingma and Ba, 2015) with a
learning rate of 10−4.

5As ClueWeb in Lui and Baldwin (2012) is not publicly
accessible, we used a slightly different set of languages but
comparable number of documents for training.

6Note that the two Wikipedia datasets have no overlap.
7We also tried different document length limits, such as

10k, but observed no substantial change in performance.

476



Models EuroGov TCL Wikipedia2 EMEA EuroPARL T-BE T-SC ALLout

baseline CNN 99.9 91.7 88.9 93.1 98.2 85.2 92.2 92.7
+d 99.9 92.4 88.4 90.2 98.2 87.7 93.1 92.8
+g 99.9 92.0 88.7 91.6 98.4 86.8 92.8 92.9

COND 99.9 91.3 88.2 92.0 98.7 91.5 94.5 93.7
+d 99.9 93.5 90.1 91.3 98.7 92.6 97.9 94.9

GEN 99.9 92.3 88.0 93.3 98.6 87.1 93.8 93.3
+d+ g 99.9 93.1 88.7 92.5 99.1 91.2 96.1 94.4

LANGID.PY 98.7 90.4 91.3 93.4 99.2 94.1 88.6 93.6
CLD2 99.0 85.0 85.3 90.7 98.5 85.0 93.4 91.0

Table 1: Accuracy [%] of the different models over the seven heldout datasets, and the macro-averaged accuracy
out-of-domain over the 7 test domains (“ALLout”). The best result for each dataset is indicated in bold. Key: +d
= domain adversarial, +g = domain generation component.

3.1.1 Results and Analysis

Baseline and comparisons For comparison, we
implement a CNN baseline8 which is trained us-
ing all the data without domain knowledge (i.e.
the simple union of the different training datasets).
We also employ adversarial learning (d) and gen-
eration (g) of domain to the baseline model to bet-
ter understand the utility of these methods. Note
that the baseline +d is a multi-domain variant of
Ganin and Lempitsky (2015), albeit trained with-
out any text in the testing domains. For our mod-
els, we report results of configurations both with
and without the d and g components. We also
report the results for two state-of-the-art off-the-
shelf LangID tools: (1) LANGID.PY9 (Lui and
Baldwin, 2012); and (2) Google’s CLD2.10

Out-of-domain Results Our primary concern
in terms of evaluating the ability of the differ-
ent models to generalise, is out-of-domain perfor-
mance. Table 1 provides a breakdown of out-of-
domain results over the 7 holdout domains. The
accuracy varies greatly between test domains, de-
pending on the mix of languages, length of test
documents, etc. Both our models, COND and
GEN, achieve competitive performance, and are
further improved by d and g.

For the baseline, applying either d or g results
in mild improvements over the baseline, which is
surprising as the two forms of supervision work in
opposite directions. Overall the small change in
performance means neither method appears to be
a viable technique for domain adaptation.

8The baseline here used a double capacity hidden repre-
sentation, in order to better match the increased expressivity
of the shared/private models.

9https://github.com/saffsd/langid.py
10https://github.com/CLD2Owners/cld2

Overall, the raw COND and GEN perform bet-
ter than the baseline. Specifically, for COND, we
observed performance gains on EuroPARL, T-BE
and T-SC. These three datasets are notable in con-
taining shorter documents, which benefit the most
from shared learning. However, as discussed ear-
lier, multi-domain data can introduce noise to the
shared representation, causing the performance to
drop over TCL, Wikipedia2 and EMEA. This
observation demonstrates the necessity of apply-
ing adversarial learning to COND. On the other
hand, it is a different story for GEN: vanilla GEN

achieves accuracy gains relative to the baseline
over 5 domains, but is slightly below COND for
4 domains, a result of parameter-sharing over the
private representation.

In terms of the adversarial learning, we see
that by adding an adversarial component (+d or
+d + g), COND and GEN realises substantial im-
provements out of domain, with the exception of
EMEA. As we motivated, the domain adversar-
ial part d can obscure the domain-specific infor-
mation in the shared representation, which helps
COND have better generalisation to other domains.
Additionally, applying g to GEN helps the private
representation to generalize better. These results
demonstrate that both d and g are necessary com-
ponents of multi-domain models. EMEA is note-
worthy in that its pattern of results is overall differ-
ent to the other domains, in that applying d hurts
performance. For this domain, the baseline CNN
performs very well, and GEN does much better
than COND. We believe the reason is that, as a
medical domain, EMEA is very much an outlier
and does not align to any single training domain.
Also, there is a lot of borrowing of terms such
as drug and disease names verbatim between lan-
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Models Deb JRCA Wiki ClWb RCV2 ALLin

baseline CNN 96.6 99.8 97.8 90.7 97.9 96.6
baseline +d 96.5 99.8 97.8 90.7 97.0 96.4

COND 97.0 99.9 97.8 90.9 98.0 96.7
COND +d 97.0 99.9 98.4 90.8 98.1 96.8
GEN +d+ g 97.8 99.9 98.0 91.1 97.9 96.9

LANGID.PY 97.4 99.8 97.6 91.3 99.3 97.1
CLD2 92.2 99.8 92.3 92.3 89.8 93.3

Table 2: Accuracy [%] of different models over five in-
domain datasets using cross-validation evaluation and
macro-averaged accuracy (“ALLin”).

guages, further complicating the task.
Overall, our best models (COND +d and GEN

+d+ g) outperform both LANGID.PY and CLD2
in terms of average out-of-domain accuracy.

In-domain Results Table 2 reports the in-
domain performance over the 5 training domains,
using 5-fold cross validation, as well as the macro-
averaged accuracy. Our proposed methods (COND

+d and COND +d + g) consistently achieve bet-
ter performance than the baseline. Both COND

and GEN achieve competitive performance with
the state-of-the-art LANGID.PY in the in-domain
scenario. Although LANGID.PY performs slightly
better on average accuracy, our best model outper-
forms LANGID.PY for three of the five datasets.

3.2 Product Reviews

To evaluate the generalization of our methods to
other tasks, we experiment with the Multi-Domain
Sentiment Dataset (Blitzer et al., 2007).11 We
select the 20 domains with the most review in-
stances, and discard the remaining 5 domains.

For model parameterization, we adopt the same
basic hyper-parameter settings and training pro-
cess as for LangID in §3.1, but change the filter
sizes to 3, 4 and 5, use word-based tokenisation,
and truncate sentences to 256 tokens, for better
compatible with shorter documents.

We perform a out-of-domain evaluation over
four target domains, “book” (B), “dvd” (D), “elec-
tronics” (E) and “kitchen & housewares” (K), as
used in Blitzer et al. (2007). Our experimental
setup differs from theirs, in that they train on a
single domain and then evaluate on another, while
we train over 16 domains, then evaluate on the four

11From https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/, using the positive and negative
files from unprocessed, up to 2,000 instances per do-
main. For the four test domains we automatically aligned the
reviews in the processed and unprocessed, such that
we can compare results directly against prior work.

Models B D E K

baseline CNN 79.6 81.2 86.3 87.2
baseline +d 78.7 81.6 86.6 87.1

COND 79.2 81.8 85.8 87.2
COND +d 79.8 82.3 86.8 87.4
GEN +d+ g 80.2 82.4 87.3 87.8

SCL MI ♣ 76.0 78.5 77.9 85.9
DANN ♦ 72.3 78.4 84.3 85.4

IN DOMAIN ♣ 82.4 80.4 84.4 87.7

Table 3: Accuracy [%] of different models over 4 do-
mains (B, D, E and K) under out-of-domain evalua-
tions on Multi Domain Sentiment Dataset. Key: ♣

from Blitzer et al. (2007); ♦ from Ganin and Lempitsky
(2015).

test domains.
Table 3 presents the results. Overall, our pro-

posed methods consistently outperform the base-
lines, with the GEN +d + g approach a con-
sistent winner over all other techniques. Note
also the lacklustre performance when the base-
line is trained with the adversarial loss, mirror-
ing our findings for language identification in §3.1.
For comparison, we also report the best results
of SCL-MI and DANN, in both cases using an
oracle selection of source domain. Our method
consistently outperform these approaches, despite
having no test oracle, although note that we use
more diverse data sources for training.

4 Conclusions

We have proposed a novel deep learning method
for multi-domain learning, based on joint learn-
ing of domain-specific and domain-general com-
ponents, using either domain conditioning or do-
main generation. Based on our evaluation over
multi-domain language identification and multi-
domain sentiment analysis, we show our models to
substantially outperform a baseline deep learning
method, and set a new benchmark for state-of-the-
art cross-domain LangID. Our approach has po-
tential to benefit other NLP applications involving
multi-domain data.
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Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics. pages 256–263.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation. In In-
ternational Conference on Machine Learning 2015.
pages 1180–1189.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17:59:1–59:35.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial nets. In Advances in Neural In-
formation Processing Systems 27. pages 2672–2680.

Mahesh Joshi, Mark Dredze, William W. Cohen, and
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Abstract

We propose a variant of a well-known machine
translation (MT) evaluation metric, HyTER
(Dreyer and Marcu, 2012), which exploits
reference translations enriched with meaning
equivalent expressions. The original HyTER
metric relied on hand-crafted paraphrase net-
works which restricted its applicability to new
data. We test, for the first time, HyTER with
automatically built paraphrase lattices. We
show that although the metric obtains good re-
sults on small and carefully curated data with
both manually and automatically selected sub-
stitutes, it achieves medium performance on
much larger and noisier datasets, demonstrat-
ing the limits of the metric for tuning and eval-
uation of current MT systems.

1 Introduction

Human translators and MT systems can produce
multiple plausible translations for input texts.
To reward meaning-equivalent but lexically di-
vergent translations, MT evaluation metrics ex-
ploit synonyms and paraphrases, or multiple ref-
erences (Papineni et al., 2002; Doddington, 2002;
Denkowski and Lavie, 2010; Lo et al., 2012). The
HyTER metric (Dreyer and Marcu, 2012) relies on
massive reference networks encoding an exponen-
tial number of correct translations for parts of a
given sentence, proposed by human annotators.
The manually built networks attempt to encode the
set of all correct translations for a sentence, and
HyTER rewards high quality hypotheses by mea-
suring their minimum edit distance to the set of
possible translations.

HyTER spurred a lot of enthusiasm but the
need for human annotations heavily reduced its
applicability to new data. We propose to use
an embedding-based lexical substitution model
(Melamud et al., 2015) for building this type of
reference networks and test, for the first time, the
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Figure 1: An English reference sentence enriched with
substitutes selected by the embedding-based lexical
substitution model.

metric with automatically generated lattices (here-
after HyTERA). We show that HyTERA strongly
correlates with HyTER with hand-crafted lattices,
and approximates the hTER score (Snover et al.,
2006) as measured using post-edits made by hu-
man annotators. Furthermore, we generate lattices
for standard datasets from a recent WMT Metrics
Shared Task and perform the first evaluation of
HyTER on large and noisier datasets. The results
show that it still remains an interesting solution for
MT evaluation, but highlight its limits when used
to evaluate recent MT systems that make far less
errors of lexical choice than older systems.

2 The Original HyTER Metric

The HyTER metric (Dreyer and Marcu, 2012)
computes the similarity between a translation hy-
pothesis and a reference lattice that compactly en-
codes millions of meaning-equivalent translations.
Formally HyTER is defined as:

HyTER (x,Y ) = argmin
y∈Y

LS(x,y)
len(y)

(1)

where Y is a set of references that can be en-
coded as a finite state automaton such as the one
represented in Figure 1, x is a translation hypoth-
esis and LS is the standard Levenshtein distance,
defined as the minimum number of substitutions,
deletions and insertions required to transform x
into y. We use, in all our experiments, our own im-
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plementation of HyTER1 that relies on the Open-
FST framework (Allauzen et al., 2007). Contrary
to the original HyTER implementation, we do not
consider permutations when transforming x into
y as previous results (cf. Table 3 in (Dreyer and
Marcu, 2012)) have shown that permutations have
only very little impact while significantly increas-
ing the computational complexity of HyTER com-
putation.2 We also use an exact search rather than
a A∗ search to minimize Equation (1).

The HyTER metric has already been success-
fully used in MT evaluation but only with hand-
crafted lattices. To the best of our knowledge, this
is the first time it is tested with lattices built auto-
matically.

3 Automatic Lattice Creation

We propose an alternative to the costly manual an-
notation of reference translations which exploits
an embedding-based model of lexical substitution
proposed by Melamud et al. (2015) (called Add-
Cos). The original AddCos implementation se-
lects substitutes for words in context from the
whole vocabulary. Here, we restrict candidate
substitutes to paraphrases of words in the Para-
phrase Database (PPDB) XXL package (Ganitke-
vitch et al., 2013).3

AddCos quantifies the fit of substitute word s
for target word t in context C by measuring the
semantic similarity of the substitute to the target,
and the similarity of the substitute to the context:

(2)AddCos(s, t,C) =
cos(s, t) + ∑c∈C cos(s,c)

|C|+1

The vectors s and t are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b,a).4 The context C is the set of context
embeddings for words appearing within a fixed-
width window of the target t in a sentence (we use

1The code is available at https://bitbucket.
org/gwisniewski/hytera/

2Note that as permutations of interest can be compactly
encoded in a fine-state graph (Kumar and Byrne, 2005), the
MOVE operation can be easily considered in our code by ap-
plying the substitutions to the permutation lattice rather than
to the sentence.

3PPDB paraphrases come into packages of different sizes
(going from S to XXXL): small packages contain high-
precision paraphrases while larger ones have high coverage.
All are available from paraphrase.org

4For the moment, we focus on individual content words.
In future work, we plan to also annotate longer text segments
in the references with multi-word PPDB paraphrases.

a window width of 1). The embeddings c are con-
text embeddings generated by skip-gram.5 In our
implementation, we train 300-dimensional word
and context embeddings over the 4B words in
the Annotated Gigaword (AGiga) corpus (Napoles
et al., 2012) using the gensim word2vec pack-
age (Mikolov et al., 2013b,a; Řehůřek and Sojka,
2010).6

Each content word token in a sentence is ex-
panded to include all its possible substitutes se-
lected by AddCos in this specific context, and
the lattice can take any path from the expanded
start token to the expanded end token. We fil-
ter the paraphrase candidates according to: a)
their PPDB2.0 score, an out-of-context measure of
paraphrase confidence which denotes the strength
of the relation between the paraphrase and the
target word (hereafter, PPDBSc) (Pavlick et al.,
2015); b) the substitution score assigned to para-
phrases in context by the AddCos model (here-
after, AddCosSc), which shows whether the para-
phrase is a good fit for the target word in a specific
context.7 Figure 1 shows the four highest ranked
paraphrases proposed by AddCos for words in the
English reference sentence: Matt Damon down-
plays diversity in filmmaking. The sentences Matt
Damon underestimates richness in cinematogra-
phy and Matt Damon belittles pluralism in cinema.
are included among the 48 references encoded in
this lattice.

4 Evaluating HyTER with Automatic
Substitutions

We assess the quality of HyTERA to evaluate the
quality of MT output both at the sentence and the
system level. We first use the setting of Dreyer
and Marcu (2012), in Section § 5.1, to compare
the score estimated by HyTER and HyTERA to
hTER scores. In Section § 5.2, we explore whether
HyTERA can reliably predict human translation
quality scores from the WMT16 Metrics Shared
Task.

5In the original implementation, Melamud et al. (2015)
use syntactic dependencies as contexts. We define context as
a fixed-width window of words to avoid the need for depen-
dency parsing.

6The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter 1e−4, 10 neg-
ative samples per target word, and 5 training epochs.

7Our implementation of AddCos with PPDB substi-
tutes can be found at https://github.com/acocos/
lexsub_addcos

481



5 Comparing HyTER and HyTERA

5.1 Open MT NIST Evaluation

To evaluate the performance of HyTER, Dreyer
and Marcu (2012) examine whether it can approx-
imate the hTER score (Snover et al., 2006) that
measures the number of edits required to change
a system output into its post-edition. hTER scores
are a good estimate of translation quality and use-
fulness, but require each translation hypothesis to
be corrected by a human annotator. Dreyer and
Marcu (2012) show that it can be closely approx-
imated by HyTER scores. In this section, we re-
produce their experiments with HyTERA to see
whether it is possible to use automatically-built
rather than hand-crafted references to approximate
hTER scores.

Data Following Dreyer and Marcu (2012), we
consider a subset of the ‘progress set’ used in the
2010 Open MT NIST evaluation.8 This corpus is
made of 102 Arabic and 102 Chinese sentences.
Each sentence is automatically translated into En-
glish by five MT systems and these translation hy-
potheses are post-edited by experienced LDC an-
notators, allowing us to compute hTER scores. The
corpus also contains four references and meaning-
equivalent annotations which allow for direct com-
parison to the original HyTER.

Experimental Setting We build meaning-
equivalent lattices by applying the lexical
substitution method described in Section 3 to each
of the four references associated with a sentence,
and considering the union of the resulting lattices.
We report results for two kinds of lattices: lattices
encoding all lexical substitutes available for a
word in PPDB (allPars) and lattices of substi-
tutes with PPDBSc>2.3 (allParsFiltered)
and AddCosSc≥0. As expected, the allPars
lattices are much larger than the manual and the
filtered lattices (cf. Table 1). In all our experi-
ments, all corpora are down-cased and tokenized
using standard Moses scripts. hTER scores are
computed using TERp (Snover et al., 2009).

Sentence Level Evaluation Table 2 reports the
correlation between HyTER, HyTERA and hTER at
the sentence level. We also include as a base-
line the correlation with the sentence-level BLEU

8The corpus is available from LDC under reference
ldc2014t09.

ar2en zh2en

manual 9,454,542 7.8×109

allPars 1.8×1027 8.5×1027

allParsFiltered 10,803 3.3×1020

Table 1: Median number of references generated by
each method.

score, estimated by the arithmetic mean of 1 to 4-
gram precisions.9

In all cases, there is a high correlation between
HyTER, HyTERA and hTER, significantly higher
than the correlation between BLEU and hTER.
This observation shows that replacing the hand-
crafted lattices with automatically built ones has
only a moderate impact on the HyTER metric qual-
ity: automatic lattices result in a small drop of
the correlation when evaluating hypotheses trans-
lated from Chinese, and slightly improve it for
the Arabic to English condition. Overall HyTERA

scores are highly correlated with HyTER scores
(ρ = 0.766 for Arabic and ρ = 0.756 for Chinese).
More importantly, considering the filtered lattices
allows to significantly reduce computation time
compared to the allPars ones without hurting
the quality estimation capacity of the metric.

System Level Evaluation Figure 2 shows how
the five MT systems are ranked by the differ-
ent metrics we consider, when translating from
Arabic to English. All metrics rank the sys-
tems in the same order, except from HyTER with
allParsFiltered that only inverts two sys-
tems. Note that the tested systems were selected
by NIST to cover a variety of system architectures
(statistical, rule-based, hybrid) and performances
(Dreyer and Marcu, 2012), which makes distinc-
tion between them an easy task for all metrics. The
benefits of using a metric like HyTER, which fo-
cuses on the word level, are much clearer in the
sentence-based evaluation (Table 2).

5.2 WMT Metrics Evaluation
In our second set of experiments, we explore the
ability of HyTERA to predict direct human judg-
ments at the sentence level using the setting of
the WMT16 Metrics Shared Task (Bojar et al.,
2016). We measure the correlation between ad-

9More precisely: SBLEU = 1
4 ·∑4

i=1 pi where pi is the
number of i-grams that appears both in the reference and in
the hypothesis divided by the number of i-grams in the refer-
ence.
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ar→ en zh→ en

HyTER 0.667 0.672
HyTERA(allPars) 0.673 0.616
HyTERA(allParsFiltered) 0.671 0.605
BLEU -0.563 -0.556

Table 2: Correlation, calculated by Spearman’s ρ , between the scores of translation hypotheses estimated by
HyTER and hTER.

15 6 2 9 5

33 33.5

39.139.5

55.1

manual

15 6 2 9 5

43.443.8

49.150.6

65.1

allPars

15 6 2 9 5

49 48.1

54.3
56.4

70.7

allParsFiltered

15 6 2 9 5

47.2
49.9

55
56.8

69.1

BLEU

15 6 2 9 5

15.1

18.1

20.9 21

26.5

HTER

Figure 2: Five Arabic to English MT systems scored
by different metrics.

equacy scores collected on Amazon Mechanical
Turk following the method advocated by Graham
et al. (2016) and the translation quality estimated
by applying HyTERA to the official WMT ref-
erence. Table 3 reports the results achieved by
HyTERA on the six language pairs of the WMT16
Shared Task and its rank among the other metrics
tested in the competition.

HyTERA obtains medium performance on the
WMT16 dataset, which is much larger and noisier
than the dataset used for evaluation in (Dreyer and
Marcu, 2012): it is made, for each language, of
560 translations sampled from outputs of all sys-
tems taking part in the WMT15 campaign. It is
important to note that the hTER scores used in the
initial HyTER evaluation were produced by experi-
enced LDC annotators, while the WMT16 Direct
Assessment (DA) adequacy judgments were col-
lected from non-experts through crowd-sourcing
(Bojar et al., 2016). HyTERA achieves higher per-
formance than the SENTBLEU baseline in four
language pairs (cs/de/ru/tr-en). It obtains slightly
lower correlation than SENTBLEU for fi-en and
ro-en, the language pairs in which correlation was

lower for all metrics.
Among the metrics tested at the WMT16

shared task we find combination metrics, and
metrics that have been tuned on a develop-
ment dataset. The metric that performs best
for most languages in the segment-level WMT16
evaluation, DPMFCOMB, combines 57 individ-
ual metrics (Yu et al., 2015). Similarly, the
second highest ranked metric, METRICSF, com-
bines BLEU, METEOR, the alignment-based met-
ric UPF-COMBALT (Fomicheva et al., 2016), and
fluency features. The BEER metric, found in fifth
position, is a trained evaluation metric with a lin-
ear model that combines features capturing char-
acter n-grams and permutation trees (Stanojević
and Sima’an, 2015).

We report the rank of HyTERA among all met-
rics (single and combined), and among the single
ones. It is important to note that HyTERA needs no
tuning, is straightforward to use and very fast to
compute, especially with filtered lattices (on aver-
age 6s).

The lower performance of the metric on this
dataset is also due to the different nature of the MT
systems tested. While in the (Dreyer and Marcu,
2012) evaluation, the systems came from the 2010
Open MT NIST evaluation and were selected to
cover a variety of architectures and performances,
the systems that participated in WMT15 are, for
the large part, neural MT systems (Bojar et al.,
2015). As reported by Bentivogli et al. (2016),
Neural MT systems make at least 17% fewer
lexical choice errors than phrase-based systems,
which limits the potential of HyTERA, primarily
focused on capturing correct lexical choice.

6 Conclusion

We have proposed a method for automatic para-
phrase lattice creation which makes the HyTER

metric applicable to new datasets. We provide the
first evaluation of HyTER on data from a recent
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HyTERA SENTBleu WMT All WMT Single Metrics

r r best r rank/15 best r rank/13

cs→ en .599 .557 .713 10 .671 8
de→ en .498 .448 .601 6 .591 4
fi→ en .476 .484 .598 7 .554 5
ro→ en .483 .499 .662 9 .639 7
ru→ en .525 .502 .618 10 .618 8
tr→ en .540 .532 .663 10 .627 8

Table 3: Pearson correlation between HyTERA and human judgments at the segment level on WMT16 Metrics
Shared Task data on different language pairs. We compare to the scores of the SENTBLEU baseline. We report
the best correlation achieved by the participating metrics and the rank of HyTERA among all 15 participants, and
among the single 13 metrics left after excluding combined ones.

WMT Metrics Shared task. We show that although
the metric achieves high correlation with human
judgments of translation quality on small and care-
fully curated data, with both manual and automat-
ically constructed paraphrase networks, it obtains
medium performance on recent WMT data. The
lower performance is mainly due to the noisier na-
ture of the data and to the higher quality lexical
choices made by current neural MT systems, com-
pared to phrase-based and transfer systems, which
limits the potential of the metric for system evalu-
ation and tuning.

In its current form, the paraphrase substitution
mechanism supports only lexical substitutions. It
would be straightforward to extend the AddCos
method to handle multi-word paraphrases by train-
ing embeddings for multi-word phrases, keeping
in mind that longer substitutions might require
restructuring the produced sentences to preserve
grammaticality.

7 Acknowledgments

We would like to thank Markus Dreyer for sharing
with us the original HyTER code.

This work has been supported by the French
National Research Agency under project ANR-
16-CE33-0013. This material is based in part
on research sponsored by DARPA under grant
number FA8750-13-2-0017 (the DEFT program)
and HR0011-15-C-0115 (the LORELEI program).
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes.
The views and conclusions contained in this pub-
lication are those of the authors and should not be
interpreted as representing official policies or en-
dorsements of DARPA and the U.S. Government.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
General and Efficient Weighted Finite-State Trans-
ducer Library. In Proceedings of the Ninth Inter-
national Conference on Implementation and Appli-
cation of Automata, (CIAA 2007). Springer, volume
4783 of Lecture Notes in Computer Science, pages
11–23.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus Phrase-
Based Machine Translation Quality: a Case Study.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin,
Texas, pages 257–267.
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Miloš Stanojević. 2016. Results of the WMT16
Metrics Shared Task. In Proceedings of the First
Conference on Machine Translation. Berlin, Ger-
many, pages 199–231.

Michael Denkowski and Alon Lavie. 2010. Extending
the METEOR Machine Translation Evaluation Met-
ric to the Phrase Level. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Los Angeles, California, USA,
pages 250–253.

George Doddington. 2002. Automatic Evaluation of
Machine Translation Quality Using N-gram Co-
occurrence Statistics. In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research. San Diego, California, pages
138–145.

484



Markus Dreyer and Daniel Marcu. 2012. HyTER:
Meaning-Equivalent Semantics for Translation
Evaluation. In Proceedings of the 2012 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
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Abstract

Semantic representations have long been ar-
gued as potentially useful for enforcing mean-
ing preservation and improving generalization
performance of machine translation methods.
In this work, we are the first to incorporate in-
formation about predicate-argument structure
of source sentences (namely, semantic-role
representations) into neural machine transla-
tion. We use Graph Convolutional Networks
(GCNs) to inject a semantic bias into sentence
encoders and achieve improvements in BLEU
scores over the linguistic-agnostic and syntax-
aware versions on the English–German lan-
guage pair.

1 Introduction

It has long been argued that semantic represen-
tations may provide a useful linguistic bias to
machine translation systems (Weaver, 1955; Bar-
Hillel, 1960). Semantic representations provide
an abstraction which can generalize over differ-
ent surface realizations of the same underlying
‘meaning’. Providing this information to a ma-
chine translation system, can, in principle, im-
prove meaning preservation and boost generaliza-
tion performance.

Though incorporation of semantic information
into traditional statistical machine translation has
been an active research topic (e.g., (Baker et al.,
2012; Liu and Gildea, 2010; Wu and Fung, 2009;
Bazrafshan and Gildea, 2013; Aziz et al., 2011;
Jones et al., 2012)), we are not aware of any previ-
ous work considering semantic structures in neu-
ral machine translation (NMT). In this work, we
aim to fill this gap by showing how information
about predicate-argument structure of source sen-
tences can be integrated into standard attention-
based NMT models (Bahdanau et al., 2015).

We consider PropBank-style (Palmer et al.,
2005) semantic role structures, or more specifi-

John      gave      his      wonderful      wife      a      nice      present .

A0

A1

A2

Figure 1: An example sentence annotated with a
semantic-role representation.

cally their dependency versions (Surdeanu et al.,
2008). The semantic-role representations mark
semantic arguments of predicates in a sentence
and categorize them according to their seman-
tic roles. Consider Figure 1, the predicate gave
has three arguments:1 John (semantic role A0,
‘the giver’), wife (A2, ‘an entity given to’) and
present (A1, ‘the thing given’). Semantic roles
capture commonalities between different realiza-
tions of the same underlying predicate-argument
structures. For example, present will still be A1 in
sentence “John gave a nice present to his won-
derful wife”, despite different surface forms of
the two sentences. We hypothesize that seman-
tic roles can be especially beneficial in NMT, as
‘argument switching’ (flipping arguments corre-
sponding to different roles) is one of frequent and
severe mistakes made by NMT systems (Isabelle
et al., 2017).

There is a limited amount of work on incor-
porating graph structures into neural sequence
models. Though, unlike semantics in NMT,
syntactically-aware NMT has been a relatively
hot topic recently, with a number of approaches
claiming improvements from using treebank syn-
tax (Sennrich and Haddow, 2016; Eriguchi et al.,
2016; Nadejde et al., 2017; Bastings et al., 2017;
Aharoni and Goldberg, 2017), our graphs are dif-
ferent from syntactic structures. Unlike syntac-
tic dependency graphs, they are not trees and thus

1We slightly abuse the terminology: formally these are
syntactic heads of arguments rather than arguments.
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cannot be processed in a bottom-up fashion as in
Eriguchi et al. (2016) or easily linearized as in
Aharoni and Goldberg (2017). Luckily, the mod-
eling approach of Bastings et al. (2017) does not
make any assumptions about the graph structure,
and thus we build on their method.

Bastings et al. (2017) used Graph Convolu-
tional Networks (GCNs) to encode syntactic struc-
ture. GCNs were originally proposed by Kipf
and Welling (2016) and modified to handle la-
beled and automatically predicted (hence noisy)
syntactic dependency graphs by Marcheggiani
and Titov (2017). Representations of nodes (i.e.
words in a sentence) in GCNs are directly influ-
enced by representations of their neighbors in the
graph. The form of influence (e.g., transition ma-
trices and parameters of gates) are learned in such
a way as to benefit the end task (i.e. transla-
tion). These linguistically-aware word represen-
tations are used within a neural encoder. Although
recent research has shown that neural architectures
are able to learn some linguistic phenomena with-
out explicit linguistic supervision (Linzen et al.,
2016; Vaswani et al., 2017), informing word rep-
resentations with linguistic structures can provide
a useful inductive bias.

We apply GCNs to the semantic dependency
graphs and experiment on the English–German
language pair (WMT16). We observe an im-
provement over the semantics-agnostic baseline (a
BiRNN encoder; 23.3 vs 24.5 BLEU). As we use
exactly the same modeling approach as in the syn-
tactic method of Bastings et al. (2017), we can
easily compare the influence of the types of lin-
guistic structures (i.e., syntax vs. semantics). We
observe that when using full WMT data we ob-
tain better results with semantics than with syntax
(23.9 BLEU for syntactic GCN). Using syntactic
and semantic GCNs together, we obtain a further
gain (24.9 BLEU) which suggests the complemen-
tarity of information encoded by the syntactic and
semantic representations.

2 Model

2.1 Encoder-decoder Models

We use a standard attention-based encoder-
decoder model (Bahdanau et al., 2015) as a start-
ing point for constructing our model. In encoder-
decoder models, the encoder takes as input the
source sentence x and calculates a representa-
tion of each word xt in x. The decoder outputs

a translation y relying on the representations of
the source sentence. Traditionally, the encoder
is parametrized as a Recurrent Neural Network
(RNN), but other architectures have also been suc-
cessful, such as Convolutional Neural Networks
(CNN) (Gehring et al., 2017) and hierarchical self-
attention models (Vaswani et al., 2017), among
others. In this paper we experiment with RNN and
CNN encoders. We explore the benefits of incor-
porating information about semantic-role struc-
tures into such encoders.

More formally, RNNs (Elman, 1990) can be
defined as a function RNN(x1:t) that calculates
the hidden representation ht of a word xt based
on its left context. Bidirectional RNNs use two
RNNs: one runs in the forward direction and an-
other one in the backward direction. The forward
RNN(x1:t) represents the left context of word xt,
whereas the backward RNN(xn:t) computes a rep-
resentation of the right context. The two represen-
tations are concatenated in order to incorporate in-
formation about the entire sentence:

BiRNN(x, t) = RNN(x1:t) � RNN(xn:t).

In contrast to BiRNNs, CNNs (LeCun et al., 2001)
calculate a representation of a word xt by consid-
ering a window of words w around xt, such as

CNN(x, t, w) = f(xt�bw/2c, .., xt, .., xt+bw/2c),

where f is usually an affine transformation fol-
lowed by a nonlinear function.

Once the sentence has been encoded, the de-
coder takes as input the induced sentence repre-
sentation and generates the target sentence y. The
target sentence y is predicted word by word us-
ing an RNN decoder. At each step, the decoder
calculates the probability of generating a word yt

conditioning on a context vector ct and the previ-
ous state of the RNN decoder. The context vector
ct is calculated based on the representation of the
source sentence computed by the encoder, using
an attention mechanism (Bahdanau et al., 2015).
Such a model is trained end-to-end on a parallel
corpus to maximize the conditional likelihood of
the target sentences.

2.2 Graph Convolutional Networks
Graph neural networks are a family of neural ar-
chitectures (Scarselli et al., 2009; Gilmer et al.,
2017) specifically devised to induce representa-
tion of nodes in a graph relying on its graph struc-
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Figure 2: Two layers of semantic GCN on top of a (not
shown) BiRNN or CNN encoder.

BiRNN CNN

Baseline (Bastings et al., 2017) 14.9 12.6
+Sem 15.6 13.4
+Syn (Bastings et al., 2017) 16.1 13.7
+Syn + Sem 15.8 14.3

Table 1: Test BLEU, En–De, News Commentary.

ture. Graph convolutional networks (GCNs) be-
long to this family. While GCNs were introduced
for modeling undirected unlabeled graphs (Kipf
and Welling, 2016), in this paper we use a formu-
lation of GCNs for labeled directed graphs, where
the direction and the label of an edge are incor-
porated. In particular, we follow the formulation
of Marcheggiani and Titov (2017) and Bastings
et al. (2017) for syntactic graphs and apply it to
dependency-based semantic-role structures (Hajic
et al., 2009) (as in Figure 1).

More formally, consider a directed graph G =
(V, E), where V is a set of nodes, and E is a set of
edges. Each node v 2 V is represented by a fea-
ture vector xv 2 Rd, where d is the latent space
dimensionality. The GCN induces a new repre-
sentation h0

v 2 Rd of a node v while relying on
representations hu of its neighbors:

h0
v=⇢

⇣X

u2N (v)

gu,v

�
Wdir(u,v) hu + blab(u,v)

�⌘
,

where N (v) is the set of neighbors of v,
Wdir(u,v) 2 Rd⇥d is a direction-specific param-
eter matrix. There are three possible directions
(dir(u, v) 2 {in, out, loop}): self-loop edges
were added in order to ensure that the initial repre-
sentation of node hv directly affects its new repre-
sentation h0

v. The vector blab(u,v) 2 Rd is an em-
bedding of a semantic role label of the edge (u, v)
(e.g., A0). The functions gu,v are scalar gates
which weight the importance of each edge. Gates

BiRNN

Baseline (Bastings et al., 2017) 23.3
+Sem 24.5
+Syn (Bastings et al., 2017) 23.9
+Syn + Sem 24.9

Table 2: Test BLEU, En–De, full WMT16.

are particularly useful when the graph is predicted
and thus may contain errors, i.e., wrong edges. In
this scenario gates can down weight the influence
of potentially unreliable edges. The function ⇢ is
a non-linearity (ReLU).2

As with CNNs, GCN layers can be stacked in
order to incorporate higher order neighborhoods.
In our experiments, we used GCNs on top of
a standard BiRNN encoder and a CNN encoder
(Figure 2). In other words, the initial represen-
tations of words fed into GCN were either RNN
states or CNN representations.

3 Experiments

We experimented with the English-to-German
WMT16 dataset (⇠4.5 million sentence pairs for
training). We use its subset, News Commen-
tary v11, for development and additional ex-
periments (⇠226.000 sentence pairs). For all
these experiments, we use newstest2015 and
newstest2016 as a validation and test set, re-
spectively.

We parsed the English partitions of these
datasets with a syntactic dependency parser (An-
dor et al., 2016) and dependency-based seman-
tic role labeler (Marcheggiani et al., 2017). We
constructed the English vocabulary by taking all
words with frequency higher than three, while for
German we used byte-pair encodings (BPE) (Sen-
nrich et al., 2016). All hyperparameter selection
was performed on the validation set (see Appendix
A). We measured the performance of the models
with (cased) BLEU scores (Papineni et al., 2002).
The settings and the framework (Neural Monkey
(Helcl and Libovický, 2017)) used for experiments
are the ones used in Bastings et al. (2017), which
we use as baselines. As RNNs, we use GRUs (Cho
et al., 2014).

We now discuss the impact that different ar-
chitectures and linguistic information have on the
translation quality.

2Refer to Marcheggiani and Titov (2017) and Bastings
et al. (2017) for further details.
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3.1 Results and Discussion

First, we start with experiments with the smaller
News Commentary training set (see Table 1). As
in Bastings et al. (2017), we used the standard
attention-based encoder-decoder model as a base-
line.

We tested the impact of semantic GCNs when
used on top of CNN and BiRNN encoders. As
expected, BiRNN results are stronger than CNN
ones. In general, for both encoders we observe
the same trend: using semantic GCNs leads to an
improvement over the baseline model. The im-
provements is 0.7 BLEU for BiRNN and 0.8 for
CNN. This is slightly surprising as the potentially
non-local semantic information should in principle
be more beneficial within a less powerful and lo-
cal CNN encoder. The syntactic GCNs (Bastings
et al., 2017) appear stronger than semantic GCNs.
As exactly the same model and optimization are
used for both GCNs, the differences should be
due to the type of linguistic representations used.3

Since syntax and semantic structures seem to be
individually beneficial and, though related, cap-
ture different linguistic phenomena, it is natural to
try combining them. When syntactic and semantic
GCNs are stacked, we observe a further improve-
ment with respect to the semantic GCN model, and
a substantial improvement with respect to the syn-
tactic GCN model with a CNN encoder.

Now we turn to the full WMT experiments.
Though we expected the linguistic bias to be more
valuable in the resource-poor setting, the improve-
ment from using semantic-role structures is larger
here (+1.2 BLEU). It is surprising but perhaps
more data is beneficial for accurately modeling in-
fluence of semantics on the translation task. Inter-
estingly, the semantic GCN now outperforms the
syntactic one by 0.6 BLEU. Again, it is hard to
pinpoint exact reasons for this. One may speculate
though that, given enough data, RNNs were able
to capture syntactic dependency and thus reducing
the benefits from using treebank syntax, whereas
(often less local and harder) semantic dependen-
cies were more complementary. Finally, when the
semantic GCN is stacked over the syntactic GCN,
we obtain a further improvement reaching 24.9
BLEU. These results suggest that syntactic and se-

3Note that the SRL system we use (Marcheggiani et al.,
2017) does not use syntax and is faster than the syntactic
parser of Andor et al. (2016), so semantic GCNs may still
be preferable from the engineering perspective even in this
setting.

BiRNN CNN

Baseline (Bastings et al., 2017) 14.1 12.1

+Sem (1L) 14.3 12.5
+Sem (2L) 14.4 12.6
+Sem (3L) 14.4 12.7
+Syn (2L) (Bastings et al., 2017) 14.8 13.1

+SelfLoop (1L) 14.1 12.1
+SelfLoop (2L) 14.2 11.5

+SemSyn (1L) 14.1 12.7
+Syn (1L) + Sem (1L) 14.7 12.7
+Syn (1L) + Sem (2L) 14.6 12.8
+Syn (2L) + Sem (1L) 14.9 13.0
+Syn (2L) + Sem (2L) 14.9 13.5

Table 3: Validation BLEU, News commentary only

mantic dependency structures are complementary
information when it comes to translation.

3.2 Ablations and Syntax-Semantics GCNs

We used the validation set to perform extra exper-
iments, as well as to select hyper parameters (e.g.,
the number of GCN layers) for the experiments
presented above. Table 3 presents the results. The
annotation 1L, 2L and 3L refers to the number of
GCN layers used.

First, we tested whether the gain we observed
is an effect of an extra layer of non-linearity
or an effect of the linguistic structures encoded
with GCNs. In order to do so, we used the
GCN layer without any structural information.
In this way, only the self-loop edge is used
within the GCN node updates. These results
(e.g., BiRNN+SelfLoop) show that the linguistic-
agnostic GCNs perform on par with the baseline,
and thus using linguistic structure is genuinely
beneficial in translation.

We compared stacking a semantic GCN on top
of syntactic one (as done in section 3.1) against
combining syntax and semantic in the same GCN
layer (SemSyn).4 With SemSyn we do not ob-
serve any improvement with respect to having se-
mantic and syntactic information alone. We argue
that the reason for this is that the two linguistic
representations do not interact much as much as
needed when encoded into the same GCN layer
with a simple aggregation function. The stacking
approach allows for more complex interaction and
more successful. However, on this smaller dataset,

4We used distinct matrices W for syntax and semantics.
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John     sold     the     car     to     Mark     .

A0 A1 A2

BiRNN John verkaufte das Auto nach Mark .
Sem John verkaufte das Auto an Mark .

The   boy   walking   down   the   dusty   road   is   drinking   a   beer  .

A0 AM-DIR A0 A1

BiRNN Der Junge zu Fuß die staubige Straße ist ein Bier trinken .
Sem Der Junge , der die staubige Straße hinunter geht , trinkt ein Bier .

The   boy   sitting   on   a   bench   in   the   park   plays   chess   .

A1 A2 A0 A1AM-LOC

BiRNN Der Junge auf einer Bank im Park spielt Schach .
Sem Der Junge sitzt auf einer Bank im Park Schach .

Table 4: Qualitative analysis. The first two sentences are translations where the semantic structure helps. For the
last sentence both translations are problematic but the BiRNN one is grammatical.

unlike full WMT (Table 1), we obtain smaller im-
provements over the single-representation models.

3.3 Qualitative Analysis

We analyzed the behavior of the BiRNN baseline
and the semantic GCN model trained on the full
WMT16 training set. In Table 4 we show three
examples where there is a clear difference between
translations produced by the two models. Besides
the two translations, we show the dependency SRL
structure predicted by the labeler and exploited by
our GCN model.

In the first sentence, the only difference is in the
choice of the preposition for the argument Mark.
Note that the argument is correctly assigned to role
A2 (‘Buyer’) by the semantic role labeler. The
BiRNN model translates to with nach, which
in German expresses directionality and would be
a correct translation should the argument refer to
a location. In contrast, semantic GCN correctly
translates to as an. We hypothesize that the se-
mantic structure, namely the assignment of the ar-
gument to A2 rather than AM-DIR (‘Directional-
ity’), helps the model to choose the right preposi-
tion. In the second sentence, the BiRNN’s trans-
lation is ungrammatical, whereas semantic GCN
is able to correctly translate the source sentence.
Again, the arguments, correctly identified by se-
mantic role labeler, may have been useful in trans-
lating this somewhat tricky sentence. Finally, in

the third case, we can observe that both trans-
lations are problematic. BiRNN and Semantic
GCN ignored verbs sit and play, respectively.
However, BiRNN’s translation for this sentence is
preferable, as it is grammatically correct, even if
not fluent or particularly precise.

4 Conclusions

In this work we propose injecting information
about predicate-argument structures of sentences
in NMT models. We observe that the semantic
structures are beneficial for the English–German
language pair. So far we evaluated the model
performance in terms of BLEU only. It would
be interesting in future work to both understand
when semantics appears beneficial, and also to see
which components of semantic structures play a
role. Experiments on other language pairs are also
left for future work.
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Abstract

We address the problem of simultaneous trans-
lation by modifying the Neural MT decoder to
operate with dynamically built encoder and at-
tention. We propose a tunable agent which de-
cides the best segmentation strategy for a user-
defined BLEU loss and Average Proportion
(AP) constraint. Our agent outperforms previ-
ously proposed Wait-if-diff and Wait-if-worse
agents (Cho and Esipova, 2016) on BLEU with
a lower latency. Secondly we proposed data-
driven changes to Neural MT training to better
match the incremental decoding framework.

1 Introduction

Simultaneous translation is a desirable attribute in
Spoken Language Translation, where the transla-
tor is required to keep up with the speaker. In a lec-
ture or meeting translation scenario where utter-
ances are long, or the end of sentence is not clearly
marked, the system must operate on a buffered
sequence. Generating translations for such in-
complete sequences presents a considerable chal-
lenge for machine translation, more so in the case
of syntactically divergent language pairs (such as
German-English), where the context required to
correctly translate a sentence, appears much later
in the sequence, and prematurely committing to a
translation leads to significant loss in quality.

Various strategies to select appropriate segmen-
tation points in a streaming input have been pro-
posed (Fügen et al., 2007; Bangalore et al., 2012;
Sridhar et al., 2013; Yarmohammadi et al., 2013;
Oda et al., 2014). A downside of this approach
is that the MT system translates sequences inde-
pendent of each other, ignoring the context. Even
if the segmenter decides perfect points to segment
the input stream, an MT system requires lexical
history to make the correct decision.

⇤These authors contributed equally to this work

The end-to-end nature of the Neural MT archi-
tecture (Sutskever et al., 2014; Bahdanau et al.,
2015) provides a natural mechanism1 to integrate
stream decoding. Specifically, the recurrent prop-
erty of the encoder and decoder components pro-
vide an easy way to maintain historic context in a
fixed size vector.

We modify the neural MT architecture to oper-
ate in an online fashion where i) the encoder and
the attention are updated dynamically as new input
words are added, through a READ operation, and
ii) the decoder generates output from the available
encoder states, through a WRITE operation. The
decision of when to WRITE is learned through a
tunable segmentation agent, based on user-defined
thresholds. Our incremental decoder significantly
outperforms the chunk-based decoder and restores
the oracle performance with a deficit of 2 BLEU
points across 4 language pairs with a moderate
delay. We additionally explore whether modify-
ing the Neural MT training to match the decoder
can improve performance. While we observed sig-
nificant restoration in the case of chunk decod-
ing matched with chunk-based NMT training, the
same was not found true with our proposed incre-
mental training to match the incremental decoding
framework.

The remaining paper is organized as follow:
Section 2 describes modifications to the NMT de-
coder to enable stream decoding. Section 3 de-
scribes various agents to learn a READ/WRITE
strategy. Section 4 presents evaluation and re-
sults. Section 5 describes modifications to the
NMT training to mimic corresponding decoding
strategy, and Section 6 concludes the paper.

1as opposed to the traditional phrase-based decoder
(Moses), which requires pre-computation of phrase-table,
future-cost estimation and separately maintaining each state-
full feature (language model, OSM (Durrani et al., 2015) etc.)
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Figure 1: A decoding pass over a 4-word source sentence. nw denotes the number of words the agent chose to
commit. Green nodes = committed words, Blue nodes = newly generated words in the current iteration. Words
marked in red are discarded, as the agent chooses to not commit them.

2 Incremental Decoding

Problem: In a stream decoding scenario, the en-
tire source sequence is not readily available. The
translator must either wait for the sequence to
finish in order to compute the encoder state, or
commit partial translations at several intermediate
steps, potentially losing contextual information.

Chunk-based Decoder: A straight forward way
to enable simultaneous translation is to chop the
incoming input after every N-tokens. A draw-
back of these approaches is that the translation
and segmentation process operate independently
of each other, and the previous contextual his-
tory is not considered when translating the current
chunk. This information is important to generate
grammatically correct and coherent translations.

Incremental Decoding: The RNN-based NMT
framework provides a natural mechanism to pre-
serve context and accommodate streaming. The
decoder maintains the entire target history through
the previous decoder state alone. But to enable in-
cremental neural decoding, we have to address the
following constraints: i) how to dynamically build
the encoder and attention with the streaming in-
put? ii) what is the best strategy to pre-commit
translations at several intermediate points?
Inspired by Cho and Esipova (2016), we mod-
ify the NMT decoder to operate in a sequence of
READ and WRITE operations. The former reads
the next word from the buffered source sequence
and translates it using the available context, and
the latter is computed through an AGENT, which
decides how many words should be committed
from this generated translation. Note that, when
a translation is generated in the READ operation,
the already committed target words remain un-
changed, i.e. the generation is continued from

Algorithm 1 Algorithm for incremental decoder
s, Source sequence
s0, Available source sequence
tc, Committed target sequence
t, Current decoded sequence for s0

nw, Number of tokens to commit

s0  empty
for token in s do . READ operation

s0  s0 + token
t NMTDECODER(s0, tc)
if s0 6= s then

nw  AGENT(s0, tc, t)
else

nw  length(t)� length(tc)
end if . commit all new words if we have seen the

entire source
t0c  GETNEWTOKENS(tc, t, nw)
tc  tc + t0c . WRITE operation

end for

function GETNEWTOKENS(tc, t, nw)
start length(tc) + 1
end start + nw

return t[start : end]
end function

the last committed target word using the saved
decoder state. See Algorithm 1 for details. The
AGENT decides how many target words to WRITE
after every READ operation, and has complete con-
trol over the context each target word gets to see
before being committed, as well as the overall de-
lay incurred. Figure 1 shows the incremental de-
coder in action, where the agent decides to not
commit any target words in iterations 1 and 3. The
example shows an instance where the incorrectly
translated words are discarded when more context
becomes available. Given this generic framework,
we describe several AGENTS in Section 3, trained to
optimize the BLEU loss and latency.

Beam Search: Independent of the agent being
used, the modified NMT architecture incurs some

494



READ READ WRITE
beam 2

READ WRITE
beam 1

N
or

m
al

 D
ec

od
in

g
In

cr
m

em
en

ta
l D

ec
od

in
g

Figure 2: Beam Search in normal decoding vs incre-
mental decoding. Green nodes indicate the hypoth-
esis selected by the agent to WRITE. Since we can-
not change what we have already committed, the other
nodes (marked in yellow) are discarded and future hy-
potheses originate from the selected hypothesis alone.
Normal beam search is executed for consecutive READ
operations (blue nodes).

complexities for beam decoding. For example,
if at some iteration the decoder generates 5 new
words, but the agent decides to commit only 2 of
these, the best hypothesis at the 2nd word may not
be the same as the one at the 5th word. Hence, the
agent has to re-rank the hypotheses at the last tar-
get word it decides to commit. Future hypotheses
then continue from this selected hypothesis. See
Figure 2 for a visual representation. The overall
utility of beam decoding is reduced in the case of
incremental decoding, because it is necessary to
commit and retain only one beam at several points
to start producing output with minimal delay.

3 Segmentation Strategies

In this section, we discuss different AGENTS that we
evaluated in our modified incremental decoder. To
measure latency in these agents, we use Average
Proportion (AP) metric as defined by Cho and Es-
ipova (2016). AP is calculated as the total number
of source words each target word required before
being committed, normalized by the product of the
source and target lengths. It varies between 0 and
1 with lesser being better. See supplementary ma-
terial for details.

Wait-until-end: The WUE agent waits for the
entire source sentence before decoding, and serves
as an upper bound on the performance of our
agents, albeit with the worst AP = 1.

Wait-if-worse/diff: We reimplemented the
baseline agents described in Cho and Esipova
(2016). The Wait-if-Worse (WIW) agent WRITES

a target word if its probability does not decrease
after a READ operation. The Wait-if-Diff (WID)
agent instead WRITES a target word if the target
word remains unchanged after a READ operation.

Static Read and Write: The STATIC-RW:
agent is inspired from the chunk-based decoder
and tries to resolve its shortcomings while main-
taining its simplicity. The primary drawback of the
chunk-based decoder is the loss of context across
chunks. Our agent starts by performing S READ
operations, followed by repeated RW WRITES
and READS until the end of the source sequence.
The number of WRITE and READ operations is the
same to ensure that the gap between the source
and target sequence does not increase with time.
The initial S READ operations essentially create a
buffer of S tokens, allowing some future context
to be used by the decoder. Note that the latency
induced by this agent in this case is only in the be-
ginning, and remains constant for the rest of the
sentence. This method actually introduces a class
of AGENTS based on their S ,RW values. We tune
S and RW to select the specific AGENT with the
user-defined BLEU-loss and AP thresholds.

4 Evaluation

Data: We trained systems for 4 language pairs:
German-, Arabic-, Czech- and Spanish-English
pairs using the data made available for IWSLT
(Cettolo et al., 2014). See supplementary material
for data stats. These language pairs present a di-
verse set of challenges for this problem, with Ara-
bic and Czech being morphologically rich, Ger-
man being syntactically divergent, and Spanish
introducing local reorderings with respect to En-
glish.

NMT System: We trained a 2-layered LSTM
encoder-decoder models with attention using the
seq2seq-attn implementation (Kim, 2016).
Please see supplementary material for settings.

Results: Figure 3 shows the results of various
streaming agents. Our proposed STATIC-RW
agent outperforms other methods while maintain-
ing an AP < 0.75 with a loss of less than 0.5
BLEU points on Arabic, Czech and Spanish. This
was found to be consistent for all test-sets 2011-
2014 (See under “small” models in Figure 4). In
the case of German the loss at AP < 0.75 was
around 1.5 BLEU points. The syntactical diver-
gence and rich morphology of German posits a
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Figure 3: Results for various streaming AGENTS (WID, WIW, WUE, C6 (Chunk decoding with a N=6) and S ,RW
for STATIC-RW) on the tune-set. For each AP bucket, we only show the Agents with the top 3 BLEU scores in
that bucket, with remaining listed in descending order of their BLEU scores.

bigger challenge and requires larger context than
other language pairs. For example the conjugated
verb in a German verb complex appears in the sec-
ond position, while the main verb almost always
occurs at the end of the sentence/phrase (Durrani
et al., 2011). Our methods are also comparable to
the more sophisticated techniques involving Rein-
forcement Learning to learn an agent introduced
by Gu et al. (2017) and Satija and Pineau (2016),
but without the overhead of expensive training for
the agent.

Scalability: The preliminary results were ob-
tained using models trained on the TED corpus
only. We conducted further experiments by train-
ing models on larger data-sets (See the supple-
mentary section again for data sizes) to see if our
findings are scalable. We fine-tuned (Luong and
Manning, 2015; Sajjad et al., 2017b) our mod-
els with the in-domain data to avoid domain dis-
parity. We then re-ran our agents with the best
S ,RW values (with an AP under 0.75) for each
language pair. Figure 4 (“large” models) shows
that the BLEU loss from the respective oracle in-
creased when the models were trained with big-
ger data sizes. This could be attributed to the in-
creased lexical ambiguity from the large amount
of out-domain data, which can only be resolved
with additional contextual information. However
our results were still better than the WIW agent,
which also has an AP value above 0.8. Allowing
similar AP, our STATIC-RW agents were able to
restore the BLEU loss to be  1.5 for all language

Figure 4: Averaged results on test-sets (2011-2014) us-
ing the models trained on small and large datasets using
AP  0.75. Detailed test-wise results are available in
the supplementary material.

pairs except German-English. Detailed test results
are available in the suplementary material.

5 Incremental Training

The limitation of previously described decoding
approaches (chunk-based and incremental) is the
mismatch between training and decoding. The
training is carried on full sentences, however, at
the test time, the decoder generates hypothesis
based on incomplete source information. This dis-
crepancy between training and decoding can be
potentially harmful. In Section 2, we presented
two methods to address the partial input sentence
decoding problem, the Chunk Decoder and the
Incremental Decoder. We now train models to
match the corresponding decoding scenario.
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5.1 Chunk Training

In chunk-based training, we simply split each
training sentence into chunks of N tokens.2 The
corresponding target sentence for each chunk is
generated by having a span of target words that are
word-aligned3 with the words in the source span.
Chunking the data into smaller segments increases
the training time significantly. To overcome this
problem, we train a model on the full sentences
using all the data and then fine-tune it with the in-
domain chunked data.

5.2 Add-M Training

Next we formulate a training mechanism to match
the incremental decoding described in Section 2.
A way to achieve this is to force the attention on
a local span of encoder states and block it from
giving weight to the non-local (rightward) encoder
states. The hope is that in the case of long-range
dependencies, the model learns to predict these
dependencies without the entire source context.
Such a training procedure is non-trivial, as it re-
quires dynamic inputs to the attention mechanism
while training, including backpropagation where
some encoder states which have been seen by the
attention mechanism a greater number of times
dynamically receiving more gradient inputs. We
leave this idea as future work, while focusing on a
data-driven technique to mimic this kind of train-
ing as described below.

We start with the first N words in a source sen-
tence and generate target words that are aligned to
these words. We then generate the next training in-
stances with N +M , N +2M , N +3M ... source
words until the end of sentence has been reached.4

The resulting training roughly mimics the decod-
ing scenario where the source-side context is grad-
ually built. The down-side of this method is that
the data size increases quadratically, making the
training infeasible. To overcome this, we fine-
tune a model trained on full sentences with the in-
domain corpus generated using this method.

2Although randomly segmenting the source sentence
based on number of tokens is a naı̈ve approach that does not
take into account the linguistic properties, our goal here was
to exactly match the training with the chunk-based decoding
scenario.

3We used fast-align (Dyer et al., 2013) for alignments.
4We trained with N = 6 and M = 1 for our experiments.

Figure 5: Averaged test set results on various training
modifications

5.3 Results
The results in Figure 5 show that matching the
chunk-decoding with corresponding chunk-based
training significantly improves performance, with
a gain of up to 12 BLEU points. However,
we were not able to improve upon our incre-
mental decoder, with the results deteriorating no-
tably. One reason for this degradation is that the
training/decoding scenarios are still not perfectly
matched. The training pipeline in this case also
sees the beginning of sentences much more often,
which could lead to unnatural distributions being
inferred within the model.

6 Conclusion

We addressed the problem of simultaneous trans-
lation by modifying the architecture in Neural MT
decoder. We presented a tunable agent which de-
cides the best segmentation strategy based on user-
defined BLEU loss and AP constraints. Our re-
sults showed improvements over previously es-
tablished WIW and WID methods. We addition-
ally modified the Neural MT training to match
the incremental decoding, which significantly im-
proved the chunk-based decoding, but we did not
observe any improvement using Add-M Training.
The code for our incremental decoder and agents
has been made available.5 While were able to sig-
nificantly improve the the chunk-based decoder,
we did not observe any improvement using the
Add-M Training. In the future we would like to
change the training model to dynamically build the
encoder and the attention model in order to match
our incremental decoder.

5https://github.com/fdalvi/
seq2seq-attn-stream
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Abstract

In this paper we explore the use of Learn-
ing Hidden Unit Contribution for the task of
neural machine translation. The method was
initially proposed in the context of speech
recognition for adapting a general system to
the specific acoustic characteristics of each
speaker. Similar in spirit, in a machine trans-
lation framework we want to adapt a general
system to a specific domain. We show that
the proposed method achieves improvements
of up to 2.6 BLEU points over a general sys-
tem, and up to 6 BLEU points if the initial sys-
tem has only been trained on out-of-domain
data, a situation which may easily happen in
practice. The good performance together with
its short training time and small memory foot-
print make it a very attractive solution for do-
main adaptation.

1 Introduction

Domain adaptation for neural machine transla-
tion (NMT) is starting to get more attention from
the scientific community. Often researchers and
machine translation practitioners want to improve
the performance of their systems on a domain for
which they were not explicitly optimized. Due to
the high training times needed to develop NMT
systems, often up to several weeks, efficient meth-
ods for improving an existing system for a specific
domain can have important practical applications.

In this paper we review “Learning Hidden Unit
Contribution” (§ 3), a method developed initially
for speaker adaptation in speech recognition sys-
tems, and apply it to the task of neural machine
translation (§§ 4 and 5). We show that it improves
translation quality on in-domain data, while at the
same time keeping the translation quality of out-
of-domain data intact (§ 6). Due to its small mem-
ory footprint and short training time it can be re-
alistically applied to adapt large, general domain

systems in order to improve their performance on
specific domains.

2 Neural Machine Translation

In this section we will provide a short overview of
NMT. For a more detailed description the reader
is referred to existing literature. An NMT system
is mainly composed of two parts. The first one,
called the encoder, produces a sequence of vectors
which constitute a representation of the input sen-
tence in a continuous vector space. The decoder
takes this sequence of vectors and generates a new
sequence of words in the target language, which
corresponds to the translation of the given sen-
tence. An additional attention mechanism helps
guiding the translation process.

Most NMT systems are based on recurrent net-
works, usually LSTMs or GRUs (Bahdanau et al.,
2014), although recently new approaches to neural
machine translation have been proposed (Vaswani
et al., 2017; Gehring et al., 2017) which are not
based on recurrent networks, but keep the encoder-
decoder structure. All the approaches described in
this paper are equally applicable to these models.

3 Learning Hidden Unit Contribution

Learning Hidden Unit Contribution (LHUC) is a
method first introduced by Swietojanski and Re-
nals (2014) and Swietojanski et al. (2016) for
speaker adaptation in neural speech recognition
systems. The goal of speaker adaptation is to tai-
lor an existing speech recognition system to the
specific acoustic characteristics of a given speaker.
In normal conditions, the amount of training data
available for one speaker is rather limited; there-
fore, the authors’ goal was to develop a method
that would be able to adapt with a small sample
size. Additionally, when adapting a system, there
is the danger that the system’s performance on the
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LHUC LHUC LHUC

Figure 1: Illustration of the LHUC approach. Three
units of a hidden layer are depicted. Each unit has an
additional component that can scale the value of the
original output. The number of additional parameters
is linear in the number of hidden units (see Eq. 2).

general domain degrades significantly due to over-
fitting, what in neural network literature is some-
times called “catastrophic forgetting” (McCloskey
and Cohen, 1989; Ratcliff, 1990).

The intuition behind LHUC is that different net-
work units specialize on different aspects of the
task, and thus, when shifting domain the impor-
tance of each unit may change from the original
domain on which the system was trained. An ex-
ample of this behaviour (unrelated to translation)
is shown by Radford et al. (2017). They trained a
character-level language model on product review
texts and found out that one specific neuron pro-
vided a quite accurate representation of the senti-
ment (positive or negative) of the text. While this
neuron can provide valuable information for this
task, it may not be so relevant for other domains
where sentiment is not as important (e.g. news).
At the same time, other neurons may become more
important (e.g. ensuring a more formal style of the
text).

LHUC introduces an additional multiplicative
amplitude element to the output of each hidden
unit in the network. As such the contribution of
the hidden unit can be amplified (values greater
than 1) for the units that are more relevant to the
task, or dampened (values close to 0) for units
that are not as important. The approach is illus-
trated in Figure 1. Coming back to the sentiment
neuron example above, for tasks where sentiment
is important (product reviews), LHUC will assign
a high weight to the sentiment neuron, while for
other tasks (news), the corresponding weight will
be low. The weights are learned automatically
from the available in-domain data.

More formally, let

h(l) = φθ(h
(l−1), . . . ) (1)

be a general equation for the output of a layer in a
neural network, parametrized by the set θ. In case
of a feed-forward layer, φwould be an affine trans-
formation followed by a non-linearity, θ would be
the parameter matrix of the linear transformation
and the bias vector, and no additional arguments
would be required. Other models like LSTM lay-
ers (Hochreiter and Schmidhuber, 1997) have a
more complex structure and a memory state as an
additional argument.

As the LHUC method is very general, the actual
form of the layer activations does not need to be
specified in complete detail; it is only important to
note that it produces a vector, and is dependent of
the previous layer. LHUC modifies the activation
function by introducing a multplicative element

h
(l)
LHUC = a(ρ(l)) ◦ φθ(h(l−1)

LHUC , . . . ) (2)

where ρ(l) is a layer-dependent vector of new pa-
rameters (independent of θ), of the same dimen-
sion as h(l), and ◦ denotes element-wise vec-
tor multiplication. The a(·) function is a scaled
element-wise sigmoid function. The range of the
scaled sigmoid is limited to the interval [0, 2]1

a(x) =
2

1 + e−x
. (3)

The parameter vectors ρ(l) are trained using stan-
dard backpropagation, keeping the initial parame-
ter set θ constant during the LHUC training pass.
As can be seen, the number of parameters grows
only linearly in the number of units in each layer,
instead as the usual quadratic growth for the num-
ber of parameters in most neural models.

4 Domain Adaptation for NMT

Domain adaptation for phrase-based and related
approaches to machine translation has been ex-
tensively investigated, e.g. (Schwenk, 2008; Ax-
elrod et al., 2011; Carpuat et al., 2013). Neu-
ral machine translation, being a relatively new ap-
proach to MT, has not seen so many works going
into this direction yet. Previous methods can of
course still be applied as long as they are model-
independent, e.g. data selection methods as shown

1The value of 2 is chosen as to be able to amplify the value
(it can be doubled) but without overshadowing the value of
the other units, which could happen with bigger values.
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in (van der Wees et al., 2017) or self-training ap-
proaches like (Bertoldi and Federico, 2009), of
which back-translation (Sennrich et al., 2015) can
be considered a special case.

Specific for neural machine translation, Fre-
itag and Al-Onaizan (2016) present a really sim-
ple method, where the parameters of an already
trained system are taken as the starting point of an-
other training run using only in-domain data. This
simple method achieves good results and has the
advantage that no additional implementation work
has to be carried out. Chu et al. (2017) propose
a refinement of this method where the in-domain
data is mixed with the out-of-domain data.

Chen et al. (2017) propose to use a domain clas-
sifier to weight the cost of the training data differ-
ently according to the similarity to the in-domain
data, in what can be considered a tighter integra-
tion of previous data-selection methods.

Sennrich et al. (2016) introduce a simple
method for controlling the politeness of an NMT
system, which can also be used for domain adapta-
tion. They add a special tag to the source sentence
denoting the politeness level of the source sen-
tence and the system is able to use this information
to improve the translation output. This technique
can be extended to domain adaptation by combin-
ing the text of the different domains and marking
them with a specific, domain-dependent tag. John-
son et al. (2016) use this technique in an “extreme”
domain adaptation setting, where the domains are
actually different languages.

5 LHUC for Domain Adaptation of NMT

In this paper we propose to use LHUC for domain
adaptation of NMT systems. For this, we first train
a system on the general domain data. Once such a
system is available, we add the LHUC component
and adapt it for the characteristics of the domain,
similar to the adaptation to the acoustic character-
istics of a speaker in the case of speech recogni-
tion.

We will explore two different scenarios, in the
first one all the data, both in-domain and out-of-
domain, is available from the beginning. As such
the initial system already has seen in-domain ex-
amples at training time and the domain adaptation
step is mainly a “fine tuning” step.

In the second scenario we will assume that the
initial system has been trained only on out-of-
domain data. This system will then be adapted

Corpus Sents Words Voc

WMT 5M 135M/141M 1.8M/877K
IWSLT 197K 3.7M/4M 122K/55K

Table 1: Training corpora statistics. “Sents” denotes
number of sentences, “Words” refers to number of run-
ning words after tokenization and “Voc” is the size of
the vocabulary, e.g. the number of unique words in the
corresponding corpus.

for the new in-domain data, which has not been
seen at the initial training stage. This scenario has
an important role in practical applications, e.g. a
general domain system has been trained and tuned
to offer general domain translation, but it needs to
be adapted to specific domains in order to provide
better quality. In some cases, the time necessary
for adapting such a system may also play a critical
role on the applicability of the method.

LHUC provides an elegant solution for domain
adaptation. Due to its reduced number of param-
eters it can be trained in a much shorter time than
a full system. Furthermore, because it is an “add-
on” for an already existing system it can be acti-
vated or de-activated on-demand. This effectively
solves the catastrophic forgetting effect found in
other adaptation techniques, as the general system
can still be accessed at any time.

6 Experimental Results

Similar to Freitag and Al-Onaizan (2016), we
present results on the IWSLT 20162 German to
English TED dataset (Cettolo et al., 2016), con-
sisting of transcribed and translated TED talks. As
out-of-domain data we use the same year’s WMT
data (Bojar et al., 2016). We report results on the
TED 2013 and TED 2014 (the newest ones with
provided references) and additionally on the new-
stest 2016 dataset for measuring the performance
on out-of-domain data. Statistics for the training
corpora are given in Table 1. It can be seen that the
WMT data (out-of-domain) is an order of magni-
tude bigger that the in-domain IWSLT data.

Our system is a recurrent encoder-decoder
NMT model, with one bidirectional LSTM layer
with 1024 units in the encoder and one layer with
1024 units in the decoder. The data has been BPE-
encoded using 32K merge operations, and the em-

2Freitag and Al-Onaizan (2016) used an older version of
the corpora.
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bedding layer has a dimension of 512. Train-
ing has been performed with the Adam algorithm
(Kingma and Ba, 2014). The provided TED dev
set was used as stopping criterion (or newstest14
for the case of a WMT-only system). Experiments
have been carried out using Sockeye (Hieber et al.,
2017), and the LHUC code has been open sourced
as part of it.

For LHUC experiments, both the encoder and
decoder hidden units have been expanded with the
additional scaling.

As discussed in Section 5 we will differentiate
two conditions: in the “full training data” condi-
tion, both the out-of-domain and in-domain data
are available for training the initial system. In the
“growing training data” condition, the initial sys-
tem is trained only on out-of-domain data.

We will compare the performance of the LHUC
method with the “continuation of training” pro-
posed by Freitag and Al-Onaizan (2016). Both
methods can start from an already trained system
and refine the training on the in-domain data. For
the full training data condition we also explore
the tagging technique similar to the one proposed
by Sennrich et al. (2016).

6.1 Full Training Data Condition

In this data condition, both the WMT and IWSLT
training data have been combined together. Each
mini-batch in training is selected randomly, so that
potentially samples from both domains are pre-
sented to the system. In this way there is no im-
plicit domain adaptation effect due to the presen-
tation of the data.

The results, in terms of BLEU score, can be
seen in Table 2. Even when the in-domain data
is already included in the set used for training the
original system, the domain adaptation techniques
are able to increase translation quality. Using con-
tinuation of training we are able to improve the
performance by up to 1.2% absolute. However if
we look at the translation quality on the out-of-
domain data set we see the catastrophic forgetting
effect, with a drop of 1.7 BLEU points.

LHUC achieves an even bigger improvement
in translation quality: up to 2.6%. If we would
blindly apply the LHUC enhanced system to the
out-of-domain data we would again observe the
catastrophic forgetting effect, in fact even more
pronounced as with continuation of training (num-
ber in parenthesis in the corresponding column in

Table 2). However in practice this is a non-issue,
as the LHUC can easily be deactivated, as dis-
cussed in Section 5.

Adding labels to the training data also proves to
be an efficient domain adaptation method, with the
advantage that it can be combined with the other
methods. The improvements due to continuation
of training or LHUC are not as big in this case.

For reference, the results of training on in-
domain data only have also been included.

6.2 Growing Training Data Condition
In this condition the initial system has only been
trained on WMT data. It is also worth noting
that this also applies to the BPE vocabulary. It is
trained only on the WMT data and then applied to
the IWSLT data for the adaptation techniques.

In this case we see even bigger improvements
with respect to the baseline system, up to 6 BLEU
points. This is mainly due to the baseline sys-
tem being trained only on out-of-domain data. In
this way, in the domain adaptation step, new, un-
seen training data is added to system. The results
are reported in Table 3. Interestingly, the abso-
lute scores of the adapted systems are very close to
those reported in Table 2, showing that the domain
adaptation techniques can efficiently include new
information into the original model. The catas-
trophic forgetting effect is also more pronounced
in this data condition, but we note again that it
does not effect the LHUC method.

It is also interesting to note that the performance
of the baseline systems on out-of-domain data in
both data conditions is the same, indicating that
the in-domain data does not really help for the
out-of-domain set. This is also indicated by the
low score of the in-domain only system on out-
of-domain data. Both effects can be explained
by comparing the relative sizes of the datasets, as
shown in Table 1.

6.3 Efficiency Considerations
As pointed out before, the number of parameters
is linear in the number of units in the network. In
our specific case we have a total of 2048 units in
the encoder (a bidirectional layer with 1024 units
in each direction) and 1024 units in the decoder.
Using a 32-bit float representation, the overhead
of LHUC amounts to just 12KB. For comparison
a full model stored on disk in compressed npz for-
mat needs 335MB. This shows that LHUC can re-
alistically be used for storing a large amount of

503



newstest16 (OOD) TED 2013 (ID) TED 2014 (ID)

WMT (OOD) + IWSLT (ID) 33.7 35.9 30.5

+ continuation (ID) 32.0 36.7 31.7
+ LHUC (ID) 33.7 (30.8) 37.9 33.1

OOD + ID labelled 34.4 36.8 32.7

+ continuation (ID) 31.6 37.8 32.9
+ LHUC (ID) 34.4 (32.4) 38.4 33.6

IWSLT only (ID) 16.7 32.4 27.5

Table 2: BLEU scores [%] for the Full Training Data condition. “OOD” denotes out-of-domain data, “ID” denotes
in-domain data. For LHUC results, the number in parenthesis shows the result of applying the adapted system to
the out-of-domain data (which would not be applied in practice).

newstest16 (OOD) TED 2013 (ID) TED 2014 (ID)

WMT only (OOD) 33.7 31.7 27.3

+ continuation (ID) 30.1 36.8 32.2
+ LHUC (ID) 33.7 (29.7) 37.7 32.8

IWSLT only (ID) 16.7 32.4 27.5

Table 3: BLEU scores [%] for the Growing Training Data condition.

adapted systems.
As for training time, in most experiments the

best parameters for LHUC were already achieved
in the first checkpoints. On a K80 GPU the best
parameter can be found in under one hour for our
datasets (continuation needs close to 2h).

7 Conclusions

We have shown how to effectively apply LHUC, a
technique first proposed for speaker adaptation in
speech recognition, for adapting neural machine
translation systems. LHUC achieves good results
compared to other domain adaptation methods and
due to its low memory footprint and efficient train-
ing time can be realistically applied for on-demand
adaptation of big systems. In addition it does
not suffer the catastrophic forgetting effect, as the
LHUC component can be activated or deactivated
as needed.
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Bentivogli, Roldano Cattoni, and Marcello Federico.
2016. The IWSLT 2016 Evaluation Campaign. In

504



Proceedings of the Internation Workshop on Spoken
Language Translation.

Boxing Chen, Colin Cherry, George Foster, and
Samuel Larkin. 2017. Cost weighting for neural ma-
chine translation domain adaptation. In Proceedings
of the First Workshop on Neural Machine Transla-
tion. pages 40–46.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, pages 385–391. https://doi.org/
10.18653/v1/P17-2061.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
arXiv preprint arXiv:1612.06897 .

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR
abs/1705.03122. http://arxiv.org/abs/
1705.03122.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A Toolkit for Neural Machine
Translation. ArXiv e-prints .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: enabling zero-shot translation.
arXiv preprint arXiv:1611.04558 .

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. Psychology of learning
and motivation 24:109–165.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444 .

Roger Ratcliff. 1990. Connectionist models of recog-
nition memory: Constraints imposed by learning
and forgetting functions. Psychological review
97(2):285–308.

Holger Schwenk. 2008. Investigations on large-scale
lightly-supervised training for statistical machine
translation. In Proceedings of the Internation Work-
shop on Spoken Language Translation. pages 182–
189.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709 .

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, San Diego, Califor-
nia, pages 35–40. http://www.aclweb.org/
anthology/N16-1005.

Pawel Swietojanski, Jinyu Li, and Steve Renals. 2016.
Learning hidden unit contributions for unsupervised
acoustic model adaptation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing
24(8):1450–1463.

Pawel Swietojanski and Steve Renals. 2014. Learn-
ing hidden unit contributions for unsupervised
speaker adaptation of neural network acoustic mod-
els. In Spoken Language Technology Workshop
(SLT), 2014 IEEE. IEEE, pages 171–176.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine translation. CoRR abs/1708.00712.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. CoRR abs/1706.03762. http://
arxiv.org/abs/1706.03762.

505



Proceedings of NAACL-HLT 2018, pages 506–512
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Neural Machine Translation Decoding with Terminology Constraints
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Abstract

Despite the impressive quality improvements
yielded by neural machine translation (NMT)
systems, controlling their translation output
to adhere to user-provided terminology con-
straints remains an open problem. We describe
our approach to constrained neural decod-
ing based on finite-state machines and multi-
stack decoding which supports target-side con-
straints as well as constraints with correspond-
ing aligned input text spans. We demonstrate
the performance of our framework on mul-
tiple translation tasks and motivate the need
for constrained decoding with attentions as a
means of reducing misplacement and duplica-
tion when translating user constraints.

1 Introduction

Adapting an NMT system with domain-specific
data is one way to adjust its output vocabulary to
better match the target domain (Luong and Man-
ning, 2015; Sennrich et al., 2016). Another way
to encourage the beam decoder to produce certain
words in the output is to explicitly reward n-grams
provided by an SMT system (Stahlberg et al.,
2017) or language model (Gulcehre et al., 2017)
or to modify the vocabulary distribution of the de-
coder with suggestions from a terminology (Chat-
terjee et al., 2017). While providing lexical guid-
ance to the decoder, these methods do not strictly
enforce a terminology. This is a requisite, how-
ever, for companies wanting to ensure that brand-
related information is rendered correctly and con-
sistently when translating web content or manuals
and is often more important than translation qual-
ity alone. Although domain adaptation and guided
decoding can help to reduce errors in these use
cases, they do not provide reliable solutions.

Another recent line of work strictly enforces a
given set of words in the output (Anderson et al.,
2017; Hokamp and Liu, 2017; Crego et al., 2016).

Anderson et al. address the task of image cap-
tioning with constrained beam search where con-
straints are given by image tags and constraint
permutations are encoded in a finite-state accep-
tor (FSA). Hokamp and Liu propose grid beam
search to enforce target-side constraints for do-
main adaptation via terminology. However, since
there is no correspondence between constraints
and the source words they cover, correct constraint
placement is not guaranteed and the corresponding
source words may be translated more than once.
Crego et al. replace entities with special tags that
remain unchanged during translation and are re-
placed in a post-processing step using attention
weights. Given good alignments, this method can
translate entities correctly but it requires training
data with entity tags and excludes the entities from
model scoring.

We address decoding with constraints to pro-
duce translations that respect the terminologies of
corporate customers while maintaining the high
quality of unconstrained translations. To this end,
we apply the constrained beam search of Ander-
son et al. to machine translation and propose to
employ alignment information between target-side
constraints and their corresponding source words.
The lack of explicit alignments in NMT systems
poses an extra challenge compared to statistical
MT where alignments are given by translation
rules. We address the problem of constraint place-
ment by expanding constraints when the NMT
model is attending to the correct source span. We
also reduce output duplication by masking cov-
ered constraints in the NMT attention model.

2 Constrained Beam Search

A naive approach to decoding with constraints
would be to use a large beam size and select from
the set of complete hypotheses the best that satis-
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fies all constraints. However, this is infeasible in
practice because it would require searching a po-
tentially very large space to ensure that even hy-
potheses with low model score due to the inclusion
of a constraint would be part of the set of outputs.
A better strategy is to force the decoder to produce
hypotheses that satisfy the constraints regardless
of their score and thus guide the decoder into the
right area of the search space. We follow Ander-
son et al. (2017) in organizing our beam search
into multiple stacks corresponding to subsets of
satisfied constraints as defined by FSA states.

2.1 Finite-state Acceptors for Constraints
Before decoding, we build an FSA defining the
constrained target language for an input sentence.
It contains all permutations of constraints inter-
leaved with loops over the remaining vocabulary.

Phrase Constraints: Constraints consisting of
multiple tokens are encoded by one state per to-
ken. We refer to states within a phrase as interme-
diate states and restrict their outgoing vocabulary
to the next token in the phrase.

Alternative Constraints: Synonyms of con-
straints can be defined as alternatives and encoded
as different arcs connecting the same states. When
alternatives consist of multiple tokens, the alterna-
tive paths will contain intermediate states.

Figure 1 shows an FSA with constraints C1 and
C2 where C1 is a phrase (yielding intermediate
states s1, s4) and C2 consists of two single-token
alternatives. Both permutations C1C2 and C2C1

lead to final state s5 with both constraints satisfied.

2.2 Multi-Stack Decoding
When extending a hypothesis to satisfy a con-
straint which is not among the top-k vocabulary
items in the current beam, the overall likelihood
may drop and the hypothesis may be pruned in
subsequent steps. To prevent this, the extended hy-
pothesis is placed on a new stack along with other
hypotheses that satisfy the same set of constraints.
Each stack maps to an acceptor state which helps
to keep track of the permitted extensions for hy-
potheses on this stack. The stack where a hypoth-
esis should be placed is found by following the
appropriate arc leaving the current acceptor state.
The stack mapping to the final state is used to gen-
erate complete hypotheses. At each time step, all
stacks are pruned to the beam size k and therefore
the actual beam size for constrained decoding de-
pends on the number of acceptor states.

s0 s1 s2

s3 s4 s5

a

x y

V - {a} - C2
b

x y

V - C2

a
V - {a}

b
V

Figure 1: Example of FSA for two constraintsC1 = ab
and C2 = {x, y}.

2.3 Decoding with Attentions

Since an acceptor encoding c single-token con-
straints has 2c states, the constrained search of
Anderson et al. (2017) can be inefficient for large
numbers of constraints. In particular, all unsatis-
fied constraints are expanded at each time step t
which increases decoding complexity from O(tk)
for normal beam search to O(tk2c). Hokamp
and Liu (2017) organize their grid beam search
into beams that group hypotheses with the same
number of constraints, thus their decoding time is
O(tkc). However, this means that different con-
straints will compete for completion of the same
hypothesis and their placement is determined lo-
cally. We assume that a target-side constraint can
come with an aligned source phrase which is en-
coded as a span in source sentence S and stored
with the acceptor arc label:

s0 s1 j > i, 0 ≤ i, j ≤ |S|
C [i,j)

Because the attention weights in attention-based
decoders function as soft alignments from the tar-
get to the source sentence (Alkhouli and Ney,
2017), we use them to decide at which position
a constraint should be inserted in the output. At
each time step in a hypothesis, we determine the
source position with the maximum attention. If it
falls into a constrained source span and this span
matches an outgoing arc in the current acceptor
state, we extend the current hypothesis with the arc
label. Thus, the outgoing arcs in non-intermediate
states are active or inactive depending on the cur-
rent attentions. This reduces the complexity from
O(tk2c) to O(tkc) by ignoring all but one con-
straint permutation and in practice, disabling vo-
cabulary loops saves extra time.

State-specific Attention Mechanism: Once a
constraint has been completed, we need to en-
sure that its source span will not be translated
again. We force the decoder to respect covered
constraints by masking their spans during all fu-
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ture expansions of the hypothesis. This is done
by zeroing out the attention weights on covered
positions to exclude them from the context vector
computed by the attention mechanism.

Implications: Constrained decoding with
aligned source phrases relies on the quality of the
source-target pairs. Over- and under-translation
can occur as a result of incomplete source or target
phrases in the terminology.

Special Cases: Monitoring the source position
with the maximum attention is a relatively strict
criterion to decide where a constraint should be
placed in the output. It turns out that depending
on the language pair, the decoder may produce
translations of neighbouring source tokens when
attending to a constrained source span.1 The strict
requirement of only producing constraint tokens
can be relaxed to accommodate such cases, for ex-
ample by allowing extra tokens before (s1) or after
(s2) constraint C while attending to span [i, j),

s0

s1 s2

s3

V - C [i,j) C [i,j)

C [i,j)

C [i,j)

C [i,j) V [i,j)

Conversely, the decoder may never place the max-
imum attention on a constraint span which can
lead to empty translations. Relaxing this require-
ment using thresholding on the attention weights
to determine positions with secondary attention
can help in those cases.

3 Experimental Setup

We build attention-based neural machine trans-
lation models (Bahdanau et al., 2015) using the
Blocks implementation of van Merriënboer et al.
(2015) for English-German and English-Chinese
translation in both directions. We combine three
models per language pair as ensembles and further
combine the NMT systems with n-grams extracted
from SMT lattices using Lattice minimum Bayes-
risk as described by Stahlberg et al. (2017), re-
ferred to as LNMT. We decode with a beam size of
12 and length normalization (Johnson et al., 2017)
and back off to constrained decoding without at-
tentions when decoding with attentions fails.2 We
report lowercase BLEU using mteval-v13.pl.

1For example, to produce an article before a noun when
the constrained source span includes just the noun.

2This usually applies to less than 2% of the inputs.

3.1 Data

Our models are trained on the data provided for
the 2017 Workshop for Machine Translation (Bo-
jar et al., 2017). We tokenize and truecase the
English-German data and apply compound split-
ting when the source language is German. The
training data for the NMT systems is augmented
with backtranslation data (Sennrich et al., 2016).
For English-Chinese, we tokenize and lowercase
the data. We apply byte-pair encoding (Sennrich
et al., 2017) to all data.

3.2 Terminology Constraints

We run experiments with two types of constraints
to evaluate our constrained decoder.

Gold Constraints: For each input sentence, we
extract up to two tokens from the reference which
were not produced by the baseline system, favour-
ing rarer words. This aims at testing the perfor-
mance in a setup where users may provide correc-
tions to the NMT output which are to be incor-
porated into the translation. These reference to-
kens may consist of one or more subwords. Sim-
ilarly, we extract phrases of up to five subwords
surrounding a reference token missing from the
baseline output. We do not have access to aligned
source words for gold constraints.

Dictionary Constraints: We automatically
extract bilingual dictionary entries using terms
and phrases from the reference translations as
candidates in order to ensure that the entries
are relevant for the inputs. In a real setup, the
dictionaries would be provided by customers and
would be expected to contain correct translations
without ambiguity. We apply a filter of English
stop words and verbs to the candidates and look
them up in a pruned phrase table to find likely
pairs, resulting in entries as shown below:3

English German
ICJ IGH
The Wall Street Journal The Wall Street Journal
Dead Sea Tote Meer|Toten Meer

For evaluation purposes, we ensure that dictio-
nary entries match the reference when applying
them to an input sentence.

4 Results

The results for decoding with terminology con-
straints are shown in Table 1a and 1b where each

3Our dictionaries are available on request.
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dev (lr) rep test15 test16 test17
eng-ger-wmt17
LNMT 24.9 (1.00) 443 28.1 34.7 27.0
+ 2 gold tokens 29.2 (1.14) 1141 33.4 40.9 32.3
+ 1 gold phrase 36.8 (1.09) 880 40.5 46.7 39.6

+ dictionary (v1) 26.4 (1.03) 610 29.6 36.4 28.8
+ dictionary (v2) 26.6 (1.02) 471 29.9 37.0 29.1
ger-eng-wmt17
LNMT 31.2 (1.01) 307 33.5 40.7 34.6
+ 2 gold tokens 34.6 (1.14) 745 37.7 44.8 38.5
+ 1 gold phrase 42.3 (1.08) 550 45.7 51.3 46.4

+ dictionary (v1) 32.4 (1.02) 353 34.7 41.8 36.2
+ dictionary (v2) 32.5 (1.01) 320 34.6 41.9 36.0

(a) Results for English-German language pairs

dev (lr) test17
eng-chi-wmt17
LNMT 30.8 (0.95) 31.0
+ 2 gold tokens 33.8 (1.10) 34.2
+ 1 gold phrase 40.6 (1.06) 41.2

+ dictionary (v1) 34.0 (1.01) 33.7
+ dictionary (v2) 33.9 (0.98) 34.1
chi-eng-wmt17
LNMT 21.2 (1.00) 23.5
+ 2 gold tokens 23.3 (1.13) 25.5
+ 1 gold phrase 30.1 (1.09) 32.3

+ dictionary (v1) 23.0 (1.06) 25.5
+ dictionary (v2) 23.4 (1.03) 25.4

(b) Results for English-Chinese language pairs

Table 1: BLEU scores and dev length ratios for decoding with gold constraints (without attentions) followed
by results for dictionary constraints without (v1) or with (v2) attentions. The column rep shows the number of
character 7-grams that occur more than once within a sentence of the dev set, see Section 4.3.

section contains the results for gold constraints
followed by dictionary constraints.

4.1 Results with Gold Constraints
Decoding with gold constraints yields large BLEU

gains over LNMT for all language pairs. However,
the length ratio on the dev set increases signifi-
cantly. Inspecting the output reveals that this is
often caused by constraints being translated more
than once which can lead to whole passages being
retranslated. Phrase constraints seem to integrate
better into the output than single token constraints
which may be due to the longer gold context being
fed back to the NMT state.

4.2 Results with Dictionary Constraints
Decoding with up to two dictionary constraints per
sentence yields gains of up to 3 BLEU. This is
partly because we do not control whether LNMT

already produced the constraint tokens and be-
cause not all sentences have dictionary matches.
The length ratios are better compared to the gold
experiments which we attribute to our filtering of
tokens such as verbs which tend to influence the
general word order more than nouns, for example.

Decoding with or without attentions yields sim-
ilar BLEU scores overall and a consistent improve-
ment for English-German. Note that decoding
with attentions is sensitive to errors in the auto-
matically extracted dictionary entries.

Output Duplication The first three examples
in Table 2 show English↔German translations

where decoding without attentions has generated
both the target side of the constraint and the trans-
lation preferred by the NMT system. When using
the attentions, each constraint is only translated
once.

Constraint Placement The fourth example
demonstrates the importance of tying constraints
to source words. Decoding without attentions fails
to translate Zeichen as signs because the alterna-
tive sign already appears in the translation of Ze-
ichensprache as sign language. When using the
attentions, signs is generated at the correct posi-
tion in the output.

4.3 Output length ratio and repetitions
To back up our hypothesis that increases in length
ratio are related to output duplication, Table 1a
column rep shows the number of repeated char-
acter 7-grams within a sentence of the dev set, ig-
noring stop words and overlapping n-grams. This
confirms that constrained decoding with attentions
reduces the number of repeated n-grams in the out-
put. While this does not account for alignments to
the source or capture duplicated translations with
unrelated surface forms, it provides evidence that
the outputs are not just shorter than for decoding
without attentions but in fact contain fewer repeti-
tions and likely fewer duplicated translations.

4.4 Comparison of decoding speeds
To evaluate the speed of constrained decoding
with and without attentions, we decode newstest-
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eng-ger-wmt17 Example 1 Example 2
Source It already has the budget ... And it often costs over a hundred dollars to obtain the

required identity card.
Constraints Budget [4,5) Ausweis [12,14)

LNMT Es hat bereits den Haushalt... Und es kostet oft mehr als hundert Dollar, um die er-
forderliche Personalausweis zu erhalten.

+ dictionary (v1) Das Budget hat bereits den Haushalt... Und es kostet oft mehr als hundert Dollar, um den
Ausweis zu erhalten, um die erforderliche Person-
alausweis zu erhalten.

+ dictionary (v2) Es verfügt bereits über das Budget... Und es kostet oft mehr als hundert Dollar, um den
gewünschten Ausweis zu erhalten.

ger-eng-wmt17 Example 3 Example 4
Source Der Pokal war die einzige Möglichkeit , et-

was zu gewinnen .
Aber es ist keine typische Zeichensprache – sagt sie .
Edmund hat einige Zeichen alleine erfunden .

Constraints cup [1,2), chance [5,6) sign|signs [13,14)

LNMT The trophy was the only way to win some-
thing.

But it’s not a typical sign language – says, Edmund in-
vented some characters alone.

+ dictionary (v1) The cup was the only way to get something
to win a chance.

But it’s not a typical sign language – says, Edmund in-
vented some characters alone.

+ dictionary (v2) The cup was the only chance to win some-
thing.

But it is not a typical sign language – she says, Edmund
invented some signs alone.

Table 2: English↔German translation outputs for constrained decoding.

BLEU/speed ratio
eng-ger-wmt17 c=2 c=3 c=4
LNMT 26.7 1.00 26.7 1.00 26.7 1.00
+ dict (v1) 28.2 0.20 28.4 0.14 28.5 0.11
+ dict (v2∗) 27.8 0.69 28.0 0.66 28.1 0.59

+ A 28.0 0.65 28.2 0.61 28.2 0.54
+ B 28.4 0.27 28.6 0.24 28.7 0.21
+ C 28.5 0.21 28.6 0.19 28.7 0.17

Table 3: BLEU scores and speed ratios relative to un-
constrained LNMT for production system with up to c
constraints per sentence (newstest2017). A: secondary
attention, B, C: allow 1 or 2 extra tokens, respectively
(Section 2.3). Dict (v2∗) refers to decoding with atten-
tions but without A, B or C.

2017 on a single GPU using our English-German
production system (Iglesias et al., 2018) which in
comparison to the systems described in Section 3
uses a beam size of 4 and an early pruning strategy
similar to that described in Johnson et al. (2017),
amongst other differences. About 89% of the sen-
tences have at least one dictionary match and we
allow up to two, three or four matches per sen-
tence. Because the constraints result from dic-
tionary application, the number of constraints per
sentence varies and not all sentences contain the
maximum number of constraints.

Tab. 3 reports BLEU and speed ratios for differ-
ent decoding configurations. Rows two and three
confirm that the reduced computational complex-
ity of our approach yields faster decoding speeds

than the approach of Anderson et al. (2017) while
incurring a small decrease in BLEU. Moreover, it
compares favourably for larger numbers of con-
straints per sentence: v2* is 3.5x faster than v1 for
c=2 and more than 5x faster for c=4. Relaxing the
restrictions of decoding with attentions improves
the BLEU scores but increases runtime. However,
the slowest v2 configuration is still faster than v1.
The optimal trade-off between quality and speed
is likely to differ for each language pair.

5 Conclusion

We have presented our approach to NMT decod-
ing with terminology constraints using decoder at-
tentions which enables reduced output duplication
and better constraint placement compared to ex-
isting methods. Our results on four language pairs
demonstrate that terminology constraints as pro-
vided by customers can be respected during NMT
decoding while maintaining the overall translation
quality. At the same time, empirical results con-
firm that our improvements in computational com-
plexity translate into faster decoding speeds. Fu-
ture work includes the application of our approach
to more recent architectures such as Vaswani et al.
(2017) which will involve extracting attentions
from multiple decoding layers and attention heads.
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Abstract

We propose a process for investigating the ex-
tent to which sentence representations arising
from neural machine translation (NMT) sys-
tems encode distinct semantic phenomena. We
use these representations as features to train a
natural language inference (NLI) classifier ba-
sed on datasets recast from existing semantic
annotations. In applying this process to a re-
presentative NMT system, we find its enco-
der appears most suited to supporting inferen-
ces at the syntax-semantics interface, as com-
pared to anaphora resolution requiring world-
knowledge. We conclude with a discussion on
the merits and potential deficiencies of the
existing process, and how it may be improved
and extended as a broader framework for eva-
luating semantic coverage.1

1. Introduction

What do neural machine translation (NMT) mo-
dels learn about semantics? Many researchers sug-
gest that state-of-the-art NMT models learn re-
presentations that capture the meaning of senten-
ces (Gu et al., 2016; Johnson et al., 2017; Zhou
et al., 2017; Andreas and Klein, 2017; Neubig,
2017; Koehn, 2017). However, there is limited un-
derstanding of how specific semantic phenome-
na are captured in NMT representations beyond
this broad notion. For instance, how well do the-
se representations capture Dowty (1991)’s the-
matic proto-roles? Are these representations suf-
ficient for understanding paraphrastic inference?
Do the sentence representations encompass com-
plex anaphora resolution? We argue that existing
semantic annotations recast as Natural Langua-
ge Inference (NLI) can be leveraged to investi-
gate whether sentence representations encoded by
NMT models capture these semantic phenomena.

1Code developed and data used are available at https:
//github.com/boknilev/nmt-repr-analysis.

Sara adopted Jill, she wanted a child
DPR

Sara adopted Jill, Jill wanted a child
7

Iran possesses five research reactors
FN+

Iran has five research reactors
3

Berry Rejoins WPP Group
SPR

Berry was sentient
3

Figure 1: Example sentence pairs for the different se-
mantic phenomena. DPR deals with complex anaphora
resolution, FN+ is concerned with paraphrastic inferen-
ce, and SPR covers Reisinger et al. (2015)’s semantic
proto-roles. 3 / 7 indicates that the first sentence entails
/ does not entail the second.

We use sentence representations from pre-
trained NMT encoders as features to train classi-
fiers for NLI, the task of determining if one sen-
tence (a hypothesis) is supported by another (a
context).2 If the sentence representations learned
by NMT models capture distinct semantic pheno-
mena, we hypothesize that those representations
should be sufficient to perform well on NLI da-
tasets that test a model’s ability to capture these
phenomena. Figure 1 shows example NLI senten-
ce pairs with their respective labels and semantic
phenomena.

We evaluate NMT sentence representations of
4 NMT models from 2 domains on 4 different
NLI datasets to investigate how well they captu-
re different semantic phenomena. We use White
et al. (2017)’s Unified Semantic Evaluation Fra-
mework (USEF) that recasts three semantic phe-
nomena NLI: 1) semantic proto-roles, 2) paraph-
rastic inference, 3) and complex anaphora resolu-
tion. Additionally, we evaluate the NMT sentence
representations on 4) Multi-NLI, a recent exten-
sion of the Stanford Natural Language Inference
dataset (SNLI) (Bowman et al., 2015) that inclu-
des multiple genres and domains (Williams et al.,

2Sometimes referred to as recognizing textual entail-
ment (Dagan et al., 2006, 2013).
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2017). We contextualize our results with a stan-
dard neural encoder described in Bowman et al.
(2015) and used in White et al. (2017).

Based on the recast NLI datasets, our investiga-
tion suggests that NMT encoders might learn mo-
re about semantic proto-roles than anaphora reso-
lution or paraphrastic inference. We note that the
target-side language affects how an NMT source-
side encoder captures these semantic phenomena.

2. Motivation

Why use recast NLI? We focus on NLI, as op-
posed to a wide range of NLP taks, as a uni-
fied framework that can capture a variety of se-
mantic phenomena based on arguments by Whi-
te et al. (2017). Their recast dataset enables us to
study whether NMT encoders capture “distinct ty-
pes of semantic reasoning” under just one task. We
choose these specific semantic phenomena for two
reasons. First, a long term goal is to understand
how combinations of different corpora and neural
architectures can contribute to a system’s ability to
perform general language understanding. As hu-
mans can understand (annotate consistently) the
sentence pairs used in our experiments, we would
similarly like our final system to have this same
capability. We posit that it is necessary but not ne-
cessarily sufficient for a language understanding
system to be able to capture the semantic pheno-
mena considered here. Second, we believe these
semantic phenomena might be relevant for trans-
lation. We demonstrate this with a few examples.

Anaphora Anaphora resolution connects to-
kens, typically pronouns, to their referents. Anap-
hora resolution should occur when translating
from morphologically poor languages into so-
me morphologically rich languages. For example,
when translating “The parent fed the child becau-
se she was hungry,” a Spanish translation should
describe the child as la niña (fem.) and not el ni-
ño (masc.) since she refers to the child. Becau-
se world knowledge is often required to perform
anaphora resolution (Rahman and Ng, 2012; Ja-
vadpour, 2013), this may enable evaluating whet-
her an NMT encoder learns world knowledge. In
this example, she refers to the child and not the
parent since world knowledge dictates that parents
often feed children when children are hungry.

Proto-roles Dowty (1991)’s proto-roles may be
expressed differently in different languages, and

so correctly identifying them can be important for
translation. For example, English does not usually
explicitly mark volition, a proto-role, except by
using adverbs like intentionally or accidentally.
Other languages mark volitionality by using spe-
cial affixes (e.g., Tibetan and Sesotho, a Bantu lan-
guage), case marking (Hindi, Sinhalese), or au-
xiliaries (Japanese).3 Correctly generating these
markers may require the MT system to encode vo-
litionality on the source side.

Paraphrases Callison-Burch (2007) discusses
how paraphrases help statistical MT (SMT) when
alignments from source words to target-language
words are unknown. If the alignment model can
map a paraphrase of the source word to a word
in the target language, then the SMT model can
translate the original word based on its paraph-
rase.4 Paraphrases are also used by professional
translators to deal with non-equivalence of words
in the source and target languages (Baker, 2018).

3. Methodology

We use NMT models based on bidirectio-
nal long short-term memory (Bi-LSTM) encoder-
decoders with attention (Sutskever et al., 2014;
Bahdanau et al., 2015), trained on a parallel cor-
pus. Given an NLI context-hypothesis pair, we
pass each sentence independently through a trai-
ned NMT encoder to extract their respective vec-
tor representations. We represent each sentence by
concatenating the last hidden state from the for-
ward and backward encoders, resulting in v and u
(in R2d) for the context and hypothesis.5 We fo-
llow the common practice of feeding the conca-
tenation (v,u) ∈ R4d to a classifier (Rocktäs-
chel et al., 2016; Bowman et al., 2015; Mou et al.,
2016; Liu et al., 2016; Cheng et al., 2016; Munkh-
dalai and Yu, 2017).

Sentence pair representations are fed into a clas-
sifier with a softmax layer that maps onto the num-
ber of labels. Experiments with both linear and
non-linear classifiers have not shown major diffe-
rences, so we report results with the linear classi-
fier unless noted otherwise. We report implemen-
tation details in Appendix B.

3For references and examples, see: en.wikipedia.
org/wiki/Volition_(linguistics).

4Using paraphrases can help NMT models generate text in
the target language in some settings (Sekizawa et al., 2017).

5We experimented with other sentence representations
and their combinations, and did not see differences in ove-
rall conclusions. See Appendix A for these experiments.
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Train

Test DPR: 50.0 SPR: 65.4 FN+: 57.5
ar es zh de USEF ar es zh de USEF ar es zh de USEF

DPR 49.8 50.0 50.0 50.0 49.5 45.4 57.1 47.0 43.9 65.2 48.0 55.9 51.0 46.8 19.2
SPR 50.1 50.3 50.1 49.9 50.7 72.1 74.2 73.6 73.1 80.6 56.3 57.0 56.9 56.1 65.8
FN+ 50.0 50.0 50.4 50.0 49.5 57.3 63.6 54.5 60.7 60.0 56.2 56.1 54.3 55.5 80.5

Table 1: Accuracy on NLI with representations generated by encoders of English→{ar,es,zh,de} NMT models.
Rows correspond to the training and validation sets and major columns correspond to the test set. The column
labeled “USEF” refers to the test accuracies reported in White et al. (2017). The numbers on the top row represents
each dataset’s majority baseline. Bold numbers indicate the highest performing model for the given dataset.

4. Data

MT data We train NMT models on four langua-
ge pairs: English → {Arabic (ar), Spanish (es),
Chinese (zh), and German (de)}. See Appendix B
for training details. The first three pairs use the
United Nations parallel corpus (Ziemski et al.,
2016) and for English-German, we use the WMT
dataset (Bojar et al., 2014). Although the entail-
ment classifier only uses representations extracted
from the English-side encoders as features, using
multiple language pairs allows us to explore whet-
her different target languages affect what semantic
phenomena are captured by an NMT encoder.

Natural Language Inference data We use
four distinct datasets to train classifiers: Multi-
NLI (Williams et al., 2017), a recent expansion
of SNLI containing a broad array of domains that
was used in the 2017 RepEval shared task (Nan-
gia et al., 2017), and three recast NLI datasets
from The JHU Decompositional Semantics Initia-
tive (Decomp)6 released by White et al. (2017).
Sentence-pairs and labels were recast, i.e. auto-
matically converted, from existing semantic an-
notations: FrameNet Plus (FN+) (Pavlick et al.,
2015), Definite Pronoun Resolution (DPR) (Rah-
man and Ng, 2012), and Semantic Proto-Roles
(SPR) (Reisinger et al., 2015). The FN+ portion
contains sentence pairs based on paraphrastic in-
ference, DPR’s sentence pairs focus on identif-
ying the correct antecedent for a definite pronoun,
and SPR’s sentence pairs test whether the semantic
proto-roles from Reisinger et al. (2015) apply ba-
sed on a given sentence.7 Recasting makes it easy
to determine how well an NLI method captures the
fine-grained semantics inspired by Dowty (1991)’s
thematic proto-roles, paraphrastic inference, and
complex anaphora resolutions. Table 2 includes
the datasets’ statistics.

6decomp.net
7We refer the reader to White et al. (2017) for detailed

discussion on how the existing datasets were recast as NLI.

DPR SPR FN+ MNLI

Train 2K 123K 124K 393K
Dev .4K 15K 15K 9K
Test 1K 15K 14K 9K

Table 2: Number of sentences in NLI datasets.

5. Results

Table 1 shows results of NLI classifiers trained
on representations from different NMT encoders.
We also report the majority baseline and the results
of Bowman et al.’s 3-layer deep 200 dimensional
neural network used by White et al. (“USEF”).

Paraphrastic entailment (FN+) Our classifiers
predict FN+ entailment worse than the majority
baseline, and drastically worse than USEF when
trained on FN+’s training set. Since FN+ tests pa-
raphrastic inference and NMT models have been
shown to be useful to generate sentential paraphra-
se pairs (Wieting and Gimpel, 2017; Wieting et al.,
2017), it is surprising that our classifiers using the
representations from the NMT encoder perform
poorly. Although the sentences in FN+ are much
longer than in the other datasets, sentence length
does not seem to be responsible for the poor FN+
results. The classifiers do not noticeably perform
better on shorter sentences than longer ones, as no-
ted in Appendix C.

Upon manual inspection, we noticed that in
many not-entailed examples, swapped paraphra-
ses had different part-of-speech (POS) tags. This
begs the question of whether different POS tags
for swapped paraphrases affects the accuracies.
Using Stanford CoreNLP (Manning et al., 2014),
we partition our validation set based on whether
the paraphrases share the same POS tag. Table 3
reports dev set accuracies using classifiers trained
on FN+. Classifiers using features from NMT en-
coders trained on the three languages from the UN
corpus noticeably perform better on cases where
paraphrases have different POS tags compared to
paraphrases with the same POS tags. These dif-
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ar es zh de

Same Tag 52.9 52.6 52.6 50.2
Different Tag 55.8 59.1 53.4 46.0

Table 3: Accuracies on FN+’s dev set based on whether
the swapped paraphrases share the same POS tag.

ferences might suggest that the recast FN+ might
not be an ideal dataset to test how well NMT enco-
ders capture paraphrastic inference. The sentence
representations may be impacted more by ungram-
maticality caused by different POS tags as oppo-
sed to poor paraphrases.

Anaphora entailment (DPR) The low accura-
cies for predicting NLI targeting anaphora resolu-
tion are similar to White et al. (2017)’s findings.
They suggest that the model has difficulty in cap-
turing complex anaphora resolution. By using con-
trastive evaluation pairs, Bawden et al. (2017) re-
cently suggested as well that NMT models are
poorly suited for co-reference resolution. Our re-
sults are not surprising given that DPR tests whet-
her a model contains common sense knowled-
ge (Rahman and Ng, 2012). In DPR, syntactic
cues for co-reference are purposefully balanced
out as each pair of pro-nouns appears in at least
two context-hypothesis pairs (Table 9). This forces
the model’s decision to be informed by semantics
and world knowledge – a model cannot use syn-
tactic cues to help perform anaphora resolution.8

Although the poor performance of NMT represen-
tations may be explained by a variety of reasons,
e.g. training data, architectures, etc., we would still
like ideal MT systems to capture the semantics of
co-reference, as evidenced in the example in §2.

Even though the classifiers perform poorly
when predicting paraphrastic entailment, they sur-
prisingly outperform USEF by a large margin
(around 25–30%) when using a model trained on
DPR.9 This might suggest that an NMT encoder
can pick up on how pronouns may be used as a ty-
pe of lexical paraphrase (Bhagat and Hovy, 2013).

Proto-role entailment (SPR) When predicting
SPR entailments using a classifier trained on SPR
data, we noticeably outperform the majority base-
line but are below USEF. Both ours and USEF’s
accuracies are lower than Teichert et al. (2017)’s
best reported numbers. This is not surprising as
Teichert et al. condition on observed semantic role
labels when predicting proto-role labels.

8Appendix D includes some illustrative examples.
9This is seen in the last columns of the top row in Table 1.

Proto-Role ar es zh de avg MAJ

physically existed 70.6 70.8 77.2 70.8 72.4† 65.9
sentient 78.5 82.2 80.5 81.7 80.7† 75.5
aware 75.9 77.0 76.6 76.7 76.6† 60.9
volitional 74.3 76.8 74.7 73.7 74.9† 64.5
existed before 68.4 70.5 66.5 68.4 68.5† 64.8
caused 69.4 74.1 72.2 72.7 72.1† 63.4

changed 64.2 62.4 63.8 62.0 63.1 65.1
location 91.1 90.1 90.4 90.2 90.4 91.7
moved 90.6 88.8 90.1 90.3 89.9 93.3
used in 34.9 38.1 31.8 34.2 34.7 55.2
existed after 62.7 69.0 65.6 65.2 65.7 69.7
chang. state 61.8 60.7 60.9 60.7 61.0 65.2
chang. possession 89.6 88.6 89.9 88.3 89.1 93.9
stationary during 86.3 84.4 90.5 86.0 86.8 96.3
physical contact 85.0 82.0 84.5 84.4 84.0 85.8
existed during 59.3 71.8 60.8 64.4 64.1 84.7

Table 4: Accuracies on the SPR test set broken down
by each proto-role. “avg” represents the score for the
proto-role averaged across target languages. Bold and
† respectively indicate the best results for each proto-
role and whether all of our classifiers outperformed the
proto-role’s majority baseline.

Table 4 reports accuracies for each proto-role.
Whenever one of the classifiers outperforms the
baseline for a proto-role, all the other classifiers
do as well. The classifiers outperform the majo-
rity baseline for 6 of the reported 16 proto-roles.
We observe these 6 properties are more associated
with proto-agents than proto-patients.

The larger improvements over the majority ba-
seline for SPR compared to FN+ and DPR is not
surprising. Dowty (1991) posited that proto-agent,
and -patient should correlate with English syntac-
tic subject, and object, respectively, and empiri-
cally the necessity of [syntactic] parsing for pre-
dicate argument recognition has been observed
in practice (Gildea and Palmer, 2002; Punyaka-
nok et al., 2008). Further, recent work is sugges-
tive that LSTM-based frameworks implicitly may
encode syntax based on certain learning objecti-
ves (Linzen et al., 2016; Shi et al., 2016; Belin-
kov et al., 2017b). It is unclear whether NMT en-
coders capture semantic proto-roles specifically or
just underlying syntax that affects the proto-roles.

NMT target language Our experiments show
differences based on which target language was
used to train the NMT encoder, in capturing se-
mantic proto-roles and paraphrastic inference. In
Table 1, we notice a large improvement using sen-
tence representations from an NMT encoder that
was trained on en-es parallel text. The improve-
ments are most profound when a classifier trained
on DPR data predicts entailment focused on se-
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ar es zh de MAJ

MNLI-1 45.9 45.7 46.6 48.0 35.6
MNLI-2 46.6 46.7 48.2 48.9 36.5

Table 5: Accuracies for MNLI test sets. MNLI-1 refers
to the matched case and MNLI-2 is the mismatched.

mantic proto-roles or paraphrastic inference. We
also note that using the NMT encoder trained on
en-es parallel text results in the highest results in
5 of the 6 proto-roles in the top portion of Ta-
ble 4. When using other sentence representations
(Appendix A), we notice that using representa-
tions from English-German encoders consistently
outperforms using the other encoders (Tables 6
and 7). This prevents us from making generaliza-
tions regarding specific target side languages.

NLI across multiple domains Though our main
focus is exploring what NMT encoders learn about
distinct semantic phenomena, we would like to
know how useful NMT models are for general
NLI across multiple domains. Therefore, we also
evaluate the sentence representations with Multi-
NLI. As indicated by Table 5, the representa-
tions perform noticeably better than a majority ba-
seline. However, our results are not competitive
with state-of-the-art systems trained specifically
for Multi-NLI (Nangia et al., 2017).

6. Related Work

In concurrent work, Poliak et al. (2018) explore
whether NLI datasets contain statistical irregulari-
ties by training a model with access to only hypot-
heses. Their model significantly outperforms the
majority baseline and our results on Multi-NLI,
SPR, and FN+. They suggest that these, among ot-
her NLI datasets, contain statistical irregularities.
Their findings illuminate issues with the recast da-
tasets we consider, but do not invalidate our ap-
proach of using recast NLI to determine whether
NMT encoders capture distinct semantic pheno-
mena. Instead, they force us to re-evaluate the ma-
jority baseline as an indicator of whether encoders
learn distinct semantics and to what extent we can
make conclusions based on these recast datasets.

Prior work has focused on the relationship bet-
ween semantics and machine translation. MEANT
and its extension XMEANT evaluate MT systems
based on semantics (Lo and Wu, 2011; Lo et al.,
2014). Others have focused on incorporating se-
mantics directly in MT. Chan et al. (2007) use
word sense disambiguation to help statistical MT,

Gao and Vogel (2011) add semantic-roles to im-
prove phrase-based MT, and Carpuat et al. (2017)
demonstrate how filtering parallel sentences that
are not parallel in meaning improves translation.
Recent work explores how representations learned
by NMT systems can improve semantic tasks. Mc-
Cann et al. (2017) show improvements in many
tasks by using contextualized word vectors extrac-
ted from a LSTM encoder trained for MT. Their
goal is to use NMT to improve other tasks whi-
le we focus on using NLI to determine what NMT
models learn about different semantic phenomena.

Researchers have explored what NMT models
learn about other linguistic phenomena, such as
morphology (Dalvi et al., 2017; Belinkov et al.,
2017a), syntax (Shi et al., 2016), and lexical se-
mantics (Belinkov et al., 2017b), including word
senses (Marvin and Koehn, 2018; Liu et al., 2018)

7. Conclusion and Future Work

Researchers suggest that NMT models learn
sentence representations that capture meaning. We
inspected whether distinct types of semantics are
captured by NMT encoders. Our experiments sug-
gest that NMT encoders might learn the most
about semantic proto-roles, do not focus on anap-
hora resolution, and may poorly capture paraph-
rastic inference. We conclude by suggesting that
target-side language affects how well an NMT en-
coder captures these semantic phenomena.

In future work, we would like to study how
well NMT encoders capture other semantic pheno-
mena, possibly by recasting other datasets. Com-
paring how semantic phenomena are represen-
ted in different NMT architectures, e.g. purely
convolutional (Gehring et al., 2017) or attention-
based (Vaswani et al., 2017), may shed light on
whether different architectures may better captu-
re semantic phenomena. Finally, investigating how
multilingual systems learn semantics can bring a
new perspective to questions of universality of re-
presentation (Schwenk and Douze, 2017).
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A. Sentence Representations

In the experiments reported in the main paper,
we used a simple sentence representation, the first
and last hidden states of the forward and back-
ward encoders. We concatenated them for both
the context and the hypothesis and fed to a li-
near classifier. Here we compare the results of
InferSent (Conneau et al., 2017), a more in-
volved representation that was found to provide
a good sentence representation based on NLI da-
ta. Specifically, we concatenate the forward and
backward encodings for each sentence, and max-
pool over the length of the sentence, resulting in v
and u (in R2d) for the context and hypothesis. The
InferSent representation is defined by

(u,v, |u− v|,u ∗ v) ∈ R8d

where the product and subtraction are ca-
rried element-wise and commas denote vector-
concatenation.

The pair representation is fed into a multi-
layered perceptron (MLP) with one hidden layer
and a ReLU non-linearity. We set the hidden layer
size to 500 dimensions, similarly to Conneau et al.
(2017). The softmax layer maps onto the number
of labels, which is either 2 or 3 depending on the
dataset.

InferSent results Table 6 shows the results
of the classifier trained on NMT representations
with the InferSent architecture. Here, the repre-
sentations from NMT encoders trained on the
English-German parallel corpus slightly outper-
forms the others. Since this data used a different
corpus compared to the other language pairs, we
cannot determine whether the improved results are
due to the different target side language or corpus.
The main difference with respects to the simpler
sentence representation (Concat) is improved re-
sults on FN+. Table 7 shows the results on Multi-
NLI. It is interesting to note that, when using
the sentence representations from NMT encoders,
concatenating the sentence vectors outperformed
the InferSent method on Multi-NLI.

B. Implementation & Experimental
Details

We use 4-layer NMT systems with 500-
dimensional word embeddings and LSTM states
(i.e., d = 500). The vocabulary size is 75K words.

FN+ DPR SPRL

NMT Concat

en-ar 56.2 49.8 72.1
en-es 56.1 50.0 74.2
en-zh 54.3 50.0 73.1
en-de 55.5 50.0 73.1

NMT
InferSent

en-ar 57.9 50.0 73.6
en-es 58.0 50.0 72.7
en-zh 57.8 49.8 72.4
en-de 58.3 50.1 73.7

Majority 57.5 50.0 65.4
(White et al., 2017) 80.5 49.5 80.6

Table 6: NLI results on fine-grained semantic pheno-
mena. FN+ = paraphrases; DPR = pronoun resolution;
SPRL = proto-roles. NMT representations are com-
bined with either a simple concatenation (results co-
pied from Table 2) or the InferSent representation.
State-of-the-art (SOTA) is from White et al. (2017).

MNLI-1 MNLI-2

NMT
Concat

en-ar 45.9 46.6
en-es 45.7 46.7
en-zh 46.6 48.2
en-de 48.0 48.9

NMT
Infer-
Sent

en-ar 40.1 41.8
en-es 44.9 40.8
en-zh 43.7 42.1
en-de 41.3 41.1

Majority 35.6 36.5
SOTA 81.10 83.21

Table 7: Results on language inference on MultiN-
LI (Williams et al., 2017), matched/mismatched sce-
nario (MNLI1/2).

We train NMT models until convergence and ta-
ke the models that performed best on the develop-
ment set for generating representations to feed into
the entailment classifier. We use the hidden states
from the top encoding layer for obtaining senten-
ce representations since it has been hypothesized
that higher layers focus on word meaning, as op-
posed to syntax (Belinkov et al., 2017a,b). We re-
move long sentences (> 50 words) when training
both the classifier and the NMT model, as is com-
mon NMT practice (Cho et al., 2014). During tes-
ting, we use all test sentences regardless of senten-
ce length. Our implementation extends Belinkov
et al. (2017a)’s implementation in Torch (Collo-
bert et al., 2011).

We train English→Arabic/Spanish/Chinese
NMT models on the first 2 million senten-
ces of the United Nations parallel corpus
training set (Ziemski et al., 2016), and the
English→German model on the WMT data-
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set (Bojar et al., 2014). We use the official
training/development/test splits.

In our NLI experiments, we do not train on
Multi-NLI and test on the recast datasets, or vice-
versa, since Multi-NLI since Multi-NLI uses a 3-
way classification (entailment, neutral, and con-
tradictions) while the recast datasets use just two
labels (entailed and not-entailed). In preliminary
experiments, we also used a 3-layered MLP. Alt-
hough the results slightly improved, we noted si-
milar trends to the linear classifier.

C. Sentence length

The average sentence in the FN+ test dataset is
31 words and almost 10% of the test sentences
are longer than 50 words. In SPR and DPR, each
premise sentence has on average 21 and 15 words
respectively and only 1% of sentences in SPR ha-
ve more than 50 words. No DPR sentences have
> 50 words.

Table 8 reports accuracies for ranges of
sentence lengths in FN+’s development set.
When trained on sentence representations form
an English→Chinese,German NMT encoder, the
NLI accuracies steadily decrease. When using
English→Arabic, the accuracies stay consistent
until sentences have between 70–80 tokens while
the results from English→Spanish quickly drops
from 0–10 to 10–20 but then stays relatively con-
sistent.

D. World Knowledge in DPR

When released, Rahman and Ng (2012)’s DPR
dataset confounded the best co-reference models
because “its difficulty stems in part from its relian-
ce on sophisticated knowledge sources.” Table 9
includes examples that demonstrate how world
knowledge is needed to accurately predict these
recast NLI sentence-pairs.

Lorem ipsum dolor sit amet, consectetuer adi-
piscing elit. Ut purus elit, vestibulum ut, placerat
ac, adipiscing vitae, felis. Curabitur dictum gravi-
da mauris. Nam arcu libero, nonummy eget, con-
sectetuer id, vulputate a, magna. Donec vehicula
augue eu neque. Pellentesque habitant morbi tristi-
que senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhon-
cus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravi-
da placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo

Sentence length ar es zh de total

0-10 46.8 63.7 66.0 65.4 526

10-20 49.0 53.3 57.4 56.5 2739

20-30 48.4 54.0 53.2 54.9 4889

30-40 48.4 54.1 51.2 53.9 4057

40-50 47.7 59.0 55.0 58.7 2064

50-60 49.1 56.1 54.5 57.5 877

60-70 46.4 53.6 43.9 44.1 444

70-80 59.9 51.6 43.3 43.3 252

Table 8: Accuracies on FN+’s dev set based on sen-
tence length. The first column represents the range of
sentences length: first number is inclusive and second
is exclusive. The last column represents how many con-
text sentences have lengths that are in the given row’s
range.

ultrices bibendum. Aenean faucibus. Morbi dolor
nulla, malesuada eu, pulvinar at, mollis ac, nulla.
Curabitur auctor semper nulla. Donec varius or-
ci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.
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Chris was running after John, because he stole his watch
I Chris was running after John, because John stole his watch 3

I Chris was running after John, because Chris stole his watch 7

Chris was running after John, because he wanted to talk to him
I Chris was running after John, because Chris wanted to talk to him 3

I Chris was running after John, because John wanted to talk to him 7

The plane shot the rocket at the target, then it hit the target
I The plane shot the rocket at the target, then the rocket hit the target 3

I The plane shot the rocket at the target, then the target hit the target 7

Professors do a lot for students, but they are rarely thankful
I Professors do a lot for students, but students are rarely thankful 3

I Professors do a lot for students, but Professors are rarely thankful 7

MIT accepted the students, because they had good grades
IMIT accepted the students, because the students had good grades 3

IMIT accepted the students, because MIT had good grades 7

Obama beat John McCain, because he was the better candidate
I Obama beat John McCain, because Obama was the better candidate 3

I Obama beat John McCain, because John McCain was the better candidate 7

Obama beat John McCain, because he failed to win the majority of the
electoral votes
I Obama beat John McCain, because John McCain failed to win

the majority of the electoral votes 3

I Obama beat John McCain, because Obama failed to win
the majority of the electoral vote 7

Table 9: Examples from DPR’s dev set. The first line in each section is a context and lines withI are corresponding
hypotheses. 3 (7) in the last column indicates whether the hypothesis is entailed (or not) by the context.
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Abstract

We present a method for improving word
alignments using word similarities. This
method is based on encouraging common
alignment links between semantically similar
words. We use word vectors trained on mono-
lingual data to estimate similarity. Our experi-
ments on translating fifteen languages into En-
glish show consistent BLEU score improve-
ments across the languages.

1 Introduction

Word alignments are essential for statistical ma-
chine translation (MT), especially in low-resource
settings where neural MT systems often do
not compete with phrase-based and syntax-based
MT (Koehn and Knowles, 2017). The most widely
used word alignment method (Brown et al., 1993)
works by estimating the parameters of IBM mod-
els from training data using the Expectation Max-
imization (EM) algorithm. However, EM works
poorly for low-frequency words as they do not ap-
pear enough in the training data for confident pa-
rameter estimation. This problem is even worse
in low-resource settings where a large portion of
word types appear infrequently in the parallel data.
In this paper we improve word alignments and
consequently machine translation in low resource
settings by improving the alignments of infrequent
tokens.

Works that deal with the rare-word problem in
word alignment include those that alter the proba-
bility distribution of IBM models’ parameters by
adding prior distributions (Vaswani et al., 2012;
Mermer and Saraçlar, 2011), smoothing the prob-
abilities (Moore, 2004; Zhang and Chiang, 2014;
Van Bui and Le, 2016) or introducing symmetriza-
tion (Liang et al., 2006; Pourdamghani et al.,
2014). These works, although effective, merely
rely on the information extracted from the paral-

lel data. Another branch adds linguistic knowl-
edge like word stems, orthography (Hermjakob,
2009) morphological analysis (De Gispert et al.,
2006; Lee, 2004), syntactic constraints (Fossum
et al., 2008; Cherry and Lin, 2006; Toutanova
et al., 2002) or a mixture of such clues (Tiede-
mann, 2003). These methods need language-
specific knowledge or tools like morphological an-
alyzers or syntax parsers that is costly and time
consuming to obtain for any given language.

A less explored branch that can help aligning
rare words is adding semantic information. The
motivation behind this branch is simple: Words
with similar meanings should have similar trans-
lations. Previously, Ma et al. (2011) cluster words
using monolingual data and substitute each word
with its cluster representative to get alignments.
They then duplicate their parallel data and use both
regular alignments and alignments on word classes
for training MT. Kočiskỳ et al. (2014) simultane-
ously learn alignments and word representations
from bilingual data. Their method does not bene-
fit from monolingual data and requires large par-
allel data for training. Songyot and Chiang (2014)
define a word-similarity model that can be trained
from monolingual data using a feed-forward neu-
ral network, and alter the implementation of IBM
models in Giza++ (Och and Ney, 2003) to use
the word similarity inside their EM. They require
large monolingual data for both source language
and English. While English monolingual data is
abundant, availability of large and reliable mono-
lingual data for many low resource languages is
not guaranteed.

All these previous works define their own word
similarity models, which similar to the more
widely used distributed word representation meth-
ods (Mikolov et al., 2013; Pennington et al., 2014),
assign high similarity to substitutable words in a
given context; however, substitutability does not
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always imply synonymy. For instance tea and cof-
fee, or Pakistan and Afghanistan will be similar in
these models but do not share translations.

In this paper we propose a simple method to use
off-the-shelf distributed representation methods to
improve word alignments for low-resource ma-
chine translation (Section 2). Our model is based
on encouraging common alignment links between
semantically similar words. We do this by extract-
ing a bilingual lexicon, as a subset of the transla-
tion tables trained by IBM models and adding it
to the parallel data. For instance, the rare word
obliterated and its semantically similar word de-
stroyed, have a common entry destruida in the
English/Spanish translation table. We add a new
(obliterated, destruida) pair to the parallel data to
encourage aligning obliterated to destruida.

The simplicity of our method makes it easy
to be widely used. Our work addresses a major
problem of previous works, which is taking sub-
stitutability for synonymy without discrimination.
Finally, the lexicon can be extracted either with
or without help of word vectors trained on foreign
language monolingual data. Large and reliable
foreign monolingual data can help our alignments,
but we still get good improvements over baseline
for languages with small monolingual data where
we only use English word vectors (Section 4).

We test our method on both alignment f-
score and machine translation BLEU (Section 4).
Alignment accuracy is tested on Arabic-English,
Chinese-English and Farsi-English gold align-
ments. Machine translation accuracy is tested
on fifteen languages were we show a consistent
BLEU score improvement.

2 Proposed Method

We improve the alignment of rare words by en-
couraging them to align to what their semantic
neighbors align to. For instance we encourage the
rare word obliterated to align to what destroyed
aligns to. However, we should be careful in this
process. Distributed word representation methods
like (Mikolov et al., 2013; Pennington et al., 2014)
often define word similarity as the ability to sub-
stitute one word for another given a context. This
does not always imply having same translations.
Multiple reasons contribute to this problem. First,
word vectors are noisy, especially when monolin-
gual data is small. Second, some words might
have multiple meanings and a semantically simi-

IBM
Models

E||F
parallel
data

t-tables: p(f |e), p(e|f)
Extract
Lexicon

E word vectors

F word vectors
E||F lexicon

+

IBM
Models

MT

Figure 1: Word vectors trained on monolingual data are
used to extract a bilingual lexicon out of translation ta-
bles. This lexicon is added to the parallel data, resulting
in improved alignments for machine translation.

lar word might share only part of these meanings.
Finally, some words do not have synonyms, es-
pecially proper names. Word vectors often group
such entities together as they are substitutable, but
this similarity should not be used for alignments.

We bring a simple three-fold solution to these
problems. First, we split the use of English and
foreign word vectors in the method, so that if for-
eign monolingual data is small or unreliable, we
can fall back to only using English word vectors.
Second, and more importantly, we limit the ef-
fect of a semantic neighbor on the alignments of
a token to the common alignment links between
them. This removes the effect of a semantic neigh-
bor which is not a synonym (like effect of tea on
alignments of coffee) and irrelevant meanings of a
semantic neighbor (like multiple meanings of bow
on alignments of token crossbow) as we only en-
courage an alignment link if it appears as a po-
tential translation for both the neighbors. Third,
we note that using similarities based on distributed
representations only hurts alignments for proper
names. For these cases we encourage alignment
to transliterations if applicable.

Figure 1 shows the outline of the proposed
method. We provide the initial parallel data to the
IBM models and train the translate tables p(f |e)
and p(e|f). We then use the word vectors trained
on English and foreign language monolingual data
to extract a bilingual lexicon from these tables.
This lexicon is added to the original parallel data
and used to re-train the alignments. The lexi-
con contains both common alignment links and
transliteration links that are extracted from the

525



translation table. Next we will describe how each
section of the lexicon is generated.

2.1 Extracting Semantically Similar Tokens

Assume an infrequent English token e (w.r.t. the
parallel data), and its semantic neighbor e′. If
e and e′ have a common t-table entry—some f,
where p(f |e) > 0 and p(f |e′) > 0.1 we encour-
age the translation of e to f by adding this pair to
the parallel data for re-alignment. We limit the lex-
icon entries to non-common words. We only add
entries where freq(e) ≤ 100 and freq(f) ≤ 100.
The translation table is trained by 5 iterations of
each of IBM models 1, HMM, and 4.

We add each (e,f) pair multiple times to the lex-
icon proportional to p(f |e′), the cosine distance of
e and e′, and the frequency of e. More precisely,
for each neighbor e′, each (e, f) pair appears
dmin(freq(e) × dist(e, e′) × p(f |e′), freq(e)4 )e
times in the lexicon.

To measure similarity, we use cosine distance
of word vectors trained on monolingual data us-
ing an implementation of continues bag-of-words
(CBOW) algorithm.1 English word vectors are
trained on the one-billion-word language model-
ing benchmark (Chelba et al., 2013). Foreign lan-
guage word vectors are trained on the monolingual
data described in Section 3. All vectors are trained
with window size 6 and dimension 300. For each
word we consider its two nearest neighbors ac-
cording to the cosine distance.

In a similar manner, we extract a lexicon from
the p(e|f) translation table as well. For each for-
eign rare token f and its semantic neighbor f ′, we
add (e, f) pair to the lexicon if p(e|f) > 0 and
p(e|f ′) > 0.1. However, as discussed in Section 4,
it is better to use this lexicon only if the foreign
language word vectors are trained on more than
10 million tokens of monolingual data.

2.2 Extracting Transliterations

For any infrequent English token e (w.r.t. the par-
allel data) and its translation table entry f , if f is
a transliteration of e we add the (e, f) pair to the
lexicon. Similarly we extract transliteration pairs
from the p(e|f) translation table. Each translitera-
tion pair is added once to the lexicon.

In order to decide whether two tokens are
transliterations, we compute the normalized edit
distance of their romanizations. We use uro-

1https://code.google.com/archive/p/word2vec/

man,2 a universal romanizer that converts text in
any script to its romanized version (Latin alpha-
bet). We say two tokens are transliterations if
dist(rom(e), rom(f)) ≤ 0.25, where dist is the
normalized Levenshtein distance and rom(.) is the
output of the romanizer.

3 Data

We use data from fifteen languages for our ma-
chine translation experiments.3 These languages
include Amheric, Arabic, Bengali, Mandarin,
Farsi, Hausa, Somali, Spanish, Tamil, Thai, Turk-
ish, Uighur, Urdu, Uzbek and Yoruba. Table 1
shows the size of training, development, test and
monolingual data for each language. In addition,
we use hand aligned data4 for Arabic/English
(77.3K+119.5K tokens), Chinese/English
(240.2K+305.2K tokens), and Farsi/English
(0.9K+0.8K tokens) for word alignment experi-
ments. We lowercase and tokenize all data using
Moses (Koehn et al., 2007) scripts.

train dev. test mono.
amh 2.1M 39.8K 19.5K 4.3M
ara 3.8M 39.1K 19.8K 230.4M
ben 0.9M 41.9K 21.0K 2.5M
cmn 10.6M 41.7K 20.5K 33.2M
fas 4.3M 47.7K 24.2K 271.2M
hau 2.1M 48.0K 24.1K 3.9M
som 2.8M 46.8K 23.5K 13.5M
spa 24.1M 49.4K 24.3K 14.7M
tam 0.5M 39.0K 11.4K 1.0M
tha 0.7M 39.1K 23.1K 39.7M
tur 4.1M 40.2K 19.9K 483.0M
uig 5.2M 8.6K 4.3K 33.8M
urd 1.1M 46.7K 23.2K 14.4M
uzb 4.2M 42.5K 21.7K 60.3M
yor 2.1M 47.9K 24.5K 7.0M

Table 1: Data split and size of monolingual data (to-
kens) for different languages. For parallel data, size
refers to the number of English plus foreign language
tokens.

2https://www.isi.edu/ ulf/uroman.html
3LDC2015E13, LDC2015E14, LDC2015E83,

LDC2015E84, LDC2016E57, and LDC2016E86 to
LDC2016E105

4LDC2012E51, LDC2012E24, (Pilevar et al., 2011)

526



4 Experiments

4.1 Machine Translation

We perform end-to-end machine translation exper-
iments on 15 different languages described in Sec-
tion 3. We use Giza++ (Och and Ney, 2003) to get
the alignments and Moses (Koehn et al., 2007) to
train and decode phrase based machine translation
(PBMT) systems. The parallel data is stemmed
to the first 4 characters for training the alignments
but not for the PBMT system. We use 5 iterations
of each of IBM models 1, HMM and 4 to train the
alignments both before and after adding the lexi-
cons. In order to reduce the effect of randomness,
we tune and test each system three times and re-
port the average scores. Our baseline is the system
before adding the lexicons. We test both the effect
of only adding the lexicon extracted from p(f |e)
translation table using the English word vectors
(Le), and adding both the lexicons (Le + Lf ). Ta-
ble 2 shows the BLEU scores of running different
experiments. The languages are sorted by the size
of their monolingual data. The first five languages
have less than 10M tokens of monolingual data.

baseline Le Le + Lf improve
tam 19.2 19.3 19.2 0.1
ben 8.1 8.2 8.0 0.1
hau 19.4 19.6 19.9 0.2
amh 11.5 11.9 11.2 0.4
yor 14.2 14.6 14.3 0.4
som 18.7 19.1 18.9 0.2
urd 15.6 15.2 16.2 0.6
spa 40.0 40.0 40.0 0.0
cmn 12.5 12.7 12.7 0.2
uig 12.8 14.3 14.0 1.2
tha 20.3 20.1 20.5 0.2
uzb 13.2 13.5 13.9 0.7
ara 18.2 18.1 18.0 -0.2
fas 19.2 19.3 19.4 0.2
tur 14.7 15.4 15.4 0.7

Table 2: Machine translation experiments (BLEU).
For languages with less than 10M monolingual tokens
(first five) we only use Le, otherwise we use both lexi-
consLe+Lf . This way we improve baseline for almost
all languages.

We see that it is generally better to only use Le

for languages with small monolingual data and use
both Le and Lf for others. If we put the thresh-
old at 10M tokens of monolingual data, we im-

prove the BLEU score over baseline for almost all
languages, up to 1.2 points for Uighur. The ex-
ceptions are Arabic and Spanish. However, the
Spanish experiment is hardly within the low re-
source settings as it has about 24M tokens of par-
allel data.

4.2 Alignments
In addition, we perform word alignment exper-
iments on Arabic/English, Chinese/English, and
Farsi/English, for which we have access to gold
alignment data (Section 3). We append the test
sentences to the existing parallel training data for
each language (Table 1) and use it to get the align-
ments. Baseline and proposed methods are de-
fined as in the machine translation experiments
above (Section 4.1). Note that word vectors for
these three languages are trained on more than
10M tokens, so we use both lexicons in the pro-
posed method. Table 3 presents the precision, re-
call, and f-score of the alignments compared to the
gold alignments.

baseline Le + Lf

ara 63.1/58.1/60.5 63.8/58.4/61.0

cmn 66.5/61.6/63.9 66.7/61.6/64.1

fas 52.7/66.7/58.9 54.3/68.5/60.6

Table 3: Word alignment experiments (alignment
precision/recall/f-score). The proposed method (Le +
Lf ) improves baseline in all cases.

The proposed method gets better precision, re-
call, and f-score for all three languages.

5 Conclusion

In this paper we present a method for improv-
ing word alignments using word similarities. The
method is simple and yet efficient. We use off-
the-shelf distributed word representation tools to
encourage a subset of translation table entries
that are common between semantically similar
words. End-to-end experiments on translating
15 languages into English, as well as alignment-
accuracy experiments for three languages, show
consistent improvement over the baseline.
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Abstract

The performance of Neural Machine Trans-
lation (NMT) systems often suffers in low-
resource scenarios where sufficiently large-
scale parallel corpora cannot be obtained. Pre-
trained word embeddings have proven to be
invaluable for improving performance in nat-
ural language analysis tasks, which often suf-
fer from paucity of data. However, their utility
for NMT has not been extensively explored. In
this work, we perform five sets of experiments
that analyze when we can expect pre-trained
word embeddings to help in NMT tasks. We
show that such embeddings can be surpris-
ingly effective in some cases – providing gains
of up to 20 BLEU points in the most favorable
setting.1

1 Introduction

Pre-trained word embeddings have proven to be
highly useful in neural network models for NLP
tasks such as sequence tagging (Lample et al.,
2016; Ma and Hovy, 2016) and text classifica-
tion (Kim, 2014). However, it is much less com-
mon to use such pre-training in NMT (Wu et al.,
2016), largely because the large-scale training cor-
pora used for tasks such as WMT2 tend to be sev-
eral orders of magnitude larger than the annotated
data available for other tasks, such as the Penn
Treebank (Marcus et al., 1993). However, for low-
resource languages or domains, it is not necessar-
ily the case that bilingual data is available in abun-
dance, and therefore the effective use of monolin-
gual data becomes a more desirable option.

Researchers have worked on a number of meth-
ods for using monolingual data in NMT systems
(Cheng et al., 2016; He et al., 2016; Ramachan-
dran et al., 2016). Among these, pre-trained word
embeddings have been used either in standard

1Scripts/data to replicate experiments are available at
https://github.com/neulab/word-embeddings-for-nmt

2http://www.statmt.org/wmt17/

translation systems (Neishi et al., 2017; Artetxe
et al., 2017) or as a method for learning translation
lexicons in an entirely unsupervised manner (Con-
neau et al., 2017; Gangi and Federico, 2017). Both
methods show potential improvements in BLEU
score when pre-training is properly integrated into
the NMT system.

However, from these works, it is still not clear
as to when we can expect pre-trained embeddings
to be useful in NMT, or why they provide perfor-
mance improvements. In this paper, we examine
these questions more closely, conducting five sets
of experiments to answer the following questions:

Q1 Is the behavior of pre-training affected by
language families and other linguistic fea-
tures of source and target languages? (§3)

Q2 Do pre-trained embeddings help more when
the size of the training data is small? (§4)

Q3 How much does the similarity of the source
and target languages affect the efficacy of us-
ing pre-trained embeddings? (§5)

Q4 Is it helpful to align the embedding spaces be-
tween the source and target languages? (§6)

Q5 Do pre-trained embeddings help more in
multilingual systems as compared to bilin-
gual systems? (§7)

2 Experimental Setup

In order to perform experiments in a controlled,
multilingual setting, we created a parallel corpus
from TED talks transcripts.3 Specifically, we pre-
pare data between English (EN) and three pairs
of languages, where the two languages in the
pair are similar, with one being relatively low-
resourced compared to the other: Galician (GL)
and Portuguese (PT), Azerbaijani (AZ) and Turk-
ish (TR), and Belarusian (BE) and Russian (RU).

3https://www.ted.com/participate/translate
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Dataset train dev test

GL→ EN 10, 017 682 1, 007
PT→ EN 51, 785 1, 193 1, 803
AZ→ EN 5, 946 671 903
TR→ EN 182, 450 4, 045 5, 029
BE→ EN 4, 509 248 664
RU→ EN 208, 106 4, 805 5, 476

Table 1: Number of sentences for each language pair.

The languages in each pair are similar in vocabu-
lary, grammar and sentence structure (Matthews,
1997), which controls for language characteristics
and also improves the possibility of transfer learn-
ing in multi-lingual models (in §7). They also rep-
resent different language families – GL/PT are Ro-
mance; AZ/TR are Turkic; BE/RU are Slavic – al-
lowing for comparison across languages with dif-
ferent caracteristics. Tokenization was done using
Moses tokenizer4 and hard punctuation symbols
were used to identify sentence boundaries. Table 1
shows data sizes.

For our experiments, we use a standard 1-layer
encoder-decoder model with attention (Bahdanau
et al., 2014) with a beam size of 5 implemented in
xnmt5 (Neubig et al., 2018). Training uses a batch
size of 32 and the Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 0.0002,
decaying the learning rate by 0.5 when devel-
opment loss decreases (Denkowski and Neubig,
2017). We evaluate the model’s performance us-
ing BLEU metric (Papineni et al., 2002).

We use available pre-trained word embed-
dings (Bojanowski et al., 2016) trained using
fastText6 on Wikipedia7 for each language.
These word embeddings (Mikolov et al., 2017)
incorporate character-level, phrase-level and posi-
tional information of words and are trained using
CBOW algorithm (Mikolov et al., 2013). The di-
mension of word embeddings is set to 300. The
embedding layer weights of our model are initial-
ized using these pre-trained word vectors. In base-
line models without pre-training, we use Glorot
and Bengio (2010)’s uniform initialization.

3 Q1: Efficacy of Pre-training

In our first set of experiments, we examine the ef-
ficacy of pre-trained word embeddings across the
various languages in our corpus. In addition to

4https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/tokenizer/tokenizer.perl

5https://github.com/neulab/xnmt/
6https://github.com/facebookresearch/fastText/
7https://dumps.wikimedia.org/

Src→ std pre std pre
→ Trg std std pre pre

GL→ EN 2.2 13.2 2.8 12.8
PT→ EN 26.2 30.3 26.1 30.8

AZ→ EN 1.3 2.0 1.6 2.0
TR→ EN 14.9 17.6 14.7 17.9

BE→ EN 1.6 2.5 1.3 3.0
RU→ EN 18.5 21.2 18.7 21.1

Table 2: Effect of pre-training on BLEU score over six
languages. The systems use either random initializa-
tion (std) or pre-training (pre) on both the source and
target sides.

providing additional experimental evidence sup-
porting the findings of other recent work on us-
ing pre-trained embeddings in NMT (Neishi et al.,
2017; Artetxe et al., 2017; Gangi and Federico,
2017), we also examine whether pre-training is
useful across a wider variety of language pairs and
if it is more useful on the source or target side of a
translation pair.

The results in Table 2 clearly demonstrate that
pre-training the word embeddings in the source
and/or target languages helps to increase the
BLEU scores to some degree. Comparing the sec-
ond and third columns, we can see the increase is
much more significant with pre-trained source lan-
guage embeddings. This indicates that the major-
ity of the gain from pre-trained word embeddings
results from a better encoding of the source sen-
tence.

The gains from pre-training in the higher-
resource languages are consistent: ≈3 BLEU
points for all three language pairs. In contrast, for
the extremely low-resource languages, the gains
are either quite small (AZ and BE) or very large,
as in GL which achieves a gain of up to 11 BLEU
points. This finding is interesting in that it indi-
cates that word embeddings may be particularly
useful to bootstrap models that are on the thresh-
old of being able to produce reasonable transla-
tions, as is the case for GL in our experiments.

4 Q2: Effect of Training Data Size

The previous experiment had interesting implica-
tions regarding available data size and effect of
pre-training. Our next series of experiments ex-
amines this effect in a more controlled environ-
ment by down-sampling the training data for the
higher-resource languages to 1/2, 1/4 and 1/8 of
their original sizes.

From the BLEU scores in Figure 1, we can see
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Figure 1: BLEU and BLEU gain by data size.

that for all three languages the gain in BLEU score
demonstrates a similar trend to that found in GL in
the previous section: the gain is highest when the
baseline system is poor but not too poor, usually
with a baseline BLEU score in the range of 3-4.
This suggests that at least a moderately effective
system is necessary before pre-training takes ef-
fect, but once there is enough data to capture the
basic characteristics of the language, pre-training
can be highly effective.

5 Q3: Effect of Language Similarity

The main intuitive hypothesis as to why pre-
training works is that the embedding space be-
comes more consistent, with semantically simi-
lar words closer together. We can also make an
additional hypothesis: if the two languages in
the translation pair are more linguistically simi-
lar, the semantic neighborhoods will be more sim-
ilar between the two languages (i.e. semantic dis-
tinctions or polysemy will likely manifest them-
selves in more similar ways across more simi-
lar languages). As a result, we may expect that
the gain from pre-training of embeddings may be
larger when the source and target languages are
more similar. To examine this hypothesis, we se-
lected Portuguese as the target language, which
when following its language family tree from top
to bottom, belongs to Indo-European, Romance,

Dataset Lang. Family std pre

ES→ PT West-Iberian 17.8 24.8 (+7.0)
FR→ PT Western Romance 12.4 18.1 (+5.7)
IT→ PT Romance 14.5 19.2 (+4.7)

RU→ PT Indo-European 2.4 8.6 (+6.2)
HE→ PT No Common 3.0 11.9 (+8.9)

Table 3: Effect of linguistic similarity and pre-training
on BLEU. The language family in the second column is
the most recent common ancestor of source and target
language.

Western Romance, and West-Iberian families. We
then selected one source language from each fam-
ily above.8 To avoid the effects of training set size,
all pairs were trained on 40,000 sentences.

From Table 3, we can see that the BLEU scores
of ES, FR, and IT do generally follow this hy-
pothesis. As we move to very different languages,
RU and HE see larger accuracy gains than their
more similar counterparts FR and IT. This can be
largely attributed to the observation from the pre-
vious section that systems with larger headroom to
improve tend to see larger increases; RU and HE

have very low baseline BLEU scores, so it makes
sense that their increases would be larger.

6 Q4: Effect of Word Embedding
Alignment

Until now, we have been using embeddings that
have been trained independently in the source and
target languages, and as a result there will not nec-
essarily be a direct correspondence between the
embedding spaces in both languages. However,
we can postulate that having consistent embedding
spaces across the two languages may be benefi-
cial, as it would allow the NMT system to more
easily learn correspondences between the source
and target. To test this hypothesis, we adopted
the approach proposed by Smith et al. (2017) to
learn orthogonal transformations that convert the
word embeddings of multiple languages to a single
space and used these aligned embeddings instead
of independent ones.

From Table 4, we can see that somewhat sur-
prisingly, the alignment of word embeddings was
not beneficial for training, with gains or losses es-
sentially being insignificant across all languages.
This, in a way, is good news, as it indicates that a
priori alignment of embeddings may not be neces-

8English was excluded because the TED talks were orig-
inally in English, which results in it having much higher
BLEU scores than the other languages due to it being direct
translation instead of pivoted through English like the others.
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Dataset unaligned aligned

GL→ EN 12.8 11.5 (−1.3)
PT→ EN 30.8 30.6 (−0.2)
AZ→ EN 2.0 2.1 (+0.1)
TR→ EN 17.9 17.7 (−0.2)
BE→ EN 3.0 3.0 (+0.0)
RU→ EN 21.1 21.4 (+0.3)

Table 4: Correlation between word embedding align-
ment and BLEU score in bilingual translation task.

Train Eval bi std pre align

GL + PT GL 2.2 17.5 20.8 22.4
AZ + TR AZ 1.3 5.4 5.9 7.5
BE + RU BE 1.6 10.0 7.9 9.6

Table 5: Effect of pre-training on multilingual trans-
lation into English. bi is a bilingual system trained
on only the eval source language and all others are
multi-lingual systems trained on two similar source
languages.

sary in the context of NMT, since the NMT system
can already learn a reasonable projection of word
embeddings during its normal training process.

7 Q5: Effect of Multilinguality

Finally, it is of interest to consider pre-training
in multilingual translation systems that share an
encoder or decoder between multiple languages
(Johnson et al., 2016; Firat et al., 2016), which is
another promising way to use additional data (this
time from another language) as a way to improve
NMT. Specifically, we train a model using our
pairs of similar low-resource and higher-resource
languages, and test on only the low-resource lan-
guage. For those three pairs, the similarity of
GL/PT is the highest while BE/RU is the lowest.

We report the results in Table 5. When applying
pre-trained embeddings, the gains in each transla-
tion pair are roughly in order of their similarity,
with GL/PT showing the largest gains, and BE/RU

showing a small decrease. In addition, it is also
interesting to note that as opposed to previous sec-
tion, aligning the word embeddings helps to in-
crease the BLEU scores for all three tasks. These
increases are intuitive, as a single encoder is used
for both of the source languages, and the encoder
would have to learn a significantly more compli-
cated transform of the input if the word embed-
dings for the languages were in a semantically sep-
arate space. Pre-training and alignment ensures
that the word embeddings of the two source lan-
guages are put into similar vector spaces, allowing

the model to learn in a similar fashion as it would
if training on a single language.

Interestingly, BE → EN does not seem to ben-
efit from pre-training in the multilingual scenario,
which hypothesize is due to the fact that: 1) Be-
larusian and Russian are only partially mutually
intelligible (Corbett and Comrie, 2003), i.e., they
are not as similar; 2) the Slavic languages have
comparatively rich morphology, making sparsity
in the trained embeddings a larger problem.

8 Analysis

8.1 Qualitative Analysis

Finally, we perform a qualitative analysis of the
translations from GL→ EN, which showed one of
the largest increases in quantitative numbers. As
can be seen from Table 6, pre-training not only
helps the model to capture rarer vocabulary but
also generates sentences that are more grammat-
ically well-formed. As highlighted in the table
cells, the best system successfully translates a per-
son’s name (“chris”) and two multi-word phrases
(“big lawyer” and “patent legislation”), indicat-
ing the usefulness of pre-trained embeddings in
providing a better representations of less frequent
concepts when used with low-resource languages.

In contrast, the bilingual model without pre-
trained embeddings substitutes these phrases for
common ones (“i”), drops them entirely, or pro-
duces grammatically incorrect sentences. The in-
comprehension of core vocabulary causes devia-
tion of the sentence semantics and thus increases
the uncertainty in predicting next words, gener-
ating several phrasal loops which are typical in
NMT systems.

8.2 Analysis of Frequently Generated
n-grams.

We additionally performed pairwise comparisons
between the top 10 n-grams that each system (se-
lected from the task GL → EN) is better at gen-
erating, to further understand what kind of words
pre-training is particularly helpful for.9 The re-
sults displayed in Table 7 demonstrate that pre-
training helps both with words of low frequency in
the training corpus, and even with function words
such as prepositions. On the other hand, the im-
provements in systems without pre-trained embed-

9Analysis was performed using compare-mt.py from
https://github.com/neubig/util-scripts/.
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source ( risos ) e é que chris é un grande avogado , pero non sabı́a case nada sobre lexislación de patentes
e absolutamente nada sobre xenética .

reference ( laughter ) now chris is a really brilliant lawyer , but he knew almost nothing about patent law and
certainly nothing about genetics .

bi:std ( laughter ) and i ’m not a little bit of a little bit of a little bit of and ( laughter ) and i ’m going to be
able to be a lot of years .

multi:pre-align ( laughter ) and chris is a big lawyer , but i did n’t know almost anything about patent legislation
and absolutely nothing about genetic .

Table 6: Example translations of GL→ EN.

bi:std bi:pre

) so 2/0 about 0/53
( laughter ) i 2/0 people 0/49
) i 2/0 or 0/43
laughter ) i 2/0 these 0/39
) and 2/0 with 0/38
they were 1/0 because 0/37
have to 5/2 like 0/36
a new 1/0 could 0/35
to do , 1/0 all 0/34
‘‘ and then 1/0 two 0/32

(a) Pairwise comparison between two bilingual models

multi:std multi:pre+align

here 6/0 on the 0/14
again , 4/0 like 1/20
several 4/0 should 0/9
you ’re going 4/0 court 0/9
’ve 4/0 judge 0/7
we ’ve 4/0 testosterone 0/6
you ’re going to 4/0 patents 0/6
people , 4/0 patent 0/6
what are 3/0 test 0/6
the room 3/0 with 1/12

(b) Pairwise comparison between two multilingual models

Table 7: Top 10 n-grams that one system did a better job of producing. The numbers in the figure, separated by a
slash, indicate how many times each n-gram is generated by each of the two systems.

dings were not very consistent, and largely fo-
cused on high-frequency words.

8.3 F-measure of Target Words
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Figure 2: The f-measure of target words in bilingual
translation task PT→ EN

Finally, we performed a comparison of the f-
measure of target words, bucketed by frequency
in the training corpus. As displayed in Figure 2,
this shows that pre-training manages to improve
the accuracy of translation for the entire vocabu-
lary, but particularly for words that are of low fre-
quency in the training corpus.

9 Conclusion

This paper examined the utility of considering pre-
trained word embeddings in NMT from a number

of angles. Our conclusions have practical effects
on the recommendations for when and why pre-
trained embeddings may be effective in NMT, par-
ticularly in low-resource scenarios: (1) there is a
sweet-spot where word embeddings are most ef-
fective, where there is very little training data but
not so little that the system cannot be trained at all,
(2) pre-trained embeddings seem to be more effec-
tive for more similar translation pairs, (3) a priori
alignment of embeddings may not be necessary in
bilingual scenarios, but is helpful in multi-lingual
training scenarios.
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Abstract

For general modeling methods applied to di-
verse languages, a natural question is: how
well should we expect our models to work on
languages with differing typological profiles?
In this work, we develop an evaluation frame-
work for fair cross-linguistic comparison of
language models, using translated text so that
all models are asked to predict approximately
the same information. We then conduct a study
on 21 languages, demonstrating that in some
languages, the textual expression of the infor-
mation is harder to predict with both n-gram
and LSTM language models. We show com-
plex inflectional morphology to be a cause of
performance differences among languages.

1 Introduction

Modern natural language processing practitioners
strive to create modeling techniques that work well
on all of the world’s languages. Indeed, most meth-
ods are portable in the following sense: Given ap-
propriately annotated data, they should, in princi-
ple, be trainable on any language. However, despite
this crude cross-linguistic compatibility, it is un-
likely that all languages are equally easy, or that
our methods are equally good at all languages.

In this work, we probe the issue, focusing on lan-
guage modeling. A fair comparison is tricky. Train-
ing corpora in different languages have different
sizes, and reflect the disparate topics of discussion
in different linguistic communities, some of which
may be harder to predict than others. Moreover,
bits per character, a standard metric for language
modeling, depends on the vagaries of a given ortho-
graphic system. We argue for a fairer metric based
on the bits per utterance using utterance-aligned
multi-text. That is, we train and test on “the same”
set of utterances in each language, modulo transla-
tion. To avoid discrepancies in out-of-vocabulary
handling, we evaluate open-vocabulary models.

We find that under standard approaches, text

tends to be harder to predict in languages with fine-
grained inflectional morphology. Specifically, lan-
guage models perform worse on these languages,
in our controlled comparison. Furthermore, this
performance difference essentially vanishes when
we remove the inflectional markings.1

Thus, in highly inflected languages, either the ut-
terances have more content or the models are worse.
(1) Text in highly inflected languages may be in-
herently harder to predict (higher entropy per utter-
ance) if its extra morphemes carry additional, un-
predictable information. (2) Alternatively, perhaps
the extra morphemes are predictable in principle—
for example, redundant marking of grammatical
number on both subjects and verbs, or marking of
object case even when it is predictable from seman-
tics or word order—and yet our current language
modeling technology fails to predict them. This
might happen because (2a) the technology is bi-
ased toward modeling words or characters and fails
to discover intermediate morphemes, or because
(2b) it fails to capture the syntactic and semantic
predictors that govern the appearance of the extra
morphemes. We leave it to future work to tease
apart these hypotheses.

2 Language Modeling

A traditional closed-vocabulary, word-level lan-
guage model operates as follows: Given a fixed set
of words V , the model provides a probability distri-
bution over sequences of words with parameters to
be estimated from data. Most fixed-vocabulary lan-
guage models employ a distinguished symbol UNK

that represents all words not present in V; these
words are termed out-of-vocabulary (OOV).

Choosing the set V is something of a black
art: Some practitioners choose the k most com-

1One might have expected a priori that some difference
would remain, because most highly inflected languages can
also vary word order to mark a topic-focus distinction, and
this (occasional) marking is preserved in our experiment.
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mon words (e.g., Mikolov et al. (2010) choose
k = 10000) and others use all those words that
appear at least twice in the training corpus. In gen-
eral, replacing more words with UNK artificially
improves the perplexity measure but produces a
less useful model. OOVs present something of a
challenge for the cross-linguistic comparison of lan-
guage models, especially in morphologically rich
languages, which simply have more word forms.

2.1 The Role of Inflectional Morphology
Inflectional morphology can explode the base vo-
cabulary of a language. Compare, for instance, En-
glish and Turkish. The nominal inflectional system
of English distinguishes two forms: a singular and
plural. The English lexeme BOOK has the singular
form book and the plural form books. In contrast,
Turkish distinguishes at least 12: kitap, kitablar,
kitabı, kitabın, etc.

To compare the degree of morphological inflec-
tion in our evalation languages, we use count-
ing complexity (Sagot, 2013). This crude metric
counts the number of inflectional categories distin-
guished by a language (e.g., English includes a cat-
egory of 3rd-person singular present-tense verbs).
We count the categories annotated in the language’s
UniMorph (Kirov et al., 2018) lexicon. See Table 1
for the counting complexity of evaluated languages.

2.2 Open-Vocabulary Language Models
To ensure comparability across languages, we re-
quire our language models to predict every charac-
ter in an utterance, rather than skipping some char-
acters because they appear in words that were (arbi-
trarily) designated as OOV in that language. Such
models are known as “open-vocabulary” LMs.

Notation. Let ∪̇ denote disjoint union, i.e., A ∪̇
B = C iff A ∪ B = C and A ∩ B = ∅. Let Σ be
a discrete alphabet of characters, including a dis-
tinguished unknown-character symbol ?.2 A char-
acter LM then defines p(c) =

∏|c|+1
i=1 p(ci | c<i),

where we take c|c|+1 to be a distinguished end-of-
string symbol EOS. In this work, we consider two
open-vocabulary LMs, as follows.

Baseline n-gram LM. We train “flat” hybrid
word/character open-vocabulary n-gram models
(Bisani and Ney, 2005), defined over strings Σ+

2The set of graphemes in these languages can be assumed
to be closed, but external graphemes may on rare occasion
appear in random text samples. These are rare enough to not
materially affect the metrics.

from a vocabulary Σ with mutually disjoint subsets:
Σ = W ∪̇C ∪̇S, where single characters c ∈ C are
distinguished in the model from single character
full words w ∈W , e.g., a versus the word a. Spe-
cial symbols S = {EOW, EOS} are end-of-word
and end-of-string, respectively. N-gram histories
in H are either word-boundary or word-internal
(corresponding to a whitespace tokenization), i.e.,
H = Hb ∪̇Hi. String-internal word boundaries are
always separated by a single whitespace character.3

For example, if foo, baz ∈ W but bar 6∈ W ,
then the string foo bar baz would be gener-
ated as: foo b a r EOW baz EOS. Possible
3-gram histories in this string would be, e.g., [foo
b] ∈ Hi, [r EOW ] ∈ Hb, and [EOW baz] ∈ Hb.

Symbols are generated from a multinomial given
the history h, leading to a new history h′ that now
includes the symbol and is truncated to the Markov
order. Histories h ∈ Hb can generate symbols
s ∈ W ∪ C ∪ {EOS}. If s = EOS, the string is
ended. If s ∈ W , it has an implicit EOW and the
model transitions to history h′ ∈ Hb. If s ∈ C,
it translitions to h′ ∈ Hi. Histories h ∈ Hi can
generate symbols s ∈ C ∪ {EOW} and transition
to h′ ∈ Hb if s = EOW, otherwise to h′ ∈ Hi.

We use standard Kneser and Ney (1995) model
training, with distributions at word-internal histo-
ries h ∈ Hi constrained so as to only provide prob-
ability mass for symbols s ∈ C ∪{EOW}. We train
7-gram models, but prune n-grams hs where the
history h ∈W k, for k > 4, i.e., 6- and 7-gram his-
tories must include at least one s 6∈W . To establish
the vocabularies W and C, we replace exactly one
instance of each word type with its spelled out ver-
sion. Singleton words are thus excluded from W ,
and character sequence observations from all types
are included in training. Note any word w ∈ W
can also be generated as a character sequence. For
perplexity calculation, we sum the probabilities for
each way of generating the word.

LSTM LM. While neural language models can
also take a hybrid approach (Hwang and Sung,
2017; Kawakami et al., 2017), recent advances indi-
cate that full character-level modeling is now com-
petitive with word-level modeling. A large part of
this is due to the use of recurrent neural networks
(Mikolov et al., 2010), which can generalize about

3The model can be extended to handle consecutive whites-
pace characters or punctuation at word boundaries; for this pa-
per, the tokenization split punctuation from words and reduced
consecutive whitespaces to one, hence the simpler model.
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Figure 1: The primary findings of our paper are evinced in these plots. Each point is a language. While the LSTM outperforms
the hybrid n-gram model, the relative performance on the highly inflected languages compared to the more modestly inflected
languages is almost constant; to see this point, note that the regression lines in Fig. 1c are almost identical. Also, comparing Fig. 1a
and Fig. 1b shows that the correlation between LM performance and morphological richness disappears after lemmatization of
the corpus, indicating that inflectional morphology is the origin for the lower BPEC.

how the distribution p(ci | c<i) depends on c<i.
We use a long short-term memory (LSTM) LM

(Sundermeyer et al., 2012), identical to that of
Zaremba et al. (2014), but at the character-level.
To achieve the hidden state hi ∈ Rd at time step
i, one feeds the left context ci−1 to the LSTM:
hi = LSTM (c1, . . . , ci−1) where the model uses
a learned vector to represent each character type.
This involves a recursive procedure described in
Hochreiter and Schmidhuber (1997). Then, the
probability distribution over the ith character is
p(ct | c<i) = softmax (Whi + b), where W ∈
R|Σ|×d and b ∈ R|Σ| are parameters.

Parameters for all models are estimated on the
training portion and model selection is performed
on the development portion. The neural models
are trained with SGD (Robbins and Monro, 1951)
with gradient clipping, such that each component
has a maximum absolute value of 5. We optimize
for 100 iterations and perform early stopping (on
the development portion). We employ a character
embedding of size 1024 and 2 hidden layers of size
1024.4 The implementation is in PyTorch.

3 A Fairer Evaluation: Multi-Text

Effecting a cross-linguistic study on LMs is com-
plicated because different models could be trained
and tested on incomparable corpora. To avoid this
problem, we use multi-text: k-way translations of
the same semantic content.

4As Zaremba et al. (2014) indicate, increasing the number
of parameters may allow us to achieve better performance.

What’s wrong with bits per character? Open-
vocabulary language modeling is most commonly
evaluated under bits per character (BPC) =

1
|c|+1

∑|c|+1
i=1 log p(ci | c<i).5 Even with multi-

text, comparing BPC is not straightforward, as it
relies on the vagaries of individual writing systems.
Consider, for example, the difference in how Czech
and German express the phoneme /tS /: Czech uses
č, whereas German tsch. Now, consider the Czech
word puč and its German equivalent Putsch. Even
if these words are both predicted with the same
probability in a given context, German will end up
with a lower BPC.6

Bits per English Character. Multi-text allows
us to compute a fair metric that is invariant to
the orthographic (or phonological) changes dis-
cussed above: bits per English character (BPEC).
BPEC = 1

|cEnglish|+1

∑|c|+1
i=1 log p(ci | c<i), where

cEnglish is the English character sequence in the
utterance aligned to c. The choice of English is
arbitrary, as any other choice of language would
simply scale the values by a constant factor.

Note that this metric is essentially capturing the
overall bits per utterance, and that normalizing
using English characters only makes numbers in-
dependent of the overall utterance length; it is not
critical to the analysis we perform in this paper.

5To aggregate this over an entire test corpus, we replace
the denominator and also the numerator by summations over
all utterances c.

6Why not work with phonological characters, rather than
orthographic ones, obtaining /putS / for both Czech and Ger-
man? Sadly this option is also fraught with problems as many
languages have perfectly predictable phonological elements
that will artificially lower the score.

538



BPEC / ∆BPC (·e-2)

data (M) hybrid n-gram LSTM

lang wds / ch MCC form lemma form lemma

bg 0.71/4.3 96 1.13/ 4 1.03/ 1 0.95/ 3 0.80/ 1
cs 0.65/3.9 195 1.20/ -8 1.05/-12 0.97/ -6 0.83/ -9
da 0.70/4.1 15 1.10/ -1 1.06/ -4 0.85/ -1 0.82/ -3
de 0.74/4.8 38 1.25/ 17 1.18/ 13 1.04/ 14 0.90/ 10
el 0.75/4.6 50 1.18/ 13 1.08/ 5 0.90/ 10 0.82/ 4
en 0.75/4.1 6 1.10/ 0 1.08/ -3 0.85/ 0 0.83/ -3
es 0.81/4.6 71 1.15/ 12 1.07/ 7 0.87/ 9 0.80/ 5
et∗ 0.55/3.9 110 1.20/ -8 1.11/-15 0.97/ -6 0.89/-12
fi∗ 0.52/4.2 198 1.18/ 2 1.02/-11 1.05/ 1 0.79/ -9
fr 0.88/4.9 30 1.13/ 17 1.06/ 13 0.92/ 14 0.78/ 10

hu∗ 0.63/4.3 94 1.25/ 5 1.12/ -9 1.09/ 5 0.89/ -7
it 0.85/4.8 52 1.15/ 16 1.08/ 14 0.96/ 14 0.79/ 10
lt 0.59/3.9 152 1.17/ -6 1.12/ -7 0.93/ -5 0.88/ -6
lv 0.61/3.9 81 1.15/ -6 1.04/ -9 0.91/ -5 0.81/ -7
nl 0.75/4.5 26 1.20/ 11 1.16/ 4 0.92/ 8 0.91/ 4
pl 0.65/4.3 112 1.21/ 6 1.09/ -1 0.97/ 5 0.84/ -1
pt 0.89/4.8 77 1.17/ 16 1.09/ 9 0.88/ 12 0.82/ 7
ro 0.74/4.4 60 1.17/ 8 1.09/ 0 0.90/ 6 0.84/ 0
sk 0.64/3.9 40 1.16/ -6 1.06/-11 0.92/ -5 0.87/ -9
sl 0.64/3.8 100 1.15/-10 1.02/-10 0.90/ -8 0.80/ -7
sv 0.66/4.1 35 1.11/ -2 1.06/ -8 0.86/ -2 0.83/ -7

Table 1: Results for all configurations and the typological
profile of the 21 Europarl languages. All languages are Indo-
European, except for those marked with ∗ which are Uralic.
Morpholical counting complexity (MCC) is given for each
language, along with bits per English character (BPEC) and
the ∆BPC, which is BPEC minus bits per character (BPC).
This is blue if BPEC > BPC and red if BPEC < BPC.

A Potential Confound: Translationese. Work-
ing with multi-text, however, does introduce a new
bias: all of the utterances in the corpus have a
source language and 20 translations of that source
utterance into target languages. The characteris-
tics of translated language has been widely studied
and exploited, with one prominent characteristic of
translations being simplification (Baker, 1993).

Note that a significant fraction of the original
utterances in the corpus are English. Our analysis
may then have underestimated the BPEC for other
languages, to the extent that their sentences consist
of simplified “translationese.” Even so, English had
the lowest BPEC from among the set of languages.

4 Experiments and Results

Our experiments are conducted on the 21 languages
of the Europarl corpus (Koehn, 2005). The corpus
consists of utterances made in the European par-
liament and are aligned cross-linguistically by a
unique utterance id. With the exceptions (noted in
Table 1) of Finnish, Hungarian and Estonian, which
are Uralic, the languages are Indo-European.

While Europarl does not contain quite our de-
sired breadth of typological diversity, it serves our
purpose by providing large collections of aligned
data across many languages. To create our experi-
mental data, we extract all utterances and randomly
sort them into train-development-test splits such
that roughly 80% of the data are in train and 10%
in development and test, respectively.7 We also
perform experiments on lemmatized text, where we
replace every word with its lemma using the UD-
Pipe toolkit (Straka et al., 2016), stripping away
its inflectional morphology. We report two evalua-
tion metrics: BPC and BPEC (see §3). Our BPEC
measure always normalizes by the length of the
original, not lemmatized, English.

Experimentally, we want to show: (i) When eval-
uating models in a controlled environment (multi-
text under BPEC), the models achieve lower per-
formance on certain languages and (ii) inflectional
morphology is the primary culprit for the perfor-
mance differences. However, we repeat that we do
not in this paper tease apart whether the models are
at fault, or that certain languages inherently encode
more information.

5 Discussion and Analysis

We display the performance of the n-gram LM and
the LSTM LM under BPC and BPEC for each of
the 21 languages in Fig. 1 with full numbers listed
in Table 1. There are several main take-aways.

The Effect of BPEC. The first major take-away
is that BPEC offers a cleaner cross-linguistic com-
parison than BPC. Were we to rank the languages
by BPC (lowest to highest), we would find that
English was in the middle of the pack, which is
surprising as new language models are often only
tuned on English itself. For example, BPC surpris-
ingly suggests that French is easier to model than
English. However, ranking under BPEC shows that
the LSTM has the easiest time modeling English it-
self. Scandinavian languages Danish and Swedish
have BPEC closest to English; these languages are
typologically and genetically similar to English.

n-gram versus LSTM. As expected, the LSTM
outperforms the baseline n-gram models across
the board. In addition, however, n-gram modeling
yields relatively poor performance on some lan-
guages, such as Dutch, with only modestly more
complex inflectional morphology than English.

7Characters appearing < 100 times in train are ?.
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Other phenomena—e.g., perhaps, compounding—
may also be poorly modeled by n-grams.

The Impact of Inflectional Morphology. An-
other major take-away is that rich inflectional mor-
phology is a difficulty for both n-gram and LSTM
LMs. In this section we give numbers for the
LSTMs. Studying Fig. 1a, we find that Spear-
man’s rank correlation between a language’s BPEC
and its counting complexity (§2.1) is quite high
(ρ = 0.59, significant at p < 0.005). This clear
correlation between the level of inflectional mor-
phology and the LSTM performance indicates that
character-level models do not automatically fix the
problem of morphological richness. If we lemma-
tize the words, however (Fig. 1b), the correlation
becomes insignificant and in fact slightly negative
(ρ = −0.13, p ≈ 0.56). The difference of the two
previous graphs (Fig. 1c) shows more clearly that
the LM penalty for modeling inflectional endings
is greater for languages with higher counting com-
plexity. Indeed, this penalty is arguably a more
appropriate measure of the complexity of the in-
flectional system. See also Fig. 2.

The differences in BPEC among languages are
reduced when we lemmatize, with standard devia-
tion dropping from 0.065 bits to 0.039 bits. Zoom-
ing in on Finnish (see Table 1), we see that Finnish
forms are harder to model than English forms, but
Finnish lemmata are easier to model than English
ones. This is strong evidence that it was primarily
the inflectional morphology, which lemmatization
strips, that caused the differences in the model’s
performance on these two languages.

6 Related Work

Recurrent neural language models can effec-
tively learn complex dependencies, even in open-
vocabulary settings (Hwang and Sung, 2017;
Kawakami et al., 2017). Whether the models are
able to learn particular syntactic interactions is an
intriguing question, and some methodologies have
been presented to tease apart under what circum-
stances variously-trained models encode attested
interactions (Linzen et al., 2016; Enguehard et al.,
2017). While the sort of detailed, construction-
specific analyses in these papers is surely informa-
tive, our evaluation is language-wide.

MT researchers have investigated whether an En-
glish sentence contains enough information to pre-
dict the fine-grained inflections used in its foreign-
language translations (see Kirov et al., 2017).
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Figure 2: Each dot is a language, and its coordinates are the
BPEC values for the LSTM LMs over words and lemmata.
The top and right margins show kernel density estimates of
these two sets of BPEC values. All dots follow the blue
regression, but stay below the green line (y = x), and the
darker dots—which represent languages with higher counting
complexity—tend to fall toward the right but not toward the
top, since counting complexity is correlated only with the
BPEC over words.

Sproat et al. (2014) present a corpus of close
translations of sentences in typologically diverse
languages along with detailed morphosyntactic
and morphosemantic annotations, as the means
for assessing linguistic complexity for compara-
ble messages, though they expressly do not take an
information-theoretic approach to measuring com-
plexity. In the linguistics literature, McWhorter
(2001) argues that certain languages are less com-
plex than others: he claims that Creoles are simpler.
Müller et al. (2012) compare LMs on EuroParl, but
do not compare performance across languages.

7 Conclusion
We have presented a clean method for the cross-
linguistic comparison of language modeling: We
assess whether a language modeling technique can
compress a sentence and its translations equally
well. We show an interesting correlation between
the morphological richness of a language and the
performance of the model. In an attempt to explain
causation, we also run our models on lemmatized
versions of the corpora, showing that, upon the
removal of inflection, no such correlation between
morphological richness and LM performance exists.
It is still unclear, however, whether the performance
difference originates from the inherent difficulty of
the languages or with the models.
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Abstract

We analyze the complexity of the problem of
determining whether a set of phonemes forms
a natural class and, if so, that of finding the
minimal feature specification for the class. A
standard assumption in phonology is that find-
ing a minimal feature specification is an au-
tomatic part of acquisition and generalization.
We find that the natural class decision problem
is tractable (i.e. is in P), while the minimiza-
tion problem is not; the decision version of the
problem which determines whether a natural
class can be defined with k features or less
is NP-complete. We also show that, empir-
ically, a greedy algorithm for finding minimal
feature specifications will sometimes fail, and
thus cannot be assumed to be the basis for hu-
man performance in solving the problem.

1 Introduction

The distinctive feature is held by many phonol-
ogists, independently of theoretical orientation,
to be the fundamental unit of analysis of sound
patterns in language. The underlying working
assumption of most phonological approaches is
that a single sound or a set of sounds is ex-
pressed through a combination of positive or neg-
ative features and that these features are in some
sense universal across languages (Mielke, 2008a).
The exact makeup of the feature set employed
has varied over time, ranging from the limited,
more acoustic-oriented features of Jakobson et al.
(1951), to the richer model presented in Chom-
sky and Halle (1968), to more complex hierarchi-
cally organized features in Clements (1985). The
concept of natural class is intimately tied to such
feature systems and is taken to be any set of seg-
ments that share some number of distinctive fea-
tures. Furthermore, phonological alternations that
do not target natural classes are hypothesized not
to occur.

Another assumption that is found in phonolog-
ical literature—often less explicit—is that when-
ever a phonological process targets a group of
sounds, that group is to be expressed nonredun-
dantly by the minimum number of features re-
quired to do so. In general, one can find a mul-
titude of ways in which a set of phonemes can be
specified using positive or negative features. For
example, using the feature system shown in Ta-
ble 1, the set {m,n} has the obvious minimal de-
scription [+nas], since m and n are the only nasals.
But that set could also be specified non-minimally
as:




+cons
-cnt
-hi
-bk
+voi
+son




(1)

The potential complexity of this problem, find-
ing a minimal specification, is not addressed in the
phonological literature. Yet, finding such a min-
imal specification is not trivial. Using more re-
alistic feature systems such as the ones given in
Hayes (2011), there are, for example, 208 dis-
tinct solutions to specifying the set {e,i} in En-
glish, only four of which have the minimum length
of 3 features. While such modern feature sys-
tems work with 25–30 features, one can actually
assume more features are needed to cover more
cross-linguistically exotic contrasts such as those
produced by including click consonants (Miller,
2011). The P-base 3 resource (Mielke, 2008b) lists
398 features over 8 feature systems, covering 629
languages.

The general notion of feature economy has a
long tradition in phonology (Jakobson, 1942; Mar-
tinet, 1955; Clements, 2003), mostly targeting en-
tire feature systems in a language, i.e. advocating
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that on the grammar level, individual languages
make maximal use of the feature inventory avail-
able (Fant, 1966). Equally prominent is the as-
sumption that any specification of phonological al-
ternations be made with the minimal number of
features necessary: “one should use the minimum
number of features required to specify all and only
the sounds in the class.” (Zsiga, 2012, p.282).
Hayes (2011), among others, argues, following
Ockham’s Razor, that this is how generalization
can take place and that phonological hypotheses
are made in precisely this way—witnessing alter-
nations that target a set of sounds, learners find
the minimal feature specification that is consis-
tent with the alternating sounds, generalizing from
there to other sounds that may enter the language.
Halle (1962) also proposes a mechanism of “fea-
ture counting” as a methodology to rule out spuri-
ous generalizations one might propose—a process
which implicitly includes the capability of feature
minimization.

Similar arguments of feature minimization are
used to perform an optimization of an entire
phonological grammar. In Radical Underspecifi-
cation, Archangeli (1984) refers to what is termed
FEATURE MINIMIZATION PRINCIPLE: “A gram-
mar is most highly valued when underlying repre-
sentations include the minimal number of features
necessary to make the different phonemes of the
language” (Archangeli, 1984, p. 48).

Given such claims concerning acquisition and
phonological analysis, it is of some interest to as-
sess the actual computational complexity of fea-
ture minimization. This entails answering how
difficult it is in the worst case to determine whether
a set of segments represents a natural class, and
also how to find the minimal feature specification.

2 Overview

We will assume a set of phonemes P—the
phoneme inventory—and another set Q, our tar-
get set that we want to express through a combi-
nation of features, and a feature system F such
as the one shown in Table 1. The first problem
we address is that of determining whether a set of
phonemes Q forms a natural class, which we call
the feature description problem. We show that this
is decidable in polynomial time. Further, we will
show that a minimization version of the problem,
which we call the feature minimization problem is
NP-complete (Garey and Johnson, 1979; Sipser,

cons son syl voi cnt nas lat ant cor hi bk lo rd
p + - - - - - - + - - - - -
t + - - - - - - + + - - - -
k + - - - - - - - - + + - -
b + - - + - - - + - - - - -
d + - - + - - - + + - - - -
g + - - + - - - - - + + - -
f + - - - + - - + - - - - -
s + - - - + - - + + - - - -
x + - - - + - - - - + + - -
v + - - + + - - + - - - - -
G + - - + + - - - - + + - -
w - + - + + - - - - + + - +
j - + - + + - - - - + - - -
l + + - + + - + + + - - - -

m + + - + - + - + - - - - -
n + + - + - + - + + - - - -
a - + + + + - - - - - + + -
e - + + + + - - - - - - - -
i - + + + + - - - - + - - -
o - + + + + - - - - - + - +
u - + + + + - - - - + + - +
y - + + + + - - - - + - - +

Table 1: An example typical feature system (truncated
to 13 features).

2013). We will show this by reduction from the
well known set covering problem (Karp, 1972).

Many phonologists espouse a combination of
binary (equipollent) and privative (univalent) fea-
tures (Trubetzkoy, 1969; Ewen and van der Hulst,
1985; Goldsmith, 1985). The rationale is that, for
example, the feature [±labial] has rarely, if ever,
been found to play a role in a phonological system
as [−labial], i.e. phonological processes that tar-
get non-labials seem to be absent. Hence, many
phonologists favor the use of a single possibility
[LABIAL] in a specification that includes the labi-
als. For this reason, we analyze separately both the
complexity of using only such privative features
(positive features only), which we call the positive
feature description problem (is Q a natural class
if we only use positive features?) and the corre-
sponding positive feature minimization problem.

3 Notation and terms

Throughout, when A is a set, we use ℘(A) to de-
note the power set of A.

Relative to a set P of phonemes, we define a
feature system to be a subset F ⊆ ℘(P ). When
Q ⊆ P , we define a F-description of Q to be a
sequence G1, . . . , Gm ⊆ P such that there ex-
ist pairwise distinct elements F1, . . . , Fm ∈ F
where:
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• each Gi is equal to either Fi or P \ Fi, and

• Q = G1 ∩ · · · ∩Gm.

We refer to m as the size of the description. We
say that such a description is positive if each Gi is
an element of F .

We define the feature description problem as
follows. An instance consists of a set P of
phonemes, a feature system F , and a non-empty
subset Q ⊆ P ; the problem is to decide whether
or not there exists a F-description of Q.

We define the feature minimization problem
as follows. An instance consists of a tuple
(P,F , Q, k) where P , F , and Q are an instance
of the feature description problem, and k ≥ 1 is a
natural number. The problem is to decide whether
or not there exists aF-description ofQ having size
less than or equal to k.

We define the positive feature description prob-
lem to have the same instances as the feature de-
scription problem, but where the problem is to
decide whether or not there exists a positive F-
description ofQ. Analogously, we define the posi-
tive feature minimization problem to have the same
instances as the feature minimization problem, but
where the problem is to decide whether or not
there exists a positive F-description of Q obeying
the size restriction.

3.1 The feature description problems
We will first show that the feature description
problems are decidable in polynomial time.

Proposition 1. The feature description problem
and the positive feature description problem are
each polynomial-time decidable.

Proof. The algorithm for the feature descrip-
tion problem is as follows. Given an instance
(P,F , Q), compute a set C ⊆ ℘(P ) as follows.
For each F ∈ F , place F in C if Q ⊆ F , and
place P \ F in C if Q ⊆ P \ F . Then, check if⋂ C = Q; if so, accept, otherwise, reject. It suf-
fices to argue that if there exists a F-description
of Q, then the elements of C constitute such a de-
scription. If there exists a F-description of Q, say,
G1, . . . , Gm, we have Q ⊆ Gi for each i; thus,
G1, . . . , Gm ∈ C and we have

Q ⊆
⋂
C ⊆ G1 ∩ · · · ∩Gm = Q,

implying that the elements of C provide a F-
description of Q.

For the positive feature description problem, the
algorithm computes C+ to contain each F ∈ F
such that Q ⊆ F , and accepts if and only if⋂ C+ = Q. The proof of correctness is similar to
that given for the general feature description prob-
lem.

3.2 The minimization problems
An instance (U,S, k) of the set cover problem
consists of a non-empty set U , a subset S ⊆
℘(U), and a natural number k ≥ 1. A set cover
S1, . . . , Sm is a sequence of sets from S such that
S1 ∪ · · · ∪ Sm = U ; m is said to be its size. The
problem is to decide whether or not there exists
a set cover of size less than or equal to k (Karp,
1972). We prove that both the feature minimiza-
tion problem and the positive feature minimization
problem are NP-complete, by reducing from set
cover.

The reduction is the same for both of these
problems, and is as follows. Given an instance
(U,S, k) of set cover, let x be a fresh element not
in U .

Define

P = U ∪ {x}
F = {(U \ S) ∪ {x} | S ∈ S}
Q = {x}

The resulting instance is (P,F , Q, k).
The following establishes the correctness of this

reduction.

Proposition 2. The following are equivalent:

1. There exists a size m set cover of U .

2. The setQ = {x} has a positiveF-description
of size m.

3. The set Q = {x} has a F-description of size
m.

Proof. 1 ⇒ 2: Let (Si) be such a set cover, so
that S1 ∪ · · · ∪ Sm = U . Then, by DeMorgan’s
laws, (U \ S1) ∩ · · · ∩ (U \ Sm) = ∅, and so
((U \S1)∪{x})∩ · · · ∩ ((U \Sm)∪{x}) = {x}.

2⇒ 3 is immediate.
3⇒ 1: Suppose that G1, . . . , Gm is such a de-

scription. Since x ∈ Gi for each i, it follows that
each Gi is an element of F . Define S1, . . . , Sm to
be the sets such that Gi = (U \ Si) ∪ {x}. By
reversing the argumentation in the 1⇒ 2 case, we
obtain that S1, . . . , Sm is a set cover of U .
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In the just-given reduction, the parameter k is
not changed. We show that there in fact exists
a reduction in the other direction, from set cover
to each of the minimization problems, that like-
wise does not change the parameter k. This indi-
cates a tight relationship between these minimiza-
tion problems and the set cover problem.

Proposition 3. Let (P,F , Q, k) be an instance of
the feature minimization problem; let C be the set
(from Proposition 1). The mapping which, upon
being given this instance, returns (U,S, k) where
U = P \ Q and S = {G \Q | G ∈ C}, is a
reduction to the set cover problem; here, the com-
plement is with respect toU . Likewise, one obtains
a reduction from the positive feature minimization
problem to the set cover problem, by using C+ in
place of C.

Proof. We argue this for the feature minimiza-
tion problem as follows (the positive minimiza-
tion case is analogous). It was seen in the proof
of Proposition 1 that (P,F , Q, k) is a ‘yes’ in-
stance if and only if there exist G1, . . . , Gm ∈ C,
with m ≤ k, such that G1 ∩ · · · ∩ Gm = Q.
This equality holds if and only if (G1 \ Q) ∩
· · · ∩ (Gm \ Q) = ∅, which holds if and only if
(G1 \Q) ∪ · · · ∪ (Gm \Q) = U .

Parametrized complexity The set cover prob-
lem, with the value k taken to be parameter,
is known to be W[2]-complete in parameterized
complexity theory (Cygan et al., 2015, Theorem
13.21). As we have given polynomial-time reduc-
tions between set cover and each of the minimiza-
tion problems that do not change the value k, we
obtain the following.

Proposition 4. Both the feature minimization
problem and the positive feature minimization
problem are W[2]-complete, when viewed as pa-
rameterized problems with k taken to be the pa-
rameter.

4 Empirical concerns

Many NP-hard problems can in practice often
be solved by either a greedy algorithm (Chvatal,
1979) or a branch-and-bound algorithm (Land and
Doig, 1960) that recursively explores the search
space, terminating search branches as soon as
some defined limit is exceeded.

Greedy Search We have implemented a greedy
search strategy that starts with no features, and

S = {{a,b,c},{b,d},{c,d},{d,e}}, U = {a,b,c,d,e}, k = 2

F1 = {d,e,x} 
F2 ={a,c,e,x} 
F3 ={a,b,e,x} 
F4 ={a,b,c,x}

+F1 
+F4

SETCOVERING

MINPHONFEAT

“yes”

P = U ∪ {x} Q = {x}

= Q

k = 2

Figure 1: Illustration of the reduction from SETCOVER-
ING: we can solve an instance of the set cover problem
(SETCOVERING) by a call to a solver for the feature
minimization problem (MINPHONFEAT). There are re-
ductions both from and to the set cover problem.

then picks a single (±) feature from the known,
possibly non-minimal description C discussed in
§3.1 in such a way as to rule out the majority of
phonemes not in the desired set Q. Features are
added to the description until only the set Q is de-
scribed. For example, in describing the set {m}
using the example in Table 1, the greedy approach
would first pick the feature [+nas] since this cuts
down the number of corresponding phonemes to
just two (m and n), less than any other feature
choice. This is essentially an analogue to the
well-known greedy approximation algorithm for
set cover (Chvatal, 1979).

This greedy algorithm, however, in many prac-
tical cases fails to find the correct minimal speci-
fication, and is therefore not a viable candidate for
efficient feature minimization. A simple example
is finding the featural specification for the set {@}
in English under the fairly standard featural sys-
tem provided in Hayes (2011) and van Vugt and
Hayes (2012): the algorithm recovers the features
[-tense, -back, -front, -coronal] while the minimal
specification is [-back, -front, -coronal].

Branch & Bound We also implemented a
branch-and-bound algorithm with a recursive
component that explores, exhaustively, all combi-
nations of features in the full description C, bound-
ing the search whenever the current search tree
contains more features than in the shortest solu-
tion found so far. The branch-and-bound algo-
rithm is efficient in practice in finding minimal
feature specifications, but still needs to explore a
reasonably large search space (see Table 2).
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Set {h} {i, e} {r} {j} {m,n} {p, t, k}
BF 32,768 262,144 131,072 524,288 2048 4,096
B&B 3,432 11,482 3,444 4,790 1,450 1,315

Table 2: The number of search nodes explored during a brute-force search (BF) for finding a minimal solution for
various sets of phonemes, or a branch-and-bound search (B&B). The feature inventory is one used for English (van
Vugt and Hayes, 2012; Hayes, 2011).

5 Discussion

Humans have been noted to outperform sim-
ple, low-polynomial time heuristic algorithms for
some intractable problems such as the travel-
ing salesman problem (MacGregor and Ormerod,
1996) using intuition and visual inspection of the
problem structure. It is, however, unclear if such
performance carries over to other problems of
a different structure, such as MINPHONFEAT, or
whether the hypothesis that a phonological acqui-
sition process should include this type of mini-
mization is too strong.

An important point to address in the complex-
ity analysis is whether we are operating in a
bounded domain. With a fixed, finite set of fea-
tures to choose from and a fixed finite phoneme
inventory, the problem can be considered static
and solvable in constant time by memorizing or
pre-calculating all the possible patterns of feature
combinations and their corresponding phoneme
sets. Such counter-arguments have been leveled
(Kornai, 2006) at other NP-completeness analy-
ses, such as those that have shown that Optimality
Theory is potentially intractable (Eisner, 2000; Id-
sardi, 2006). In the case at hand, however, such
an argument has less traction since the domain in
question is rather large (potentially hundreds of
features) and it seems inevitable that some search
method must be used by speakers (or phonolo-
gists) to discover the minimum number of features
required. The fact that simple greedy algorithms
do not always find the minimum specification, and
that branch-and-bound algorithms, while efficient
for practical computational use, still need to ex-
plore a large search space, prompts the question
whether some alternative strategy would work par-
ticularly well with phonological feature structures
proposed in the literature. This could address the
problem that this intractability poses to phonolog-
ical learning.

6 Conclusion

We have shown that one of the commonly
assumed subtasks of acquisition of phono-
logical generalizations—distinctive feature
minimization—is computationally intractable.
The decision version of the minimization problem
is NP-complete, and it follows that the optimiza-
tion version NP-hard. This is true even if one
limits oneself to using only positive features, i.e.
a privative feature system. Furthermore, a simple
greedy strategy for solving the problem can not
be attributed to purported human performance
in finding minimal feature specifications since
such a strategy will sometimes fail to find a
minimal description with commonly proposed
feature systems and phonological inventories.
The problem of simply deciding whether a set of
phonemes constitutes a natural class—the feature
description problem—is solvable in polynomial
time.

Reproducibility

Our feature systems data and code for the feature
description and minimization problems is avail-
able at https://github.com/mhulden/
minphonfeat.
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Abstract

Lexical ambiguity makes it difficult to com-
pute various useful statistics of a corpus. A
given word form might represent any of sev-
eral morphological feature bundles. One can,
however, use unsupervised learning (as in EM)
to fit a model that probabilistically disam-
biguates word forms. We present such an ap-
proach, which employs a neural network to
smoothly model a prior distribution over fea-
ture bundles (even rare ones). Although this
basic model does not consider a token’s con-
text, that very property allows it to operate on a
simple list of unigram type counts, partitioning
each count among different analyses of that un-
igram. We discuss evaluation metrics for this
novel task and report results on 5 languages.

1 Introduction

Inflected lexicons—lists of morphologically in-
flected forms—are commonplace in NLP. Such
lexicons currently exist for over 100 languages
in a standardized annotation scheme (Kirov et al.,
2018), making them one of the most multi-lingual
annotated resources in existence. These lexicons
are typically annotated at the type level, i.e., each
word type is listed with its possible morphological
analyses, divorced from sentential context.

One might imagine that most word types are
unambiguous. However, many inflectional sys-
tems are replete with a form of ambiguity termed
syncretism—a systematic merger of morphological
slots. In English, some verbs have five distinct in-
flected forms, but regular verbs (the vast majority)
merge two of these and so distinguish only four.
The verb �s�i�n�g has the past tense form sang but the
participial form sung; the verb �t�a�l�k, on the other
hand, employs talked for both functions. The form
talked is, thus, said to be syncretic. Our task is to
partition the count of talked in a corpus between the
past-tense and participial readings, respectively.

SG PL SG PL

NOM Wort Wörter Herr Herren

GEN Wortes Wörter Herrn Herren

ACC Wort Wörter Herrn Herren

DAT Worte Wörtern Herrn Herren

Table 1: Full paradigms for the German nouns W�o&r%t
(“word”) and He�r&r# (“gentleman”) with abbreviated and
tabularized UniMorph annotation. The syncretic forms
are bolded and colored by ambiguity class. Note that,
while in the plural the nominative and accusative are
always syncretic across all paradigms, the same is not
true in the singular.

In this paper, we model a generative probabil-
ity distribution over annotated word forms, and
fit the model parameters using the token counts of
unannotated word forms. The resulting distribu-
tion predicts how to partition each form’s token
count among its possible annotations. While our
method actually deals with all ambiguous forms in
the lexicon, it is particularly useful for syncretic
forms because syncretism is often systematic and
pervasive.

In English, our unsupervised procedure learns
from the counts of irregular pairs like sang–sung
that a verb’s past tense tends to be more frequent
than its past participle. These learned parameters
are then used to disambiguate talked. The method
can also learn from regular paradigms. For exam-
ple, it learns from the counts of pairs like runs–run
that singular third-person forms are common. It
then uses these learned parameters to guess that
tokens of run are often singular or third-person
(though never both at once, because the lexicon
does not list that as a possible analysis of run).
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2 Formalizing Inflectional Morphology

We adopt the framework of word-based morphol-
ogy (Aronoff, 1976; Spencer, 1991). In the present
paper, we consider only inflectional morphology.
An inflected lexicon is a set of word types. Each
word type is a 4-tuple of a part-of-speech tag, a
lexeme, an inflectional slot, and a surface form.

A lexeme is a discrete object (represented by
an arbitrary integer or string, which we typeset in
�c�u�r#s�i�v�) that indexes the word’s core meaning and
part of speech. A part-of-speech (POS) tag is a
coarse syntactic category such as VERB. Each POS
tag allows some set of lexemes, and also allows
some set of inflectional slots such as “1st-person
present singular.” Each allowed 〈tag, lexeme, slot〉
triple is realized—in only one way—as an inflected
surface form, a string over a fixed phonological or
orthographic alphabet Σ. In this work, we take Σ
to be an orthographic alphabet.

A paradigm π(t, `) is the mapping from tag t’s
slots to the surface forms that “fill” those slots for
lexeme `. For example, in the English paradigm
π(VERB, �t�a�l�k), the past-tense slot is said to be
filled by talked, meaning that the lexicon contains
the tuple 〈VERB, �t�a�l�k, PAST, talked〉.1

We will specifically work with the UniMorph
annotation scheme (Sylak-Glassman, 2016). Here
each slot specifies a morpho-syntactic bundle of
inflectional features (also called a morphological
tag in the literature), such as tense, mood, person,
number, and gender. For example, the German sur-
face form Wörtern is listed in the lexicon with tag
NOUN, lemma W�o&r%t, and a slot specifying the fea-
ture bundle

[
NUM=PL, CASE=DAT

]
. An example

of UniMorph annotation is found in Table 1.

2.1 What is Syncretism?
We say that a surface form f is syncretic if two
slots s1 6= s2 exist such that some paradigm π(t, `)
maps both s1 and s2 to f . In other words, a sin-
gle form fills multiple slots in a paradigm: syn-
cretism may be thought of as intra-paradigmatic
ambiguity. This definition does depend on the ex-
act annotation scheme in use, as some schemes
collapse syncretic slots. For example, in Ger-
man nouns, no lexeme distinguishes the nomi-
native, accusative and genitive plurals. Thus, a

1Lexicographers will often refer to a paradigm by its
lemma, which is the surface form that fills a certain designated
slot such as the infinitive. We instead use lexemes because
lemmas may be ambiguous: bank is the lemma for at least two
nominal and two verbal paradigms.

human-created lexicon might employ a single slot[
NUM=PL, CASE=NOM/ACC/GEN

]
and say that

Wörter fills just this slot rather than three separate
slots. For a discussion, see Baerman et al. (2005).

2.2 Inter-Paradigmatic Ambiguity

A different kind of ambiguity occurs when a sur-
face form belongs to more than one paradigm.
A form f is inter-paradigmatically ambiguous if
〈t1, `1, s1, f〉 and 〈t2, `2, s2, f〉 are both in the lex-
icon for lexemes 〈t1, `1〉 6= 〈t2, `2〉.

For example, talks belongs to the English
paradigms π(VERB, �t�a�l�k) and π(NOUN, �t�a�l�k).
The model we present in §3 will resolve both syn-
cretism and inter-paradigmatic ambiguity. How-
ever, our exposition focuses on the former, as it is
cross-linguistically more common.

2.3 Disambiguating Surface Form Counts

The previous sections §2.1 and §2.2 discussed two
types of ambiguity found in inflected lexicons. The
goal of this paper is the disambiguation of raw sur-
face form counts, taken from an unannotated text
corpus. In other words, given such counts, we seek
to impute the fractional counts for individual lexi-
cal entries (4-tuples), which are unannotated in raw
text. Let us assume that the word talked is observed
c (talked) times in a raw English text corpus. We do
not know which instances of talked are participles
and which are past tense forms. However, given
a probability distribution pθ(t, `, s | f), we may
disambiguate these counts in expectation, i.e., we
attribute a count of

c (talked) · pθ(VERB, �t�a�l�k, PAST_PART | talked)

to the past participle of the VERB �t�a�l�k. Our aim
is the construction and unsupervised estimation of
the distribution pθ(t, `, s | f).

While the task at hand is novel, what applications
does it have? We are especially interested in sam-
pling tuples 〈t, `, s, f〉 from an inflected lexicon.
Sampling is a necessity for creating train-test splits
for evaluating morphological inflectors, which has
recently become a standard task in the literature
(Durrett and DeNero, 2013; Hulden et al., 2014;
Nicolai et al., 2015; Faruqui et al., 2016), and has
seen two shared tasks (Cotterell et al., 2016, 2017).
Creating train-test splits for training inflectors in-
volves sampling without replacement so that all
test types are unseen. Ideally, we would like more
frequent word types in the training portion and less
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frequent ones in the test portion. This is a realistic
evaluation: a training lexicon for a new language
would tend to contain frequent types, so the system
should be tested on its ability to extrapolate to rarer
types that could not be looked up in that lexicon,
as discussed by Cotterell et al. (2015). To make
the split, we sample N word types without replace-
ment, which is equivalent to collecting the first N
distinct forms from an annotated corpus generated
from the same unigram distribution.

The fractional counts that our method estimates
may also be useful for corpus linguistics—for ex-
ample, tracking the frequency of specific lexemes
over time, or comparing the rate of participles in
the work of two different authors.

Finally, the fractional counts can aid the train-
ing of NLP methods that operate on a raw corpus,
such as distributional embedding of surface form
types into a vector space. Such methods sometimes
consider the morphological properties (tags, lex-
emes, and slots) of nearby context words. When
the morphological properties of a context word f
are ambiguous, instead of tagging (which may not
be feasible) one could fractionally count the oc-
ccurrences of the possible analyses according to
pθ(t, `, s | f), or else characterize f ’s morphology
with a single soft indicator vector whose elements
are the probabilities of the properties according to
pθ(t, `, s | f).

3 A Neural Latent Variable Model

In general, we will only observe unannotated word
forms f . We model these as draws from a distri-
bution over form types pθ(f), which marginalizes
out the unobserved structure of the lexicon—which
tag, lexeme and slot generated each form. Training
the parameters of this latent-variable model will
recover the posterior distribution over analyses of
a form, pθ(t, `, s | f), which allows us to disam-
biguate counts at the type level.

The latent-variable model is a Bayesian network,

pθ(f) =
∑

〈t,`,s〉∈T ×L×S
pθ(t) pθ(` | t) pθ(s | t) δ(f | t, `, s)

(1)
where T ,L,S range over the possible tags, lex-
emes, and slots of the language, and δ(f | t, `, s)
returns 1 or 0 according to whether the lexicon lists
f as the (unique) realization of 〈t, `, s〉. We fix
pθ(s | t) = 0 if the lexicon lists no tuples of the

form 〈t, ·, s, ·〉, and otherwise model

pθ(s | t) ∝ exp
(
u> tanh (W · vt,s)

)
> 0 (2)

where vt,s is a multi-hot vector whose “1”
components indicate the morphological features
possessed by 〈t, s〉: namely attribute-value pairs
such as POS=VERB and NUM=PL. Here u ∈ Rd
and W is a conformable matrix of weights. This
formula specifies a neural network with d hidden
units, which can learn to favor or disfavor specific
soft conjunctions of morphological features.
Finally, we define pθ(t) ∝ expωt for t ∈ T , and
pθ(` | t) ∝ expωt,` or 0 if the lexicon lists no
tuples of the form 〈t, `, ·, ·〉. The model’s parameter
vector θ specifies u,W, and the ω values.

3.1 Inference and Learning
We maximize the regularized log-likelihood

∑

f∈F
c(f) log pθ(f) +

λ

2
||θ||22 (3)

where F is the set of surface form types and pθ(f)
is defined by (1). It is straightforward to use a
gradient-based optimizer, and we do. However,
(3) could also be maximized by an intuitive EM
algorithm: at each iteration, the E-step uses the cur-
rent model parameters to partition each count c(f)
among possible analyses, as in (2.3), and then the
M step improves the parameters by following the
gradient of supervised regularized log-likelihood
as if it had observed those fractional counts.

On each iteration, either algorithm loops through
all listed (t, s) pairs, all listed (t, `) pairs, and all
observed forms f , taking time at most proportional
to the size of the lexicon. In practice, training com-
pletes within a few minutes on a modern laptop.

3.2 Baseline Models
To the best of our knowledge, this disambiguation
task is novel. Thus, we resort to comparing three
variants of our model in lieu of a previously pub-
lished baseline. We evaluate three simplifications
of the slot model, to investigate whether the com-
plexity of equation (2) is justified.

UNIF: p(s | t) is uniform over the slots s that are
listed with t. This involves no learning.

FREE: p(s | t) ∝ expωt,s: a model with a single
parameter ωt,s ∈ R per slot. This can capture
any distribution, but it has less inductive bias:
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slots that share morphological features do not
share parameters.

LINEAR: p(s | t) ∝ exp(u>vt,s): a linear model
with no conjunctions between morphologi-
cal features. This chooses the features or-
thogonally, in the sense that (e.g.) if ver-
bal paradigms have a complete 3-dimensional
grid of slots indexed by their PERSON, NUM,
and TENSE attributes, then sampling from
p(s | VERB) is equivalent to independently
sampling these three coordinates. More-
over, p(NUM=PL | NOUN) = p(NUM=PL |
VERB).

4 Experiments

4.1 Computing Evaluation Metrics

We first evaluate perplexity. Since our model is a
tractable generative model, we may easily evaluate
its perplexity on held-out tokens. For each lan-
guage, we randomly partition the observed surface
tokens into 80% training, 10% development, and
10% test. We then estimate the parameters of our
model by maximizing (3) on the counts from the
training portion, selecting hyperparameters such
that the estimated parameters2 minimize perplex-
ity on the development portion. We then report
perplexity on the test portion.

Using the same hyperparameters, we now train
our latent-variable model pθ without supervision
on 100% of the observed surface forms f . We now
measure how poorly, for the average surface form
type f , we recovered the maximum-likelihood dis-
tribution p̂(t, `, s | f) that would be estimated with
supervision in terms of KL-divergence:

∑

f

p̂(f) KL(p̂(· | f) || pθ(· | f)) (4)

=
1

N

N∑

i=1

log2
p̂(ti, `i, si | fi)
pθ(ti, `i, si | fi)

We can see that this formula reduces to a simple
average over disambiguated tokens i.

4.2 Training Details and Hyperparameters

We optimized on training data using batch gradi-
ent descent with a fixed learning rate. We used
perplexity on development data to jointly choose

2Our vocabulary and parameter set are determined from the
lexicon. Thus we create a regularized parameter ω`, yielding
a smoothed estimate p(`), even if the training count c(`) = 0.

the learning rate, the initial random θ (from among
several random restarts), the regularization coeffi-
cient λ ∈ {10−1, 10−2, 10−3, 10−4} and the neu-
ral network architecture. The NEURAL architecture
shown in eq. (2) has 1 hidden layer, but we ac-
tually generalized this to consider networks with
k ∈ {1, 2, 3, 4} hidden layers of d = 100 units
each. In some cases, the model selected on de-
velopment data had k as high as 3. Note that the
LINEAR model corresponds to k = 0.

4.3 Datasets
Each language constitutes a separate experiment.
In each case we obtain our lexicon from the Uni-
Morph project and our surface form counts from
Wikipedia. To approximate supervised counts to
estimate p̂ in the KL evaluation, we analyzed the
surface form tokens in Wikipedia (in context) us-
ing the tool in Straka et al. (2016), as trained on
the disambiguated Universal Dependencies (UD)
corpora (Nivre et al., 2016). We wrote a script3

to convert the resulting analyses from UD format
into 〈t, `, s, f〉 tuples in UniMorph format for five
languages—Czech (cs), German (de), Finnish (fi),
Hebrew (he), Swedish (sv)—each of which dis-
plays both kinds of ambiguity in its UniMorph lex-
icon. Lexicons with these approximate supervised
counts are provided as supplementary material.

4.4 Results
Our results are graphed in Fig. 1, exact numbers
are found in Table 2. We find that the NEURAL

model slightly outperforms the other baselines on
languages except for German. The LINEAR model
is quite competitive as well.

NEURAL NET FREE LINEAR UNIFORM

lang perp KL perp KL perp KL perp KL

cs 621 0.56 643 0.58 637 0.67 896 1.19
de 776 2.39 775 2.25 776 2.33 813 3.03
fi 300 0.99 319 1.18 304 1.03 889 2.61
he 96 0.27 130 0.69 97 0.29 675 3.69
sv 547 0.06 565 0.14 568 0.08 1025 1.5

Table 2: Results for the best performing neural network
(hyperparameters selected on dev) and the three base-
lines under both performance metrics. Best are bolded.

UNIF would have a KL divergence of 0 bits if all
forms were either unambiguous or uniformly am-
biguous. Its higher value means the unsupervised
task is nontrivial. Our other models substantially

3The script discarded up to 31% of the tokens because
the UD analysis could not be successfully converted into an
UniMorph analysis that was present in the lexicon.
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Figure 1: Unsupervised and supervised test results
under each model, averaged over 50 training-dev-test
splits.

outperform UNIF. NEURAL matches the supervised
distributions reasonably closely, achieving an aver-
age KL of < 1 bit on all languages but German.

5 Related Work

By far the closest work to ours is the seminal paper
of Baayen and Sproat (1996), who asked the follow-
ing question: “Given a form that is previously un-
seen in a sufficiently large training corpus, and that
is morphologically n-ways ambiguous [...] what is
the best estimator for the lexical prior probabilities
for the various functions of the form?” While we
address the same task, i.e., estimation of a lexical
prior, Baayen and Sproat (1996) assume supervi-
sion in the form of an disambiguated corpus. We
are the first to treat the specific task in an unsuper-
vised fashion. We discuss other work below.

Supervised Morphological Tagging. Morpho-
logical tagging is a common task in NLP; the
state of the art is currently held by neural mod-
els (Heigold et al., 2017). This task is distinct from
the problem at hand. Even if a tagger obtains the
possible analyses from a lexicon, it is still trained
in a supervised manner to choose among analyses.

Unsupervised POS Tagging. Another vein of
work that is similar to ours is that of unsupervised
part-of-speech (POS) tagging. Here, the goal is
map sequences of forms into coarse-grained syn-
tactic categories. Christodoulopoulos et al. (2010)
provide a useful overview of previous work. This
task differs from ours on two counts. First, we
are interested in finer-grained morphological dis-
tinctions: the universal POS tagset (Petrov et al.,
2012) makes 12 distinctions, whereas UniMorph

has languages expressing hundreds of distinctions.
Second, POS tagging deals with the induction of
syntactic categories from sentential context.

We note that purely unsupervised morphological
tagging, has yet to be attempted to the best of our
knowledge.

6 Conclusion

We have presented a novel generative latent-
variable model for resolving ambiguity in unigram
counts, notably due to syncretism. Given a lexicon,
an unsupervised model partitions the corpus count
for each ambiguous form among its analyses listed
in a lexicon. We empirically evaluated our method
on 5 languages under two evaluation metrics.
The code is availabile at https://sjmielke.
com/papers/syncretism, along with type-
disambiguated unigram counts for all lexicons pro-
vided by the UniMorph project (100+ languages).
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Abstract

Reading a document and extracting an answer
to a question about its content has attracted
substantial attention recently. While most
work has focused on the interaction between
the question and the document, in this work
we evaluate the importance of context when
the question and document are processed inde-
pendently. We take a standard neural architec-
ture for this task, and show that by providing
rich contextualized word representations from
a large pre-trained language model as well as
allowing the model to choose between context-
dependent and context-independent word rep-
resentations, we can obtain dramatic improve-
ments and reach performance comparable to
state-of-the-art on the competitive SQUAD
dataset.

1 Introduction

Reading comprehension (RC) is a high-level task
in natural language understanding that requires
reading a document and answering questions
about its content. RC has attracted substantial
attention over the last few years with the ad-
vent of large annotated datasets (Hermann et al.,
2015; Rajpurkar et al., 2016; Trischler et al.,
2016; Nguyen et al., 2016; Joshi et al., 2017),
computing resources, and neural network models
and optimization procedures (Weston et al., 2015;
Sukhbaatar et al., 2015; Kumar et al., 2015).

Reading comprehension models must invari-
ably represent word tokens contextually, as a func-
tion of their encompassing sequence (document or
question). The vast majority of RC systems en-
code contextualized representations of words in
both the document and question as hidden states
of bidirectional RNNs (Hochreiter and Schmid-
huber, 1997; Schuster and Paliwal, 1997; Cho
et al., 2014), and focus model design and capac-
ity around question-document interaction, carry-

ing out calculations where information from both
is available (Seo et al., 2016; Xiong et al., 2017b;
Huang et al., 2017; Wang et al., 2017).

Analysis of current RC models has shown that
models tend to react to simple word-matching be-
tween the question and document (Jia and Liang,
2017), as well as benefit from explicitly provid-
ing matching information in model inputs (Hu
et al., 2017; Chen et al., 2017; Weissenborn et al.,
2017). In this work, we hypothesize that the still-
relatively-small size of RC datasets drives this be-
havior, which leads to models that make limited
use of context when representing word tokens.

To illustrate this idea, we take a model that car-
ries out only basic question-document interaction
and prepend to it a module that produces token
embeddings by explicitly gating between contex-
tual and non-contextual representations (for both
the document and question). This simple addi-
tion already places the model’s performance on
par with recent work, and allows us to demonstrate
the importance of context.

Motivated by these findings, we turn to a semi-
supervised setting in which we leverage a lan-
guage model, pre-trained on large amounts of data,
as a sequence encoder which forcibly facilitates
context utilization. We find that model perfor-
mance substantially improves, reaching accuracy
comparable to state-of-the-art on the competitive
SQuAD dataset, showing that contextual word
representations captured by the language model
are beneficial for reading comprehension. 1

2 Contextualized Word Representations

Problem definition We consider the task of ex-
tractive reading comprehension: given a para-
graph of text p = (p1, . . . , pn) and a question q =

1Our complete code base is available at http://
github.com/shimisalant/CWR.
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(q1, . . . , qm), an answer span (pl, . . . , pr) is to be
extracted, i.e., a pair of indices 1 ≤ l ≤ r ≤ n into
p are to be predicted.

When encoding a word token in its encompass-
ing sequence (question or passage), we are inter-
ested in allowing extra computation over the se-
quence and evaluating the extent to which con-
text is utilized in the resultant representation.
To that end, we employ a re-embedding compo-
nent in which a contextual and a non-contextual
representation are explicitly combined per token.
Specifically, for a sequence of word-embeddings
w1, . . . , wk with wt ∈ Rdw , the re-embedding of
the t-th token w′t is the result of a Highway layer
(Srivastava et al., 2015) and is defined as:

w′t = gt � wt + (1− gt)� zt
gt = σ(Wgxt + Ugut)

zt = tanh(Wzxt + Uzut)

where xt is a function strictly of the word-type of
the t-th token, ut is a function of the enclosing se-
quence, Wg,Wz, Ug, Uz are parameter matrices,
and � the element-wise product operator. We set
xt = [wt; ct], a concatenation of wt with ct ∈ Rdc

where the latter is a character-based representation
of the token’s word-type produced via a CNN over
character embeddings (Kim, 2014). We note that
word-embeddings wt are pre-trained (Pennington
et al., 2014) and are kept fixed during training, as
is commonly done in order to reduce model ca-
pacity and mitigate overfitting. We next describe
different formulations for the contextual term ut.

RNN-based token re-embedding (TR) Here we
set {u1, . . . , uk} = BiLSTM(x1, . . . , xk) as the
hidden states of the top layer in a stacked BiLSTM
of multiple layers, each uni-directional LSTM in
each layer having dh cells and uk ∈ R2dh .

LM-augmented token re-embedding (TR+LM)
The simple module specified above allows better
exploitation of the context that a token appears in,
if such exploitation is needed and is not learned
by the rest of the network, which operates over
w′1, . . . , w

′
k. Our findings in Section 4 indicate that

context is crucial but that in our setting it may be
utilized to a limited extent.

We hypothesize that the main determining fac-
tor in this behavior is the relatively small size of
the data and its distribution, which does not re-
quire using long-range context in most examples.
Therefore, we leverage a strong language model

that was pre-trained on large corpora as a fixed
encoder which supplies additional contextualized
token representations. We denote these represen-
tations as {o1, . . . , ok} and set ut = [u′t; ot] for
{u′1, . . . , u′k} = BiLSTM(x1, . . . , xk).

The LM we use is from Józefowicz et al.
(2016),2 trained on the One Billion Words Bench-
mark dataset (Chelba et al., 2013). It consists of an
initial layer which produces character-based word
representations, followed by two stacked LSTM
layers and a softmax prediction layer. The hidden
state outputs of each LSTM layer are projected
down to a lower dimension via a bottleneck layer
(Sak et al., 2014). We set {o1, . . . , ok} to either
the projections of the first layer, referred to as TR
+ LM(L1), or those of the second one, referred to
as TR + LM(L2).

With both re-embedding schemes, we use the
resulting representations w′1, . . . , w

′
k as a drop-in

replacement for the word-embedding inputs fed to
a standard model, described next.

3 Base model

We build upon Lee et al. (2016), who proposed
the RaSoR model. For word-embedding in-
puts q1, . . . , qm and p1, . . . , pn of dimension dw,
RaSoR consists of the following components:

Passage-independent question representa-
tion The question is encoded via a BiLSTM
{v1, . . . , vm} = BiLSTM(q1, . . . , qm) and
the resulting hidden states are summarized via
attention (Bahdanau et al., 2015; Parikh et al.,
2016): qindep =

∑m
j=1 αjvj ∈ R2dh . The

attention coefficients α are normalized log-
its {α1, . . . , αm} = softmax(s1, . . . , sm) where
sj = wT

q ·FF(vj) for a parameter vectorwq ∈ Rdf

and FF(·) a single layer feed-forward network.

Passage-aligned question representations For
each passage position i, the question is encoded
via attention operated over its word-embeddings
qaligni =

∑m
j=1 βijqj ∈ Rdw . The coeffi-

cients βi are produced by normalizing the logits
{si1, . . . , sim}, where sij = FF(qj)T · FF(pi).

Augmented passage token representations
Each passage word-embedding pi is concatenated
with its corresponding qaligni and with the inde-
pendent qindep to produce p∗i = [pi; q

align
i ; qindep],

2Named BIG LSTM+CNN INPUTS in that work
and available at http://github.com/tensorflow/
models/tree/master/research/lm_1b.
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and a BiLSTM is operated over the resulting
vectors: {h1, . . . , hn} = BiLSTM(p∗1, . . . , p

∗
n).

Span representations A candidate answer span
a = (l, r) with l ≤ r is represented as the con-
catenation of the corresponding augmented pas-
sage representations: h∗a = [hl;hr]. In order to
avoid quadratic runtime, only spans up to length
30 are considered.

Prediction layer Finally, each span representa-
tion h∗a is transformed to a logit sa = wT

c · FF(h∗a)
for a parameter vector wc ∈ Rdf , and these log-
its are normalized to produce a distribution over
spans. Learning is performed by maximizing the
log-likelihood of the correct answer span.

4 Evaluation and Analysis

We evaluate our contextualization scheme on the
SQuAD dataset (Rajpurkar et al., 2016) which
consists of 100,000+ paragraph-question-answer
examples, crowdsourced from Wikipedia articles.

Importance of context We are interested in
evaluating the effect of our RNN-based re-
embedding scheme on the performance of the
downstream base model. However, the addition of
the re-embedding module incurs additional depth
and capacity for the resultant model. We there-
fore compare this model, termed RaSoR + TR, to
a setting in which re-embedding is non-contextual,
referred to as RaSoR + TR(MLP). Here we set
ut = MLP(xt), a multi-layered perceptron on xt,
allowing for the additional computation to be car-
ried out on word-level representations without any
context and matching the model size and hyper-
parameter search budget of RaSoR + TR. In Table
1 we compare these two variants over the develop-
ment set and observe superior performance by the
contextual one, illustrating the benefit of contextu-
alization and specifically per-sequence contextual-
ization which is done separately for the question
and for the passage.

Context complements rare words Our formu-
lation lends itself to an inspection of the differ-
ent dynamic weightings computed by the model
for interpolating between contextual and non-
contextual terms. In Figure 1 we plot the average
gate value gt for each word-type, where the av-
erage is taken across entries of the gate vector and
across all occurrences of the word in both passages

Model EM F1

RaSoR (base model) 70.6 78.7

RaSoR + TR(MLP) 72.5 79.9
RaSoR + TR 75.0 82.5

RaSoR + TR + LM(emb) 75.8 83.0
RaSoR + TR + LM(L1) 77.0 84.0
RaSoR + TR + LM(L2) 76.1 83.3

Table 1: Results on SQuAD’s development set. The
EM metric measures an exact-match between a pre-
dicted answer and a correct one and the F1 metric mea-
sures the overlap between their bag of words.

Figure 1: Average gate activations.

and questions. This inspection reveals the follow-
ing: On average, the less frequent a word-type
is, the smaller are its gate activations, i.e., the re-
embedded representation of a rare word places less
weight on its fixed word-embedding and more on
its contextual representation, compared to a com-
mon word. This highlights a problem with main-
taining fixed word representations: albeit pre-
trained on extremely large corpora, the embed-
dings of rare words need to be complemented with
information emanating from their context. Our
specific parameterization allows observing this di-
rectly, but it may very well be an implicit burden
placed on any contextualizing encoder such as a
vanilla BiLSTM.

Incorporating language model representations
Supplementing the calculation of token re-
embeddings with the hidden states of a strong lan-
guage model proves to be highly effective. In
Table 1 we list development set results for using
either the LM hidden states of the first stacked
LSTM layer or those of the second one. We addi-
tionally evaluate the incorporation of that model’s
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Model EM F1

BiDAF + Self Attention + ELMo [1] 78.6 85.8
RaSoR + TR + LM(L1) [2] 77.6 84.2
SAN [3] 76.8 84.4
r-net [4] 76.5 84.3
FusionNet [5] 76.0 83.9
Interactive AoA Reader+ [6] 75.8 83.8
RaSoR + TR [7] 75.8 83.3
DCN+ [8] 75.1 83.1
Conductor-net [9] 73.2 81.9
· · ·
RaSoR (base model) [10] 70.8 78.7

Table 2: Single-model results on SQuAD’s test set.3

[1] Peters et al. (2018) [2,7] This work. [3] Liu et al.
(2017b) [4] Wang et al. (2017) [5] Huang et al. (2017)
[6] Cui et al. (2017) [8] Xiong et al. (2017a) [9] Liu
et al. (2017a) [10] Lee et al. (2016)

word-type representations (referred to as RaSoR
+ TR + LM(emb)), which are based on character-
level embeddings and are naturally unaffected by
context around a word-token.

Overall, we observe a significant improvement
with all three configurations, effectively showing
the benefit of training a QA model in a semi-
supervised fashion (Dai and Le, 2015) with a large
language model. Besides a crosscutting boost in
results, we note that the performance due to utiliz-
ing the LM hidden states of the first LSTM layer
significantly surpasses the other two variants. This
may be due to context being most strongly rep-
resented in those hidden states as the representa-
tions of LM(emb) are non-contextual by definition
and those of LM(L2) were optimized (during LM
training) to be similar to parameter vectors that
correspond to word-types and not to word-tokens.

In Table 2 we list the top-scoring single-model
published results on SQuAD’s test set, where we
observe RaSoR + TR + LM(L1) ranks second
in EM, despite having only minimal question-
passage interaction which is a core component of
other works. An additional evaluation we carry out
is following Jia and Liang (2017), which demon-
strated the proneness of current QA models to be
fooled by distracting sentences added to the para-
graph. In Table 3 we list the single-model results
reported thus far and observe that the utilization of
LM-based representations carried out by RaSoR +
TR + LM(L1) results in improved robustness to
adversarial examples.

3From SQuAD’s leaderboard per Dec 13, 2017. http:
//rajpurkar.github.io/SQuAD-explorer

Model AddSent AddOneSent

RaSoR + TR + LM(L1) [1] 47.0 57.0
Mnemonic Reader [2] 46.6 56.0
RaSoR + TR [3] 44.5 53.9
MPCM [4] 40.3 50.0
RaSoR (base model) [5] 39.5 49.5
ReasoNet [6] 39.4 50.3
jNet [7] 37.9 47.0

Table 3: Single-model F1 on adversarial SQuAD.
[1,3] This work. [2] Hu et al. (2017) [4] Wang et al.
(2016) [5] Lee et al. (2016) [6] Shen et al. (2017) [7]
Zhang et al. (2017)

5 Experimental setup

We use pre-trained GloVe embeddings (Penning-
ton et al., 2014) of dimension dw = 300 and
produce character-based word representations via
dc = 100 convolutional filters over character
embeddings as in Seo et al. (2016). For all
BiLSTMs, hyper-parameter search included the
following values, with model selection being done
according to validation set results (underlined):
number of stacked BiLSTM layers (1, 2, 3), num-
ber of cells dh (50, 100, 200), dropout rate over
input (0.4, 0.5, 0.6), dropout rate over hidden state
(0.05, 0.1, 0.15). To further regularize models, we
employed word dropout (Iyyer et al., 2015; Dai
and Le, 2015) at rate (0.05, 0.1, 0.15) and cou-
ple LSTM input and forget gate as in Greff et al.
(2016). All feed-forward networks and the MLP
employed the ReLU non-linearity (Nair and Hin-
ton, 2010) with dropout rate (0.2, 0.3), where the
single hidden layer of the FFs was of dimension
df = (50, 100) and the best performing MLP
consisted of 3 hidden layers of dimensions 865,
865 and 400. For optimization, we used Adam
(Kingma and Ba, 2015) with batch size 80.

6 Related Work

Our use of a Highway layer with RNNs is re-
lated to Highway LSTM (Zhang et al., 2016) and
Residual LSTM (Kim et al., 2017). The goal in
those works is to effectively train many stacked
LSTM layers and so highway and residual con-
nections are introduced into the definition of the
LSTM function. Our formulation is external to
that definition, with the specific goal of gating
between LSTM hidden states and fixed word-
embeddings.

Multiple works have shown the efficacy of
semi-supervision for NLP tasks (Søgaard, 2013).
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Pre-training a LM in order to initialize the weights
of an encoder has been reported to improve gener-
alization and training stability for sequence classi-
fication (Dai and Le, 2015) as well as translation
and summarization (Ramachandran et al., 2017).

Similar to our work, Peters et al. (2017) utilize
the same pre-trained LM from Józefowicz et al.
(2016) for sequence tagging tasks, keeping en-
coder weights fixed during training. Their formu-
lation includes a backward LM and uses the hid-
den states from the top-most stacked LSTM layer
of the LMs, whereas we also consider reading the
hidden states of the bottom one, which substan-
tially improves performance. In parallel to our
work, Peters et al. (2018) have successfully lever-
aged pre-trained LMs for several tasks, including
RC, by utilizing representations from all layers of
the pre-trained LM.

In a transfer-learning setting, McCann et al.
(2017) pre-train an attentional encoder-decoder
model for machine translation and show improve-
ments across a range of tasks when incorporating
the hidden states of the encoder as additional fixed
inputs for downstream task training.

7 Conclusion

In this work we examine the importance of con-
text for the task of reading comprehension. We
present a neural module that gates contextual and
non-contextual representations and observe gains
due to context utilization. Consequently, we in-
ject contextual information into our model by in-
tegrating a pre-trained language model through
our suggested module and find that it substantially
improves results, reaching state-of-the-art perfor-
mance on the SQuAD dataset.
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Abstract

We introduce Question-Answer Meaning
Representations (QAMRs), which repre-
sent the predicate-argument structure of a
sentence as a set of question-answer pairs.
We develop a crowdsourcing scheme to
show that QAMRs can be labeled with
very little training, and gather a dataset
with over 5,000 sentences and 100,000
questions. A qualitative analysis demon-
strates that the crowd-generated question-
answer pairs cover the vast majority of
predicate-argument relationships in exist-
ing datasets (including PropBank, Nom-
Bank, and QA-SRL) along with many pre-
viously under-resourced ones, including
implicit arguments and relations. We also
report baseline models for question gener-
ation and answering, and summarize a re-
cent approach for using QAMR labels to
improve an Open IE system. These results
suggest the freely available1 QAMR data
and annotation scheme should support sig-
nificant future work.

1 Introduction

Predicate-argument relationships form a key part
of sentential meaning representations, and sup-
port answering basic questions such as who did
what to whom. Resources for predicate-argument
structure are well-developed for verbs (e.g. Prop-
Bank (Palmer et al., 2005)) and there have been
efforts to study other parts of speech (e.g. Nom-
Bank (Meyers et al., 2004) and FrameNet (Baker
et al., 1998)) and introduce whole-sentence struc-
tures (e.g. AMR (Banarescu et al., 2013)). How-
ever, highly skilled and trained annotators are re-

∗Work performed while at Bar-Ilan University.
1github.com/uwnlp/qamr

Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29.

Who will join as nonexecutive director? - Pierre Vinken
What is Pierre’s last name? - Vinken
Who is 61 years old? - Pierre Vinken
How old is Pierre Vinken? - 61 years old
What will he join? - the board
What will he join the board as? - nonexecutive director
What type of director will Vinken be? - nonexecutive
What day will Vinken join the board? - Nov. 29

Figure 1: Example QAMR.

quired to label data within these formulations for
each new domain, and it takes significant effort to
model each new type of relationship (e.g., noun ar-
guments in NomBank). We propose a new method
to annotate relatively complete representations of
the predicate-argument structure of a sentence,
which can be done easily by non-experts.

We introduce Question-Answer Meaning Rep-
resentations (QAMRs), which represent the
predicate-argument structure of a sentence as a set
of question-answer pairs (see Figure 1). Follow-
ing the QA-SRL formalism (He et al., 2015), each
question-answer pair corresponds to a predicate-
argument relationship. There is no need for a care-
fully curated ontology and the labels are highly in-
terpretable. However, we differ from QA-SRL in
focusing on all words in the sentence rather than
just verbs, and allowing free form questions in-
stead of using templates.

The QAMR formulation provides a new way of
thinking about predicate-argument structure. Any
form of sentence meaning—from a vector of real
numbers to a logical form—should support the
challenge of determining which questions are an-
swerable by the sentence, and what the answers
are. A QAMR sidesteps intermediate formal rep-
resentations by surfacing those questions and an-
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swers as the representation. As with any other rep-
resentation, this can then be reprocessed for down-
stream tasks. Indeed, the question-answer format
facilitates reprocessing for tasks that are similar in
form, for example Open IE (see Section 4).

A key advantage of QAMRs is that they can
be annotated with crowdsourcing. The main chal-
lenge is coverage, as it can be difficult for a sin-
gle annotator to write all possible QA pairs for
a sentence. Instead, we distribute the work be-
tween multiple annotators in a novel crowdsourc-
ing scheme, which we use to gather a dataset
of over 100,000 QA pairs for 5,000 sentences in
Newswire and Wikipedia domains.

Although QAMR questions’ free-form nature is
crucial for our approach, it means that predicates
are not explicitly marked. However, with a simple
predicate-finding heuristic, we can align QAMR
to PropBank, NomBank, and QA-SRL and show
high coverage of predicate-argument structure, in-
cluding more than 90% of non-discourse relation-
ships. Further analysis reveals that QAMRs also
capture many phenomena that are not modeled in
traditional representations of predicate-argument
structure, including coreference, implicit and in-
ferred arguments, and implicit relations (for exam-
ple, with noun adjuncts).

Finally, we report simple neural baselines for
QAMR question generation and answering. We
also highlight a recent result (Stanovsky et al.,
2018) showing that QAMR data can be used to
improve performance on a challenging task: Open
Information Extraction. Together, these results
show that there is significant potential for follow
up work on developing innovative uses of QAMR
and modeling their relatively comprehensive and
complex predicate-argument relationships.

2 Crowdsourcing

We gather QAMRs with a two-stage crowd-
sourcing pipeline2 using monetary incentives and
crowd-driven quality control to ensure high cov-
erage of predicate-argument structure. Generation
workers write QA pairs and validation workers an-
swer or reject the generated questions. Full details
of our setup are given in Appendix A.

Generation Workers receive an English sen-
tence with up to four target words. They are asked
to write as many QA pairs as possible containing

2Built using Amazon Mechanical Turk: www.mturk.
com

PTB Train Dev Test

Sentences 253 3,938 499 480
Annotators 5 1 3 3
QA Pairs 27,082 73,561 27,535 26,994
Filtered 18,789 51,063 19,069 18,959
Cost $2,862 $7,879 $2,919 $2,919
Cost/token $0.44 $0.08 $0.25 $0.25

Table 1: Summary of the data gathered.

each target word in the question or answer, subject
to light constraints (for example, the question must
contain a word from the sentence and be answered
in the sentence, and they must highlight the answer
in the sentence). Workers must write at least one
QA pair for each target word to receive the base
pay of 20c. An increasing bonus of 3(k+1) cents
is paid for each k-th additional QA pair they write
that passes the validation stage.

Validation Workers receive a sentence and a
batch of questions written by an annotator in the
first stage (with no marked target words or an-
swers). The worker must mark each question
as invalid or redundant with another question, or
highlight its answer in the sentence. Two workers
validate and answer each set of questions. They
are paid a base rate of 10c for each batch, with an
extra 2c for each question past four.

Quality control Question writers are disquali-
fied if the percentage of valid judgments on their
questions falls below 75%. Validators need to pass
a qualification test and maintain above 70% agree-
ment with others, where overlapping answer spans
are considered to agree.

2.1 Data Preparation and Annotation

We drew our data from 1,000 Wikinews arti-
cles from 2012–2015 and 1,000 articles from
Wikipedia’s 1,000 core topics,3 partitioned by
document into train, dev, and test, and prepro-
cessed using the Stanford CoreNLP tools (Man-
ning et al., 2014). We also annotated 253 sen-
tences from the Penn Treebank (Marcus et al.,
1993) chosen to overlap with existing resources
for comparison (see Section 3).

For each sentence, we group its non-stopwords
sequentially into groups of 3 or 4 target words,
removing sentences with no content words. By
presenting workers with nearly-contiguous lists of

3https://en.wikipedia.org/wiki/
Wikipedia:1,000_core_topics
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Figure 2: Agreement and validation statistics on all
data gathered. Answers were considered to agree if
their spans overlapped. High agreement on answers in-
dicates that questions were generally interpretable and
answers were consistent.

target words, enforcing non-redundancy, and pro-
viding bonuses, we encourage exhaustiveness over
all possible QA pairs. By allowing the target word
to appear in the question or the answer, we make
the requirements flexible enough that there is al-
most always some QA pair that can be written.

Figure 2 shows agreement statistics for question
validation. We removed questions either validator
counted invalid or redundant, as well as questions
not beginning with a wh-word,4 which we found to
be of low quality. We also annotated the partitions
at different levels of redundancy to allow for more
exhaustive dev, test, and comparison sets. See Ta-
ble 1 for statistics.

3 Data Analysis

In this section, we show that QAMR has high cov-
erage of predicate-argument structure and uses a
rich vocabulary to label fine-grained and implicit
semantic relations.

Coverage To show that QAMR captures the
same kinds of predicate-argument relations as ex-
isting formalisms, we compare our data to Prop-
Bank, NomBank, and QA-SRL. Since predicates
in the questions are not explicitly marked, we use
a simple predicate-finding heuristic to help align
to other formalisms: for each minimal span that
appears in the QAMR questions and answers (i.e.,
none of its subspans appear independently of it
elsewhere in the QAMR), we compute its predi-
cate score as the proportion of its appearances that
are in a question rather than in an answer.5 We
then choose the span with the highest predicate
score in each question as its predicate.

We measure recall on the shared Penn Treebank
sentences for each resource by randomly sampling
n annotators out of 5 for each group of target

4who, what, when, where, why, how, which, and whose
5This follows the intuition that predicates are more likely

to appear in the question; for example, see join in Figure 1.
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Figure 3: Recall of predicate-argument relations for
sentences shared with each of our reference datasets,
with increasing number of annotators.

words, which simulates the situation for the train-
ing set (1 annotator) and the dev/test sets (3 anno-
tators). For each n we took the mean of 10 runs.
Full details of our comparison are in Appendix B.

Results are shown in Figure 3. Single annota-
tors cover over 60% of relationships, and coverage
quickly increases with the number of annotators,
reaching over 90% with all five. This shows that
QAMR’s representational capacity covers the vast
majority of relevant predicate-argument relations
in existing resources. However, coverage in our
training set is low due to low annotation density.

For a qualitative analysis, we sample 150 QA
pairs (see Table 2 for examples).6 Of our sam-
ple, over 90% of question-answer pairs correspond
to a predicate-argument relation expressed in the
sentence,7 including arguments and modifiers of
nouns and verbs as well as relationships like those
within proper names (Table 2, ex. 2c, 3a) and
coreference (ex. 3c, 4c). Questions that do not
align to predicate-argument structure often target
shallow inferences (ex. 3b, 7c).

Rich vocabulary Annotators use the open ques-
tion format to introduce a large vocabulary of ex-
ternal phrases which do not appear in the sen-
tence. Overall, 5,687 different external phrases
are introduced (excluding stopwords), appearing
25,952 times in 38.7% of the questions (see Fig-
ure 4). These include typing words like state and
country (Table 2, ex. 5), most often directly after
the wh-word, and relation-denoting phrases like
work for (ex. 2b), last name (ex. 3a), and victim

6This sample, and statistics for the remainder of this sec-
tion, were taken from the filtered train and development sets,
with a total of about 70k QA pairs.

7We assume a QA pair targets the relation corresponding
to the semantic role of the wh-word in the question.
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Sentence Ann. Question Answers

(1) Climate change affects distribution of
weeds, pests, and diseases.

(a) What affects distribution of diseases? Climate change
VAR (b) What is affected? distribution of... / distribution

(2) Baruch ben Neriah, Jeremiah’s scribe,
used this alphabet to create the later
scripts of the Old Testament.

SYN (a) Who wrote the scripts? Baruch ben Neriah
ROLE (b) Who did Baruch work for? Jeremiah

(c) What is old? Testament / the Old Testament

(3) Mahlunga has said he did nothing
wrong and Judge Horn said he “failed to
express genuine remorse”.

ROLE (a) What is the Judge’s last name? Horn
INF (b) Who doubted his remorse was genuine? Judge Horn
CO (c) Who didn’t express genuine remorse? Mahlunga

(4) In Byron’s later memoirs, “Mary
Chaworth is portrayed as the first object
of his adult sexual feelings.”

(a) Who is portrayed in the work? Mary Chaworth
IMP (b) Who was the object of his sexual feelings? Mary Chaworth
VAR (c) Who was Mary the object of sexual feelings for? Byron

(5) Volunteers are presently renovating
the former post office in the town
of Edwards, Mississippi, United States
for the doctor to have an office.

(a) What town is the post office in? Edwards
(b) What state is the post office in? Mississippi

IMP (c) What country are the volunteers renovating in? United States
VAR (d) What country is the city of Edwards in? United States

(6) The ossicles are the malleus (hammer),
incus (anvil), and the stapes (stirrup).

VAR (a) What is the malleus one of? The ossicles / ossicles

(7) Liam “had his whole life in front
of him”, said Detective Inspector
Andy Logan, who was the senior
investigator of his murder.

ROLE (a) Who is the murder victim Logan is investigating? Liam
ROLE (b) What rank of investigator is Andy Logan? Detective Inspector / senior
INF (c) Who was Detective Logan speaking about? Liam

(8) This cemetery dates from the time of
Menkaure (Junker) or earlier (Reisner),
and contains several stone-built mastabas
dating from as late as the 6th dynasty.

INF (a) How old are the stone-built mastabas? dating from as late as the 6th dynasty / from as late
as the 6th dynasty

IMP (b) What period was earlier than Menkaure? Reisner
(c) What dates from the 6th dynasty? mastabas / several stone-built mastabas

Table 2: Examples of question-answer pairs capturing various semantic relations, annotated with interesting phe-
nomena they exhibit: syntactic variation (VAR), synonym use (SYN), explicit role names for implicit relations
(ROLE), coreference (CO), implicit arguments (IMP), and inferred relations (INF).

year
work

want

used

trying
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time
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thing

thesetheretake place
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stand

spoke
sort
size score

say
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Figure 4: Novel phrases appearing more than 50 times.
Darker phrases appear more commonly after who,
which, or how. The vast majority of external phrases
are used to denote entity/event types or semantic rela-
tions.

(ex. 7a). Despite the open format, synonyms are
not a major issue, obscuring the semantic relation
in only 2% of our sample (ex. 2a).

We also find verbal paraphrases of noun com-
pounds, as proposed by Nakov (2008). For ex-
ample, where Gallup poll appears in the text, one
annotator has written Who conducted the poll?,
which explicates the relationship between Gallup
and poll. Similarly, Who received the bailouts? is
written for the phrase bank bailouts.

Semantics, not just syntax Only 63% of QA
pairs characterize their predicate-argument rela-
tion using the same syntactic relationship as in the
sentence. 5% have answers coreferent with the

syntactic argument (Table 2, ex. 3c, 4c); 17% ex-
hibit syntactic variation, using different preposi-
tions (ex. 4c, 6a), alternating between active and
passive (ex. 1b), or changing between the noun
and verb form of the predicate (ex. 8a); 6% ask
about implicit arguments (ex. 4b, 5c, 8b); and 6%
ask about inferred relations (ex. 3b).

4 Models

To establish initial baselines, we apply existing
neural models for QAMR question generation and
answering. We also briefly summarize a recent
end task result, where QAMR annotations were
used to improve an Open IE system.

Question generation In question generation
(QG), we learn a mapping from a sentence w to
a set of questions q1, . . . , qm. We enumerate pairs
of words (wq, wa) from the sentence to seed the
generator. During training, outputs are questions
q and inputs are tuples (w, wq, wa), where wq ∈ q
andwa is in q’s answer. We also add negative sam-
ples where the output is a special token and the
input has wq, wa that never appear together.

We use an encoder-decoder model with a copy-
ing mechanism (Zhou et al., 2017) to generate a
question from an input sentence with tagging fea-
tures for part of speech, wq, and wa. At test time,
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we run all pairs of content words (wi, wj) where
|i − j| ≤ 5 through the model to yield a set of
questions. On the QAMR test set, this achieves
28% precision and 24% recall with fuzzy match-
ing (multi-BLEU8 > 0.8).

Question answering The format of QAMRs al-
lows us to apply an existing question-answering
model (Seo et al., 2016) designed for the
SQuAD (Rajpurkar et al., 2016) reading compre-
hension task to answer QAMR questions. Train-
ing and testing with the SQuAD metrics on
QAMR, the model achieves 70.8% exact match
and 79.7% F1 score. We further improve perfor-
mance to 75.7% exact match and 83.9% F1 by
pooling our training set with the SQuAD training
data. The relative ease of QA in comparison to QG
suggests that in QAMR, most of the information is
contained in the questions.

Open IE Finally, we also expect that the
predicate-argument relationships represented in
QAMRs will be useful for many end tasks. Such a
result was recently shown for Open IE (Stanovsky
et al., 2018), using our QAMR corpus. Open
IE involves extracting tuples of natural language
phrases that express the propositions asserted by a
sentence. They show that, using a syntactic de-
pendency parser, a QAMR can be converted to
a list of Open IE extractions. Augmenting their
training data with a conversion of our QAMR
dataset yields state-of-the-art performance on sev-
eral Open IE benchmarks (Stanovsky and Dagan,
2016b; Xu et al., 2013; de Sá Mesquita et al.,
2013; Schneider et al., 2017). The gains come
largely from the extra extractions (e.g., with nom-
inal predicates) that QAMRs support over tradi-
tional resources focusing on verbal predications.

5 Related Work

In addition to the semantic formalisms (Palmer
et al., 2005; Meyers et al., 2004; Banarescu et al.,
2013; He et al., 2015) we have already dis-
cussed, FrameNet (Baker et al., 1998) also focuses
predicate-argument structure, but has more fine-
grained argument types. Gerber and Chai (2010)
target implicit nominal arguments. Stanovsky
and Dagan (2016a) annotate non-restrictive noun
phrase modifiers on top of QA-SRL. Other lin-
guistically motivated annotation schemes include

8An average of the BLEU1–BLEU4 scores.

UCCA (Abend and Rappoport, 2013), HSPG tree-
banks (Flickinger et al., 2017), and the Groningen
meaning bank (Basile et al., 2012).

Crowdsourcing has also been applied to gather
annotations of structure in the setup of multiple
choice questions, for example, for Dowty’s se-
mantic proto-roles (Reisinger et al., 2015; White
et al., 2016) and human-in-the-loop parsing and
classification (He et al., 2016; Duan et al., 2016;
Werling et al., 2015), while Wang et al. (2017)
use crowdsourcing with question-answer pairs to
annotate some PropBank roles directly. Our ap-
proach recovers paraphrases of noun compounds
similar to those crowdsourced by Nakov (2008).

More broadly, non-expert annotation has been
used extensively to gather question-answer pairs
over natural language texts, for example in reading
comprehension (Rajpurkar et al., 2016; Richard-
son et al., 2013; Nguyen et al., 2016) and visual
question answering (Antol et al., 2015). However,
while these treat question answering as an end
task, we regard it as a representation of predicate-
argument structure, and focus annotators on a
smaller selection of text (a few target words in a
single sentence, rather than a paragraph) aiming
to achieve high coverage.

6 Conclusion

QAMR provides a new way of thinking about
meaning representation: using open-ended natu-
ral language annotation to represent rich semantic
structure. This paradigm allows for representing a
broad range of semantic phenomena with data eas-
ily gathered from native speakers. Our dataset has
already been used to improve the performance of
an Open IE system, and how best to leverage the
data and model its complex phenomena is an open
challenge which our annotation scheme could sup-
port studying at a relatively large scale.
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A Crowdsourcing Details

In this section we provide full details of the data
collection methodology described in Section 2.
For the exact text of the instructions shown to
workers, and code to reproduce the annotation or
demo the interface, see github.com/uwnlp/
qamr.

Stages Data collection proceeded in two stages:
generation and validation. These were run as
two types of HITs (Human Intelligence Tasks) on
the Amazon Mechanical Turk platform. Work-
ers wrote questions and answers for the genera-
tion task, and those questions would be immedi-
ately uploaded as new HITs for the validation task,
which ran concurrently. Two workers would vali-
date each question. The worker writing the ques-
tion would be assessed based on the validators’
judgments, and the validators would be assessed

based on their agreement. In this way, the qual-
ity of workers in either stage could be quickly as-
sessed so spammers or low-quality workers could
be disqualified before causing much damage.

Question constraints In both stages, we define
a valid question to

(1) contain at least one word from the sentence,

(2) be about the sentence’s meaning,

(3) be answered obviously and explicitly in the
sentence,

(4) not be a yes/no question, and

(5) not be redundant,

where we define two questions as being redun-
dant by the informal criterion of “having the same
meaning” and the same answer. These require-
ments are illustrated with examples.

Workers in the generation phase are instructed
only to write valid questions, while workers in
the validation phase are instructed only to answer
valid questions (marking the rest invalid or redun-
dant).

When we ask that the question contains a word
from the sentence, we allow for changing forms of
the word through inflectional or derivational mor-
phology (with examples of both). The only con-
straint on questions that is strictly enforced by the
interface is a length limit of 50 characters.

Target words In the generation task, each sen-
tence is presented to the worker with several un-
derlined target words. They are required to write
at least one QA pair for each target word, where
the target word must appear either in the question
or the answer. We choose sets of target words by
chunking consecutive words (ignoring stopwords)
into groups of 3 or 4 (or fewer for very short
sentences). Because the target words shown to a
single worker are close to each other—and often
share a constituent—it restricts the set of QA pairs
they write to relate to a certain part of the sen-
tence. However, asking that the target word ap-
pears either in the question or the answer makes it
flexible enough so that the worker is almost never
stuck with no reasonable question to write. We
identified this approach after some experimenta-
tion, finding that together with the monetary in-
centives described below, it struck the appropriate
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Figure 5: Annotation interface for generation.

balance of scope that was small enough to get ex-
haustive annotation, but not so small that it cor-
nered workers into writing awkward questions or
getting frustrated.

Interface In the generation stage, below the sen-
tence, each target word is listed with a text field
below it where they write a question for that target
word. While the text field is focused, they high-
light the answer tokens in the sentence using cus-
tom implemented highlighting functionality. The
highlighted tokens then appear next to the focused
question. The answer tokens need not be a con-
tiguous span in our interface (though they almost
always are in practice). Once a question is writ-
ten and answered, a new text field appears directly
below it for another question, allowing the anno-
tator to write as many questions as they can. See
Figure 5 for a screenshot of the generation task in-
terface.

In the validation stage, no target words are indi-
cated to the user; they only see a list of questions
written in a single HIT by a worker in the gen-
eration stage. They use the arrow keys to switch
between the questions, and use the mouse to as-
sess them: either highlighting the answer in the
sentence, clicking another question to mark the se-
lected one redundant, or clicking the invalid button
to mark a question invalid. See Figure 6.

Incentives and payment Base pay for the gen-
eration stage was 20c, with a bonus of 3(k + 1)
cents for each question beyond the number re-
quired (so, the first extra question would reward
them 6c, the next 9c, and so on). However, their

Figure 6: Annotation interface for validation.

bonuses were only calculated based on the number
of questions considered valid by annotators. So if
a worker in the generation task wrote 2 extra ques-
tions, but any 2 (or 3, or more) of their questions
were judged invalid, then they would receive no
bonus.

In the validation stage, workers were paid 10c
plus a bonus of 2c per question beyond four.

Quality control We used Mechanical Turk’s
quality control mechanisms in several ways. First,
we used the built-in Locale qualification to limit
the tasks to workers based in the United States
as a proxy for English proficiency. Second, we
wrote a multiple-choice qualification test for the
validation task, which tested workers’ understand-
ing of the definitions of question validity and re-
dundancy. Workers were required to get a score of
75% on this test before working on the validation
task.

Finally, we used Mechanical Turk’s built-in
qualification mechanism to keep track of worker
accuracy and agreement ratings. Before working
on either task, a worker would have to request a
qualification which stored their accuracy or agree-
ment value. Then as they worked, it would be
updated over time and they could check its value
in their Mechanical Turk account to see how they
were doing. In the generation task, accuracy was
calculated as the proportion of all judgments (ag-
gregating those from both validators) that were not
invalid or redundant, and accuracy had to remain
above 75% to avoid disqualification. In the vali-
dation task, agreement was calculated by treating
answer spans as agreeing if they had any overlap,
and redundant judgments agreeing if their targets
had agreeing answer spans. A worker’s agreement
had to stay above 70% for them to remain quali-
fied.

If a worker’s accuracy or agreement rating
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dropped within 5% of the threshold, the worker
was automatically sent an email with a warning
and a list of common mistakes and tips they might
use to improve.

Implementation All of our code was written in
Scala, using the Java AWS SDK on the backend
to interface with Mechanical Turk, Akka Actors
and Akka HTTP to implement the web server and
quality control logic, and Scala.js with React to
implement the user interface.

Dataset Our dataset was gathered over the
course of 1 month from 330 unique workers. See
Section 2.1 for details.

B SRL Comparison

In this section we provide the full details of the
comparison of QAMR to PropBank, NomBank,
and QA-SRL given in Section 3.

Preprocessing For each of these resources,
there were certain predicate-argument relation-
ships that we filtered out of the comparison for
being out of scope.

For PropBank, we filter out predicates and ar-
guments that are auxiliary verbs, as well as ref-
erence (R-) roles since aligning these properly is
difficult and their function is primarily syntactic.
We also remove discourse (-DIS) arguments such
as but and instead: these may be regarded as in-
volved in discourse structure separately from the
predicate-argument structure we are investigating.
78% of the original dependencies remain.

For NomBank, we also remove auxiliaries, and
we remove arguments that include the predicate—
which are present for words like salesman and
teacher—leaving 83% of the original dependen-
cies.

For QA-SRL, we use all dependencies, and
where multiple answers were provided to a ques-
tion, we take the union of the answer spans to be
the argument span.

Alignment Because QAMR does not mark
predicates explicitly, we use a simple predicate-
finding heuristic to align the QA pairs in a QAMR
to the predicate-argument relations in each re-
source independently.

For each QAMR, we identify every minimal
span appearing in its questions and answers, i.e.,
a span from the sentence where none of its sub-
spans appear independently of it in the QAMR.

We then calculate a predicate score for each span,
as the proportion of times it appeared in a ques-
tion versus an answer. Then for each QA pair,
we identify the span in the question with highest
predicate score as its predicate span, and the an-
swer as its argument span. This is then aligned to
the predicate-argument arc in the chosen resource
with the greatest non-zero argument overlap such
that the predicate is contained within the ques-
tion’s predicate span. If there is no such align-
ment, we check for an opposite-direction align-
ment where the predicate is in the answer of a
QA pair and the argument completely contains the
question’s predicate span.

Results See Section 3 for a description of the re-
sults. With 1 annotator, we get around 60% recall,
but it begins to level off over 85% with 3 annota-
tors.

We manually examined 25 sentences to study
sources of coverage loss in the 5-annotator case.
In comparison to PropBank and NomBank, the
missing dependencies are due to missing QA pairs
(44%), mistakes in our alignment heuristic (28%),
and subtle modifiers/idiomatic uses (28%). For
example, annotators sometimes overlook phrases
such as so far (marked as a temporal modifier in
PropBank) or let’s (where ’s is marked as a core
verbal argument). Comparing to QA-SRL, 60%
of the missed relations are inferred/ambiguous re-
lations that are common in that dataset. Missed
QA pairs in QA-SRL account for another 20%.

In aggregate, these analyses show that the
QAMR labels capture the same kinds of predicate-
argument structures as existing resources. How-
ever, while our development and test sets can be
expected to have reasonable coverage, where we
have labels from only one annotator for each target
word (as in our training set), the recall low com-
pared to expert-annotated structures, which may
pose challenges to learning.
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Abstract

The task of natural question generation is to
generate a corresponding question given the
input passage (fact) and answer. It is useful for
enlarging the training set of QA systems. Pre-
vious work has adopted sequence-to-sequence
models that take a passage with an additional
bit to indicate answer position as input. How-
ever, they do not explicitly model the informa-
tion between answer and other context within
the passage. We propose a model that matches
the answer with the passage before generat-
ing the question. Experiments show that our
model outperforms the existing state of the art
using rich features.

1 Introduction

The task of natural question generation (NQG) is
to generate a fluent and relevant question given a
passage and a target answer. Recently NQG has
received increasing attention from both the indus-
trial and academic communities because of its val-
ues for improving QA systems by automatically
increasing the training data. It can also be used
for educational purposes such as language learn-
ing (Heilman and Smith, 2010).

One example is shown in Table 1, where a ques-
tion “when was nikola tesla born ?” is gener-
ated given a passage and a fact “1856”. Existing
work for NQG uses a sequence-to-sequence model
(Sutskever et al., 2014), which takes a passage as
input for generating a question. They either en-
tirely ignore the target answer (Du et al., 2017), or
directly hard-code answer positions (Zhou et al.,
2017; Yang et al., 2017; Subramanian et al., 2017;
Tang et al., 2017; Wang et al., 2017a; Yuan et al.,
2017). These methods can neglect rich potential

∗ Work done during an internship at IBM.

Passage: nikola tesla ( serbian cyrillic :
Nikola Tesla ; 10 july 1856 – 7 january 1943
) was a serbian american inventor , electrical en-
gineer , mechanical engineer , physicist , and
futurist best known for his contributions to the
design of the modern alternating current ( ac )
electricity supply system .
Question: when was nikola tesla born ?

Table 1: A QG example, where answer is underlined.

interactions between the passage and the target an-
swer. In addition, they fail when the target answer
does not occur in the passage verbatim. In Table
1 the answer “1856” is the year when nikola tesla
was born. This can be easily determined by lever-
aging the contextual information of “10 july 1856
– 7 january 1943”, while it is relatively hard when
only the answer position information is adopted.

We investigate explicit interaction between the
target answer and the passage, so that contextual
information can be better considered by the en-
coder. In particular, matching is used between the
target answer and the passage for collecting rele-
vant contextual information. We adopt the multi-
perspective context matching (MPCM) algorithm
(Wang et al., 2017b), which takes two texts as in-
put before producing a vector of numbers, repre-
senting similarity under different perspectives.

Results on SQuAD (Rajpurkar et al., 2016)
show that our model gives better BLEU scores
than the state of the art. Furthermore, the ques-
tions generated by our model help to improve a
strong extractive QA system. Our code is available
at https://github.com/freesunshine0316/MPQG.
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2 Baseline: sequence-to-sequence

Our baseline is a sequence-to-sequence model
(Bahdanau et al., 2015) with the copy mechanism
(Gulcehre et al., 2016; Gu et al., 2016). It uses an
LSTM encoder to encode a passage and an LSTM
decoder to synthesize a question.

2.1 Encoder
The encoder is a bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997), whose input xj at
step j is [ej ; bj ], the concatenation of the current
word embedding ej with additional bit bj indicat-
ing whether it belongs to the answer.

2.2 Decoder with the copy mechanism
The decoder is an attentional LSTM model, with
the attention memory H being the concatenation
of all encoder states. Each encoder state hj is the
concatenation of two bi-directional LSTM states:

hj = [
←−
hj ;
−→
hj ] (1)

H = [h0; . . . ;hN ], (2)

where N is the number of encoder states. At each
step t, the decoder state st and context vector ct are
generated from the previous decoder state st−1,
context vector ct−1 and output xt−1 in the same
way as Bahdanau et al. (2015). The output distri-
bution over a vocabulary is calculated via:

Pvocab = softmax(V1[st; ct] + b1),

where V1 and b1 are model parameters, and the
number of rows in V1 is the size of the vocabulary.

Since many passage words also appear in the
question, we adopt the copy mechanism (Gulcehre
et al., 2016; Gu et al., 2016), which integrates the
attention over input words into the final vocabu-
lary distribution. The probability distribution is
defined as the interpolation:

Pfinal = gtPvocab + (1− gt)Pattn,

where gt is the switch for controlling generating
a word from the vocabulary or directly copying it
from the passage. Pvocab is the vocabulary prob-
ability distribution as defined above, and Pattn is
calculated based on the current attention distribu-
tion by merging probabilities of duplicated words.
Finally, gt is defined as:

gt = σ(wT
c ct + wT

s st + wT
x xt−1 + b2),

where the vectors wc, ws, wx and scalar b2 are
model parameters.
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Figure 1: Matching strategies.

3 Method

Our model follows the baseline encoder-decoder
framework. The encoder reads a passage P =
(p1, . . . , pN ) and an answer A = (a1, . . . , qM );
the decoder generates a questionQ = (q1, . . . , qL)
word by word.

3.1 Multi-perspective encoder
Different from the baseline, we first encode both
the passage and the answer by using two separate
bi-directional LSTMs:

hpj = [
←−
hpj ,
−→
hpj ] = BiLSTM(

←−−
hpj+1,

−−→
hpj−1, pj)

hai = [
←−
hai ,
−→
hai ] = BiLSTM(

←−−
hai+1,

−−→
hai−1, ai)

We use the multi-perspective context matching
algorithm (Wang et al., 2017b) on top of the BiL-
STM outputs, matching each hidden state hpj of the
passage against all hidden states ha1 . . . h

a
M of the

answer. The goal is to detect whether each pas-
sage word belongs to the relevant context of the
answer. Shown in Figure 1, we adopt three strate-
gies to match the passage with the answer, each
investigating different sources of information.

Full-matching considers the last hidden state of
the answer, which encodes all words and the word
order. Attentive-matching synthesizes a vector by
computing a weighted sum of all answer states
against the passage state, then compares the vec-
tor with the passage state. It also considers all
words in the answer but without word order. Fi-
nally, max-attentive-matching only considers the
most relevant answer state to the passage state.

Multi-perspective matching These strategies
require a function fm to match two vectors v1 and
v2. It is defined as:

m = fm(v1, v2;W),

where W is a tunable weight matrix. Each row
Wk ∈ W represents the weights associated with

570



one perspective, and the similarity according to
that perspective is defined as:

mk = cos(Wk � v1,Wk � v2),

where � is the element-wise multiplication op-
eration. So fm(v1, v2;W) represents the match-
ing results between v1 and v2 from all perspec-
tives. Intuitively, each perspective calculates the
cosine similarity between two reweighted input
vectors, associated with a weight vector trained
to highlight different dimensions of the input vec-
tors. This can be regarded as considering a differ-
ent part of the semantics captured in the vector.

The final matching vector mj for the j-th word
in the passage is the concatenation of the matching
results of all three strategies. We employ another
BiLSTM layer on top of the matching layer:

hmj =
←−
hmj ,
−→
hmj = BiLSTM(

←−−
hmj+1,

−−→
hmj−1,mj)

Comparison with the baseline The encoder
states (hj) of the baseline only contains the an-
swer position information in addition to the pas-
sage content. The matching states (hmj ) of our
model includes the matching information of all
passage words, and potentially contains the an-
swer position information. The rich matching in-
formation can guide the decoder to generate more
accurate questions.

3.2 Decoder with the copy mechanism

The decoder is identical to the one described
in Section 2.2, except that matching information
(
←−
hmj ,
−→
hmj ) is added to the attention memory:

hj = [
←−
hpj ;
−→
hpj ;
←−
hmj ;
−→
hmj ] (3)

H = [h0; . . . ;hN ] (4)

The attention memory contains not only the pas-
sage content, but also the matching information,
which helps generate more accurate questions.

4 Experiments

Following existing work (Du et al., 2017; Zhou
et al., 2017), experiments are conducted on the
publically accessible part of SQuAD (Rajpurkar
et al., 2016). The dataset contains 536 articles and
over 100k questions, and around 10% is held by
the organizer for fair evaluation.

Models BLEU
M2S+cp 12.63

w/o full-matching 11.57
w/o attentive-matching 11.78
w/o max-attentive-matching 12.11

Table 2: Ablation results for matching strategies.
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Figure 2: Effectiveness on the number of perspectives.

4.1 Settings
We evaluate our model for question quality against
gold questions, as well as their effectiveness in
improving an extractive QA system. Since Du
et al. (2017) and Zhou et al. (2017) conducted their
experiments using different training/dev/test split,
we conduct experiments on both splits, and com-
pare with their reported performance. For improv-
ing an extractive QA system, we use the data split
of Du et al. (2017), and conduct experiments on
low-resource settings, where only (10%, 20%, or
50%) of the human-labeled questions in the train-
ing data are available. We choose Wang et al.
(2016) as the extractive QA system.

Both the baseline and our model are trained
with cross-entropy loss. Greedy search is adopted
for generating questions.

4.2 Development experiments
Matching strategies In Table 2, we analyze

the importance of each matching strategy by per-
forming an ablation experiment on the devset ac-
cording to the data split of Du et al. (2017). We
can see that there is a performance decrease when
removing each of the three matching strategies,
which means that all three strategies are comple-
mentary. In addition, w/o max-attentive-matching
shows the least performance decrease. One likely
reason is that max-attentive-matching considers
only the most similar hidden state of the answer,
while the other two consider all hidden states. Fi-
nally, w/o full-matching shows more performance
decrease than w/o attentive-matching. A reason
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Models Split 1 Split 2
BLEU METEOR ROUGE-L BLEU

S2S-ans 12.28 16.62 39.75 –
S2S+cp+f – – – 13.29
S2S+cp 12.22 17.38 39.03 12.59
M2S+cp 13.98 18.77 42.72 13.91

Table 3: Test results.

may be that full-matching captures word order in-
formation, while attentive-matching does not.

Number of perspectives Figure 2 shows the
performance changes with different numbers of
perspectives. There is a large performance im-
provement when increasing the number from 1 to
3, which becomes small when further increasing
the number from 3 to 5. This shows that our multi-
perspective matching algorithm is effective, as we
do not need a large number of perspectives for
reaching our reported performance.

4.3 Results
In Table 3, we compare our model with the pre-
vious state of the art: S2S-ans (Du et al., 2017)
and S2S+cp+f (Zhou et al., 2017). Both methods
use the sequence-to-sequence model. S2S-ans en-
codes only the passage, yet does not use answer
position information. S2S+cp+f uses both answer
position and rich features (NE and POS tags) by
concatenating their embeddings with the word em-
bedding on the encoder side (Peng et al., 2016),
adopting the copy mechanism for their decoder.
S2S+cp is our sequence-to-sequence baseline with
the copy mechanism, and M2S+cp is our model,
which further uses multi-perspective encoder.

M2S+cp outperforms S2S+cp on both data
splits, showing that modeling contextual infor-
mation is helpful for generating better questions.
In addition, only taking word embedding fea-
tures, M2S+cp shows better performance than
S2S+cp+f. Both multi-perspective matching and
rich features play a similar role of leveraging more
information than the answer position information.
However, M2S+cp can be applied to low-resource
languages and domains, where there is not suf-
ficient labeled data for training the taggers for
generating rich features. M2S+cp is also free
from feature engineering, which is necessary for
S2S+cp+f on new domains.

Finally, unlike S2S-ans, S2S+cp+f and S2S+cp,
M2S+cp can be useful when the answer is not ex-
plicitly contained in the passage, as it matches the
target answer against the passage rather than using

Passage: nikola tesla ( serbian cyrillic : Nikola Tesla
; 10 july 1856 – 7 january 1943 ) was a serbian american
inventor , electrical engineer , mechanical engineer , physi-
cist , and futurist best known for his contributions to the
design of the modern alternating current ( ac ) electricity
supply system .
Reference: when was nikola tesla born ?
S2S+cp: when was nikola tesla ’s inventor ?
M2S+cp: when was nikola tesla born ?
Passage: zhèng ( chinese : 正 ) meaning “ right ” , “ just
” , or “ true ” , would have received the mongolian adjec-
tival modifiers , creating “ jenggis ” , which in medieval
romanization would be written “ genghis ” .
Reference: what does zhèng mean ?
S2S+cp: what are the names of the “ jenggis ” ?
M2S+cp: what does zhèng mean ?
Passage: the university of chicago ( uchicago , chicago , or
u of c ) is a private research university in chicago .
Answer: in illinois
M2S+cp: where is the university of chicago located ?

Table 4: QG example, where answers are underlined.

the answer position information.

4.4 Example Output

Table 4 shows example outputs of M2S+cp and
S2S+cp. For the first case, M2S+cp recognizes
that “1856” is the year when “nikola tesla” is
born, while S2S+cp fails to. The matching algo-
rithm of M2S+cp gives high matching numbers
for the phrase “10 july 1856 – 7 january 1943”
with “1856” having the highest matching num-
ber, while S2S+cp only highlights “1856”. Simply
highlighting “1856” can be ambiguous, while rec-
ognizing a pattern “day month year – day month
year” with the first year being the answer is more
definite. It is similar in the second case, where
M2S+cp recognize “zhèng meaning right”, which
fits into the pattern “A meaning B” with B being
the answer.

The third example is a case where the answer is
not explicitly contained in the passage.1 M2S+cp
generates a precise question, even though the an-
swer “in illinois” does not appear in the passage.
On the other hand, S2S+cp fails in this case, as the
answer position information can not be obtained
from the input.

4.5 Question generation for extractive QA

Table 5 shows data augmentation results for ex-
tractive QA, where the gold questions of only a
part of the training data are available. Only-gold
uses only the available gold questions to train the

1This is modified from SQuAD, as all the original answers
in the SQuAD dataset are explicitly contained in the passage.
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Methods
Exact Match (EM) F1 score

10% 20% 50% 10% 20% 50%
only-gold 47.87 57.98 63.60 59.64 68.05 73.02
S2S+cp 57.80 60.26 64.79 67.01 69.71 73.74
M2S+cp 59.11 61.40 65.95 67.73 70.60 75.08

Table 5: Results on improving extractive QA with automatically generated questions.

extractive QA model, while S2S+cp and M2S+cp
use all training data, adopting the model-generated
questions if the gold question is not available. For
evaluation metrics, F1 score treats the prediction
and ground-truth answer as bags of tokens, and
compute their F1 score; Exact Match measures the
percentage of predictions that match the ground
truth answer exactly (Rajpurkar et al., 2016).

M2S+cp is consistently better than S2S+cp both
under F1 score and Exact Match, showing that
contextual information helps to generate more
accurate questions. Besides, using 10% gold
data, the automatically generated questions from
M2S+cp help to reach a better performance than
that using only 20% gold data, and it is 11 points
better than that using only 10% gold data.

5 Conclusion

We demonstrated that natural question generation
can benefit from contextual information. Lever-
aging a multi-perspective matching algorithm, our
model outperforms the existing state of the art, and
our automatically generated questions help to im-
prove a strong extractive QA system.
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Abstract

It is shown that many published models for
the Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016) lack robustness, suf-
fering an over 50% decrease in F1 score
during adversarial evaluation based on the
AddSent (Jia and Liang, 2017) algorithm. It
has also been shown that retraining models
on data generated by AddSent has limited ef-
fect on their robustness. We propose a novel
alternative adversary-generation algorithm,
AddSentDiverse, that significantly increases
the variance within the adversarial training
data by providing effective examples that pun-
ish the model for making certain superficial
assumptions. Further, in order to improve
robustness to AddSent’s semantic perturba-
tions (e.g., antonyms), we jointly improve the
model’s semantic-relationship learning capa-
bilities in addition to our AddSentDiverse-
based adversarial training data augmentation.
With these additions, we show that we can
make a state-of-the-art model significantly
more robust, achieving a 36.5% increase in F1
score under many different types of adversar-
ial evaluation while maintaining performance
on the regular SQuAD task.

1 Introduction

We explore the task of reading comprehension
based question answering (Q&A), where we fo-
cus on the Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016), in which mod-
els answer questions about paragraphs taken from
Wikipedia. Significant progress has been made
with deep end to end neural-attention models, with
some achieving above human level performance
on the test set (Wang and Jiang, 2017; Seo et al.,
2017; Wang et al., 2017; Huang et al., 2018; Pe-
ters et al., 2018). However, as shown recently
by Jia and Liang (2017), these models are very
fragile when presented with adversarially gener-

ated data. They proposed AddSent, which cre-
ates a semantically-irrelevant sentence containing
a fake answer that resembles the question syntacti-
cally, and appends it to the context. Many state-of-
the-art models exhibit a nearly 50% reduction in
F1 score on AddSent, showing their over-reliance
on syntactic similarity and limited semantic under-
standing.

Importantly, this is in part due to the nature of
the SQuAD dataset. Most questions in the dataset
have answer spans embedded in sentences that are
syntactically similar to the question. Thus during
training, the model is rarely punished for answer-
ing questions based on syntactic similarity, and
learns it as a reliable approach to Q&A. This cor-
relation between syntactic similarity and correct-
ness is of course not true in general: the adver-
saries generated by AddSent (Jia and Liang, 2017)
are syntactically similar to the question but do not
answer them. The models’ failures on AddSent
demonstrates their ignorance of this aspect of the
task. Jia and Liang (2017) presented some ini-
tial attempts to fix this problem by retraining the
BiDAF model (Seo et al., 2017) with adversaries
generated with AddSent. But they showed that the
method is not very effective, as slight modifica-
tions (e.g., different positioning of the distractor
sentence in the paragraph and different fake an-
swer set) to the adversary generation algorithm
at test time have drastic impact on the retrained
model’s performance.

In this paper, we show that their method of
adversarial training failed because the specificity
of the AddSent algorithm along with the lack of
naturally-occurring counterexamples allow mod-
els to learn superficial clues regarding what is a
‘distractor’ and subsequently ignore it; thus sig-
nificantly limiting their robustness. Instead, we
first introduce a novel algorithm, AddSentDiverse,
for generating adversarial examples with signifi-
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cantly higher variance (by varying the locations
where the distractors are placed and expanding the
set of fake answers), so that the model is pun-
ished during training time for making these su-
perficial assumptions about the distractor. We
show that an AddSentDiverse-based adversarially-
trained model beats an AddSent-trained model
across 3 different adversarial test sets, showing
an average improvement of 24.22% in F1 score,
demonstrating a general increase in robustness.

However, even with our diversified adversarial
training data, the model is still not fully resilient
to AddSent-style attacks, e.g., its antonymy-style
semantic perturbations. Hence, we next add se-
mantic relationship features to the model to let
it directly identify such relationships between the
context and question. Interestingly, we see that
these additions only increase model robustness
when trained adversarially, because intuitively in
the non-adversarially-trained setup, there are not
enough negative (adversarial) examples for the
model to learn how to use its semantic features.

Overall, we demonstrate that with our adver-
sarial training method and model improvement,
we can increase the performance of a state-of-the-
art model by 36.46% on the AddSent evaluation
set. Although we focused on the AddSent adver-
sary (Jia and Liang, 2017), our method of effec-
tive adversarial training by eliminating superficial
statistical correlations (with joint model capability
improvements) are generalizable to other similar
insertion-based adversaries for Q&A tasks.1

2 Related Work

Adversarial Evaluation In computer vision,
adversarial examples are frequently used to punish
model oversensitivity, where semantic-preserving
perturbations (usually in the form of small noise
vectors) are added to an image to fool the classi-
fier into giving it a different label (Szegedy et al.,
2014; Goodfellow et al., 2015).

In the field of Q&A, Jia and Liang (2017) in-
troduced the AddSent algorithm, which generates
adversaries that punish model failure in the other
direction: overstability, or the inability to detect
semantic-altering noise. It does so by generating
distractor sentences that only resemble the ques-
tions syntactically and appending them to the con-
text paragraphs (detailed description included in

1We release our AddSentDiverse-based adversarial train-
ing dataset for SQuAD at https://goo.gl/qdSNDr.

Sec. 3). When tested on these adversarial ex-
amples, Jia and Liang (2017) showed that even
the most ‘robust’ amongst published models (the
Mnemonic Reader (Hu et al., 2017)) only achieved
46.6% F1 (compared to 79.6% F1 on the regular
task). Since then, the FusionNet model (Huang
et al., 2018) used history-of-word representations
and multi-level attention mechanism to obtain an
improved 51.4% F1 score under adversarial eval-
uation, but that is still a 30% decrease from the
model’s performance on the regular task. We
show, however, that one can make a pre-existing
model significantly more robust by simply retrain-
ing it with better, higher variance adversarial train-
ing data, and improve it further with minor seman-
tic feature additions to its inputs.

Adversarial Training It has been shown in the
field of image classification that training with
adversarial examples produces more robust and
error-resistant models (Goodfellow et al., 2015;
Kurakin et al., 2017). In the field of Q&A, Jia
and Liang (2017) attempted to retrain the BiDAF
(Seo et al., 2017) model with data generated
with AddSent algorithm. Despite performing well
when evaluated on AddSent, the retrained model
suffers a more than 30% decrease in F1 perfor-
mance when tested on a slightly different adver-
sarial dataset generated by AddSentMod (which
differs from AddSent in two superficial ways: us-
ing a different set of fake answers and prepending
instead of appending the distractor sentence to the
context). We show that using AddSent to generate
adversarial training data introduces new superfi-
cial trends for a model to exploit; and instead we
propose the AddSentDiverse algorithm that gen-
erates highly varied data for adversarial training,
resulting in more robust models.

3 Methods

Our ‘AddSentDiverse’ algorithm is a modified
version of AddSent (Jia and Liang, 2017), aimed
at producing good adversarial examples for ro-
bust training purposes. For each {context, ques-
tion, answer} triple, AddSent does the following:
(1) Several antonym and named-entity based se-
mantic altering perturbations (swapping) are ap-
plied to the question; (2) A fake answer is gener-
ated that matches the ‘type’ of the original answer
(e.g., Prague → Chicago, etc.); (3) The fake an-
swer and the altered question are combined into
a distractor statement based on a set of manually
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defined rules; (4) Errors in grammar are fixed by
crowd-workers; (5) The finalized distractor is ap-
pended to the end of the context. The specificity
of the algorithm creates new superficial cues that
a model can learn and use during training and
never get punished for: (1) a model can learn that
it is unlikely for the last sentence to contain the
real answer; (2) a model can learn that the fixed
set of fake answers should not be picked. These
nullify the effectiveness of the distractors as the
model will learn to simply ignore them. We thus
introduce the AddSentDiverse algorithm, which
adds two modifications to AddSent that allows for
generating higher-variance adversarial examples.
Namely, we randomize the distractor placement
(Sec. 3.1) and we diversity the set of fake answers
used (Sec. 3.2). Lastly, to address the antonym-
style semantic perturbations used in AddSent, we
show that we need to improve model capabilities
by adding indicator features for semantic relation-
ships (but only when) in tandem with the addition
of diverse adversarial data (Sec. 3.3).

3.1 Random Distractor Placement
Given a paragraph P containing n sentences, let
X , Y be random variables representing the loca-
tion of the sentence containing the correct answer
counting from the front and back.2 Let P ′ rep-
resent the paragraph with the inserted distractor,
and X ′ and Y ′ represent the updated location of
the sentence with the correct answer. As shown
in Fig. 1, their distribution is highly dependent on
the strategy used to insert the distractor. During
training done by Jia and Liang (2017), the distrac-
tor is always added as the last sentence, creating a
very skewed distribution for Y ′. This resulted in
the model learning to ignore the last sentence, as
it was never punished for doing so. This, in turn,
caused the retrained model to fail on AddSent-
Mod, where the distractor is inserted to the front
instead of the back of the context paragraph (this
is shown by our experiments as well). However,
Fig. 1 shows that when the distractor is inserted
randomly, the distributions of X ′ and Y ′ are al-
most identical to that of X and Y , indicating that
no new correlation between the location of a sen-
tence and its likelihood to contain the correct an-
swer is introduced by the distractors, hence forc-
ing the model to learn to discern them from the

2Note that for any fixed n, Y = n −X , but for our pur-
poses it is easier to keep them separate since the length of the
paragraph is also a random variable.

Figure 1: Left: Distribution of X and Y for the orig-
inal SQuAD training set. Middle: Distribution of X ′

and Y ′ when the distractor is inserted at the end of the
context. Right: Distribution of X ′ and Y ′ when the
distractor is inserted randomly into the context.

real answers by other, deeper means.

3.2 Dynamic Fake Answer Generation
To prevent the model from superficially decid-
ing what is a distractor based on certain specific
words, we dynamically generate the fake answers
instead of using AddSent’s pre-defined set. Let
S be the set that contains all the answers in the
SQuAD training data, tagged by their type (e.g.,
person, location, etc.). For each answer a, we gen-
erate the fake answer dynamically by randomly se-
lecting another answer a′ 6= a from S that has
the same type as a, as opposed to AddSent (Jia
and Liang, 2017), which uses a pre-defined fake
answer for each type (e.g., “Chicago” for any lo-
cation). This creates a much larger set of fake an-
swers, thus decreasing the correlation between any
text and its likelihood of being a part of a distrac-
tor, forcing the model to become more robust.

3.3 Semantic Feature Enhanced Model
In previous sections, we prevented the model from
identifying distractors based on superficial clues
such as location and fake answer identity by elim-
inating these correlations within the training data.
But even if we force the model to learn some
deeper methods for identifying/discarding the dis-
tractors, it only has limited ability in recogniz-
ing semantic differences because its current inputs
do not capture crucial aspects of lexical semantics
such as antonymy (which were inserted by Jia and
Liang (2017) when generating the AddSent adver-
saries; see Sec. 3). Most current models use pre-
trained word embeddings (e.g., GloVE (Penning-
ton et al., 2014) and ELMo (Peters et al., 2018))
as input, which are usually calculated based on
the distributional hypothesis (Harris, 1954), and
do not capture lexical semantic relations such as
antonymy (Geffet and Dagan, 2005). These short-
comings are reflected by our results in Sec. 4.6,
where we see that we can’t resolve all AddSent-
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Training Original-SQuAD-Dev AddSent AddSentPrepend AddSentRandom AddSentMod Average
Original-SQuAD 84.65 42.45 41.46 40.48 41.96 50.20

AddSent 83.76 79.55 51.96 59.03 46.85 64.23
AddSentDiverse 83.49 76.95 77.45 76.02 77.06 78.19

Table 1: F1 performance of the BSAE model trained and tested on different regular/adversarial datasets.

Training AddSent AddSentPrepend Average
InsFirst 60.22 79.81 70.02
InsLast 79.54 51.96 65.75
InsMid 74.74 74.33 74.54

InsRandom 76.33 77.38 76.85
Table 2: F1 performance of the BSAE model trained on
datasets with different distractor placement strategies.

style adversaries by diversifying the training data
alone. For the model to be robust to semantics-
based (e.g., antonym-style) attacks, it needs extra
knowledge of lexical semantic relations. Hence,
we augment the input of each word in the ques-
tion/context with two indicator features indicat-
ing the existence of its synonym and antonym
(using WordNet (Fellbaum, 1998)) in the con-
text/question, allowing the model to use lexical se-
mantics directly instead of learned statistical cor-
relations of the word embeddings.

4 Experiments And Results

4.1 Model and Training Details

We use the architecture and hyperparameters of
the strong BiDAF + Self-Attn + ELMo (BSAE)
model (Peters et al., 2018), currently (as of Jan-
uary 10, 2018) the third highest performing single-
model on the SQuAD leaderboard.3

4.2 Evaluation Details

Models are evaluated on the original SQuAD dev
set and 4 adversarial datasets: AddSent, the adver-
sarial evaluation set by Jia and Liang (2017), and
3 variations of AddSent: AddSentPrepend, where
the distractor is prepended to the context, AddSen-
tRandom, where the distractor is randomly in-
serted into the context,4 and AddSentMod (Jia and
Liang, 2017), where a different set of fake an-
swers is used and the distractor is prepended to the
context. Experiments measure the soft F1 score
and all of the adversarial evaluations are model-
dependent, following the style of AddSent, where
multiple adversaries are generated for each exam-

3
https://rajpurkar.github.io/SQuAD-explorer/

4Note that since the distractor was randomly inserted, the
model cannot identify/ignore the distractor reliably based on
location. Thus, high performance on AddSentRandom serves
as a better indicator for robustness to semantic-based attacks.

ple in the evaluation set and the model’s worst per-
formance among the variants is recorded.

4.3 Primary Experiment Results
In our main experiment, we compare the BSAE
model’s performance on different test sets when
trained with three different training sets: the origi-
nal SQuAD data (Original-SQuAD), SQuAD data
augmented with AddSent generated adversaries
(similar to adversarial training conducted by Jia
and Liang (2017)), and SQuAD data augmented
with our AddSentDiverse generated adversaries.
For the latter two, we run the respective adversar-
ial generation algorithms on the training set, and
add randomly selected adversarial examples such
that they make up 20% of the total training data.
The results are shown in Table 1. First, as shown,
the AddSent-trained model is not able to perform
well on test sets where the distractors are not in-
serted at the end, e.g., the AddSentRandom ad-
versarial test set.5 On the other hand, it can be
seen that retraining with AddSentDiverse boosts
performance of the model significantly across all
adversarial datasets, indicating a general increase
in robustness.

4.4 Distractor Placement Results
We also conducted experiments studying the ef-
fect of different distractor placement strategies on
the trained models’ robustness. The BSAE model
was trained on 4 variations of AddSentDiverse-
augmented training set, with the only difference
between them being the location of the distractor
within the context: InsFirst, where the distractor
is prepended, InsLast, where the distractor is ap-
pended, InsMid, where the distractor is inserted
in the middle and InsRandom, where the distrac-
tor is randomly placed. The retrained models are
tested on AddSent and AddSentPrepend, whose
only difference is where the distractor is located.
The result is shown in Table 2. It is clear that when
trained under InsFirst and InsLast, the model only

5For this 59.03% accuracy, i.e., in the remaining 40.96%
errors, we found that in 77.0% of these errors, the model still
predicted a span within the randomly inserted distractor; in-
dicating that it has not learned to fully recognize semantic-
altering perturbations.
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Training AddSentPrepend AddSentMod
Fixed-FakeAns 77.37 73.65

Dynamic-FakeAns 77.45 77.06

Table 3: F1 performance of the BSAE model trained
on datasets with different answer generation strategies.

Model/Training Original-SQuAD-Dev AddSent
BSAE/Reg. 84.65 42.45
BSAE/Adv. 83.49 76.95

BSAE+SA/Reg. 84.62 44.60
BSAE+SA/Adv. 84.49 78.91

Table 4: Regular and adversarial training with BSAE
and BSAE+SA (with synonym/antonym features).

performs well on test sets created by a similar dis-
tractor placement strategy, indicating that they are
exploiting superficial trends instead of learning to
process the semantics. It is also shown that In-
sRandom gives optimal performance on both eval-
uation datasets. Further investigations regarding
distractor placement can be found in the appendix.

4.5 Fake Answer Generation Results
We also conducted experiments studying the ef-
fect of training on data containing distractors with
dynamically generated fake answers (Dynamic-
FakeAns) instead of chosen from a predefined set
(Fixed-FakeAns). The trained models are tested
on AddSentPrepend and AddSentMod, whose
only difference is that AddSentMod uses a differ-
ent set of fake answers. The results are displayed
in Table 3. It shows that the model trained on
Fixed-FakeAns suffers an approximate 3% drop in
performance when tested on a dataset with a dif-
ferent set of fake answers, but this gap does not ex-
ist for the model retrained on Dynamic-FakeAns.

4.6 Semantic Feature Enhancement Results
In Table 1, we see that despite improving perfor-
mance on adversarial test sets, adversarial train-
ing on the BSAE model leads to a 1% decrease
in its performance on the original SQuAD task
(from 84.65% to 83.49%). Furthermore, there
is still a 6.5% gap between its performance on
adversarial datasets and the original SQuAD dev
set (76.95% vs 83.49%). These point to the
limitations of adversarial training without any
model enhancements, especially for AddSent’s
antonymy style semantic perturbations (see de-
tails in Sec. 3.3). We thus conducted experi-
ments to test the effectiveness of adding WordNet
based synonymy/antonymy semantic-relation in-
dicators in helping the model to better deal with
semantics-based adversaries. We added the lexi-

cal semantic indicators to the BSAE model to cre-
ate the BSAE+SA model. We trained and tested
it in both the regular and adversarial setup. Its
results, compared to the original BSAE model
are shown in Table 4, where we see that un-
like the BSAE model, adversarial training of the
BSAE+SA model does not cause a decrease in its
performance on the original SQuAD dataset, as
the model can now learn lexical semantic relation-
ships instead of statistical correlations. We also
see that the BSAE+SA model, when trained in the
normal setup, shows very similar performance as
the BSAE model across all metrics. This is most
likely because despite having the ability to recog-
nize semantic relations, there are not enough neg-
ative examples in the regular SQuAD training set
to teach the model how to use these features cor-
rectly, but this issue is solved via the addition of
adversarial examples in adversarial training.

4.7 Error Analysis
Finally, we examined the errors of our final
adversarially-trained BSAE+SA model on the
AddSent dataset and found that out of the 21.09%
remaining errors (Table 4), 33.3% (46 cases) of
these erroneous predictions occurred within the in-
serted distractor, and 63.7% (88 cases) occurred
on questions that the model got wrong in the orig-
inal SQuAD dev set (without the inserted distrac-
tors). The former errors are mainly occurring
within distractors created with named-entity re-
placements (which we haven’t addressed directly
in the current paper) or malformed distractors (that
in fact do answer the question).

5 Conclusion

We demonstrate that we can overcome model
overstability and increase their robustness by
training on diverse adversarial data that elimi-
nates latent data correlations. We further show
that adversarial training is more effective when
we jointly add useful semantic-relations knowl-
edge to improve model capabilities. We hope
that these robustness methods are generalizable to
other insertion-based adversaries for Q&A tasks.
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A Appendix: Distractor Placement
Strategies

This section provides a theoretical framework to
predict a model’s performance on adversarial test
sets when trained on adversarial data generated by
a specific distractor-insertion strategy.

Given a paragraph composed of n sen-
tences (with the distractor inserted) P =
{s1, s2, . . . , sn}, where si is the ith sentence
counting from the front. Define random variables
X and Y to represent the location of the distrac-
tor counting from the front and back, respectively.
The distributions of X and Y are dependent upon
the insertion strategy used to add the distractors,
several examples of this are displayed in Fig. 2.

Figure 2: Distributions of X and Y in adversari-
ally augmented SQuAD training data under different
distractor-insertion strategies.

A bidirectional deep learning model, trained in
a supervised setting, should be able to jointly learn
X and Y . Thus, at test time, when given a para-
graph of n sentences, the model can obtain the
probability that the sentence sa is the distractor,
Psa , by computing P (X = a) + P (Y = n − a).
Ideally, we want the distribution of Psa to be uni-
form, as that means the model is not biased to-
wards discarding any sentence as the distractor
based on location. The actual distributions of Psa

under different distractor-insertion strategies are
displayed in Fig. 3 for n = 3, 5 and 7. We
pick these n as they are typical lengths of contexts
within the SQuAD dataset (the complete distribu-
tion of paragraph lengths in the SQuAD training
set is shown in Fig. 4). We see that under random

580



Figure 3: Learned distribution of Psa for different n.

Figure 4: Distribution of length of paragraphs in the
SQuAD training set.

insertion, the distribution is very close to uniform.
Note that if we were to aggregate n and plot Psa

for n ≤ 3, 5 and 7, as shown in Fig. 3, the distri-
butions of Psa created by inserting in the middle
and inserting randomly are very similar, but the
distribution of inserting in the middle is skewed
against the beginnings and ends of the paragraphs.
This explains why in our experiment studying the
effect of distractor placement strategies (see Ta-
ble 2), InsMid’s performance was not skewed to-
wards either AddSent or AddSentPrepend, but was
worse on both when compared to InsRandom.

This method of calculating the distribution of
Psa allows us to predict the model’s performance
when trained on datasets where the distractors are
inserted at specific locations. To test this hy-
pothesis, we created two datasets: InsFront-3 and
InsFront-6 where the distractors were inserted as
the 3rd and 6th sentence from the beginning and

Figure 5: Distributions of Psa under InsFront-3 and
InsFront-6 for n ≤ 5.

Training AddSent AddSentPrepend Average
InsFront-3 75.47 72.79 74.13
InsFront-6 77.73 64.42 71.10

Table 5: F1 Performance of the BSAE model trained on
datasets with different distractor placement strategies.

measure the model’s performance when trained on
these two datasets. The distributions of Psa for
these two datasets are shown in Fig. 5, from which
we can predict that models trained on InsFront-3
should perform slightly better on adversarial sets
where the distractors are appended (as opposed to
prepended), whereas those trained on InsFront-6
will perform much better on such adversarial sets.
These predictions are confirmed by the results in
Table 5.
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Abstract
Recent success of deep learning models for the
task of extractive Question Answering (QA) is
hinged on the availability of large annotated
corpora. However, large domain specific an-
notated corpora are limited and expensive to
construct. In this work, we envision a system
where the end user specifies a set of base doc-
uments and only a few labelled examples. Our
system exploits the document structure to cre-
ate cloze-style questions from these base doc-
uments; pre-trains a powerful neural network
on the cloze style questions; and further fine-
tunes the model on the labeled examples. We
evaluate our proposed system across three di-
verse datasets from different domains, and find
it to be highly effective with very little labeled
data. We attain more than 50% F1 score on
SQuAD and TriviaQA with less than a thou-
sand labelled examples. We are also releasing
a set of 3.2M cloze-style questions for practi-
tioners to use while building QA systems1.

1 Introduction

Deep learning systems have shown a lot of
promise for extractive Question Answering (QA),
with performance comparable to humans when
large scale data is available. However, practition-
ers looking to build QA systems for specific ap-
plications may not have the resources to collect
tens of thousands of questions on corpora of their
choice. At the same time, state-of-the-art machine
reading systems do not lend well to low-resource
QA settings where the number of labeled question-
answer pairs are limited (c.f. Table 2). Semi-
supervised QA methods like (Yang et al., 2017)
aim to improve this performance by leveraging un-
labeled data which is easier to collect.

In this work, we present a semi-supervised QA
system which requires the end user to specify a

∗Equal Contribution
1http://bit.ly/semi-supervised-qa

set of base documents and only a small set of
question-answer pairs over a subset of these doc-
uments. Our proposed system consists of three
stages. First, we construct cloze-style questions
(predicting missing spans of text) from the unla-
beled corpus; next, we use the generated clozes
to pre-train a powerful neural network model for
extractive QA (Clark and Gardner, 2017; Dhingra
et al., 2017); and finally, we fine-tune the model
on the small set of provided QA pairs.

Our cloze construction process builds on a typ-
ical writing phenomenon and document structure:
an introduction precedes and summarizes the main
body of the article. Many large corpora follow
such a structure, including Wikipedia, academic
papers, and news articles. We hypothesize that we
can benefit from the un-annotated corpora to bet-
ter answer various questions – at least ones that are
lexically similar to the content in base documents
and directly require factual information.

We apply the proposed system on three datasets
from different domains – SQuAD (Rajpurkar
et al., 2016), TriviaQA-Web (Joshi et al., 2017)
and the BioASQ challenge (Tsatsaronis et al.,
2015). We observe significant improvements in a
low-resource setting across all three datasets. For
SQuAD and TriviaQA, we attain an F1 score of
more than 50% by merely using 1% of the train-
ing data. Our system outperforms the approaches
for semi-supervised QA presented in Yang et al.
(2017), and a baseline which uses the same unla-
beled data but with a language modeling objective
for pretraining. In the BioASQ challenge, we out-
perform the best performing system from previous
year’s challenge, improving over a baseline which
does transfer learning from the SQuAD dataset.
Our analysis reveals that questions which ask for
factual information and match to specific parts of
the context documents benefit the most from pre-
training on automatically constructed clozes.
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2 Related Work

Semi-supervised learning augments the labeled
dataset L with a potentially larger unlabeled
dataset U . Yang et al. (2017) presented a model,
GDAN, which trained an auxiliary neural net-
work to generate questions from passages by re-
inforcement learning, and augment the labeled
dataset with the generated questions to train the
QA model. Here we use a much simpler heuris-
tic to generate the auxiliary questions, which also
turns out to be more effective as we show supe-
rior performance compared to GDAN. Several ap-
proaches have been suggested for generating nat-
ural questions (Tang et al., 2017; Subramanian
et al., 2017; Song et al., 2017), however none of
them show a significant improvement of using the
generated questions in a semi-supervised setting.
Recent papers also use unlabeled data for QA by
training large language models and extracting con-
textual word vectors from them to input to the
QA model (Salant and Berant, 2017; Peters et al.,
2018; McCann et al., 2017). The applicability of
this method in the low-resource setting is unclear
as the extra inputs increase the number of parame-
ters in the QA model, however, our pretraining can
be easily applied to these models as well.

Domain adaptation (and Transfer learning)
leverage existing large scale datasets from a source
domain (or task) to improve performance on a tar-
get domain (or task). For deep learning and QA,
a common approach is to pretrain on the source
dataset and then fine-tune on the target dataset
(Chung et al., 2017; Golub et al., 2017). Wiese
et al. (2017) used SQuAD as a source for the
target BioASQ dataset, and Kadlec et al. (2016)
used Book Test (Bajgar et al., 2016) as source
for the target SQuAD dataset. Mihaylov et al.
(2017) transfer learned model layers from the
tasks of sequence labeling, text classification and
relation classification to show small improvements
on SQuAD. All these works use manually curated
source datatset, which in themselves are expen-
sive to collect. Instead, we show that it is possible
to automatically construct the source dataset from
the same domain as the target, which turns out to
be more beneficial in terms of performance as well
(c.f. Section 4). Several cloze datasets have been
proposed in the literature which use heuristics for
construction (Hermann et al., 2015; Onishi et al.,
2016; Hill et al., 2016). We further see the usabil-
ity of such a dataset in a semi-supervised setting.

3 Methodology

Our system comprises of following three steps:
Cloze generation: Most of the documents typ-

ically follow a template, they begin with an in-
troduction that provides an overview and a brief
summary for what is to follow. We assume such a
structure while constructing our cloze style ques-
tions. When there is no clear demarcation, we treat
the first K% (hyperparameter, in our case 20%)
of the document as the introduction. While noisy,
this heuristic generates a large number of clozes
given any corpus, which we found to be beneficial
for semi-supervised learning despite the noise.

We use a standard NLP pipeline based on
Stanford CoreNLP2 (for SQuAD, TrivaQA and
PubMed) and the BANNER Named Entity Rec-
ognizer3 (only for PubMed articles) to identify en-
tities and phrases. Assume that a document com-
prises of introduction sentences {q1, q2, ...qn}, and
the remaining passages {p1, p2, ..pm}. Addition-
ally, let’s say that each sentence qi in introduction
is composed of words {w1, w2, ...wlqi

}, where lqi
is the length of qi. We consider a match(qi, pj),
if there is an exact string match of a sequence of
words {wk, wk+1, ..wlqi

} between the sentence qi
and passage pj . If this sequence is either a noun
phrase, verb phrase, adjective phrase or a named
entity in pj , as recognized by CoreNLP or BAN-
NER, we select it as an answer span A. Addition-
ally, we use pj as the passage P and form a cloze
question Q from the answer bearing sentence qi
by replacing A with a placeholder. As a result, we
obtain passage-question-answer (P,Q,A) triples
(Table 1 shows an example). As a post-processing
step, we prune out (P,Q,A) triples where the
word overlap between the question (Q) and pas-
sage (P) is less than 2 words (after excluding the
stop words).

Passage (P) : Autism is a neurodevelopmental disor-
der characterized by impaired social interaction, verbal
and non-verbal communication, and ...
Question (Q) : People with autism tend to be a little
aloof with little to no .
Answer (A) : social interaction

Table 1: An example constructed cloze.

The process relies on the fact that answer can-
didates from the introduction are likely to be dis-
cussed in detail in the remainder of the article.

2https://stanfordnlp.github.io/CoreNLP/
3http://banner.sourceforge.net
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In effect, the cloze question from the introduc-
tion and the matching paragraph in the body forms
a question and context passage pair. We create
two cloze datasets, one each from Wikipedia cor-
pus (for SQuAD and TriviaQA) and PUBMed aca-
demic papers (for the BioASQ challenge), consist-
ing of 2.2M and 1M clozes respectively. From an-
alyzing the cloze data manually, we were able to
answer 76% times for the Wikipedia set and 80%
times for the PUBMed set using the information in
the passage. In most cases the cloze paraphrased
the information in the passage, which we hypothe-
sized to be a useful signal for the downstream QA
task.

We also investigate the utility of forming sub-
sets of the large cloze corpus, where we select the
top passage-question-answer triples, based on the
different criteria, like i) jaccard similarity of an-
swer bearing sentence in introduction and the pas-
sage ii) the tf-idf scores of answer candidates and
iii) the length of answer candidates. However, we
empirically find that we were better off using the
entire set rather than these subsets.

Pre-training: We make use of the generated
cloze dataset to pre-train an expressive neural net-
work designed for the task of reading comprehen-
sion. We work with two publicly available neural
network models – the GA Reader (Dhingra et al.,
2017) (to enable comparison with prior work) and
BiDAF + Self-Attention (SA) model from Clark
and Gardner (2017) (which is among the best per-
forming models on SQuAD and TriviaQA). After
pretraining, the performance of BiDAF+SA on a
dev set of the (Wikipedia) cloze questions is 0.58
F1 score and 0.55 Exact Match (EM) score. This
implies that the cloze corpus is neither too easy,
nor too difficult to answer.

Fine Tuning: We fine tune the pre-trained
model, from the previous step, over a small set of
labelled question-answer pairs. As we shall later
see, this step is crucial, and it only requires a hand-
ful of labelled questions to achieve a significant
proportion of the performance typically attained
by training on tens of thousands of questions.

4 Experiments & Results

4.1 Datasets

We apply our system to three datasets from dif-
ferent domains. SQuAD (Rajpurkar et al., 2016)
consists of questions whose answers are free form
spans of text from passages in Wikipedia articles.

We follow the same setting as in (Yang et al.,
2017), and split 10% of training questions as the
test set, and report performance when training on
subsets of the remaining data ranging from 1% to
90% of the full set. We also report the perfor-
mance on the dev set when trained on the full train-
ing set (1∗ in Table 2). We use the same hyper-
parameter settings as in prior work. We compare
and study four different settings: 1) the Supervised
Learning (SL) setting, which is only trained on
the supervised data, 2) the best performing GDAN
model from Yang et al. (2017), 3) pretraining on
a Language Modeling (LM) objective and fine-
tuning on the supervised data, and 4) pretraining
on the Cloze dataset and fine-tuning on the super-
vised data. The LM and Cloze methods use ex-
actly the same data for pretraining, but differ in the
loss functions used. We report F1 and EM scores
on our test set using the official evaluation scripts
provided by the authors of the dataset.

TriviaQA (Joshi et al., 2017) comprises of over
95K web question-answer-evidence triples. Like
SQuAD, the answers are spans of text. Similar to
the setting in SQuAD, we create multiple smaller
subsets of the entire set. For our semi-supervised
QA system, we use the BiDAF+SA model (Clark
and Gardner, 2017) – the highest performing pub-
licly available system for TrivaQA. Here again,
we compare the supervised learning (SL) settings
against the pretraining on Cloze set and fine tun-
ing on the supervised set. We report F1 and EM
scores on the dev set4.

We also test on the BioASQ 5b dataset, which
consists of question-answer pairs from PubMed
abstracts. We use the publicly available system5

from Wiese et al. (2017), and follow the exact
same setup as theirs, focusing only on factoid and
list questions. For this setting, there are only 899
questions for training. Since this is already a low-
resource problem we only report results using 5-
fold cross-validation on all the available data. We
report Mean Reciprocal Rank (MRR) on the fac-
toid questions, and F1 score for the list questions.

4.2 Main Results

Table 2 shows a comparison of the discussed set-
tings on both SQuAD and TriviaQA. Without any

4We use a sample of dev questions, which is the default
setting for the code by Clark and Gardner (2017). Since our
goal is only to compare the models, this is not problematic.

5https://github.com/georgwiese/
biomedical-qa
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Model Method 0 0.01 0.05 0.1 0.2 0.5 0.9 1

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

SQuAD

GA SL – – 0.0882 0.0359 0.3517 0.2275 0.4116 0.2752 0.4797 0.3393 0.5705 0.4224 0.6125 0.4684 – –
GA GDAN – – – – – – 0.4840 0.3270 0.5394 0.3781 0.5831 0.4267 0.6102 0.4531 – –
GA LM – – 0.0957 0.0394 0.3141 0.1856 0.3725 0.2365 0.4406 0.2983 0.5111 0.3589 0.5520 0.3964 – –
GA Cloze – – 0.3090 0.1964 0.4688 0.3385 0.4937 0.3588 0.5575 0.4126 0.6086 0.4679 0.6302 0.4894 – –

BiDAF+SA SL – – 0.1926 0.1018 0.4764 0.3388 0.5639 0.4258 0.6484 0.5031 0.7044 0.5615 0.7287 0.5874 0.8069 0.7154
BiDAF+SA Cloze 0.0682 0.032 0.5042 0.3751 0.6324 0.4862 0.6431 0.4995 0.6839 0.5413 0.7151 0.5767 0.7369 0.6005 0.8080 0.7186

TRIVIA-QA

BiDAF+SA SL – – 0.2533 0.1898 0.4215 0.3566 0.4971 0.4318 0.5624 0.5077 0.6867 0.6239 0.7131 0.6617 0.7291 0.6786
BiDAF+SA Cloze 0.1182 0.0729 0.5521 0.4807 0.6245 0.5614 0.6506 0.5893 0.6849 0.6281 0.7196 0.6607 0.7381 0.6823 0.7461 0.6903

Table 2: A holistic view of the performance of our system compared against baseline systems on SQuAD and TriviaQA.
Column groups represent different fractions of the training set used for training.

fine-tuning (column 0) the performance is low,
probably because the model never saw a real ques-
tion, but we see significant gains with Cloze pre-
training even with very little labeled data. The
BiDAF+SA model, exceeds an F1 score of 50%
with only 1% of the training data (454 questions
for SQuAD, and 746 questions for TriviaQA), and
approaches 90% of the best performance with only
10% labeled data. The gains over the SL setting,
however, diminish as the size of the labeled set in-
creases and are small when the full dataset is avail-
able.

Method Factoid MRR List F1

SL∗ 0.242 0.211
SQuAD pretraining 0.262 0.211
Cloze pretraining 0.328 0.230

Table 3: 5-fold cross-validation results on BioASQ Task 5b.
∗Our SL experiments showed better performance than what
was reported in (Wiese et al., 2017).

Cloze pretraining outperforms the GDAN base-
line from Yang et al. (2017) using the same
SQuAD dataset splits. Additionally, we show im-
provements in the 90% data case unlike GDAN.
Our approach is also applicable in the extremely
low-resource setting of 1% data, which we sus-
pect GDAN might have trouble with since it uses
the labeled data to do reinforcement learning. Fur-
thermore, we are able to use the same cloze dataset
to improve performance on both SQuAD and Triv-
iaQA datasets. When we use the same unlabeled
data to pre-train with a language modeling objec-
tive, the performance is worse6, showing the bias
we introduce by constructing clozes is important.

6Since the GA Reader uses bidirectional RNN layers,
when pretraining the LM we had to mask the inputs to the in-
termediate layers partially to avoid the model being exposed
to the labels it is predicting. This results in a only a subset
of the parameters being pretrained, which is why we believe
this baseline performs poorly.

On the BioASQ dataset (Table 3) we again see
a significant improvement when pretraining with
the cloze questions over the supervised baseline.
The improvement is smaller than what we observe
with SQuAD and TriviaQA datasets – we believe
this is because questions are generally more dif-
ficult in BioASQ. Wiese et al. (2017) showed that
pretraining on SQuAD dataset improves the down-
stream performance on BioASQ. Here, we show a
much larger improvement by pretraining on cloze
questions constructed in an unsupervised manner
from the same domain.

4.3 Analysis
Regression Analysis: To understand which types
of questions benefit from pre-training, we pre-
specified certain features (see Figure 1 right) for
each of the dev set questions in SQuAD, and then
performed linear regression to predict the F1 score
for that question from these features. We pre-
dict the F1 scores from the cloze pretrained model
(ycloze), the supervised model (ysl), and the differ-
ence of the two (ycloze − ysl), when using 10% of
labeled data. The coefficients of the fitted model
are shown in Figure 1 (left) along with their std
errors. Positive coefficients indicate that a high
value of that feature is predictive of a high F1
score, and a negative coefficient indicates that a
small value of that feature is predictive of a high
F1 score (or a high difference of F1 scores from
the two models in the case of ycloze − ysl).

The two strongest effects we observe are that
a high lexical overlap between the question and
the sentence containing the answer is indicative of
high boost with pretraining, and that a high lex-
ical overlap between the question and the whole
passage is indicative of the opposite. This is
hardly surprising, since our cloze construction
process is biased towards questions which have a
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Figure 1: Left: Regression coefficients, along with std-errors, when predicting F1 score of cloze model, or sl model, or the
difference of the two, from features computed from SQuAD dev set questions. Right: Descriptions of the features.
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Figure 2: Performance gain with pretraining for differ-
ent subsets of question types.

similar phrasing to the answer sentences in con-
text. Hence, test questions with a similar property
are answered correctly after pretraining, whereas
those with a high overlap with the whole passage
tend to have lower performance. The pretraining
also favors questions with short answers because
the cloze construction process produces short an-
swer spans. Also passages and questions which
consist of tokens infrequent in the SQuAD train-
ing corpus receive a large boost after pretraining,
since the unlabeled data covers a larger domain.

Performance on question types: Figure 2
shows the average gain in F1 score for different
types of questions, when we pretrain on the clozes
compared to the supervised case. This analysis
is done on the 10% split of the SQuAD training
set. We consider two classifications of each ques-
tion – one determined on the first word (usually
a wh-word) of the question (Figure 2 (bottom))
and one based on the output of a separate ques-
tion type classifier7 adapted from (Li and Roth,

7https://github.com/brmson/question-classification

2002). We use the coarse grain labels namely
Abbreviation (ABBR), Entity (ENTY), Descrip-
tion (DESC), Human (HUM), Location (LOC),
Numeric (NUM) trained on a Logistic Regres-
sion classification system . While there is an im-
provement across the board, we find that abbrevi-
ation questions in particular receive a large boost.
Also, ”why” questions show the least improve-
ment, which is in line with our expectation, since
these usually require reasoning or world knowl-
edge which cloze questions rarely require.

5 Conclusion

In this paper, we show that pre-training QA mod-
els with automatically constructed cloze questions
improves the performance of the models signifi-
cantly, especially when there are few labeled ex-
amples. The performance of the model trained
only on the cloze questions is poor, validating the
need for fine-tuning. Through regression analy-
sis, we find that pretraining helps with questions
which ask for factual information located in a spe-
cific part of the context. For future work, we plan
to explore the active learning setup for this task –
specifically, which passages and / or types of ques-
tions can we select to annotate, such that there is a
maximum performance gain from fine-tuning. We
also want to explore how to adapt cloze style pre-
training to NLP tasks other than QA.
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Abstract

Interacting with relational databases through
natural language helps users of any back-
ground easily query and analyze a vast amount
of data. This requires a system that under-
stands users’ questions and converts them to
SQL queries automatically. In this paper we
present a novel approach, TYPESQL, which
views this problem as a slot filling task. Addi-
tionally, TYPESQL utilizes type information
to better understand rare entities and numbers
in natural language questions. We test this
idea on the WikiSQL dataset and outperform
the prior state-of-the-art by 5.5% in much less
time. We also show that accessing the con-
tent of databases can significantly improve the
performance when users’ queries are not well-
formed. TYPESQL gets 82.6% accuracy, a
17.5% absolute improvement compared to the
previous content-sensitive model.

1 Introduction

Building natural language interfaces to relational
databases is an important and challenging problem
(Li and Jagadish, 2014; Pasupat and Liang, 2015;
Yin et al., 2016; Zhong et al., 2017; Yaghmazadeh
et al., 2017; Xu et al., 2017; Wang et al., 2017a). It
requires a system that is able to understand natu-
ral language questions and generate corresponding
SQL queries. In this paper, we consider the Wik-
iSQL task proposed by Zhong et al. (2017), a large
scale benchmark dataset for the text-to-SQL prob-
lem. Given a natural language question for a table
and the table’s schema, the system needs to pro-
duce a SQL query corresponding to the question.

We introduce a knowledge-based type-aware
text-to-SQL generator, TYPESQL. Based on the
prior state-of-the-art SQLNet (Xu et al., 2017),
TYPESQL employs a sketch-based approach and
views the task as a slot filling problem (Fig-
ure 2). By grouping different slots in a reason-

able way and capturing relationships between at-
tributes, TYPESQL outperforms SQLNet by about
3.5% in half of the original training time.

Furthermore, natural language questions of-
ten contain rare entities and numbers specific to
the underlying database. Some previous work
(Agrawal and Srikant, 2003) already shows those
words are crucial to many downstream tasks, such
as infering column names and condition values in
the SQL query. However, most of such key words
lack accurate embeddings in popular pre-trained
word embedding models. In order to solve this
problem, TYPESQL assigns each word a type as
an entity from either the knowledge graph, a col-
umn or a number. For example, for the question in
Figure 1, we label “mort drucker” as PERSON ac-
cording to our knowledge graph; “spoofed title,”
“artist” and “issue” as COLUMN since they are col-
umn names; and “88.5” as FLOAT. Incorporating
this type information, TYPESQL further improves
the state-of-the-art performance by about another
2% on the WikiSQL dataset, resulting in a final
5.5% improvement in total.

Moreover, most previous work assumes that
user queries contain exact column names and en-
tries. However, it is unrealistic that users al-
ways formulate their questions with exact col-
umn names and string entries in the table. To
tackle this issue, when scaleability and privacy
are not of a concern, the system needs to search
databases to better understand what the user is
querying. Our content-sensitive model TYPESQL
+ TC gains roughly 9% improvement compared
to the content-insensitive model, and outperforms
the previous content-sensitive model by 17.5%.

2 Related Work

Semantic parsing maps natural language to mean-
ingful executable programs. The programs could
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Figure 1: TYPESQL consists of three slot-filling models on the right. We only show MODEL COL on the left for
brevity. MODEL AGG and MODEL OPVAL have the similar pipelines.

be a range of representations such as logic
forms (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Wong and Mooney, 2007; Das
et al., 2010; Liang et al., 2011; Banarescu et al.,
2013; Artzi and Zettlemoyer, 2013; Reddy et al.,
2014; Berant and Liang, 2014; Pasupat and Liang,
2015). Another area close to our task is code gen-
eration. This task parses natural language descrip-
tions into a more general-purpose programming
language such as Python (Allamanis et al., 2015;
Ling et al., 2016; Rabinovich et al., 2017; Yin and
Neubig, 2017).

As a sub-task of semantic parsing, the text-to-
SQL problem has been studied for decades (War-
ren and Pereira, 1982; Popescu et al., 2003, 2004;
Li et al., 2006; Giordani and Moschitti, 2012;
Wang et al., 2017b). The methods of the Database
community (Li and Jagadish, 2014; Yaghmazadeh
et al., 2017) involve more hand feature engineer-
ing and user interactions with the systems. In this
work, we focus on recent neural network based ap-
proaches (Yin et al., 2016; Zhong et al., 2017; Xu
et al., 2017; Wang et al., 2017a; Iyer et al., 2017).
Dong and Lapata (2016) introduce a sequence-
to-sequence approach to converting text to logi-
cal forms. Most of previous work focus on spe-
cific table schemas, which means they use a sin-
gle database in both train and test. Thus, they
don’t generalize to new databases. Zhong et al.
(2017) publish the WikiSQL dataset and propose
a sequence-to-sequence model with reinforcement
learning to generate SQL queries. In the problem
definition of the WikiSQL task, the databases in
the test set do not appear in the train and develop-

SELECT $AGG $SELECT COL
WHERE $COND COL $OP $COND VAL
(AND $COND COL $OP $COND VAL)*

Figure 2: SQL Sketch. The tokens starting with “$” are
slots to fill. “*” indicates zero or more AND clauses.

ment sets. Also, the task needs to take different ta-
ble schemas into account. Xu et al. (2017) further
improve the results by using a SQL sketch based
approach employing a sequence-to-set model.

3 Methodology

Like SQLNet, we employ a sketch-based approach
and format the task as a slot filling problem. Fig-
ure 2 shows the SQL sketch. Our model needs to
predict all slots that begin with $ in Figure 2.

Figure 1 illustrates the architecture of TYPE-
SQL on the right and a detailed overview of one
of three main models MODEL COL on the left. We
first preprocess question inputs by type recogni-
tion (Section 3.1). Then we use two bi-directional
LSTMs to encode words in the question with their
types and the column names separately (Section
3.2). The output hidden states of LSTMs are then
used to predict the values for the slots in the SQL
sketch (Section 3.3).

3.1 Type Recognition for Input Preprocessing
In order to create one-to-one type input for each
question, we, first, tokenize each question into n-
grams of length 2 to 6, and use them to search over
the table schema and label any column name ap-
pears in the question as COLUMN. Then, we assign
numbers and dates in the question into four self-
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explanatory categories: INTEGER, FLOAT, DATE,
and YEAR. To identify named entities, we search
for five types of entities: PERSON, PLACE, COUN-
TRY, ORGANIZATION, and SPORT, on Freebase1

using grams as keyword queries. The five cate-
gories cover a majority of entities in the dataset.
Thus, we do not use other entity types provided by
Freebase. Domain-specific knowledge graphs can
be used for other applications.

In the case where the content of databases is
available, we match words in the question with
both the table schema and the content and labels
of the columns as COLUMN and match the entry
values as the corresponding column names. For
example, the type in the Figure 1 would be [none,
column, column, none, artist, artist, none, none,
column, none, column, issue, none] in this case.
Other parts in the Figure 1 keep the same as the
content-insensitive approach.

3.2 Input Encoder

As shown in the Figure 1, our input encoder con-
sists of two bi-directional LSTMs, BI-LSTMQT

and BI-LSTMCOL. To encode word and type
pairs of the question, we concatenate embeddings
of words and their corresponding types and in-
put them to BI-LSTMQT. Then the output hidden
states are HQT and HCOL, respectively.

For encoding column names, SQLNet runs a bi-
directional LSTM over each column name. We
first average the embeddings of words in the col-
umn name. Then, we run a single BI-LSTMCOL

between column names. This encoding method
improves the result by 1.5% and cuts the training
time by half. Even though the order of column
names does not matter, we attribute this improve-
ment to the fact that the LSTM can capture their
occurrences and relationships.

3.3 Slot-Filling Model

Next, we predict values for the slots in the
SQL sketch. For the slots in Figure 2, SQL-
Net has a separate model for each of them
which do not share their trainable parameters.
This creates five models for the five slots and
one model for $COND# (12 BI-LSTMs in to-
tal). However, since the predict procedures
of $SELECT COL, $COND COL, and $COND#
are similar, we combine them into a single
model. Additionally, $COND COL depends on

1https://developers.google.com/freebase/

the output of $SELECT COL, which reduces er-
rors of predicting the same column in these two
slots $COND COL Moreover, we group $OP and
$COND VAL together because both depend on the
outputs of $COND COL. Furthermore, we use one
model for $AGG because we notice that the $AGG
model converges much faster and suffers from
overfitting when combined with other models. Fi-
nally, TYPESQL consists of three models (Figure
1 right):

• MODEL COL for $SELECT COL, $COND#
and $COND COL

• MODEL AGG for $AGG

• MODEL OPVAL for $OP and $COND VAL

where the parameters of BI-LSTMQT and BI-
LSTMCOL are shared in each model (6 BI-
LSTMs in total).

Since all three models use the same way to com-
pute the weighted question and type representa-
tion HQT/COL using the column attention mecha-
nism proposed in SQLNet, we first introduce the
following step in all three models:

αQT/COL = softmax(HCOLWctH
>
QT)

HQT/COL = αQT/COLHQT

where softmax applies the softmax operator over
each row of the input matrix, αQT/COL is a matrix
of attention scores, and HQT/COL is the weighted
question and type representation. In our equations,
we use W and V to represent all trainable param-
eter matrices and vectors, respectively.

MODEL COL-$SELECT COL HQT/COL is used
to predict the column name in the $SELECT COL:

s = Vseltanh(Wsel
c H>

COL +Wsel
qt H

>
QT/COL)

Psel col = softmax(s)

MODEL COL-$COND# Unlike SQLNet, we
compute number of conditions in the WHERE in a
simpler way:

Pnum = softmax
(
Vnumtanh(Wnum

qt

∑
iH

>
QT/COLi

)
)

We set the maximum number of conditions to 4.
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Dev Test
Acclf Accqm Accex Acclf Accqm Accex

Content Insensitive
Dong and Lapata (2016) 23.3% - 37.0% 23.4% - 35.9%
Augmented Pointer Network (Zhong et al., 2017) 44.1% - 53.8% 42.8% - 52.8%
Seq2SQL (Zhong et al., 2017) 49.5% - 60.8% 48.3% - 59.4%
SQLNet (Xu et al., 2017) - 63.2% 69.8% - 61.3% 68.0%
TypeSQL w/o type-awareness (ours) - 66.5% 72.8% - 64.9% 71.7%
TypeSQL (ours) - 68.0% 74.5% - 66.7% 73.5%

Content Sensitive
Wang et al. (2017a) 59.6% - 65.2% 59.5% - 65.1%
TypeSQL+TC (ours) - 79.2% 85.5% - 75.4% 82.6%

Table 1: Overall results on WikiSQL. Acclf, Accqm, and Accex denote the accuracies of exact string, canonical
representation, and execute result matches between the synthesized SQL with the ground truth respectively. The
top six results are content-insensitive, which means only the question and table schema are used as inputs. The
bottom two are content-sensitive, where the models use the question, the table schema, and the content of databases.

Dev Test
Accagg Accsel Accwhere Accagg Accsel Accwhere

Seq2SQL (Zhong et al., 2017) 90.0% 89.6% 62.1% 90.1% 88.9% 60.2%
SQLNet (Xu et al., 2017) 90.1% 91.5% 74.1% 90.3% 90.9% 71.9%
TypeSQL (ours) 90.3% 93.1% 78.5% 90.5% 92.2% 77.8%
TypeSQL+TC (ours) 90.3% 93.5% 92.8% 90.5% 92.1% 87.9%

Table 2: Breakdown results on WikiSQL. Accagg, Accsel, and Accwhere are the accuracies of canonical represen-
tation matches on AGGREGATOR, SELECT COLUMN, and WHERE clauses between the synthesized SQL and the
ground truth respectively.

MODEL COL-$COND COL We find that SQL-
Net often selects the same column name in the
$COND COL as $SELECT COL, which is incor-
rect in most cases. To avoid this problem, we
pass the weighted sum of question and type hid-
den states conditioned on the column chosen in
$SELECT COL HQT/SCOL (expended as the same
shape of HQT/COL) to the prediction:

c = Vcoltanh(Wcol
c H>

COL +Wcol
qt H

>
QT/COL +Wscol

qt H>
QT/SCOL)

Pcond col = softmax(c)

MODEL AGG-$AGG Given the weighted sum of
question and type hidden states conditioned on
the column chosen in $SELECT COL HQT/SCOL,
$AGG is chosen from {NULL, MAX, MIN, COUNT,
SUM, AVG} in the same way as SQLNet:

Pagg = softmax
(
Vaggtanh(Wagg

qt H>
QT/SCOL)

)

MODEL OPVAL-$OP For each predicted condi-
tion column, we choose a $OP from {=, >,<} by:

Pop = softmax
(
Wop

t tanh(Wop
c H>

COL +Wop
qtH

>
QT/COL)

)

MODEL OPVAL-$COND VAL Then, we need to
generate a substring from the question for each

predicted column. As in SQLNet, a bi-directional
LSTM is used for the encoder. It employs a pointer
network (Vinyals et al., 2015) to compute the dis-
tribution of the next token in the decoder. In par-
ticular, the probability of selecting the i-th token
wi in the natural language question as the next to-
ken in the substring is computed as:

v = Vval
t tanh(Wval

qt Hi
QT +Wval

c HCOL +Wval
h h)

Pcond val = softmax(v)

where h is the hidden state of the previously gen-
erated token. The generation process continues
until the 〈END〉 token is the most probable next
token of the substring.

4 Experiments

Dataset We use the WikiSQL dataset (Zhong
et al., 2017), a collection of 87,673 examples of
questions, queries, and database tables built from
26,521 tables. It provides train/dev/test splits such
that each table is only in one split. This requires
model to generalize to not only new questions but
new table schemas as well.

Implementation Details We implement our
model based on SQLNet (Xu et al., 2017) in Py-
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Torch (Paszke et al., 2017). We concatenate pre-
trained Glove (Pennington et al., 2014) and para-
phrase (Wieting and Gimpel, 2017) embeddings.
The dimensions and dropout rates of all hidden
layers are set to 120 and 0.3 respectively. We
use Adam (Kingma and Ba, 2015) with the de-
fault hyperparameters for optimization. The batch
size is set to 64. The same loss functions in (Xu
et al., 2017) are used. Our code is available at
https://github.com/taoyds/typesql.

Results and Discussion Table 1 shows the main
results on the WikiSQL task. We compare our
work with previous results using the three eval-
uation metrics used in (Xu et al., 2017). Table
2 provides the breakdown results on AGGREGA-
TION, SELECTION, and WHERE clauses.

Without looking at the content of databases,
our model outperforms the previous best work by
5.5% on execute accuracy. According to Table 2,
TYPESQL improves the accuracy of SELECT by
1.3% and WHERE clause by 5.9%. By encoding
column names and grouping model components in
a simpler but reasonable way, TYPESQL achieves
a much higher result on the most challenging sub-
task WHERE clause. Also, the further improve-
ment of integrating word types shows that TYPE-
SQL could encode the rare entities and numbers
in a better way.

Also, if complete access to the database is al-
lowed, TYPESQL can achieve 82.6% on execute
accuracy, and improves the performance of the
previous content-aware system by 17.5%. Al-
though (Zhong et al., 2017) enforced some limita-
tions when creating the WikiSQL dataset, there are
still many questions that do not have any column
name and entity indicator. This makes generat-
ing the right SQLs without searching the database
content in such cases impossible. This is not a crit-
ical problem for WikiSQL but is so for most real-
world tasks.

5 Conclusion and Future Work

We propose TYPESQL for text-to-SQL which
views the problem as a slot filling task and uses
type information to better understand rare enti-
ties and numbers in the input. TYPESQL can use
the database content to better understand the user
query if it is not well-formed. TYPESQL signifi-
cantly improves upon the previous state-of-the-art
on the WikiSQL dataset.

Although, unlike most of the previous work, the

WikiSQL task requires model to generalize to new
databases, the dataset does not cover some impor-
tant SQL operators such as JOIN and GROUP BY.
This limits the generalization of the task to other
SQL components. In the future, we plan to ad-
vance this work by exploring other more complex
datasets under the database-split setting. In this
way, we can study the performance of a general-
ized model on a more realistic text-to-SQL task
which includes many complex SQL and different
databases.
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Abstract
This paper addresses the problem of commu-
nity membership detection using only text fea-
tures in a scenario where a small number of
positive labeled examples defines the commu-
nity. The solution introduces an unsupervised
proxy task for learning user embeddings: user
re-identification. Experiments with 16 differ-
ent communities show that the resulting em-
beddings are more effective for community
membership identification than common unsu-
pervised representations.

1 Introduction

Active users of social media often like identifying
other users with common interests and values. Or,
a user may want to find other users that share char-
acteristics with specific accounts that they follow,
e.g. cartoonists or local food trucks. Members of
such communities of interest are often identifiable
via their social network connections, and shared
social connections are clearly important in recom-
mendations. However, shared connections often
reflect a subset of a person’s interests, and there
may be users of interest where any shared connec-
tions are distant. In addition, there may be scenar-
ios where there is no explicit social graph, or the
full graph is expensive to obtain. In such cases, the
language of tweets, blogs, etc. is helpful in identi-
fying users with particular interests.

In this paper, we represent users in terms of
the text in their communications and introduce a
scenario where a user can define a “community”
by providing a small number of example accounts
that are used to train a system for retrieving sim-
ilar users. Note that our use of the term “com-
munity” differs from other online contexts, where
members explicitly self-identify with a commu-
nity (e.g. by joining a discussion forum or using
a specific hashtag). The community is in the eye
of the user issuing the query.

We frame the task of community membership
detection as a retrieval problem. A small set of
representative accounts selected by the user forms
the query, and the system retrieves additional com-
munity members from a large index of accounts.
The task is loosely related to entity set expansion
(Pantel et al., 2009). We make no assumptions
about the type of communities that can be han-
dled, and no labeled data is available other than
the query. Because the training set (query) is min-
imal, unsupervised learning is useful for the text
representation. We propose the proxy task of per-
son re-identification for learning a user embed-
ding, where the goal is for two embeddings from
the same user to be closer to each other than to
the embedding of a random user. The hypothesis
is that a representation useful for detecting simi-
larities between posts from the same person made
at different times will also do well at identifying
similarities between people in the same commu-
nity. This hypothesis stems from observations that
people with shared interests often talk about topics
related to these interests, and that they tend to have
shared jargon and other similarities in language
use (Nguyen and Rosé, 2011; Danescu-Niculescu-
Mizil et al., 2013; Tran and Ostendorf, 2016).

In this paper, we demonstrate experimentally
that the re-identification proxy task is useful with
simple models that are suited to the retrieval sce-
nario, and present analyses showing that the ap-
proach learns to emphasize words associated with
individual interests and polarizing issues.

2 Model

The model for community detection includes: i) a
mapping from a user’s text (a collection of tweets)
to a k-dimensional embedding, and ii) a binary
classifier for detecting whether a candidate user
belongs to the target community. The novel con-
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tribution of the work is the proxy re-identification
task for learning the user embedding.

User Embedding Model. The mapping from
text to an embedding could leverage any
document-level representation. We focus on a
simple weighted bag-of-words neural model for
direct comparison to other popular methods, mo-
tivated by the fact that many virtual communities
form around shared interests in particular topics.
Specifically, let cp,i denote the number of times
person p uses word vi ∈ V , where V is the vocab-
ulary, and wp,i = log(cp,i + 1) be the log-scaled
word count. Then the user embedding is

up =
wT
p E

||wT
p E||

(1)

where wp = [wp,1 · · ·wp,|V |] and E ∈ <|V |×k is
the matrix of word embeddings.

Person Re-identification Learning. The em-
bedding matrix E is learned using a person re-
identification objective that encourages embed-
dings from the same person to be closer than
embeddings from different people. We build on
the triplet loss function taken from Schroff et al.
(2015) used to train a face recognition system.
Specifically:

E = argmin
E

∑

p1,p2∈P
cost(p1, p2), (2)

cost(p1, p2) = (1 + d(up11
, up21

)− d(up11
, up12

))+,

xwhere d(x, y) is the cosine distance between x
and y. up11 and up21 are embeddings made from dis-
tinct subsets of a single person’s Tweets, and up12
is an embedding made from a subset of another
person’s Tweets. In practice, we estimate the loss
function randomly sampling triplets (p11, p21, p12)
from a large training set.

Classifier. A logistic regression model with L2
regularization is used for the classifier, because it
is simple but powerful and our scenario has lit-
tle training data. Simplicity is important because
the classifier should be trainable in real-time after
receiving the query. The classifier objective is to
discriminate the embeddings from the users in the
query from a set of user embeddings from the gen-
eral collection. For the i-th user, let yi ∈ {0, 1}
be the binary label indicating whether the user be-
longs to a particular community and ui be the user

embedding. The logistic regression model com-
putes the probability that the user belongs to the
community according to:

p(yi = 1|ui) = σ(wTui + b), (3)

where σ(x) = 1/(1 − e−x). During evaluation,
the users in the index are ranked according to the
maximum log probability ratio

argmax
i

log
p(yi = 1|ui)
p(yi = 0|ui)

= argmax
i

wTui. (4)

Because the classifier is linear, we can quickly
retrieve the top matching users from the in-
dex using approximate nearest-neighbor search
(Kushilevitz et al., 2000). The technique is scal-
able up to hundreds of millions of users and be-
yond.

3 Data

All data was collected using the Twitter API.1 We
used 1,035 randomly selected items from the list
of trending topics in the USA during the period
April-June 2017 to query for users and collected
their most recent 2,000 tweets. Example trend-
ing topics are #Quantico, RonaldoCristiano, and
#MayDay2017. (The full list is available with the
data.) Each user had at least one Tweet that men-
tioned a trending topic but their other Tweets could
be on any topic.

We refer to this collection as the “general pop-
ulation,” because it was not targeted towards any
particular community. In total, we collected
around 80,000 such users and used roughly 36,000
for learning user embeddings, 1,000 for learning
the community classifiers, and 43,000 for evalua-
tion. The text is mostly in English, but some of it
is in Spanish, French, or other languages. A list of
the tweet IDs is available.2

To support evaluation with the community de-
tection task, we conducted a second collection
(contemporaneous with the first) targeting mem-
bers that we had identified as belonging to one of
16 communities (Table 2). To define a “commu-
nity,” volunteers manually selected a set of users
that fit with a theme that they had familiarity with.
Thus, the specific 16 communities were deter-
mined based on themes of interest to the authors
and their friends and colleagues, where we could

1http://developer.twitter.com/en/docs/api-reference-index
2http://github.com/ajaech/twittercommunities

596



be reasonably confident about membership deci-
sions. In addition, we tried to avoid themes that
might be biased towards well-known celebrities,
and we made an effort to have diversity in the char-
acteristics of the communities. The communities
were selected to span a range of topics, sizes (6-
130 accounts), individuals vs. organizations, and
other characteristics. A few of the communities
are comprised of organizations rather than indi-
viduals such as the high school drama departments
and the Pittsburgh food truck communities. (The
community names are invented by the authors for
purposes of describing the data in this paper; they
are not part of the retrieval task.)

The text is lower-cased and some punctuation
is removed using regular expressions. Words are
formed by splitting on white space. While this
strategy will not work for languages that do not
delimit words by spaces, these make up a neg-
ligible portion of the data. A 174k vocabulary
was created by extracting the unique types that
were seen in the tweets from the general popula-
tion, as well as selected bigrams extracted using
the open source Gensim library using a point-wise
mutual information criteria (Řehůřek and Sojka,
2010). The vocabulary included roughly 49k bi-
grams, 36k usernames and 17k hashtags. User-
names, hashtags, and URLs are not treated spe-
cially and can be part of the vocabulary just like
any other word if they occur frequently enough.

4 Experiments

4.1 Experiment Configuration

The experiments involved comparing different
methods of learning user embeddings, all with a
weighted bag-of-words modeling assumption:
• Weighted word2vec (W2V) using default3

skip-gram training (Mikolov et al., 2013);
• Latent Dirichlet allocation (LDA) (Blei et al.,

2003), using default settings from the Scikit
Learn library (Pedregosa et al., 2011);
• Person re-identification with random initial-

ization (RE-ID); and
• Person re-identification with W2V initializa-

tion (RE-ID, W2V init).
Both count-weighted W2V and LDA have been
used as unsupervised representations in Twitter

3The default configuration uses a window of ±7 words.
We also tried using a window of 50 words, which roughly
matches the context used in other methods, but community
detection performance was significantly worse.

classification tasks, as noted in Section 5. De-
fault configurations are used because there is in-
sufficient data to have a separate validation set.

For all methods, the same vocabulary, final di-
mension (128), unit vector normalization strategy,
and logistic regression model training were used.
The embeddings are trained on the 36k user gen-
eral data, randomly sampling pairs of users p1 and
p2 and then sampling 50 tweets at a time with-
out replacement to create up11 , up21 , and up12 . The
logistic regression models are trained on the 1K
user general training pool, using the 50 most re-
cent tweets for each user. Because there are so
few labeled examples for most communities, train-
ing and evaluation is done using a leave-one-out
strategy with the positive samples but including all
of the 1K negative samples. For each of the N
classifiers (corresponding to N labeled samples),
the test set is the left-out positive example and the
43K general user test pool. Also because of train-
ing limitations, there is no tuning of the regular-
ization weight; the default weight of 1.0 is used.
Tuning may be useful given a collection of train-
ing and testing communities. Performance is aver-
aged over the N classifiers (corresponding to the
N labeled samples). Two evaluation criteria are
used: a retrieval metric (inverse mean reciprocal
rank or 1/MRR) (Voorhees et al., 1999) and a de-
tection metric (area under the curve or AUC).

4.2 Results
Table 1 shows retrieval results averaged across
all communities. The RE-ID model outperforms
the W2V and LDA baselines for both criteria,
with substantial gains in 1/MRR (lower is bet-
ter). Further, the version of RE-ID initialized with
word2vec did better than the one that was initial-
ized randomly even though the randomly initial-
ized version was trained for twice as long.

Strategy AUC 1/MRR
W2V 93.9 846
LDA 95.0 501
RE-ID (rand. init) 98.0 24
RE-ID (W2V init) 98.5 12

Table 1: Performance of different model variants.

A breakdown of the best model performance
by community is given in Table 2. Sample size
does not seem to be a good indicator of perfor-
mance: the two smallest communities (Cartoon-
ists, Fresno City Council) had the worst and one
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of the best results, respectively. Anecdotally, we
observed that the sample of cartoonists were more
likely to Tweet about topics outside their main in-
terest (e.g., politics or sports). We hypothesize that
the diversity of interests of the members of a com-
munity affects the difficulty of the retrieval task,
but our test set is too small to confirm this hypoth-
esis.

Community Size 1/MRR
Cartoonists 8 58.1
Chess Stars 14 5.4
Conan Show Writers 12 4.7
Fashion Commentators 11 8.3
Fresno City Council 6 3.0
Hedge Fund Managers 11 25.7
H.S Drama Departments 18 2.3
Mathematicians 11 32.6
NLP Researchers 50 4.9
Pittsburgh Food Trucks 15 3.3
Police Dogs 16 2.7
Professional Economists 11 3.6
SCOTUS Reporters4 16 1.9
The Stranger Reporters5 11 8.3
Ultimate Frisbee Players 130 6.7
Ultramarathon Runners 28 14.6

Table 2: W2V+RE-ID results by community

These results may underestimate performance,
because there is a chance that some users in the
general population test data may actually belong
to one or more of our test communities, i.e. there
could be mislabeled data. To assess the potential
impact, we manually checked the top ten false pos-
itives for each community for mislabeled users.
We did discover some mislabeled examples for
the economist, hedge fund manager, and ultrama-
rathon runner communities. For the most part,
the top ranked users from the general population
tended to be people from related communities. For
example, the top false ultimate frisbee users con-
tained people who wrote about their participation
in tournaments for other sports such as soccer.

4.3 Analysis
The finding that the W2V-initialized RE-ID model
is significantly better than W2V raises the ques-
tion: how do the embeddings learned by the re-
identification task differ from the ones learned by

4People who write news articles about the Supreme Court
of the United States.

5The Stranger is a small weekly newspaper.

the word2vec objective? To investigate this, we
looked at the 1,000 words in the RE-ID model with
embeddings that were farthest (in Euclidean dis-
tance) from its word2vec initialization. These top
words disproportionately contain Twitter user han-
dles, so some social network structure is captured.
Using agglomerative clustering, we found groups
of words that centered around frequent words used
in particular regions (foreign words, dialects) or
cultures (sociolects), associated with hobbies or
interests (specific sports, music genres, gaming),
or polarizing topics (political parties, controversial
issues). At least one of the top tokens was the user-
name of an account later identified as being spon-
sored by the Russian government to spread propa-
ganda during the United States presidential elec-
tion, e.g., “ten gop” in Table 4 of the Appendix.

We also looked at which communities are clos-
est in the embedding space. We represent a com-
munity with the average of the member embed-
dings and use a normalized cosine distance for
similarity. The two nearest neighbors are Math-
ematicians and NLP researchers, which are also
close to the next two nearest neighbors, Hedge
Fund Managers and Professional Economists.

To interpret what the model as a whole cap-
tured, we found the top scoring tweets for each
held-out user (creating an embedding for a single
tweet) according to the logistic regression model.
Representative examples include “recurrent neu-
ral network grammars simplified and analyzed”
for NLP Researchers, and “we’re looking forward
to seeing you opening night may 24th love the cast
of high school musical” for High School Drama
clubs. Examples for additional communities are
included in the appendix. The results provide in-
sight into the community member identification
decision.

5 Related Work

One notion of community detection involves dis-
covering different communities within a collec-
tion of users (Chen et al., 2009; Di, 2011; Fani
et al., 2017). A related task is making recom-
mendations of friends or people to follow (Gupta
et al., 2013; Yu et al., 2016). In contrast, our task
involves identifying other members of a commu-
nity, which is specified in terms of a set of ex-
ample users. These tasks use different learning
frameworks (our work uses supervised learning),
but the features (social network and/or text cues)
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are relevant across tasks. Our task is perhaps more
similar to using social media text to predict author
characteristics such as personality (Golbeck et al.,
2011), gang membership (Wijeratne et al., 2016),
geolocation (Han et al., 2014), political affilia-
tion (Makazhanov et al., 2014), occupational class
(Preoţiuc-Pietro et al., 2015), and more. Again,
a commonality across tasks is the frequent use of
unsupervised representations of textual features.

In representing text, a common assumption is
that community language reflects topical inter-
ests, so representations aimed at topic modeling
have been used, including LDA (Pennacchiotti
and Popescu, 2011) and tf-idf weighted word2vec
embeddings (Boom et al., 2016; Wijeratne et al.,
2016). Yu et al. (2016) compute a user embed-
ding by averaging tweet embeddings. Other work
investigates methods for learning embeddings that
integrate text and social network (graph or text-
based) features (Benton et al., 2016).

The work closest to ours is by Fani et al. (2017),
which learns embeddings that are close for like-
minded users, where like-minded pairs are iden-
tified by a deterministic algorithm that leverages
timing of related posts. Our approach requires no
additional heuristics for defining user similarity,
but instead relies on an objective that maximizes
self-similarity and minimizes similarity to other
users randomly sampled from a large general pool.

Our person re-identification proxy task makes
use of the triplet loss used to learn person embed-
dings for face recognition (Schroff et al., 2015). In
image processing, person re-identification refers
to the task of tracking people who have left the
field of view of one camera and are later seen by
another camera (Bedagkar-Gala and Shah, 2014).
It is different from our proxy task and the methods
are not the same.

6 Conclusion

In summary, this paper defines a task of com-
munity member retrieval based on their tweets,
introduces a person re-identification task to al-
low community definition with a small number of
examples, and shows that that the method gives
very good results compared to word2vec and LDA
baselines. Analyses show that the user embed-
dings learned efficiently represent user interests.
The text embeddings are largely complementary
to the social network features used in other stud-
ies, so performance gains can be expected from

feature combination. While our experiments use
a bag-of-words representation, as in most related
work, the re-identification training objective pro-
posed here can easily be used with other methods
for deriving document embeddings, e.g. (Le and
Mikolov, 2014; Kim, 2014).
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Appendix: Supplementary Tables

Community Selected Tweet
Chess Stars @chesscom yep karpov well done twittersphere
Professional Economists #china real estate as long as liquidity remains ample this will continue
Fashion Commentators rihanna’s fenty corp creative director jahleel weaver styles the collection

on 3 muses
Fresno City Council gr8 resource developed by our local @citdfresno on how to export @city-

offresno @fresnocountyedc lee ann eager
High School Drama we’re looking forward to seeing you opening night may 24th love the cast

of high school musical
Mathematicians forms of knowledge of advanced mathematics for teaching (i wrote a thing)
NLP Researchers recurrent neural network grammars simplified and analyzed
Police Dogs when a trained police dog is placed with another handler they complete a

re handling course to be licensed normally 2 weeks
SCOTUS Reporters as supreme court throws out two gop-drawn congressional districts as un-

constitutional racial gerrymanders
Ultramarathon Runners we’re covering the lake sonoma 50 mile live on saturday tell your friends

spread the word and get ready

Table 3: Top tweets for selected communities. Underscore is used to join bigrams.

Interpretation Top Words
Languages & • à, ça, j’ai, quand, c’est, avec, sur, dans le
Dialects • é, não, melhor, tem, mesmo, só, mais, hoje, uma, tá, já

• es un, más, jugar, en el, maduro, jajajaja
• bruh, dawg, @iamakademiks, black women, @chancetherapper, lmaooo, y’all,
tryna

Sports •@mlb, baseball, bullpen, @angels, mets, mlb
• arsenal, mate, liverpool, @manutd, mourinho, #mufc
•@nhl, hockey, nhl, leafs, @nhlblackhawks, @nhlonnbcsports
• xd, @playoverwatch, #ps4share, anime, @keemstar, overwatch, twitch, @nin-
tendoamerica, gaming

Music •@niallofficial, @harry styles, @louis tomlinson, @ashton5sos, @shawnmendes,
@ethandolan, @graysondolan, @michael5sos, @danisnotonfire

Political • @indivisibleteam #resist, #trumpcare, @ezlusztig, @kurteichenwald, @george-
takei, @sarahkendzior, @repadamschiff, @malcolmnance, @lawrence
• @mitchellvii, @prisonplanet, @realjameswoods, @jackposobiec, @bfraser747,
@cernovich, @ten gop, #maga

Other • tories, labour, corbyn, #auspol, tory, mum, nhs, lads scotland

Table 4: Clusters of words that change the most between Word2Vec and the re-identification objective.
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Abstract

With the growing amount of reviews in e-
commerce websites, it is critical to assess the
helpfulness of reviews and recommend them
accordingly to consumers. Recent studies on
review helpfulness require plenty of labeled
samples for each domain/category of inter-
ests. However, such an approach based on
close-world assumption is not always practi-
cal, especially for domains with limited re-
views or the “out-of-vocabulary” problem.
Therefore, we propose a convolutional neural
network (CNN) based model which leverages
both word-level and character-based represen-
tations. To transfer knowledge between do-
mains, we further extend our model to jointly
model different domains with auxiliary do-
main discriminators. On the Amazon product
review dataset, our approach significantly out-
performs the state of the art in terms of both
accuracy and cross-domain robustness.

1 Introduction

Product reviews significantly help consumers fi-
nalize their purchasing decisions. With online
reviews being ubiquitous, it is critical to exam-
ine the quality of reviews and present consumers
more useful information. Both academia and in-
dustry have drawn close attention to the task of
review helpfulness prediction (Liu et al., 2017a;
Yang et al., 2015, 2016; Martin and Pu, 2014).

Recent studies on review helpfulness predic-
tion have been shown effective by using hand-
crafted features. For example, semantic features
like LIWC, INQUIRER, and GALC (Yang et al.,
2015; Martin and Pu, 2014), aspect- (Yang et al.,
2016) and argument-based (Liu et al., 2017a) fea-
tures. However, those methods require a large
amount of labeled samples which is not always
practical and yields models limited to product do-
mains/categories of interests. For example, the

∗* Yinfei Yang is now with Google.

“Electronics” category used in our experiment
from Amazon.com Review Dataset (McAuley and
Leskovec, 2013) has more than 354k labeled re-
views, while the “Watches” category has under
10k. For domains with limited data, labeled sam-
ples may be too few to build good estimators and
the “out-of-vocabulary” (OOV) problem is often
observed.

To alleviate the aforementioned issues, in this
work, we propose an end-to-end approach for
review helpfulness prediction requiring no prior
knowledge nor manual feature crafting. In re-
cent years, convolutional neural networks (CNNs),
able to extract deep features from raw text con-
tents, have demonstrated remarkable results in
many tasks of natural language processing, for
its high efficiency and performance comparable to
Recurrent Neural Networks (RNNs) (Kim, 2014;
Zhang et al., 2015). We thus employ CNNs as
the basis of this work. As character-level repre-
sentations are notably beneficial for alleviating the
OOV problem for tasks such as text classification
and machine translation (Ballesteros et al., 2015;
Ling et al., 2015; Kim et al., 2016; Lee et al.,
2017), we specifically enrich the word-level rep-
resentation of CNNs by adding character-based
representation. Experiments show that our CNN-
based method significantly outperforms those us-
ing hand-crafted features and yields better results
than the ensemble models.

To tackle the problem of insufficient data in
some domains, we develop a cross-domain trans-
fer learning (TL) approach to leverage knowledge
from a domain with sufficient data. It is worth
noting that, existing studies on this task only fo-
cus on a single product category or largely ignore
the inter-domain correlations. Previous works also
show that some features are domain-specific while
others are sharable across domains. For example,
image quality features are only useful for cate-
gories covering products like cameras (Yang et al.,
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2016), while semantic features and argument-
based features usually work for all domains (Yang
et al., 2015; Liu et al., 2017a). Thus it is impor-
tant for a TL approach to learn shared features
for different domains. A typical TL model uses
both a shared neural network (NN) and domain-
specific NNs to derive shared and domain-specific
features (Ganin et al., 2016; Taigman et al., 2017).
Recently, Liu et al. (2017b) and Chen et al. (2017)
apply adversarial loss and domain discriminators
to specific shared models using RNNs for text
classification and word segmentation tasks, re-
spectively. Inspired by them, we study the cross-
domain review helpfulness task with both adver-
sarial loss and domain discriminators in a specific
shared framework.

In a nutshell, our main novelty is in the first end-
to-end cross-domain model for review helpfulness
prediction. Our model consists of two compo-
nents: a feature transformation network (CNN) to
represent the input reviews and a transfer learning
module to adapt domain knowledge. In addition,
shared and specific-shared features are confined
with adversarial and domain discrimination losses.
Extensive experiments show that our model is able
to transfer knowledge between domains, and out-
performs the state of the arts.

The remainder of the paper is organized as fol-
lows. Section 2 formally defines the problem and
presents our model. Section 3 illustrates the effec-
tiveness of the proposed model in the experiments.
Section 4 presents related work, and finally Sec-
tion 5 concludes our paper.

2 Model

We define review helpfulness prediction as a re-
gression task that predicts the helpfulness score of
a given review. The ground truth of helpfulness
is determined using the “a of b approach”: a of b
users think a review is helpful.

Formally, we consider a cross-domain review
helpfulness prediction task where we have a set of
labeled reviews from a source domain and a tar-
get domain. We seek to transfer knowledge from
a source domain with adequate data to train a bet-
ter model for a target domain, which has relatively
insufficient amount of data. For a review X, our
goal is to predict its helpfulness score y.

As shown in Figure 1, our base model is a multi-
granularity CNN, which combines both word-
level and character-level representations.

Word	embedding 

Char	representa2on 

Convolu2on 

Max-Pooling 

CNN 

ys yt 

ws wt 
wc 

Source	Xs Target	Xt 

hs 

1 0 

wc wc wsc wtc 

Adversarial		
Loss 

Domain	
Label 

Src	
Label 

Tgt	
Label 

d 

hc ht 

Domain	
Label 

Figure 1: Our proposed end-to-end cross-domain
model for review helpfulness prediction.

2.1 CNN with Character Representations

In many applications, such as text classifica-
tion (Bojanowski et al., 2017) and machine read-
ing comprehension (Seo et al., 2016), it is benefi-
cial to enrich word embeddings with subword in-
formation. Inspired by that, we use a character
embedding layer to enrich word representations.

Let X be a review, consisting of a sequence
of words (x1, x2, . . . , xm). Following the CNN
model in (Kim, 2014), for words in a review
X, we first lookup the embeddings of all words
(e1, e2, . . . , em) from an embedding matrix E ∈
R|V|×l where |V| is the vocabulary size and l is the
embedding dimension.

The characters of the i-th word xi are embed-
ded into vectors and then fed into a convolutional
layer and a max-pooling layer to obtain a fixed-
sized vector CharEmb(xi). This vector is concate-
nated with the original word embedding ei to form
a new word embedding. This representation is ad-
vantageous in two folds: it helps group words with
shared subwords, and it alleviates the OOV prob-
lem. Hence, we obtain a review’s final represen-
tation by concatenating the embeddings of words
in the review: eX = [e′1, e′2, e′3, . . . , e′m] where
e′i = CharEmb(xi) ⊕ ei, ∀i ∈ [1..m], e′i is a col-
umn vector, and ⊕ is a stacking operator.

Next, we stack two 2-D convolutional layers
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and two 2-D max-pooling layers on the matrix eX
to obtain the hidden representation hX . Multiple
filters are used here. For each filter, we obtain a
hidden representation:

gf = MaxPool(Conv(eX ,filterSize = [f, l, c]))

where f ∈ {2, 3, 4, 5} is window size, l is em-
bedding dimension, c is channel size, Conv(·) rep-
resents a convolution layer, MaxPool(·) is a max-
pooling layer. All the representations are then con-
catenated to form the final representation hX , i.e.,
hX = [g2,g3,g4,g5].

In all, for each input X, our CNN model outputs
a hidden feature representation hX = CNN(X).

2.2 Knowledge Transfer with Domain
Discriminators

A typical transfer learning framework is to use
both a shared neural network and domain-specific
neural networks to learn shared and domain-
specific features (Liu et al., 2017b). In our model,
we use a shared CNN and domain-specific CNNs
to derive shared features hc and domain-specific
features hs and ht. The domain-specific output
layers are defined as:

ŷk =

{
σ(Wschc + Wshs + bs), if k = 0

σ(Wtchc + Wtht + bt), if k = 1

where k ∈ {0, 1} is the domain label indicat-
ing whether a data instance is from the source
domain (i.e., k = 0) or the target domain (i.e.,
k = 1). Wsc, Wtc, Ws, and Wt are the weights
for shared-source, shared-target, source, and tar-
get domains respectively, while bs and bt are the
biases for source and target domains respectively.
The σ(·) represents the sigmoid function.

Recent studies (Ganin et al., 2016; Taigman
et al., 2017; Liu et al., 2017b) consider to apply
domain discriminators on shared features to pre-
vent domain-specific features from creeping into
shared feature space. The main idea of using a
domain discriminator p(d | hc) is to predict the
domain label d on the shared features hc. Here
the domain discriminator is defined as a fully con-
nected layer with weights Wc and bias vector bc:

p(d | hc) = softmax(Wchc + bc).

Since the goal is to encourage the shared fea-
ture space indiscriminate across two domains, we

define the adversarial loss Ladv as:

Ladv =
1

n

n∑

i=1

1∑

k=0

p(d = k|hc
i ) log p(d = k|hc

i ).

where hc
i is the derived shared features from an

input Xi.
Furthermore, to encourage the specific fea-

ture space to discriminate between different do-
mains, we consider applying domain discrimina-
tion losses on the two specific feature spaces. We
further add two negative cross-entropy losses, Ls

for the source domain and Lt for the target do-
main:

Ls =−
1

ns

ns∑

i=1

1∑

k=0

I(di=k) log p(d = k|hs
i ).

Lt =−
1

nt

nt∑

i=1

1∑

k=0

I(di=k) log p(d = k|ht
i).

where I(di=k) is an indicator function set to 1 when
di = k holds, or 0 otherwise, and hs

i and ht
i are the

derived domain-specific features from an input Xi

from source and target domains respectively.
Nevertheless, studies in (Bousmalis et al., 2016;

Liu et al., 2017b) show that adding orthogonal-
ity constraints on learned shared features Hc and
specific features Hk for each domain k ∈ {s, t}
can help learn domain-invariant features. We thus
adopt the constraint Lorth =

∑
k∈{s,t}Hc>Hk in

our model. Hc and Hk are obtained by stacking
the hidden features from all the input instances.

Finally, we obtain a combined loss as follows:

L =
∑

k∈s,t
− 1

nk

nk∑

j=1

1

2
(ykj − ŷkj )2 +

λ1
2
Ladv

+
λ2
2
Ls +

λ3
2
Lt +

λ4
2
Lorth +

λ5
2
||Θ||2F .

where all λ’s are weights for different losses, and
Θ denotes model parameters.

3 Experiments

Following previous work (Yang et al., 2015,
2016), experiments are done on reviews from
five categories of products in Amazon review
dataset (McAuley and Leskovec, 2013). Data
statistics are summarized in Table 1.

The empirical study is done in two steps. With-
out TL, Part 1 (Sections 3.1 and 3.2) shows that
embedding-based feature of CNN outperforms
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hand-crafted features. After validating the advan-
tage of the CNN-based model, we demonstrate
that our TL approach (introduced in Section 2.2)
is more effective in boosting the advantage farther
than other TL approaches in Part 2 (Section 3.3).
In Part 2, the same CNN-based model is used for
all TL approaches.

General category # of reviews
with 5+ votes

Total # of
reviews

Watches (Watch) 9,737 68,356
Cellphones (Phone) 18,542 78,930
Outdoor 72,796 510,991
Home 219,310 991,784
Electronics (Elec.) 354,301 1,241,778

Table 1: Amazon reviews from 5 different categories.

The lookup table E is initialized with pre-
trained vectors from GloVe (Pennington et al.,
2014) by setting l = 100. For CNNs, the activa-
tion function is ReLU, and the channel size is set
to 128. We also set λ1 = λ2 = λ3 = λ4 = 0.05,
and λ5 = 0.0008. AdaGrad (Duchi et al., 2011)
is used in training with an initial learning rate
of 0.08. Fowllowing the previous work (Yang
et al., 2015, 2016), ten-fold cross-validation is per-
formed for all experiments and all the results are
evaluated in correlation coefficients between the
predicted helpfulness score and the ground truth
score computed by “a of b approach” from the
dataset.

3.1 Comparison with hand-crafted features

We first compare our base CNN model with re-
gression baselines that use hand-crafted features
which are STR, UGR, LIWC, INQUIRER (Yang
et al., 2015), and aspect-based feature ASP (Yang
et al., 2016), and the vanilla CNN (CNN) in (Kim,
2014). As shown in Table 2, both CNN-based
models outperform the baselines, indicating CNN-
based models have better expressiveness than
these hand-crafted features for this task.

Our CNN-based model outperforms the vanilla
CNN based one on relatively small domains (e.g.,
“Watches”, “Cellphones”) and achieves compa-
rable results on large ones (e.g., “Electronics”).
This is because the OOV problem is severe on
small domains and our model with character-level
representations can help more on them. In all,
our CNN-based method shows better performance
compared to the baselines.

Watch Phone Outdoor Home Elec.
STR 0.276 0.349 0.277 0.222 0.338
UGR 0.425 0.466 0.412 0.309 0.355
LIWC 0.378 0.464 0.382 0.331 0.400
INQ 0.403 0.506 0.419 0.366 0.405
ASP 0.406 0.437 0.385 0.283 0.406
CNN 0.480 0.562 0.501 0.459 0.524
our CNN 0.495 0.566 0.511 0.464 0.521

Table 2: Comparison with linguistic features.

3.2 Comparison with ensemble features

We further compare our CNN-based model with
two groups of ensemble features: Fusion 1 com-
prising of STR, UGR, LIWC, and INQUIRER fea-
tures (Yang et al., 2015), and Fusion 2 further
comprising of the ASP feature (Yang et al., 2016).
As shown in Table 3.2, our CNN-based model
consistently outperforms the models based on en-
semble features.

Watch Phone Outdoor Home Elec.
Fusion 1 0.488 0.539 0.497 0.432 0.484
Fusion 2 0.493 0.550 0.501 0.436 0.491
our CNN 0.495 0.566 0.511 0.464 0.521

Table 3: Comparison with ensemble features.

3.3 Comparison with TL models

To evaluate the effectiveness of our transfer learn-
ing approach, we compare our full model with
three baselines: Src-only that uses only source
data, Tgt-only that uses only target data, and TL-S
that use both source and target data with the ad-
versarial training as in (Liu et al., 2017b). For TL
based approaches, we use the “Electronics” cate-
gory as the source domain and all other categories
as target domains.

Watch Phone Outdoor Home
Src-only 0.471 0.459 0.447 0.365
Tgt-only 0.495 0.566 0.511 0.464
TL-S 0.501 0.564 0.511 0.468
Ours 0.515 0.571 0.510 0.472

Table 4: Comparison of TL models.

According to Table 4, due to the domain shift,
Src-only performs worse than Tgt-only. This is in-
tuitive as those domains are related but different.
Our model achieves better or comparable results
than Tgt-only and TL-S. This supports the bene-
fits of transfer learning and demonstrates the use-
fulness of adding domain discriminators on both
source and target domains.
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Last but not the least, our model shows less im-
provement over Tgt-only when target domain data
size increases. For example, our model yields an
improvement of 4% over Tgt-only on the small-
est domain “Watches.” But the improvement drops
to 1.7% on the largest domain “Home.” To in-
vestigate this, we pick the category “Outdoor” as
the target domain and track how our TL approach
looses its edge as the amount (in terms of percent-
age in Table 5) of data from the target domain used
in training increases. The full set of data from the
source domain “Electronics” is constantly used.

10% 30% 50% 70% 100%
Tgt-only 0.425 0.463 0.475 0.493 0.511
Ours 0.454 0.481 0.491 0.497 0.510
Improve 6.8% 3.7% 3.4% 0.6% -0.2%

Table 5: Comparison of TL with respect to the amount
of training data of the “Outdoor” category.

According to Table 5, the more data from the tar-
get domain, the less advantage our approach has
over the Tgt-only model. It is more beneficial
to leverage knowledge from another relevant do-
main when there is less data in the target domain.
This also demonstrates that our model is able to
learn transferable features from a relevant domain
to help the task on a target domain which often has
limited data.

4 Related Work

Review Helpfulness Prediction: The recent stud-
ies on review helpfulness prediction focus on
hand-crafted features from the review texts. For
example, (Yang et al., 2015) and (Martin and
Pu, 2014) examined semantic features like LIWC,
INQUIRER, and GALC. Subsequently, aspect-
(Yang et al., 2016) and argument-based (Liu et al.,
2017a) features are demonstrated to improve the
prediction performance. However, these methods
rely on sufficient labeled data and may not perform
ideally for domains with limited data. To alleviate
this issue, we employ Convolutional Neural Net-
works (CNNs) (Kim, 2014; Zhang et al., 2015)
as the base model and further considers character-
level representations (Ballesteros et al., 2015; Ling
et al., 2015; Kim et al., 2016; Lee et al., 2017).

Transfer Learning: Transfer learning (TL) has
been extensively studied in the last decade, inter-
ested readers can refer to (Pan and Yang, 2010)
for a detailed survey. With the popularity of
deep learning, a great amount of Neural Network

(NN) based methods are proposed for TL (Yosin-
ski et al., 2014; Wang and Zheng, 2015; Mou et al.,
2016; Yang et al., 2017; Liu et al., 2017b). A
simple but widely used framework is referred to
as fine-tuning approaches, which first use the pa-
rameters of the well-trained models on the source
domain to initialize the model parameters of the
target domain, and then fine-tune the parameters
based on labeled data in the target domain (Yosin-
ski et al., 2014; Mou et al., 2016). Another typical
framework is to use a shared NN to learn shared
features for both source and target domains (Mou
et al., 2016; Yang et al., 2017; Qiu et al., 2017).
On top of that, specific shared framework use
both a shared NN and domain-specific NNs to de-
rive shared and domain-specific features (Ganin
et al., 2016; Taigman et al., 2017; Yu et al., 2018).
However it may not be ideal to separate shared
and specific features, recent studies (Ganin et al.,
2016; Taigman et al., 2017; Liu et al., 2017b) con-
sider the adversarial networks to learn more ro-
bust shared features across domains. Inspired by
this, our method adopts adversarial network on the
shared features. In the meanwhile, we also use do-
main discriminators on both source and target fea-
tures to help learn domain-specific features.

To the best of our knowledge, our work is the
first to study cross-domain review helpfulness pre-
diction. Without any hand-crafted features, our
CNN-based method achieves better results than
the existing approaches.

5 Conclusion

In this work, we proposed a convolutional neu-
ral network (CNN) based approach that combines
both word- and character-level representations, for
review helpfulness prediction. We studied trans-
fer learning for the task and used auxiliary domain
discriminators on both shared and specific repre-
sentations. Experiments showed our CNN-based
models outperform the existing approaches. In the
near future, we will look at multi-task helpfulness
prediction to further transfer knowledge across do-
mains. Meanwhile, it is also worth studying do-
main correlation in the transfer learning (Yu et al.,
2018) or multi-task settings (Qiu et al., 2017).
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Abstract

Social media is known for its multi-cultural
and multilingual interactions, a natural product
of which is code-mixing. Multilingual speak-
ers mix languages they tweet to address a dif-
ferent audience, express certain feelings, or at-
tract attention. This paper presents a large-
scale analysis of 6 million tweets produced
by 27 thousand multilingual users speaking 12
other languages besides English. We rely on
this corpus to build predictive models to infer
non-English languages that users speak exclu-
sively from their English tweets. Unlike na-
tive language identification task, we rely on
large amounts of informal social media com-
munications rather than ESL essays. We con-
trast the predictive power of the state-of-the-
art machine learning models trained on lexi-
cal, syntactic, and stylistic signals with neu-
ral network models learned from word, char-
acter and byte representations extracted from
English only tweets. We report that content,
style and syntax are the most predictive of non-
English languages that users speak on Twit-
ter. Neural network models learned from byte
representations of user content combined with
transfer learning yield the best performance.
Finally, by analyzing cross-lingual transfer –
the influence of non-English languages on var-
ious levels of linguistic performance in En-
glish, we present novel findings on stylistic
and syntactic variations across speakers of 12
languages in social media.

1 Introduction

Twitter is known for its diverse multi-cultural
and multilingual interactions (Mocanu et al.,
2013) where multilingual users play an impor-
tant bridging role in global social network con-
nectivity (Hale, 2014; Eleta and Golbeck, 2014).

∗This work was performed while the student was an in-
tern at PNNL. Stephen Ranshous is a PhD student at North
Carolina State University now.

Multilingual speakers often mix languages inside
the tweet (e.g., intra-sentential code-switching)
or across their tweets (e.g., inter-sentential code-
mixing) to express their thoughts or feelings, to
address a different audience, to attract attention
or emphasize a point (Eldin, 2014; Nguyen and
Doğruöz, 2013; Lignos and Marcus, 2013). Hi-
dayat (2013) reported that 45 percent of code-
switching on Facebook happened due to lexical
need, 40 percent due to the choice of a topic.

This work focuses on inter-sentential code-
mixing within multilingual user timelines. The
goal of this work is introduce a task of predict-
ing foreign (non-English) languages users speak
exclusively from their English informal commu-
nications in social media. Unlike L1 identifica-
tion task (Tetreault et al., 2013), we do not claim
that non-English languages are native languages
of multilingual speakers in our data. Moreover,
we rely on large amounts of real-world commu-
nications on Twitter – informal and noisy rather
than hundreds of essays generated by ESL learn-
ers (targeted student population). We experiment
with the largest group of non-English languages
analyzed so far.1 Inspired by earlier work on na-
tive language identification (Smith, 2001; Kop-
pel et al., 2005), we hypothesize that lexical, se-
mantic, syntactic and stylistic choices in English
portion of multilingual content have different pre-
dictive power on inferring non-English languages
users speak. For that we first develop linguistic
models to test our hypothesis, and then evaluate
syntactic and stylistic similarities across speakers
of non-English languages using the English por-
tion of their multilingual content in social media.
In addition, we contrast the state-of-the-art predic-

1Multilingual Twitter dataset was acquired using the pub-
lic Twitter API and analyzed over the period of 09/15 –
01/16. Multilingual user and tweet IDs are available at
http://www.cs.jhu.edu/˜svitlana/
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NON-ENGLISH ENGLISH
Lang Users Tweets O Tweets E
Tagalog 11,681 864,344 74 1,199,933 102
Spanish 4,451 406,410 91 661,754 149
Portuguese 2,877 267,935 93 270,386 94
Indonesian 2,360 269,004 114 518,897 220
French 1,555 121,581 78 262,712 169
Korean 907 51,034 56 81,706 90
Italian 765 52,346 68 94,444 123
Hindi 755 50,091 66 104,121 138
German 677 107,426 158 252,954 374
Polish 584 41,577 71 106,177 182
Japanese 528 62,800 118 125,485 238
Russian 195 23,325 119 39,643 203

Table 1: Dataset statistics in terms of the number of
users, tweets, and the average number of tweets per
user in English (E) and non-English (O) languages.

tive models with neural networks trained on word,
character and byte representations, social network
interactions, and using transfer learning.

The proposed approach on inferring foreign lan-
guages users communicate on Twitter and the de-
tailed analysis on cross-lingual variations have
several important implications. Our findings can
not only inform models in sociolinguistics and
psycholinguistics, but also have broad applications
in a variety of natural language processing (NLP)
tasks including language identification (Tetreault
et al., 2013), author profiling (Volkova et al., 2015)
and English as a second language (ESL) error de-
tection (Leacock et al., 2010).

2 Background

Multilinguality in Social Media Multilingual-
ity and code-mixing in social media is the norm
rather than an exception. While it has been studied
extensively in formal and spoken contexts (Joshi,
1982; Solorio and Liu, 2008; Holmes, 2013), it
remains under-examined in social media (Shafie
and Nayan, 2013; Bock, 2013; Sihombing and
Meisuri, 2014; Androutsopoulos, 2015).

Only a few corpora have been created to support
studies on multilinguality and code-switching in
informal communications (Cotterell et al., 2014;
Maharjan et al., 2015). The majority of work
in social media focused on word-level language
identification (Solorio et al., 2014; Jain and Bhat,
2014) and automatic prediction of code-switching
points (Nguyen and Doğruöz, 2013). Other stud-
ies investigated how language groups connect
within a network of multilingual users (Eleta and
Golbeck, 2014; Kim et al., 2014), the use of code-
switched hashtags (Jurgens et al., 2014) and mi-
nority languages on Twitter (Nguyen et al., 2015).

Cross-Linguistic Transfer in ESL Texts Re-
cent work by Berzak et al. (2014) measured cross-
linguistic transfer using correlations between lan-
guage similarities estimated from structured fea-
tures of ESL texts and typological features of na-
tive languages. Similar to earlier work on lan-
guage similarities by Georgi et al. (2010) they
used the Word Atlas of Language Structures
(WALS) topological features that include phonol-
ogy, morphology, nominal categories, nominal
syntax, verbal categories, word order, simple
clauses, complex sentences and lexicon features.

Native Language Identification (L1) on ESL
Speakers Earlier work on L1 identifica-
tion (Koppel et al., 2005; Tsur and Rappoport,
2007; Brooke and Hirst, 2012; Wong and Dras,
2011; Tetreault et al., 2013) focused on identifying
L1 in small corpora generated by ESL students.
The proposed models relied on classifiers learned
from lexical features over characters, words, and
parts of speech tags, and the document structure.

Unlike previous work, this paper is a first large-
scale study that focuses on cross-lingual syntac-
tic and stylistic variations in informal multilingual
communications in social media. We build mod-
els to predict non-English languages that users
speak exclusively from their tweets in English and
discuss cross-linguistic transfer from non-English
to English in social media. Moreover, in con-
trast to earlier work on L1 identification in ESL
essays (Tetreault et al., 2013) that reports mod-
els learning topical distinctions rather than differ-
ences in syntax, we found that stylistic and syn-
tactic choices are predictive of foreign languages
users communicate in social media.

3 Multilingual Twitter Dataset

We collected multilingual user timelines using the
public Twitter API stream from September 2015
through January 2016. From the set of users who
posted during that time, we only sampled users
who produced at least 25 tweets in English and
25 tweets in any other language. Tweet-based lan-
guage detection was obtained using the state-of-
the-art language identification algorithm Lui and
Baldwin (2011).2 The resulting user and tweet
distributions, the mean and the median number
of tweets per user in English (EN) and Other (O)
languages are reported in Table 1. In total, our

2http://support.gnip.com/enrichments/
language_detection.html
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dataset contains 6,036,085 tweets (3,718,212 in
English and 2,317,873 in other languages) pro-
duced by 27,335 users who tweet in English and
one or more of 12 other languages.3

4 Approach

4.1 Non-English Language Prediction
We evaluate the influence of different signals in
English tweets on predicting non-English lan-
guages the users speak in a classification task. We
use several classifiers including Logistic Regres-
sion, Random Forest and AdaBoost implemented
in scikit-learn (Pedregosa et al., 2011). In addi-
tion, we developed a neural network architecture
as shown in Figure 1 that relies on word, char-
acter and byte representations, social interactions
(graph) and transfer learning from a much larger
multilingual Twitter corpus. We validate out mod-
els using 10-fold cross-validation.

Figure 1: Neural network architecture for predicting
non-English languages from English tweets.

For machine learning models, in addition to
lexical, phonetic, syntactic and stylistic signals
described in Section 4.2, we rely on pre-trained
word embeddings – 300-dim Word2Vec (W2V)
vectors trained on Google News (News W2V),4

100-dim GloVe5 vectors (Twitter GloVe) trained
on 2 billion tweets (Pennington et al., 2014) and
Normalized Pointwise Mutual Information (Twit-
ter NPMI) vectors released by Lampos et al.
(2014). To construct 50-dim embedding vectors
we learned word embeddings using a skip-gram
model (Mikolov et al., 2013) from gensim pack-
age6 on a corpus of one million English tweets.

3If a user tweets in more that one foreign language, we
predict the most used language.

4https://code.google.com/archive/p/
word2vec/

5http://nlp.stanford.edu/projects/
glove/

6https://radimrehurek.com/gensim/

For deep learning models, social network inter-
actions are encoded as one-hot vectors over the
vocabulary of @mentions similar to (Volkova
et al., 2017). For transfer learning, we trained a
language model on large Twitter dataset of 450
thousand users who speak 12 non-English lan-
guages, and transferred weights to 27,335 users.

4.2 Multilingual Timeline Analysis

Cross-Lingual Stylistic Analysis To measure
cross-lingual stylistic similarities in English con-
tent (as incorporate stylistic features into our
predictive models) we calculate tweet-level and
word-level stylistic features that reflect user com-
munication behavior and interaction style sim-
ilar to (Volkova and Bell, 2017). For exam-
ple, a style vector includes tweet length in words
and characters; proportion of uppercased, elon-
gated e.g., Yaay, woow and capitalized words;
punctuation, hashtag, mention, url, emoticon and
mixed punctuation rate e.g., ???!!! etc. We to-
kenized tweets using the Twokenizer (Owoputi
et al., 2013) for the majority of languages, except
Korean,7 Japanese,8 and Hindi.9

Cross-Lingual Syntactic Analysis To estimate
syntactic variations in English content given other
foreign languages the users speak we focus on
the part-of-speech use. We convert all English
tweets to the corresponding part-of-speech (POS)
tag vectors using the state-of-the-art POS tagger
trained on Twitter data (Owoputi et al., 2013).

5 Classification Results

Table 2 presents classification results of non-
English languages multilingual users speak pre-
dicted from their English tweets obtained using
machine learning models. We found that tweet
content – word embeddings or word ngrams are
the most predictive of non-English languages that
multilingual users tweet (F1=0.72, 12-way clas-
sification). Style is more predictive than syntax
(F1=0.66 compared to F1=0.64). As expected, lin-
guistic features – content, syntax and style fea-
tures significantly outperform the baseline profile
features. Logistic Regression and Random Forest
models outperform AdaBoost classifier.

models/word2vec.html
7https://github.com/twitter/

twitter-korean-text
8https://pypi.python.org/pypi/

tinysegmenter
9http://www.nltk.org/
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Figure 2: Cross-lingual stylistic variations in the English portion of multilingual content: “prop.” is the proportion
of tweets, “.rate” – the rate per word (ru:en stands for the English content of Russian speakers).

Feature AdaBoost LogReg RandForest
SEMANTIC: EMBEDDINGS

Twitter Glove 0.53 0.47 0.57
Twitter NPMI 0.55 0.53 0.52
News W2V 0.54 0.46 0.56
Twitter W2V 0.58 0.67 0.54

LEXICAL: WORDS
Unigrams 0.53 0.72 0.64
Trigrams 0.53 0.72 0.65

PHONETIC: CHARACTERS
Bigrams 0.53 0.55 0.56
Trigrams 0.42 0.60 0.59
Fivegrams 0.52 0.64 0.66

SYNTACTIC AND STYLISTIC
Profile 0.48 0.41 0.54
Style 0.53 0.52 0.66
Syntax 0.52 0.64 0.46

Table 2: Prediction results (macro F1 weighted by
support) of non-English languages users speak learned
from syntax, style and lexical content in 3.7 million En-
glish tweets using AdaBoost, Random Forest, and Lo-
gistic Regression models.

Figure 3 presents foreign language classifica-
tion results using neural network architectures
trained on word, character, and byte representa-
tions (content), (b) social interactions encoded as
one-hot @mention vectors (graph), (c) the com-
bination of content and graph vectors, and (d)

Figure 3: Foreign language classification results ob-
tained using neural network models.

content with embedding weights initialized using
transfer learning. Graph representations rely on
one-hot encoding vectors of user interactions.

6 Stylistic and Syntactic Analysis

We summarize our novel findings on stylistic simi-
larities in English content across multilingual user
timelines in Figure 2 and discuss them below.

Language Complexity Hindi (highly phonetic)
speakers generate the longest tweets in English
– more than 18 words per tweet on average, but
speakers of Polish and French produce English
tweets with less than 14 words. Speakers of Hindi
use punctuation more in their English tweets (≥
27% of tweets), whereas speakers of Polish and
French use less (≤ 20%).

Language Subjectivity Speakers of Tagalog
use significantly more English tweets with emoti-
cons (4%) compared to other languages (≤ 1.5%).
Speakers of Russian produce tweets with repeated
punctuation the most (12%) whereas speakers of
Polish the least (7%) compared to others. Elon-
gations e.g., Woooow are used significantly more
in English tweets generated by German speakers
(0.6%) and less by Russian users (≤ 0.2%).

Communication Behavior Speakers of French
and German tend to use more hashtags per word
(8%) in their English tweets compared to other
languages. In contrast, speakers of Hindi (1%)
and Korean (3.5%) use the least. Interestingly, the
proportion of English tweets with hashtags is the
highest (≥ 80%) for Tagalog speakers. Users who
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Figure 4: Cross-lingual syntactic variations in the English portion of multilingual content.

speak Tagalog, Portuguese, Italian and Hindi com-
municate through user mentions in English tweets
the most compared to others – more than 80% of
the tweets contain mentions. German users pro-
duce the least mentions per word (≤ 3%) and
the least tweets with mentions (≤ 30%). German
speakers retweet the least (≤30%), Tagalog and
Hindi speakers the most (≥ 75%) in English. Rus-
sian speakers share URLs the most – more than
75% of tweets contain URLs in their English con-
tent, and Hindi speakers the least.
Syntactic Analysis Figure 4 presents prefer-
ences in part-of-speech tags used in English por-
tion of multilingual content generated by speak-
ers of 12 non-English languages. We discuss our
findings below focusing on the most common ESL
errors for non-English speakers defined by Ro-
zovskaya and Roth (2010) that include determin-
ers, prepositions, adverbs and pronouns.

We found that speakers of Hindi use more ad-
jectives compared to other languages in their En-
glish content (5%), whereas speakers of German
and Polish use less (3.5 and 2.5 percent respec-
tively). We found that speakers of Korean and
Hindi use more determiners (5%), but speak-
ers of German and Polish use twice less articles.
Speakers of Korean use the most interjections e.g.,
lol, yaay! and speakers of Russian use the least.
However, speakers of Russian use more nouns
(16%) compared to other languages and speakers
of Tagalog and Polish use the least (11%). Rus-

sian and Hindi speakers generate more preposi-
tions (7.5 and 9 percent), and Polish speakers use
the least (3%). Korean, Portuguese and Tagalog
speakers produce more pronouns (4 – 5%), but
German speakers generate less (1%) in their En-
glish content. Korean users produce more adverbs
(4%), German and Polish users generate less ad-
verbs (1 – 1.5%). Speakers of Hindi and Korean
use more conjunctions and verbs (1.5% and 12%)
but speakers of Polish and German use less than
1% and 6%, respectively.

7 Conclusions

We presented an approach to identify foreign
(non-English) language speakers from their En-
glish social media posts. We showed that lex-
ical, syntactic and syntactic choices of users in
their English posts are the most predictive of other
non-English languages they speak. Furthermore,
our analysis of cross-lingual transfer in informal
communications revealed novel findings on stylis-
tic and syntactic variations across speakers of 12
languages on Twitter.
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Abstract
Neural abstractive summarization models have
led to promising results in summarizing rela-
tively short documents. We propose the first
model for abstractive summarization of single,
longer-form documents (e.g., research papers).
Our approach consists of a new hierarchical
encoder that models the discourse structure of
a document, and an attentive discourse-aware
decoder to generate the summary. Empirical
results on two large-scale datasets of scientific
papers show that our model significantly out-
performs state-of-the-art models.

1 Introduction
Existing large-scale summarization datasets

consist of relatively short documents. For exam-
ple, articles in the CNN/Daily Mail dataset (Her-
mann et al., 2015) are on average about 600 words
long. Similarly, existing neural summarization
models have focused on summarizing sentences
and short documents. In this work, we propose a
model for effective abstractive summarization of
longer documents. Scientific papers are an ex-
ample of documents that are significantly longer
than news articles (see Table 1). They also fol-
low a standard discourse structure describing the
problem, methodology, experiments/results, and
finally conclusions (Suppe, 1998).

Most summarization works in the literature
focus on extractive summarization. Examples
of prominent approaches include frequency-based
methods (Vanderwende et al., 2007), graph-based
methods (Erkan and Radev, 2004), topic mod-
eling (Steinberger and Jezek, 2004), and neural
models (Nallapati et al., 2017). Abstractive sum-
marization is an alternative approach where the
generated summary may contain novel words and
phrases and is more similar to how humans sum-
marize documents (Jing, 2002). Recently, neu-
ral methods have led to encouraging results in

abstractive summarization (Nallapati et al., 2016;
See et al., 2017; Paulus et al., 2017; Li et al.,
2017). These approaches employ a general frame-
work of sequence-to-sequence (seq2seq) models
(Sutskever et al., 2014) where the document is
fed to an encoder network and another (recurrent)
network learns to decode the summary. While
promising, these methods focus on summarizing
news articles which are relatively short. Many
other document types, however, are longer and
structured. Seq2seq models tend to struggle with
longer sequences because at each decoding step,
the decoder needs to learn to construct a context
vector capturing relevant information from all the
tokens in the source sequence (Shao et al., 2017).

Our main contribution is an abstractive model
for summarizing scientific papers which are an
example of long-form structured document types.
Our model includes a hierarchical encoder, captur-
ing the discourse structure of the document and a
discourse-aware decoder that generates the sum-
mary. Our decoder attends to different discourse
sections and allows the model to more accurately
represent important information from the source
resulting in a better context vector. We also in-
troduce two large-scale datasets of long and struc-
tured scientific papers obtained from arXiv and
PubMed to support both training and evaluating
models on the task of long document summariza-
tion. Evaluation results show that our method out-
performs state-of-the-art summarization models1.

2 Background
In the seq2seq framework for abstractive sum-

marization, an input document x is encoded using
a Recurrent Neural Network (RNN) with h

(e)
i be-

ing the hidden state of the encoder at timestep i.
The last step of the encoder is fed as input to an-
other RNN which decodes the output one token
1 Data/code: https://github.com/acohan/long-summarization
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Figure 1: Overview of our model. The word-level RNN
is shown in blue and section-level RNN is shown in
green. The decoder also consists of an RNN (orange)
and a “predict” network for generating the summary.
At each decoding time step t (here t=3 is shown), the
decoder forms a context vector ct which encodes the
relevant source context (c0 is initialized as a zero vec-
tor). Then the section and word attention weights are
respectively computed using the green “section atten-
tion” and the blue “word attention” blocks. The context
vector is used as another input to the decoder RNN and
as an input to the “predict” network which outputs the
next word using a joint pointer-generator network.

at a time. Given an input document along with
the corresponding ground-truth summary y, the
model is trained to output a summary ŷ that is
close to y. The output at timestep t is predicted
using the decoder input x′t, decoder hidden state
h
(d)
t , and some information about the input se-

quence. This framework is the general seq2seq
framework employed in many generation tasks
including machine translation (Sutskever et al.,
2014; Bahdanau et al., 2014) and summarization
(Nallapati et al., 2016; Chopra et al., 2016).
Attentive decoding The attention mechanism
maps the decoder state and the encoder states to
an output vector, which is a weighted sum of the
encoder states and is called context vector (Bah-
danau et al., 2014). Incorporating this context
vector at each decoding timestep (attentive decod-
ing) is proven effective in seq2seq models. For-
mally, the context vector ct is defined as: ct =∑N

i=1 α
(t)
i h

(e)
i where α(t)

i are the attention weights
calculated as follows:

α
(t)
i =softmax

i
(score(h

(e)
i ,h

(d)
t−1)) (1)

where softmax
i

means that the denominator’s sum
in the softmax function is over i. The score func-
tion can be defined in bilinear, additive, or mul-
tiplicative ways (Luong et al., 2015). We use the
additive scoring function:

score(h
(e)
i ,h

(d)
t−1) = v>a tanh

(
linear(h

(e)
i ,h

(d)
t−1)
)

(2)

where va is a weight vector and linear is a linear
mapping function. I.e.,

linear(XXX1, XXX2) = WWW1XXX1 + WWW2XXX2 + b (3)

where WWW1 and WWW2 are weight matrices and b is the
bias vector.

3 Model

We now describe our discourse-aware summa-
rization model (shown in Figure 1).
Encoder Our encoder extends the RNN encoder
to a hierarchical RNN that captures the document
discourse structure. We first encode each dis-
course section and then encode the document. For-
mally, we encode the document as a vector d ac-
cording to the following:

d = RNNdoc

(
{h(s)

1 , ...,h
(s)
N }
)

RNN(.) denotes a function which is a recurrent
neural network whose output is the final state of
the network encoding the entire sequence. N is
the number of sections in the document and h

(s)
j

is representation of section j in the document con-
sisting of a sequence of tokens.

h
(s)
j = RNNsec

(
x(j,1), ...x(j,M)}

)

where x(j,i) are dense embeddings correspond-
ing to the tokens w(j,i) and M is the maximum
section length. The parameters of RNNsec are
shared for all the discourse sections. We use a
single layer bidirectional LSTM (following the
LSTM formulation of Graves et al. (2013)) for
both RNNdoc and RNNsec; further extension to
multilayer LSTMs is straightforward. We com-
bine the forward and backward LSTM states to a
single state using a simple feed-forward network:

h = relu(W([
−→
h ,
←−
h ] + b)

where [, ] shows the concatenation operation.
Throughout, when we mention the RNN (LSTM)
state, we are referring to this combined state of
both forward and backward RNNs (LSTMs).
Discourse-aware decoder When humans sum-
marize a long structured document, depending on
the domain and the nature of the document, they
write about important points from different dis-
course sections of the document. For example,
scientific paper abstracts typically include the de-
scription of the problem, discussion of the meth-
ods, and finally results and conclusions (Suppe,
1998). Motivated by this observation, we propose
a discourse-aware attention method. Intuitively, at
each decoding timestep, in addition to the words
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in the document, we also attend to the relevant
discourse section (the “section attention” block in
Figure 1). Then we use the discourse-related in-
formation to modify the word-level attention func-
tion. Specifically, the context vector representing
the source document is:

ct =
∑N

j=1

∑M

i=1
α
(t)
(j,i)h

(e)
(j,i) (4)

where h
(e)
(j,i) shows the encoder state of word i

in discourse section j and α
(t)
(j,i) shows the cor-

responding attention weight to that encoder state.
The scalar weights α(t)

(j,i) are obtained according
to:

α
(t)
(j,i) = softmax

(i,j)

(
β
(t)
j score(h

(e)
(j,i),h

(d)
t−1)

)
(5)

The score function is the additive attention func-
tion (Equation 2) and the weights β(t)j are updated
according to:

β
(t)
j = softmax

j
(score(h

(s)
j ,h

(d)
t−1)) (6)

At each timestep t, the decoder state h
(d)
t and

the context vector ct are used to estimate the prob-
ability distribution of next word yt:

p(yt|y1:t−1) = softmax
(
V> linear

(
h
(d)
t , ct

))
(7)

where V is a vocabulary weight matrix and
softmax is over the entire vocabulary.
Copying from source There has been a surge of
recent works in sequence learning tasks to address
the problem of unkown token prediction by allow-
ing the model to occasionally copy words directly
from source instead of generating a new token (Gu
et al., 2016; See et al., 2017; Paulus et al., 2017;
Wiseman et al., 2017). Following these works,
we add an additional binary variable zt to the de-
coder, indicating generating a word from vocab-
ulary (zt=0) or copying a word from the source
(zt=1). The probability is learnt during training
according to the following equation:

p(zt=1|y1:t−1) = σ(linear(h
(d)
t , ct,x

′
t)) (8)

Then the next word yt is generated according to:

p(yt|y1:t−1) =
∑

z

p(yt, zt=z|y1:t−1); z = {0, 1}

The joint probability is decomposed as:

p(yt, zt=z) =

{
pc(yt|y1:t−1) p(zt=z|y1:t−1), z=1

pg(yt|y1:t−1) p(zt=z|y1:t−1), z=0

pg is the probability of generating a word from the
vocabulary and is defined according to Equation 7.

pc is the probability of copying a word from the
source vector x and is defined as the sum of the
word’s attention weights. Specifically, the proba-
bility of copying a word x` is defined as:

pc(yt = x`|y1:t−1) =
∑

(j,i):x(j,i)=x`

α
(t)
(j,i) (9)

Decoder coverage In long sequences, the neu-
ral generation models tend to repeat phrases where
the softmax layer predicts the same phrase multi-
ple times over multiple timesteps. To address this
issue, following See et al. (2017), we track atten-
tion coverage to avoid repeatedly attending to the
same steps. This is done with a coverage vector
cov(t), the sum of attention weight vectors at pre-
vious timesteps: cov

(t)

(j,i) =
∑t−1

k=0 α
(k)

(j,i)

The coverage implicitly includes information
about the attended document discourse sections.
We incorporate the decoder coverage as an addi-
tional input to the attention function:

α
(t)

(j,i) = softmax
(i,j)

(
β
(t)
j score(h

(e)

(j,i), cov
(t)

(j,i),h
(d)
t−1)

)

4 Related work

Neural abstractive summarization models have
been studied in the past (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016) and later ex-
tended by source copying (Miao and Blunsom,
2016; See et al., 2017), reinformcement learning
(Paulus et al., 2017), and sentence salience infor-
mation (Li et al., 2017). One model variant of Nal-
lapati et al. (2016) is related to our model in using
sentence-level information in attention. However,
our model is different as it contains a hierarchi-
cal encoder, uses discourse sections in the decod-
ing step, and has a coverage mechanism. Sim-
ilarly, Ling and Rush (2017) proposed a coarse-
to-fine attention model that uses hard attention to
find the text chunks of importance and then only
attend to words in that chunk. In contrast, we
consider all the discourse sections using soft at-
tention. The closest model to ours is that of See
et al. (2017) and Paulus et al. (2017) who used
a joint pointer-generator network for summariza-
tion. However, our model extends theirs by (i) a
hierarchical encoder for modeling long documents
and (ii) a discourse-aware decoder that captures
the information flow from all discourse sections of
the document. Finally, in a recent work, Liu et al.
(2018) proposed a model based on the transformer
network (Vaswani et al., 2017) for abstractive gen-
eration of Wikipedia articles. However, their focus
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Datasets # docs avg. doc.
length (words)

avg. summary
length (words)

CNN 92K 656 43
Daily Mail 219K 693 52
NY Times 655K 530 38
PubMed (this work) 133K 3016 203
arXiv (this work) 215K 4938 220

Table 1: Statistics of our arXiv and PubMed datasets
compared with existing large-scale summarization cor-
pora, CNN and Daily Mail (Nallapati et al., 2016) and
NY Times (Paulus et al., 2017).

is on multi-document summarization.
Our datasets are obtained from scientific pa-

pers. Scientific document summarization has been
recently received extended attention (Qazvinian
et al., 2013; Cohan and Goharian, 2015, 2017b,a).
In contrast to ours, existing approaches are extrac-
tive and rely on external information such as cita-
tions, which may not be available for all papers.

5 Data

Seq2seq models typically have a large number
of parameters and thus they require large training
data with ground truth summaries. Researchers
have constructed such training data from news ar-
ticles (e.g., CNN, Daily Mail and New York Times
articles), where the abstracts or highlights of news
articles are considered as ground truth summaries
(Nallapati et al., 2016; Paulus et al., 2017). How-
ever, news articles are relatively short and not suit-
able for the task of long-from document summa-
rization. Following these works, we take scien-
tific papers as an example of long documents with
discourse information, where their abstracts can
be used as ground-truth summaries. We introduce
two datasets collected from scientific repositories,
arXiv.org and PubMed.com.

The choice of scientific papers for our dataset
is motivated by the fact that scientific papers are
examples of long documents that follow a stan-
dard discourse structure and they already come
with ground truth summaries, making it possible
to train supervised neural models. We follow ex-
isting work in constructing large-scale summariza-
tion datasets that take news article abstracts as
ground truth.

We remove the documents that are excessively
long (e.g., theses) or too short (e.g., tutorial an-
nouncements), or do not have an abstract or dis-
course structure. We use the level-1 section head-
ings as the discourse information. For arXiv, we
use the LATEX files and convert them to plain text

using Pandoc (https://pandoc.org) to preserve the
discourse section information. We remove figures
and tables using regular expressions to only pre-
serve the textual information. We also normalize
math formulas and citation markers with special
tokens. We analyze the document section names
and identify the most common concluding sec-
tions names (e.g. conclusion, concluding remarks,
summary, etc). We only keep the sections up to
the conclusion section of the document and we re-
move sections after the conclusion.

The statistics of our datasets are shown in Ta-
ble 1. In our datasets, both document and sum-
mary lengths are significantly larger than the exist-
ing large-scale summarization datasets. We retain
about 3% (5%) of PubMed (ArXiv) as validation
data and about another 3% (5%) for test; the rest
is used for training.

6 Experiments
Setup Similar to the majority of published re-
search in the summarization literature (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
evaluation was done using the ROUGE automatic
summarization evaluation metric (Lin, 2004) with
full-length F-1 ROUGE scores. We lowercase all
tokens and perform sentence and word tokeniza-
tion using spaCy (Honnibal and Johnson, 2015).
Implementation details We use Tensorflow 1.4
for implementing our models. We use the hyper-
parameters suggested by See et al. (2017). In par-
ticular, we use two bidirectional LSTMs with cell
size of 256 and embedding dimensions of 128.
Embeddings are trained from scratch and we did
not find any gain using pre-trained embeddings.
The vocabulary size is constrained to 50,000; us-
ing larger vocabulary size did not result in any im-
provement. We use mini-batches of size 16 and
we limit the document length to 2000 and section
length to 500 tokens, and number of sections to
4. We use batch-padding and dynamic unrolling
to handle variable sequence lengths in LSTMs.
Training was done using Adagrad optimizer with
learning rate 0.15 and an initial accumulator value
of 0.1. The maximum decoder size was 210 to-
kens which is in line with average abstract length
in our datasets. We first train the model without
coverage and added it at the last two epochs to help
the model converge faster. We train the models on
NVIDIA Titan X Pascal GPUs. Training is per-
formed for about 10 epochs and each training step
takes about 3.2 seconds. We used beam search at
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Summarizer RG-1 RG-2 RG-3 RG-L
E

xt
ra

ct
iv

e SumBasic 29.47 6.95 2.36 26.30
LexRank 33.85 10.73 4.54 28.99
LSA 29.91 7.42 3.12 25.67

A
bs

tr
ac

tiv
e Attn-Seq2Seq 29.30 6.00 1.77 25.56

Pntr-Gen-Seq2Seq 32.06 9.04 2.15 25.16
This work †‡35.80 †11.05 †3.62 †‡31.80

Table 2: Results on the arXiv dataset, RG: ROUGE. For our
method † (‡) shows statistically significant improvement with
p<0.05 over other abstractive methods (all other methods).

Summarizer RG-1 RG-2 RG-3 RG-L

E
xt

ra
ct

iv
e SumBasic 37.15 11.36 5.42 33.43

LexRank 39.19 13.89 7.27 34.59
LSA 33.89 9.93 5.04 29.70

A
bs

tr
ac

tiv
e Attn-Seq2Seq 31.55 8.52 7.05 27.38

Pntr-Gen-Seq2Seq 35.86 10.22 7.60 29.69
This work †38.93 †‡15.37 †‡9.97 †‡35.21

Table 3: Results on PubMed dataset, RG:ROUGE. For
our method, † (‡) shows statistically significant improvement
with p<0.05 over abstractive methods (all other methods).

decoding time with beam size of 4. We train the
abstractive baselines for about 250K iterations as
suggested by their authors.

Comparison We compare our method with
several well-known extractive baselines as well
as state-of-the-art abstractive models using their
open-sourced implementations, when available;
we follow the same training setup described in
the corresponding papers. The compared methods
are: LexRank (Erkan and Radev, 2004), SumBa-
sic (Vanderwende et al., 2007), LSA (Steinberger
and Jezek, 2004), Attn-Seq2Seq (Nallapati et al.,
2016; Chopra et al., 2016), Pntr-Gen-Seq2Seq
(See et al., 2017). The first three are extractive
models and last two are abstractive. Pntr-Gen-
Seq2Seq extends Attn-Seq2Seq by using a joint
pointer network during decoding. For Pntr-Gen-
Seq2Seq we use their reported hyperparameters to
ensure that the result differences are not due to hy-
perparameter tuning.

Results Our main results are shown in Tables 2
and 3. Our model significantly outperforms the
state-of-the-art abstractive methods, showing its
effectiveness on both datasets. We observe that
in our ROUGE-1 score is respectively about 4 and
3 points higher than the abstractive model Pntr-
Gen-Seq2Seq for the arXiv and PubMed datasets,
providing a significant improvement. Our method
also outperforms most of the extractive methods
except for LexRank in one of the ROUGE scores.
We note that since extractive methods copy salient
sentences from the document, it is usually easier

Abstract: in this paper , the author proposes a series of multilevel double hash-
ing schemes called cascade hash tables . they use several levels of hash tables
. in each table , we use the common double hashing scheme . higher level
hash tables work as fail - safes of lower level hash tables . by this strategy , it
could effectively reduce collisions in hash insertion . thus it gains a constant
worst case lookup time with a relatively high load factor (@xmath0 ) in random
experiments . different parameters of cascade hash tables are tested .
Pntr-Gen-Seq2Seq: hash table is a common data structure used in large set of
data storage and retrieval . it has an o(1 ) lookup time on average , but the worst
case lookup time can be as bad as . is the size of the hash table . we present a
set of hash table schemes called cascade hash tables . hash table data structures
which consist of several of hash tables with different size .
Our method: cascade hash tables are a common data structure used in large
set of data storage and retrieval . such a time variation is essentially caused
by possibly many collisions during keys hashing . in this paper , we present a
set of hash schemes called cascade hash tables which consist of several levels (
@xmath2 ) of hash tables with different size . after constant probes , if an item
ca ’nt find a free slot in limited probes in any hash table , it will try to find a
cell in the second level , or subsequent lower levels . with this simple strategy
, these hash tables will have descendant load factors , therefore lower collision
probabilities .

Figure 2: Example of a generated summary

for them to achieve higher ROUGE scores.
Figure 2 illustrates the effectiveness of our

model extensions in capturing various discourse
information from the papers. It can be observed
that the state-of-the-art Pntr-Gen-Seq2Seq model
generates a summary that mostly focuses on intro-
ducing the problem, whereas our model generates
a summary that includes more information about
the methodology and impacts of the target paper.
This indicates that the context vector in our model
compared with Pntr-Gen-Seq2Seq is better able to
capture important information from the source by
attending to various discourse sections.

7 Conclusions and future work
This work was the first attempt at addressing

neural abstractive summarization of single, long
documents. We presented a neural sequence-to-
sequence model that is able to effectively summa-
rize long and structured documents such as scien-
tific papers. While our results are encouraging,
there is still much room for improvement for this
challenging task; our new datasets can help the
community to further explore this problem.

We note that following the convention in the
summarization research, our quantitative evalua-
tion is performed by ROUGE automatic metric.
While ROUGE is an effective evaluation frame-
work, nuances in the coherence or coverage of the
summaries are not captured with it. It is non-trivial
to evaluate such qualities especially for long doc-
ument summarization; future work can design ex-
pert human evaluations to explore these nuances.
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Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research 22:457–479.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on. IEEE, pages 6645–6649.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics,
Berlin, Germany, pages 1631–1640. http://
www.aclweb.org/anthology/P16-1154.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Matthew Honnibal and Mark Johnson. 2015. An
improved non-monotonic transition system for de-
pendency parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 1373–
1378. https://aclweb.org/anthology/
D/D15/D15-1162.

Hongyan Jing. 2002. Using hidden markov modeling
to decompose human-written summaries. Computa-
tional linguistics 28(4):527–543.

Piji Li, Wai Lam, Lidong Bing, Weiwei Guo, and Hang
Li. 2017. Cascaded attention based unsupervised
information distillation for compressive summariza-
tion. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing.
pages 2071–2080.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Jeffrey Ling and Alexander Rush. 2017. Coarse-to-
fine attention models for document summarization.
In Proceedings of the Workshop on New Frontiers
in Summarization. Association for Computational
Linguistics, Copenhagen, Denmark, pages 33–
42. http://www.aclweb.org/anthology/
W17-4505.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summa-
rizing long sequences. In International Confer-
ence on Learning Representations. https://
openreview.net/forum?id=Hyg0vbWC-.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Yishu Miao and Phil Blunsom. 2016. Language
as a latent variable: Discrete generative mod-
els for sentence compression. arXiv preprint
arXiv:1609.07317 .

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. AAAI 1:1.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023 .

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304 .

Vahed Qazvinian, Dragomir R Radev, Saif M Moham-
mad, Bonnie Dorr, David Zajic, Michael Whidby,
and Taesun Moon. 2013. Generating extractive sum-
maries of scientific paradigms. Journal of Artificial
Intelligence Research 46:165–201.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685 .

620



Abigail See, Christopher Manning, and Peter Liu.
2017. Get to the point: Summarization with pointer-
generator networks. In Association for Computa-
tional Linguistics. https://arxiv.org/abs/
1704.04368.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017.
Generating high-quality and informative conversa-
tion responses with sequence-to-sequence models.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing. pages
2210–2219.

Josef Steinberger and Karel Jezek. 2004. Using latent
semantic analysis in text summarization and sum-
mary evaluation. In Proc. ISIM04. pages 93–100.

Frederick Suppe. 1998. The structure of a scientific
paper. Philosophy of Science 65(3):381–405.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett,
and Ani Nenkova. 2007. Beyond sumbasic: Task-
focused summarization with sentence simplification
and lexical expansion. Information Processing &
Management 43(6):1606–1618.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Sys-
tems 30, Curran Associates, Inc., pages 6000–
6010. http://papers.nips.cc/paper/
7181-attention-is-all-you-need.
pdf.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052 .

621



Proceedings of NAACL-HLT 2018, pages 622–627
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

A Mixed Hierarchical Attention based Encoder-Decoder Approach for
Standard Table Summarization

Parag Jain† Anirban Laha†∗ Karthik Sankaranarayanan†
Preksha Nema∗ Mitesh M. Khapra∗‡ Shreyas Shetty∗

†IBM Research ∗IIT Madras, India
‡ Robert Bosch Center for Data Science and Artificial Intelligence, IIT Madras

{pajain34,anirlaha,kartsank}@in.ibm.com
{preksha,miteshk,shshett}@cse.iitm.ac.in

Abstract

Structured data summarization involves gen-
eration of natural language summaries from
structured input data. In this work, we con-
sider summarizing structured data occurring in
the form of tables as they are prevalent across
a wide variety of domains. We formulate the
standard table summarization problem, which
deals with tables conforming to a single pre-
defined schema. To this end, we propose a
mixed hierarchical attention based encoder-
decoder model which is able to leverage the
structure in addition to the content of the ta-
bles. Our experiments on the publicly avail-
able WEATHERGOV dataset show around 18
BLEU (∼ 30%) improvement over the current
state-of-the-art.

1 Introduction

Abstractive summarization techniques from struc-
tured data seek to exploit both structure and con-
tent of the input data. The type of structure on
the input side can be highly varied ranging from
key-value pairs (e.g. WIKIBIO (Lebret et al.,
2016)), source code (Iyer et al., 2016), ontolo-
gies (Androutsopoulos et al., 2014; Colin et al.,
2016), or tables (Wiseman et al., 2017), each of
which require significantly varying approaches.
In this paper, we focus on generating summaries
from tabular data. Now, in most practical ap-
plications such as finance, healthcare or weather,
data in a table are arranged in rows and columns
where the schema is known beforehand. How-
ever, change in the actual data values can neces-
sitate drastically different output summaries. Ex-
amples shown in the figure 1 have a predefined
schema obtained from the WEATHERGOV dataset
(Liang et al., 2009) and its corresponding weather
report summary. Therefore, the problem that we
seek to address in this paper is to generate ab-
stractive summaries of tables conforming to a pre-

defined fixed schema (as opposed to cases where
the schema is unknown). We refer to this set-
ting as standard table summarization problem.
Another problem that could be formulated is one
in which the output summary is generated from
multiple tables as proposed in a recent challenge
(Wiseman et al., 2017) (this setting is out of the
scope of this paper). Now, as the schema is fixed,
simple rule based techniques (Konstas and Lapata,
2013) or template based solutions could be em-
ployed. However, due to the vast space of selec-
tion (which attributes to use in the summary based
on the current value it takes) and generation (how
to express these selected attributes in natural lan-
guage) choices possible, such approaches are not
scalable in terms of the number of templates as
they demand hand-crafted rules for both selection
and generation.

We attempt to solve the problem of standard
table summarization by leveraging the hierarchi-
cal nature of fixed-schema tables. In other words,
rows consist of a fixed set of attributes and a ta-
ble is defined by a set of rows. We cast this prob-
lem into a mixed hierarchical attention model
following the encode-attend-decode (Cho et al.,
2015) paradigm. In this approach, there is static
attention on the attributes to compute the row
representation followed by dynamic attention on
the rows, which is subsequently fed to the de-
coder. This formulation is theoretically more effi-
cient than the fully dynamic hierarchical attention
framework followed by Nallapati et al. (2016).
Also, our model does not need sophisticated sam-
pling or sparsifying techniques like (Ling and
Rush, 2017; Deng et al., 2017), thus, retaining
differentiability. To demonstrate the efficacy of
our approach, we transform the publicly avail-
able WEATHERGOV dataset (Liang et al., 2009)
into fixed-schema tables, which is then used for
our experiments. Our proposed mixed hierarchi-
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Figure 1: Standard Table Summarization with fixed schema tables as input.

cal attention model provides an improvement of
around 18 BLEU (around 30%) over the cur-
rent state-of-the-art result by Mei et al. (2016).

2 Tabular Data Summarization

A standard table consist of set of records (or
rows) R = (r1, r2, ...rT ) and each record r
has a fixed set of attributes (or columns) Ar =
(ar1, ar2, ...arM ). Tables in figure 1 have 7
columns (apart from ‘TYPE’) which correspond to
different attributes. Also U = (u1, u2, ...uT ) rep-
resents the type of each record where uk is one-
hot encoding for the record type for record rk.
Training data consists of instance pairs (Xi, Yi)
for i = 1, 2, ..n, where Xi = (Ri, Ui) represents
the input table and Yi = (y1, ..., yT ′) represents
the corresponding natural language summary. In
this paper, we propose an end-to-end model which
takes in a table instance X to produce the output
summary Y . This can be derived by solving in Y
the following conditional probability objective:

Y ∗ = arg max
Y

T ′∏

t=1

p(yt|y1, ..., yt−1, X) (1)

2.1 Mixed Hierarchical Attention Model
(MHAM)

Our model is based on the encode-attend-decode
paradigm as defined by Cho et al. (2015). It con-
sists of an encoder RNN which encodes a variable
length input sequence x = (x1, ..., xT ) into a rep-
resentation sequence c = (c1, ..., cT ). Another de-
coder RNN generates sequence of output symbols

Figure 2: Proposed Architecture

y = (y1, ..., yT ′), attending to different combina-
tions of ci while generating different yt.

As illustrated in figure 2, our encoder is not a
single RNN. The encoder has a hierarchical struc-
ture to leverage the structural aspect of a stan-
dard table: a table consists of a set of records
(or rows) and each record consists of values cor-
responding to a fixed set of attributes. We call it
a mixed hierarchical attention based encoder, as
it incorporates static attention and dynamic atten-
tion at two different levels of the encoder. At the
record level, the attention over record representa-
tions is dynamic as it changes with each decoder
time step. Whereas at the attribute level, since
the schema is fixed, a record representation can
be computed without the need of varying attention
over attributes - thus static attention is used. For
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example, with respect to WEATHERGOV dataset, a
temperature record will always be defined by the
attributes like min, max and mean irrespective of
the decoder time step. So, attention over attributes
can be static. On the other hand, while generating
a word by the decoder, there can be a preference
of focusing on a record type say, temperature, over
some other type say, windSpeed. Thus, dynamic
attention is used across records.

[!ht]

Ār
j = WjA

r
j , ∀j ∈ [1,M ] (2)

Irj = Ār
j � ūr , ūr = W0ur (3)

αr
j = softmaxj(I

r) (4)

Br =
∑

j

αr
jĀ

r
j (5)

cr = [hr;B
r] , hr = GRU(Br) (6)

gr = σ(qT tanh(Pcr)) (7)

βrt = vT tanh(Wsst−1 +Wccr) (8)

wr
t = softmaxr(βt) (9)

zt =
∑

r

γrt cr , γrt =
grw

r
t∑

r
grwr

t

(10)

st = GRU(zt, st−1) (11)

lt = W1st +W2zt + bl (12)

pt = softmax(lt) (13)

Capturing attribute semantics: We learn
record type embeddings and use them to calculate
attentions over attributes. For the trivial case
of all records being same type, it boils down to
having a single record type embedding. Given
attributes Ar for a record r, where each attribute
ari is encoded into a vector Ar

i based on the
attribute type (discussed further in section 3),
using equation 2 we embed each attribute where
Wj is the embedding matrix for jth attribute. We
embed record type one-hot vector ur through W0,
which is used to compute the importance score Irj
for attribute j in record r according to equation 3.

Static Attribute attention: Not all attribute val-
ues contribute equally to the record. Hence, we
introduce attention weights for attributes of each
record. These attention weights are static and does
not change with decoder time step. We calculate
the attention probability vector αr over attributes
using the attribute importance vector Ir. The at-
tention weights can then be used to calculate the

record representation Br for record r by using
equations 4 and 5.

Record Encoder: A GRU based RNN encoder
takes as input a sequence of attribute attended
records B1:N and returns a sequence of hidden
states h1:N , where hr is the encoded vector for
record Br. We obtain the final record encoding
cr (equation 6) by concatenating the GRU hidden
states with the embedded record encodings Br.

Static Record attention: In a table, a subset
of record types can always be more salient com-
pared to other record types. This is captured
by learning a static set of weights over all the
records. These weights regulate the dynamic at-
tention weights computed during decoding at each
time step. Equation 7 performs this step where gr
is the static record attention weight for rth record
and q and P are weights to be learnt. We do not
have any constraints on static attention vector.

Dynamic Record attention for Decoder: Our
decoder is a GRU based decoder with dynamic at-
tention mechanism similar to (Mei et al., 2016)
with modifications to modulate attention weights
at each time step using static record attentions. At
each time step t attention weights are calculated
using 8, 9, 10, where γrt is the aggregated atten-
tion weight of record r at time step t. We use the
soft attention over input encoder sequences cr to
calculate the weighted average, which is passed to
the GRU. GRU hidden state st is used to calculate
output probabilities pt by using a softmax as de-
scribed by equation 11, 12, 13, which is then used
to get output word yt.

Due to the static attention at attribute level, the
time complexity of a single pass is O(TM +
TT ′), where T is the number of records, M is
the number of attributes and T ′ is the number
of decoder steps. In case of dynamic attention
at both levels (as in Nallapati et al. (2016)), the
time complexity is much higher O(TMT ′). Thus,
mixed hierarchical attention model is faster than
fully dynamic hierarchical attention. For bet-
ter understanding of the contribution of hierar-
chical attention(MHAM), we propose a simpler
non-hierarchical (NHM) architecture with atten-
tion only at record level. In NHM, Br is cal-
culated by concatenating all the record attributes
along with corresponding record type.
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Input Table Generated Output
TYPE TIME MIN MAX MEAN MODE MB100-4 MB20-2
temperature 17-30 27 36 29 - - -
windChill 17-30 14 26 18 - - -
windSpeed 17-30 14 20 16 - - 10-20
windDir 17-30 - - - SSW - -
gust 17-30 0 0 0 - - -
skyCover 17-30 - - - - 75-100 -
skyCover 17-21 - - - - 75-100 -
skyCover 17-26 - - - - 75-100 -
skyCover 21-30 - - - - 75-100 -
skyCover 26-30 - - - - 75-100 -
precipPotential 17-30 26 58 43 - - -
rainChance 17-21 - - - Lkly - -
snowChance 17-30 - - - Chc - -
snowChance 17-26 - - - Lkly - -

Reference: Periods of rain and possibly a thunderstorm . Some of the storms could produce heavy rain .
Temperature rising to near 51 by 10am , then falling to around 44 during the remainder of the day . Breezy ,
with a north northwest wind between 10 and 20 mph . Chance of precipitation is 90 % . New rainfall amounts
between one and two inches possible .

NHM:Periods of rain and possibly a thunderstorm . Some of the storms could produce heavy rain . Temperature
rising to near 51 by 8am , then falling to around 6 during the remainder of the day . Breezy , with a north
northwest wind 10 to 15 mph increasing to between 20 and 25 mph . Chance of precipitation is 90 % . New
rainfall amounts between one and two inches possible .

MHAM: Periods of rain and possibly a thunderstorm . Some of the storms could produce heavy rain . Temper-
ature rising to near 51 by 8am , then falling to around 44 during the remainder of the day . Breezy , with a north
northwest wind between 10 and 20 mph . Chance of precipitation is 90 % . New rainfall amounts between one
and two inches possible.

TYPE TIME MIN MAX MEAN MODE MB100-4 MB20-2
temperature 17-30 27 36 29 - - -
windChill 17-30 14 26 18 - - -
windSpeed 17-30 14 20 16 - - 10-20
windDir 17-30 - - - SSW - -
gust 17-30 0 0 0 - - -
skyCover 17-30 - - - - 75-100 -
skyCover 17-21 - - - - 75-100 -
skyCover 17-26 - - - - 75-100 -
skyCover 21-30 - - - - 75-100 -
skyCover 26-30 - - - - 75-100 -
precipPotential 17-30 26 58 43 - - -
rainChance 17-21 - - - Lkly - -
snowChance 17-30 - - - Chc - -
snowChance 17-26 - - - Lkly - -

Reference: A chance of rain and snow . Snow level 5500 feet . Mostly cloudy , with a low around 31 . Calm
wind becoming north northeast around 6 mph . Chance of precipitation is 40% .

NHM: A chance of rain and snow . Mostly cloudy , with a low around 31 . North northwest wind at 6 mph
becoming east southeast . Chance of precipitation is 40% .

MHAM: A chance of rain and snow . Snow level 5800 feet lowering to 5300 feet after midnight . Mostly cloudy
, with a low around 31 . North northwest wind at 6 mph becoming south southwest . Chance of precipitation is
40% .

TYPE TIME MIN MAX MEAN MODE MB100-4 MB20-2
temperature 17-30 27 36 29 - - -
windChill 17-30 14 26 18 - - -
windSpeed 17-30 14 20 16 - - 10-20
windDir 17-30 - - - SSW - -
gust 17-30 0 0 0 - - -
skyCover 17-30 - - - - 75-100 -
skyCover 17-21 - - - - 75-100 -
skyCover 17-26 - - - - 75-100 -
skyCover 21-30 - - - - 75-100 -
skyCover 26-30 - - - - 75-100 -
precipPotential 17-30 26 58 43 - - -
rainChance 17-21 - - - Lkly - -
snowChance 17-30 - - - Chc - -
snowChance 17-26 - - - Lkly - -

Reference: Rain and snow likely , becoming all snow after 8pm . Cloudy , with a low around 22 . South
southwest wind around 15 mph . Chance of precipitation is 60% . New snow accumulation of less than one
inch possible .

NHM : Rain or freezing rain likely before 8pm , then snow after 11pm , snow showers and sleet likely before
8pm , then a chance of rain or freezing rain after 3am . Mostly cloudy , with a low around 27 . South south-
east wind between 15 and 17 mph . Chance of precipitation is 80% . Little or no ice accumulation expected .
Little or no snow accumulation expected .

MHAM: Snow , and freezing rain , snow after 9pm . Cloudy , with a steady temperature around 23 . Breezy ,
with a south wind between 15 and 20 mph . Chance of precipitation is 60% . New snow accumulation of around
an inch possible .

Table 1: Anecdotal example. Records which contain all null attributes are not shown in the example. MB100-4
and MB20-2 correspond to mode-bucket-0-100-4 & mode-bucket-0-20-2 resp. in the dataset.

3 Experiments

Dataset and methodology: To evaluate our model
we have used WEATHERGOV dataset (Liang et al.,
2009) which is the standard benchmark dataset to
evaluate tabular data summarization techniques.
We compared the performance of our model
against the state-of-the-art work of MBW (Mei
et al., 2016), as well as two other baseline mod-
els KL (Konstas and Lapata, 2013) and ALK
(Angeli et al., 2010). Dataset consists of a to-
tal of 29,528 tables (25000:1000:3528 ratio for
train:validation:test splits) corresponding to sce-
narios created by collecting weather forecasts for
3,753 cities in the U.S.A over three days. There
are 12 record types consisting of both numeric
and categorical values. Each table contains 36
weather records (e.g., temperature, wind direction
etc.) along with a corresponding natural language
summary.

Input Encodings: Attributes were encoded
based on the attribute type. Numbers are encoded
in binary representation. Record type is encoded
as a one-hot vector. Mode attribute is encoded us-
ing specific ordinal encodings for example ‘Lkly’,

‘SChc’, ‘Chc’ are encoded as ‘00100000000000’,
‘00010000000000’ and ‘00001000000000’ re-
spectively. Similar works for directions, for
example ‘NW’, ‘NNE’ and ‘NE’ are encoded
as ‘00000100000000’, ‘00000011000000’ and
‘00000001000000’ resp. Time interval were also
encoded as ordinal encodings, for example ‘6-21’
is encoded as ‘111100’ and ‘6-13’ is encoded as
‘110000’, the six bits corresponding to six atomic
time intervals available in the dataset. Other at-
tributes and words were encoded as one-hot vec-
tors.

3.1 Training and hyperparameter tuning

We used TensorFlow (Abadi et al., 2015) for our
experiments. Encoder embeddings were initial-
ized by generating the values from a uniform dis-
tribution in the range [-1, 1). Other variables
were initialized using Glorot uniform initialization
(Glorot and Bengio, 2010). We tune each hyper-
parameter by choosing parameter from a ranges of
values, and selected the model with best sBLEU
score in validation set over 500 epochs. We did not
use any regularization while training the model.
For both the models, the hyperparameter tuning
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was separately performed to give both models a
fair chance of performance. For both the models,
Adam optimizer (Kingma and Ba, 2014) was used
with learning rate set to 0.0001. We found embed-
ding size of 100, GRU size of 400, static record
attention sizeP of 150 to work best for MHAM
model. We also experimented using bi-directional
GRU in the encoder but there was no significant
boost observed in the BLEU scores.

Evaluation metrics: To evaluate our models
we employed BLEU and Rouge-L scores. In addi-
tion to the standard BLEU (sBleu) (Papineni et al.,
2002), a customized BLEU (cBleu) (Mei et al.,
2016) has also been reported. cBleu does not pe-
nalize numbers which differ by at most five; hence
20 and 18 will be considered same.

4 Results and Analyses

Table 2 describes the results of our proposed mod-
els (MHAM and NHM) along with the afore-
mentioned baseline models. We observe a sig-
nificant performance improvement of 16.6 cBleu
score (24%) and 18.3 sBleu score (30%) compared
to the current state-of-the-art model of MBW.
MHAM also shows an improvement over NHM
in all metrics demonstrating the importance of hi-
erarchical attention.

Model sBleu cBleu Rouge-L
KL 36.54 - -
ALK 38.40 51.50 -
MBW 61.0 70.4 -
NHM 76.2 85.0 86.4
MHAM 79.3 87.0 88.5

Table 2: Overall results

Attention analysis: Analysis of figure 3 re-
veals that the learnt attention weights are reason-
able. For example, as shown in figure 3(a), for the
phrase ‘with a high near 52’, the model had a high
attention on temperature before and while gener-
ating the number ‘52’. Similarly while generating
‘mostly cloudy’, the model had a high attention
on precipitation potential. Attribute attentions are
also learned as expected (in figure 3(b)). The tem-
perature, wind speed and gust records have high
weights on min/max/mean values which describe
these records.

Qualitative analysis: Table 1 contains exam-
ple table-summary pairs, with summary generated
by the proposed hierarchical and non-hierarchical

Figure 3: Heatmaps: (a) record level attention (top) and
(b) attribute level attention (bottom).

versions. We observe that our model is able to gen-
erate numbers more accurately by enabling hierar-
chical attention. Our model is also able to capture
weak signals like snow accumulation. Further, our
proposed model MHAM is able to avoid repetition
as compared to NHM.

5 Conclusion and Future Work

In this work, we have formulated the problem of
standard table summarization where all the ta-
bles come from a predefined schema. Towards
this, we proposed a novel mixed hierarchical at-
tention based encoder-decoder approach. Our ex-
periments on the publicly available WEATHERGOV

benchmark dataset have shown significant im-
provements over the current state-of-the-art work.
Moreover, this proposed method is theoretically
more efficient compared to the current fully dy-
namic hierarchical attention model. As future
work, we propose to tackle general tabular sum-
marization where the schema can vary across ta-
bles in the whole dataset.
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Abstract

Most summarization research focuses on sum-
marizing the entire given text, but in practice
readers are often interested in only one aspect
of the document or conversation. We propose
“targeted summarization” as an umbrella cate-
gory for summarization tasks that intentionally
consider only parts of the input data. This cov-
ers query-based summarization, update sum-
marization, and a new task we propose where
the goal is to summarize a particular aspect of
a document. However, collecting data for this
new task is hard because directly asking an-
notators (e.g., crowd workers) to write sum-
maries leads to data with low accuracy when
there are a large number of facts to include.
We introduce a novel crowdsourcing work-
flow, Pin-Refine, that allows us to collect high-
quality summaries for our task, a necessary
step for the development of automatic systems.

1 Introduction

Our lives are increasingly dependent on informa-
tion, but so much is generated every day that man-
ually processing it is overwhelming (Jones et al.,
2004). For decades, research in NLP has focused
on automatic summarization as a solution to this
problem (Nenkova and McKeown, 2012). How-
ever, most of that research has focused on generic
summarization, where the summary aims to pro-
duce a shorter form of a document. Variants of
this task, query-based summarization and update
summarization, consider summarization focusing
on certain parts of the document, but neither cov-
ers the situation when a user wants the summary to
capture a particular aspect of a document. For ex-
ample, a legal case document can contain multiple
types of information, such as facts, procedural his-
tory, and legal reasoning – but a lawyer may only

want a summary of the facts stated in the docu-
ment, while leaving out procedural history and le-
gal reasoning.

This paper makes two contributions: First, we
propose a new hierarchy of summarization task
types, which provides a framework for under-
standing how tasks relate to one another and where
gaps exist currently. We define a new concept, tar-
geted summarization, that contrasts with generic
summarization. We then define a new category of
summarization task, aspect-based summarization,
that covers cases like the law example above.

Second, we present and evaluate a new crowd-
sourced data collection workflow pattern, Pin-
Refine, that splits the summarization task into two
stages: choosing what to summarize and writ-
ing the summary. We apply this approach to
a dialog dataset, where questions are expressed
over multiple turns, to collect summaries that con-
cisely express each question. Our results show
that when more facts need to be summarized, the
Pin-Refine workflow produces significantly more
accurate summaries compared to a baseline ap-
proach in which crowd workers read text and write
summaries in a single step. Our method enables
efficient creation of datasets for this new task and
may be beneficial for other summarization tasks.

2 Related Work

Our work on targeted summarization is related
to previous work in automatic summarization and
crowdsourced corpus generation.

2.1 Automatic Summarization
In the most common form of summarization,
generic summarization, summaries cover all the
content in the given text (Gong and Liu, 2001).
Specific variants of the task exist for certain do-
mains, such as narrative (Mani, 2004) and email-
thread summarization (Rambow et al., 2004).
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In contrast, summaries for query-based summa-
rization only cover parts of the text that are about
the topic specified by a query (Rahman and Borah,
2015). Another alternative is update summariza-
tion, in which the summary should cover content
in one set of documents, but not in another set that
the user has already read (Dang and Owczarzak,
2008). The specific form of summarization we are
interested in does not fit within either query-based
or update summarization. To clarify the relation-
ships between all of these different summarization
tasks, we propose a new term, aspect-based sum-
marization, and present a hierarchy of tasks.

In data mining, recent work has explored sum-
marizing different aspects of graph data given do-
main context (Jin and Koutra, 2017). In NLP, pre-
vious summarization tasks have explored summa-
rization based on information types in individual
domains, such as opinion summarization (Con-
dori and Pardo, 2017) and task-focused email sum-
marization (Corston-Oliver et al., 2004). Perfor-
mance on these tasks is usually lower than tra-
ditional summarization tasks due to the difficulty
of identifying relevant information in noisy text.
We introduce a new crowdsourcing workflow, Pin-
Refine, that improves the quality of data collection
for specialized summarization tasks.

2.2 Crowdsourced Corpus Generation

Large corpora are critical for training robust
natural language processing systems, but tradi-
tional expert-driven data collection methods are
both costly and time-consuming (Hovy et al.,
2006). During the last decade, crowdsourcing has
been broadly applied to collect natural language
data at large scale with reasonable costs (Snow
et al., 2008), including for translation (Zaidan
and Callison-Burch, 2011), paraphrasing (Bur-
rows et al., 2013; Jiang et al., 2017), dialog
generation (Lasecki et al., 2013b,a), and annota-
tion of corpora in tasks like sentiment classifica-
tion (Hsueh et al., 2009).

Since individual workers’ outputs are usually
error-prone, aggregation mechanisms such as ma-
jority voting (Raykar et al., 2010) and quality ver-
ification tasks (Callison-Burch, 2009) have been
developed to improve consistency. However, the
results receiving the most votes may still miss in-
formation that should be included. To address
this issue, crowdsourced iterative methods have
been developed to divide a complicated task into

Figure 1: Proposed hierarchy of summarization tasks.

a series of micro-stages, each with a different fo-
cus (Little et al., 2010; Merritt et al., 2017). For
example, Ouyang et al. (2017) developed a dataset
of aligned extractive and abstractive summaries by
creating separate tasks for summarization, align-
ment, and classification of changes. However,
maintaining accuracy when the complexity of the
given text increases has remained an open ques-
tion. In our Pin-Refine workflow, workers first
identified all text relevant to the given information
type, which was aggregated across workers with
a threshold, then wrote the summary using that
information. This aggregation and priming helps
maintain accuracy as text grows more complex.

3 Targeted and Aspect-Based
Summarization

Traditionally, the NLP community has divided
summarization tasks into generic summarization,
which covers the entire text, query-based sum-
marization, which covers only topics related to a
query provided by the user (Nenkova and McK-
eown, 2012), and update summarization, which
covers only topics that were not addressed in doc-
uments already presented to the user (Dang and
Owczarzak, 2008). In query-based and update
summarization, what should and should not be
summarized depends on a topic (defined either by
the query, or the already-read documents). This
view omits cases where the user describes an in-
formation need using something other than topics.

We therefore re-categorize summarization tasks
(Figure 1) as generic or targeted. We define the
latter as the task of generating a summary that cap-
tures the part of a document relevant to the user’s
information request. It includes (1) query-based
summarization, where the information request is a
query indicating the desired topic, (2) update sum-
marization, where the request is whether informa-
tion is new, and (3) aspect-based summarization
where the request is the desired information type,
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Person A: I am a CS major and need to schedule classes
for next semester.
Person B: It looks like you have most of your pre-
requisites out of the way and you can start taking some
more EECS classes.
Person A: Cool, I’m very interested in Software Infras-
tructure Applications and web app.

Figure 2: Example conversation for summarization.
Targeted information units (TIUs) are in italics.

which can partially cover content of one or more
topics. The information type targeted by aspect-
based summarization varies based on users’ needs.
For example, meeting attendees might want a sum-
mary of a meeting transcript only including action
items, while a supervisor evaluating an employee
might need a summary of status updates the em-
ployee provided at the meeting.

This hierarchy shows the relationship among
existing summarization tasks and provides a
framework to understand how the aspect-based
task and potential future tasks relate to each other.

4 Experimental Design

When developing datasets for summarization, we
are concerned with two key properties: accuracy
and fluency. We conducted experiments to in-
vestigate design options for crowdsourced aspect-
based summarization, aiming to optimize both.

4.1 Conversation Generation
In this study, we focus on summarizing student
questions regarding course selection from advis-
ing conversations. For such a question to be cor-
rectly expressed, the summary must include all
relevant facts about the student’s background and
preferences that appear in the conversation, as
shown in Figure 2. We call these facts targeted in-
formation units (TIU), because they are the pieces
of information that must be part of the summary
for the given information type.

In this paper, we tested our workflows on a
course advising conversation dataset produced by
undergraduates role-playing as students and advi-
sors. The goal of the conversations was to deter-
mine what courses the students should take based
on their needs, as shown in the example conver-
sation in Figure 2. Each “advisor” received a
list of course profiles, and each “student” received
a made-up student profile, including courses they
had taken. Participants were instructed to use the
profiles they received while letting the conversa-
tion proceed as smoothly as possible.

Rewrite Questions

Please read each conversation below and rewrite ALL
parts of Person A’s question, so that Person B can answer
it without seeing the conversation. For example:

Example Conversation

Person A: I wanted to talk about my classes for next
semester.
Person B: Okay, great. How many credits are you plan-
ning to take?
Person A: I was hoping to have a relaxed semester, so I’m
hoping to take 12 credits.

You may write: ‘What classes can I take next semester if
I want 12 credits?’

If one sentence is not enough, use multiple sentences.

Figure 3: Baseline task instructions and examples.

4.2 Conversation Selection

We selected 30 conversations from the dataset
mentioned above. Each conversation focuses on
answering one question, and the number of TIUs
per conversation varies evenly between 1 and
6 among the 30 conversations. Three of the
authors—two native English speakers and one flu-
ent speaker—read each conversation and summa-
rized each user question. The lead author then
compared these summaries and chose one per con-
versation as the ground truth summary.

4.3 Conditions

Baseline We recruited crowd workers via Le-
gionTools (Lasecki et al., 2014; Gordon et al.,
2015) from Amazon Mechanical Turk, presenting
them with instructions and an example as shown
in Figure 3. Workers were shown 5 conversations,
one at a time, and asked to write the question be-
ing asked, including all the details that need to be
known in order to correctly answer the question.
Each worker was paid 10 cents per conversation.

Highlight In this condition, workers were first
asked to highlight all details in each conversation
that must be known to correctly answer the ques-
tion, then write the question being asked, includ-
ing the details they highlighted. We hypothesize
that workers were primed by the process of high-
lighting TIUs in conversations before writing the
actual summaries. In this condition, workers were
paid 15 cents per conversation1.

1Payments in the Highlight and Pin-Refine conditions
were higher than in the baseline, because those two condi-
tions required workers to also do priming tasks.
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Correct Targeted Information Units Captured
Targeted Time (s) Intent (%) Recall Precision F1 Fluency (%)
Units b h p b h p b h p b h p b h p b h p
1 26.5 45 107† 100 94 96 100 96 92 94 96 88 96 96 89 84 90 86
2 35 46 131.5† 98 96 100 86 87 92 93 99 95 88 91 93 78 78 94
3 48 63 155.5† 94 84 96 73 78 86 89 93 91 79 83 87 66 72 78
4 60 82 161.5† 86 84 96 69 76 85 91 87 91 76 79 87 76 62 82
5 76.5 94.5 192† 78 88 94 68 71 88† 88 90 92 75 78 90† 80 80 76
6 92.5 116.5 230† 84 94 94 70 69 81† 87 88 90 77 76 85† 72 68 64

Table 1: Performance for a range of metrics (defined in § 4.4) as the number of targeted information units and
the condition vary (b: Baseline, h: Highlight, p: Pin-Refine). Bold indicates a statistically significant difference
compared to the baseline at the 0.05 level, and a † indicates significance compared to the highlight condition at the
0.05 level, both after applying the Holm-Bonferroni method across each row (Holm, 1979).

Pin-Refine This condition had two separate
steps: pin and refine. In the pin step, workers se-
lected sections of the text as in the highlight case,
and were paid 5 cents per conversation. High-
lights from multiple workers for each conversation
were automatically aggregated by keeping high-
lights if the percentage of workers who assigned
them was above a threshold. In the refine step, a
different worker was shown the conversation with
highlights and asked to write a justification of each
highlight, then write a summary. Each worker was
paid 15 cents per conversation for the refine step.

To find and validate the correct threshold in the
pin step, we repeated the data collection and ag-
gregation of the pin step twice on the same set of
conversations. In both attempts, all of the TIUs
were covered by aggregated highlights at 40%
agreement, and no completely irrelevant informa-
tion was covered. While we used 40% agreement
as our threshold, we also observed that coverage
was robust to variation in this value. When very
high agreement was required (70%) we still found
on average 90% of correct phrases were covered
(recall remains high), and when very low agree-
ment was required (20%) only 7% of highlighted
phrases were irrelevant (precision remains high).

4.4 Metrics

We evaluate question summaries on three met-
rics: time was measured directly; accuracy and
fluency were independently rated by three of the
authors. We used Fleiss’ Kappa to measure the
inter-annotator agreement between the three anno-
tators before discussing each case of disagreement
for consensus judgment. The kappa scores were
.95 for intent accuracy, .86 for TIU accuracy (both
near-perfect agreement), and .62 for fluency (sub-
stantial agreement) (Altman, 1990).

Accuracy An accurate question summary must
ask for the information sought by the student
(intent accuracy) and include all the information
needed to define the question (TIU accuracy).
Three authors rated the question intent in each
summary and counted how many of the gold TIUs
were present, as well as how many information
units not in the gold appeared in the summary. To
measure TIU accuracy, we calculated recall, pre-
cision, and F1 score. We used Fisher’s exact tests
and Mann Whitney U tests to measure significance
of intent and TIU accuracy (respectively) between
each pair of conditions in our study.

Fluency A fluent summary is grammatically
correct or correct but for minor errors of punctua-
tion. Run-on sentences, sentences with grammat-
ical errors that obscure their meanings, sentences
missing words, and so on, are not fluent. We used
a χ2 test to measure significance.

Time To estimate time-to-completion and en-
sure fair payment, we measured and calculated
the average time between when a worker submit-
ted one summary and the next. Time spent on
the first summary was excluded because it typi-
cally includes time spent reading the instructions
and understanding the task, which would skew the
data. We report the median time to avoid skew-
ing due to outliers, such as a value of five minutes
when a worker took a break, and used a Moods
Median test to measure significance.

5 Results

We spent $153.50, including initial testing, to col-
lect 900 summaries: 10 summaries for each of the
30 conversations in all 3 conditions. We have re-
leased this dataset as an attachment to this paper.
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Table 1 shows the results accross all of our met-
rics. We find there was relatively little variation in
correctness and fluency of summaries across con-
ditions. For the baseline, accuracy and fluency of
summaries decreases as the number of TIUs per
conversation increases.

Aggregation and priming had a major impact
on recall and F1 when the number of TIUs was
greater than three. After that point, the Pin-Refine
condition achieved significant improvements in re-
call and F1 compared to the baseline. There was
no significant difference between accuracy of the
baseline and highlight conditions, likely because
workers were primed by their own mistakes and
chose not to highlight information they believed
was not important. Precision remains relatively
high with no significant difference across all con-
ditions, implying that workers’ ability to effec-
tively exclude information is not related to the tar-
geted information type.

The time workers spent summarizing one con-
versation increases as the number of TIUs per con-
versation increases. The significant time increase
between the baseline and the other two conditions
was caused by the additional work involved in
highlighting and writing justifications.

On average, workers spent significantly longer
on the justification task in the Pin-Refine con-
dition (65.37s) than the highlighting task in the
highlight condition (36.68s). Workers’ justifica-
tions include single words like “timestamp,” short
phrases like “why they want a specific course,”
and long sentences like “This shows what grade
they’re in, what related class they’ve taken, what
their interest is, and what kind of help they need.”
One possibility is that simply encouraging workers
to spend more time writing their summaries im-
proved performance, but fitting a linear model we
find the correlation coefficient between time and
F1 is −0.06, indicating no linear correlation be-
tween time and accuracy across conditions. There-
fore, we believe that the significant accuracy im-
provement observed in the Pin-Refine condition is
the result of active priming with aggregated TIUs.

6 Conclusion

In this paper, we have identified a previously un-
explored summarization problem that targets spe-
cific information in a document instead of aiming
to extract all key elements: aspect-based summa-
rization. Then, to address the corresponding gap

in techniques for data collection for this new prob-
lem, we proposed the Pin-Refine crowdsourcing
workflow, which leverages input aggregation and
worker priming effects. This approach leads to
significantly higher summarization accuracy when
the number of targeted information units (TIUs) is
large. Our work provides methods and task design
guidance for future data generation efforts, which
are crucial for the development of robust summa-
rization systems.
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Abstract

Keyphrase extraction is a fundamental task
in natural language processing that facilitates
mapping of documents to a set of representa-
tive phrases. In this paper, we present an un-
supervised technique (Key2Vec) that leverages
phrase embeddings for ranking keyphrases
extracted from scientific articles. Specifi-
cally, we propose an effective way of pro-
cessing text documents for training multi-word
phrase embeddings that are used for thematic
representation of scientific articles and rank-
ing of keyphrases extracted from them using
theme-weighted PageRank. Evaluations are
performed on benchmark datasets producing
state-of-the-art results.

1 Introduction and Background

Keyphrases are single or multi-word linguistic
units that represent the salient aspects of a doc-
ument. The task of ranked keyphrase extraction
from scientific articles is of great interest to sci-
entific publishers as it helps to recommend arti-
cles to readers, highlight missing citations to au-
thors, identify potential reviewers for submissions,
and analyze research trends over time (Augenstein
et al., 2017). Due to its widespread use, keyphrase
extraction has received significant attention from
researchers (Kim et al., 2010; Augenstein et al.,
2017). However, the task is far from solved and
the performances of the present systems are worse
in comparison to many other NLP tasks (Liu et al.,
2010). Some of the major challenges are the var-
ied length of the documents to be processed, their
structural inconsistency and developing strategies
that can perform well in different domains (Hasan
and Ng, 2014).

Methods for automatic keyphrase extraction are
mainly divided into two categories: supervised
and unsupervised. Supervised methods approach
the problem as a binary classification problem

(Hasan and Ng, 2014), whereas the unsupervised
methods are mostly based on TF-IDF, cluster-
ing, and graph-based ranking (Hasan and Ng,
2010; Mihalcea and Tarau, 2004). On the pres-
ence of domain-specific data, supervised methods
have shown better performance. The unsupervised
methods have the advantage of not requiring any
training data and can produce results in any do-
main.

With recent advancements in deep learning
techniques applied to natural language processing
(NLP), the trend is to represent words as dense
real-valued vectors, popularly known as word em-
beddings. These representations of words have
been shown to equal or outperform other methods
(e.g. LSA, SVD) (Baroni et al., 2014). The em-
bedding vectors, are supposed to preserve the se-
mantic and syntactic similarities between words.
They have been shown to be useful for several
NLP tasks, like part-of-speech tagging, chunk-
ing, named entity recognition, semantic role la-
beling, syntactic parsing, and speech processing,
among others (Collobert et al., 2011). Some of the
most popular approaches for training word embed-
dings are Word2Vec (Mikolov et al., 2013), Glove
(Pennington et al., 2014) and Fasttext (Bojanowski
et al., 2016).

Title: Identification of states of complex systems with estimation of
admissible measurement errors on the basis of fuzzy information.
Abstract: The problem of identification of states of complex systems on the
basis of fuzzy values of informative attributes is considered. Some estimates
of a maximally admissible degree of measurement error are obtained that
make it possible, using the apparatus of fuzzy set theory, to correctly identify
the current state of a system.
Automatically identified keywords: complex systems, fuzzy information,
admissible measurement errors, fuzzy values, informative attributes
measurement error, maximally admissible degree, fuzzy set theory
Manually assigned keywords: complex system state identification,
admissible measurement errors, informative attributes, measurement errors
fuzzy set theory

Table 1: Keyphrases extracted by using Key2Vec from
a sample research article abstract.

Word embeddings have already shown promis-
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ing results in the process of keyphrase extraction
from scientific articles (Wang et al., 2015, 2014).
However, Wang et al. did not use domain-specific
word embeddings and had suggested that train-
ing them might lead to improvements. This mo-
tivated us to experiment with domain-specific em-
beddings on scientific articles.

In this work, we represent candidate keyphrases
extracted from a scientific article by domain-
specific phrase embeddings and rank them using
a theme-weighted PageRank algorithm (Langville
and Meyer, 2004), such that the thematic weight
of a candidate keyphrase indicate how similar
it is to the thematic representation or the main
theme of the article, which is also constructed us-
ing the same embeddings. Due to extensive use
of phrase embeddings for representing the can-
didate keyphrases and ranking them, we name
our method as Key2Vec. To our knowledge, us-
ing multi-word phrase embeddings for construct-
ing thematic representation of a given document
and to assign thematic weights to phrases have not
been used for ranked keyphrase extraction, and
this work is the first preliminary attempt to do so.
Table 1. shows ranked keyphrases extracted using
Key2Vec from a sample research abstract. Next,
we present our methodology.

2 Methodology

Our methodology primarily uses three steps: can-
didate selection, candidate scoring, and candidate
ranking, similar to other popular frameworks of
ranked keyphrase extraction (Kim et al., 2013).
All the steps depend on the choice of our text pro-
cessing steps and a phrase embedding model that
we train on a large corpus of scientific articles. We
explain them next and give a detailed description
of their implementations.

2.1 Text Processing

It has been shown (Mikolov et al., 2013), that the
presence of multi-word phrases intermixed with
unigram words increases the performance and ac-
cruacy of the embedding models trained using
techniques such as Word2Vec. However, in our
framework we take a different approach in de-
tecting meaningful and cohesive chunk of phrases
while preparing the text samples for training. In-
stead of relying on measures considering how of-
ten two or more words co-occur with each other,
we rely on already trained dependency parsing and

Figure 1: Text processing pipeline for preparing text
samples used for training word embedding models.

named entity extraction models. For this work we
use Spacy1 as our NLP toolkit along with its de-
fault models. The choice of Spacy is just for con-
venience and is not driven by any other factor. We
split a text document into sentences, tokenize a
sentence into unigram tokens, as well as identify
noun phrases and named entities from it. During
this process if a named entity is detected at a par-
ticular offset in the sentence then a noun phrase
appearing at the same offset is not considered.

We take steps in cleaning the individual sin-
gle word and multi-word tokens that we obtain.
Specifically, we filter out the following tokens.

• Noun phrases and named entities that are
fully numeric.

• Named entities that belong to the following
categories are filtered out : DATE, TIME,
PERCENT, MONEY, QUANTITY, ORDI-
NAL, CARDINAL. Refer, Spacy’s named
entity documentation2 for details of the tags.

• Standard stopwords are removed.

• Punctuations are removed except ‘-’.

We also take steps to clean leading and ending
tokens of a multi-word noun phrase and named en-
tity.

• Common adjectives and reporting verbs are
removed if they occur as the first or last token
of a noun phrase/named entity.

• Determiners are removed from the first token
of a noun phrase/named entity.

• First or last tokens of noun phrases/named
entities belonging to following parts of

1https://spacy.io
2https://spacy.io/usage/linguistic-features#section-

named-entities
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speech: INTJ Interjection, AUX Aux-
iliary, CCONJ Coordinating Conjunction,
ADP Adposition, DET Interjection, NUM
Numeral, PART Particle, PRON Pronoun,
SCONJ Subordinating Conjunction, PUNCT
Punctutation, SYM Symbol, X Other, are
removed. For a detailed reference of each
of these POS tags please refer Spacy’s doc-
umentation3.

• Starting and ending tokens of a noun
phrase/named entity is removed if they be-
long to a standard list of english stopwords
and functional words.

Apart from relying on Spacy’s parser we use
hand crafted regexes for cleaning the final list
of tokens obtained after the above data cleaning
steps.

• Get rid of leading/trailing junk characters.

• Handle dangling/backwards parentheses. We
don’t allow ’(’ or ’)’ to appear without the
other.

• Handle oddly separated hyphenated words.

• Handle oddly separated apostrophe’d words.

• Normalize whitespace.

The resultant unigram tokens and multi-word
phrases are merged in the order they appeared in
the original sentence. Figure 1, shows an example
of how the text processing pipeline works on an
example sentence for preparing the training sam-
ples that act as an input to the embedding algo-
rithm.

2.2 Training Phrase Embedding Model

The methodology to a great extent relies on the
underlying embeddings. We directly train multi-
word phrase embeddings using Fasttext4, rather
than first training embedding models for unigram
words and then combining their dense vectors to
obtain vectors for multi-word phrases. Our train-
ing vocabulary consists of both unigram as well
as multi-word phrases. We are aware of the ex-
isting procedures for training phrase embeddings
(Yin and Schütze, 2014; Yu and Dredze, 2015), but

3https://spacy.io/api/annotation#pos-tagging
4https://fasttext.cc/

Figure 2: Frequency distribution of topics in the arxiv
dataset used for training phrase embeddings.

refrain from using them in this preliminary work.
We would like to use them in the future.

The main aim of the underlying embedding
model is to capture semantic and syntactic simi-
larities between textual units comprising of both
single word and multi-word phrases. We chose
Fasttext over other embedding techniques because
it captures both the semantic and morphological
similarities5 between words. For example, if we
have breast cancer in the content of the theme of a
document then intuitively phrases like breast can-
cer, breast cancer treatment, should be assigned
higher thematic weight than prostrate cancer or
lung cancer, even though the document might
mention other forms of cancer as well. Embed-
ding techniques like Word2Vec and Glove, only
takes into account the semantic similarity between
words based on their occurrences in a similar con-
text and will not display the desired property that
we want to leverage. We would like to study the
effects of other types of embeddings in the future.

Dataset: Since this work deals with the domain
of scientific articles we train the embedding model
on a collection of more than million scientific doc-
uments. We collect 1,147,000 scientific abstracts
related to different areas (Fig 2) from arxiv.org6.
For collecting data we use the API provided by
arxiv.org that allows bulk access7 to the articles
uploaded in their portal. We also add the scien-
tific documents present in the benchmark datasets
(Sections 3), increasing the total number of docu-
ments to 1,149,244.

After processing the text of the documents as
mentioned above, we train a Fasttext-skipgram
model using negative sampling with a context win-

5https://rare-technologies.com/fasttext-and-gensim-
word-embeddings/

6http://arxiv.org
7https://arxiv.org/help/bulk data
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dow size of 5, dimension of 100 and number of
epochs set to 10. We would like to experiment fur-
ther in the future on the selection of optimal pa-
rameters for the embedding model.

Candidate Selection: This step aids in chos-
ing candidate keyphrases from the set of all
phrases that can be extracted from a document,
and is commonly used in most of the automated
ranked keyphrase extraction systems. Not all the
phrases are considered as candidates. Generally,
unwanted and noisy phrases are eliminated in this
process by using different heuristics (Section 2.1).
We split a given document into sentences and to
extract noun phrases and named entities as de-
scribed previously. As an output of this step we get
a set of unique phrases (Cdi = {c1, c2, ..., cn}di)
for a document di to be used later for scoring and
ranking in the next two steps.

Candidate Scoring: In this step we assign
a theme vector (τ̂di) to a document (di). The
theme vector can be tuned according to the type
of documents that are being processed and the
type of keyphrases that we want to get in our fi-
nal results. In this work, we extract a theme ex-
cerpt from a given document and further extract
a unique set of thematic phrases comprising of
named entities, noun phrases and unigram words
(Tdi = {t1, t2, ..., tm}di) from it. For the Inspec
dataset we use the first sentence of the document
which consists its title, and for the SemEval dataset
we use the title and the first ten sentences extracted
from the beginning of the document, as the theme
excerpts, respectively (see Section 3). The first ten
sentences of a document from the SemEval dataset
essentially captures the abstract and sometimes
first few sentences of the introduction of a scien-
tific article. We get the vector representation (t̂j)
of each thematic phrase extracted from the theme
excerpt using the phrase embedding model that we
trained and perform vector addition in order to get
the final theme vector (τ̂di =

∑m
j=1 t̂j) of the doc-

ument. The phrase embedding model is then used
to get the vector representation (ĉk; k ∈ {1...n})
for each candidate keyphrase in Cdi .

We calculate the cosine distance between the
theme vector (τ̂di) and vector for each candidate
keyphrase (ĉk) and assign a score (κ(x̂, ŷ) →
[0, 1]) to each candidate, with 1 indicating a com-
plete similarity with the theme vector and 0 in-
dicating a complete dissimilarity. To get the fi-
nal thematic weight (wdi

cj ) for each candidate w.r.t.

a given document (di), the candidate scores are
scaled again between 0 and 1 with a score of 1 as-
signed to the candidate semantically closest to the
main theme of the document and 0 to the farthest.

Candidate Ranking: In order to perform fi-
nal ranking of the candidate keyphrases we use
weighted personalized PageRank algorithm. A di-
rected graph Gdi is constructed for a given doc-
ument (di) with Cdi as the vertices and Edi as
the edges connecting two candidate keyphrases if
they co-occur within a window size of 5. The
edges are bidirectional. Weights sr(cdij , c

di
k ) are

calculated for the edges using the semantic simi-
larity between the candidate keyphrases obtained
from the phrase embedding model and their fre-
quency of co-occurrence, as used by Wang et
al. (Wang et al., 2015), and shown in equation
3. We use cosine distance ( 1

1−cosine(c
di
j ,c

di
k
)
) and

Point-wise Mutual Information (PMI(cdij , c
di
k ))

for calculating semantic(cdij , c
di
k ) (equation 1)

and cooccur(cdij , c
di
k ) (equation 2), respectively.

The main intuition behind calculating semantic re-
latedness by using a phrase embedding model is
to capture how well two phrases are related to
each other in general. Whereas, the co-occurrence
score captures the local relationship between the
phrases within the context of the given document.

semantic(cdij , cdik ) =
1

1− cosine(cdij , cdik )
(1)

cooccur(cdij , cdik ) = PMI(cdij , cdik ) (2)

sr(cdij , cdik ) = semantic(cdij , cdik )× cooccur(cdij , cdik )
(3)

Given graph G, if ε(cdij ) be the set of all edges
incident on the vertex cdij , and wdi

cj is the thematic

weight of cdij as calculated in the candidate scor-
ing step, then the final PageRank scoreR(cdij ) of a
candidate keyphrase cdij is calculated using equa-
tion 4, where d = 0.85 is the damping factor and
out(cdik ) is the out-degree of the vertex cdik .

R(cdij ) = (1− d)wdi
cj + d×

∑

c
di
k

∈ε(c
di
j

)

(
sr(cdij , cdik )∣∣out(cdik )

∣∣ )R(cdik )

(4)

Next, we evaluate the performance of Key2Vec.
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Micro
Avg.

Precision
@5

Micro
Avg.

Recall
@5

Micro
Avg.
F1
@5

Micro
Avg.

Precision
@10

Micro
Avg.

Recall
@10

Micro
Avg.
F1

@10

Micro
Avg.

Precision
@15

Micro
Avg.

Recall
@15

Micro
Avg.
F1

@15
Inspec 61.78 % 25.67 % 36.27 % 57.58 % 42.09 % 48.63 % 55.90 % 50.06 % 52.82 %

SemEval 41 % 14.37 % 21.28 % 35.29 % 24.67 % 29.04 % 34.39 % 32.48 % 33.41 %

Table 2: Performance of Key2Vec over combined controlled and uncontrolled annotated keyphrases for Inspec and
SemEval 2010 datasets.

Inspec
(Combined) Key2Vec Wang et al.,

2015
Liu et al.,

2010

SGRank
(Danesh et al.,

2015)

TopicRank
(Bougouin et al.,

2013)
Micro Avg. F1@10 48.63 % 44.7 % 45.7 % 33.95 % 27.9 %

Table 3: Comparison of Key2Vec with some state-of-the-art systems (Liu et al., 2009; Danesh et al., 2015; Bougouin
et al., 2013; Wang et al., 2015) for Avg. F1@10 on Inspec dataset.

SemEval 2010
(Combined) Key2Vec

SGRank
(Danesh et al.,

2015)

HUMB
(Lopez and Romary,

2010)

TopicRank
(Bougouin et al.,

2013)
Micro Avg. F1@10 29.04 % 26.07 % 22.50 % 12.1 %

Table 4: Comparison of Key2Vec with some state-of-the-art systems (Danesh et al., 2015; Bougouin et al., 2013;
Lopez and Romary, 2010) for Avg. F1@10 on SemEval 2010 dataset.

3 Experiments and Results

The final ranked keyphrases obtained using the
Key2Vec methodology as described in the previous
section is evaluated on the popular Inspec and Se-
mEval 2010 datasets. The Inspec dataset (Hulth,
2003) is composed of 2000 abstracts of scientific
articles divided into sets of 1000, 500, and 500,
as training, validation and test datasets respec-
tively. Each document has two lists of keyphrases
assigned by humans - controlled, which are as-
signed by the authors, and uncontrolled, which
are freely assigned by the readers. The controlled
keyphrases are mostly abstractive, whereas the un-
controlled ones are mostly extractive (Wang et al.,
2015). The Semeval 2010 dataset (Kim et al.,
2010) consists of 284 full length ACM articles di-
vided into a test set of size 100, training set of size
144 and trial set of size 40. Each article has two
sets of human assigned keyphrases: the author-
assigned and reader-assigned ones, equivalent to
the controlled and uncontrolled categories, respec-
tively of the Inspec dataset. We only use the test
datasets for our evaluations and combine the an-
notated controlled and uncontrolled keyphrases.

The ranked keyphrases are evaluated using ex-
act match evaluation metric as used in SemEval
2010 Task 5. We match the keyphrases in the an-
notated documents in the benchmark datasets with
those generated by Key2Vec, and calculate micro-
averaged precision, recall and F-score (β = 1),

respectively. In the evaluation, we check the per-
formance over the top 5, 10 and 15 candidates re-
turned by Key2Vec. The performance of Key2Vec
on the metrics is shown in Table 2. Tables 3 and 4
shows a comparison of Key2Vec with some of the
state-of-the-art systems giving best performances
on the Inspec and SemEval 2010 datasets, respec-
tively.

4 Conclusion and Future Work

In this paper, we proposed a framework for auto-
matic extraction and ranking of keyphrases from
scientific articles. We showed an efficient way of
training phrase embeddings, and showed its effec-
tiveness in constructing thematic representation of
scientific articles and assigning thematic weights
to candidate keyphrases. We also introduced
theme-weighted PageRank to rank the candidate
keyphrases. Experimental evaluations confirm
that our proposed technique of Key2Vec produces
state-of-the-art results on benchmark datasets. In
the future, we plan to use other existing proce-
dures for training phrase embeddings and study
their effects. We also plan to use Key2Vec in
other domains such as news articles and extend the
methodology for other related tasks like summa-
rization.
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Abstract

While Wikipedia exists in 287 languages, its
content is unevenly distributed among them.
In this work, we investigate the generation of
open domain Wikipedia summaries in under-
served languages using structured data from
Wikidata. To this end, we propose a neural
network architecture equipped with copy ac-
tions that learns to generate single-sentence
and comprehensible textual summaries from
Wikidata triples. We demonstrate the effec-
tiveness of the proposed approach by evalu-
ating it against a set of baselines on two lan-
guages of different natures: Arabic, a morpho-
logical rich language with a larger vocabulary
than English, and Esperanto, a constructed lan-
guage known for its easy acquisition.

1 Introduction

Despite the fact that Wikipedia exists in 287
languages, the existing content is unevenly dis-
tributed. The content of the most under-resourced
Wikipedias is maintained by a limited number of
editors – they cannot curate the same volume of
articles as the editors of large Wikipedia language-
specific communities. It is therefore of the ut-
most social and cultural interests to address lan-
guages for which native speakers have only ac-
cess to an impoverished Wikipedia. In this pa-
per, we propose an automatic approach to generate
textual summaries that can be used as a starting
point for the editors of the involved Wikipedias.
We propose an end-to-end trainable model that
generates a textual summary given a set of KB
triples as input. We apply our model on two lan-
guages that have a severe lack of both editors and
articles on Wikipedia: Esperanto is an easily ac-
quired artificially created language which makes it
less data needy and a more suitable starting point

†The authors contributed equally to this work.

for exploring the challenges of this task. Arabic
is a morphologically rich language that is much
more challenging to work, mainly due to its sig-
nificantly larger vocabulary. As shown in Table 1
both Arabic and Esperanto suffer a severe lack
of content and active editors compared to the En-
glish Wikipedia which is currently the biggest one
in terms of number of articles. Our research is
mostly related to previous work on adapting the
general encoder-decoder framework for the gener-
ation of Wikipedia summaries (Lebret et al., 2016;
Chisholm et al., 2017; Vougiouklis et al., 2017).
Nonetheless, all these approaches focus on task
of biographies generation, and only in English –
the language with the most language resources and
knowledge bases available. In contrast with these
works, we explore the generation of sentences in
an open-domain, multilingual context. The model
from (Lebret et al., 2016) takes the Wikipedia in-
fobox as an input, while (Chisholm et al., 2017)
uses a sequence of slot-value pairs extracted from
Wikidata. Both models are only able to generate
single-subject relationships. In our model the in-
put triples go beyond the single-subject relation-
ships of a Wikipedia infobox or a Wikidata page
about a specific item (Section 2). Similarly to
our approach, the model proposed by (Vougiouk-
lis et al., 2017) accepts a set of triples as input,
however, it leverages instance-type-related infor-
mation from DBpedia in order to generate text that
addresses rare or unseen entities. Our solution is
much broader since it does not rely on the assump-
tion that unseen triples will adopt the same pat-
tern of properties and entities’ instance types pairs
as the ones that have been used for training. To
this end, we use copy actions over the labels of
entities in the input triples. This relates to pre-
vious works in machine translation which deals
with rare or unseen word problem for translating
names and numbers in text. (Luong et al., 2015)
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Arabic Esperanto English

# of Articles 541,166 241,901 5,483,928
# of Active Users 7,818 2,849 129,237
Vocab. Size 2.2M 1.5M 2.0M

Table 1: Recent page statistics and number of unique
words (vocab. size) of Esperanto, Arabic and English
Wikipedias.

propose a model that generates positional place-
holders pointing to some words in source sen-
tence and copy it to target sentence (copy actions).
(Gulcehre et al., 2016) introduce separate trainable
modules for copy actions to adapt to highly vari-
able input sequences, for text summarisation. For
text generation from tables, (Lebret et al., 2016)
extend positional copy actions to copy values from
fields in the given table. For Question Genera-
tion, (Serban et al., 2016) use a placeholder for
the subject entity in the question to generalise to
unseen entities.

We evaluate our approach by measuring how
close our synthesised summaries can be to ac-
tual summaries in Wikipedia against two other
baselines of different natures: a language model,
and an information retrieval template-based so-
lution. Our model substantially outperforms all
the baselines in all evaluation metrics in both Es-
peranto and Arabic. In this work we present
the following contributions: i) We investigate the
task of generating textual summaries from Wiki-
data triples in underserved Wikipedia languages
across multiple domains, and ii) We use an end-to-
end model with copy actions adapted to this task.
Our datasets, results, and experiments are avail-
able at: https://github.com/pvougiou/
Wikidata2Wikipedia.

2 Model

Our approach is inspired by similar encoder-
decoder architectures that have already been em-
ployed on similar text generative tasks (Serban
et al., 2016; Vougiouklis et al., 2017).

2.1 Encoding the Triples
The encoder part of the model is a feed-forward
architecture that encodes the set of input triples
into a fixed dimensionality vector, which is sub-
sequently used to initialise the decoder. Given a
set of un-ordered triples FE = {f1, f2, . . . , fR :
fj = (sj , pj , oj)}, where sj , pj and oj are the one-
hot vector representations of the respective sub-

ject, property and object of the j-th triple, we com-
pute an embedding hfj for the j-th triple by for-
ward propagating as follows:

hfj = q(Wh[Winsj ;Winpj ;Winoj ]) , (1)

hFE
= WF[hf1 ; . . . ;hfR−1

;hfR ] , (2)

where hfj is the embedding vector of each triple
fj , hFE

is a fixed-length vector representation for
all the input triples FE . q is a non-linear activa-
tion function, [. . . ; . . .] represents vector concate-
nation. Win,Wh,WF are trainable weight matri-
ces. Unlike (Chisholm et al., 2017), our encoder is
agnostic with respect to the order of input triples.
As a result, the order of a particular triple fj in the
triples set does not change its significance towards
the computation of the vector representation of the
whole triples set, hFE

.

2.2 Decoding the Summary
The decoder part of the architecture is a multi-
layer RNN (Cho et al., 2014) with Gated Recur-
rent Units which generates the textual summary
one token at a time. The hidden unit of the GRU
at the first layer is initialised with hFE

. At each
timestep t, the hidden state of the GRU is calcu-
lated as follows:

hlt = GRU(hlt−1, h
l−1
t ) (3)

The conditional probability distribution over each
token yt of the summary at each timestep t is com-
puted as the softmax(Wouth

L
t ) over all the possi-

ble entries in the summaries dictionary, where hLt
is the hidden state of the last layer and Wout is a
biased trainable weight matrix.
A summary consists of words and mentions of en-
tity in the text. We adapt the concept of surface
form tuples (Vougiouklis et al., 2017) in order to
be able to learn an arbitrary number of different
lexicalisations of the same entity in the summary
(e.g. “aktorino”, “aktoro”). Figure 1 shows the ar-
chitecture of our generative model when it is pro-
vided with the three triples of the idealised exam-
ple of Table 2.

2.3 Copy Actions
Following (Luong et al., 2015; Lebret et al., 2016)
we model all the copy actions on the data level
through a set of special tokens added to the basic
vocabulary. Rare entities identified in text and ex-
isting in the input triples are being replaced by the
token of the property of the relationship to which it
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Triples
Q490900 (Floridia) P31 (estas) Q747074 (komunumo de Italio)
Q490900 (Floridia) P17 (ŝtato) Q38 (Italio)
Q30025755 (Floridia) P1376 (ĉefurbo de) Q490900 (Floridia)

Textual Summary Floridia estas komunumo de Italio.

Vocab. Extended [[Q490900, Floridia]] estas komunumo de [[P17]].

Table 2: Training example: a set of triples about Floridia. Subsequently, our system summarises the input set in the form of
text. The vocabulary extended summary is the one on which we train our model.

Figure 1: Model Overview

was matched. We refer to those tokens as property
placeholders. In Table 2, [[P17]] in the vocab-
ulary extended summary is an example of prop-
erty placeholder – would it be generated by our
model, it is replaced with the label of the object
of the triple with which they share the same prop-
erty (i.e. Q490900 (Floridia) P17 (ŝtato) Q38
(Italio)). When all the tokens of the summary are
sampled, each property placeholder that is gener-
ated is mapped to the triple with which it shares
the same property and is subsequently replaced
with the textual label of the entity. We randomly
choose an entity, in case there are more than one
triple with the same property in the input triples
set.

2.4 Implementation and Training Details

We implemented our neural network models using
the Torch1 package.

We included the 15, 000 and 25, 000 most fre-
quent tokens (i.e. either words or entities) of the
summaries in Esperanto and Arabic respectively
for target vocabulary of the textual summaries.
Using a larger size of target dictionary in Arabic
is due to its greater linguistic variability – Arabic
vocabulary is 47% larger than Esperanto vocab-
ulary (cf. Table 1). We replaced any rare enti-

1Torch is a scientific computing package for Lua. It is
based on the LuaJIT package.

ties in the text that participate in relations in the
aligned triples set with the corresponding property
placeholder of the upheld relations. We include all
property placeholders that occur at least 20 times
in each training dataset. Subsequently, the dictio-
naries of the Esperanto and Arabic summaries are
expanded by 80 and 113 property placeholders re-
spectively. In case the rare entity is not matched to
any subject or object of the set of corresponding
triples it is replaced by the special <resource>
token. Each summary is augmented with the
respect start-of-summary <start> and end-of-
summary <end> tokens.

For the decoder, we use 1 layer of GRUs. We set
the dimensionality of the decoder’s hidden state
to 500 in Esperanto and 700 in Arabic. We ini-
tialise all parameters with random uniform distri-
bution between −0.001 and 0.001, and we use
Batch Normalisation before each non-linear ac-
tivation function and after each fully-connected
layer (Ioffe and Szegedy, 2015) on the encoder
side (Vougiouklis et al., 2017). During training,
the model tries to learn those parameters that min-
imise the sum of the negative log-likelihoods of
a set of predicted summaries. The networks are
trained using mini-batch of size 85. The weights
are updated using Adam (Kingma and Ba, 2014)
(i.e. it was found to work better than Stochastic
Gradient Descent, RMSProp and AdaGrad) with
a learning rate of 10−5. An l2 regularisation term
of 0.1 over each network’s parameters is also in-
cluded in the cost function.

The networks converge after the 9th epoch in
the Esperanto case and after the 11th in the Ara-
bic case. During evaluation and testing, we do
beam search with a beam size of 20, and we re-
tain only the summary with the highest probabil-
ity. We found that increasing the beam size re-
sulted not only in minor improvements in terms of
performance but also in a greater number of fully-
completed generated summaries (i.e. summaries
for which the special end-of-summary <end> to-
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Arabic Esperanto
Avg. # of Tokens per
Summary

28.1 (±28.8) 26.4 (±22.7)

Avg. # of Triples per
Summary

8.1 (±11.2) 11.0 (±13.8)

Avg. # of Linked
Named Entities

2.2 (±1.0) 2.4 (±1.1)

Avg. # of Aligned
Triples

0.1 (±0.4) 0.2 (±0.5)

Vocabulary Size 344, 827 226, 447

Total # of Summaries 255, 741 126, 714

Table 3: Dataset statistics in Arabic and Esperanto.

ken is generated).

3 Dataset

In order to train our models to generate summaries
from Wikidata triples, we introduce a new dataset
for text generation from KB triples in a multilin-
gual setting and align it with the triples of its cor-
responding Wikidata Item. For each Wikipedia ar-
ticle, we extract and tokenise the first introductory
sentence and align it with triples where its corre-
sponding item appears as a subject or an object in
the Wikidata truthy dump. In order to create the
surface form tuples (i.e. Section 2.3), we iden-
tify occurrences of entities in the text along with
their verbalisations. We rely on keyword match-
ing against labels from Wikidata expanded by
the global language fallback chain introduced by
Wikimedia2 to overcome the lack of non-English
labels in Wikidata (Kaffee et al., 2017).

For the property placeholders, we use the dis-
tant supervision assumption for relation extrac-
tion (Mintz et al., 2009). Entities that participate
in relations with the main entity of the article are
being replaced with their corresponding property
placeholder tag. Table 3 shows statistics on the
two corpora that we used for the training of our
systems.

4 Baselines

To demonstrate the effectiveness of our approach,
we compare it to two competitive systems.

KN is a 5-gram Kneser-Ney (KN) (Heafield et al.,
2013) language model. KN has been used before
as a baseline for text generation from structured
data (Lebret et al., 2016) and provided compet-
itive results on a single domain in English. We

2https://meta.wikimedia.org/wiki/
Wikidata/Notes/Language_fallback
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Figure 2: A box plot showing the distribution of BLEU
4 scores of all systems for each category of generated
summaries.

also introduce a second KN model (KNext), which
is trained on summaries with the special tokens
for copy actions. During test time, we use beam
search of size 10 to sample from the learned lan-
guage model.

IR is an Information Retrieval (IR) baseline simi-
lar to those that have been used in other text gen-
erative tasks (Rush et al., 2015; Du et al., 2017).
First, the baseline encodes the list of input triples
using TF-IDF followed by LSA (Halko et al.,
2011). For each item in the test set, we perform
K-nearest neighbors to retrieve the vector from the
training set that is the closest to this item and out-
put its corresponding summary. Similar to KN
baseline, we provide two versions of this baseline
IR and IRext.

5 Results and Discussion

We evaluate the generated summaries from our
model and each of the baselines against their orig-
inal counterparts from Wikipedia. Triples sets
whose generated summaries are incomplete3 (i.e.
summaries for which the special end-of-summary
<end> token is generated) are excluded from
the evaluation. We use a set of evaluation met-
rics for text generation: BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and ROUGEL (Lin, 2004). As displayed in Ta-
ble 4, our model shows a significant enhance-
ment compared to our baselines across the ma-

3Around ≤ 1% and 2% of the input validation and test
triples sets in Arabic and Esperanto respectively led to the
generation of summaries without the <end> token. We be-
lieve that this difference is explained by the limited size of
the Esperanto dataset that increases the level of difficulty that
the trained models (i.e. with or without Copy Actions) to
generalise on unseen data.
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Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 ROUGEL METEOR
Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

A
ra

bi
c

KN 12.84 12.85 2.28 2.4 0.95 1.04 0.54 0.61 17.08 17.09 29.04 29.02
KNext 28.93 28.84 21.21 21.16 16.78 16.76 13.42 13.42 28.57 28.52 30.47 30.43
IR 41.39 41.73 34.18 34.58 29.36 29.72 25.68 25.98 43.26 43.58 32.99 33.33
IRext 49.87 48.96 42.44 41.5 37.29 36.41 33.27 32.51 51.66 50.57 34.39 34.25
Ours 53.61 54.26 47.38 48.05 42.65 43.32 38.52 39.20 64.27 64.64 45.89 45.99
+ Copy 54.10 54.40 47.96 48.27 43.27 43.60 39.17 39.51 64.60 64.69 46.09 46.17

E
sp

er
an

to

KN 18.12 17.8 6.91 6.64 4.18 4.0 2.9 2.79 37.48 36.9 31.05 30.74
KNext 25.17 24.93 16.44 16.3 11.99 11.92 8.77 8.79 44.93 44.77 33.77 33.71
IR 43.01 42.61 33.67 33.46 28.16 28.07 24.35 24.3 46.75 45.92 20.71 20.46
IRext 52.75 51.66 43.57 42.53 37.53 36.54 33.35 32.41 58.15 57.62 31.21 31.04
Ours 49.34 49.40 42.83 42.95 38.28 38.45 34.66 34.85 66.43 67.02 40.62 41.13
+ Copy 50.22 49.81 43.57 43.19 38.93 38.62 35.27 34.95 66.73 66.61 40.80 40.74

Table 4: Automatic evaluation of our model against all other baselines using BLEU 1-4, ROUGE and METEOR
for both Arabic and Esperanto Validation and Test set

jority of the evaluation metrics in both languages.
We achieve at least an enhancement of at least
5.25 and 1.31 BLEU 4 score in Arabic and Es-
peranto respectively over the IRext, the strongest
baseline. The introduction of the copy actions
to our encoder-decoder architecture enhances our
performance further by 0.61− 1.10 BLEU (using
BLEU 4). In general, our copy actions mecha-
nism benefits the performance of all the compet-
itive systems.

Generalisation Across Domains. To investi-
gate how well different models can generalise
across multiple domains, we categorise each gen-
erated summary into one of 50 categories accord-
ing to its main entity instance type (e.g. village,
company, football player). We examine the dis-
tribution of BLEU-4 scores per category to mea-
sure how well the model generalises across do-
mains (Figure 2). We show that i) the high perfor-
mance of our system is not skewed towards some
domains at the expense of others, and that ii) our
model has a good generalisation across domains –
better than any other baseline. Despite the fact that
the Kneser-Ney template-based baseline (KNext)
has exhibited competitive performance in a single-
domain context (Lebret et al., 2016), it is failing
to generalise in our multi-domain text generation
scenario.

6 Conclusions

In this paper, we show that with the adaptation
of the encoder-decoder neural network architec-
ture for the generation of summaries we are able
to overcome the challenges introduced by working
with underserved languages. This is achieved by

leveraging data from a structured knowledge base
and careful data preparation in a multilingual fash-
ion, which are of the utmost practical interest for
our under-resourced task, that would have other-
wise required a substantial additional amount of
data. Our model was able to perform and gen-
eralise across domains better than a set of strong
baselines.
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Abstract

Abstractive text summarization is the task
of compressing and rewriting a long docu-
ment into a short summary while maintain-
ing saliency, directed logical entailment, and
non-redundancy. In this work, we address
these three important aspects of a good sum-
mary via a reinforcement learning approach
with two novel reward functions: ROUGE-
Sal and Entail, on top of a coverage-based
baseline. The ROUGESal reward modifies the
ROUGE metric by up-weighting the salient
phrases/words detected via a keyphrase clas-
sifier. The Entail reward gives high (length-
normalized) scores to logically-entailed sum-
maries using an entailment classifier. Further,
we show superior performance improvement
when these rewards are combined with tradi-
tional metric (ROUGE) based rewards, via our
novel and effective multi-reward approach of
optimizing multiple rewards simultaneously in
alternate mini-batches. Our method achieves
the new state-of-the-art results on CNN/Daily
Mail dataset as well as strong improvements in
a test-only transfer setup on DUC-2002.

1 Introduction

Abstractive summarization, the task of generat-
ing a natural short summary of a long docu-
ment, is more challenging than the extractive
paradigm, which only involves selection of impor-
tant sentences or grammatical sub-sentences (Jing,
2000; Knight and Marcu, 2002; Clarke and La-
pata, 2008; Filippova et al., 2015). Advent of
sequence-to-sequence deep neural networks and
large human summarization datasets (Hermann
et al., 2015; Nallapati et al., 2016) made the ab-
stractive summarization task more feasible and
accurate, with recent ideas ranging from copy-
pointer mechanism and redundancy coverage, to
metric reward based reinforcement learning (Rush

et al., 2015; Chopra et al., 2016; Ranzato et al.,
2015; Nallapati et al., 2016; See et al., 2017).

A good abstractive summary requires several
important properties, e.g., it should choose the
most salient information from the input document,
be logically entailed by it, and avoid redundancy.
Coverage-based models address the latter redun-
dancy issue (Suzuki and Nagata, 2016; Nallapati
et al., 2016; See et al., 2017), but there is still a
lot of scope to teach current state-of-the-art mod-
els about saliency and logical entailment. To-
wards this goal, we improve the task of abstractive
summarization via a reinforcement learning ap-
proach with the introduction of two novel rewards:
‘ROUGESal’ and ‘Entail’, and also demonstrate
that these saliency and entailment skills allow for
better generalizability and transfer.

Our ROUGESal reward gives higher weight to
the important, salient words in the summary, in
contrast to the traditional ROUGE metric which
gives equal weight to all tokens. These weights
are obtained from a novel saliency scorer, which
is trained on a reading comprehension dataset’s
answer spans to give a saliency-based probability
score to every token in the sentence. Our Entail
reward gives higher weight to summaries whose
sentences logically follow from the ground-truth
summary. Further, we also add a length normal-
ization constraint to our Entail reward, to impor-
tantly avoid misleadingly high entailment scores
to very short sentences.

Empirically, we show that our new rewards with
policy gradient approaches perform significantly
better than a cross-entropy based state-of-the-art
pointer-coverage baseline. We show further per-
formance improvements by combining these re-
wards via our novel multi-reward optimization
approach, where we optimize multiple rewards
simultaneously in alternate mini-batches (hence
avoiding complex scaling and weighting issues in

646



reward combination), inspired from how humans
take multiple concurrent types of rewards (feed-
back) to learn a task. Overall, our methods achieve
the new state-of-the-art on the CNN/Daily Mail
dataset as well as strong improvements in a test-
only transfer setup on DUC-2002. Lastly, we
present several analyses of our model’s saliency,
entailment, and abstractiveness skills.

2 Related Work

Earlier summarization work was based on ex-
traction and compression-based approaches (Jing,
2000; Knight and Marcu, 2002; Clarke and Lap-
ata, 2008; Filippova et al., 2015), with more focus
on graph-based (Giannakopoulos, 2009; Ganesan
et al., 2010) and discourse tree-based (Gerani
et al., 2014) models. Recent focus has shifted
towards abstractive, rewriting-based summariza-
tion based on parse trees (Cheung and Penn, 2014;
Wang et al., 2016), Abstract Meaning Represen-
tations (Liu et al., 2015; Dohare and Karnick,
2017), and neural network models with pointer-
copy mechanism and coverage (Rush et al., 2015;
Chopra et al., 2016; Chen et al., 2016; Nallapati
et al., 2016; See et al., 2017), as well as reinforce-
based metric rewards (Ranzato et al., 2015; Paulus
et al., 2017). We also use reinforce-based models,
but with novel reward functions and better simul-
taneous multi-reward optimization methods.

Recognizing Textual Entailment (RTE), the task
of classifying two sentences as entailment, contra-
diction, or neutral, has been used for Q&A and IE
tasks (Harabagiu and Hickl, 2006; Dagan et al.,
2006; Lai and Hockenmaier, 2014; Jimenez et al.,
2014). Recent neural network models and large
datasets (Bowman et al., 2015; Williams et al.,
2017) enabled stronger accuracies. Some previ-
ous work (Mehdad et al., 2013; Gupta et al., 2014)
has explored the use of RTE by modeling graph-
based relationships between sentences to select
the most non-redundant sentences for summariza-
tion. Recently, Pasunuru and Bansal (2017) im-
proved video captioning with entailment-corrected
rewards. We instead directly use multi-sentence
entailment knowledge (with additional length con-
straints) as a separate RL reward to improve
abstractive summarization, while avoiding their
penalty hyperparameter tuning.

For our saliency prediction model, we make
use of the SQuAD reading comprehension
dataset (Rajpurkar et al., 2016), where the answer

spans annotated by humans for important ques-
tions, serve as an interesting and effective proxy
for keyphrase-style salient information in summa-
rization. Some related previous work has incorpo-
rated document topic/subject classification (Ison-
uma et al., 2017) and webpage keyphrase extrac-
tion (Zhang et al., 2004) to improve saliency in
summarization. Some recent work Subramanian
et al. (2017) has also used answer probabilities in
a document to improve question generation.

3 Models

3.1 Baseline Sequence-to-Sequence Model
Our abstractive text summarization model is a
simple sequence-to-sequence single-layer bidirec-
tional encoder and unidirectional decoder LSTM-
RNN, with attention (Bahdanau et al., 2015),
pointer-copy, and coverage mechanism – please
refer to See et al. (2017) for details.

3.2 Policy Gradient Reinforce
Traditional cross-entropy loss optimization for se-
quence generation has an exposure bias issue and
the model is not optimized for the evaluated met-
rics (Ranzato et al., 2015). Reinforce-based pol-
icy gradient approach addresses both of these is-
sues by using its own distribution during training
and by directly optimizing the non-differentiable
evaluation metrics as rewards. We use the RE-
INFORCE algorithm (Williams, 1992; Zaremba
and Sutskever, 2015) to learn a policy pθ de-
fined by the model parameters θ to predict the
next action (word) and update its internal (LSTM)
states. We minimize the loss function LRL =
−Ews∼pθ [r(ws)], where ws is the sequence of
sampled words with wst sampled at time step t of
the decoder. The derivative of this loss function
with approximation using a single sample along
with variance reduction with a bias estimator is:

∇θLRL = −(r(ws)− be)∇θ log pθ(ws) (1)

There are several ways to calculate the baseline
estimator; we employ the effective SCST ap-
proach (Rennie et al., 2016), as depicted in Fig. 1,
where be = r(wa), is based on the reward ob-
tained by the current model using the test time
inference algorithm, i.e., choosing the arg-max
word wat of the final vocabulary distribution at
each time step t of the decoder. We use the joint
cross-entropy and reinforce loss so as to optimize
the non-differentiable evaluation metric as reward
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Figure 1: Our sequence generator with RL training.

while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = γLRL + (1− γ)LXE, where γ is
a tunable hyperparameter.

3.3 Multi-reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.

LRL1 = −(r1(ws)− r1(wa))∇θ log pθ(ws)
LRL2 = −(r2(ws)− r2(wa))∇θ log pθ(ws)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.
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Figure 2: Overview of our saliency predictor model.

Saliency Rewards ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Rewards A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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Entail reward.2 Finally, we add a length normal-
ization constraint to avoid very short sentences
achieving misleadingly high entailment scores:

Entail = Entail× #tokens in generated summary

#tokens in reference summary
(3)

5 Experimental Setup

5.1 Datasets and Training Details

CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) is a collection of online
news articles and their summaries. We use the
non-anonymous version of the dataset as described
in See et al. (2017). For test-only generaliza-
tion experiments, we use the DUC-2002 single
document summarization dataset3. For entailment
reward classifier, we use a combination of the
full Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) and the recent
Multi-NLI corpus (Williams et al., 2017) training
datasets. For our saliency prediction model, we
use the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). All dataset splits
and other training details (dimension sizes, learn-
ing rates, etc.) for reproducibility are in appendix.

5.2 Evaluation Metrics

We use the standard ROUGE package (Lin, 2004)
and Meteor package (Denkowski and Lavie, 2014)
for reporting the results on all of our summariza-
tion models. Following previous work (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
we use the ROUGE full-length F1 variant.

6 Results

Baseline Cross-entropy Model Our abstractive
summarization model has attention, pointer-copy,
and coverage mechanism. First, we apply cross-
entropy optimization and achieve comparable re-

2Since the GT summary is correctly entailed by the source
document, we directly (by transitivity) use this GT as premise
for easier (shorter) encoding. We also tried using the full
input document as premise but this didn’t perform as well
(most likely because the entailment classifiers are not trained
on such long premises; and the problem with the sentence-to-
sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (sim-
ilar to ROUGE-L) as well as pairwise sentence-to-sentence
avg. scoring, but we found that avg. scoring of ground-
truth summary (as premise) w.r.t. each generated summary’s
sentence (as hypothesis) works better (intuitive because each
sentence in generated summary might be a compression of
multiple sentences of GT summary or source document).

3
http://www-nlpir.nist.gov/projects/duc/

guidelines/2002.html

Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus (2017) (XE)

? 38.30 14.81 35.49 -
Paulus (2017) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 1: Results on CNN/Daily Mail (non-
anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce
mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’:
METEOR.

sults on CNN/Daily Mail w.r.t. previous work (See
et al., 2017).4

ROUGE Rewards First, using ROUGE-L as
RL reward (shown as ROUGE in Table 1) im-
proves the performance on CNN/Daily Mail in all
metrics with stat. significant scores (p < 0.001) as
compared to the cross-entropy baseline (and also
stat. signif. w.r.t. See et al. (2017)). Similar
to Paulus et al. (2017), we use mixed loss function
(XE+RL) for all our reinforcement experiments, to
ensure good readability of generated summaries.

ROUGESal and Entail Rewards With our
novel ROUGESal reward, we achieve stat. signif.
improvements in all metrics w.r.t. the baseline as
well as w.r.t. ROUGE-reward results (p < 0.001),
showing that saliency knowledge is strongly im-
proving the summarization model. For our Entail
reward, we achieve stat. signif. improvements in
ROUGE-L (p < 0.001) w.r.t. baseline and achieve
the best METEOR score by a large margin. See
Sec. 7 for analysis of the saliency/entailment skills
learned by our models.

Multi-Reward Results Similar to ROUGESal,
Entail is a better reward when combined with
the complementary phrase-matching metric in-
formation in ROUGE; Table 1 shows that the
ROUGE+Entail multi-reward combination per-
forms stat. signif. better than ROUGE-reward
in ROUGE-1, ROUGE-L, and METEOR (p <
0.001), and better than Entail-reward in all

4Our baseline is statistically equal to the paper-reported
scores of See et al. (2017) (see Table 1) on ROUGE-1,
ROUGE-2, based on the bootstrap test (Efron and Tibshirani,
1994). Our baseline is stat. significantly better (p < 0.001)
in all ROUGE metrics w.r.t. the github scores (R-1: 38.82,
R-2: 16.81, R-3: 35.71, M: 18.14) of See et al. (2017).
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Models R-1 R-2 R-L M
Baseline (XE) 35.50 14.57 32.19 14.36
ROUGE (RL) 35.97 15.45 32.72 14.50
ROUGESal+Ent (RL) 38.95 17.05 35.52 16.47

Table 2: ROUGE F1 full length scores of our models
on test-only DUC-2002 generalizability setup.

ROUGE metrics. Finally, we combined our two
rewards ROUGESal+Entail to incorporate both
saliency and entailment knowledge, and it gives
the best results overall (p < 0.001 in all metrics
w.r.t. both baseline and ROUGE-reward models),
setting the new state-of-the-art.5

Test-Only Transfer (DUC-2002) Results Fi-
nally, we also tested our model’s generalizabil-
ity/transfer skills, where we take the models
trained on CNN/Daily Mail and directly test them
on DUC-2002 in a test-only setup. As shown in
Table 2, our final ROUGESal+Entail multi-reward
RL model is statistically significantly better than
both the cross-entropy (pointer-generator + cov-
erage) baseline as well as ROUGE reward RL
model, in terms of all 4 metrics with a large mar-
gin (with p < 0.001). This demonstrates that our
ROUGESal+Entail model learned better transfer-
able and generalizable skills of saliency and logi-
cal entailment.

7 Output Analysis

Saliency Analysis We analyzed the output sum-
maries generated by See et al. (2017), and our
baseline, ROUGE-reward and ROUGESal-reward
models, using our saliency prediction model
(Sec. 4), and the scores are 27.95%, 28.00%,
28.80%, and 30.86%. We also used the origi-
nal CNN/Daily Mail Cloze Q&A setup (Hermann
et al., 2015) with the fill-in-the-blank answers
treated as salient information, and the results are
60.66%, 59.36%, 60.67%, and 64.66% for the
four models. Both these experiments illustrate that
our ROUGESal reward model is stat. signif. better
in saliency than the See et al. (2017), our baseline,
and ROUGE-reward models (p < 0.001).

Entailment Analysis We also analyzed the
entailment scores of the generated summaries
from See et al. (2017), and our baseline, ROUGE-
reward, and Entail-reward models, and the re-
sults are 27.33%, 27.21%, 28.23%, and 28.98%.6

5Our last three rows in Table 1 are all stat. signif. better
in all metrics with p < 0.001 compared to See et al. (2017).

6Based on our ground-truth summary to output summary
sentences’ average entailment score (see Sec. 4); similar

Models 2-gram 3-gram 4-gram
See et al. (2017) 2.24 6.03 9.72
Baseline (XE) 2.23 5.58 8.81
ROUGE (RL) 2.69 6.57 10.23
ROUGESal (RL) 2.37 6.00 9.50
Entail (RL) 2.63 6.56 10.26

Table 3: Abstractiveness: novel n-gram percentage.

We observe that our Entail-reward model achieves
stat. significant entailment scores (p < 0.001)
w.r.t. all the other three models.

Abstractiveness Analysis In order to measure
the abstractiveness of our models, we followed the
‘novel n-gram overlap’ approach suggested in See
et al. (2017). First, we found that all our reward-
based RL models have significantly (p < 0.01)
more novel n-grams than our cross-entropy base-
line (see Table 3). Next, the Entail-reward model
‘maintains’ stat. equal abstractiveness as the
ROUGE-reward model, likely because it encour-
ages rewriting to create logical subsets of informa-
tion, while the ROUGESal-reward model does a
bit worse, probably because it focuses on copying
more salient information (e.g., names). Compared
to previous work (See et al., 2017), our Entail-
reward and ROUGE-reward models achieve statis-
tically significant improvement (p < 0.01) while
ROUGESal is comparable.

8 Conclusion

We presented a summarization model trained with
novel RL reward functions to improve the saliency
and directed logical entailment aspects of a good
summary. Further, we introduced the novel and ef-
fective multi-reward approach of optimizing mul-
tiple rewards simultaneously in alternate mini-
batches. We achieve the new state-of-the-art on
CNN/Daily Mail and also strong test-only im-
provements on a DUC-2002 transfer setup.
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A Supplementary Material

A.1 Saliency Rewards
Here, we describe the ROUGE-L formulation at
summary-level and later describe how we incorpo-
rate saliency information into it. Given a reference
summary of u sentences containing a total of m
tokens ({wr,k}mk=1) and a generated summary of v
sentences with a total of n tokens ({wc,k}nk=1), let
ri be the reference summary sentence and cj be
the generated summary sentence. Then, the pre-
cision (Plcs), recall (Rlcs), and F-score (Flcs) for
ROUGE-L are defined as follows:

Plcs =

∑u
i=1 LCS∪(ri, C)

n
(4)

Rlcs =

∑u
i=1 LCS∪(ri, C)

m
(5)

Flcs =
(1 + β2)RlcsPlcs
Rlcs + β2Plcs

(6)

where LCS∪ takes the union Longest Common
Subsequence (LCS) between a reference summary
sentence ri and every generated summary sen-
tence cj (cj ∈ C), and β is defined in Lin (2004).
In the above ROUGE-L scores, we assume that ev-
ery token has equal weight, i.e, 1. However, ev-
ery summary has salient tokens which should be
rewarded with more weight. Hence, we use the
weights obtained from our novel saliency predic-
tor to modify the ROUGE-L scores with salient
information as follows:

P slcs =

∑u
i=1 LCS

∗
∪(ri, C)∑n

k=1 η(wc,k)
(7)

Rslcs =

∑u
i=1 LCS

∗
∪(ri, C)∑m

k=1 η(wr,k)
(8)

F slcs =
(1 + β2)RslcsP

s
lcs

Rslcs + β2P slcs
(9)

where η(w) is the weight assigned by the saliency
predictor for token w, and β is defined in Lin
(2004).7 Let {wk}pk=1 be the union LCS set, then
LCS∗∪(ri, C) is defined as follows:

LCS∗∪(ri, C) =
p∑

k=1

η(wk) (10)

7If a token is repeated at multiple times in the input sen-
tence, we average the probabilities of those instances.
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A.2 Experimental Setup
A.2.1 Datasets
CNN/Daily Mail Dataset CNN/Daily Mail
dataset (Hermann et al., 2015; Nallapati et al.,
2016) is a collection of online articles and their
summaries. The summaries are based on the
human written highlights of these articles. The
dataset has 287, 226 training pairs, 13, 368 vali-
dation pairs, and 11, 490 test pairs. We use the
non-anonymous version of the dataset as described
in See et al. (2017).

DUC Test Corpus We use the DUC-2002 single
document summarization dataset8 as a test-only
setup where we directly take the pretrained models
trained on CNN/Daily Mail dataset and test them
on DUC-2002, in order to check for our model’s
domain transfer capabilities. This corpus consists
of 567 documents with one or two human anno-
tated reference summaries.

SNLI and MultiNLI corpus We use the full
Stanford Natural Language Inference (SNLI) cor-
pus (Bowman et al., 2015) and the recent Multi-
NLI corpus (Williams et al., 2017) data for build-
ing our entailment classifier. We use the standard
splits following previous work.

SQuAD Dataset We use Stanford Question An-
swering Dataset (SQuAD) for our saliency predic-
tion model. We process the SQuAD dataset to col-
lect the sentence and their corresponding salient
phrases pairs. Here again, we use the standard
split following previous work.

A.2.2 Training Details
During training, all our LSTM-RNNs are set with
hidden state size of 256. We use a vocabulary size
of 50k, where word embeddings are represented
in 128 dimension, and both the encoder and de-
coder share the same embedding for each word.
We encode the source document using a 400 time-
step unrolled LSTM-RNN and 100 time-step un-
rolled LSTM-RNN for decoder. We clip the gradi-
ents to a maximum gradient norm value of 2.0 and
use Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 1 × 10−3 for pointer baseline
and 1 × 10−4 while training along with coverage
loss, and 1×10−6 for reinforcement learning. Fol-
lowing See et al. (2017), we add coverage mech-
anism to a converged pointer model. For mixed-

8
http://www-nlpir.nist.gov/projects/duc/

guidelines/2002.html

Models Accuracy
Entailment Classifier 74.50%
Saliency Predictor 16.87%

Table 4: Performance of our entailment classifier and
saliency predictor.

loss (XE+RL) optimization, we use the following
γ values for various rewards: 0.9985 for ROUGE,
0.9999 for Entail and ROUGE+Entail, and 0.9995
for ROUGESal and ROUGESal+Entail. For re-
inforcement learning, we only use 5000 training
samples (< 2% of the actual data) to speed up con-
vergence, but we found it to work well in practice.
During inference time, we use a beam search of
size 4.

A.3 Results
A.3.1 Saliency and Entailment Scorer
Table 4 presents the performance of our saliency
predictor (on the SQuAD-based dev set for answer
span classification accuracy) and entailment clas-
sifier (on the Multi-NLI dev set accuracy). Our
entailment classifier is comparable to the state-of-
the-art models.9

9RepEval leaderboard: https://repeval2017.
github.io/shared/
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Abstract

Supervised summarization systems usually
rely on supervision at the sentence or n-
gram level provided by automatic metrics like
ROUGE, which act as noisy proxies for human
judgments. In this work, we learn a summary-
level scoring function θ including human judg-
ments as supervision and automatically gener-
ated data as regularization. We extract sum-
maries with a genetic algorithm using θ as a fit-
ness function. We observe strong and promis-
ing performances across datasets in both auto-
matic and manual evaluation.

1 Introduction

The task of extractive summarization can naturally
be cast as a discrete optimization problem where
the text source is considered as a set of sentences
and the summary is created by selecting an opti-
mal subset of the sentences under a length con-
straint (McDonald, 2007). This view entails defin-
ing an objective function which is to be maximized
by some optimization technique. In the ideal case,
this objective function would encode all the rel-
evant quality aspects of a summary, such that by
maximizing all these quality aspects we would ob-
tain the best possible summary.

However, we find several issues with the ob-
jective function in previous work on optimization-
based summarization. First, the choice of the ob-
jective function is based on ad-hoc assumptions
about which quality aspects of a summary are rel-
evant (Kupiec et al., 1995). This bias can be miti-
gated via supervised techniques guided by data. In
practice, these approaches use signals at the sen-
tence (Conroy and O’leary, 2001; Cao et al., 2015)
or n-gram (Hong and Nenkova, 2014; Li et al.,
2013) level and then define a combination func-
tion to estimate the quality of the whole summary
(Carbonell and Goldstein, 1998; Ren et al., 2016).

This combination θ determines the trade-off be-
tween conflicting quality aspects (importance vs
redundancy) encoded in the objective function by
making simplistic assumptions to ensure conve-
nient mathematical properties of θ like linearity
or submodularity (Lin and Bilmes, 2011). This
restriction comes from computational considera-
tions without conceptual justifications. More im-
portantly, the supervision signal comes from au-
tomatic metrics like ROUGE (Lin, 2004) which
are convenient but noisy approximations for hu-
man judgment.

In this work, we propose to learn the objec-
tive function θ at the summary-level from a pool
of manually annotated system summaries to en-
sure the extraction of summaries considered good
by humans. This explicitly targets the extraction
of high-quality summaries as measured by hu-
mans and limits undesired gaming of the target
evaluation metric. However, the number of data
points is relatively low and the learned θ might
not be well-behaved (high θ scores for bad sum-
maries) pushing the optimizer to explore regions
of the feature space unseen during training where
θ wrongly assumes high scores. To prevent this
scenario, we rely on a large amount of noisy but
automatic training data providing supervision on a
larger span of the feature space. Intuitively, it can
be viewed as a kind of regularization.

By defining θ directly at the summary-level, one
has access to features like redundancy or global
information content without the need to define
a combination function from individual sentence
scores. Any feature available at the sentence or
n-gram level can be transferred to the summary-
level (by summation), while the summary-level
perspective provides access to new features cap-
turing the interactions between sentences. Further-
more, recent works have demonstrated that global
optimization using genetic algorithms without im-
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posing any mathematical restrictions on θ is feasi-
ble (Peyrard and Eckle-Kohler, 2016).

In summary, our contributions are: (1) We pro-
pose to learn a summary-level scoring function
θ and use human judgments as supervision. (2)
We demonstrate a simple regularization strategy
based on automatic data generation to improve the
behavior of θ under optimization. (3) We per-
form both automatic and manual evaluation of the
extracted summaries, which indicate competitive
performances.

2 Approach

2.1 Learning setup
Let θ∗ be the observed human judgments. θ∗ can
be manual Pyramid (Nenkova et al., 2007) or over-
all responsiveness on a 0 to 5 LIKERT scale. We
learn a function θw with parametersw approximat-
ing θ∗ based on a feature set Φ. Φ(S) ∈ Rd is the
feature representation of a summary S.

Let T be the set of topics in the training set, and
ST the set of scored summaries for the topic T .
The learning problem consists in minimizing the
following loss function:

Lω =
∑

T∈T

∑

s∈ST
‖θω(Φ(S))− θ∗(S)‖2 (1)

While any regression algorithm could be ap-
plied, we observed strong performances for the
simple linear regression. It is particularly simple
and not prone to overfitting.

2.2 Automatic data generation
Few annotated summaries are available (50 per
topic) and they cover a small region of the feature
space (low variability). θ may wrongly assume
high scores in some parts of the feature space de-
spite lack of evidence. The optimizer will explore
these regions and output low-quality summaries.

To address this issue, we generate summaries
distributed across the feature space. For each
feature x, we sample a set of k = 100 sum-
maries covering the range of possible values of
x. For sampling, we use the genetic algorithm
recently introduced by Peyrard and Eckle-Kohler
(2016).1 Their solver implements a Genetic Algo-
rithm (GA) to create and iteratively optimize sum-
maries over time. We use default values for the

1https://github.com/UKPLab/
coling2016-genetic-swarm-MDS

reproduction and mutation rate and set the popu-
lation size to 50. With x as fitness function, the
resulting population is a set of summaries ranging
from random to (close to) maximal value. After
both maximization and minimization, we obtain
100 summaries covering the full range of x.

In total, we sample m · k summaries per topic,
wherem is the number of features. We score these
summaries with ROUGE-2 recall (R2), which is a
noisy approximation of human judgments but pro-
vides indications preventing bad regions from get-
ting high scores.

2.3 Summary Extraction

We trained 3 different scoring functions: θpyr with
manual pyramid annotations; θresp with respon-
siveness annotations; and θR2 with our automat-
ically generated data. 2 The final scoring function
is a linear combination:

θ(S) = α1 · θpyr(S) +α2 · θresp(S) +α3 · θR2(S)

Therefore θR2 acts as a regularizer for the θ’s
learned with human judgments. 3 It is a simple
form of model averaging which combine the dif-
ferent information of the 3 different models.

We didn’t constrain θ to have specific proper-
ties like linearity with respect to sentence scores,
thus extracting high scoring summaries cannot be
done with Integer Linear Programming. Instead,
we search an approximate solution by employing
the same meta-heuristic solver we used for sam-
pling with θ as the fitness function.

2.4 Features

Learning a scoring function at the summary-level
gives us access to both n-gram/sentence-level fea-
tures and summary-level features. Sentence-level
features can be transferred to the summary-level,
while new features capturing the interactions be-
tween sentences in the summary become available.

As sentence-level features, we used the stan-
dard: TF*IDF, n-gram frequency and overlap with
the title. As new summary-level features, we used:
number of sentences, summary-level redundancy
and summary-level n-gram distributions: Jensen-
Shannon (JS) divergence with n-gram distribution
in the source (Louis and Nenkova, 2013).

2We train these models separately because the different
annotations do not lie on the same scale

3We didn’t automatically tune the different values of α
but observed that [1, 0.5, 0.5] works well in practice.
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N-gram Coverage. Each n-gram gi in the doc-
uments has a frequency tf(gi), the summary S is
scored by:

Covn(S) =
∑

g∈Sn

tf(gi)

Here Sn is the multiset of n-grams (with repeti-
tions) composing S. Also, the frequency can be
computed either by counting the number of occur-
rence of the n-gram or by counting the number
of documents in which the n-gram appears. For
both frequency computations, we extract features
for unigrams, bigrams and trigrams.

TF*IDF. Each n-gram gi is also associated its
Inverse Document Frequence: idf(gi). The sum-
mary S is scored by:

TF ∗ IDFn(S) =
∑

g∈Sn

tf(gi) ∗ idf(gi)

Here Sn is the multiset of n-grams (with repeti-
tions) composing the summary S. We also extract
features for both frequency computations for uni-
grams, bigrams and trigrams.

Overlap with title. We measure the proportion
of n-grams from the title that appear in the sum-
mary:

Overlapn(S) =
|Tn ∩ Sn|

Tn

Where Tn is the multiset of n-grams in the title,
and Sn is the multiset of n-grams in the sum-
mary. We compute it for unigrams, bigrams and
trigrams.

Number of sentences. We also use the number
of sentences in S as a feature because summaries
with a lot of sentences tend to have very short and
meaningless sentences.

Redundancy. Previous features were at the
sentence-level, we obtained features for the whole
summary by summation over sentences. How-
ever, the redundancy of S cannot be computed at
the sentence-level. This is an example of features
available at the summary-level but not available
at the sentence-level. We define it as the number
of unique n-gram types (|Un|) in the summary di-
vided by the total number of n-gram tokens (the
length of S)

Redn(S) =
|Un|
|Sn|

Where Un is the set of n-grams (without repeti-
tions) composing S and Sn is the multiset of n-
grams (with repetitions).

Divergences. This is another feature that can
only be computed at the summary-level inspired
by Haghighi and Vanderwende (2009) and Peyrard
and Eckle-Kohler (2016). We compute the KL di-
vergence and JS divergence between n-gram prob-
ability distributions of the summaries and of the
documents. The probability distributions are built
from the two kinds of frequency distributions and
for unigrams, bigrams and trigrams.

3 Experiments

Dataset We use two multi-document summa-
rization datasets from the Text Analysis Confer-
ence (TAC) shared tasks: TAC-2008 and TAC-
2009.4 TAC-2008 and TAC-2009 contain 48 and
44 topics, respectively. Each topic consists of 10
news articles to be summarized in a maximum of
100 words. We use only the so-called initial sum-
maries (A summaries), but not the update part.

We used these datasets because all system sum-
maries and the 4 reference summaries were man-
ually evaluated by NIST assessors for content se-
lection (with Pyramid) and overall responsiveness.
At the time of the shared tasks, 57 systems were
submitted to TAC-2008 and 55 to TAC-2009. For
our experiments, we use the Pyramid and the re-
sponsiveness annotations.

With our notations, for example with TAC-
2009, we have n = 55 scored system summaries,
m = 44 topics, Di contains 10 documents and θi
contains 4 reference summaries.

We also use the recently created German dataset
DBS (Benikova et al., 2016) which contains 10
heterogeneous topics. For each topic, 5 summaries
were evaluated by trained human annotators but
only for content selection with Pyramid. The sum-
maries have variable sizes and are about 500 words
long.

Baselines (1) ICSI (Gillick and Favre, 2009)
is a global linear optimization approach that ex-
tracts a summary by solving a maximum coverage
problem considering the most frequent bigrams
in the source documents. ICSI has been among
the best systems in a standard ROUGE evalua-
tion (Hong et al., 2014). (2) LexRank (Erkan

4http://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/

656



ρ NDCG

Best-Baseline-R .594 .505
θR2 .663 .536

Best-Baseline-Pyr .492 .715
θpyr .554 .780

Best-Baseline-Resp .367 .710
θresp .391 .741

Table 1: Performance of learned θ’s compared to
the best baselines for each type annotation types.

and Radev, 2004) is a graph-based approach com-
puting sentence centrality based on the PageRank
algorithm. (3) KL-Greedy (Haghighi and Van-
derwende, 2009) minimizes the Kullback-Leibler
(KL) divergence between the word distributions in
the summary and the documents. (3) Peyrard and
Eckle-Kohler (2016) optimize JS divergence with
a genetic algorithm. (4) Finally, SFOUR is a su-
pervised structured prediction approach that trains
an end-to-end on a convex relaxation of ROUGE
(Sipos et al., 2012).

Objective function learning In this section, we
measure how well our models can predict human
judgments. We train each θ in a leave-one-out
cross-validation setup for each dataset and com-
pare their performance to the summary scoring
function of baselines like it was done previously
(Peyrard and Eckle-Kohler, 2017). Each individ-
ual feature is also included in the baselines.

Correlations are measured with two comple-
mentary metrics: Spearman’s ρ and Normalized
Discounted Cumulative Gain (NDCG). Spear-
man’s ρ is a rank correlation metric, which com-
pares the ordering of systems induced by θ and the
ordering of systems induced by human judgments.
NDCG is a metric that compares ranked lists and
puts more emphasis on the top elements with log-
arithmic decay weighting. Intuitively, it captures
how well θ can recognize the best summaries. The
optimization scenario benefits from high NDCG
scores because only summaries with high θ scores
are extracted.

The results are presented in Table 1. For sim-
plicity, we report the average over the 3 datasets.
Each θ is compared against the best performing
baseline for the data annotation type it was trained
on (R2, responsiveness or pyramid).5 The trained
models perform substantially and consistently bet-

5Best baseline for R2 and Responsiveness is: KL diver-
gence on bigrams; for Pyramid: KL divergence on unigrams

ter than the best baselines. They have a high cor-
relation with human judgments and are capable of
identifying good summaries.

However, we need to test whether the combi-
nation of the three θ’s is well behaved under op-
timization. For this, we perform an evaluation of
the summaries extracted by the genetic optimizer.

Summaries Evaluation Now, we evaluate the
summaries extracted by the genetic optimizer with
θ as fitness function (noted (θ, Gen)). We still train
θ with leave-one-out cross-validation.

To evaluate summaries, we report the ROUGE
variant identified by Owczarzak et al. (2012) as
strongly correlating with human evaluation meth-
ods: ROUGE-2 (R2) recall with stemming and
stopwords not removed. We also report JS2, the
Jensen-Shannon divergence between bigrams in
the reference summaries and the candidate system
summary (Lin et al., 2006). The last metric is S3
(Peyrard et al., 2017), a combination of several
existing metrics trained explicitly to maximize its
correlation with human judgments.

Finally, our approach aims at improving sum-
marization systems based on human judgments,
therefore we also set up a manual evaluation for
the two English datasets. Two annotators were
given the summaries of every system for 10 ran-
domly selected topic of both TAC-2008 and TAC-
2009. They annotated (with a Cohen’s kappa of
0.73) summaries on a LIKERT scale following the
responsiveness guidelines.

The results are reported in Table 2. We per-
form significance testing with Approximate Ran-
dom Testing to compare differences between two
means in cross-validation 6.

While θ’s trained on human judgments have a
high correlation with human judgments, they be-
have badly under optimization. This effect is much
less visible for θR2 because the data points have
been sampled to cover the feature space. We ob-
serve the effectiveness of the regularization be-
cause each θR2/pyr/resp performs much worse in-
dividually than the combined θ. We also note that
(θR2, Gen) performs on par with the other super-
vised baseline SFOUR but both are outperformed
by exploiting human judgments. (θ, Gen) is con-
sistently and often significantly better than base-
lines across datasets and metrics. In particular,
humans tend to prefer the summaries extracted by

6The symbol * indicates that the difference compared to
the previous best baseline is significant with p ≤ 0.05
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TAC-2008 TAC-2009 DBS
R2↑ JS2↓ S3↑ H↑ R2↑ JS2↓ S3↑ H↑ R2↑ JS2↓ S3↑

LexRank .078 .635 .336 3.74 .090 .625 .360 3.75 .105 .594 .354
(KL, Greedy) .068 .644 .294 3.42 .061 .648 .288 3.21 .078 .620 .293
(JS, Gen) .098 .618 .376 3.99 .101 .618 .370 3.89 .112 .584 .362
SFOUR .101 .623 .372 3.88 .101 .622 .367 3.85 .114 .591 .357
ICSI .101 .620 .377 4.03 .103 .619 .369 3.91 .115 .586 .361

(θR2, Gen) .100 .620 .375 3.89 .104 .618 .373 3.82 .116 .585 .363
(θpyr , Gen) .096 .623 .369 3.65 .085 .631 .339 3.77 .078 .615 .312
(θresp, Gen) .096 .622 .364 3.78 .085 .635 .342 3.88 - - -

(θ, Gen) .105 .615* .382 4.09* .104 .617 .376 4.03* .117 .584 .367*

Table 2: Comparison of systems across 3 datasets evaluated with ROUGE-2 recall; JS divergence on
bigrams; S3 and Human annotations.

(θ, Gen). Manual inspection of summaries reveals
that (θ, Gen) has lower redundancy than previous
baselines thanks to summary-level features.

Important Features Since we used a linear re-
gression, we can estimate the contribution of a
feature by the amplitude of its associated weight.
The two best features (n-gram distributions and
redundancy) are summary-level features, which
confirms the advantage of using a summary-level
scoring function.

4 Related Work and Discussion

Supervised summarization started with Kupiec
et al. (1995) who observed that there is no prin-
cipled method to select and weight relevant fea-
tures. Previous work focused on predicting sen-
tence (Conroy and O’leary, 2001; Cao et al., 2015)
or n-gram (Hong and Nenkova, 2014; Li et al.,
2013) scores and then defining a composition
function to get a score for the summary. This
combination usually accounts for redundancy or
coherence (Nishikawa et al., 2014) in an ad-hoc
fashion (Carbonell and Goldstein, 1998; Ren et al.,
2016). Structure prediction has been investigated
to learn the composition function as well (Sipos
et al., 2012; Takamura and Okumura, 2010). The
supervision is always provided by automatic met-
rics, whereas we incorporate human judgments
as supervision and learn from it directly at the
summary-level. We note that He et al. (2006) and
Peyrard and Eckle-Kohler (2016) have used a scor-
ing function at the summary-level but these ap-
proaches are unsupervised.

One of the challenges we face is the lack of data
with human judgments. We hope that this work
will encourage efforts to create new and large
datasets as they will be decisive for the progress

of summarization. Indeed, systems trained only
with automatic metrics can only be as good as the
metrics are as a proxy for humans.

We used simple features but using more com-
plex and semantic features is promising. Indeed,
two syntactically similar but semantically different
summaries cannot be distinguished by ROUGE,
which diminishes the usefulness of semantic fea-
tures. However, humans can distinguish them,
thus inducing better usage of such features.

Another promising direction is to investigate
more sophisticated ways of combining the human
judgments with the automatically generated data.
For example, by exploiting techniques from semi-
supervised learning (Zhu et al., 2009) or by dy-
namically sampling unseen regions of the feature
space with active learning (Settles, 2009).

5 Conclusion

We proposed an approach to learn a summary-
level scoring function θ with human judgments as
supervision and automatically generated data as
regularization. The summaries subsequently ex-
tracted with a genetic algorithm are of high qual-
ity according to both automatic and manual evalu-
ation. We hope this work will encourage more re-
search directed towards the generation and usage
of human judgment datasets.
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Abstract

We propose a simple but highly effective au-
tomatic evaluation measure of summarization,
pruned Basic Elements (pBE). Although the
BE concept is widely used for the automated
evaluation of summaries, its weakness is that it
redundantly matches basic elements. To avoid
this redundancy, pBE prunes basic elements
by (1) disregarding frequency count of basic
elements and (2) reducing semantically over-
lapped basic elements based on word similar-
ity. Even though it is simple, pBE outper-
forms ROUGE in DUC datasets in most cases
and achieves the highest rank correlation coef-
ficient in TAC 2011 AESOP task.

1 Introduction

Automatic evaluation measures have a significant
impact on the research on summarization. Since
there is no other practical way to quickly evaluate
the quality of system summaries, summarization
studies work on raising the scores that are given
by automatic evaluation measures.

Among the automatic evaluation measures, the
most popular ones are ROUGE (Lin, 2004) and BE
(Hovy et al., 2006). ROUGE/BE counts the num-
ber of ngrams/basic elements1 that match those in
manual reference summaries. ROUGE normally
employs unigrams or bigrams while BE uses de-
pendency triples (head|modifier|relation) as their
units. It is known that both ROUGE and BE are
well correlated with human judgment.

Their evaluation approach, however, is quite
different from humans’ in two ways: they score
low-information units higher and ignore the se-
mantic overlap of units. The first problem is

1We use “BE” to represent the evaluation method Basic
Elements, “basic element(s)” to represent the fragments of
Basic Elements and “unit” as a general term of ngrams and
basic elements.

caused by scoring units according to their frequen-
cies. We found that the units that occur multi-
ple times in a summary are highly likely to be
function-word bigrams (e.g., “of the”) or basic
elements that represent only single nouns (e.g.,
(house|the|det)); such units are less informative
than units connected with verbs (e.g., “John went”
and (went|John|nsubj)). The second problem is
that ROUGE/BE sometimes gives scores twice or
more to the units that are semantically overlapped
but spelled differently. This is due to the fact that
ROUGE/BE only considers the surface level of
unit matching, which also yields inaccurate scor-
ing of paraphrased units.

Our method is aimed at solving these problems
by cutting back redundant units. We use BE, but
with Universal Dependencies (UD) (Nivre et al.,
2016), a more ideal form of annotation that is
available for multiple languages, and introduce
two steps to prune basic elements. The first step is
to disregard the frequency count of basic elements,
and the other one is to reduce semantically over-
lapped basic elements using word embeddings.
We call this new measure pruned BE (pBE). Our
experiments show that pBE outperforms ROUGE
in most DUC datasets and achieves the highest
rank correlation coefficient in TAC 2011 AESOP
task.

2 Related Work

ROUGE-WE (Ng and Abrecht, 2015) and BEwT-
E (Tratz and Hovy, 2008) are closely related to our
method in that they aim to improve unit match-
ing. ROUGE-WE exploits word embeddings to
softly match ngrams based on their cosine similar-
ities. Although this also takes semantic correspon-
dence into consideration, it is different from pBE
because it does not judge word similarity within
one summary, but only between a target sum-
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mary and its reference summaries. Furthermore,
ROUGE-WE does not remove the frequency count
of ngrams as pBE does. As a result, ROUGE-WE
does not achieve our goal of reducing redundant
units.

BEwT-E transforms basic elements to help in
matching. However, it requires complex trans-
formation rules, which are difficult to apply to
languages other than English. pBE, on the other
hand, needs no resources other than word embed-
dings and UD parsers, and so can be implemented
in many other languages. BEwT-E was checked
as to whether the frequency count of basic ele-
ments affected its performance. The focus, how-
ever, was not to prune basic elements and there
was no clear explanation as to why disregarding
frequency count was effective. Our contribution
is that we have identified why disregarding fre-
quency count is effective; it yields the pruning of
low-information basic elements, and thus works
well in combination with reducing semantic over-
laps.

Syntactically and semantically richer structures
are free from low-information units. In this sense,
PEAK (Yang et al., 2016) is related to our method
in that it tries to employ predicate-argument struc-
tures as primitive units for matching. However,
the predicate-argument structures are more diffi-
cult to extract than dependency triples. It is re-
ported that PEAK scored only about 0.7 in Pearson
coefficient for the DUC 2006 dataset (Yang et al.,
2016), whereas ROUGE achieved around 0.83.

3 pruned BE (pBE)2

In this section, we describe our implementation of
BE and the two steps of pruning basic elements.

3.1 Our Implementation of BE

BE was proposed to compensate some of the short-
comings of ngrams (Hovy et al., 2006). ROUGE
usually uses short ngrams such as unigrams and
bigrams, but these can be low-information con-
tent because they are simply extracted without
considering the syntactic relations of the words.
For example, the sentence “John went to the store
on foot” is decomposed into the bigrams [“John
went”, “went to”, “to the”, “the store”, “store on”,
“on foot”]. The function-word pair “to the” bears
almost no meaning but is frequently found since

2Code will be available at https://github.com/
ukyh/prunedBE

function words appear in sentences quite often. On
the other hand, a dependency triple holds the syn-
tactic information that the dependency of “to” is
not “the” but “store”. Although BE requires ap-
plying parsers to summaries, syntactic dependen-
cies enable BE to avoid making low-information
units3.

Accordingly, while we use BE, the annota-
tion is UD based, an approach not employed
in previous studies. Since UD focuses on
the relations between content words, UD triples
are able to represent key components of sen-
tences more directly. For example, the sen-
tence above can be decomposed in UD as
[(went|John|nsubj), (store|to|case), (store|the|det),
(went|store|nmod:to), (foot|on|case), (went|foot|
nmod:on)]4, while it is [(went|John|nsubj), (went|
to|prep), (store|the|det), (to|store|pobj), (went|on|
prep), (on|foot|pobj)] in Stanford Dependen-
cies (de Marneffe et al., 2006). In UD, the
predicate-object relation is directly expressed as
(went|store|nmod:to), instead of having interme-
diate triples (went|to|prep) and (to|store|pobj).
Moreover, UD has another key advantage, that it
is available in many languages. This makes our
method available for multiple languages other than
English.

We use (head|modifier|relation) triples of UD
v1 relations which correspond to narrow-sense de-
pendencies and multiword expression (MWE) de-
pendencies of UD v25. One thing to note here is
that we excluded auxpass and mwe relations. It
is because the information of these is mostly con-
tained in other relations such as nsubjpass, nmod
and advcl. Auxpass is a special relation of aux,
which indicates that a verb is passive. Aux in-
dicates a verb’s modality or tense, which is not
mentioned by nsubj relation alone. Auxpass also
indicates an important information of a verb, its
voice. However, the information of voice is al-
ready contained in the relation of nsubjpass. Mwe
is used for multiword expressions with function
words that behave like a single function word.

3It can be pointed out that bigrams of function words can
be avoided if we remove function words. However, this is
just an ad hoc measure, which leads to another meaningless
bigram “store foot”.

4root relation triple is omitted because we do not include
it in our basic elements. See the next footnote.

5That is, nsubj, nsubjpass, dobj, iobj, csubj, csubjpass,
ccomp, xcomp, nmod, advcl, advmod, neg, vocative, dis-
course, expl, aux, cop, mark, nummod, appos, acl, amod, det,
case, compound, name, foreign and dislocated.
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The whole information of mwe, however, is gen-
erally contained in nmod or advcl relations in en-
hanced++ UD representation (Schuster and Man-
ning, 2016) (e.g., (fruits|apple|nmod:such as) and
(bought|fixing|advcl:insted of)). Counting these
relations can lead to redundant unit matching. In
fact, the performance was better when we ex-
cluded these relations.

3.2 Step 1: Disregard Frequency Count
ROUGE/BE score is defined as follows:

ROUGE/BE(R, S) =
∑K

k=1

∑Mk
m=1min{N(fkm,Rk), N(fkm, S)}∑K
k=1

∑Mk
m=1{N(fkm,Rk)}

.

(1)

Given K reference summaries R =
{R1, ...,RK}, target summary S, and the set of
units that appear in Rk as Fk = {fk1 , ..., fkMk

}
(|Fk| = Mk), ROUGE/BE counts how many
times each f occurs in target summary S. Let
N(fkm,Rk) be the frequency of fkm in Rk and
N(fkm, S) be the frequency of fkm in S. Unit f
contributes to ROUGE/BE scores according to its
frequency6.

The problem is that the units found mul-
tiple times tend to be low-information units.
ROUGE-2 often finds function-word bigrams,
which leads to their overweighting. While BE
is free from function-word bigrams, it still con-
tains improperly weighted basic elements: com-
pound and det. For example, in DUC 2003,
302 basic elements are returned more than 1 in
min{N(fkm,Rk), N(fkm, S)} of which 139 were
compound and 96 were det; together they occupy
about 78% of the total. This is because these rela-
tions represent only single nouns. Since they are
not associated with verbs, which are key compo-
nents of sentences, they appear in many sentences
even within one summary7. It is not that com-
pound and det are meaningless units, but that they
should not be weighted more than other relations
such as nsubj, dobj and iobj, which are associated
with verbs.

6In BE, it is optional to consider or disregard this fre-
quency count (Tratz and Hovy, 2008). We describe why dis-
pensing with the frequency count affects the results below.

7“Donald Trump” can be used in various sentences like
“Donald Trump won the election.” and “Donald Trump will
visit China next week.” But “Trump won” can only occur in
the specific situation where Trump won something, which is
unlikely to be described in a summary more than once.

Therefore, we simply get rid of the frequency
count. We define our scoring function as follows:

pBE−cnt(R, S) =
∑K

k=1

∑Mk
m=1{O(fkm, S)}∑K

k=1

∑Mk
m=1{O(fkm,Rk)}

. (2)

Here O(fkm,Rk) and O(fkm, S) are functions that
return 1 if fkm is in Rk and S respectively, and oth-
erwise return 0. This way, we can simplify equa-
tion (1) and avoid undue weighting.

3.3 Step 2: Cluster Basic Elements Using
Word Embeddings

We are able to detect semantic correspondence.
If we are given key points to be included in the
summary, we can judge whether the key points
are in the summary or not on the semantic level.
ROGUE/BE, however, judges the correspondence
of key points only on the surface level. Since
the same content can be expressed in various sur-
face forms, ROUGE/BE sometimes scores seman-
tically overlapped units multiple times or does not
score units that semantically correspond to each
other but are significantly different on the surface
level8.

To deal with this problem, we put semantically
identical words into one cluster based on word
similarity. Our method only requires word em-
beddings trained with word2vec (Mikolov et al.,
2013), and so offers multilingual capability.

Given K reference summaries R =
{R1, ...,RK}, target summary S, a set of all
unigrams in R and S as U = {u1, ..., uP }, and
a set of Q word embeddings for the unigrams as
V = {v1, ..., vQ} (Q ≤ P ), we put U into the set
of cluster IDs C = {c1, ..., cN} by hierarchical
clustering using word similarities. The number of
clusters, N , is a hyperparameter. Next, we convert
the unigrams of R and S into the cluster ID c. If
unigram ui has no word embeddings, we leave it
in its surface form. Let the converted reference
summaries and target summary be R′ and S′,
respectively. We define the set of basic elements
in R′k as F ′k = {f ′k1 , ..., f ′kMk

} (|F ′k| = Mk).

8Suppose the phrases “John killed” and “John murdered”
are in a target summary and each reference summaries. Here,
the target summary gets double scores for the semantically
same units. On the other hand, if “John killed” is only in the
target summary and “John murdered” is only in the reference
summaries, the target summary gets no score for the semantic
correspondence.

663



DUC03 DUC04 DUC05 DUC06 DUC06 pyr DUC07 DUC07 pyr
ROUGE-2 .906/.821/.617 .909/.838/.691 .932/.931/.792 .836/.767/.584 .905/.884/.740 .880/.873/.715 .979/.989/.949
ROUGE-S4 .851/.791/.617 .876/.816/.647 .915/.889/.727 .829/.759/.574 .888/.880/.732 .850/.836/.646 .971/.956/.872
ROUGE-SU4 .782/.774/.600 .854/.772/.559 .925/.893/.731 .849/.790/.601 .885/.850/.706 .835/.832/.650 .961/.973/.897
BE .928/.862/.700 .936/.868/.721 .897/.863/.706 .831/.757/.587 .881/.848/.688 .890/.890/.732 .982/.978/.923
pBE−cnt .930/.871/.717 .938/.873/.735 .904/.882/.723 .854/.793/.628 .894/.848/.714 .902/.906/.760 .985/.978/.923
pBE+cls .929/.871/.717 .940/.877/.735 .897/.862/.702 .834/.768/.601 .886/.849/.697 .890/.894/.736 .980/.967/.897
pBE−cnt+cls .932/.871/.717 .943/.885/.765 .905/.877/.718 .859/.801/.631 .898/.849/.714 .902/.906/.756 .985/.995/.974

Table 1: Correlation coefficients of pBE and ROUGE. The coefficients are written in the order of “Pear-
son/Spearman/Kendall”.

Pearson Spearman Kendall
ROUGE-SU4 .981 .894 .737
C S IIITH3 .965 .903 .758
ROUGE-WE-1 .949 .914 .753
pBE−cnt+cls .947 .915 .774

Table 2: Correlation coefficients of pBE and other
participants with manual pyramid scores in TAC
2011. ROUGE-SU4/ROUGE-WE-1/C S IIITH3 (Ku-
mar et al., 2011) achieved the highest correlation coeffi-
cient in Pearson/Spearman/Kendall correlation among
the past results.

Combined with step 1, fully pruned BE is defined
as follows:

pBE−cnt+cls(R, S) =
∑K

k=1

∑Mk
m=1{O(f ′km , S

′)}
∑K

k=1

∑Mk
m=1{O(f ′km ,R′k)}

. (3)

4 Experimental Setup

To assess the effectiveness of pBE, we computed
the correlation coefficient between pBE scores and
human judgments, as well as between the scores of
other automatic evaluation measures and manual
scores for comparison. We used multi-document
summarization datasets DUC 2003 - 2007 and
TAC 2011. The correlation was computed be-
tween all system summaries, excluding reference
summaries.

Our first experiment compared the performance
of pBE and ROUGE on DUC datasets. Since a de-
pendency triple is a type of bigram/skip-bigram,
we chose ROUGE-2 and ROUGE-S4 for compar-
ison. We also examined ROUGE-SU49 because
it is known as a strong baseline that outperforms
most of other measures in TAC 2011 AESOP task
(Owczarzak and Dang, 2011).

The second experiment was designed to see
how well pBE worked compared with our related

9All three ROUGE here were run with stemming but with
no removal of stopwords.

Evaluation Limit Topic Ref System
DUC 2003 coverage 100 30 4 16
DUC 2004 coverage 100 50 4 17
DUC 2005 responsiveness 250 50 4 or 9 32

DUC 2006
responsiveness

250
50

4
35

pyramid 20 22

DUC 2007
responsiveness

250
45

4
32

pyramid 23 13
TAC 2011 pyramid 100 44 4 51

Table 3: The details of the datasets. “Evaluation” rep-
resents manual evaluation methods and “Limit” repre-
sents word limits of summarization.

method ROUGE-WE. We chose the latest AE-
SOP dataset, TAC 2011, for which ROUGE-WE
achieved the highest Spearman coefficient (Ng and
Abrecht, 2015).

The details of our experimental setup are given
in Table 3 and below.

Parser: We used the neural-network depen-
dency parser of Stanford CoreNLP (Manning
et al., 2014). Dependencies were set to en-
hanced++ Universal Dependencies (Schuster and
Manning, 2016).

Clustering: We employed hierarchical cluster-
ing, maximum distance method. The number of
clusters, N , was set to 0.975 ∗ Q.

Word Embeddings: A set of pre-trained
Google-News word embeddings10. It contains 3
million words, each of which has a word embed-
ding of 300 dimensions.

5 Results and Discussion

Table 1 and 2 show the evaluation results on DUC
and TAC data set, respectively.

Regardless of the diversity of datasets, pBE out-
performed ROUGE in most cases (table 1). Inter-
estingly, although step 2 itself sometimes did not
work well, the combination of both steps gener-

10https://code.google.com/archive/p/
word2vec/
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Relation BE BE+cls Increased

DUC 2003
compound & det 235 281 46

subj & obj 1 1 0

DUC 2004
compound & det 426 446 20

subj & obj 10 10 0

DUC 2005
compound & det 2570 2750 180

subj & obj 32 39 7

DUC 2006
compound & det 2969 3083 114

subj & obj 26 49 23

DUC 2007
compound & det 3508 3622 114

subj & obj 48 57 9

Table 4: The number of basic elements which returned
more than 1 in min{N(fkm,Rk), N(fkm, S)}, before
clustering (BE) and after clustering (BE+cls), and the
difference of the numbers, BE+cls − BE (Increased).
The relation “subj & obj” includes nsubj, nsubjpass,
csubj, csubjpass, iobj and dobj.

ally achieved the best performance. This is be-
cause clustering enhanced not only the match-
ing of informative basic elements but also that of
low-information basic elements. Table 4 shows
how the number of compound and det triples in-
creased, compared with that of subj (nsubj, nsub-
jpass, csubj and csubjpass) and obj (iobj and
dobj) triples. In all datasets, the number of com-
pound and det triples that returned more than 1
in min{N(fkm,Rk), N(fkm, S)} increased much
more than that of subj and obj, after convert-
ing unigrams into cluster IDs. Although cluster-
ing reduced semantic mismatches, it worsened the
problem of redundant counting. Nonetheless, this
problem can be easily solved by applying step 1.
This is why the combination of step 1 and 2 was
so synergistic.

Another problem with step 2 is that it some-
times makes inappropriate clusters. For example,
numbers tend to be put in the same clusters since
our word embeddings place them close to each
other. In summaries, however, confusing quanti-
tative information such as “two apples” and “five
apples” must be avoided . It will be our future
work to specify where clustering fails to work and
to get rid of inappropriate clusters.

Table 2 shows that pBE achieved the best rank
correlation among the other competitors in TAC
2011 and ROUGE-WE. Although its score was
lower in Pearson coefficient, it should be noted
that the Pearson correlation is based on some strict
assumptions: Samples are normally distributed
and are linearly related to each other. Since Spear-
man/Kendall correlation is free from these as-
sumptions, the best rank correlation is a good evi-

dence of pBE’s performance.

6 Conclusion

We proposed an automatic evaluation measure of
summarization, pBE. It is designed to prune re-
dundant basic elements in two steps: (1) disre-
garding frequency count of basic elements and
(2) using word similarity to reduce semantically
overlapped basic elements. Our experiments show
that pBE outperforms ROUGE in most cases and
achieves the highest rank correlation coefficient in
TAC 2011 AESOP task.
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Abstract

We propose an unsupervised keyphrase
extraction model that encodes topical
information within a multipartite graph
structure. Our model represents keyphrase
candidates and topics in a single graph and
exploits their mutually reinforcing rela-
tionship to improve candidate ranking. We
further introduce a novel mechanism to in-
corporate keyphrase selection preferences
into the model. Experiments conducted
on three widely used datasets show signif-
icant improvements over state-of-the-art
graph-based models.

1 Introduction

Recent years have witnessed a resurgence of inter-
est in automatic keyphrase extraction, and a num-
ber of diverse approaches were explored in the lit-
erature (Kim et al., 2010; Hasan and Ng, 2014;
Gollapalli et al., 2015; Augenstein et al., 2017).
Among them, graph-based approaches are appeal-
ing in that they offer strong performance while
remaining completely unsupervised. These ap-
proaches typically involve two steps: 1) building a
graph representation of the document where nodes
are lexical units (usually words) and edges are se-
mantic relations between them; 2) ranking nodes
using a graph-theoretic measure, from which the
top-ranked ones are used to form keyphrases.

Since the seminal work of Mihalcea and Ta-
rau (2004), researchers have devoted a substan-
tial amount of effort to develop better ways of
modelling documents as graphs. Most if not all
previous work, however, focus on either measur-
ing the semantic relatedness between nodes (Wan
and Xiao, 2008; Tsatsaronis et al., 2010) or de-
vising node ranking functions (Tixier et al., 2016;
Florescu and Caragea, 2017). So far, little atten-

tion has been paid to the use of different types
of graphs. Yet, a key challenge in keyphrase ex-
traction is to ensure topical coverage and diver-
sity, which are not naturally handled by graph-of-
words representations (Hasan and Ng, 2014).

Most attempts at using topic information in
graph-based approaches involve biasing the rank-
ing function towards topic distributions (Liu et al.,
2010; Zhao et al., 2011; Zhang et al., 2013).
Unfortunately, these models suffer from several
limitations: they aggregate multiple topic-biased
rankings which makes their time complexity pro-
hibitive for long documents1, they require a large
dataset to estimate word-topic distributions that is
not always available or easy to obtain, and they
assume that topics are independent of one an-
other, making it hard to ensure topic diversity.
For the latter case, supervised approaches were
proposed to optimize the broad coverage of top-
ics (Bougouin et al., 2016; Zhang et al., 2017).

Another strand of work models documents as
graphs of topics and selects keyphrases from the
top-ranked ones (Bougouin et al., 2013). This
higher level representation (see Figure 1a), in
which topic relations are measured as the semantic
relatedness between the keyphrase candidates they
instantiate, was shown to improve the overall rank-
ing and maximize topic coverage. The downside
is that candidates belonging to a single topic are
viewed as equally important, so that post-ranking
heuristics are required to select the most repre-
sentative keyphrase from each topic. Also, errors
in forming topics propagate throughout the model
severely impacting its performance.

Here, we build upon this latter line of work and
propose a model that implicitly enforces topical
diversity while ranking keyphrase candidates in a

1Recent work showed that comparable results can be
achieved by computing a single topic specificity weight value
for each word (Sterckx et al., 2015; Teneva and Cheng, 2017).
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Inverse problems [1] for a mathematical model [2] of ion exchange [3] in a compressible ion exchanger [4]
A mathematical model [2] of ion exchange [3] is considered, allowing for ion exchanger compression [5] in the process [6] of ion
exchange [3]. Two inverse problems [1] are investigated for this model [7], unique solvability [8] is proved, and numerical solu-
tion methods [9] are proposed. The efficiency [10] of the proposed methods [11] is demonstrated by a numerical experiment [12].
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(a) TopicRank graph.
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Figure 1: Comparison between TopicRank (Bougouin et al., 2013) and our multipartite graph representation for
document 2040.abstr from the Hulth-2003 dataset. Nodes are topics (left) or keyphrase candidates (right), and
edges represent co-occurrence relations.

single operation. To do this, we use a particular
graph structure, called multipartite graph, to rep-
resent documents as tightly connected sets of topic
related candidates (see Figure 1b). This represen-
tation allows for the seamless integration of any
topic decomposition, and enables the ranking al-
gorithm to make full use of the mutually reinforc-
ing relation between topics and candidates.

Another contribution of this work is a mech-
anism to incorporate intra-topic keyphrase selec-
tion preferences into the model. It allows the
ranking algorithm to go beyond semantic relat-
edness by leveraging information from additional
salience features. Technically, keyphrase can-
didates that exhibit certain properties, e.g. that
match a thesaurus entry or occur in specific parts
of the document, are promoted in ranking through
edge weight adjustments. Here, we show the ef-
fectiveness of this mechanism by introducing a
bias towards keyphrase candidates occurring first
in the document.

2 Proposed Model

Similar to previous work, our model operates in
two steps. We first build a graph representation
of the document (§2.1), on which we then apply
a ranking algorithm to assign a relevance score to
each keyphrase (§2.3). We further introduce an in-
between step where edge weights are adjusted to
capture position information (§2.2).

For direct comparability with Bougouin et al.

(2013), which served as the starting point for
the work reported here, we follow their setup
for identifying keyphrase candidates and topics.
Keyphrase candidates are selected from the se-
quences of adjacent nouns with one or more pre-
ceding adjectives (/Adj*Noun+/). They are
then grouped into topics based on the stem forms
of the words they share using hierarchical agglom-
erative clustering with average linkage. Although
simple, this method gives reasonably good results.
There are many other approaches to find topics,
including the use of knowledge bases or unsuper-
vised probabilistic topic models. Here, we made
the choice not to use them as they are not without
their share of issues (e.g. limited coverage, param-
eter tuning), and leave this for future work.

2.1 Multipartite graph representation

A complete directed multipartite graph is built,
in which nodes are keyphrase candidates that are
connected only if they belong to different top-
ics. Again, we follow (Bougouin et al., 2013) and
weight edges according to the distance between
two candidates in the document. More formally,
the weight wij from node i to node j is computed
as the sum of the inverse distances between the oc-
currences of candidates ci and cj :

wij =
∑

pi∈P(ci)

∑

pj∈P(cj)

1

|pi − pj |
(1)
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where P(ci) is the set of the word offset po-
sitions of candidate ci. This weighting scheme
achieves comparable results to window-based co-
occurrence counts without any parameter tuning.

The resulting graph is a complete k-partite
graph, whose nodes are partitioned into k differ-
ent independent sets, k being the number of topics.
As exemplified in Figure 1, our graph representa-
tion differs from the one of (Bougouin et al., 2013)
in two significant ways. First, topics are encoded
by partitioning candidates into sets of unconnected
nodes instead of being subsumed in single nodes.
Second, edges are directed which, as we will see
in §2.2, allows to further control the incidence of
individual candidates on the overall ranking.

The proposed representation makes no assump-
tions about how topics are obtained, and thus al-
lows direct use of any topic decomposition. It im-
plicitly promotes the number of topics covered in
the selected keyphrases by dampening intra-topic
recommendation, and captures the mutually rein-
forcing relationship between topics and keyphrase
candidates. In other words, removing edges be-
tween candidates belonging to a single topic en-
sures that the overall recommendation of each
topic is distributed throughout the entire graph.
Also, a benefit of encoding topic related candi-
dates differentially is that the ones that best un-
derpin each topic are directly given by the model.

2.2 Graph weight adjustment mechanism

Selecting the most representative keyphrase candi-
dates for each topic is a difficult task, and relying
only on their importance in the document is not
sufficient (Hasan and Ng, 2014). Among the fea-
tures proposed to address this problem in the liter-
ature, the position of the candidate within the doc-
ument is most reliable. In order to capture this in
our model, we adjust the incoming edge weights
of the nodes corresponding to the first occurring
candidate of each topic.

More formally, candidates that occur at the be-
ginning of the document are promoted accord-
ing to the other candidates belonging to the same
topic. Figure 2 gives an example of applying graph
weight adjustment for promoting a given candi-
date. Note that the choice of the candidates to pro-
mote, i.e. the selection heuristic, can be adapted to
fit other needs such as prioritising candidates from
a thesaurus.

Incoming edge weights for the first occurring

3

4

5

Topic
2

1

2

To
pi

c 1

w13

w41

w51

+

Figure 2: Illustration of the graph weight adjustment
mechanism. Here, node 3 is promoted by increasing the
weight of its incoming edge according to the outgoing
edge weights of nodes 4 and 5.

candidate of each topic are modified by the fol-
lowing equation:

wij = wij + α · e(
1
pi
) ·

∑

ck∈T (cj)\{cj}
wki (2)

wherewij is the edge weight between nodes ci and
cj , T (cj) is the set of candidates belonging to the
same topic as cj , pi is the offset position of the
first occurrence of candidate ci, and α is a hyper-
parameter that controls the strength of the weight
adjustment.

2.3 Ranking and extraction
After the graph is built, keyphrase candidates are
ordered by a graph-based ranking algorithm, and
the top N are selected as keyphrases. Here, we
adopt the widely used TextRank algorithm (Mi-
halcea and Tarau, 2004) in the form in which it
leverages edge weights:

S(ci) = (1− λ) + λ ·
∑

cj∈I(ci)

wij · S(cj)∑
ck∈O(cj)

wjk
(3)

where I(ci) is the set of predecessors of ci, O(cj)
is the set of successors of cj , and λ is a damping
factor set to 0.85 as in (Mihalcea and Tarau, 2004).
Note that other ranking algorithms can be applied.
We use TextRank because it was shown to perform
consistently well (Boudin, 2013).

3 Experiments

3.1 Datasets and evaluation measures
We carry out our experiments on three datasets:

SemEval-2010 (Kim et al., 2010), which is com-
posed of scientific articles collected from the
ACM Digital Library. We use the set of com-
bined author- and reader-assigned keyphrases
as reference keyphrases.
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SemEval-2010 Hulth-2003 Marujo-2012
Model F1@5 F1@10 MAP F1@5 F1@10 MAP F1@5 F1@10 MAP

(Bougouin et al., 2013) 9.7 12.3 7.3 25.3 29.3 24.3 12.1 17.6 14.6
(Sterckx et al., 2015) 9.3 10.5 7.4 21.9 30.2 25.3 11.7 16.4 16.1

(Florescu and Caragea, 2017) 10.6 12.2 8.9 23.5 30.3 26.0 10.9 17.2 16.1

Proposed model 12.2† 14.5† 11.8† 25.9† 30.6 29.2† 12.5 18.2 17.2†
w/o weight adjustment 8.8 12.4 9.4 21.1 26.8 25.2 12.2 17.8 16.9

Table 1: F1-scores computed at the top 5, 10 extracted keyphrases and Mean Average Precision (MAP) scores. †
indicate significance at the 0.05 level using Student’s t-test.

Hulth-2003 (Hulth, 2003), which is made of pa-
per abstracts about computer science and in-
formation technology. Reference keyphrases
were assigned by professional indexers.

Marujo-2012 (Marujo et al., 2012) that contains
news articles distributed over 10 categories
(e.g. Politics, Sports). Reference keyphrases
were assigned by readers via crowdsourcing.

We follow the common practice and evalu-
ate the performance of our model in terms of f-
measure (F1) at the top N keyphrases, and apply
stemming to reduce the number of mismatches.
We also report the Mean Average Precision (MAP)
scores of the ranked lists of keyphrases.

3.2 Baselines and parameter settings

We compare the performance of our model against
that of three baselines. The first baseline is Topi-
cRank (Bougouin et al., 2013) which is the model
that is closest to ours. The second baseline is Sin-
gle Topical PageRank (Sterckx et al., 2015), an
improved version of Liu et al. (2010) that biases
the ranking function towards topic distributions
inferred by Latent Dirichlet Allocation (LDA).
The third baseline is PositionRank (Florescu and
Caragea, 2017), a model that, like ours, leverages
additional features (word’s position and its fre-
quency) to improve ranking accuracy.

Over-generation errors2 are frequent in models
that rank keyphrases according to the sum of the
weights of their component words (Hasan and Ng,
2014; Boudin, 2015). This is indeed the case for
the second and third baselines, and we partially
address this issue by normalizing candidate scores
by their length, as proposed in (Boudin, 2013).

2These errors occur when a model correctly outputs a
keyphrase because it contains an important word, but at the
same time erroneously predicts other keyphrases because
they contain the same word.

We use the parameters suggested by the authors
for each model, and estimate LDA topic distri-
butions on the training set of each dataset. Our
model introduces one parameter, namely α, that
controls the strength of the graph weight adjust-
ment. This parameter is tuned on the training set
of the SemEval-2010 dataset, and set to α = 1.1
for all our experiments. For a fair and meaningful
comparison, we use the same candidate selection
heuristic (§2) across models.

3.3 Results

Results for the baselines and the proposed model
are detailed in Table 1. Overall we observe that our
model achieves the best results and significantly
outperforms the baselines on most metrics. Rela-
tive improvements are smaller on the Hulth-2003
and Marujo-2012 datasets because they are com-
posed of short documents, yielding a much smaller
search space (Hasan and Ng, 2014). TopicRank
obtains the highest precision among the baselines,
suggesting that its –one keyphrase per topic– pol-
icy succeeds in filtering out topic-redundant candi-
dates. On the other hand, TopicRank is directly af-
fected by topic clustering errors as indicated by the
lowest MAP scores, which supports the argument
in favour of enforcing topical diversity implicitly.
In terms of MAP, the best performing baseline is
PositionRank, highlighting the positive effect of
leveraging multiple features.

Additionally, we report the performance of our
model without applying the weight adjustment
mechanism. Results are higher or on-par with
baselines that use topic information, and show that
our model makes good use of the reinforcing re-
lations between topics and the candidates they in-
stantiate. We note that the drop-off in performance
is more severe for F1@5 on the Semeval-2010
dataset, going from best to worst performance. Al-
though further investigation is needed, we hypoth-
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esise that our model struggles with selecting the
most representative candidate from each topic us-
ing TextRank as a unique feature.

We also computed the topic coverage of the sets
of keyphrases extracted by our model. With over
92% of the top-10 keyphrases assigned to different
topics, our model successfully promotes diversity
without the need of hard constraints. A manual in-
spection of the topic-redundant keyphrases reveals
that a good portion of these are in fact clustering
errors, that is, they have been wrongly assigned
to the same topic (e.g. ‘students’ and ‘student
attitudes’). Some exhibit a hypernym-hyponym
relation while both being in the gold references
(e.g. ‘model’ and ‘bayesian hierarch model’ for
document H-7 from the Semeval-2010 dataset),
thus indicating inconsistencies in the gold data.

4 Conclusion

We introduced an unsupervised keyphrase extrac-
tion model that builds on a multipartite graph
structure, and demonstrated its effectiveness on
three public datasets. Our code and data are avail-
able at https://github.com/boudinfl/
pke. In future work, we would like to apply rank-
ing algorithms that leverage the specific structure
of our graph representation, such as the one pro-
posed in (Becker, 2013).
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Abstract

People can identify correspondences between
narratives in everyday life. For example, an
analogy with the Cinderella story may be
made in describing the unexpected success
of an underdog in seemingly different sto-
ries. We present a new task and dataset for
story understanding: identifying instances of
similar narratives from a collection of narra-
tive texts. We present an initial approach for
this problem, which finds correspondences be-
tween narratives in terms of plot events, and
resemblances between characters and their so-
cial relationships. Our approach yields an 8%
absolute improvement in performance over
an information-retrieval baseline on a novel
dataset of plot summaries of 577 movie re-
makes from Wikipedia.

1 Introduction

The ability to automatically understand narratives
has been a long-standing goal of AI. Humans
routinely invoke narratives to share information,
learn normative behavior, and to make sense of
the world (Gottschall, 2012; Miller and Mitchell,
1983). They accept narratives that adhere to fa-
miliarity and personal experiences, and reinterpret
those that appear unfamiliar (Herman, 2003). In
this work, we present a new task for narrative un-
derstanding: identifying instances of similar nar-
ratives. The ability to recognize similar narratives
can be valuable for tasks such as QA and informa-
tion retrieval, and furnish tools towards analyzing
collections of real or fictional narratives. For ex-
ample, given a news story, a digital archives ana-
lyst might identify similar stories from the past.

A major bottleneck in computationally explor-
ing narrative similarity is the limited availability
of annotated data for analyses and evaluation. A
contribution of this work is a dataset of plot sum-
maries of movies, which include movie pairs that
have been identified as remakes (see Sec. 3). Our

Figure 1: Example (condensed) movie summaries with
similar narratives: Spoorloos (1988) (left) and The Van-
ishing (1993) (right). Note that (1) plot similarity and
(2) characters and their relationships are significant el-
ements in determining this similarity.

working hypothesis is that re-tellings of similar
stories would retain prominent elements in terms
of narrative theme, even while they look super-
ficially different. Figure 1 shows an example of
two such movie summaries, condensed here for
brevity. Our approach for identifying similar nar-
ratives infers alignments between pairs of narra-
tives using a story-kernel that takes into account
two kinds of likenesses: (1) plot similarity (2)
correspondences between characters in the narra-
tives (based on attributes such as name, gender,
prominence in the narrative, and social relation-
ships with other characters).1 While our data and
problem formulation do not accommodate all as-
pects of narrative similarity, and our approach is
relatively simple (for example, it doesn’t model

1Our approach is unsupervised, but we use a development
set to tune parameters
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temporal or sentiment trajectories), we believe
they capture many substantial aspects of the phe-
nomenon and serve as a useful starting point for
research into the problem.

Our contributions are:
1. We introduce the problem of characterizing

narrative similarity in movie remakes, and
formulate this as a ranking task.

2. We create a dataset of 577 narratives for this
task, mined from plot summaries of movie re-
makes from Wikipedia.

3. We present a story-kernel that quantifies nar-
rative similarity by considering correspon-
dences between narratives using a character-
centric approach. We empirically evaluate
the story-kernel and its various components,
and demonstrate its utility.

2 Related Work

The field of computational narratology has fo-
cused on algorithmic understanding and genera-
tion of narratives (Mani, 2012; Richards et al.,
2009). Much previous work has attempted to un-
derstand narratives either from the perspective of
their (i) sequences of events (Schank and Abel-
son, 1975; Chambers and Jurafsky, 2009) or plot
units (McIntyre and Lapata, 2010; Goyal et al.,
2010; Finlayson, 2012), or from the perspective
of (ii) characters (Wilensky, 1978) or personas in
a narrative (Propp, 1968; Bamman et al., 2013,
2014; Valls-Vargas et al., 2014). Elsner (2012)
explore the plot structure of novels to distinguish
original texts from novels from synthetically al-
tered versions of the same. Some recent ap-
proaches have also focused on modeling rela-
tionships between literary characters (Chaturvedi,
2016; Iyyer et al., 2016; Chaturvedi et al., 2016),
and their social networks (Elson et al., 2010; Agar-
wal et al., 2013; Krishnan and Eisenstein, 2015;
Srivastava et al., 2016).

Other research has focused on characterizing
narratives in terms of their structure. In particu-
lar, seminal formalisms such as plot units (Lehn-
ert, 1981) and Story Grammars (Rumelhart, 1980)
have been used to analyze story plots. A sig-
nificant issue with almost all such frameworks
is that they are either largely conceptual, or de-
pend on careful manual annotations of features
about narrative plot elements (Elsner, 2012; El-
son, 2012; Finlayson and Henry Winston, 2006),
which makes them unamenable to comprehensive

empirical analysis. While some of the above ap-
proaches explore prototypical patterns that char-
acterize narratives (Nguyen et al., 2013) and nar-
rative similarity (Fisseni and Löwe, 2012), they
do not address the issue of automatically compar-
ing narratives. Also noteworthy in this context is
the Aarne-Thompson classification system (Aarne
and Thompson, 1961), which has been extensively
used in the analysis of folk-tales to organize types
of stories, based on an index of motifs. Our work
is most closely related to that of Nguyen et al.
(2014) who attempt to understand the various di-
mensions that experts and non-experts consider
while judging narrative similarity.

3 Movie Remakes Dataset

We present a dataset for evaluating narrative level
similarity of texts. Our assumption is that movie
remakes are re-tellings of the same story and retain
prominent narrative elements. Hence, a good mea-
sure of narrative similarity should evaluate sum-
maries of movie remakes as being similar to each
other. To this end, we present a dataset of movie
plots extracted from Wikipedia.

In particular, we scraped lists of movies from
the ‘Lists of film remakes’ page on Wikipedia,
which consist of entries of movies considered re-
makes of previous movies. Since some movies
have multiple remakes, we obtain clusters of
movie plots, each of which share the same nar-
rative theme. For each movie, we extract the text
of its corresponding Wikipedia plot summary from
the CMU Movie summary dataset (Bamman et al.,
2013). In some cases, the remakes are close to
the originals at a surface level, whereas in other
cases, they diverge at a surface level, and may also
significantly differ in the narrative. These clus-
ters were then manually pruned to remove errors,
and the statistics of the curated dataset are shown
in Table 1. In particular, we observe that the av-
erage summary is quite long (564 words), which
would make human annotations of similarity for
such narratives difficult.

NLP pre-processing: We processed texts
of movie summaries using the BookNLP
pipeline (Bamman et al., 2014) to get depen-
dency parses, and identify major characters.
We also assigned a gender to each character
which corresponded to the gender that is most
frequently assigned to that character’s mentions
across the story using the Stanford Core NLP
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Number of movies 577
Number of clusters 266
Max number of movies in a cluster 7
Avg number of words in a summary 564
Max number of words in a summary 2778
Min number of words in a summary 26

Table 1: Statistics for Movie Remakes dataset

system (Manning et al., 2014).

4 Identifying Narrative Similarity

Our approach’s core consists of a story-kernel,
S(si, sj) that characterizes the similarity between
two narratives, si and sj . The story-kernel has the
following two components: (i) Plot Kernel, which
incorporates surface similarity between plots of
the two stories (in terms of the principal events
and entities), and (ii) Character Alignment Kernel,
which considers correspondences in terms of char-
acter attributes and relationships.

Plot Kernel: A simple measure for narrative sim-
ilarity can incorporate lexical similarities between
textual descriptions of two narratives. However,
our goal is to identify narratives that have similar
plot structure, rather than incidental surface-level
matches in their summaries. Therefore, we focus
only on events, and entities and their properties.
We model events mentioned in a story by identi-
fying all verbs occurring in the text of the narra-
tive. We capture entities and their properties by
identifying nouns and the adjectives that modify
them. As mentioned earlier, our approach specifi-
cally models characters as a separate component in
the story-kernel. Hence, at this stage, we only con-
sider text entities that do not represent a character
mention. We represent the plot of a narrative using
a bag-of-word representation of its events and enti-
ties (and their characteristics) as described above.
We then define Splot(si, sj) as the cosine similar-
ity between these representations for narratives si
and sj .

Character Alignment Kernel: This component
compares two narratives by aligning characters of
one with similar characters in the other. Specifi-
cally, we align each character, ci, of a story, si, to
a character, cj , of the other story, sj . This align-
ment is based on a similarity score, S(ci, cj), be-
tween the two characters (defined later). The goal
of this joint alignment is to maximize the average

alignment score of characters in the narrative pair:

Schar(si, sj) = max
xcicj ;ci∈si,cj∈sj

∑
xcicjS(ci,cj)

N

subject to alignment constraints
∑

ci
xcicj =

1, ∀cj and
∑

cj
xcicj = 1, ∀ci. Here, x is a bi-

nary matrix indicating character alignments, and
N is the total number of aligned characters from
the two narratives. These constraints ensure that
each character is aligned to one, and only one,
character from the other story. This combina-
torial optimization can be solved in polynomial
time by modifying the Hungarian assignment al-
gorithm (Kuhn, 1955). When two stories have dif-
ferent number of characters, the extra unaligned
characters are aligned to a special null character
from the other story.

In the above description, the similarity between
two (non-null) characters, S(ci, cj) ∈ [0, 1], is de-
fined as a convex combination of their similarities
along (i) name, (ii) gender, (iii) prominence in the
story, and (iv) attributes and social relationships
with other characters.

S(ci, cj) = λ1 · Sname(ci, cj) + λ2 · Sgender(ci, cj)

+ λ3 · Sprom(ci, cj)

+ (1− λ1 − λ2 − λ3) · Sreln(ci, cj)

Here, (1) Sname(ci, cj) is an indicator function
that identifies if two character names are matching
strings. It prefers aligning characters with same
names, and can be a strong but shallow signal.
(2) Sgender(ci, cj) prefers alignments of characters
with the same gender; i.e. Sgender(ci, cj) = 1 if
gender of ci is the same as of cj , and 0 otherwise.
(3) Sprom(ci, cj) aligns characters with similar
prominence. E.g., it avoids matching a protagonist
with a side-character. We compute the prominence
of a character, prom(c), as simply the fraction of
mentions that refer to this character. We then de-
fine Sprom(ci, cj) = 1− |prom(ci)− prom(cj)|
(4) Sreln(ci, cj) considers how similar the two
characters are in terms of attributes, and their re-
lationship to other characters. For example, char-
acters described with positive traits, or friends of
the protagonist in one story are likely to be better
matched to similar characters in other narratives.

We model the relationship between two char-
acters (from the same narrative) by extracting
features describing actions in which they par-
ticipate and adjectives describing character at-
tributes (Chaturvedi et al., 2017). E.g. we identify
the actions using verbs that have the two character
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Figure 2: Performance of various approaches on Nar-
rative Similarity task

mentions as their agents (identified using ‘nsubj’
and ‘agent’ dependency relations), and patients
(using ‘dobj’ and ‘nsubjpass’ relations). We then
represent a character’s relationship with all other
characters in the narrative using these features. Fi-
nally, we compute the relationship-based similar-
ity, Sreln(ci, cj) between two characters, ci and cj
as their cosine similarity in this feature space.

The story kernel is then defined as:
S(si, sj) = α Splot(si, sj)+(1−α) Schar(si, sj).

5 Evaluation

For our experiment, we tune parameters on 20% of
the data and use the remaining data (466 movies)
for the test set. In order to keep the test set com-
pletely distinct from the types of stories used for
parameter tuning, this split was performed at the
cluster level. Given a test story, we output the most
similar story from the dataset. For evaluation, we
compute P@1 (precision at 1) as follows: The out-
put is deemed correct only if the predicted movie
belongs to the same remake cluster, and incorrect
otherwise.

Figure 2 shows the performance of our ap-
proach in identifying narrative similarity. Here,
BoW refers to a baseline approach that uses all
words in the movie summary (after stopword re-
moval and lemmatization) as feature representa-
tion, and uses cosine similarity for retrieval. This
approach achieves a P@1 performance of 0.558.
The second column corresponds to using Splot
alone (does not include character mentions), and
performs slightly worse than BoW, suggesting that
character names do indicate remakes in our data.
Adding character names in the plot kernel (third
column) improves the performance significantly
above BoW, indicating substantial value in focus-
ing on narrative elements such as events and enti-
ties, rather than the entire text. The fourth column

Component Weights
Splot 0.7
Scharacter 0.3
Scharacter – name 0.4
Scharacter – gender 0.1
Scharacter – prominence 0.1
Scharacter – relationship 0.4

Table 2: Parameter values for various components of
the story-kernel (tuned on development set)

shows an ablated variant of the approach that sep-
arately adds a character kernel score to Splot based
on character names alone, but does not incorporate
correspondences based on gender, prominence and
character relationships. We combine this alter-
native character-kernel with the plot-based kernel
in the same manner (using a mixing parameter α
tuned on the development set). This indicates that
it helps to have a separate component dedicated to
characters while solving this task. The final col-
umn shows the full model, which leads to a signifi-
cant further improvement in performance to 0.637,
reflecting an 8% absolute improvement over the
baseline model. This indicates significant value
in modeling multiple facets of character attributes
and relationships. We observed similar trends on
the development set.

Table 2 shows the weights for individual com-
ponents of our kernel (tuned on the development
set). These results validate our assumption that
both plot and character similarity are distinct and
important facets in evaluating narrative similarity.
Qualitative Results and Error Analysis: Fig-
ure 3 shows an illustrative example of character
alignment using our story-kernel for the movie-
summaries shown in Figure 1. Note that the sto-
ries do not share any character names. Our ap-
proach aligns the protagonists of the two narra-
tives, Rex and Jeff. It also aligns their respective
kidnapped girlfriends, Saskia and Diane, and their
new girlfriends, Lieneke, and Rita. However, it
aligns Saskia’s kidnapper, Raymond, with a null
character, even though the movie’s summary men-
tions Diane’s kidnapper, Barney Cousins. In this
case, the NLP pipeline does not identify Barney
Cousins as an animate character, possibly due to
his unusual name. As a result, the method received
as input a summary in which only three characters
were identified for the story on the right. Never-
theless, it correctly identifies the story on the right
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Figure 3: Example of aligned characters from the two
movies in Figure 1

as most similar to the story on the left. An error
analysis reveals that apart from missed character-
identification, other NLP pipeline errors such as
missed coreference, are major sources of errors.

6 Conclusion

We introduce an objective task, dataset and ap-
proach for quantitative evaluation of narrative sim-
ilarity. Our approach, which compares narra-
tives based on plot and character correspondences,
takes a step towards addressing this problem.
However, the general problem of narrative simi-
larity can have further complexities. For exam-
ple, narrative similarity can be abstract and rely
on deeper reasoning (e.g., the subliminal resis-
tance of temptation of power in ‘The Lord of The
Rings’). Such aspects are beyond the scope of cur-
rent NLP tools, but may guide future explorations.
Future work can also explore other domains (e.g.,
newswire and literary fiction) and evaluate charac-
ter and event alignments between narratives based
on established ground truths.
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Abstract

Emojis are small images that are commonly
included in social media text messages. The
combination of visual and textual content in
the same message builds up a modern way
of communication, that automatic systems are
not used to deal with. In this paper we extend
recent advances in emoji prediction by putting
forward a multimodal approach that is able to
predict emojis in Instagram posts. Instagram
posts are composed of pictures together with
texts which sometimes include emojis. We
show that these emojis can be predicted by us-
ing the text, but also using the picture. Our
main finding is that incorporating the two syn-
ergistic modalities, in a combined model, im-
proves accuracy in an emoji prediction task.
This result demonstrates that these two modal-
ities (text and images) encode different infor-
mation on the use of emojis and therefore can
complement each other.

1 Introduction

In the past few years the use of emojis in social
media has increased exponentially, changing the
way we communicate. The combination of visual
and textual content poses new challenges for infor-
mation systems which need not only to deal with
the semantics of text but also that of images. Re-
cent work (Barbieri et al., 2017) has shown that
textual information can be used to predict emo-
jis associated to text. In this paper we show that
in the current context of multimodal communica-
tion where texts and images are combined in social
networks, visual information should be combined
with texts in order to obtain more accurate emoji-
prediction models.

We explore the use of emojis in the social media
platform Instagram. We put forward a multimodal
approach to predict the emojis associated to an In-

stagram post, given its picture and text1. Our task
and experimental framework are similar to (Bar-
bieri et al., 2017), however, we use different data
(Instagram instead of Twitter) and, in addition, we
rely on images to improve the selection of the most
likely emojis to associate to a post. We show that
a multimodal approach (textual and visual content
of the posts) increases the emoji prediction accu-
racy compared to the one that only uses textual in-
formation. This suggests that textual and visual
content embed different but complementary fea-
tures of the use of emojis.

In general, an effective approach to predict the
emoji to be associated to a piece of content may
help to improve natural language processing tasks
(Novak et al., 2015), such as information retrieval,
generation of emoji-enriched social media con-
tent, suggestion of emojis when writing text mes-
sages or sharing pictures online. Given that emo-
jis may also mislead humans (Miller et al., 2017),
the automated prediction of emojis may help to
achieve better language understanding. As a con-
sequence, by modeling the semantics of emojis,
we can improve highly-subjective tasks like senti-
ment analysis, emotion recognition and irony de-
tection (Felbo et al., 2017).

2 Dataset and Task

Dataset: We gathered Instagram posts published
between July 2016 and October 2016, and geo-
localized in the United States of America. We con-
sidered only posts that contained a photo together
with the related user description of at least 4 words
and exactly one emoji.

Moreover, as done by Barbieri et al. (2017),
we considered only the posts which include one
and only one of the 20 most frequent emojis (the

1In this paper we only utilize the first comment issued by
the user who posted the picture.
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most frequent emojis are shown in Table 3). Our
dataset is composed of 299,809 posts, each con-
taining a picture, the text associated to it and only
one emoji. In the experiments we also considered
the subsets of the 10 (238,646 posts) and 5 most
frequent emojis (184,044 posts) (similarly to the
approach followed by Barbieri et al. (2017)).

Task: We extend the experimental scheme of Bar-
bieri et al. (2017), by considering also visual infor-
mation when modeling posts. We cast the emoji
prediction problem as a classification task: given
an image or a text (or both inputs in the multi-
modal scenario) we select the most likely emoji
that could be added to (thus used to label) such
contents. The task for our machine learning mod-
els is, given the visual and textual content of a
post, to predict the single emoji that appears in the
input comment.

3 Models

We present and motivate the models that we use
to predict an emoji given an Instagram post com-
posed by a picture and the associated comment.

3.1 ResNets

Deep Residual Networks (ResNets) (He et al.,
2016) are Convolutional Neural Networks which
were competitive in several image classification
tasks (Russakovsky et al., 2015; Lin et al., 2014)
and showed to be one of the best CNN architec-
tures for image recognition. ResNet is a feed-
forward CNN that exploits “residual learning”, by
bypassing two or more convolution layers (like
similar previous approaches (Sermanet and Le-
Cun, 2011)). We use an implementation of the
original ResNet where the scale and aspect ratio
augmentation are from (Szegedy et al., 2015), the
photometric distortions from (Howard, 2013) and
weight decay is applied to all weights and biases
(instead of only weights of the convolution layers).
The network we used is composed of 101 layers
(ResNet-101), initialized with pretrained parame-
ters learned on ImageNet (Deng et al., 2009). We
use this model as a starting point to later finetune
it on our emoji classification task. Learning rate
was set to 0.0001 and we early stopped the train-
ing when there was not improving in the validation
set.

3.2 FastText

Fastext (Joulin et al., 2017) is a linear model for
text classification. We decided to employ FastText
as it has been shown that on specific classifica-
tion tasks, it can achieve competitive results, com-
parable to complex neural classifiers (RNNs and
CNNs), while being much faster. FastText repre-
sents a valid approach when dealing with social
media content classification, where huge amounts
of data needs to be processed and new and relevant
information is continuously generated. The Fast-
Text algorithm is similar to the CBOW algorithm
(Mikolov et al., 2013), where the middle word is
replaced by the label, in our case the emoji. Given
a set of N documents, the loss that the model at-
tempts to minimize is the negative log-likelihood
over the labels (in our case, the emojis):

loss = − 1

N

n=1∑

N

en log(softmax (BAxn))

where en is the emoji included in the n-th Insta-
gram post, represented as hot vector, and used as
label. A and B are affine transformations (weight
matrices), and xn is the unit vector of the bag of
features of the n-th document (comment). The bag
of features is the average of the input words, rep-
resented as vectors with a look-up table.

3.3 B-LSTM Baseline

Barbieri et al. (2017) propose a recurrent neural
network approach for the emoji prediction task.
We use this model as baseline, to verify whether
FastText achieves comparable performance. They
used a Bidirectional LSTM with character repre-
sentation of the words (Ling et al., 2015; Balles-
teros et al., 2015) to handle orthographic variants
(or even spelling errors) of the same word that oc-
cur in social media (e.g. cooooool vs cool).

4 Experiments and Evaluation

In order to study the relation between Instagram
posts and emojis, we performed two different ex-
periments. In the first experiment (Section 4.2)
we compare the FastText model with the state of
the art on emoji classification (B-LSTM) by Bar-
bieri et al. (2017). Our second experiment (Sec-
tion 4.3) evaluates the visual (ResNet) and textual
(FastText) models on the emoji prediction task.
Moreover, we evaluate a multimodal combination
of both models respectively based on visual and
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top-5 top-10 top-20
P R F1 P R F1 P R F1

BW 61 61 61 45 45 45 34 36 32
BC 63 63 63 48 47 47 42 39 34
FT 61 62 61 47 49 46 38 39 36

Table 1: Comparison of B-LSTM with word mod-
eling (BW), B-LSTM with character modeling (BC),
and FastText (FT) on the same Twitter emoji predic-
tion tasks proposed by Barbieri et al. (2017), using the
same Twitter dataset.

textual inputs. Finally we discuss the contribution
of each modality to the prediction task.

We use 80% of our dataset (introduced in Sec-
tion 2) for training, 10% to tune our models, and
10% for testing (selecting the sets randomly).

4.1 Feature Extraction and Classifier
To model visual features we first finetune the
ResNet (process described in Section 3.1) on the
emoji prediction task, then extract the vectors from
the input of the last fully connected layer (before
the softmax). The textual embeddings are the bag
of features shown in Section 3.2 (the xn vectors),
extracted after training the FastText model on the
emoji prediction task.

With respect to the combination of textual and
visual modalities, we adopt a middle fusion ap-
proach (Kiela and Clark, 2015): we associate to
each Instagram post a multimodal embedding ob-
tained by concatenating the unimodal representa-
tions of the same post (i.e. the visual and textual
embeddings), previously learned. Then, we feed a
classifier2 with visual (ResNet), textual (FastText),
or multimodal feature embeddings, and test the ac-
curacy of the three systems.

4.2 B-LSTM / FastText Comparison
To compare the FastText model with the word and
character based B-LSTMs presented by Barbieri
et al. (2017), we consider the same three emoji
prediction tasks they proposed: top-5, top-10 and
top-20 emojis most frequently used in their Tweet
datasets. In this comparison we used the same
Twitter datasets. As we can see in Table 1 FastText
model is competitive, and it is also able to outper-
form the character based B-LSTM in one of the
emoji prediction tasks (top-20 emojis). This result
suggests that we can employ FastText to represent
Social Media short text (such as Twitter or Instra-
gram) with reasonable accuracy.

2L2 regularized logistic regression

top-5 top-10 top-20
P R F1 P R F1 P R F1

Maj 7.9 20.0 11.3 2.7 10.0 4.2 0.9 5.0 1.5
W.R. 20.1 20.0 20.1 9.8 9.8 9.8 4.6 4.8 4.7

Vis 38.6 31.1 31.0 26.3 20.9 20.5 20.3 17.5 16.1
Tex 56.1 54.4 54.9 41.6 37.5 38.3 36.7 29.9 31.3

Mul 57.4 56.3 56.7 42.3 40.5 41.1 36.6 35.2 35.5
% 2.3 3.5 3.3 1.7 8 7.3 -0.3 17.7 13.4

Table 2: Prediction results of top-5, top-10 and top-
20 most frequent emojis in the Instagram dataset: Pre-
cision (P), Recall (R), F-measure (F1). Experimental
settings: majority baseline, weighted random, visual,
textual and multimodal systems. In the last line we
report the percentage improvement of the multimodal
over the textual system.

4.3 Multimodal Emoji Prediction

We present the results of the three emoji classifica-
tion tasks, using the visual, textual and multimodal
features (see Table 2).

The emoji prediction task seems difficult by just
using the image of the Instagram post (Visual),
even if it largely outperforms the majority base-
line3 and weighted random4. We achieve better
performances when we use feature embeddings
extracted from the text. The most interesting find-
ing is that when we use a multimodal combina-
tion of visual and textual features, we get a non-
negligible improvement. This suggests that these
two modalities embed different representations of
the posts, and when used in combination they are
synergistic. It is also interesting to note that the
more emojis to predict, the higher improvement
the multimodal system provides over the text only
system (3.28% for top-5 emojis, 7.31% for top-10
emojis, and 13.42 for the top-20 emojis task).

4.4 Qualitative Analysis

In Table 3 we show the results for each class in the
top-20 emojis task.

The emoji with highest F1 using the textual fea-
tures is the most frequent one (0.62) and the
US flag (0.52). The latter seems easy to pre-
dict since it appears in specific contexts: when the
word USA/America is used (or when American
cities are referred, like #NYC).

The hardest emojis to predict by the text only
system are the two gestures (0.12) and (0.13).
The first one is often selected when the gold stan-

3Always predict since it is the most frequent emoji.
4Random keeping labels distribution of the training set
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E % Tex Vis MM E % Tex Vis MM
17.46 0.62 0.35 0.69 3.68 0.22 0.15 0.29
9.10 0.45 0.30 0.47 3.55 0.20 0.02 0.26
8.41 0.32 0.15 0.34 3.54 0.13 0.02 0.2
5.91 0.23 0.08 0.26 3.51 0.26 0.17 0.31
5.73 0.35 0.17 0.36 3.31 0.43 0.25 0.45
4.58 0.45 0.24 0.46 3.25 0.12 0.01 0.16
4.31 0.52 0.23 0.53 3.14 0.12 0.02 0.15
4.15 0.38 0.26 0.49 3.11 0.34 0.11 0.36
3.84 0.19 0.1 0.22 2.91 0.36 0.04 0.37
3.73 0.13 0.03 0.16 2.82 0.45 0.54 0.59

Table 3: F-measure in the test set of the 20 most fre-
quent emojis using the three different models. “%” in-
dicates the percentage of the class in the test set

dard emoji is the second one or is often mis-
predicted by wrongly selecting or .

Another relevant confusion scenario related to
emoji prediction has been spotted by Barbieri
et al. (2017): relying on Twitter textual data they
showed that the emoji was hard to predict as it
was used similarly to . Instead when we con-
sider Instagram data, the emoji is easier to pre-
dict (0.23), even if it is often confused with .

When we rely on visual contents (Instagram
picture), the emojis which are easily predicted are
the ones in which the associated photos are simi-
lar. For instance, most of the pictures associated to

are dog/pet pictures. Similarly, is predicted
along with very bright pictures taken outside.
is correctly predicted along with pictures related
to gym and fitness. The accuracy of is also high
since most posts including this emoji are related to
fitness (and the pictures are simply either selfies at
the gym, weight lifting images, or protein food).

Employing a multimodal approach improves
performance. This means that the two modali-
ties are somehow complementary, and adding vi-
sual information helps to solve potential ambigu-
ities that arise when relying only on textual con-
tent. In Figure 1 we report the confusion matrix
of the multimodal model. The emojis are plotted
from the most frequent to the least, and we can see
that the model tends to mispredict emojis selecting
more frequent emojis (the left part of the matrix is
brighter).

4.4.1 Saliency Maps
In order to show the parts of the image most rel-
evant for each class we analyze the global aver-
age pooling (Lin et al., 2013) on the convolutional

Figure 1: Confusion matrix of the multimodal model.
The gold labels are plotted as y-axes and the predicted
labels as x-axes. The matrix is normalized by rows.

feature maps (Zhou et al., 2016). By visually ob-
serving the image heatmaps of the set of Insta-
gram post pictures we note that in most cases it
is quite difficult to determine a clear association
between the emoji used by the user and some par-
ticular portion of the image. Detecting the correct
emoji given an image is harder than a simple ob-
ject recognition task, as the emoji choice depends
on subjective emotions of the user who posted the
image. In Figure 2 we show the first four predic-
tions of the CNN for three pictures, and where the
network focuses (in red). We can see that in the
first example the network selects the smile with
sunglasses because of the legs in the bottom of
the image, the dog emoji is selected while fo-
cusing on the dog in the image, and the smiling
emoji while focusing on the person in the back,
who is lying on a hammock. In the second exam-
ple the network selects again the due to the wa-
ter and part of the kayak, the heart emoji focus-
ing on the city landscape, and the praying emoji

focusing on the sky. The same “praying” emoji
is also selected when focusing on the luxury car
in the third example, probably because the same
emoji is used to express desire, i.e. “please, I want
this awesome car”.

It is interesting to note that images can give con-
text to textual messages like in the following In-
stagram posts: (1)“Love my new home ” (asso-
ciated to a picture of a bright garden, outside) and
(2) “I can’t believe it’s the first day of school!!!
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Figure 2: Three test pictures. From left to right, we
show the four most likely predicted emojis and their
correspondent class activation mapping heatmap.

I love being these boys’ mommy!!!! #myboys
#mommy ” (associated to picture of two boys
wearing two blue shirts). In both examples the tex-
tual system predicts . While the multimodal sys-
tem correctly predicts both of them: the blue color
in the picture associated to (2) helps to change the
color of the heart, and the sunny/bright picture of
the garden in (1) helps to correctly predict .

5 Related Work

Modeling the semantics of emojis, and their ap-
plications, is a relatively novel research problem
with direct applications in any social media task.
Since emojis do not have a clear grammar, it is not
clear their role in text messages. Emojis are con-
sidered function words or even affective markers
(Na’aman et al., 2017), that can potentially affect
the overall semantics of a message (Donato and
Paggio, 2017).

Emojis can encode different meanings, and they
can be interpreted differently. Emoji interpretation
has been explored user-wise (Miller et al., 2017),
location-wise, specifically in countries (Barbieri
et al., 2016b) and cities (Barbieri et al., 2016a),
and gender-wise (Chen et al., 2017) and time-wise
(Barbieri et al., 2018).

Emoji sematics and usage have been studied
with distributional semantics, with models trained
on Twitter data (Barbieri et al., 2016c), Twitter
data together with the official unicode description
(Eisner et al., 2016), or using text from a popu-
lar keyboard app Ai et al. (2017). In the same

context, Wijeratne et al. (2017a) propose a plat-
form for exploring emoji semantics. In order to
further study emoji semantics, two datasets with
pairwise emoji similarity, with human annotations,
have been proposed: EmoTwi50 (Barbieri et al.,
2016c) and EmoSim508 (Wijeratne et al., 2017b).
Emoji similarity has been also used for proposing
efficient keyboard emoji organization (Pohl et al.,
2017). Recently, Barbieri and Camacho-Collados
(2018) show that emoji modifiers (skin tones and
gender) can affect the semantics vector represen-
tation of emojis.

Emoji play an important role in the emotional
content of a message. Several sentiment lexicons
for emojis have been proposed (Novak et al., 2015;
Kimura and Katsurai, 2017; Rodrigues et al.,
2018) and also studies in the context of emotion
and emojis have been published recently (Wood
and Ruder, 2016; Hu et al., 2017).

During the last decade several studies have
shown how sentiment analysis improves when we
jointly leverage information coming from differ-
ent modalities (e.g. text, images, audio, video)
(Morency et al., 2011; Poria et al., 2015; Tran
and Cambria, 2018). In particular, when we deal
with Social Media posts, the presence of both tex-
tual and visual content has promoted a number of
investigations on sentiment or emotions (Baecchi
et al., 2016; You et al., 2016b,a; Yu et al., 2016;
Chen et al., 2015) or emojis (Cappallo et al., 2015,
2018).

6 Conclusions

In this work we explored the use of emojis in a
multimodal context (Instagram posts). We have
shown that using a synergistic approach, thus re-
lying on both textual and visual contents of social
media posts, we can outperform state of the art
unimodal approaches (based only on textual con-
tents). As future work, we plan to extend our mod-
els by considering the prediction of more than one
emoji per Social Media post and also considering
a bigger number of labels.
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Abstract

We introduce a fully differentiable approxima-
tion to higher-order inference for coreference
resolution. Our approach uses the antecedent
distribution from a span-ranking architecture
as an attention mechanism to iteratively re-
fine span representations. This enables the
model to softly consider multiple hops in the
predicted clusters. To alleviate the computa-
tional cost of this iterative process, we intro-
duce a coarse-to-fine approach that incorpo-
rates a less accurate but more efficient bilin-
ear factor, enabling more aggressive pruning
without hurting accuracy. Compared to the ex-
isting state-of-the-art span-ranking approach,
our model significantly improves accuracy on
the English OntoNotes benchmark, while be-
ing far more computationally efficient.

1 Introduction

Recent coreference resolution systems have heav-
ily relied on first order models (Clark and Man-
ning, 2016a; Lee et al., 2017), where only pairs of
entity mentions are scored by the model. These
models are computationally efficient and scalable
to long documents. However, because they make
independent decisions about coreference links,
they are susceptible to predicting clusters that are
locally consistent but globally inconsistent. Fig-
ure 1 shows an example from Wiseman et al.
(2016) that illustrates this failure case. The plu-
rality of [you] is underspecified, making it locally
compatible with both [I] and [all of you], while
the full cluster would have mixed plurality, result-
ing in global inconsistency.

We introduce an approximation of higher-order
inference that uses the span-ranking architecture
from Lee et al. (2017) in an iterative manner. At
each iteration, the antecedent distribution is used
as an attention mechanism to optionally update ex-
isting span representations, enabling later corefer-

Speaker 1: Um and [I] think that is
what’s - Go ahead Linda.
Speaker 2: Well and uh thanks goes to
[you] and to the media to help us... So
our hat is off to [all of you] as well.

Figure 1: Example of consistency errors to which first-
order span-ranking models are susceptible. Span pairs
(I, you) and (you, all of you) are locally consistent, but
the span triplet (I, you, all of you) is globally incon-
sistent. Avoiding this error requires modeling higher-
order structures.

ence decisions to softly condition on earlier coref-
erence decisions. For the example in Figure 1, this
enables the linking of [you] and [all of you] to de-
pend on the linking of [I] and [you].

To alleviate computational challenges from this
higher-order inference, we also propose a coarse-
to-fine approach that is learned with a single end-
to-end objective. We introduce a less accurate but
more efficient coarse factor in the pairwise scor-
ing function. This additional factor enables an
extra pruning step during inference that reduces
the number of antecedents considered by the more
accurate but inefficient fine factor. Intuitively,
the model cheaply computes a rough sketch of
likely antecedents before applying a more expen-
sive scoring function.

Our experiments show that both of the above
contributions improve the performance of corefer-
ence resolution on the English OntoNotes bench-
mark. We observe a significant increase in av-
erage F1 with a second-order model, but returns
quickly diminish with a third-order model. Addi-
tionally, our analysis shows that the coarse-to-fine
approach makes the model performance relatively
insensitive to more aggressive antecedent pruning,
compared to the distance-based heuristic pruning
from previous work.
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2 Background

Task definition We formulate the coreference
resolution task as a set of antecedent assignments
yi for each of span i in the given document, fol-
lowing Lee et al. (2017). The set of possible as-
signments for each yi is Y(i) = {ε, 1, . . . , i −
1}, a dummy antecedent ε and all preceding
spans. Non-dummy antecedents represent coref-
erence links between i and yi. The dummy an-
tecedent ε represents two possible scenarios: (1)
the span is not an entity mention or (2) the span is
an entity mention but it is not coreferent with any
previous span. These decisions implicitly define a
final clustering, which can be recovered by group-
ing together all spans that are connected by the set
of antecedent predictions.

Baseline We describe the baseline model (Lee
et al., 2017), which we will improve to address
the modeling and computational limitations dis-
cussed previously. The goal is to learn a distri-
bution P (yi) over antecedents for each span i :

P (yi) =
es(i,yi)∑

y′∈Y(i) e
s(i,y′)

(1)

where s(i, j) is a pairwise score for a corefer-
ence link between span i and span j. The base-
line model includes three factors for this pairwise
coreference score: (1) sm(i), whether span i is a
mention, (2) sm(j), whether span j is a mention,
and (3) sa(i, j) whether j is an antecedent of i:

s(i, j) = sm(i) + sm(j) + sa(i, j) (2)

In the special case of the dummy antecedent,
the score s(i, ε) is instead fixed to 0. A com-
mon component used throughout the model is
the vector representations gi for each possible
span i. These are computed via bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997) that
learn context-dependent boundary and head repre-
sentations. The scoring functions sm and sa take
these span representations as input:

sm(i) = w>m FFNNm(gi) (3)

sa(i, j) = w>a FFNNa([gi, gj , gi ◦ gj , φ(i, j)]) (4)

where ◦ denotes element-wise multiplication,
FFNN denotes a feed-forward neural network, and
the antecedent scoring function sa(i, j) includes
explicit element-wise similarity of each span gi ◦
gj and a feature vector φ(i, j) encoding speaker

and genre information from the metadata and the
distance between the two spans.

The model above is factored to enable a two-
stage beam search. A beam of up to M potential
mentions is computed (whereM is proportional to
the document length) based on the spans with the
highest mention scores sm(i). Pairwise corefer-
ence scores are only computed between surviving
mentions during both training and inference.

Given supervision of gold coreference clusters,
the model is learned by optimizing the marginal
log-likelihood of the possibly correct antecedents.
This marginalization is required since the best an-
tecedent for each span is a latent variable.

3 Higher-order Coreference Resolution

The baseline above is a first-order model, since it
only considers pairs of spans. First-order mod-
els are susceptible to consistency errors as demon-
strated in Figure 1. Unlike in sentence-level se-
mantics, where higher-order decisions can be im-
plicitly modeled by the LSTMs, modeling these
decisions at the document-level requires explicit
inference due to the potentially very large surface
distance between mentions.

We propose an inference procedure that allows
the model to condition on higher-order structures,
while being fully differentiable. This inference
involves N iterations of refining span representa-
tions, denoted as gni for the representation of span
i at iteration n. At iteration n, gni is computed
with an attention mechanism that averages over
previous representations gn−1j weighted according
to how likely each mention j is to be an antecedent
for i, as defined below.

The baseline model is used to initialize the span
representation at g1

i . The refined span representa-
tions allow the model to also iteratively refine the
antecedent distributions Pn(yi):

Pn(yi) =
es(g

n
i ,g

n
yi
)

∑
y∈Y(i) e

s(gn
i ,g

n
y ))

(5)

where s is the coreference scoring function of the
baseline architecture. The scoring function uses
the same parameters at every iteration, but it is
given different span representations.

At each iteration, we first compute the expected
antecedent representation ani of each span i by us-
ing the current antecedent distribution Pn(yi) as
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an attention mechanism:

ani =
∑

yi∈Y(i)
Pn(yi) · gnyi (6)

The current span representation gni is then
updated via interpolation with its expected an-
tecedent representation ani :

fni = σ(Wf[g
n
i ,a

n
i ]) (7)

gn+1
i = fni ◦ gni + (1− fni ) ◦ ani (8)

The learned gate vector fni determines for each
dimension whether to keep the current span in-
formation or to integrate new information from
its expected antecedent. At iteration n, gni is
an element-wise weighted average of approxi-
mately n span representations (assuming Pn(yi)
is peaked), allowing Pn(yi) to softly condition on
up to n other spans in the predicted cluster.

Span-ranking can be viewed as predicting latent
antecedent trees (Fernandes et al., 2012; Martschat
and Strube, 2015), where the predicted antecedent
is the parent of a span and each tree is a predicted
cluster. By iteratively refining the span represen-
tations and antecedent distributions, another way
to interpret this model is that the joint distribution∏
i PN (yi) implicitly models every directed path

of up to length N +1 in the latent antecedent tree.

4 Coarse-to-fine Inference

The model described above scales poorly to long
documents. Despite heavy pruning of potential
mentions, the space of possible antecedents for ev-
ery surviving span is still too large to fully con-
sider. The bottleneck is in the antecedent score
sa(i, j), which requires computing a tensor of size
M ×M × (3|g|+ |φ|).

This computational challenge is even more
problematic with the iterative inference from Sec-
tion 3, which requires recomputing this tensor at
every iteration.

4.1 Heuristic antecedent pruning
To reduce computation, Lee et al. (2017) heuris-
tically consider only the nearest K antecedents
of each span, resulting in a smaller input of size
M ×K × (3|g|+ |φ|).

The main drawback to this solution is that it im-
poses an a priori limit on the maximum distance of
a coreference link. The previous work only con-
siders up to K = 250 nearest mentions, whereas
coreference links can reach much further in natu-
ral language discourse.
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Figure 2: Comparison of accuracy on the development
set for the two antecedent pruning strategies with vari-
ous beams sizes K. The distance-based heuristic prun-
ing performance drops by almost 5 F1 when reducing
K from 250 to 50, while the coarse-to-fine pruning re-
sults in an insignificant drop of less than 0.2 F1.

4.2 Coarse-to-fine antecedent pruning

We instead propose a coarse-to-fine approach that
can be learned end-to-end and does not establish
an a priori maximum coreference distance. The
key component of this coarse-to-fine approach is
an alternate bilinear scoring function:

sc(i, j) = g>i Wc gj (9)

where Wc is a learned weight matrix. In contrast
to the concatenation-based sa(i, j), the bilinear
sc(i, j) is far less accurate. A direct replacement
of sa(i, j) with sc(i, j) results in a performance
loss of over 3 F1 in our experiments. However,
sc(i, j) is much more efficient to compute. Com-
puting sc(i, j) only requires manipulating matri-
ces of size M × |g| and M ×M .

Therefore, we instead propose to use sc(i, j) to
compute a rough sketch of likely antecedents. This
is accomplished by including it as an additional
factor in the model:

s(i, j) = sm(i) + sm(j) + sc(i, j) + sa(i, j) (10)

Similar to the baseline model, we leverage this ad-
ditional factor to perform an additional beam prun-
ing step. The final inference procedure involves a
three-stage beam search:

First stage Keep the top M spans based on the
mention score sm(i) of each span.

Second stage Keep the top K antecedents of
each remaining span i based on the first three fac-
tors, sm(i) + sm(j) + sc(i, j).
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MUC B3 CEAFφ4
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

Martschat and Strube (2015) 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5
Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Wiseman et al. (2015) 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4
Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
+ ELMo (Peters et al., 2018) 80.1 77.2 78.6 69.8 66.5 68.1 66.4 62.9 64.6 70.4

+ hyperparameter tuning 80.7 78.8 79.8 71.7 68.7 70.2 67.2 66.8 67.0 72.3

+ coarse-to-fine inference 80.4 79.9 80.1 71.0 70.0 70.5 67.5 67.2 67.3 72.6
+ second-order inference 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0

Table 1: Results on the test set on the English CoNLL-2012 shared task. The average F1 of MUC, B3, and
CEAFφ4

is the main evaluation metric. We show only non-ensembled models for fair comparison.

Third stage The overall coreference s(i, j) is
computed based on the remaining span pairs. The
soft higher-order inference from Section 3 is com-
puted in this final stage.

While the maximum-likelihood objective is
computed over only the span pairs from this final
stage, this coarse-to-fine approach expands the set
of coreference links that the model is capable of
learning. It achieves better performance while us-
ing a much smaller K (see Figure 2).

5 Experimental Setup

We use the English coreference resolution data
from the CoNLL-2012 shared task (Pradhan et al.,
2012) in our experiments. The code for replicating
these results is publicly available.1

Our models reuse the hyperparameters from
Lee et al. (2017), with a few exceptions mentioned
below. In our results, we report two improvements
that are orthogonal to our contributions.

• We used embedding representations from a
language model (Peters et al., 2018) at the in-
put to the LSTMs (ELMo in the results).

• We changed several hyperparameters:

1. increasing the maximum span width
from 10 to 30 words.

2. using 3 highway LSTMs instead of 1.
3. using GloVe word embeddings (Pen-

nington et al., 2014) with a window size

1https://github.com/kentonl/e2e-coref

of 2 for the head word embeddings and a
window size of 10 for the LSTM inputs.

The baseline model considers up to 250 an-
tecedents per span. As shown in Figure 2, the
coarse-to-fine model is quite insensitive to more
aggressive pruning. Therefore, our final model
considers only 50 antecedents per span.

On the development set, the second-order
model (N = 2) outperforms the first-order model
by 0.8 F1, but the third order model only pro-
vides an additional 0.1 F1 improvement. There-
fore, we only compute test results for the second-
order model.

6 Results

We report the precision, recall, and F1 of the the
MUC, B3, and CEAFφ4metrics using the official
CoNLL-2012 evaluation scripts. The main evalu-
ation is the average F1 of the three metrics.

Results on the test set are shown in Table 1. We
include performance of systems proposed in the
past 3 years for reference. The baseline relative to
our contributions is the span-ranking model from
Lee et al. (2017) augmented with both ELMo and
hyperparameter tuning, which achieves 72.3 F1.
Our full approach achieves 73.0 F1, setting a new
state of the art for coreference resolution.

Compared to the heuristic pruning with up to
250 antecedents, our coarse-to-fine model only
computes the expensive scores sa(i, j) for 50 an-
tecedents. Despite using far less computation, it
outperforms the baseline because the coarse scores
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sc(i, j) can be computed for all antecedents, en-
abling the model to potentially predict a corefer-
ence link between any two spans in the document.
As a result, we observe a much higher recall when
adopting the coarse-to-fine approach.

We also observe further improvement by in-
cluding the second-order inference (Section 3).
The improvement is largely driven by the over-
all increase in precision, which is expected since
the higher-order inference mainly serves to rule
out inconsistent clusters. It is also consistent with
findings from Martschat and Strube (2015) who
report mainly improvements in precision when
modeling latent trees to achieve a similar goal.

7 Related Work

In addition to the end-to-end span-ranking
model (Lee et al., 2017) that our proposed model
builds upon, there is a large body of literature on
coreference resolvers that fundamentally rely on
scoring span pairs (Ng and Cardie, 2002; Bengt-
son and Roth, 2008; Denis and Baldridge, 2008;
Fernandes et al., 2012; Durrett and Klein, 2013;
Wiseman et al., 2015; Clark and Manning, 2016a).

Motivated by structural consistency issues dis-
cussed above, significant effort has also been
devoted towards cluster-level modeling. Since
global features are notoriously difficult to de-
fine (Wiseman et al., 2016), they often depend
heavily on existing pairwise features or archi-
tectures (Björkelund and Kuhn, 2014; Clark and
Manning, 2015, 2016b). We similarly use an
existing pairwise span-ranking architecture as a
building block for modeling more complex struc-
tures. In contrast to Wiseman et al. (2016) who
use highly expressive recurrent neural networks to
model clusters, we show that the addition of a rel-
atively lightweight gating mechanism is sufficient
to effectively model higher-order structures.

8 Conclusion

We presented a state-of-the-art coreference resolu-
tion system that models higher order interactions
between spans in predicted clusters. Addition-
ally, our proposed coarse-to-fine approach allevi-
ates the additional computational cost of higher-
order inference, while maintaining the end-to-end
learnability of the entire model.
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Abstract

We present a novel transition system,
based on the Covington non-projective
parser, introducing non-local transitions
that can directly create arcs involving
nodes to the left of the current focus po-
sitions. This avoids the need for long se-
quences of No-Arc transitions to create
long-distance arcs, thus alleviating error
propagation. The resulting parser outper-
forms the original version and achieves
the best accuracy on the Stanford Depend-
encies conversion of the Penn Treebank
among greedy transition-based parsers.

1 Introduction

Greedy transition-based parsers are popular in
NLP, as they provide competitive accuracy with
high efficiency. They syntactically analyze a sen-
tence by greedily applying transitions, which read
it from left to right and produce a dependency tree.

However, this greedy process is prone to er-
ror propagation: one wrong choice of transition
can lead the parser to an erroneous state, causing
more incorrect decisions. This is especially cru-
cial for long attachments requiring a larger number
of transitions. In addition, transition-based pars-
ers traditionally focus on only two words of the
sentence and their local context to choose the next
transition. The lack of a global perspective favors
the presence of errors when creating arcs involving
multiple transitions. As expected, transition-based
parsers build short arcs more accurately than long
ones (McDonald and Nivre, 2007).

Previous research such as (Fernández-González
and Gómez-Rodrı́guez, 2012) and (Qi and Man-
ning, 2017) proves that the widely-used projective
arc-eager transition-based parser of Nivre (2003)
benefits from shortening the length of transition

sequences by creating non-local attachments. In
particular, they augmented the original transition
system with new actions whose behavior en-
tails more than one arc-eager transition and in-
volves a context beyond the traditional two focus
words. Attardi (2006) and Sartorio et al. (2013)
also extended the arc-standard transition-based al-
gorithm (Nivre, 2004) with the same success.

In the same vein, we present a novel unrestric-
ted non-projective transition system based on the
well-known algorithm by Covington (2001) that
shortens the transition sequence necessary to parse
a given sentence by the original algorithm, which
becomes linear instead of quadratic with respect
to sentence length. To achieve that, we propose
new transitions that affect non-local words and
are equivalent to one or more Covington actions,
in a similar way to the transitions defined by Qi
and Manning (2017) based on the arc-eager parser.
Experiments show that this novel variant signific-
antly outperforms the original one in all datasets
tested, and achieves the best reported accuracy for
a greedy dependency parser on the Stanford De-
pendencies conversion of the WSJ Penn Treebank.

2 Non-Projective Covington Parser

The original non-projective parser defined by Cov-
ington (2001) was modelled under the transition-
based parsing framework by Nivre (2008). We
only sketch this transition system briefly for space
reasons, and refer to (Nivre, 2008) for details.

Parser configurations have the form c =
〈λ1, λ2, B,A〉, where λ1 and λ2 are lists of par-
tially processed words, B a list (called buffer)
of unprocessed words, and A the set of depend-
ency arcs built so far. Given an input string
w1 · · ·wn, the parser starts at the initial configura-
tion cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉 and runs
transitions until a terminal configuration of the
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Covington: Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @x | x→ i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉

only if @x | x→ j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

NL-Covington: Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
Left-Arck: 〈λ1|ik|...|i1, λ2, j|B,A〉 ⇒ 〈λ1, ik|...|i1|λ2, j|B,A ∪ {j → ik}〉

only if @x | x→ ik ∈ A (single-head) and ik →∗ j 6∈ A (acyclicity).
Right-Arck: 〈λ1|ik|...|i1, λ2, j|B,A〉 ⇒ 〈λ1, ik|...|i1|λ2, j|B,A ∪ {ik → j}〉

only if @x | x→ j ∈ A (single-head) and j →∗ ik 6∈ A (acyclicity).

Figure 1: Transitions of the non-projective Covington (top) and NL-Covington (bottom) dependency
parsers. The notation i→∗ j ∈ A means that there is a (possibly empty) directed path from i to j in A.

form 〈λ1, λ2, [], A〉 is reached: at that point, A
contains the dependency graph for the input.1

The set of transitions is shown in the top half
of Figure 1. Their logic can be summarized as
follows: when in a configuration of the form
〈λ1|i, λ2, j|B,A〉, the parser has the chance to cre-
ate a dependency involving words i and j, which
we will call left and right focus words of that con-
figuration. The Left-Arc and Right-Arc transitions
are used to create a leftward (i ← j) or rightward
arc (i → j), respectively, between these words,
and also move i from λ1 to the first position of λ2,
effectively moving the focus to i − 1 and j. If no
dependency is desired between the focus words,
the No-Arc transition makes the same modifica-
tion of λ1 and λ2, but without building any arc.
Finally, the Shift transition moves the whole con-
tent of the list λ2 plus j to λ1 when no more at-
tachments are pending between j and the words
of λ1, thus reading a new input word and placing
the focus on j and j + 1. Transitions that create
arcs are disallowed in configurations where this
would violate the single-head or acyclicity con-
straints (cycles and nodes with multiple heads are
not allowed in the dependency graph). Figure 3
shows the transition sequence in the Covington
transition system which derives the dependency
graph in Figure 2.

The resulting parser can generate arbitrary non-
projective trees, and its complexity is O(n2).

3 Non-Projective NL-Covington Parser

The original logic described by Covington (2001)
parses a sentence by systematically traversing

1Note that, in general, A is a forest, but it can be conver-
ted to a tree by linking headless nodes as dependents of an
artificial root node at position 0.

1 2 3 4 5

Figure 2: Dependency tree for an input sentence.

Tran. λ1 λ2 Buffer Arc

[ ] [ ] [ 1, 2, 3, 4, 5 ]
SH [ 1 ] [ ] [ 2, 3, 4, 5 ]
RA [ ] [ 1 ] [ 2, 3, 4, 5 ] 1→ 2

SH [ 1, 2 ] [ ] [ 3, 4, 5 ]
NA [ 1 ] [ 2 ] [ 3, 4, 5 ]
RA [ ] [ 1, 2 ] [ 3, 4, 5 ] 1→ 3

SH [ 1, 2, 3 ] [ ] [ 4, 5 ]
SH [ 1, 2, 3, 4 ] [ ] [ 5 ]
LA [ 1, 2, 3 ] [ 4 ] [ 5 ] 4← 5

NA [ 1, 2] [ 3, 4 ] [ 5 ]
NA [ 1 ] [ 2, 3, 4 ] [ 5 ]
RA [ ] [ 1, 2, 3, 4 ] [ 5 ] 1→ 5

SH [ 1, 2, 3, 4, 5 ] [ ] [ ]

Figure 3: Transition sequence for parsing
the sentence in Figure 2 using the Coving-
ton parser (LA=LEFT-ARC, RA=RIGHT-ARC,
NA=NO-ARC, SH=SHIFT).

every pair of words. The Shift transition, intro-
duced by Nivre (2008) in the transition-based ver-
sion, is an optimization that avoids the need to ap-
ply a sequence of No-Arc transitions to empty the
list λ1 before reading a new input word.

However, there are still situations where se-
quences of No-Arc transitions are needed. For ex-
ample, if we are in a configuration C with focus
words i and j and the next arc we need to create
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goes from j to i − k (k > 1), then we will need
k − 1 consecutive No-Arc transitions to move the
left focus word to i and then apply Left-Arc. This
could be avoided if a non-local Left-Arc transition
could be undertaken directly at C, creating the re-
quired arc and moving k words to λ2 at once. The
advantage of such approach would be twofold: (1)
less risk of making a mistake at C due to consid-
ering a limited local context, and (2) shorter trans-
ition sequence, alleviating error propagation.

We present a novel transition system called NL-
Covington (for “non-local Covington”), described
in the bottom half of Figure 1. It consists in a
modification of the non-projective Covington al-
gorithm where: (1) the Left-Arc and Right-Arc
transitions are parameterized with k, allowing the
immediate creation of any attachment between j
and the kth leftmost word in λ1 and moving k
words to λ2 at once, and (2) the No-Arc transition
is removed since it is no longer necessary.

This new transition system can use some re-
stricted global information to build non-local de-
pendencies and, consequently, reduce the number
of transitions needed to parse the input. For in-
stance, as presented in Figure 4, the NL-Covington
parser will need 9 transitions, instead of 12 tradi-
tional Covington actions, to analyze the sentence
in Figure 2.

In fact, while in the standard Covington al-
gorithm a transition sequence for a sentence of
length n has length O(n2) in the worst case (if all
nodes are connected to the first node, then we need
to traverse every node to the left of each right fo-
cus word); for NL-Covington the sequence length
is alwaysO(n): one Shift transition for each of the
n words, plus one arc-building transition for each
of the n − 1 arcs in the dependency tree. Note,
however, that this does not affect the parser’s time
complexity, which is still quadratic as in the ori-
ginal Covington parser. This is because the al-
gorithm hasO(n) possible transitions to be scored
at each configuration, while the original Coving-
ton has O(1) transitions due to being limited to
creating local leftward/rightward arcs between the
focus words.

The completeness and soundness of NL-
Covington can easily be proved as there is a map-
ping between transition sequences of both parsers,
where a sequence of k − 1 No-Arc and one arc
transition in Covington is equivalent to a Left-Arck
or Right-Arck in NL-Covington.

Tran. λ1 λ2 Buffer Arc

[ ] [ ] [ 1, 2, 3, 4, 5 ]
SH [ 1 ] [ ] [ 2, 3, 4 , 5 ]
RA1 [ ] [ 1 ] [ 2, 3, 4 , 5 ] 1→ 2

SH [ 1, 2 ] [ ] [ 3, 4, 5 ]
RA2 [ ] [ 1, 2 ] [ 3, 4, 5 ] 1→ 3

SH [ 1, 2, 3 ] [ ] [ 4, 5 ]
SH [ 1, 2, 3, 4 ] [ ] [ 5 ]
LA1 [ 1, 2, 3 ] [ 4 ] [ 5 ] 4← 5

RA3 [ ] [ 1, 2, 3, 4 ] [ 5 ] 1→ 5

SH [ 1, 2, 3, 4, 5 ] [ ] [ ]

Figure 4: Transition sequence for parsing the sen-
tence in Figure 2 using the NL-Covington parser
(LA=LEFT-ARC, RA=RIGHT-ARC, SH=SHIFT).

4 Experiments

4.1 Data and Evaluation

We use 9 datasets2 from the CoNLL-X (Buch-
holz and Marsi, 2006) and all datasets from the
CoNLL-XI shared task (Nivre et al., 2007). To
compare our system to the current state-of-the-
art transition-based parsers, we also evaluate it
on the Stanford Dependencies (de Marneffe and
Manning, 2008) conversion (using the Stanford
parser v3.3.0)3 of the WSJ Penn Treebank (Mar-
cus et al., 1993), hereinafter PT-SD, with stand-
ard splits. Labelled and Unlabelled Attachment
Scores (LAS and UAS) are computed excluding
punctuation only on the PT-SD, for comparability.
We repeat each experiment with three independ-
ent random initializations and report the average
accuracy. Statistical significance is assessed by a
paired test with 10,000 bootstrap samples.

4.2 Model

To implement our approach we take advantage of
the model architecture described in Qi and Man-
ning (2017) for the arc-swift parser, which ex-
tends the architecture of Kiperwasser and Gold-
berg (2016) by applying a biaffine combination
during the featurization process. We implement
both the Covington and NL-Covington parsers un-
der this architecture, adapt the featurization pro-
cess with biaffine combination of Qi and Manning
(2017) to these parsers, and use their same training

2We excluded the languages from CoNLL-X that also ap-
peared in CoNLL-XI, i.e., if a language was present in both
shared tasks, we used the latest version.

3https://nlp.stanford.edu/software/
lex-parser.shtml
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Covington NL-Covington
Language UAS LAS UAS LAS
Arabic 66.67 53.24 68.69 54.59
Basque 74.31 66.18 75.45 67.61
Catalan 91.93 86.12 92.60 86.99
Chinese 83.87 76.19 85.25 77.56
Czech 84.27 77.91 86.26 79.95
English 89.94 88.74 91.51 90.47
Greek 79.91 72.65 80.61 73.41
Hungarian 76.80 65.21 78.57 67.51
Italian 82.03 75.87 83.63 78.03
Turkish 80.29 70.68 81.30 71.28
Bulgarian 81.78 76.23 83.65 78.40
Danish 86.56 81.18 88.40 82.77
Dutch 86.19 82.24 87.45 83.76
German 85.72 82.28 87.24 83.92
Japanese 92.20 90.41 93.63 91.65
Portuguese 86.69 82.19 87.89 83.69
Slovene 76.07 66.81 77.83 69.74
Spanish 74.67 69.41 76.58 71.60
Swedish 74.65 64.67 75.62 65.95
Average 81.82 75.17 83.27 76.78

Table 1: Parsing accuracy (UAS and LAS, in-
cluding punctuation) of the Covington and NL-
Covington non-projective parsers on CoNLL-XI
(first block) and CoNLL-X (second block) data-
sets. Best results for each language are shown in
bold. All improvements in this table are statistic-
ally significant (α = .05).

setup. More details about these model parameters
are provided in Appendix A.

Since this architecture uses batch training, we
train with a static oracle. The NL-Covington al-
gorithm has no spurious ambiguity at all, so there
is only one possible static oracle: canonical trans-
ition sequences are generated by choosing the
transition that builds the shortest pending gold arc
involving the current right focus word j, or Shift
if there are no unbuilt gold arcs involving j.

We note that a dynamic oracle can be obtained
for the NL-Covington parser by adapting the one
for standard Covington of Gómez-Rodrı́guez and
Fernández-González (2015). As NL-Covington
transitions are concatenations of Covington ones,
their loss calculation algorithm is compatible with
NL-Covington. Apart from error exploration,
this also opens the way to incorporating non-
monotonicity (Fernández-González and Gómez-
Rodrı́guez, 2017). While these approaches have
shown to improve accuracy under online training
settings, here we prioritize homogeneous compar-
ability to (Qi and Manning, 2017), so we use batch
training and a static oracle, and still obtain state-
of-the-art accuracy for a greedy parser.

Parser Type UAS LAS
(Chen and Manning, 2014) gs 91.8 89.6
(Dyer et al., 2015) gs 93.1 90.9
(Weiss et al., 2015) greedy gs 93.2 91.2
(Ballesteros et al., 2016) gd 93.5 91.4
(Kiperwasser and Goldberg, 2016) gd 93.9 91.9
(Qi and Manning, 2017) gs 94.3 92.2
This work gs 94.5 92.4
(Weiss et al., 2015) beam b(8) 94.0 92.1
(Alberti et al., 2015) b(32) 94.2 92.4
(Andor et al., 2016) b(32) 94.6 92.8
(Shi et al., 2017) dp 94.5 -
(Kuncoro et al., 2017) (constit.) c 95.8 94.6

Table 2: Accuracy comparison of state-of-the-
art transition-based dependency parsers on PT-SD.
The “Type” column shows the type of parser: gs
is a greedy parser trained with a static oracle, gd a
greedy parser trained with a dynamic oracle, b(n)
a beam search parser with beam size n, dp a parser
that employs global training with dynamic pro-
gramming, and c a constituent parser with conver-
sion to dependencies.

4.3 Results

Table 1 presents a comparison between the Cov-
ington parser and the novel variant developed here.
The NL-Covington parser outperforms the ori-
ginal version in all datasets tested, with all im-
provements statistically significant (α = .05).

Table 2 compares our novel system with other
state-of-the-art transition-based dependency pars-
ers on the PT-SD. Greedy parsers are in the first
block, beam-search and dynamic programming
parsers in the second block. The third block shows
the best result on this benchmark, obtained with
constituent parsing with generative re-ranking and
conversion to dependencies. Despite being the
only non-projective parser tested on a practically
projective dataset,4 our parser achieves the highest
score among greedy transition-based models (even
above those trained with a dynamic oracle).

We even slightly outperform the arc-swift sys-
tem of Qi and Manning (2017), with the same
model architecture, implementation and train-
ing setup, but based on the projective arc-eager
transition-based parser instead. This may be be-
cause our system takes into consideration any per-
missible attachment between the focus word j and
any word in λ1 at each configuration, while their
approach is limited by the arc-eager logic: it al-

4Only 41 out of 39,832 sentences of the PT-SD training
dataset present some kind of non-projectivity.
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Arc-swift NL-Covington
Language UAS LAS UAS LAS
Arabic 67.54 53.65 68.69∗ 54.59∗

Basque 74.88 67.44 75.45 67.61
Catalan 92.98 87.51∗ 92.60 86.99
Chinese 84.96 77.34 85.25 77.56
Czech 85.92 79.82 86.26 79.95
English 91.41 90.43 91.51 90.47
Greek 81.64∗ 74.56∗ 80.61 73.41
Hungarian 78.70 69.27∗ 78.57 67.51
Italian 83.29 78.60∗ 83.63 78.03
Turkish 79.56 70.22 81.30∗ 71.28∗

Bulgarian 83.28 78.19 83.65 78.40
Danish 87.86 82.58 88.40∗ 82.77
Dutch 83.27 80.14 87.45∗ 83.76∗

German 86.28 82.97 87.24∗ 83.92∗

Japanese 93.64 91.92 93.63 91.65
Portuguese 87.01 83.09 87.89∗ 83.69∗

Slovene 77.89 69.37 77.83 69.74
Spanish 75.55 70.62 76.58∗ 71.60∗

Swedish 75.00 65.66 75.62 65.95
Average 82.67 76.49 83.27 76.78

Table 3: Parsing accuracy (UAS and LAS, with
punctuation) of the arc-swift and NL-Covington
parsers on CoNLL-XI (1st block) and CoNLL-X
(2nd block) datasets. Best results for each lan-
guage are in bold. * indicates statistically signi-
ficant improvements (α = .05).

lows all possible rightward arcs (possibly fewer
than our approach as the arc-eager stack usually
contains a small number of words), but only one
leftward arc is permitted per parser state. It is also
worth noting that the arc-swift and NL-Covington
parsers have the same worst-case time complex-
ity, (O(n2)), as adding non-local arc transitions to
the arc-eager parser increases its complexity from
linear to quadratic, but it does not affect the com-
plexity of the Covington algorithm. Thus, it can be
argued that this technique is better suited to Cov-
ington than to arc-eager parsing.

We also compare NL-Covington to the arc-
swift parser on the CoNLL datasets (Table 3).
For fairness of comparison, we projectivize (via
maltparser5) all training datasets, instead of filter-
ing non-projective sentences, as some of the lan-
guages are significantly non-projective. Even do-
ing that, the NL-Covington parser improves over
the arc-swift system in terms of UAS in 14 out of
19 datasets, obtaining statistically significant im-
provements in accuracy on 7 of them, and statist-
ically significant decreases in just one.

Finally, we analyze how our approach reduces
the length of the transition sequence consumed by

5http://www.maltparser.org/

Covington NL-Covington
Language trans./sent. trans./sent.
Arabic 194.80 78.22
Basque 46.74 30.13
Catalan 117.35 60.07
Chinese 19.12 14.95
Czech 60.62 33.03
English 78.01 46.75
Greek 89.23 48.77
Hungarian 68.54 37.66
Italian 63.67 40.93
Turkish 53.53 30.08
Bulgarian 51.35 29.81
Danish 66.77 36.34
Dutch 42.78 28.93
German 61.16 31.89
Japanese 24.30 16.11
Portuguese 76.14 40.74
Slovene 56.15 31.79
Spanish 109.70 55.28
Swedish 48.59 29.07
PTB-SD 81.65 46.92
Average 70.51 38.37

Table 4: Average transitions executed per sentence
(trans./sent.) when analyzing each dataset by the
original Covington and NL-Covington algorithms.

the original Covington parser. In Table 4 we re-
port the transition sequence length per sentence
used by the Covington and the NL-Covington al-
gorithms to analyze each dataset from the same
benchmark used for evaluating parsing accuracy.
As seen in the table, NL-Covington produces not-
ably shorter transition sequences than Covington,
with a reduction close to 50% on average.

5 Conclusion

We present a novel variant of the non-projective
Covington transition-based parser by incorporat-
ing non-local transitions, reducing the length of
transition sequences from O(n2) to O(n). This
system clearly outperforms the original Coving-
ton parser and achieves the highest accuracy on
the WSJ Penn Treebank (Stanford Dependencies)
obtained to date with greedy dependency parsing.
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A Model Details

We provide more details of the neural network ar-
chitecture used in this paper, which is taken from
Qi and Manning (2017).

The model consists of two blocks of 2-layered
bidirectional long short-term memory (BiLSTM)
networks (Graves and Schmidhuber, 2005) with
400 hidden units in each direction. The first block
is used for POS tagging and the second one, for
parsing. As the input of the tagging block, we use
words represented as word embeddings, and BiL-
STMs are employed to perform feature extraction.
The resulting output is fed into a multi-layer per-
ceptron (MLP), with a hidden layer of 100 recti-
fied linear units (ReLU), that provides a POS tag
for each input token in a 32-dimensional repres-
entation. Word embeddings concatenated to these
POS tag embeddings serve as input of the second
block of BiLSTMs to undertake the parsing stage.
Then, the output of the parsing block is fed into a
MLP with two separate ReLU hidden layers (one
for deriving the representation of the head, and
the other for the dependency label) that, after be-
ing merged and by means of a softmax function,
score all the feasible transitions, allowing to greed-
ily choose and apply the highest-scoring one.

Moreover, we adapt the featurization process
with biaffine combination described in Qi and
Manning (2017) for the arc-swift system to be
used on the original Covington and NL-Covington
parsers. In particular, arc transitions are featurized
by the concatenation of the representation of the
head and dependent words of the arc to be created,
the No-Arc transition is featurized by the right-
most word in λ1 and the leftmost word in the buf-
fer B and, finally, for the Shift transition only the
leftmost word in B is used. Unlike Qi and Man-
ning (2017) do for baseline parsers, we do not use
the featurization method detailed in Kiperwasser
and Goldberg (2016)6 for the original Covington
parser, as we observed that this results in lower

6For instance, Kiperwasser and Goldberg (2016) featurize
all transitions of the arc-eager parser in the same way by con-
catenating the representations of the top 3 words on the stack
and the leftmost word in the buffer.
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scores and then the comparison would be unfair
in our case. We implement both systems under
the same framework, with the original Covington
parser represented as the NL-Covington system
plus the No-Arc transition and with k limited to
1. A thorough description of the model architec-
ture and featurization mechanism can be found in
Qi and Manning (2017).

Our training setup is exactly the same used by
Qi and Manning (2017), training the models dur-
ing 10 epochs for large datasets and 30 for small
ones. In addition, we initialize word embeddings
with 100-dimensional GloVe vectors (Pennington
et al., 2014) for English and use 300-dimensional
Facebook vectors (Bojanowski et al., 2016) for
other languages. The other parameters of the
neural network keep the same values.

The parser’s source code is freely avail-
able at https://github.com/danifg/
Non-Local-Covington.
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Abstract

Alzheimer’s disease (AD) is an irreversible
and progressive brain disease that can be
stopped or slowed down with medical treat-
ment. Language changes serve as a sign that
a patient’s cognitive functions have been im-
pacted, potentially leading to early diagno-
sis. In this work, we use NLP techniques to
classify and analyze the linguistic characteris-
tics of AD patients using the DementiaBank
dataset. We apply three neural models based
on CNNs, LSTM-RNNs, and their combina-
tion, to distinguish between language samples
from AD and control patients. We achieve
a new independent benchmark accuracy for
the AD classification task. More importantly,
we next interpret what these neural models
have learned about the linguistic characteris-
tics of AD patients, via analysis based on acti-
vation clustering and first-derivative saliency
techniques. We then perform novel auto-
matic pattern discovery inside activation clus-
ters, and consolidate AD patients’ distinctive
grammar patterns. Additionally, we show that
first derivative saliency can not only rediscover
previous language patterns of AD patients, but
also shed light on the limitations of neural
models. Lastly, we also include analysis of
gender-separated AD data.

1 Introduction

Alzheimer’s dementia is the most common form
of dementia, caused by Alzheimer’s disease (AD).
AD cannot be cured or reversed (Glenner, 1990).
However, medication can be used to slow or halt
degeneration especially when detected at an early
stage. Current diagnoses often involve lengthy
medical evaluations. One of the early symp-
toms of AD, cognitive impairment—which can
be evidenced by issues with word-finding, im-
paired reasoning or judgment, and changes in lan-
guage (McKhann et al., 1984)—is motivating lin-

guists and computer scientists to help quickly di-
agnose people afflicted by this disease.

This task is challenging because it requires di-
verse linguistic and world knowledge. For exam-
ple, the sentence “Well...there’s a mother stand-
ing there uh uh washing the dishes and the sink
is overspilling...overflowing” is AD-positive. To
distinguish this from a control sample, one needs
to know that the word “overspill” is not com-
mon in American English (Davies, 2009), and
the speaker is correcting themselves by saying
“overspilling...overflowing”, which hints on signs
of confusion and memory loss (Duke et al.,
2002). Moreover, different grammar patterns
emerge based on the scenario at hand. In ad-
dition, the characteristics of AD-affected speech
vary between stages of disease progression (König
et al., 2015), making it harder for feature-based ap-
proaches to adapt.

Motivated by the shortcomings of manual
feature-engineering for such a diverse and com-
plex task, we first present three end-to-end neu-
ral models to address it. The first two are the
widely adopted CNN and LSTM-RNN models,
and the third is a stronger joint CNN-LSTM ar-
chitecture. Our best-performing model requires
only minimal feature engineering (namely auto-
matic, commonly-used POS tags that are already
present in the dataset) and establishes a new inde-
pendent benchmark that outperforms previous AD
classification scores.

More importantly, we next present interpreta-
tion results to explain what AD-relevant linguis-
tic features these neural models are learning, via
two visualization techniques: Activation Cluster-
ing (Girshick et al., 2014) and First Derivative
Saliency (Simonyan et al., 2013), plus our novel
approach of automatically discovering grammati-
cal patterns common in different activation clus-
ters. Furthermore, we split our dataset by gen-
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Figure 1: Our CNN-LSTM hybrid neural network.

der and analyze the performance of our model on
each subsample of the data to illustrate that the
features we find are not gender-specific. These
methods not only help rediscover AD linguistic
features that have been found by previous works—
including short answers, bursts of speech, re-
peated requests for clarification, and starting with
interjections—but also lead to new insights in AD
characteristics via our automatic speech pattern
extraction method. These findings could poten-
tially help improve the accuracy and speed of med-
ical diagnoses.

2 Related Works

Language-based Alzheimer’s Detection: Previ-
ous works using language to detect AD relied
mainly on hand-crafted features from transcripts
(Orimaye et al., 2017, 2015), occasionally us-
ing acoustic data (König et al., 2015; Rudzicz
et al., 2014). The challenge with feature-based
approaches is that they rely heavily on the re-
searchers’ linguistics and medical expertise, and
are also hard to generalize to other progression
stages and disease types, which may correspond
to different linguistic features. Hand-picked fea-
tures may also become outdated as language and
culture evolves. Moreover, some features may be
too nuanced for humans to detect, especially at
early stages of AD. In order to address these is-
sues, Orimaye et al. (2016) adopted a deep neu-
ral network language model. However, a neural
approach is usually a black-box and it is hard to
interpret its reasoning for the final classification
decisions. To make our approaches more inter-
pretable while harvesting the benefits of neural ap-
proaches, we present three accurate neural models
and include multiple visualization techniques to il-
lustrate both their effectiveness and limitations.
CNN-LSTM on NL Classification: CNN and
LSTM (Hochreiter and Schmidhuber, 1997) have
both been leveraged extensively for extracting fea-
tures in natural language. Our best performing
model CNN-LSTM is closely related to C-LSTM
by Zhou et al. (2015), where an LSTM is laid on

top of a CNN model. This model has been shown
to perform better at sentiment classification than
either of its integral parts alone.
Visualization Techniques for Neural Models:
There have been various visualization techniques
proposed for neural networks in both Computer
Vision (Krizhevsky et al., 2012; Simonyan et al.,
2013; Zeiler and Fergus, 2014; Samek et al., 2017;
Mahendran and Vedaldi, 2015) and NLP (Li et al.,
2015; Kádár et al., 2017). In this work, we adopt
two visualization techniques: Activation Clus-
tering (Girshick et al., 2014) following the po-
liteness interpretation work of Aubakirova and
Bansal (2016), which leads to insight on sentence-
level patterns, and First Derivative Saliency (Si-
monyan et al., 2013) following Li et al. (2015) and
Aubakirova and Bansal (2016), which provides in-
sight to the importance of each word in deciding
the final classification label.

3 Classification Models

CNN: For each sentence, we apply an embed-
ding and a convolutional layer, followed by a max-
pooling layer (Collobert et al., 2011). The convo-
lution features are obtained by applying filters of
varying window sizes to each window of words.
The result is then passed to a softmax layer that
outputs probabilities over two classes.
LSTM-RNN: CNNs are not specialized for cap-
turing long-range sequential correlations (Pascanu
et al., 2013a). We thus also experimented with an
LSTM-RNN model, which consists of an embed-
ding layer followed by an LSTM layer. The final
state, containing information from the entire sen-
tence, is fed to a fully-connected layer followed by
a softmax layer to obtain the output probabilities.
CNN-LSTM: Observing that both models achieve
results comparable to previous best performing ap-
proach, and considering that they each have their
own complementary strengths, we experimented
with a combined architecture, laying an LSTM
layer on top of CNN (See Figure 1). This CNN
layer is identical to the vanilla CNN before the
max-pooling layer, and the LSTM layer is identi-
cal to the vanilla LSTM-RNN after the embedding
layer. More details are provided in the appendix.

4 Experimental Setup

Dataset This study utilizes Dementia-
Bank (Boller and Becker, 2005), the largest
publicly available dataset of transcripts and
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Figure 2: Boston cookie theft description task. Partic-
ipants were asked to describe all events in the image.

audio recordings of AD (and control) patient
interviews.1 Patients were asked to perform
various tasks; for example, in the “Boston Cookie
Theft” description task, patients were shown an
image and asked to describe what they see (See
Figure 2). Other tasks include the ‘Recall Test’
in which patients were asked to recall attributes
of a story they had been told previously. Each
transcript in DementiaBank comes with auto-
matic morphosyntactic analysis, such as standard
part-of-speech tagging, description of tense, and
repetition markers.2 Note that these features
are generic, automatically-extracted linguistic
properties and are not AD-specific. We broke each
transcript into individual utterances to use as data
samples. Note that we also removed utterances
that did not have accompanying POS tags. This
balancing reduced the amount of data but ensured
fair comparison between models with tagged and
untagged setups.

Training Details Our CNN model was a 2-D
convolutional neural network. Filter sizes of [3,
4, 5] were used. Our LSTM-RNN had 2 layers.
The CNN-LSTM model had filter sizes [3, 4, 5,
6] and 1 LSTM hidden layer. For each model, all
hyperparameters were tuned using the dev set.

See appendix for dataset and training details.

5 Results

With untagged data, our CNN, LSTM and CNN-
LSTM models achieved an accuracy of 82.8%,
83.7% and 84.9%, respectively. When fed with
the given POS-tagged data, our best-performing
CNN-LSTM model achieved 91.1% in accuracy,
setting a new benchmark accuracy for this task

1http://dementia.talkbank.org
2http://talkbank.org/manuals/CHAT.docx

Model Details Accuracy
2D-CNN Non-Tagged Utterances 82.8

LSTM Non-Tagged Utterances 83.7
CNN-RNN Non-Tagged Utterances 84.9
CNN-RNN POS-tagged Utterances 91.1

Table 1: Accuracy results of models. Note that we
downsampled the data to remove utterances that did not
have accompanying POS tags, so as to allow fair com-
parison between the tagged and untagged models.

(see Table 1 for more details).3 Compared to other
related works, Orimaye et al. (2015, 2017) used
AUC instead of accuracy, and König et al. (2015)
did not use DementiaBank data. Rudzicz et al.
(2014) achieved an accuracy of 67.0% on the De-
mentiaBank dataset using audio features as well
as transcripts. Orimaye et al. (2016) achieved an
accuracy of 87.5% but only used 36 transcripts.
Their test set is thus different from ours, lead-
ing to very little data and high variance. To the
best of our knowledge, Orimaye et al. (2016) used
the original transcripts, which include POS tags.
Hence, most previous works on this topic are not
directly comparable to our work, but we aim to
establish a new independent, strong neural bench-
mark and then more importantly focus on visual-
ization and interpretability of neural models.

Based on error analysis of the POS-based
CNN/RNN model’s classification result, we found
that almost all AD-positive results are classified
correctly as AD-positive. However, there is more
error in classifying non-AD samples, which could
be due to the fact that DementiaBank includes pa-
tients with probable and possible AD, each ex-
hibiting various degrees of symptoms. Patients
who are AD-positive may still have partially un-
affected speech (similar to non-AD control pa-
tients’ speech). However, because all utterances
from AD-positive interviews are tagged as AD-
positive, these seemingly unaffected utterances are
still tagged AD-positive. To further understand the
errors of our model, 10% of the wrongly classified
non-AD examples were randomly selected and an-
alyzed. Of this smaller sample, 36.3% were short
utterances such as “okay”, “alright”, “oh my”,
etc. These forms of speech are utterances that are
present in both classes, but more commonly found
in AD-positive cases. The remaining 63.7% were
examples of speech that could be classified either
way without surrounding context, such as “she’s

3We also tried using a bidirectional RNN, which gave
84.7%, 86.2% and 91.1% accuracies for our LSTM-RNN,
CNN-RNN, and CNN-RNN-tagged models, respectively.
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Non-AD Clusters - Cookie Task
POS Freq POS Freq POS Freq

n 0.15 n 0.13 n 0.15
det 0.13 det 0.13 det 0.13

presp 0.07 part 0.09 part 0.10
part 0.05 presp 0.09 presp 0.10

Table 2: Top POS tags and frequencies for three non-
AD clusters for the Cookie task.

drying dishes” and “stool’s tipping over”. Hence,
future work could incorporate context from sur-
rounding samples in each interview to help distin-
guish between temporarily unaffected speech pat-
terns in AD-positive patients and the continually
unaffected speech of non-AD control patients.

6 Analysis and Visualization

We first present gender analysis of our results
and then present interpretation of the linguistic
cues our CNN-LSTM model identified via two vi-
sualization strategies: activation clustering (Gir-
shick et al., 2014) and first-derivative saliency heat
maps (Simonyan et al., 2013).

6.1 Gender Differences

Many previous works have debated on the differ-
ence in language for male versus female patients
with Alzheimer’s (Bayles et al., 1999; McPher-
son et al., 1999; Buckwalter et al., 1996; Ripich
et al., 1995; Hebert et al., 2000; Heun and Kock-
ler, 2002). In agreement with some of these pre-
vious works, we found that the sets of the top ten
most common POS-tags for both AD-positive men
and women are the same, i.e., we did not detect a
significant difference in the language complexity
or syntax of male and female patients with AD in
our dataset. Moreover, our best performing model
achieved 86.6% classification accuracy on solely
the male data and 86.2% accuracy on solely the
female data, demonstrating that it found no sta-
tistically significant difference between the AD-
positive language of men versus women.4

6.2 Activation Clusters

Activation clustering (Girshick et al., 2014) treats
the activation values of n neurons per input as
coordinates in an n-dimensional space. K-means
clustering is then performed to group together in-
puts that maximally activate similar neurons.

4Statistical insignificance calculated using the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994). We split our
dataset based on gender and down-sampled the female data
subset such that it had the same data-size and non-AD to AD
data-ratio as the male data subset.

AD Non-AD
POS Frequency POS Frequency

n 0.20 n 0.15
det 0.14 det 0.13
adj 0.05 presp 0.07
adv 0.04 part 0.05

Table 3: Top POS tags in AD cluster and non-AD
cluster for Cookie task.

6.2.1 Rediscovering Existing Strategies
Our activation clusters corroborated previous stud-
ies, forming clusters around known linguistic
characteristics of Alzheimer’s disease (Watson,
1999; Rudzicz et al., 2014).
Short Answers and Bursts of Speech Clusters
formed around short answers, which have been
split up by natural pauses in speech. {‘okay’,
‘and’, ‘yes’, ‘oh !’, ‘yes’, ‘fine’}
Repeated Requests for Clarification Another
cluster formed around clarification questions and
confusion about the task, specifically in the past
tense. {‘Did I say facts ?’, ‘Did I get any ?’, ‘Did
I say elephant ?’}
Starting with Interjections Many clusters con-
tain utterances that start with interjections such as
“oh”, “well”, “so”, and “right”. {‘Well I gotta see
it’, ‘Oh I just see a lot of uh...’, ‘So all the words
that you can...’}
6.2.2 Automatic Cluster Pattern Analysis
Next, we extend activation clustering to perform
novel automatic pattern discovery inside different
clusters, as opposed to manually looking for pat-
terns as in Aubakirova and Bansal (2016). Finding
the most common POS tags in each cluster allows
us to better understand which grammatical struc-
tures are favored. No two clusters had exactly the
same most-common POS tags, but many clusters
shared similar top POS-tags on the same task.

Control Clusters An example unaffected
speech cluster for the Cookie task has the fol-
lowing as the most common POS tags: [(‘n’,
.15), (‘det’, .13), (‘presp’, .07), (‘part’, .05)].5

This pattern follows other clusters of unaffected
speech, with nouns, determiners, and participles
always found in the most-used POS tags. To
illustrate this, two other control clusters found
for the Cookie task have very similar top POS
tags and frequencies: [(‘n’, .13), (‘det’, .13),

5POS tags used in this paper: v=verb, n=noun,
pro=pronoun, adv=adverb, det=determiner, aux=auxiliary
verb, prep=preposition, co=interjection, part=participle,
presp=present participle. The frequencies of each POS tag
are scaled based on the total number of tags in each cluster.
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Figure 3: Left + Middle: first derivative saliency heat maps for correctly classified Alzheimer’s and control
examples. Right: first derivative heat saliency maps for incorrectly classified Alzheimer’s example.

(‘part’, .09), (‘presp’, .09)] and [(‘n’, .15), (‘det’,
.13), (‘part’, .10), (‘presp’, .10)] (see Table 2 for
side-by-side comparison of these clusters). For
the same task, non-AD clusters contain the same
top four POS tags.

AD Clusters For the Recall task, one cluster of
AD patients’ speech shows that the most common
POS tags are [(‘n’, .15), (‘co’, .15), (‘v’, .06),
(‘pro’, .06)]. Across samples from the Recall task,
AD-marked clusters contained frequent interjec-
tions and verbs. On the other hand, in regards to
the Cookie task, the most common POS tags for
the AD cluster found are [(‘n’, .20), (‘det’, .14),
(‘adj’, .05), (‘adv’, .04)], i.e., more adjectives and
adverbs. Hence, between different tasks such as
Cookie and Recall, the most commonly used POS
tags for AD clusters are distinct.

Moreover, qualitative analysis shows dissimi-
larities in the most common POS tags between the
Cookie task’s AD and non-AD cluster(s). Table 3
shows the comparison between representative AD
and non-AD clusters for the Cookie task. The AD-
positive cluster has only 2 most-used POS tags in
common with the non-AD cluster. In fact, none of
the 3 non-AD clusters found in Table 2 have adjec-
tives or adverbs in their most-used POS tags list,
unlike the AD cluster in Table 3.

6.3 First Derivative Saliency Heat Maps

Saliency heat maps (Simonyan et al., 2013) illus-
trate which words in an input had the biggest im-
pact on the classification of the whole sentence.
This is done by taking the gradient of the final
scores w.r.t. the word embeddings of the inputs.

Heat Map Analysis The filler words “uh” and
“um” are emphasized in Figure 3 (left), show-
ing that they have a lot of influence on classifi-
cation. The initial “and” is highlighted as well,
corroborating the results of the activation clusters
in that starting with a coordinating conjunction is a
trait of Alzheimer’s speech. However, in Figure 3
(middle), the “uh” filler word is not highlighted,
showing that most control patients do not use filler

words as heavily as Alzheimer’s patients. Instead,
words that give structure to a sentence have the
biggest impact on classification, such as definite
articles and determiners (e.g., “the” and “that”).
Figure 3 (middle) shows that the most highlighted
words are “the”, “that” and “is”.

Visualizing Limitations Furthermore, by visu-
alizing an incorrectly classified example, we can
learn about the limitations of our neural network.
Figure 3 (right) illustrates a map of an incorrectly
predicted sample. The model misclassified it due
to the length of the utterance (activation clustering
showed that AD patients tend to have short bursts
of speech, see Section 6.2.1) and the heavy use
of determiners. However, the repeated “um”s and
starting with a coordinating conjunction strongly
indicated AD, which confused our model. From
Figure 3, the repeated use of filler words (i.e.
“uh”) had the second most influence on classifi-
cation. In future work, with more context data and
advanced neural methods, our model’s next steps
will be to learn how to better classify samples that
strongly exhibit both AD and control features.

7 Conclusion
We applied three models to the AD classification
task, and our CNN-LSTM model achieves a new
benchmark accuracy in classifying AD using neu-
ral models. We illustrate with two visualization
techniques how these models capture unique lin-
guistic features present in AD patients. We also
discussed gender analysis. Potential future work
includes using more conversational context and
implementing multi-class classification to differ-
entiate among stages of AD. We also plan to apply
this generalizable model to other similar neurolog-
ical diseases, such as Diffuse Lewy Body disease
and Huntington’s disease (Heindel et al., 1989).
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A Supplementary Materials

A.1 Training Details
All models had a vocabulary size of 2396, and
used an Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 1e−4. All gradient norms
were clipped to 2.0 (Pascanu et al., 2013b; Graves,
2013). For each model, the hyperparameters were
tuned using the development set.

CNN We used a 2-D CNN. Filter sizes of [3, 4,
5] were used with 128 filters per filter size. Batch
size was set to 128, and a dropout (Srivastava et al.,
2014) of 0.80 was applied.

LSTM Our LSTM had 2 layers with 128 hidden
units. Batch size was 32, and a dropout of 0.70
was used.

CNN-LSTM Our CNN-LSTM model consisted
of an LSTM on top of a CNN. The CNN had 100
filters per filter size of [3, 4, 5, 6]. Embedding
dimensions of 300 were used. An LSTM with
300 hidden units was used. Both dropout on the
CNN and recurrent dropout (Gal and Ghahramani,
2016) on the LSTM used a dropout rate of 0.65.

A.2 Dataset Details
Each transcript in DementiaBank comes with au-
tomatic morphosyntactic analysis, such as stan-
dard part-of-speech tagging, description of tense,
and markers for repetitions. This automatic tag-
ging is identical to that done on other datasets,
such as the CHILDES TalkBank, and is thus not
specific to DementiaBank. This dataset features
transcripts of 104 different control patients, and
208 different diagnosed dementia patients. There
is a total of 1017 Alzheimer’s transcripts and
243 control transcripts. Each of these transcripts
were then broken down by sentences and inter-
ruptions by the interviewer. We used each ut-
terance by the patient as a data sample. Within
the 14362 utterance samples, 11458 come from
transcripts of Alzheimer’s-diagnosed interviewees
and 2904 from those of control patients. There-
fore, a majority-baseline classifier that always
guesses AD-positive will achieve an accuracy of
79.8% in our dataset. Each utterance has a POS-
tagged counterpart in the dataset. A 80/10/10
train/dev/test split was used for each setting.
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Abstract

An essential aspect to understanding narra-
tives is to grasp the interaction between char-
acters in a story and the actions they take.
We examine whether computational models
can capture this interaction, when both char-
acter attributes and actions are expressed as
complex natural language descriptions. We
propose role-playing games as a testbed for
this problem, and introduce a large corpus1 of
game transcripts collected from online discus-
sion forums. Using neural language models
which combine character and action descrip-
tions from these stories, we show that we can
learn the latent ties. Action sequences are bet-
ter predicted when the character performing
the action is also taken into account, and vice
versa for character attributes.

1 Introduction

Imagine a giant, a dwarf, and a fairy in a combat
situation. We would expect them to act differently,
and conversely, if we are told of even a few actions
taken by a character in a story, we naturally start
to draw inferences about that character’s person-
ality. Communicating narrative is a fundamental
task of natural language, and understanding nar-
rative requires modelling the interaction between
events and characters.2

In this paper, we propose that collaboratively-
told stories that arise in certain types of games pro-
vide a natural test bed for the problem of inferring
interactions between characters and actions in nar-
ratives. We present a corpus of role-playing game
(RPG) transcripts where characters and action se-
quences are described with complex natural lan-
guage texts. Table 1 shows an example character

1http://groups.inf.ed.ac.uk/cup/ddd/
2In this paper, the word character will always be used in

the sense of “character in a story” rather than the sense of
“character in a token”.

Character description
Name: Ana Blackclaw; Age: 27; Gender: Female
Appearance: Standing at a mighty 6’5, she is a giant
among her fellow humans. Her face is light, though
paler than the average man or woman’s, and is marked
by scars. ... Her body is muscular, as it would have
to be to carry both her armor and the hammer. Her
light grey eyes nearly always keep a bored expression.
Her canines seem a tad larger than the normal person’s.
Preferred Weapon: Hammer. Preferred Armor: Heavy.
Gift: Binoculars. Darksign: No.
Action description
She stopped dead in her tracks as the hissing began. A
grumble escaped her as it did so, and she looked over to
make sure the other woman was doing fine. Seeing that
all was not entirely well, she allowed herself to slide
down, her hand gripping the slope side once more to
slow herself. Once that was accomplished, she reached
out and grabbed the back of the girl’s neck, pulling her
back to steady herself. The giant remained silent as she
did so, and then glanced over to the nearby skeletons.
They would be upon them soon. Her grip tightened on
the hammer as she glanced from side to side. It would
not be a fun fight.

Table 1: Example descriptions from our RPG corpus

description, and an action text for the same char-
acter. This example shows how the ties between
characters and their actions are subtly present in
the text descriptions, and learning the latent ties
between them is a difficult task. Based on our cor-
pus, and using neural language models, this work
demonstrates an initial success on this problem.

The ability to understand and generate narra-
tives is a useful skill for natural language systems,
for example, to plan a coherent answer to a ques-
tion, or to generate a summary of a document.
Prior work on narrative processing has focused on
inducing disjoint sets of character and event types
(as topic models), capturing the relationship be-
tween characters in the same story, or extracting
character-action pairs as low level noun-verb tu-
ples. However, these models do not aim to match
or infer characters and actions from each other.

We make two contributions towards closing this
gap. We introduce a corpus of thousands of RPG
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transcripts and demonstrate predictive cues be-
tween characters and actions by building neural
language models with facility for adding side in-
formation. We show that a language model over
action text obtains lower perplexity when we also
make available a representation of the character
who produced each token. Likewise, a language
model for character descriptions benefits from in-
formation about the actions the character made.
Our findings open up new possibilities for making
sophisticated inference over narrative texts.

2 Related work

In work on narratives, both characters and actions
have received significant attention, albeit sepa-
rately. There is work on inducing types of char-
acters (Bamman et al., 2013, 2014) or relation-
ships between characters (Chang et al., 2009; El-
son et al., 2010; Chaturvedi et al., 2016; Iyyer
et al., 2016). Often these approaches are based
on probabilistic topic models or more recently dis-
tributed word representations computed by neural
networks. Others focus on learning regular and
repetitive event sequences in stories (Chambers
and Jurafsky, 2009; McIntyre and Lapata, 2009),
together with some information about the agent
of the actions. These extractions are fairly low-
level, in the form of noun-verb pairs. There are
also models for clustering stories either based on
their characters (Frermann and Szarvas, 2017), or
sentiment and topic (Elsner, 2012, 2015).

The above approaches mine types of actions
or characters. This work focuses on infering the
latent ties between actions and characters, and
whether one aspect can help predict the other.
Flekova and Gurevych (2015) present recent work
related to this latter idea. They classify characters
based on their speech and actions into an intro-
vert or extrovert class. In contrast, we focus on
attributes of characters and actions beyond such
coarse traits, and when these attributes are ex-
pressed as complex descriptions.

3 A corpus of RPG transcripts

Traditionally, RPGs are played orally with players
seated around a table. But there are also online
forums where users play RPGs by posting text de-
scriptions instead.

We collected a corpus of RPG threads from one
such website roleplayerguild.com. Here
each game play is recorded in two threads. In one

of these, each player posts a detailed text descrip-
tion of the role (character) she is going to play in
the game, which we call a character description.
This description includes the character’s physi-
cal appearance, personality, family background, as
well as special and supernatural powers, and pos-
sessions. A second thread consists of the actual
game play where each player contributes a post
when his turn comes. Each post describes how the
character that is assumed by that specific player
responds to the game situation. Thus the story de-
velops collaboratively. We call each post in the
story thread an action description. An example
from our corpus of a character description and an
action description is shown in Table 1.

A noteworthy aspect of these RPGs is that char-
acter attributes are determined by writing the de-
scriptions before the game starts. The story thread
itself then focuses predominantly on the actions
and does not reiterate character attributes. More-
over, we know unambiguously which character is
associated with each action post. Such mapped
pairs of clean character descriptions and associ-
ated actions would be difficult to obtain from nov-
els or other stories without sophisticated analysis.

Our corpus contains 1,544 RPGs spanning a va-
riety of themes—fantasy, apocalyptic, romance,
anime, military, horror, and adventure. There are
a total of 56,576 posts, comprising of 25.3M to-
kens. The maximum number of posts in a story
is 753, minimum 2, and the average is 26. Note
that many stories are in progress and some are long
running. There are 9,771 unique characters in the
corpus, and their descriptions amount to 8.5M to-
kens. There is a minimum of 1, average 6, and
maximum 24 characters in a single story.

Even though each character or action descrip-
tion focuses on a single character, it nevertheless
contains descriptions of background settings of the
scene, and interactions of other characters (eg. de-
scriptions of the parents of a character). Hence
we preprocess the texts to only retain parts most
related to the character in focus. To this end, in
character descriptions, we only keep those sen-
tences which mention the character’s name or the
personal pronouns ‘he’ or ‘she’. The use of pro-
nouns reflects an intuition that since the descrip-
tion is of one key character, the pronoun is most
likely to refer to this salient entity. We also take
sentences which mention personality describing
words such as ‘personality’, ‘skill’, ‘specialize’,
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‘ability’, ‘profile’, ‘talent’, etc., even when they
do not contain the name. For action descriptions,
we only keep sentences which start with the char-
acter’s name. We do not use pronouns since action
text may refer to other salient characters as well.

Finally, we replace the main character (contrib-
utor) of a post with an “ENT” (for entity) token.
Other proper names in a post are replaced with a
“NAME” token and numbers with a “NUM” to-
ken. We drop all punctuation and any text with
less than 5 tokens. After these preprocessing steps,
we have 1,439 stories containing 1.48M tokens for
action descriptions and 2.95M for characters.

4 Learning character-action interactions

We examine the feasibility of inferring character-
action interactions from text using neural language
models (LM) with side information.

4.1 ACTION and CHAR language models
The story line, that is, the full text of a story is the
token sequence X = x1...xK created by concate-
nating the tokens across all the action descriptions
of the story. The posts are taken in time order with-
out any mark for post boundaries. Let C be the set
of all characters in a story. For each character j,
we denote the character description as the token
sequence Cj = cj1 . . . cjm.

We build separate language models for action
sequences and for character descriptions. The ac-
tion sequence model is over the story lines (the se-
quence of all action descriptions in a story), i.e. X
as defined above. The character description model
is over individual character descriptions i.e., Cj .

First we describe the language model P (X) for
the story line. We hypothesize in this work that a
better model of X can be built by taking into ac-
count the character in focus for each individual ac-
tion description. First, a baseline recurrent neural
network (RNN) language model, which we denote
ACTION-LM, would be

hi = LSTM (hi−1,xi−1)

P (xi|x1 . . . xi−1) = softmax (Whvhi + bv)

Here xi−1 is the embedding of the input token
xi−1, and hi−1 is the hidden state which summa-
rizes the token sequence x1 . . . xi−2. LSTM com-
putes the next hidden state using an LSTM cell
(Hochreiter and Schmidhuber, 1997). The out-
put layer produces a probability distribution over
the LM vocabulary using weight matrix Whv ∈

R|V |∗|h| where |h| is the hidden size and |V | is the
vocabulary size; bv is the bias vector.

To take the character descriptions into account
when generating actions, we define a second
model ACTION-LMS which estimates

P (X|C) =
K∏

i=1

p(xi|zi, x1...xi−1, z1...zi−1),

where zl is a variable indicating which char-
acter produced the token xl. For this model, we
essentially augment the RNNs with the character
descriptions as side information. For each token
xl, the side information is the character descrip-
tion indicated by zl, i.e, Czl . We follow the ap-
proach by Mikolov and Zweig (2012), and Hoang
et al. (2016), where a feature embedding vector e
representing side information is input to both the
RNN’s hidden and output layers, or to one of them.
During development, we found that concatenating
the feature embedding with the token embedding
at the input layer, and with the hidden state at out-
put layer gave the best performance. More for-
mally, ACTION-LMS computes:

hi = LSTM

(
hi−1,

[
xi−1
ei

])

P (xi|x1 . . .xi−1) = softmax

(
Wrv

[
hi

ei

]
+ bv

)

where ei is a representation of the character which
produced the token xi. The hidden state hi−1 now
summarizes both the action tokens up to i− 2 and
the character information up to i − 1. The output
layer weight matrix is Wrv ∈ R|V |∗(|h|+|e|) where
|h| is the size of the RNN hidden unit, and |e| the
feature embedding size.

In our work, the feature embedding itself comes
from a feedforward neural network trained jointly
within the LM. This feature network takes as in-
put the average value of pretrained embeddings3

for the tokens in the character description (we re-
move stopwords4). This initial vector is passed
through hidden layers to yield the feature embed-
ding e (reminiscent of deep averaging networks by
Iyyer et al. (2015)).

The language models for character descriptions
are similar in structure. First, we call the un-
conditioned model P (Ci) for a character descrip-
tion Ci as CHAR-LM; this is again an LSTM lan-
guage model. Second, we implement CHAR-LMS

3300 dimension word2vec (Mikolov et al., 2013) embed-
dings trained on the 1 billion word Google News Corpus.

4We remove stopwords for side information only
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which estimates P (Ci|XCi), where XCi is the
subsequence of X only containing the tokens pro-
duced by Ci. We obtain this conditional proba-
bility based on the same architecture as ACTION-
LMS. Here the input to the feature neural network
is the average pretrained embeddings of the tokens
(without stopwords) in XCi .

4.2 Experiments

We randomly divide our corpus into 100 stories for
testing, 20 for development, and the rest, 1319 for
training. We compare the two ACTION language
models, based on a vocabulary size of 20,000, and
the CHAR models have a vocabulary of 10,000.

Some posts are long even after our filtering
steps, and create a winding story line when con-
catenated. So we also explore whether limits on
description lengths is useful. In ACTION models,
a limit of g means that only the first g words of
each post are concatenated to form X . For CHAR

models, only the first g words of the description
Ci is used as the sequence for the LM. The same
limit g is given to both the models with and with-
out side information. When using side informa-
tion, we can restrict the conditioning text as well,
to a maximum of h words. We tune these limit
parameters, as well as the number of hidden lay-
ers, hidden unit sizes and dropout probability on a
development set.

For the ACTION models, we set g to 100 words.
ACTION-LM uses 2 layers with 256 hidden units
each. ACTION-LMS has 1 layer with 256 hid-
den units for the feature network with h set to 25
words, and 1 layer with 50 units for the RNN part.
For the CHAR models, g = 200 words. CHAR-LM
has one hidden layer with 100 units. For CHAR-
LMS, the best network was the same as ACTION-
LMS but with h = 100 (the first 100 words of
all the action posts by that character are com-
bined as the side information). We apply a dropout
probability of 0.65, clip gradients at 5.0, and use
the Adam algorithm (Kingma and Ba, 2015) for
optimization. All our models can trained in an
hour, ACTION-LM with 14 epochs, CHAR-LM
62, ACTION-LMS 60 and CHAR-LMS 91 epochs.
We implemented the models in TensorFlow5.

4.3 Results

First, we provide examples of the patterns cap-
tured by ACTION-LMS and CHAR-LMS by sam-

5https://www.tensorflow.org

Action-LMS Model
Prime text: 〈bos〉 ENT called . . .

Char. context Generated continuation
small girl . . . her name 〈eos〉
cheerful
bulky male . . . out to the group 〈eos〉
hunter bow . . . over and walked over to the
forest large king had been making sure
fear afraid . . . her her brother 〈eos〉
angry irritated . . . back at name with her thick

road with disappointment 〈eos〉
brutal violent . . . out of ENT hard to help ENT

help ENT help ENT help 〈eos〉
school student . . . out in the way of the
romantic conversation 〈eos〉

Char-LMS Model
Prime text: 〈bos〉 ENT is . . .

Action context Generated continuation
appeared . . . a very young man who has a
disappeared flew few scars on his body 〈eos〉
walked looked . . . a very friendly person 〈eos〉
stayed
waited . . . a little girl who is a little girl

who is a little
pause stare . . . a very very young woman 〈eos〉
strike slap . . . a bad boy 〈eos〉
follow creep . . . a slim and slim but slim

physique 〈eos〉
Table 2: Samples from our language models

Model Train Dev Test
ACTION-LM 82.56 106.83 105.06
ACTION-LMS 57.38 94.95 96.91
CHAR-LM 69.45 118.78 106.12
CHAR-LMS 61.84 110.13 100.86

Table 3: Perplexities of our models

pling from the models (Table 2). For side informa-
tion, we use simple words (taken from the descrip-
tions in our test corpus) for closer examination.

For ACTION-LMS, we seed the story line with
the priming text “〈bos〉 ENT called”, where ENT
is the token in our vocabulary referring to the main
character of a post. 〈bos〉 is a beginning of sen-
tence marker. Different inputs for the condition-
ing character description are shown under “Char.
context”. We then sample from the LM follow-
ing a greedy approach taking the most likely to-
ken at each step until either the end token 〈eos〉 or
a maximum of 12 tokens is reached. The sample
is shown under “generated continuation”. Simi-
larly, we sample from CHAR-LMS where the se-
quence is first primed with “ENT is a”. We find
that both models capture interesting ties between
character attributes and actions. However, there is
much scope for improved models of generation.

In this work, we have focused on the possibility
of capturing the interactions. For that, we com-
pare the impact of side information using perplex-
ity on held-out data (Table 3). For both charac-
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ter and action LMs, adding side information leads
to a significant decrease in perplexity showing
that the interdependence between the two aspects
can be learned computationally. Again, there is
a lot of scope for improving the language mod-
els given that the development and test perplexities
are much higher than those during training.

5 Conclusions

We have proposed and demonstrated the feasi-
bility of capturing interactions between charac-
ters and their actions in stories. While our neu-
ral models show that the data can be better mod-
eled by combining both aspects, one might eventu-
ally want to infer a missing modality by sampling
or generation from the model. We plan to work
on these improvements for future work, and also
explore evaluation methods which go beyond lan-
guage model perplexities, and capture model as-
pects closer to the task and domain.
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Abstract

Reinforcement learning (RL) is a promising
approach to solve dialogue policy optimisa-
tion. Traditional RL algorithms, however, fail
to scale to large domains due to the curse
of dimensionality. We propose a novel Dia-
logue Management architecture, based on Feu-
dal RL, which decomposes the decision into
two steps; a first step where a master policy
selects a subset of primitive actions, and a sec-
ond step where a primitive action is chosen
from the selected subset. The structural in-
formation included in the domain ontology is
used to abstract the dialogue state space, tak-
ing the decisions at each step using different
parts of the abstracted state. This, combined
with an information sharing mechanism be-
tween slots, increases the scalability to large
domains. We show that an implementation
of this approach, based on Deep-Q Networks,
significantly outperforms previous state of the
art in several dialogue domains and environ-
ments, without the need of any additional re-
ward signal.

1 Introduction

Task-oriented Spoken Dialogue Systems (SDS),
in the form of personal assistants, have recently
gained much attention in both academia and in-
dustry. One of the most important modules of a
SDS is the Dialogue Manager (DM) (or policy),
the module in charge of deciding the next action in
each dialogue turn. Reinforcement Learning (RL)
(Sutton and Barto, 1999) has been studied for sev-
eral years as a promising approach to model dia-
logue management (Levin et al., 1998; Henderson
et al., 2008; Pietquin et al., 2011; Young et al.,
2013; Casanueva et al., 2015; Su et al., 2016).
However, as the dialogue state space increases, the
number of possible trajectories needed to be ex-

∗Currently at PolyAI, inigo@poly-ai.com

plored grows exponentially, making traditional RL
methods not scalable to large domains.

Hierarchical RL (HRL), in the form of tempo-
ral abstraction, has been proposed in order to miti-
gate this problem (Cuayáhuitl et al., 2010, 2016;
Budzianowski et al., 2017; Peng et al., 2017).
However, proposed HRL methods require that the
task is defined in a hierarchical structure, which is
usually handcrafted. In addition, they usually re-
quire additional rewards for each subtask. Space
abstraction, instead, has been successfully applied
to dialogue tasks such as Dialogue State Track-
ing (DST) (Henderson et al., 2014b), and pol-
icy transfer between domains (Gašić et al., 2013,
2015; Wang et al., 2015). For DST, a set of bi-
nary classifiers can be defined for each slot, with
shared parameters, learning a general way to track
slots. The policy transfer method presented in
(Wang et al., 2015), named Domain Independent
Parametrisation (DIP), transforms the belief state
into a slot-dependent fixed size representation us-
ing a handcrafted feature function. This idea could
also be applied to large domains, since it can be
used to learn a general way to act in any slot.

In slot-filling dialogues, a HRL method that re-
lies on space abstraction, such as Feudal RL (FRL)
(Dayan and Hinton, 1993), should allow RL scale
to domains with a large number of slots. FRL di-
vides a task spatially rather than temporally, de-
composing the decisions in several steps and using
different abstraction levels in each sub-decision.
This framework is especially useful in RL tasks
with large discrete action spaces, making it very
attractive for large domain dialogue management.

In this paper, we introduce a Feudal Dialogue
Policy which decomposes the decision in each turn
into two steps. In a first step, the policy decides if
it takes a slot independent or slot dependent ac-
tion. Then, the state of each slot sub-policy is ab-
stracted to account for features related to that slot,
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and a primitive action is chosen from the previ-
ously selected subset. Our model does not require
any modification of the reward function and the
hierarchical architecture is fully specified by the
structured database representation of the system
(i.e. the ontology), requiring no additional design.

2 Background

Dialogue management can be cast as a continu-
ous MDP (Young et al., 2013) composed of a con-
tinuous multivariate belief state space B, a finite
set of actions A and a reward function R(bt, at).
At a given time t, the agent observes the belief
state bt ∈ B, executes an action at ∈ A and re-
ceives a reward rt ∈ R drawn from R(bt, at). The
action taken, a, is decided by the policy, defined
as the function π(b) = a. For any policy π and
b ∈ B, the Q-value function can be defined as the
expected (discounted) returnR, starting from state
b, taking action a, and then following policy π un-
til the end of the dialogue at time step T :

Qπ(b, a) = E{R|bt = b, at = a} (1)

where R =
∑T−1

τ=t γ
(τ−t)rτ and γ is a discount

factor, with 0 ≤ γ ≤ 1.
The objective of RL is to find an optimal pol-

icy π∗, i.e. a policy that maximizes the expected
return in each belief state. In Value-based algo-
rithms, the optimal policy can be found by greed-
ily taking the action which maximises Qπ(b, a).

In slot-filling SDSs the belief state space B is
defined by the ontology, a structured representa-
tion of a database of entities that the user can re-
trieve by talking to the system. Each entity has
a set of properties, refereed to as slots S, where
each of the slots can take a value from the set Vs.
The belief state b is then defined as the concate-
nation of the probability distribution of each slot,
plus a set of general features (e.g. the commu-
nication function used by the user, the database
search method...) (Henderson et al., 2014a). The
setA is defined as a set of summary actions, where
the actions can be either slot dependent (e.g. re-
quest(food), confirm(area)...) or slot independent1

(e.g. hello(), inform()...).
The belief space B is defined by the ontol-

ogy, therefore belief states of different domains
will have different shapes. In order to transfer

1We include the summary actions dependent on all the
slots, such as inform(), in this group.
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Figure 1: Feudal dialogue architecture used in this
work. The sub-policies surrounded by the dashed line
have shared parameters. The simple lines show the data
flow and the double lines the sub-policy decisions.

knowledge between domains, Domain Indepen-
dent Parametrization (DIP) (Wang et al., 2015)
proposes to abstract the belief state b into a fixed
size representation. As each action is either slot in-
dependent or dependent on a slot s, a feature func-
tion φdip(b, s) can be defined, where s ∈ S∪si and
si stands for slot independent actions. Therefore,
in order to compute the policy, Q(b, a) can be ap-
proximated as Q(φdip(b, s), a), where s is the slot
associated to action a.

Wang et al. (2015) presents a handcrafted fea-
ture function φdip(b, s). It includes the slot inde-
pendent features of the belief state, a summarised
representation of the joint belief state, and a sum-
marised representation of the belief state of the
slot s. Section 4 gives a more detailed description
of the φdip(b, s) function used in this work.

3 Feudal dialogue management

FRL decomposes the policy decision π(b) = a in
each turn into several sub-decisions, using differ-
ent abstracted parts of the belief state in each sub-
decision. The objective of a task oriented SDS
is to fulfill the users goal, but as the goal is not
observable for the SDS, the SDS needs to gather
enough information to correctly fulfill it. There-
fore, in each turn, the DM can decompose its de-
cision in two steps: first, decide between taking
an action in order to gather information about the
user goal (information gathering actions) or tak-
ing an action to fulfill the user goal or a part of it
(information providing actions) and second, select
a (primitive) action to execute from the previously
selected subset. In a slot-filling dialogue, the set of
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information gathering actions can be defined as the
set of slot dependent actions, while the set of in-
formation providing actions can be defined as the
remaining actions.

The architecture of the feudal policy proposed
by this work is represented schematically in Figure
1. The (primitive) actions are divided between two
subsets; slot independent actions Ai (e.g. hello(),
inform()); and slot dependent actions Ad (e.g. re-
quest(), confirm())2. In addition, a set of master
actionsAm = (ami , a

m
d ) is defined, where ami cor-

responds to taking an action from Ai and amd to
taking an action fromAd. Then, a feature function
φs(b) = bs is defined for each slot s ∈ S , as well
as a slot independent feature function φi(b) = bi
and a master feature function φm(b) = bm. These
feature functions can be handcrafted (e.g. the DIP
feature function introduced in section 2) or any
function approximator can be used (e.g. neural
networks trained jointly with the policy).

Finally, a master policy πm(bm) = am, a slot
independent policy πi(bi) = ai and a set of slot
specific policies πs(bs) = ad, one for each s ∈ S ,
are defined, where am ∈ Am, ai ∈ Ai and
ad ∈ Ad. Contrary to other feudal policies, the
slot specific sub-policies have shared parameters,
in order to generalise between slots (following the
idea used by Henderson et al. (2014b) for DST).
The differences between the slots (size, value dis-
tribution...) are accounted by the feature function
φs(b). Therefore πm(bm) is defined as:

πm(bm) = argmax
am∈Am

Qm(bm, a
m) (2)

If πm(bm) = ami , the sub-policy run is πi:

πi(bi) = argmax
ai∈Ai

Qi(bi, a
i) (3)

Else, if πm(bm) = amd , πd is selected. This policy
runs each slot specific policy, πs, for all s ∈ S,
choosing the action-slot pair that maximises the Q
function over all the slot sub-policies.

πd(bs|∀s ∈ S) = argmax
ad∈Ad,s∈S

Qs(bs, a
d) (4)

Then, the summary action a is constructed by join-
ing ad and s (e.g. if ad=request() and s=food,
then the summary action will be request(food)). A
pseudo-code of the Feudal Dialogue Policy algo-
rithm is given in Appendix A.

2Note that the actions of this set are composed just by the
communication function of the slot dependent actions, thus
reducing the number of actions compared to A.

Domain Code # constraint slots # requests # values
Cambridge Restaurants CR 3 9 268
San Francisco Restaurants SFR 6 11 636
Laptops LAP 11 21 257

Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6
SER 0% 0% 15% 15% 15% 30%
Masks on off on off on on
User Std. Std. Std. Std. Unf. Std.

Table 1: Sumarised description of the domains and
environments used in the experiments. Refer to
(Casanueva et al., 2017) for a detailed description.

4 Experimental setup

The models used in the experiments have been im-
plemented using the PyDial toolkit (Ultes et al.,
2017)3 and evaluated on the PyDial benchmark-
ing environment (Casanueva et al., 2017). This
environment presents a set of tasks which span
different size domains, different Semantic Error
Rates (SER), and different configurations of ac-
tion masks and user model parameters (Standard
(Std.) or Unfriendly (Unf.)). Table 1 shows a sum-
marised description of the tasks. The models de-
veloped in this paper are compared to the state-of-
the-art RL algorithms and to the handcrafted pol-
icy presented in the benchmarks.

4.1 DIP-DQN baseline

An implementation of DIP based on Deep-Q
Networks (DQN) (Mnih et al., 2013) is imple-
mented as an additional baseline (Papangelis and
Stylianou, 2017). This policy, named DIP-DQN,
uses the same hyperparameters as the DQN im-
plementation released in the PyDial benchmarks.
A DIP feature function based in the description in
(Wang et al., 2015) is used, φdip(b, s) = ψ0(b) ⊕
ψj(b)⊕ ψd(b, s), where:
• ψ0(b) accounts for general features of the belief
state, such as the database search method.
• ψj(b) accounts for features of the joint belief
state, such as the entropy of the joint belief.
• ψd(b, s) accounts for features of the marginal
distribution of slot s, such as the entropy of s.
Appendix B shows a detailed description of the
DIP features used in this work.

4.2 Feudal DQN policy

A Feudal policy based on the architecture de-
scribed in sec. 3 is implemented, named FDQN.
Each sub-policy is constructed by a DQN policy

3The implementation of the models can be obtained in
www.pydial.org
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Feudal-DQN DIP-DQN Bnch. Hdc.
Task Suc. Rew. Suc. Rew. Rew. Rew.

E
nv

.1
CR 89.3% 11.7 48.8% -2.8 13.5 14.0
SFR 71.1% 7.1 25.8% -7.4 11.7 12.4
LAP 65.5% 5.7 26.6% -8.8 10.5 11.7

E
nv

.2

CR 97.8% 13.1 85.5% 9.6 12.2 14.0
SFR 95.4% 12.4 85.7% 8.4 9.6 12.4
LAP 94.1% 12.0 89.5% 9.7 7.3 11.7

E
nv

.3

CR 92.6% 11.7 86.1% 8.9 11.9 11.0
SFR 90.0% 9.7 59.3% 0.2 8.6 9.0
LAP 89.6% 9.4 71.5% 3.1 6.7 8.7

E
nv

.4

CR 91.4% 11.2 82.6% 8.7 10.7 11.0
SFR 90.3% 10.2 86.1% 9.2 7.7 9.0
LAP 88.7% 9.8 74.8% 6.0 5.5 8.7

E
nv

.5

CR 96.3% 11.5 74.4% 2.9 10.5 9.3
SFR 88.9% 7.9 75.5% 3.2 4.5 6.0
LAP 78.8% 5.2 64.4% -0.4 4.1 5.3

E
nv

.6

CR 90.6% 10.4 83.4% 8.1 10.0 9.7
SFR 83.0% 7.1 71.9% 3.9 3.9 6.4
LAP 78.5% 6.0 66.5% 2.7 3.6 5.5

Table 2: Success rate and reward for Feudal-DQN and
DIP-DQN in the 18 benchmarking tasks, compared
with the reward of the best performing algorithm in
each task (Bnch.) and the handcrafted policy (Hdc.)
presented in (Casanueva et al., 2017).

(Su et al., 2017). These policies have the same
hyperparameters as the baseline DQN implemen-
tation, except for the two hidden layer sizes, which
are reduced to 130 and 50 respectively. As feature
functions, subsets of the DIP features are used:

φm(b) = φi(b) = ψ0(b)⊕ ψj(b)
φs(b) = ψ0(b)⊕ ψj(b)⊕ ψd(b, s)∀s ∈ S

The original set of summary actions of the bench-
marking environment, A, has a size of 5+ 3 ∗ |S|,
where |S| is the number of slots. This set is di-
vided in two subsets4: Ai of size 6 and Ad of size
4. Each sub-policy (including πm) is trained with
the same sparse reward signal used in the base-
lines, getting a reward of 20 if the dialogue is suc-
cessful or 0 otherwise, minus the dialogue length.

5 Results

The results in the 18 tasks of the benchmarking
environment after 4000 training dialogues are pre-
sented in Table 2. The same evaluation proce-
dure of the benchmarks is used, presenting the
mean over 10 different random seeds and testing
every seed for 500 dialogues. The FDQN policy
substantially outperforms every other other pol-
icy in all the environments except Env. 1. The

4An additional pass() action is added to each subset,
which is taken whenever the other sub-policy is executed.
This simplifies the training algorithm.

Figure 2: Learning curves for Feudal-DQN and DIP-
DQN in Env. 4, compared to the two best performing
algorithms in (Casanueva et al., 2017) (DQN and GP-
Sarsa). The shaded area depicts the mean ± the stan-
dard deviation over ten random seeds.

performance increase is more considerable in the
two largest domains (SFR and LAP), with gains
up to 5 points in accumulated reward in the most
challenging environments (e.g. Env. 4 LAP),
compared to the best benchmarked RL policies
(Bnch.). In addition, FDQN consistently outper-
forms the handcrafted policy (Hdc.) in environ-
ments 2 to 6, which traditional RL methods could
not achieve. In Env. 1, however, the results for
FDQN and DIP-DQN are rather low, specially for
DIP-DQN. Surprisingly, the results in Env. 2,
which only differs from Env. 1 in the absence of
action masks (thus, in principle, is a more com-
plex environment), outperform every other algo-
rithm. Analysing the dialogues individually, we
could observe that, in this environment, both poli-
cies are prone to “overfit” to an action 5. The per-
formance of FDQN and DIP-DQN in Env. 4 is also
better than in Env. 3, while the difference between
these environments also lies in the masks. This
suggests that an specific action mask design can
be helpful for some algorithms, but can harm the
performance of others. This is especially severe
in the DIP-DQN case, which shows good perfor-
mance in some challenging environments, but it is
more unstable and prone to overfit than FDQN.

However, the main purpose of action masks is
to reduce the number of dialogues needed to train
a policy. Observing the learning curves shown
in Figure 2, the FDQN model can learn a near-
optimal policy in large domains in about 1500 dia-
logues, even if no additional reward is used, mak-
ing the action masks unnecessary.

5The model overestimates the value of an incorrect action,
continuously repeating it until the user runs out of patience.
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6 Conclusions and future work

We have presented a novel dialogue management
architecture, based on Feudal RL, which substan-
tially outperforms the previous state of the art in
several dialogue environments. By defining a set
of slot dependent policies with shared parameters,
the model is able to learn a general way to act in
slots, increasing its scalability to large domains.

Unlike other HRL methods applied to dialogue,
no additional reward signals are needed and the hi-
erarchical structure can be derived from a flat on-
tology, substantially reducing the design effort.

A promising approach would be to substitute
the handcrafted feature functions used in this work
by neural feature extractors trained jointly with
the policy. This would avoid the need to design
the feature functions and could be potentially ex-
tended to other modules of the SDS, making text-
to-action learning tractable. In addition, a sin-
gle model can be potentially used in different do-
mains (Papangelis and Stylianou, 2017), and dif-
ferent feudal architectures could make larger ac-
tion spaces tractable (e.g. adding a third sub-
policy to deal with actions dependent on 2 slots).
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A Feudal Dialogue Policy algorithm

Algorithm 1 Feudal Dialogue Policy
1: for each dialogue turn do
2: observe b
3: bm = φm(b)
4: am = argmax

am∈Am

Qm(bm, a
m)

5: if am == ami then . drop to πi
6: bi = φi(b)
7: a = argmax

ai∈Ai

Qi(bi, a
i)

8: else am == amd then . drop to πd
9: bs = φs(b) ∀s ∈ S

10: slot, act = argmax
s∈S,ad∈Ad

Qs(bs, a
d)

11: a = join(slot, act)
12: end if
13: execute a
14: end for

B DIP features

This section gives a detailed description of the DIP
feature functions φdip(b, s) = ψ0(b) ⊕ ψj(b) ⊕
ψd(b, s) used in this work. The differences with
the features used in (Wang et al., 2015) and (Pa-
pangelis and Stylianou, 2017) are the following:

• No priority or importance features are used.

• No Potential contribution to DB search fea-
tures are used.

• The joint belief features ψj(b) are extended
to account for large-domain aspects.

Feature Feature Feature
function description size

ψ0(b) last user dialogue act (bin) * 7
DB search method (bin) * 6
# of requested slots (bin) 5
offer happened * 1
last action was Inform no venue * 1
normalised # of slots (1/# of slots) 1
normalised avg. slot length (1/avg. # of values) 1

ψj(b) prob. of the top 3 values of bj 3
prob. of *NONE* value of bj 1
entropy of bj 1
diff. between top and 2nd value probs. (bin) 5
# of slots with top value not *NONE* (bin) 5

ψd(b, s) prob. of the top 3 values of s 3
prob. of *NONE* value of s 1
diff. between top and 2nd value probs. (bin) 5
entropy of s 1
# of values of s with prob. > 0 (bin) 5
normalised slot length (1/# of values) 1
slot length (bin) 10
entropy of the distr. of values of s in the DB 1

total 64

Table 3: List of features composing the DIP features.
the tag (bin) denotes that a binary encoding is used for
this feature. Some of the joint features ψj(b) are ex-
tracted from the joint belief bj , computed as the Carte-
sian product of the beliefs of the individual slots. *
denotes that these features exist in the original belief
state b.
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Abstract

We highlight several issues in the evaluation
of historical text normalization systems that
make it hard to tell how well these systems
would actually work in practice—i.e., for new
datasets or languages; in comparison to more
naïve systems; or as a preprocessing step for
downstream NLP tools. We illustrate these is-
sues and exemplify our proposed evaluation
practices by comparing two neural models
against a naïve baseline system. We show that
the neural models generalize well to unseen
words in tests on five languages; nevertheless,
they provide no clear benefit over the naïve
baseline for downstream POS tagging of an
English historical collection. We conclude that
future work should include more rigorous eval-
uation, including both intrinsic and extrinsic
measures where possible.

1 Introduction

Historical text normalization systems aim to con-
vert historical wordforms to their modern equiva-
lents, in order to make historical documents more
searchable or to improve the performance of down-
stream NLP tools. In historical texts, a single word
type may be realized with several different ortho-
graphic forms, which may not correspond to the
modern form. For example, the modern English
word said might be realized as sayed, seyd, said,
sayd, etc. Spellings change over time, but also vary
within a single time period and even within a single
author, since orthography only became standard-
ized in many languages fairly recently.

Over the years, researchers have proposed nor-
malization methods based on rules and/or edit dis-
tances (Baron and Rayson, 2008; Bollmann, 2012;
Hauser and Schulz, 2007; Bollmann et al., 2011;
Pettersson et al., 2013a; Mitankin et al., 2014; Pet-
tersson et al., 2014), statistical machine transla-
tion (Pettersson et al., 2013b; Scherrer and Erjavec,

2013), and most recently neural network models
(Bollmann and Søgaard, 2016; Bollmann et al.,
2017; Korchagina, 2017). However, most of these
systems have been developed and tested on a single
language (or even a single corpus), and many have
not been compared to the naïve but strong baseline
that only changes words seen in the training data,
normalizing each to its most frequent modern form
observed during training.1 These issues make it
hard to tell which methods generalize across lan-
guages and corpora, and how they compare to each
other. Moreover, researchers have rarely exam-
ined whether their systems actually improve perfor-
mance on downstream tasks.

This paper brings together best practices for
evaluating historical text normalization systems,
highlighting in particular the need to report results
on unseen tokens and to consider the naïve base-
line. We focus our evaluation on two recent neu-
ral models: one that has been previously tested
only on a German collection that is not widely
available (Bollmann et al., 2017), and one that is
adapted from work on morphological re-inflection,
but has not been used for historical text normal-
ization (Aharoni et al., 2017). Both are encoder-
decoder models; the former with soft attention, and
the latter with hard monotonic attention.

We present results on five languages, for both
seen and unseen words and for various amounts of
training data. The soft attention model performs
surprisingly poorly on seen words, so that its over-
all performance is worse than the naïve baseline
and several earlier models (Pettersson et al., 2014).
However, on unseen words (which we argue are
what matters), both neural models do well.

Unfortunately, these positive results did not

1Some authors have focussed on unsupervised normaliza-
tion, where the naïve baseline is to leave words unchanged
(Mitankin et al., 2014; Hauser and Schulz, 2007). We consider
only supervised systems in the remainder of this paper.
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translate into improvements when we tested the
English-trained models on a downstream POS tag-
ging task using a different historical collection
spanning a similar time range. Normalizing the text
gave better tag accuracy than not normalizing, but
neither neural model convincingly outperformed
the naïve normalizer. Although these results are
disappointing, the clear evaluation standards laid
out here should benefit future work in this area.

2 Task setting and issues of evaluation

We follow previous work in training our systems
on pairs (h,m) of historical tokens and their gold
standard modern forms.2 Note that at test time,
most of the h tokens will have been seen before in
the training data (due to Zipf’s law), and for these
tokens it is very difficult to beat a baseline that nor-
malizes each h to the most commonm seen for it in
training.3 Thus, in practice, normalization systems
should typically only be applied to unseen tokens.
It is therefore critical to report both dataset statis-
tics and experimental results for unseen tokens.

Unfortunately, some recent papers have only re-
ported accuracy on all tokens, and only in compari-
son to other (non-baseline) systems (Bollmann and
Søgaard, 2016; Bollmann et al., 2017; Korchagina,
2017). These figures can be misleading if systems
underperform the naïve baseline on seen tokens
(which we show does happen in practice). To see
why, suppose 80% of test tokens were seen in train-
ing, and the baseline gets 90% of them right, while
system A gets 80% and system B gets only 70%.
Meanwhile the baseline gets only 50% of unseen
tokens right, whereas systems A and B get 70% and
90%, respectively. A’s accuracy is higher overall
than B’s (78% vs 74%), but both systems under-
perform the baseline (82%). More importantly, the
best system (90% accuracy overall) is achieved by
applying the baseline to seen tokens, and the sys-
tem that generalizes best (B) to unseen tokens; it is
irrelevant that A scores higher overall than B.

Stemming from the reasoning above, we argue
that a full evaluation of any spelling normalization
system requires more complete dataset statistics
and experimental results. In describing the training
and test sets, researchers should not only report
the number of types and tokens, but also the per-

2It would be possible to train on full texts rather than
isolated tokens, which could improve results for ambiguous
forms. However, previous models have not addressed this
setting, nor do we, leaving this for future work.

3Our version breaks ties by choosing the first m observed.

centage of unseen tokens in the test (or dev) set
and the percentage of training items (h,m) where
h = m. This last statistic measures the degree of
spelling variation, which varies considerably be-
tween corpora.

As for reporting results, we have argued that
accuracy should be reported separately for seen
vs unseen tokens, and overall results compared to
the naïve memorization baseline. Since historical
spelling normalization is typically a low-resource
task, systems should also ideally be tested with
varying amounts of training data to assess how
much annotation might be required for a new cor-
pus (Pettersson et al., 2014; Bollmann and Søgaard,
2016; Korchagina, 2017). Finally, since these sys-
tems may be deployed on corpora other than those
they were trained on, and used as preprocessing for
other tasks, we advocate reporting performance
on a downstream task and/or different corpus.
To our knowledge the only previous supervised
learning system to do so is Pettersson et al. (2013b).

3 Models

We focus on two neural encoder-decoder models
for spelling normalization, comparing them against
the memorization baseline and to previous results
from Pettersson et al. (2014). The first model (Boll-
mann et al., 2017)4 uses a fairly standard architec-
ture with a bi-directional LSTM encoder and an
LSTM decoder with soft attention (Xu et al., 2015),
and is trained using cross-entropy loss.

The second model is a new approach to spelling
normalization, which adapts the morphological re-
inflection system of Aharoni et al. (2017).5 The
reinflection model generates the characters in an
inflected wordform (y1:n), given the characters of
its lemma (x1:m) and a set of corresponding mor-
phological features (f). Rather than using a soft
attention mechanism that computes a weight vector
over the entire sequence, this model exploits the
generally monotonic character alignment between
x1:m and y1:n and attends to only a single encoded
input character at a time during decoding.

Architecturally, the model uses a standard bi-
directional encoder. The decoder steps through the
characters of the input and considers jointly the out-
put of the previous step, the morphological features,
and the currently attended encoded input. It outputs

4https://bitbucket.org/mbollmann/acl2017
5https://github.com/roeeaharoni/morphological-

reinflection
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Tokens h typ m typ %nc %uns

Eng 148/16/17k 19.4k 10.6k 73.9 8.6
Ger 39/5/5k 9.0k 8.4k 84.8 14.8
Hun 137/17/17k 45.5k 25.8k 15.4 24.1
Ice 52/6/6k 9.7k 8.5k 48.0 11.3
Swe 28/2/34k 8.3k 6.5k 65.9 22.4

Table 1: Dataset statistics: the number of tokens in
train/dev/test sets; historical and modern word types
and % of “no-change” tokens (h = m) in the train-
ing sets; and the % of dev set tokens that are unseen in
training.

either a character or an advance symbol (to advance
the focus of attention for the next time step). It is
trained on an oracle sequence of write/advance ac-
tions s1:q which are generated from an automatic
alignment of the input and output sequences. The
model maximizes p(s1:q|x1:m, f). For details, see
Aharoni et al. (2017).

We adapt the model to our purpose by remov-
ing the morphological features f , maximising only
p(s1:q|x1:m). The monotonic assumption is well-
suited to our task, since fewer than 0.4% of edit
operations require non-monotonic alignments (i.e.
character transpositions) in any of our datasets.

Other than removing the need for morpholog-
ical features from the hard attention model, and
increasing the number of training epochs to 50 for
both models, we did no further hyperparameter tun-
ing, since our goal was to assess the “off-the-shelf"
performance of these systems.

4 Experiments

We use the same datasets as Pettersson et al. (2014),
with data from five languages over a range of histor-
ical periods.6 We use the same train/dev/test splits
as Pettersson; dataset statistics are shown in Table
1. Because we do no hyperparameter tuning, we
do not use the development sets, and all results are
reported on the test sets.

Each system was tested as recommended above,
with accuracy reported separately on seen and un-
seen items, and for different training data sizes. To
evaluate the downstream effects of normalization,
we applied the models to a collection of unseen
documents and then tagged them with the Stan-

6English: Markus (1999); German: Scheible et al. (2011);
Hungarian: Simon (2014); Icelandic: Rögnvaldsson et al.
(2012); Swedish: Fiebranz et al. (2011). For details of their
dates and contents, see Pettersson et al. (2014).

ford POS tagger, which comes pre-trained on mod-
ern English. The documents are from the Parsed
Corpus of Early English Correspondence (PCEEC)
(Taylor et al., 2006), comprised of 84 letter collec-
tions from the 15th-17th centuries. (Our English
normalization training data is from the 14th-17th
centuries.) PCEEC contains roughly 2.2m manu-
ally POS-tagged tokens but no spelling annotation.
Because it uses a large and somewhat idiosyncratic
set of POS tags, we converted these to better match
the Stanford tags before evaluating (though the
match still isn’t perfect; accuracy would be higher
in all cases if the tag sets were identical). Baselines
are provided by tagging the unnormalized text and
the output of the naïve normalization baseline.

Results: normalization accuracy Table 2 gives
test set results for all models, broken down into
seen and unseen items where possible. 7 The split
into seen/unseen highlights the fact that neither
of the neural models does as well on seen items
as the baseline; indeed the soft attention model is
considerably worse in English and Hungarian, the
two largest datasets.8 The result is that this model
actually underperforms the baseline when applied
to all tokens, although a hybrid model (baseline
for seen, soft attention for unseen) would outper-
form the baseline. Nevertheless, the hard attention
model performs best on unseen tokens in all cases,
often by a wide margin, and also yields competitive
overall performance.

We also compared the accuracy of the two neural
models at different training data sizes starting from
1k tokens. On seen tokens, the baseline was best in
all cases except for 1k tokens in Hungarian and Ice-
landic (where the soft attention model was slightly
better) and the largest two data sizes in German
(where the hard attention model was slightly bet-
ter). This supports our claim that learned models
should typically only be applied to unseen tokens.

Accuracy on unseen tokens is shown in Figure
1. Note that the set of unseen items gets smaller

7We obtained our datasets from Pettersson et al. but our
baseline results are slightly different from what they report.
The differences (theirs–ours) are -0.1, 0.2, 0.4, 1.2, 0.6 for
Eng, Ger, Hun, Ice, Swe respectively. This could be due to
differences in tie-breaking methods, or to another unknown
factor. These differences suggest using caution in directly
comparing their non-baseline results to ours.

8When we varied the training data sizes, we found that the
soft attention model actually gets worse on seen tokens in all
languages as the training data increases beyond a relatively
small size. We have no good explanation for this, and it’s
possible that tuning the parameters would help.
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English German Hungarian Icelandic Swedish
A S U A S U A S U A S U A S U

Hybrid 92.9 95.1 76.4 84.6 90.8
GIZA++ un 94.3 96.6 79.9 71.8 92.9
GIZA++ bi 92.4 95.5 80.1 71.5 92.5
Mem. baseline 91.5 96.9 30.5 94.1 96.9 30.5 73.6 96.0 2.9 80.3 86.8 28.3 85.4 98.1 41.4
Soft attention 89.9 93.7 46.9 94.3 98.1 72.4 79.8 89.4 49.6 83.1 85.9 60.1 89.7 97.2 63.8
Hard attention 93.0 96.6 52.4 96.5 99.3 80.5 88.0 95.3 65.0 83.5 86.2 61.4 90.7 97.9 65.7

Table 2: Tokens normalized correctly (%) for each dataset. Upper half: results on (A)ll tokens reported by Petters-
son et al. (2014) for a hybrid model (apply memorization baseline to seen tokens and an edit-distance-based model
to unseen tokens) and two SMT models (which align character unigrams and bigrams, respectively). Lower half:
results from our experiments, including accuracy reported separately on (S)een and (U)nseen tokens.

Figure 1: Proportion of unseen tokens, and normalization accuracy on those tokens, as training data size is varied.

and presumably more difficult as training data size
increases, so the baseline gets worse. In contrast,
the neural models are able to maintain or increase
performance on this set. We expected that the
bias toward monotonic alignments would help the
hard attention model at smaller data sizes, but it
is the soft attention model that seems to do better
there, while the hard attention model does better
in most cases at the larger data sizes. Note that
Bollmann et al. (2017) trained their model on indi-
vidual manuscripts, with no training set containing
more than 13.2k tokens. The fact that this model
struggles with larger data sizes, especially for seen
tokens, suggests that the default hyperparameters
may be tuned to work well with small training sets
at the cost of underfitting the larger datasets.

Results: POS tagging Based on our results
above, we tested the neural models by applying
them only to unseen tokens in the PCEEC, and nor-
malizing seen tokens using the naïve baseline in all
cases. The PCEEC is a heterogeneous collection,
so baseline tagger accuracy on the unnormalized
text ranges from 52.0% to 82.6%, with an average
of 71.0% (σ: 6.8). Figure 2 shows the effects of
normalizing using the different methods.

Although normalizing provides a clear benefit, in
most cases the neural models are no better than nor-
malizing using the baseline method. The exception

Figure 2: Average POS tagging accuracy on the unnor-
malized PCEEC texts (bottom of plot) and using three
different normalization methods, as a function of the
amount of data used to train the normalization systems.

is at 5k and 10k training items, where a two-tailed
t-test shows that the hard attention model is signif-
icantly better than the other methods (p < 0.01).
We also tried preprocessing both the normaliza-
tion and tagging datasets by lowercasing all tokens;
this resulted in small improvements in most cases
(about 1 point) but any remaining differences were
to the benefit of the baseline method.

Our findings differ from those of Pettersson et al.
(2013b), who reported that their SMT-based system
did work better than the baseline normalizer for
POS tagging in Icelandic and verb identification
in Swedish. Our contrasting findings could derive
either from our use of different models or different
datasets; nevertheless, they highlight the fact that
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intrinsic improvements do not always translate into
extrinsic ones.

5 Conclusion

We have highlighted some important issues in the
evaluation of historical text normalization systems:
in particular, the need to report accuracy on un-
seen tokens and to compare performance to a naïve
memorization baseline. Following these recom-
mendations, we evaluated two neural models, one
of which is new to this task. Across five languages,
both models greatly outperformed the baseline on
unseen tokens, with the soft attention model do-
ing a bit better for smaller data sizes, and the hard
attention model doing a bit better for larger ones.
However, these improvements did not translate into
clearly better POS tagging downstream.

Despite these mixed results, we hope that the
evaluation guidelines presented here will help pro-
mote work in this area, in order to eventually pro-
vide better tools for working with historical text
collections.
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Abstract

Multi-task learning with Convolutional Neu-
ral Network (CNN) has shown great success
in many Natural Language Processing (NLP)
tasks. This success can be largely attributed
to the feature sharing by fusing some lay-
ers among tasks. However, most existing
approaches just fully or proportionally share
the features without distinguishing the help-
fulness of them. By that the network would
be confused by the helpless even harmful fea-
tures, generating undesired interference be-
tween tasks. In this paper, we introduce gate
mechanism into multi-task CNN and propose
a new Gated Sharing Unit, which can filter the
feature flows between tasks and greatly reduce
the interference. Experiments on 9 text classi-
fication datasets shows that our approach can
learn selection rules automatically and gain a
great improvement over strong baselines.

1 Introduction

The combination of multi-task learning and neural
networks has shown its advantages in many tasks,
ranging from computer vision (Misra et al., 2016;
Ruder et al., 2017) to natural language processing
(Collobert and Weston, 2008). Multi-task learn-
ing (MTL) has the ability to share the knowledge
among the joint tasks, which implicitly increases
the training materials (Caruana, 1997). The shared
knowledge help the network learn a more univer-
sal representation for the inputs. Inspired by this,
more DNN-based approaches (Liu et al., 2015;
Zhang et al., 2017) utilize multi-task learning to
improve their performance.

The scheme for information sharing is the linch-
pin for designing an elaborate multi-task network.
Most existing work attempts to find a appropriate
proportion to sharing the layers between tasks, de-
spite they entirely reuse the shallow layers (Liu
et al., 2015; Caruana, 1993) or add the layers up

at a ratio (Fang et al., 2017). And recently, the lat-
ter one shows its advantages for controlling rela-
tional intensity among tasks and become prevail-
ing. More models adopt this thought to enhance
the performance (Liu et al., 2015, 2016).

However, under the scheme of proportional ad-
dition (Ruder et al., 2017; Misra et al., 2016), all
the features are shared with the same weight be-
tween every pair of tasks. Helpless or harmful
features may be transported between tasks with
the same importance as helpful ones, namely, the
interference is generated. This would burden the
network for distinguishing the helpful features and
even mislead the predictions.

To solve above problem, we propose a new
CNN-based architecture for multi-task learning,
which can share features in a selective way. Our
model allocates a private subnet to each task and
transport the features between the subnets with a
well-designed module—Gated Sharing Unit. It
has the ability to filter features with gate mecha-
nism (Chung et al., 2014; Srivastava et al., 2015)
and select the helpful ones to benefit the tasks in
hand, which expands the feature spaces and pro-
vides more evidence for right predictions. Our
model is an end-to-end method and the proposed
Gated Sharing Unit is easy to train.

We conduct extensive experiments on 9 bench-
mark datasets for text classification. The results
show that our model greatly improves the perfor-
mance and surpasses the single-task models and
other competitors.

2 Gated Multi-Task Network

To make full use of multiple datasets and, mean-
while, avoid the interference, we introduce a new
structure for multi-task learning in this section.
The new structure is designed in a separative
way—every task owns a private subnet. To share
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Figure 1: Illustration of the architecture for Gated
Multi-Task CNN .

features across the subnets, gate mechanism is de-
signed to selectively allow the features been ex-
changed. Our new model can be trained end-to-
end, needing no extra supervision or handcraft hy-
perparameters. And it can be easily transferred to
other networks such as DNN, RNN, LSTM, etc.
Figure 1 illustrates the design of model structure
and other details.

2.1 Model Architecture

Multi-task model with deeper layers shared can
augment deeper knowledge and greatly increase
the feature space (Zhang et al., 2017). But unde-
sirable interference inevitably and simultaneously
comes with the benefits, especially between less-
related tasks. This would burden the models with
the overhead on distinguishing helpful features.
To overcome this problem, we assign each task
a private subnet as illustrated in Figure 1. Tasks
are relatively separated and can borrow the useful
information from others through a bridge, Gated
Sharing Unit (GSU). The weight of each feature
in this unit is automatically learned from previ-
ous layers, needing no extra supervision, so there
is more selectivity across the tasks. By filtering
out useless features, tasks receive less interference

···

···

···

···

× 㪠√ √

Task j Task k

҄
҄

σ

Fj
l +1

Fj
l Fkl

gjk
l

⊙

W

Figure 2: Illustration of Gated Sharing Unit

from each other.

2.2 Gated Sharing Unit
For reducing interference, it important to filter the
information flows among the tasks. Hence, in
this section, we introduce the mechanism of gate,
which originates from the cells of recurrent neural
networks like Long-Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), Gated Re-
current Unit (GRU) (Chung et al., 2014). Gated
mechanism in existing studies not only shows its
convenience for training (Srivastava et al., 2015),
but also behaves as tool to route the information
(He et al., 2016).

Inspirited by gate mechanism, we propose a
new module GSU to control the information flows
and selectively share the features among tasks.
The details of this module is shown in Figure 2.
For notation, we refer to C as the collection of N
tasks and C = {1, 2, · · · , N}. For a sample from
arbitrary task j, a series of feature maps are gener-
ated in subnets. When task j borrows the features
from task k, a gate g is inserted to select the help-
ful ones, which is calculated from the prior layer
by

gl
jk = σ(Wl

jk · Fl
k + bl

jk) (1)

where l means the level of the layers and σ denotes
the nonlinear activation of sigmoid, which guaran-
tees the values of g in the [0, 1]. Note that the gate
gl

jk is vector. Each component in it controls the
pass of a corresponding feature. Their states move
between pass and interception, or choose a middle
ground if needed.

For task j, the output Fl+1
j of gates is calculated

by fusing the lower layers Fl from all the tasks by

Fl+1
j =

∑

k∈C,k ̸=j

gl
jk ⊙ Fl

k + Fl
j (2)

where ⊙ denotes element-wise multiplication. To
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represent the output for all the tasks C, we can
stack Eq. (2) in matrix form




Fl+1
1

Fl+1
2
...

Fl+1
N


 =




1 gl
12 · · · gl

1N

gl
21 1 · · · gl

2N
...

...
. . .

...
gl

N1 gl
N2 · · · 1







Fl
1

Fl
2

...
Fl

N




(3)
From Eq. (2) and (3), we know that, in the GSU,

the feature map for current task directly passes
into the next layer. But the features from other
tasks are merged into current task after the se-
lection by gates. In this way, the shared features
tend to be pure and helpful for current task, which
avoids the harmful interference existing in conven-
tional models.

For comparison, here we briefly introduce the
methods that share the features by proportional ad-
dition (Misra et al., 2016; Ruder et al., 2017; Fang
et al., 2017). They can be constructed by insert-
ing a scaler weight αl

jk between every two tasks
i, j. αl

jk is updated by back-propagation and re-
flects the degree of association between tasks, but
do not select the features. In this paper, this kind
of models is alluded to as PA-CNN.

2.3 Output Layer and Loss
In the last layer of task j, vector representations
F̂j of input sequences are ultimately fed into cor-
responding softmax layers to fit the number of
classes, which emits the prediction of probability
distribution for the task j

ŷj = softmax(WjF̂j + bj) (4)

where ŷj is predictive result; Wj is the weight of
the full-connected layer; and bj is the bias term.

Given the prediction of all tasks, a global loss
function forces the model to minimize the cross-
entropy of prediction and true distribution for all
the tasks:

Φ =
N∑

j=1

λjL(ŷj , yj) (5)

where λj is the weight for the task j. In this paper,
we set λj to 1/N for all N tasks to make a balance.

3 Experiments

In this section, we demonstrate the empirical per-
formance of our model on 9 related benchmark
tasks for text classification. And the results are
compared with the state-of-the-art models.

Dataset Train Dev. Test V L
Books 1398 200 400 22K 159
Electronics 1398 200 400 11K 111
DVDs 1400 200 400 22K 189
Kitchen 1400 200 400 10K 93
Apparel 1400 200 400 8K 64
Baby 1300 200 400 9K 173
RN 7860 1122 2246 29K 147
SUBJ 8000 1000 1000 21K 23
TREC 4907 545 500 10K 10

Table 1: Statistics of the text classification datasets.
Train, Dev. and Test denote the size of train, devel-
opment and test set respectively; C: Vocabulary size;
L: Average sentence length.

3.1 Datasets

As Table 1 shows, we select 9 related benchmark
datasets for text classification.

The first 6 datasets are all about product re-
views, which are comprised of Amazon product
reviews in 6 domains, including books, DVDs,
cameras, etc. These corpora are classified accord-
ing to the sentiment of positiveness or negative-
ness. They are collected from the raw data pub-
lished by (Blitzer et al., 2007).

The rest 3 datasets are RN, SUBJ and TREC.
RN is a dataset about news topic classification,
which is collected from Reuters Newswire and
published by (Velasco et al., 1994); SUBJ is a sub-
jectivity dataset, whose task is to classify a sen-
tence level text as being subjective or objective
(Pang et al., 2004); TREC dataset has the task of
classifying a question into 6 types (the questions
are about location, person, numeric information,
etc.)(Li and Roth, 2002).

3.2 Hyperparameters and Training

For all the experiments, we employ Word2Vec
(Mikolov et al., 2013) to initialized the word vec-
tors, which is trained on Google News with 100
billion words. The vectors have dimensionality of
300 and are trained by continuous bag-of-words
architecture. All the other parameters are initial-
ized with random values from uniform distribution
in [-0.1, 0.1]. For every subnet we use: rectified
linear units, filter windows of 3,4,5 with 100 fea-
ture maps each, mini-batch size of 50, dropout rate
of 0.5, l2 constrain of 3, learning rate of 10−3. All
the hyper-parameters are chosen via a small grid
search on dev set. For the dataset without a stan-
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Dataset Single-Task (%) Multi-Task (%)
DCNN LSTM BiLSTM MT-DNN MT-RNN MT-CNN PA-CNN GMT-CNN

Books 80.7 79.5 81.0 82.3 83.3 84.0 82.2 84.4
Electronics 78.3 80.5 78.5 81.6 84.6 83.1 84.8 86.9
DVDs 80.6 81.7 80.5 83.8 84.2 84.0 83.7 85.4
Kitchen 79.8 78.0 81.2 80.8 86.0 83.4 85.1 85.9
Apparel 84.2 83.2 86.0 85.1 86.3 83.6 87.2 87.0
Baby 84.1 84.7 84.5 88.0 87.6 87.8 86.5 88.3
RN 83.6 83.5 83.7 83.9 84.2 84.3 83.6 85.0
SUBJ 93.0 93.1 93.2 92.7 94.1 92.9 93.1 94.0
TREC 93.0 92.7 93.0 93.2 93.5 93.7 93.3 94.2
Avg. 84.1 84.1 84.6 85.7(+1.1) 87.0(+2.4) 86.3(+1.7) 86.6(+2.0) 87.9(+3.3)

Table 2: Accuracies of our model against other state-of-the-art methods. Single-Task column shows the results of
plain DCNN(Kalchbrenner et al., 2014), LSTM(Jozefowicz et al., 2015) and BiLSTM. First 3 models in the Multi-
Task column shows the results of multi-task models: MT-DCNN (Liu et al., 2015), MT-RNN (Zhang et al., 2017),
MT-CNN (Collobert and Weston, 2008). The remaining columns of PA-CNN and GMT-CNN shows the perfor-
mance of proportional addition or gate mechanism. Number in round bracket denotes the average improvement
over BiLSTM.

dard dev set we randomly select 10% as dev set.
The whole network is trained through stochastic
gradient decent using Adadelta update rule (Zeiler,
2012).

3.3 Performance of Multi-task CNN

Table 2 shows the comparison of the accuracies.
All the results for multi-task learning models are
achieved by training simultaneously on 9 datasets.
From the table, we can see that the models em-
ploying multi-task learning improve the perfor-
mance on most tasks beyond the single-task mod-
els, in which our model achieves the highest ac-
curacies. Specifically, our model boosts the per-
formance by 3.3% over the best single-task model
BiLSTM, outstripping other multi-task models by
at least 0.9%. Additionally, we also compare our
model with the PA-CNN, a variant keeps the struc-
ture of GMT-CNN but shares the features by pro-
portional additions. For PA-CNN, performance on
several datasets is decreased than single-task due
to the interference. In contract, our model shows
steady improvement in all the datasets and sur-
passes PA-CNN by 1.3%, which indicates the ef-
fectiveness of gate mechanism.

3.4 Visualization

To intuitively show the selection process, we de-
sign an experiment to show the values of gates and
how they block the useless features. For the first
convolutional layer and GSU, we visualize the ac-
tivations F1

j of the filters with normalized values
and show their corresponding weights g1

jk in the

0.

0.25

0.5

0.75

1.

Five stars 
̔ my baby can fall asleep soon in the stroller

Features
Gate
PA-CNN

Figure 3: Features line illustrates feature weights in
F1

dvds in DVDs subnet. And Gate line shows the value
of g1

baby←dvds that filters the features from DVDs sub-
net to Baby subnet. PA-CNN line visualizes the feature
weights in the first layer of PA-CNN.

gate units. By that we can easily find what kind of
features are discarded as interference.

Figure 3 illustrates the behavior of GSU on a
random selected sentence from Baby task. We
visualize the results of the first feature map for
DVDs subnet and the gate unit that filters the fea-
tures from DVDs to Baby task. For the positive
sentence “Five stars, my baby can fall asleep soon
in the stroller”, we can see that subnet for DVDs
task focuses on two critical positions “Five stars”
and “asleep”. The word “asleep” is negative for
DVDs task, but actually neutral for Baby task.
Successfully, our gated unit lowers the intensity
of the interference “asleep”, making a correct pre-
diction. However, PA-CNN wrongly makes a neg-
ative prediction for lacking resistance to interfer-
ence. This indicates the effectiveness of our gate
mechanism for the feature selection in MTL.
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4 Conclusion and Future Work

In this paper, we introduce gate mechanism in
multi-task CNN to reduce the interference. The
proposed model has an ability to select the po-
tentially useful features, which can reduce the in-
terference among tests. The effectiveness of our
method is fully validated on 9 datasets for text
classification and further illustrated by visualiza-
tion experiment.

In future work, we would like to investigate the
effect of memory mechanism for multi-task learn-
ing, which is similar to gate mechanism but more
complex. It originates from recurrent neural net-
work and have been proven effective for feature
selection.
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Abstract

In conventional supervised training, a model
is trained to fit all the training examples.
However, having a monolithic model may
not always be the best strategy, as examples
could vary widely. In this work, we ex-
plore a different learning protocol that treats
each example as a unique pseudo-task, by
reducing the original learning problem to
a few-shot meta-learning scenario with the
help of a domain-dependent relevance func-
tion. When evaluated on the WikiSQL dataset,
our approach leads to faster convergence and
achieves 1.1%–5.4% absolute accuracy gains
over the non-meta-learning counterparts.

1 Introduction
Conventional supervised training is a pervasive
paradigm for NLP problems. In this setting, a
model is trained to fit all the training examples and
their corresponding targets. However, while shar-
ing the same surface form of the prediction task,
examples of the same problem may vary widely.
For instance, recognizing textual entailment is a
binary classification problem on whether the hy-
pothesis follows a given textual statement, but the
challenge datasets consist of a huge variety of in-
ference categories and genres (Dagan et al., 2013;
Williams et al., 2017). Similarly, for a semantic
parsing problem that maps natural language ques-
tions to SQL statements, the number of conditions
in a SQL query or the length of a question can vary
substantially (Zhong et al., 2017).

The inherently high variety of the examples
suggests an alternative training protocol: instead
of learning a monolithic, one-size-fits-all model, it
could be more effective to learn multiple models,
where each one is designed for a specific “task”
that covers a group of similar examples. How-

∗Work performed while XH was at Microsoft Research.

ever, this strategy is faced with at least two dif-
ficulties. As the number of tasks increases, each
task will have much fewer training examples for
learning a robust model. In addition, the notion of
“task”, namely the group of examples, is typically
not available in the dataset.

In this work, we explore this alternative learn-
ing setting and address the two difficulties by
adapting the meta-learning framework. Motivated
by the few-shot learning scenario (Andrychowicz
et al., 2016; Ravi and Larochelle, 2016; Vinyals
et al., 2016), meta-learning aims to learn a general
model that can quickly adapt to a new task given
very few examples without retraining the model
from scratch (Finn et al., 2017). We extend this
framework by effectively creating pseudo-tasks
with the help of a relevance function. During train-
ing, each example is viewed as the test example of
an individual “task”, where its top-K relevant in-
stances are used as training examples for this spe-
cific task. A general model is trained for all tasks
in aggregation. Similarly during testing, instead
of applying the general model directly, the top-K
relevant instances (in the training set) to the given
test example are first selected to update the general
model, which then makes the final prediction. The
overview of the proposed framework is shown in
Figure 1.

When empirically evaluated on a recently
proposed, large semantic parsing dataset,
WikiSQL (Zhong et al., 2017), our approach leads
to faster convergence and achieves 1.1%–5.4%
absolute accuracy gain over the non-meta-learning
counterparts, establishing a new state-of-the-art
result. More importantly, we demonstrate how
to design a relevance function to successfully
reduce a regular supervised learning problem
to a meta-learning problem. To the best of our
knowledge, this is the first successful attempt in
adapting meta-learning to a semantic task.
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Test exampleTrain examples
Relevance
Function

learning/adaptation

meta-learning

Figure 1: Diagram of the proposed framework. (Upper)
we propose using a relevant function to find a support
set S(j)

K from all training datapoints given a datapoint
D′j for constructing a pseudo-task Tj as in the few-shot
meta-learning setup. (Bottom) We optimize the model
parameters θ such that the model can learn to adapt a
new task with parameters θ′j via a few gradient steps on
the training examples of the new task. The model is up-
dated by considering the test error on the test example
of the new task. See Section 2 for detail.

2 Background: Meta-Learning
Our work is built on the recently proposed
Model-Agnostic Meta-Learning (MAML) frame-
work (Finn et al., 2017), which we describe briefly
here. MAML aims to learn the learners (for the
tasks) and the meta-learner in the few-shot meta-
learning setup (Vinyals et al., 2016; Andrychowicz
et al., 2016; Ravi and Larochelle, 2016). Formally,
it considers a model that is represented by a func-
tion fθ with parameters θ. When the model adapts
to a new task Ti, the model changes parameters θ
to θ′i, where a task contains K training examples
and one or more test examples (K-shot learning).
MAML updates the parameters θ′i by one or a few
rounds of gradient descent based on the training
examples of task Ti. For example, with one gradi-
ent update,

θ′i = θ − α∇θLTi(fθ),
where the step size α is a hyper-parameter;
LTi(fθ) is a loss function that evaluates the er-
ror between the prediction fθ(x(j)) and target y(j),
where x(j),y(j) are an input/output pair sampled
from the training examples of task Ti. Model pa-
rameters θ are trained to optimize the performance
of fθ′i on the unseen test examples from Ti across
tasks. The meta-objective is:

min
θ

∑

Ti∼p(T )
LTi(fθ′i) =

∑

Ti∼p(T )
LTi(fθ−α∇θLTi (fθ))

The goal of MAML is to optimize the model pa-
rameters θ such that the model can learn to adapt

new tasks with parameters θ′i via a few gradient
steps on the training examples of new tasks. The
model is improved by considering how the test er-
ror on unseen test data from Ti changes with re-
spect to the parameters.

The meta-objective across tasks is optimized us-
ing stochastic gradient descent (SGD). The model
parameters θ are updated as follows:

θ ← θ − β∇θ
∑

Ti∼p(T )
LTi(fθ′i),

where β is the meta step size.

3 Approach
As discussed in Section 1, to reduce traditional
supervised learning to a few-shot meta-learning
problem, we introduce a relevance function, which
effectively helps group examples to form pseudo-
tasks. Because the relevance function is problem-
dependent, we first describe the semantic parsing
problem below, followed by the design of our rel-
evance function and the complete algorithm.

3.1 The Semantic Parsing Task

The specific semantic parsing problem we study in
this work is to map a natural language question to a
SQL query, which can be executed against a given
table to find the answer to the original question. In
particular, we use the currently largest natural lan-
guage questions to SQL dataset, WikiSQL (Zhong
et al., 2017), to develop our model and to conduct
the experiments.

3.2 Relevance Function

The intuition behind the design of a relevance
function is that examples of the same type should
have higher scores. For the questions to SQL prob-
lem, we design a simple relevance function that
depends on (1) the predicted type of the corre-
sponding SQL query and (2) the question length.

There are five SQL types in the WikiSQL
dataset: {Count, Min, Max, Sum, Avg,
Select}. We train a SQL type classifier fsql us-
ing SVMs with bag-of-words features of the input
question, which achieves 93.5% training accuracy
and 88% test accuracy in SQL type prediction.
Another soft indication on whether two questions
can be viewed as belonging to the same “task” is
their lengths, as they correlate to the lengths of
the mapped SQL queries. The length of a ques-
tion is the number of tokens in it after normal-
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Algorithm 1 Pseudo-Task MAML (PT-MAML)

Require: Training Datapoints D = {x(j),y(j)}
Require: α, β: step size hyperparameters
Require: K: support set size hyperparameter

1: Construct a task Tj with training examples
using a support set S(j)K and a test example
D′j = (x(j),y(j)).

2: Denote p(T ) as distribution over tasks
3: Randomly initialize θ
4: while not done do
5: Sample batch of tasks Ti ∼ p(T )
6: for all Ti do
7: Evaluate∇θLTi(fθ) using S(j)K

8: Compute adapted parameters with gradi-
ent descent: θ′i = θ − α∇θLTi(fθ)

9: end for
10: Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i)

using eachD′i from Ti and LTi for the meta-
update

11: end while

izing entity mentions to single tokens.1 Our rel-
evance function only considers examples of the
same predicted SQL types. If examples x(i) and
x(j) have the same SQL type, then their relevance
score is 1 − |qlen(x(i)) − qlen(x

(j))|, where qlen
calculates the question length. Notice that the rele-
vance function does not need to be highly accurate
as there is no formal definition on which exam-
ples should be grouped in the same pseudo-task.
A heuristic-based function that encodes some do-
main knowledge typically works well based on
our preliminary study. In principle, the relevance
function can also be jointly learned with the meta-
learning model, which we leave for future work.

3.3 Algorithm

Given a relevance function, the adaptation of the
meta-learning using the MAML framework can
be summarized in Algorithm 1, called Pseudo-
Task MAML (PT-MAML). For each training ex-
ample x(j), we create a pseudo-task Tj using
the top-K relevant examples as the support set
S(j)K (Step 1). The remaining steps of the algo-
rithm mimics the original MAML design, update
task-level models (Step 8) and the meta-level, gen-
eral model (Step 10) using gradient descent.

1Phrases in questions that can match some table cells are
treated as entities.

4 Experiments
In this section, we introduce the WikiSQL dataset
and preprocessing steps, the learner model in our
meta-learning setup, and the experimental results.

4.1 Dataset
We evaluate our model on the WikiSQL dataset
(Zhong et al., 2017). We follow the data pre-
processing in (Wang et al., 2017). Specifically,
we first preprocess the dataset by running both
tables and question-query pairs through Stanford
Stanza (Manning et al., 2014) using the script in-
cluded with the WikiSQL dataset, which normal-
izes punctuations and cases of the dataset. We fur-
ther normalize each question based on its corre-
sponding table: for table entries and columns oc-
curring in questions or queries, we normalize their
format to be consistent with the table. After pre-
processing, we filter the training set by removing
pairs whose ground truth solution contains con-
stants not mentioned in the question, as our model
requires the constants to be copied from the ques-
tion. We train and tune our model only on the
filtered training and filtered development set, but
we report our evaluation on the full development
and test sets. We obtain 59,845 (originally 61,297)
training pairs, 8,928 (originally 9,145) develop-
ment pairs and 17,283 test pairs (the test set is not
filtered).

4.2 Learner Model
We use the model of Wang et al. (2017) as the
learner in our meta-learning setup. The model is a
grammar-aware Seq2Seq encoder-decoder model
with attention (Cho et al., 2014; Bahdanau et al.,
2014). The encoder is a bidirectional LSTM,
which takes the concatenation of the table header
(column names) of the queried table and the ques-
tion as input to learn a joint representation. The
decoder is another LSTM with attention mecha-
nism. There are three output layers corresponding
to three decoding types, which restricts the vocab-
ulary it can sample from at each decoding step.
The three decoding types are defined as follows:
• τV (SQL operator): The output has to be

a SQL operator, i.e., a terminal from V =
{Select, From, Where, Id, Max, Min,
Count, Sum, Avg, And, =, >, ≥, <, ≤,
<END>, <GO>}.
• τC (column name): The output has to be a

column name, which will be copied from ei-
ther the table header or the query section of
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Model Dev Test
Acclf Accex Acclf Accex

PointerNet (2017) 44.1% 53.8% 43.3% 53.3%
Seq2SQL (2017) 49.5% 60.8% 48.3% 59.4%
Pointer loss (2017) 46.8% 52.1% 46.1% 51.8%
Meta + Pointer loss 52.0% 57.7% 51.4% 57.2%
Max loss (2017) 61.3% 66.9% 60.5% 65.8%
Meta + Max loss 62.1% 67.3% 61.6% 67.0%
Sum loss (2017) 62.0% 67.1% 61.5% 66.8%
Meta + Sum loss 63.1% 68.3% 62.8% 68.0%

Table 1: Experimental Results on the WikiSQL dataset,
where Acclf represents the logical form accuracy and
Accex represents the SQL execution accuracy. “Pointer
loss”, “Max loss”, and “Sum loss” are the non-meta-
learning counterpart from Wang et al. (2017). “Meta +
X” denotes the meta-learning model with learner “X”.

the input sequence. Note that the column re-
quired for the correct SQL output may or may
not be mentioned explicitly in the question.
• τQ (constant value): The output is a constant

that would be copied from the question sec-
tion of the input sequence.

The grammar of SQL expressions in the the
WikiSQL dataset can be described in regular ex-
pression as “Select f c From t Where (c op
v)∗” (f refers to an aggregation function, c refers
to a column name, t refers to the table name,
op refers an comparator and v refers to a value).
The form can be represented by a decoding-type
sequence τV τV τCτV τCτV (τCτV τQ)∗, which will
ensure only decoding-type corrected tokens can be
sampled at each decoding step.

Wang et al. (2017) propose three cross-entropy
based loss functions: “Pointer loss”, which is the
cross-entropy between target index and the chosen
index, “Max loss”, which computes the probabil-
ity of copying a token v in the input as the maxi-
mum probability of pointers that point to token v,
and “Sum loss”, which computes the probability
of copying a token v in the input as the sum of
probabilities of pointers that point to token v. See
(Wang et al., 2017) for more detail.

4.3 Model Hyperparameters
We use the pre-trained n-gram embeddings by
Hashimoto et al. (2017) (100 dimension) and the
GloVe word embedding (100 dimension) by Pen-
nington et al. (2014); each token is embedded into
a 200 dimensional vector. The encoder is a 3-
layer bidirectional LSTM with hidden states of
size 100, and the decoder is a 3-layer unidirec-
tional LSTM with hidden states of size 100. The
model is trained with question-query pairs with a
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Figure 2: Logical form accuracy comparison, where
“meta train” and “meta dev” are the train and develop-
ment set accuracy using the “Meta + Sum loss” model,
“train” and “dev” are the train and development set ac-
curacy using the “Sum loss” model (Wang et al., 2017).

batch size of 200 for 100 epochs. During train-
ing, we clip gradients at 5 and add gradient noise
with η = 0.3, γ = 0.55 to stabilize training (Nee-
lakantan et al., 2015). We found the meta-learning
model is trained stably without back-propagating
to second order gradients. We select the support
set size K to be 2 based on the development set.
Empirically, the performance does not improve
when we use a larger K. We set the learning rates
α = 0.001 and β = 0.1 based on the development
set. The model is implemented in Tensorflow and
trained using Adagrad (Duchi et al., 2011).

4.4 Results

Table 1 shows the experimental results of our
model on the WikiSQL dataset. We select the
model based on the best logical form accuracy
on the development set, and compare our results
to augmented pointer network and the Seq2SQL
model (with RL) in (Zhong et al., 2017). Both
logical form accuracy (denoted by Acclf ) that
compares the exact SQL syntax match, and the
SQL execution results (denoted by Accex) are re-
ported. We compare our approach with its non-
meta-learning counterpart using “Pointer loss”,
“Max loss”, and “Sum loss” losses from (Wang
et al., 2017). Our model achieves 1.1%–5.3% and
1.2%–5.4% gains on the test set logical form and
execution accuracy, respectively.

We also investigate the training and develop-
ment set logical form accuracy over different
epochs by “Meta + Sum loss” and “Sum loss”
models. The results are shown in Figure 2. One
interesting observation is that the “Meta + Sum
loss” model converges much faster than the “Sum
loss” model especially in the first 10 epochs. We
attribute this improvement to the ability to adapt
to new tasks even with a small number of training
examples.
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Figure 3: Logical form accuracy comparison. “Meta
+ Sum loss (o), Sum loss (x)” indicates the generated
SQL is incorrect by the “Sum loss” model and is cor-
rect by the “Meta + Sum loss” model. Similarly, “Meta
+ Sum loss (x), Sum loss (o)” indicates the generated
SQL is incorrect by the “Meta + Sum loss” model and
is correct by the “Sum loss” model.

We compare the logical form error on the test
set between the “Sum loss” model (Wang et al.,
2017) and the proposed “Meta + Sum loss” model.
Among the 17,283 test examples, there are 6,661
and 6,428 errors by the “Sum loss” and the “Meta
+ Sum loss”, respectively. There are 5,190 com-
mon errors by both models. We examine the test
examples where “Sum loss” is correct while “Meta
+ Sum loss” is not and vice versa, shown in Fig-
ure 3. We observe that the differences are mainly
in ground truth SQL length = 7 and 10, where the
“Meta + Sum loss” model outperforms “Sum loss”
model by a large margin. We show some examples
for the two cases in the supplementary material.

5 Related Work

Meta Learning One popular direction of meta-
learning (Thrun and Pratt, 1998; Schmidhuber,
1987; Naik and Mammone, 1992) is to train a
meta-learner that learns how to update the param-
eters of the learners model (Bengio et al., 1992;
Schmidhuber, 1992). This direction has been ap-
plied to learning to optimize deep neural networks
(Hochreiter et al., 2001; Andrychowicz et al.,
2016; Li and Malik, 2017; Ha et al., 2017). Few-
shot learning methods have also adapted meta-
learning approaches for image recognition (Koch,
2015; Ravi and Larochelle, 2016; Vinyals et al.,
2016) and reinforcement learning (Finn et al.,
2017). Given that the few-shot learning setup can-
not directly work in standard supervised learn-
ing problems, we explore reducing a regular su-
pervised learning problem to the few-shot meta-
learning scenario by creating pseudo-tasks with a

relevance function.
Semantic Parsing Mapping natural language

to logic forms has been actively studied in natu-
ral language processing research (Zettlemoyer and
Collins, 2005; Giordani and Moschitti, 2010; Artzi
and Zettlemoyer, 2011; Berant et al., 2013; Vla-
chos and Clark, 2014; Yih et al., 2014, 2015; Wang
et al., 2015; Golub and He, 2016; Iyer et al., 2017;
Krishnamurthy et al., 2017). However, unlike con-
ventional approaches, which fit one model for all
training examples, the proposed approach learns to
adapt to new tasks. By using the support set based
on the relevance function, the proposed model can
adapt to a unique model for each example.

Program Induction / Synthesis Program in-
duction (Reed and De Freitas, 2016; Neelakantan
et al., 2015; Graves et al., 2014; Yin et al., 2015;
Devlin et al., 2017) aims to infer latent programs
given input/output examples, while program syn-
thesis models (Zhong et al., 2017; Parisotto et al.,
2017) aim to generate explicit programs and then
execute them to get output. The learner model we
used in this work follows the line of program syn-
thesis models and trains on pairs of natural lan-
guage (question) and program (SQL) directly.

6 Conclusion
In this paper, we propose a new learning protocol
that reduces a regular supervised learning prob-
lem to the few-shot meta-learning scenario. This
is done by effectively creating pseudo-tasks with
the help of a relevance function. When evalu-
ated on the newly released, large semantic pars-
ing dataset, WikiSQL, our approach leads to faster
convergence and enjoys 1.1%–5.4% absolute ac-
curacy gains over the non-meta-learning counter-
parts, achieving a new state-of-the-art result.

While the initial finding is encouraging, we be-
lieve the potential of this meta-learning frame-
work has not yet been fully realized. In the fu-
ture, we plan to explore more variations of the
meta-learning setup, such as using different rele-
vance functions, including the ones that are jointly
learned. We also would like to understand this
approach better by testing it on more natural lan-
guage processing tasks.
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Abstract

Word embedding parameters often domi-
nate overall model sizes in neural meth-
ods for natural language processing. We
reduce deployed model sizes of text clas-
sifiers by learning a hard word cluster-
ing in an end-to-end manner. We use
the Gumbel-Softmax distribution to maxi-
mize over the latent clustering while min-
imizing the task loss. We propose varia-
tions that selectively assign additional pa-
rameters to words, which further improves
accuracy while still remaining parameter-
efficient.

1 Introduction

Word embeddings (Bengio et al., 2003) form the
foundation of most neural methods for natural lan-
guage processing (NLP). However, embeddings
typically comprise a large fraction of the total
parameters learned by a model, especially when
large vocabularies and high dimensions are used.
This can become problematic when seeking to de-
ploy NLP systems on mobile devices where mem-
ory and computation time are limited.

We address this issue by proposing alternative
parameterizations for word embeddings in text
classifiers. We introduce a latent variable for each
word type that represents the (hard) cluster to
which it belongs. An embedding is learned for
each cluster. All parameters (including cluster as-
signment probabilities for each word and the clus-
ter embeddings themselves) are learned jointly in
an end-to-end manner.

This idea is based on the conjecture that most
words do not need their own unique embedding
parameters, due both to the focused nature of par-
ticular text classification tasks and also due to
the power law characteristics of word frequen-

. . . is a group of symptoms . . .

k

embedding matrix

cluster pointer

Figure 1: Schematic of deployed cluster embedding
model with k clusters; cluster probabilities can be re-
placed by pointers at test time.

cies. For a particular task, many word embeddings
would be essentially identical, so using clusters
lets us avoid learning redundant embedding vec-
tors, making parameter usage more efficient. For
sentiment analysis, for example, the procedure can
learn to place all sentiment-neutral words in a sin-
gle cluster, and then learn distinct clusters for pos-
itive and negative words.

During learning, we minimize log loss of the
correct classification label while maximizing over
the latent variables. To do so, we use the Gumbel-
Softmax distribution (Jang et al., 2016; Maddison
et al., 2016) as a continuous approximation to hard
clustering. After training, we compute the argmax
over cluster assignments for each word type and
replace the cluster assignment probabilities with
pointers to clusters; see Figure 1. This leads to a
large reduction in model size at test time.

We consider two variations of the above idea
which introduce a small number of additional
word-specific parameters. The best variation
learns unique embeddings for only the most fre-
quent words and uses hard clustering for the rest.
We evaluate our methods on five text classifica-
tion datasets, comparing them at several model
size budgets. Our results demonstrate that clus-
tering can maintain or improve performance while
offering extremely small deployed models.
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2 Related Work

Several methods have been proposed for reducing
the memory requirements of models that use word
embeddings. One is based on quantization (Botha
et al., 2017; Han et al., 2016), which changes the
way parameters are stored. In particular, it seeks
to find shared weights among embedding vectors
and only keeps scale factors for each word.

Another family of methods uses hashing func-
tions to replace dictionaries (Tito Svenstrup et al.,
2017; Joulin et al., 2017). This can save storage
space, but still requires the model to have roughly
the same size embedding matrix. Network pruning
has also been used to compress neural networks.
Han et al. (2015) pruned weights iteratively by
removing weights below a threshold and then re-
training the network.

Our work is also related to prior work using
hard word clustering for NLP tasks (Botha et al.,
2017; Brown et al., 1992). The primary difference
is that we cluster words to minimize the task loss
rather than doing so beforehand.

Recently, Shu and Nakayama (2018) also found
clustering helpful for compressing the word em-
bedding matrix for NLP tasks. Their method fol-
lows the intuition of product quantization (Jegou
et al., 2011; Joulin et al., 2017). Our methods dif-
fer from theirs in two ways. First, our methods
are trained end-to-end instead of relying on pre-
trained word embeddings. Since our embeddings
are trained for each task, we can use much smaller
embedding dimensionalities, which saves a lot of
parameters. Second, our method is faster at test
time because it does not use multiple code books.

3 Embedding Parameterizations

Our text classifiers use long short-term memory
(LSTM; Hochreiter and Schmidhuber, 1997) net-
works to embed sequences of word embeddings
and then use the final hidden state as input to a
softmax layer to generate label predictions. The
standard cross entropy loss is used for training.
We use this same architecture throughout and vary
the method of parameterizing the word embedding
module among the four options listed below.

Standard Embeddings (SE). This is the stan-
dard setting in which each word type in the vocab-
ulary has a unique embedding. Given a vocabulary
V = {w1, w2, · · · , wv} and embedding dimen-
sionality m, this yields vm word embedding pa-

rameters. In our experiments, we limit the vocab-
ulary to various sizes v, always keeping the most
frequent v words and replacing the rest with an
unknown word symbol.

Cluster Embeddings (CE). We next propose a
method in which each word is placed into a single
cluster (“hard clustering”) and we learn a unique
embedding vector for each cluster. We refer to this
setting as using cluster embeddings (CE). We de-
note the embedding matrixW ∈ Rk×m where k is
the number of clusters and m is again the embed-
ding dimensionality. Each word wi now has a vec-
tor of parameters ~ai = (ai1, · · · , aik) which are
interpreted as cluster probabilities. So this method
requires learning vk cluster probabilities in addi-
tion to the km parameters for the cluster embed-
dings themselves.

We treat the cluster membership of each word
wi as a latent variable hi during training. All pa-
rameters are optimized jointly to minimize cross
entropy while maximizing over the latent vari-
ables. This poses difficulty in practice due to the
discrete nature of the clustering. That is, max-
imizing over the latent variables involves non-
differentiable argmax operations:

hi = argmax
1≤j≤k

aij

To tackle this problem, we use the recently pro-
posed Gumbel-Softmax to approximate the clus-
tering decision during training. Gumbel-Softmax
is a temperature-modulated continuous relaxation
for the categorical distribution. When the tempera-
ture approaches 0, samples from Gumbel-Softmax
will become identical to those from the categorical
distribution. During training, we have a sample
~ti = (ti1, · · · , tik) for every instance of a word
wi. The vector ~ti is a non-sparse approximation to
the one-hot vector indicated by the latent variable
value hi. It is parameterized as:

tij =
exp ((aij + gj)/τ)∑k
l=1 exp ((ail + gl)/τ)

where the gj are samples from a Gumbel(0,1) dis-
tribution and τ is the temperature. The embedding
vector ~ei for word wi is calculated by ~ei =W>~ti.

Even when merely using this method in a soft
clustering setting, it can save parameters when
vk + km < vm. But with hard clustering, we
can reduce this further by assuming we will again
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Dataset # Classes Train Dev. Test
AG News 4 115,000 5,000 7,600
DBpedia 14 560,000 5,000 70,000
Yelp Review Polarity 2 555,000 5,000 38,000
Yelp Review Full 5 645,000 5,000 50,000
IMDB Movie Reviews 2 23,000 2,000 25,000

Table 1: Dataset statistics.

maximize over latent variables at test time. In this
case, the cluster for word wi at test time is

~ti = one hot

(
argmax
1≤j≤k

aij

)

where the function one hot returns a one-hot vec-
tor of length k with a 1 in the index given by its ar-
gument. These argmax operations can be precom-
puted for all words in V , permitting us to discard
the vk cluster probabilities and instead just store a
cluster pointer for each word, each of which will
only take O(log2 k) space.

Cluster Adjustment Embeddings (CAE).
While the cluster embedding model can lead to
large savings in parameters, it loses the ability to
model subtle distinctions among words, especially
as k decreases. We propose a modification (cluster
adjustment embeddings; CAE) that represents
a word by concatenating its cluster embedding
with a short unique vector for the word. If we
think of cluster embeddings as centroids for each
cluster, this model provides a way to adjust or
correct the cluster embedding for each word,
while still leveraging parameter sharing via the
cluster embeddings. For all CAE experiments
below, we use a 1-dimensional vector (i.e., a
scalar) as the unique vector for each word that
gets concatenated to the cluster embedding.

Mixture Embeddings (ME). Finally, we con-
sider a variation (mixture embeddings; ME) in
which the most frequent u words use unique em-
beddings and the remaining words use cluster em-
beddings. The words with unique embeddings are
selected based on word frequency in the training
data, with the intuition that frequent words are po-
tentially useful for the task and contain enough in-
stances to learn unique embedding parameters.

4 Experimental setup

We evaluate our embedding models on five text
classification datasets: AG News, DBpedia, Yelp
Review Polarity, Yelp Review Full (Zhang et al.,
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Figure 2: Development accuracy vs model size (MB)
on four datasets. ME consistently outperforms other
models under various size budgets.

2015), and the IMDB movie review dataset (Maas
et al., 2011). We randomly sample 5,000 instances
from the training set to use as development data
for all datasets except for IMDB, where we sam-
ple 2,000. Table 1 shows dataset statistics. For
IMDB, to make our results comparable to Shu and
Nakayama (2018), we follow their experimental
setup: We tokenize and lowercase the IMDB data
using NLTK and truncate each review to be at most
400 words. For the other datasets, we lowercase
and tokenize the sentences using regular expres-
sions based on Kim (2014).

For optimization, we use Adam (Kingma and
Ba, 2015) with learning rate 0.001. Embedding
matrices are randomly initialized for all models.
To reduce the hyperparameter search space, the
LSTM hidden vector size is set to 50 for all ex-
periments and the Gumbel-Softmax temperature
is fixed to 0.9. When a single result is reported,
all other hyperparameters (vocabulary size v,
embedding dimension m, number of clusters k,
and number of unique vectors u) are tuned based
on the development sets. Our code is implemented
in TensorFlow (Abadi et al., 2015) and is available
at https://github.com/mingdachen/
word-cluster-embedding.

5 Results

When evaluating our models, we are concerned
with both accuracy and model size. We vary hy-
perparameters to obtain a range of model sizes for
each embedding parameterization, then train mod-
els for each set of hyperparameter values. In Fig-
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AG News DBPedia Yelp Full Yelp Polarity
size 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1
SE 84.8 90.4 95.3 98.1 59.2 62.6 93.4 95.5
CE 89.2 90.7 96.9 97.9 60.3 61.0 93.9 94.4
CAE 86.3 90.7 96.1 98.1 61.2 62.3 93.7 95.3
ME 90.3 91.5 97.5 98.3 61.4 63.4 95.2 95.8

Table 2: Test results. Model sizes are in MB.

ure 2, we plot development accuracies across the
range of model sizes on four datasets. Model sizes
are calculated using the formula given in the ap-
pendix.

When the model size is extremely small (e.g.,
less than 0.1 MB in AG News), our cluster models
outperform the standard parameterization (SE). As
model size increases, the standard model becomes
better and better, though it does not outperform
ME. While CE is weak on the Yelp tasks, which
could be attributed to the difficulty of 5-way senti-
ment classification, we see clear improvements by
adding small amounts of word-specific informa-
tion via CAE and ME. ME consistently performs
well compared to the others across model sizes.

We report test results in Table 2. The test re-
sults are reported based on model performance on
the development set for different model sizes. The
models are consistent between development and
test, as our cluster models with max size 0.05MB
outperform SE across datasets, with ME having
the highest accuracies.

On IMDB, we compare our methods to compo-
sitional coding (Shu and Nakayama, 2018). This
method learns an efficient coding of word em-
beddings via the summation of embeddings from
multiple clusterings. The clusterings and cluster
embeddings are learned offline to reconstruct pre-
trained GloVe vectors (Pennington et al., 2014).
We recalculated the embedding sizes from Shu
and Nakayama (2018) using our formula (in the
appendix). We also reimplemented their compo-
sitional coding as another embedding model and
trained it in an end-to-end fashion. We use the
best model configuration from Shu and Nakayama
(2018) and do grid search for the embedding di-
mension. As for the vocabulary size v, we find
models perform better with small values, and thus
we fix it to v = 3000.

Results are shown in Table 3. Compared with
compositional coding, our models perform much
better with a much smaller set of embedding pa-
rameters even when we use a smaller number of
cluster embeddings (e.g., compare 8 × 8 coding

embedding model acc.
size (MB) size (MB) (%)

GloVe baseline 85.947 - 87.18
8 × 8 coding 0.288 - 82.84
16 × 32 coding 1.302 - 87.37
64 × 8 coding 2.305 - 88.15
64 × 8 coding (m = 90) 0.245 0.353 83.43
SE (|V | = 3000, m = 8) 0.092 0.137 86.84
CE (k = 50, m = 5) 0.004 0.046 85.58
CAE (k = 50, m = 5) 0.016 0.058 86.94
ME (k = 50, u = 300, m = 5) 0.009 0.051 88.22

Table 3: IMDB test results. The four rows above the
dashed line are from Shu and Nakayama (2018); our
results are below it.

words
1 million week third percent which 000 ago reports once
2 are after from has another down home than but end
3 official security china international country court city
4 heavyweights operational coordinated healing rewarded
5 com internet technology ibm google research windows
6 market quarter sales deals bid growth trade economic
7 championship yankees defense player contract football
8 troops press attack forces peace iran led army killing

Table 4: Word clusters learned using CE model on AG
News. Each row is a different cluster.

to CE; both use a comparable number of cluster
embedding vectors, while CE works better). ME
(with k = 50 clusters and unique embeddings for
the u = 300 most frequent words) outperforms all
other models while retaining a small model size.
CAE performs better than SE, but uses more pa-
rameters than CE. We find a better trade-off with
ME, which only adds parameters to the most fre-
quent words.

6 Discussion

6.1 Cluster Analysis

Table 4 shows clusters learned via CE on the AG
News dataset. Cluster 1 appears to contain words
that are related to quantities such as times and
numbers while cluster 2 mostly contains preposi-
tions and other function words. The connection to
the AG News labels (World, Sports, Business, and
Sci/Tech) is more clear in the subsequent clusters.
Clusters 3 and 8 are related to World, cluster 4 may
relate to World or Sports, clusters 5 and 6 are re-
lated to Sci/Tech, and cluster 7 is related to Sports.

6.2 Impact of Hyperparameters

Figure 3 shows the relationship between accuracy
and several hyperparameters. Figure 3a shows
the effect of embedding dimension on SE mod-
els. One-dimensional embeddings work reason-
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Figure 3: Dev. accuracy vs. hyperparameters.

ably well, but the largest accuracy gains occur
when increasing dimensionality from 1 to 2. Con-
sider the LSTM gating functions, which consist
of a nonlinearity applied to U1x + U2h, where
x is a word embedding, h is a hidden state, and
U1, U2 are parameters. We can think of these func-
tions as doing affine transformations on the hidden
state. So, in the one-dimensional case, the trans-
formations that a word vector can do are restricted
to translation. However, when word vectors have
more than two dimensions, they can do almost any
affine transformation. To further investigate this,
we experimented with simple recurrent neural net-
works (RNNs) with very small word embedding
dimensionalities in the appendix.

Figure 3b shows that for most datasets, increas-
ing the number of unique embedding vectors (u)
in ME helps for the Yelp datasets, especially early
on, but u = 500 appears sufficient to capture most
of the accuracy. Since similar trends are observed
across different datasets, we only plot results for
AG News in the final two plots. In Figure 3c,
there is a clear boundary after which vocabulary
size has minimal effect on accuracy. In Figure 3d,
we observe that the number of clusters does not
have much impact.

The main differences among CE, CAE, and ME
are the ways they balance precision of embed-
ding vectors and overall model size. CE forgets
word identities and uses common parameters for
all words in a cluster. Therefore it is expected
that it should perform best only when all models
are restricted to be extremely small. CAE adds
parameters evenly across all words in the vocab-
ulary while ME focuses its additional parameters
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Figure 4: Varying the fraction of training data used on
the IMDB task.

on the most frequent words. Our results show that
devoting parameters to the most frequent words
achieves the best balance and consistently strong
results. The most frequent words in the training
set are likely to be those most closely related to
the task. Higher frequency also means more train-
ing data for the word’s embedding parameters.

6.3 Impact of Training Data Size

Figure 4 shows test accuracies when varying the
size of the training set for the IMDB task. The
clustering models need relatively large amounts
of training data, because they actually may have
more parameters to learn during training due to the
cluster membership probabilities for each word.
We suspect this is why ME underperforms SE and
CAE with small training sets. Even though ME
permits very small deployed models, it still re-
quires a substantial training set to learn its cluster
membership probabilities.

7 Conclusions and Future Work

We proposed word embedding parameterizations
that dramatically reduce the number of parameters
at test time while achieving comparable or bet-
ter performance. Our methods are applicable to
other neural methods that use word embeddings
or any kind of parameter lookup data structure.
Future work will incorporate pretrained word em-
beddings into these cluster parameterizations and
apply them to additional tasks.
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Embedding Dimension 1 2 3
Accuracy 0.82 0.78 0.84

Table 5: IMDB test results for RNN with different em-
bedding dimensions.

A Model Size Calculation

Let the model have vocabulary size v, k embed-
ding vectors, embedding dimensionm, and o other
parameters. To compute model sizes, we assume
each cluster pointer is stored using dlog2 ke bits
and that other parameters are stored using 32 bits.
For the CE model, for example, model size can be
calculated based on the following formula:

v ∗ dlog2 ke+ k ∗m ∗ 32 + o ∗ 32

B Impact of Word Embedding
Dimension

(a) 1-dim. word embeddings (b) 2-dim. word embeddings

(c) 3-dim. word embeddings

1 2 3
0.000
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Figure 5: Plots of 2-dimensional RNN hidden states
when varying word embedding dimensionality.

In order to look into the impact of word embed-
ding dimension, we run experiments on AG News
using an RNN with 2-dimensional hidden states
instead of an LSTM. Figure 5 plots the final hid-
den states of the RNN with various embedding di-
mensions.

When embeddings have one dimension (Fig-
ure 5a), most of the hidden states roughly lie on
a line, which is expected considering the limited
transformation a scalar can do. As the dimension

increases, the hidden states become more spread
out. To evaluate this phenomena quantitatively, we
calculate the area ratio that hidden states have cov-
ered, which is shown in Figure 5d. The area ratio
increases monotonically with increasing embed-
ding dimension. We also report the correspond-
ing test accuracies in Table 5. The classification
accuracy does not necessarily improve from larger
usage of space. The reason for this could be the
vanishing gradient problem in simple RNNs.
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Abstract

Neuropsychological examinations are an im-
portant screening tool for the presence of cog-
nitive conditions (e.g. Alzheimer’s, Parkin-
son’s Disease), and require a trained tester to
conduct the exam through spoken interactions
with the subject. While audio is relatively
easy to record, it remains a challenge to auto-
matically diarize (who spoke when?), decode
(what did they say?), and assess a subject’s
cognitive health. This paper demonstrates a
method to determine the cognitive health (im-
paired or not) of 92 subjects, from audio that
was diarized using an automatic speech recog-
nition system trained on TED talks and on the
structured language used by testers and sub-
jects. Using leave-one-out cross validation
and logistic regression modeling we show that
even with noisily decoded data (81% WER)
we can still perform accurate enough diariza-
tion (0.02 % confusion rate) to determine the
cognitive state of a subject (0.76 AUC).

1 Introduction

Cognitive impairment is a decline in mental abil-
ities that is severe enough to interfere with daily
life (Nussbaum and Ellis, 2003). Such conditions
are particularly debilitating, with costs of up to
$200 billion in the USA alone (Prince et al., 2011;
Leifer, 2003; Alzheimers, 2015), and come second
only to spinal-cord injuries and terminal cancer in
the severity of their effects (Organization, 2003;
Ferri et al., 2006).

Several methods exist to screen for cognitive
conditions (e.g. Alzheimer’s, Parkinson’s), rang-
ing from laboratory measures to brain imaging
scans (Quadri et al., 2004; Van Himbergen et al.,
2012), with the baseline being set by neuropsy-
chological examinations. These exams are com-
posed of multiple components that measure a spe-
cific domain of cognition such as: thinking, recall,

speech, and physical movement. Each exam com-
ponent is assigned a score by the tester according
to the established rubric. While this exam can be
comprehensive, there is an additional dimension
of information that can be passively recorded - the
audio of the spoken interactions. Utilizing such
data would allow for the identification of spoken
language biomarkers of cognitive impairment.

However, with richer information comes addi-
tional complexity (Fitch et al., 2016). The appli-
cation of automatic speech processing technolo-
gies to medical domains requires a pipeline with
multiple stages. Such a system requires audio
pre-processing to locate speech and speaker seg-
ments (i.e. diarization) (Anguera et al., 2012), the
transcription of spoken utterances (Besacier et al.,
2014), and feature representation and modeling of
the speaker’s latent condition to determine disease
biomarkers for classification purposes (Cummins
et al., 2015).

Research in this domain can be categorized
into two areas. First is the utilization of acous-
tic and linguistic information to perform speaker
diarization and verification using standard cor-
pora (e.g. Switchboard, NIST) (Stolcke et al.,
2006; Reynolds et al., 2003). The second category
of work seeks to evaluate speech and language
biomarkers for the detection of cognitive impair-
ment utilizing measures such as speaking rate,
pauses, n-grams, and Word Error Rates (WERs)
(Pakhomov et al., 2010; Lehr et al., 2012; Fraser
et al., 2014; Pakhomov and Hemmy, 2014; Vincze
et al., 2016), as well as Automatic Speech Recog-
nition (ASR) for phonetic alignment and acoustic
feature extraction (Tóth et al., 2015). However,
systems from the speech community are devel-
oped using well-curated data with healthy speak-
ers, while the clinical community develops sys-
tems using manually transcribed data, with some
exceptions (Tóth et al., 2015; Weiner et al., 2016).
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Our paper seeks to bridge the two areas by au-
tomating data curation for clinical use.

We hypothesize that it is possible to automate
data curation for clinical use by conditioning on
speaker roles, because speakers (subject/tester)
during neuropsychological exams have different
word usage and speaking patterns due to the ques-
tion and answer nature of the evaluation. We
also hypothesize that not all segments of the exam
will be equally valuable in evaluating for cognitive
conditions, due to potential confusion between
speakers when automatically annotating speaker
segments, polluting the features used for model-
ing cognitive conditions.

Our study differentiates itself from prior work
by combining speaker-specific language modeling
and ASR for speaker diarization, with the ulti-
mate goal of assessing the cognitive condition of
the subjects using the acoustic information con-
tained in the hypothesized (and less than ideal)
segments. This is an extension of work by Alhanai
et al. that used gold standard speaker segmenta-
tions and transcriptions to evaluate cognitive out-
comes. Further details on feature selection, mod-
eling, and the relation to previous work in that do-
main are described in (Alhanai et al., 2017). This
approach captures real-world scenarios where au-
tomatically diarized and transcribed data may not
be at human parity but its usage is necessary for
deploying screening technologies at scale. More-
over, audio recordings are often sub-optimal, us-
ing digital recorders on a desk, which is the case
of the data used in this study. Therefore the ability
to detect cognitive conditions must accommodate
the presence of noisy data, of which we sought to
evaluate.

1.1 Objectives

Our objectives were to (1) automatically extract
and identify segments of speech that were most
likely to belong to the subject, and (2) to evalu-
ate the type of segments that were most predictive
of a subject’s cognitive condition.

2 Methods

2.1 Data

The data used in this work was collected from the
Framingham Heart Study, an on-going longitudi-
nal population study of 15,447 subjects from 1948
to the present (Mahmood et al., 2014). Since 1999
a subset of subjects have undergone neuropsycho-

logical examinations (Satizabal et al., 2016), and
as of 2005, it became standard to record audio of
these examinations. The neuropsychological ex-
aminations include multiple components to assess
memory, attention, executive function, language,
reasoning, visuoperceptual skills, and premorbid
intelligence. All participants provided written in-
formed consent, with study protocols and consent
forms approved by the institutional review board
at the Boston University Medical Center.

Our study used 92 mono-channel audio record-
ings of neuropsychological examinations that had
available text transcripts. The exams were com-
posed of several tests measuring memory, recall,
logical and thinking. Further details and a full ex-
ample are found in (Satizabal et al., 2016). The
recordings were on average, 65 minutes in dura-
tion, contained 2,496 words, with a vocabulary
size of 527 words.

Transcripts for each audio file were generated
manually. Transcribers were instructed to include
timestamps for each speaker turn (subject/tester),
indicate who spoke when, transcribe speech ortho-
graphically (e.g. nineteen dollars instead of $19),
include tags to highlight moments such as filled
pauses (<um>), and to insert punctuation.

2.2 Outcome of Interest

Our overarching goal was to determine whether
the subject being evaluated was cognitively im-
paired, but we also needed to determine who spoke
when (subject or tester). To this end, we modeled
two levels of outcomes. Our first outcome of in-
terest was a binary indicator of the speaker type
(subject or tester), with the subject coded as 1.

Our second outcome of interest was a binary
indicator of cognitive impairment, with impair-
ment coded as 1. We labeled subjects as cogni-
tively impaired if the date of impairment (as con-
cluded by the dementia diagnostic review panel
(Seshadri et al., 2006) was on or before the date
of the neuropsychological examination where the
audio recording took place. Using this criteria, 21
subjects (22.8%) were cognitively impaired. Ten
of these subjects had a severity rating less than
mild, six were mild, five were moderate, and none
were severe . Fourteen subject were diagnosed as
having Alzheimer’s disease using the NINCDS-
ADRDA criteria (McKhann et al., 2011), and
five were diagnosed with Vascular dementia based
on the NINCDS-AIRENS criteria (Román et al.,
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1993).

2.3 Model Choice and Evaluation Metrics

To evaluate speaker diarization we used the Di-
arization Error Rate (DER) metric, as well as
the percentage of speech classified as non-speech
(Miss), the percentage of non-speech classified
as speech (False Alarm), and the percentage of
speech misclassified as belonging to the other
speaker (Confusion Rate) (Tranter and Reynolds,
2006). We used a time-based diarization ap-
proach, ignoring segments less than 250ms in du-
ration. To evaluate the performance of the ASR
system we used the Word Error Rate (WER) met-
ric. Given the importance of model interpretability
for detecting spoken language biomarkers, logis-
tic regression was chosen as our modeling frame-
work. The evaluation metrics we used for detect-
ing cognitive impairment was the Area Under the
Receiver Operating Characteristic Curve (AUC)
which has the advantage of evaluating model per-
formance across the whole range of probability
cutoffs, rather than a single point estimate such as
accuracy or F1 score (Huang and Ling, 2005). To
assess the generalizability and robustness of our
modeling techniques, we performed leave-one-out
cross-validation.

3 Experiment 1: Speaker ID from Text

We first investigated the language patterns of
speakers to determine whether a subject or tester
was speaking (i.e., a 2 class problem). We started
with the segmentation from the speaker turns la-
beled in the transcripts. We trained a trigram lan-
guage model with Knesser Ney discounting for
each speaker type. The language models were
then used to generate the language perplexity of
the spoken (text) segment. The training and test-
ing was performed with leave-one-out validation
(i.e. 92 folds, one fold for each of the 92 subject-
tester interactions). Six features were used in the
logistic regression model:

• OOV-rate (x2): The Out-of-Vocabulary rate
of the subjects’ and testers’ vocabulary (from
their respective training sets).

• Perplexity (x2): The language model per-
plexity for the subjects and testers.

• Perplexity sans <s> (x2): The language
model perplexity for the subjects and testers,

excluding the start and end of sentence tags
(<s>,</s>).

This resulted in a classification accuracy of 84%
(±0.06), and an AUC of 0.93 (±0.07) These re-
sults motivated further investigation into classify-
ing speakers from the audio directly.

4 Experiment 2: Speaker ID from ASR

For this experiment, we decoded the audio using
an Automatic Speech Recognition (ASR) system
with a language model trained on each speaker
(subject/tester), and an acoustic model trained on
the TEDLIUM corpus. Each component of the
ASR system was developed as follows:

• Acoustic Model: The TEDLIUM corpus
contains over 1,400 audio recordings and text
transcription of TED talks, for a total of 120
hours of data and 1.7M words (Rousseau
et al., 2012). Using this corpus, we trained
the acoustic model as a feedforward Neu-
ral Network (6 layers x 2048 hidden units)
with the Minimum Bayes Risk (MBR) cri-
terion using 40 mel filterbank features, via
the Kaldi speech recognition toolkit using the
‘s5’ TEDLIUM recipe (Povey et al., 2011;
Rousseau et al., 2012).

• Language Model: A tri-gram language
model was trained for each of the speaker and
tester using the SRILM toolkit (Stolcke et al.,
2002).

• Lexicon: We generated the word pronuncia-
tions using the LOGIOS lexical tool1.

We decoded the audio in three ways:

1. Oracle: A language model was trained
across all 92 transcripts, and utterances were
segmented according to manually generated
speaker turns.

2. Leave-one-out: A language model was
trained on all transcripts excluding the tran-
script of the audio being decoded. Utterances
were segmented according to manually gen-
erated speaker turns.

3. Leave-one-out + automatic segmentation:
A language model was trained on all tran-
scripts excluding the transcript of the audio

1http://www.speech.cs.cmu.edu/tools/
lextool.html
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being decoded. Utterances were not seg-
mented by speaker turns, the full audio was
decoded as a single segment.

The results are displayed in Table 4. Our Oracle
system performed with a WER of 66.7%, while
decoding without language modeling information
(of the audio being decoded) resulted in a WER of
68.6%. This relatively small difference in perfor-
mance (68.6% vs. 66.7%) indicated that the lan-
guage usage across the audio recordings was con-
sistent.

We also compared the Diariziation Error Rate
(DER) across the different setups (Table 4). This
helped us evaluate how well a speaker could
be identified given various levels of information
about the underlying segments being decoded.

ALL SEGMENTS

Oracle Loocv Loocv
auto seg.

WER (%) 66.7 68.6 81.3
DER (%) 35.8 (± 5.9) 37.2 (± 5.5) 40.5 (± 05.4)

Miss 00.2 (± 0.4) 00.2 (± 0.4) 00.2 (± 15.3)
False Alarm 03.9 (± 1.2) 04.1 (± 1.3) 03.7 (± 01.3)
Confusion 31.7 (± 5.9) 32.9 (± 5.5) 36.7 (± 05.3)

Cognitive ID
AUC 0.72 0.70 0.68

OPTIMUM SEGMENTS
95% subj.

& 10+ words
Top 9

longest
DER (%) - 98.2 (± 1.6) 99.9 (± 0.2)

Miss - 97.9 (± 2.1) 99.9 (± 0.4)
False Alarm - 00.0 (± 0.0) 00.0 (± 0.0)
Confusion - 00.3 (± 0.6) 0.02 (± 0.2)

Cognitive ID
AUC - 0.75 0.76

Table 1: ASR, Speaker ID, and Cognitive ID

5 Experiment 3: Cognitive ID

Using the classified speaker segments, we were
interested in determining the subject’s cognitive
condition (impaired or not). We modeled each
segment using logistic regression and 220 acoustic
features capturing prosody (pitch, zero-crossing
rate, jitter, harmonic-to-noise ration) and energy
in the speech (energy, spectral energy, shimmer).
Full details on the acoustic feature set, and method
for extraction can be found in (Alhanai et al.,
2017). To calculate model performance, we took
the mean predicted probability across all seg-
ments as a single value representing the probabil-
ity of a subject’s cognitive impairment. For this

experiment, we performed leave-one-out cross-
validation.

5.0.1 Speaker Turn Segmentations
For the experimental setup that used segmenta-
tions by speaker turn, we modeled cognitive im-
pairment within a grid search space along two di-
mensions: (a) the total number of words that were
decoded, and (b) by the percentage of words de-
coded that were hypothesized to belong to the sub-
ject. The results of evaluating cognitive impair-
ment in this search space can be viewed in Figure
1. The highest AUC (of 0.75) was found when
modeling with segments that had been decoded
with at least 10 words, and 95% of which were
hypothesized to belong to the subject.

AUC Heatmap
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Figure 1: Cognitive ID Heatmap. Heatmap of Subject
AUC across two thresholds, (y-axis) minimum number
of words decoded, and (x-axis) percentage of words in
a segment classified as the subject’s.

5.0.2 Discarding Speaker Segmentations
For the experimental setup that was decoded with-
out oracle speaker turn segmentation, we first seg-
mented the decoded hypothesis along silences that
were longer than 1.5 seconds, and then segmented
according to the hypothesized speaker. For mod-
eling, we selected the top N longest segments that
were hypothesized to be the subject’s, where N
was evaluated from 1 to 15. 99% of segments hy-
pothesized were under 25 seconds in duration, and
as a pre-processing step we discarded the longest
1% of hypothesized segments, which were many
minutes long and several standard deviations be-
yond the mean (i.e. spurious decodings). The
highest AUC (of 0.76) was found when modeling
the 9 longest segments hypothesized as the sub-
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ject’s. This was an average of 150 seconds (±20
sec) of audio per subject, or 7% of a subject’s total
audio duration.

0 5 10 15

number of subject segments
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Figure 2: Cognitive ID by Number of Segments. Plot
of AUC (y-axis) with respect to the number of seg-
ments per-subject (by descending order of length) used
for modeling their cognitive impairment (x-axis). Red
points indicate best performance (AUC 0.72 and 0.75
for oracle and automatic segmentation systems respec-
tively).

6 Discussion

Utilizing audio recordings of spoken interactions
between subjects and tester, the work in this paper
sought to: (1) automatically extract and identify
segments of speech that were most likely to be-
long to the subject, and (2) to evaluate the type of
segments that were most predictive of a subject’s
cognitive condition.

6.1 Experiment 1: Speaker ID from Text

Our results from the first experiment showed that
language usage between the subject and tester dif-
fered significantly, and that each speaker’s lan-
guage style was consistent across recordings (i.e.
subjects consistently spoke like other subjects,
and testers consistently spoke like other testers).
Therefore, with the availability of highly accurate
transcriptions of the same structure (neuropsy-
chological exams), a highly accurate text-based
speaker diarization can be conducted.

6.2 Experiment 2: Speaker ID from ASR

Our second set of experiments validated the obser-
vation from the previous experiment on language
usage patterns across speaker roles (i.e. subjects

consistently spoke like other subjects, testers con-
sistently spoke like other testers, and subjects and
testers did not speak like each other). Also, seem-
ingly high WERs (between 66.7% and 81.3%) still
contained information that was robust enough for
further usage in diarization and modeling of cog-
nitive impairment.

6.3 Experiment 3: Cognitive ID
Our last experiment showed that it was possible to
perform modeling of cognitive impairment utiliz-
ing automatically segmented subject speaker turns
that was on par with the oracle speaker segmenta-
tion, and that 9 segments was sufficient for evalu-
ation. As shown in Figure 2, we also found that
not all diarization was equal, nor were all seg-
ment lengths equally powerful at modeling sub-
jects’ cognitive state. In the case where no or-
acle segmentation was available, and automatic
segmentation was utilized, longer segments con-
tained information that was more discriminative
(AUC 0.68 vs. 0.76). For the oracle system, the
longest system was the most and equally predic-
tive of cognitive impairment, as all segments taken
together. This highlights that tests that elicited
longer responses allowed for more robust diariza-
tion, were evaluating cognitive performance that
was (via speech) most strongly associated with the
outcome, and/or that longer spoken segments pro-
vided more opportunity to capture patterns associ-
ated with cognitive impairment.

Furthermore, the modeling paradigm we ex-
plored was robust enough that neither the under-
lying neuropsychological test need be explicitly
modeled (Lehr et al., 2012), nor do the features
utilized require word or phone alignments (align-
ments which require accurate transcriptions in or-
der to generate) (Tóth et al., 2015).
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Abstract

Attention-based recurrent neural network
models for joint intent detection and slot
filling have achieved the state-of-the-art
performance, while they have independent
attention weights. Considering that slot and
intent have the strong relationship, this paper
proposes a slot gate that focuses on learning
the relationship between intent and slot atten-
tion vectors in order to obtain better semantic
frame results by the global optimization. The
experiments show that our proposed model
significantly improves sentence-level semantic
frame accuracy with 4.2% and 1.9% relative
improvement compared to the attentional
model on benchmark ATIS and Snips datasets
respectively1.

1 Introduction

Spoken language understanding (SLU) is a criti-
cal component in spoken dialogue systems. SLU
is aiming to form a semantic frame that captures
the semantics of user utterances or queries. It typ-
ically involves two tasks: intent detection and slot
filling (Tur and De Mori, 2011). These two tasks
focus on predicting speakers intent and extract-
ing semantic concepts as constraints for the nat-
ural language. Take a movie-related utterance as
an example, ”find comedies by James Cameron”,
as shown in Figure 1. There are different slot la-
bels for each word in the utterance, and a specific
intent for the whole utterance.

Slot filling can be treated as a sequence label-
ing task that maps an input word sequence x =
(x1, · · · , xT ) to the corresponding slot label se-
quence yS = (yS1 , · · · , yST ), and intent detection
can be seen as a classification problem to decide
the intent label yI . Popular approaches for slot fill-
ing include conditional random fields (CRF) (Ray-

1The code is available at: https://github.com/
MiuLab/SlotGated-SLU.

W find comedies by james cameron
↓ ↓ ↓ ↓ ↓

S O B-genre O B-dir I-dir
I find movie

Figure 1: An example utterance with annotations of se-
mantic slots in IOB format (S) and intent (I), B-dir and
I-dir denote the director name.

mond and Riccardi, 2007) and recurrent neural
network (RNN) (Yao et al., 2014), and different
classification methods, such as support vector ma-
chine (SVM) and RNN, have been applied to in-
tent prediction.

Considering that pipelined approaches usually
suffer from error propagation due to their inde-
pendent models, the joint model for slot filling
and intent detection has been proposed to improve
sentence-level semantics via mutual enhancement
between two tasks (Guo et al., 2014; Hakkani-Tür
et al., 2016; Chen et al., 2016). In addition, the
attention mechanism (Bahdanau et al., 2014) was
introduced and leveraged into the model in order
to provide the precise focus, which allows the net-
work to learn where to pay attention in the in-
put sequence for each output label (Liu and Lane,
2015, 2016). The attentional model proposed by
Liu and Lane (2016) achieved the state-of-the-art
performance for joint slot filling and intent predic-
tion, where the parameters for slot filling and in-
tent prediction are learned in a single model with
a shared objective. However, the prior work did
not “explicitly” model the relationships between
the intent and slots; instead, it applied a joint loss
function to “implicitly” consider both cues. Be-
cause the slots often highly depend on the in-
tent, this work focuses on how to model the ex-
plicit relationships between slots and intent vec-
tors by introducing a slot-gated mechanism. The
contributions are three-fold: 1) the proposed slot-

753



𝑥1 𝑥2 𝑥3 𝑥4

Intent     Attention

𝑦1
𝑆 𝑦2

𝑆 𝑦3
𝑆 𝑦4

𝑆

𝑦𝐼

Slot 
Gate

BLSTM

Word 
Sequence

Slot 
Sequence

Slot       Attention

ℎ1 ℎ2 ℎ3 ℎ4
Intent

𝑥1 𝑥2 𝑥3 𝑥4

Intent     Attention

𝑦1
𝑆 𝑦2

𝑆 𝑦3
𝑆 𝑦4

𝑆

𝑦𝐼

Slot 
Gate

BLSTM

Word 
Sequence

Slot 
Sequence

ℎ1 ℎ2 ℎ3 ℎ4
Intent

(a) Slot-Gated Model with Full Attention (b) Slot-Gated Model with Intent Attention

Figure 2: The architecture of the proposed slot-gated models.

gated approach achieves better performance than
the attention-based models; 2) the experiments on
two SLU datasets show the generalization and the
effectiveness of the proposed slot gate; 3) the gat-
ing results help us analyze the slot-intent relations.

2 Proposed Approach

This section first explains our attention-based
RNN model and then introduces the proposed slot
gate mechanism for joint slot filling and intent pre-
diction. The model architecture is illustrated in
Figure 2, where there are two different model. (a)
is one with both slot attention and intent attention
and (b) is another with only intent attention.

2.1 Attention-Based RNN Model
The bidirectional long short-term memory
(BLSTM) model (Mesnil et al., 2015) takes
a word sequence x = (x1, . . . , xT ) as input,
and then generates forward hidden state

−→
hi and

backward hidden state
←−
hi . The final hidden state

hi at time step i is a concatenation of
−→
hi and

←−
hi ,

i.e. hi = [
−→
hi ,
←−
hi ].

Slot Filling For slot filling, x is mapping
to its corresponding slot label sequence y =
(yS1 , . . . , y

S
T ). For each hidden state hi, we com-

pute the slot context vector cSi as the weighted
sum of LSTM’s hidden states, h1, ..., hT , by the
learned attention weights αS

i,j :

cSi =
T∑

j=1

αS
i,jhj , (1)

where the slot attention weights are computed as
below.

αS
i,j =

exp(ei,j)∑T
k=1 exp(ei,k)

, (2)

ei,k = σ(WS
hehk), (3)

where σ is the activation function, and WS
he is the

weight matrix of a feed-forward neural network.
Then the hidden state and the slot context vector
are utilized for slot filling:

ySi = softmax(WS
hy(hi + cSi )), (4)

where ySi is the slot label of the i-th word in the in-
put, and WS

hy is the weight matrix. The slot atten-
tion is shown as the blue component in Figure 2(a).

Intent Prediction The intent context vector cI

can also be computed in the same manner as cS ,
but the intent detection part only takes the last hid-
den state of BLSTM. The intent prediction is mod-
eled similarly:

yI = softmax(W I
hy(hT + cI)). (5)

2.2 Slot-Gated Mechanism
This section describes the proposed slot-gated
mechanism illustrated in the red part of Figure 2.
The proposed slot-gated model introduces an ad-
ditional gate that leverages intent context vector
for modeling slot-intent relationships in order to
improve slot filling performance. First, slot con-
text vector cSi and intent context vector cI are com-
bined (cI broadcasts in time dimension to have the
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same shape with cSi ) to pass through a slot gate
illustrated in Figure 3:

g =
∑

v · tanh(cSi +W · cI) (6)

where v and W are trainable vector and matrix re-
spectively. The summation is done over elements
in one time step. g can be seen as a weighted fea-
ture of the joint context vector (cSi and cI ). We use
g to weight between hi and cSi to derive ySi and
replace (4) as below:

ySi = softmax(WS
hy(hi + cSi · g)). (7)

A larger g indicates that the slot context vector and
the intent context vector pay attention to the same
part of the input sequence, which also infers that
the correlation between the slot and the intent is
stronger and the context vector is more “reliable”
for contributing the prediction results.

To compare the power of the slot gate with at-
tention mechanism, we also propose a slot-gated
model with only intent attention in which (6) and
(7) are reformed as (8) and (9) respectively (shown
in Figure 2(b)):

g =
∑

v · tanh(hi +W · cI) (8)

ySi = softmax(WS
hy(hi + hi · g)) (9)

This version allows the slots and intent to share the
attention mechanism.

2.3 Joint Optimization
To obtain both slot filling and intent prediction
jointly, the objective is formulated as

p(yS , yI | x) (10)

ATIS Snips
Vocabulary Size 722 11,241
#Slots 120 72
#Intents 21 7
Training Set Size 4,478 13,084
Development Set Size 500 700
Testing Set Size 893 700

Table 1: Statistics of ATIS and Snips datasets.

= p(yI | x)
T∏

t=1

p(ySt | x)

= p(yI | x1, · · · , xT )
T∏

t=1

p(ySt | x1, · · · , xT ),

where p(yS , yI | x) is the conditional probability
of the understanding result (slot filling and intent
prediction) given the input word sequence and is
maximized for SLU.

3 Experiment

To evaluate the proposed model, we conduct ex-
periments on the benchmark datasets, ATIS (Air-
line Travel Information System) and Snips. The
statistics are shown in Table 1.

3.1 Setup

The ATIS (Airline Travel Information Systems)
dataset (Tur et al., 2010) is widely used in SLU
research. The dataset contains audio recordings of
people making flight reservations. The training set
contains 4,478 utterances and the test set contains
893 utterances. We use another 500 utterances for
development set. There are 120 slot labels and 21
intent types in the training set.

To justify the generalization of the proposed
model, we use another NLU dataset custom-
intent-engines2 collected by Snips for model eval-
uation. This dataset is collected from the Snips
personal voice assistant, where the number of
samples for each intent is approximately the same.
The training set contains 13,084 utterances and the
test set contains 700 utterances. We use another
700 utterances as the development set. There are
72 slot labels and 7 intent types.

Compared to single-domain ATIS dataset, Snips
is more complicated mainly due to the intent diver-

2https://github.com/snipsco/
nlu-benchmark/tree/master/
2017-06-custom-intent-engines
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Intent Utterance Example
SearchCreativeWork Find me the I, Robot television show
GetWeather Is it windy in Boston, MA right now?
BookRestaurant I want to book a highly rated restaurant tomorrow night
PlayMusic Play the last track from Beyonc off Spotify
AddToPlaylist Add Diamonds to my roadtrip playlist
RateBook Give 6 stars to Of Mice and Men
SearchScreeningEvent Check the showtimes for Wonder Woman in Paris

Table 2: Intents and examples in Snips dataset.

Model
ATIS Dataset Snips Dataset

Slot Intent Sentence Slot Intent Sentence
(F1) (Acc) (Acc) (F1) (Acc) (Acc)

Joint Seq. (Hakkani-Tür et al., 2016) 94.3 92.6 80.7 87.3 96.9 73.2
Atten.-Based (Liu and Lane, 2016) 94.2 91.1 78.9 87.8 96.7 74.1

Proposed
Slot-Gated (Full Atten.) 94.8† 93.6† 82.2† 88.8† 97.0 75.5†
Slot-Gated (Intent Atten.) 95.2† 94.1† 82.6† 88.3 96.8 74.6

Table 3: SLU performance on ATIS and Snips datasets (%). † indicates the significant improvement over all
baselines (p < 0.05).

sity and large vocabulary. Table 2 shows the in-
tents and associated utterance examples. Regard-
ing the intent diversity, for example, GetWeather
and BookRestaurant in Snips are from different
topics, resulting larger vocabulary. In the other
hand, intents in ATIS are all about flight informa-
tion with similar vocabularies across them. More-
over, intents in ATIS are highly unbalanced, where
atis flight accounts for about 74% of training data
while atis cheapest appears only once. The com-
parison between two datasets can be found in Ta-
ble 1.

In all experiments, we set the size of hidden
vectors to 64, the optimizer is adam, the reported
numbers are averaged over 20 runs, and the maxi-
mum epoch is set to 10 and 20 on ATIS and Snips
respectively with an early-stop strategy.

3.2 Results and Analysis

We evaluate the SLU performance about slot fill-
ing using F1 score, intent prediction using ac-
curacy, and sentence-level semantic frame pars-
ing using whole frame accuracy. The experimen-
tal results are shown in Table 3, where the com-
pared baselines for joint slot filling and intent pre-
diction include the state-of-the-art sequence-based
joint model using bidirectional LSTM (Hakkani-
Tür et al., 2016) and attention-based model (Liu
and Lane, 2016). We validate the performance
improvement with statistical significance test for

all experiments, where single-tailed t-test is per-
formed to measure whether the results from the
proposed model are significant better than ones
from baselines. The numbers with star markers
indicate that the improvement is significant with
p < 0.05.

Table 3 shows that the proposed slot-gated
mechanism with full attention significantly outper-
forms the baselines for both datasets, where al-
most all tasks (slot filling, intent prediction, and
semantic frame) obtain the improvement, demon-
strating that explicitly modeling strong relation-
ships between slots and intent can benefit SLU ef-
fectively. In ATIS dataset, the proposed slot-gated
model with only intent attention achieves slightly
better performance with fewer parameters (from
284K to 251K). However, it does not achieve bet-
ter results in Snips dataset. Considering different
complexity of these datasets, the probable reason
is that a simpler SLU task, such as ATIS, does not
require additional slot attention to achieve good
results, and the slot gate is capable of providing
enough cues for slot filling. On the other hand,
Snips is more complex, so that the slot attention is
needed in order to model slot filling better (as well
as the semantic frame results).

It is obvious that our proposed model performs
better especially on sentence-level semantic frame
results, where the relative improvement is around
4.1% and 1.9% for ATIS and Snips respectively.
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It may credit to the proposed slot gate that learns
the slot-intent relations to provide helpful infor-
mation for global optimization of the joint model.
In sum, for joint slot filling and intent prediction,
the experiments show that leveraging explicit slot-
intent relations controlled by the slot-gated mech-
anism can effectively achieve better sentence-level
semantic frame performance due to global consid-
eration.

4 Conclusion

This paper focuses on learning the explicit slot-
intent relations by introducing a slot-gated mech-
anism into the state-of-the-art attention model,
which allows the slot filling can be conditioned on
the learned intent result in order to achieve better
SLU (joint slot filling and intent detection). The
experiments show that the proposed approach out-
performs the baselines and can be generalized to
different datasets. Also, the slot-gated model is
more useful for a simple understanding task, be-
cause the slot-intent relations are stronger and eas-
ily modeled, and this paper provides the guidance
of model design for future SLU work.
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Abstract
Recent research in language and vision has
developed models for predicting and disam-
biguating verbs from images. Here, we ask
whether the predictions made by such mod-
els correspond to human intuitions about vi-
sual verbs. We show that the image regions a
verb prediction model identifies as salient for
a given verb correlate with the regions fixated
by human observers performing a verb classi-
fication task.

1 Introduction

Recent research in language and vision has applied
fundamental NLP tasks in a multimodal setting.
An example is word sense disambiguation (WSD),
the task of assigning a word the correct meaning
in a given context. WSD traditionally uses textual
context, but disambiguation can be performed us-
ing an image context instead, relying on the fact
that different word senses are often visually dis-
tinct. Early work has focused on the disambigua-
tion of nouns (Loeff et al., 2006; Saenko and Dar-
rell, 2008; Chen et al., 2015), but more recent re-
search has proposed visual sense disambiguation
models for verbs (Gella et al., 2016). This is a con-
siderably more challenging task, as unlike objects
(denoted by nouns), actions (denoted by verbs) are
often not clearly localized in an image. Gella et al.
(2018) propose a two-stage approach, consisting
of a verb prediction model, which labels an image
with potential verbs, followed by a visual sense
disambiguation model, which uses the image to
determine the correct verb senses.

While this approach achieves good verb predic-
tion and sense disambiguation accuracy, it is not
clear to what extend the model captures human
intuitions about visual verbs. Specifically, it is in-
teresting to ask whether the image regions that the
model identifies as salient for a given verb corre-
spond to the regions a human observer relies on

when determining which verb is depicted. The out-
put of a verb prediction model can be visualized
as a heatmap over the image, where hot colors in-
dicate the most salient areas for a given task (see
Figure 2 for examples). In the same way, we can
determine which regions a human observes attends
to by eye-tracking them while viewing the image.
Eye-tracking data consists a stream of gaze coor-
dinates, which can also be turned into a heatmap.
Model predictions correspond to human intuitions
if the two heatmaps correlate.

In the present paper, we show that the heatmaps
generated by the verb prediction model of Gella
et al. (2018) correlate well with heatmaps obtained
from human observers performing a verb classifi-
cation task. We achieve a higher correlation than a
range of baselines (center bias, visual salience, and
model combinations), indicating that the verb pre-
diction model successfully identifies those image
regions that are indicative of the verb depicted in
the image.

2 Related Work

Most closely related is the work by Das et al. (2016)
who tested the hypothesis that the regions attended
to by neural visual question answering (VQA) mod-
els correlate with the regions attended to by humans
performing the same task. Their results were neg-
ative: the neural VQA models do not predict hu-
man attention better than a baseline visual salience
model (see Section 3). It is possible that this re-
sult is due to limitations of the study of Das et al.
(2016): their evaluation dataset, the VQA-HAT cor-
pus, was collected using mouse-tracking, which
is less natural and less sensitive than eye-tracking.
Also, their participants did not actually perform
question answering, but were given a question and
its answer, and then had to mark up the relevant
image regions. Das et al. (2016) report a human-
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Figure 1: A schematic view of our multilabel verb clas-
sification model.

human correlation of 0.623, which suggests low
task validity.

Qiao et al. (2017) also use VQA-HAT, but in a
supervised fashion: they train the attention compo-
nent of their VQA model on human attention data.
Not surprisingly, this results in a higher correlation
with human heatmaps than Das et al.’s (2016) unsu-
pervised approach. However, Qiao et al. (2017) fail
to compare to a visual salience model (given their
supervised setup, such the salience model would
also have to be trained on VQA-HAT for a fair
comparison).

The work that is perhaps closest to our own
work is Hahn and Keller (2016), who use a re-
inforcement learning model to predict eye-tracking
data for text reading (rather than visual processing).
Their model is unsupervised (there is no use of eye-
tracking data at training time), but achieves a good
correlation with eye-tracking data at test time.

Furthermore, a number of authors have used eye-
tracking data for training computer vision models,
including zero shot image classification (Karessli
et al., 2017), object detection (Papadopoulos et al.,
2014), and action classification in still images (Ge
et al., 2015; Yun et al., 2015) and videos (Dorr
and Vig, 2017). In NLP, some authors have used
eye-tracking data collected for text reading to train
models that perform part-of-speech tagging (Bar-
rett et al., 2016a,b), grammatical function classifi-
cation (Barrett and Søgaard, 2015), and sentence
compression (Klerke et al., 2016).

3 Fixation Prediction Models

Verb Prediction Model (M) In our study, we
used the verb prediction model proposed by Gella
et al. (2018), which employs a multilabel CNN-
based classification approach and is designed to
simultaneously predict all verbs associated with
an image. This model is trained over a vocabulary
that consists of the 250 most common verbs in
the TUHOI, Flickr30k, and COCO image descrip-
tion datasets. For each image in these datasets, we
obtained a set of verb labels by extracting all the

verbs from the ground truth descriptions of the im-
age (each image comes with multiple descriptions,
each of which can contribute one or more verbs).

Our model uses a sigmoid cross-entropy loss
and the ResNet 152-layer CNN architecture. The
network weights were initialized with the publicly
available CNN pretrained on ImageNet1 and fine-
tuned on the verb labels. We used stochastic gradi-
ent descent and trained the network with a batch
size of one for three epochs. The model architecture
is shown schematically in Figure 1.

To derive fixation predictions, we turned the out-
put of the verb prediction model into heatmaps us-
ing the class activation mapping (CAM) technique
proposed by Zhou et al. (2016). CAM uses global
average pooling of convolution feature maps to
identify the important image regions by projecting
back the weights of the output layer onto the con-
volutional feature maps. This technique has been
shown to achieve competitive results on both ob-
ject localization and localizing the discriminative
regions for action classification.

Center Bias (CB) We compare against a center
bias baseline, which simulates the task-independent
tendency of observers to make fixations towards
the center of an image. This is a strong baseline
for most eye-tracking datasets (Tatler, 2007). We
follow Clarke and Tatler (2014) and compute a
heatmap based on a zero mean Gaussian with a

co-variance matrix of
(

σ2 0
0 vσ2

)
, where σ2 = 0.22

and v = 0.45 (the values suggested by Clarke and
Tatler 2014).

Visual Salience (SM) Models of visual salience
are meant to capture the tendency of the human
visual system to fixate the most prominent parts of
a scene, often within a few hundred milliseconds
of exposure. A large number of salience models
have been proposed in the cognitive literature, and
we choose the model of Liu and Han (2016), as
it currently achieves the highest correlation with
human fixations on the MIT300 benchmark out of
77 models (Bylinskii et al., 2016).

The deep spatial contextual long-term recurrent
convolutional network (DSCLRCN) of Liu and
Han (2016) is trained on SALICON (Jiang et al.,
2015), a large human attention dataset, to infer
salience for arbitrary images. DSCLRCN learns
powerful local feature representations while simul-

1https://github.com/KaimingHe/
deep-residual-networks
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Figure 2: Heatmaps visualizing human fixations (H), Center Bias (CB), salience model (SM) predictions, and
verb model (M) prediction for randomly picked example images. The SM heatmaps are very focused, which is a
consequence of that model being trained on SALICON, which contains focused human attention maps. However,
our evaluation uses rank correlation, rather than correlation on absolute attention scores, and is therefore unaffected
by this issue.

taneously incorporating global context and scene
context to compute a heatmap representing visual
salience. Note that salience models are normally
tested using free viewing tasks or visual search
tasks, not verb prediction. However, salience can
be expected to play a large role in determining fix-
ation locations independent of task, so DSCLRCN
is a good baseline to compare to.

4 Eye-tracking Dataset

The PASCAL VOC 2012 Actions Fixation dataset
(Mathe and Sminchisescu, 2013) contains 9,157
images covering 10 action classes (phoning, read-
ing, jumping, running, walking, riding bike, rid-

ing horse, playing instrument, taking photo, using
computer). Each image is annotated with the eye-
fixations of eight human observers who, for each
image, were asked to recognize the action depicted
and respond with one of the class labels. Partici-
pants were given three seconds to freely view an
image while the x- and y-coordinates of their gaze
positions were recorded. (Note that the original
dataset also contained a control condition in which
four participants performed visual search; we do
not use the data from this control condition.) In
Figure 2 (row H) we show examples of heatmaps
generated from the human fixations in the Mathe
and Sminchisescu (2013) dataset. For details on
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Rank correlations
Verb Images H CB SM M CB+SM CB+M M+SM M+CB+SM
phoning 221 0.911 0.599 0.361 0.562 0.598 0.654 0.569 0.652
reading 231 0.923 0.589 0.404 0.544 0.598 0.655 0.558 0.655
jumping 201 0.930 0.612 0.300 0.560 0.609 0.650 0.561 0.647
running 154 0.934 0.548 0.264 0.536 0.545 0.604 0.536 0.602
walking 195 0.938 0.553 0.311 0.535 0.552 0.611 0.537 0.609
riding bike 199 0.925 0.580 0.329 0.518 0.578 0.622 0.527 0.621
riding horse 206 0.910 0.593 0.351 0.532 0.588 0.604 0.532 0.601
playing instrument 229 0.925 0.571 0.350 0.478 0.568 0.596 0.484 0.593
taking photo 205 0.925 0.656 0.354 0.508 0.647 0.630 0.514 0.628
using computer 196 0.916 0.633 0.389 0.525 0.626 0.655 0.533 0.652
overall 2037 0.923 0.592 0.344 0.529 0.591 0.628 0.535 0.626

Table 1: Table of average rank correlation scores for the verb prediction model (M), compared with the upper
bound of average human-human agreement (H), center bias (CB) baseline (Clarke and Tatler, 2014), and salience
map (SM) baseline (Liu and Han, 2016). Results are reported on the validation set of the PASCAL VOC 2012
Actions Fixation data (Mathe and Sminchisescu, 2013). The best score for each class is shown in bold (except
upper bound). Model combination are by mean of heatmaps.

the eye-tracking setup used, including information
on measurement error, please refer to Mathe and
Sminchisescu (2015), who used the same setup as
Mathe and Sminchisescu (2013).

While actions and verbs are distinct concepts
(Ronchi and Perona, 2015; Pustejovsky et al., 2016;
Gella and Keller, 2017), we can still use the PAS-
CAL Actions Fixation data to evaluate our model.
When predicting a verb, the model presumably has
to attend to the same regions that humans fixate on
when working out which action is depicted – all
the actions in the dataset are verb-based, hence rec-
ognizing the verb is part of recognizing the action.

5 Results

To evaluate the similarity between human fixa-
tions and model predictions, we first computed a
heatmap based on the human fixations for each im-
age. We used the PyGaze toolkit (Dalmaijer et al.,
2014) to generate Gaussian heatmaps weighted by
fixation durations. We then computed the heatmap
predicted by our model for the top-ranked verb the
model assigns to the image (out of its vocabulary of
250 verbs). We used the rank correlation between
these two heatmaps as our evaluation measure. For
this, both maps are converted into a 14×14 grid,
and each grid square is ranked according to its aver-
age attention score. Spearman’s ρ is then computed
between these two sets of ranks. This is the same
evaluation protocol that Das et al. (2016) used to
evaluate the heatmaps generated by two question
answering models with unsupervised attention, viz.,

the Stacked Attention Network (Yang et al., 2016)
and the Hierarchical Co-Attention Network (Lu
et al., 2016). This makes their rank correlations
and ours directly comparable.

In Table 1 we present the correlations between
human fixation heatmaps and model-predicted
heatmaps. All results were computed on the val-
idation portion of the PASCAL Actions Fixation
dataset. We average the correlations for each action
class (though the class labels were not used in our
evaluation), and also present overall averages. In
addition to our model results, we also give the cor-
relations of human fixations with (a) the center bias
baseline, and (b) the salience model. We also report
the correlations obtained by all combinations of our
model and these baselines. Finally, we report the
human-human agreement averaged over the eight
observes. This serves as an upper bound to model
performance.

The results show a high human-human agree-
ment for all verbs, with an average of 0.923. This is
considerably higher than the human-human agree-
ment of 0.623 that Das et al. (2016) report for their
question answering ask, indicating that verb classi-
fication is a task that can be performed more reli-
ably than Das et al.’s (2016) VQA region markup
task (they also used mouse-tracking rather than eye-
tracking, a less sensitive experimental method).

We also notice that the center baseline (CB) gen-
erally performs well, achieving an average corre-
lation of 0.592. The salience model (SM) is less
convincing, averaging a correlation of 0.344. This
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is likely due to the fact that SM was trained on the
SALICON dataset; a higher correlation can proba-
bly be achieved by fine-tuning the salience model
on the PASCAL Actions Fixation data. However,
this would no longer be fair comparison with our
verb prediction model, which was not trained on fix-
ation data (it only uses image description datasets
at training time, see Section 3). Adding SM to CB
does not lead to an improvement over CB alone,
with an average correlation of 0.591.

Our model (M) on its own achieves an average
correlation of 0.529, rising to 0.628 when com-
bined with center bias, clearly outperforming cen-
ter bias alone. Adding SM does not lead to a fur-
ther improvement (0.626). The combination of our
model with SM performs only slightly better than
the model on its own.

In Figure 2, we visualize samples of heatmaps
generated from the human fixations, the center-
bias, the salience model, and the predictions of our
model. We observe that human fixations and cen-
ter bias exhibit high overlap. The salience model
attends to regions that attract human attention in-
dependent of task (e.g., faces), while our model
mimics human observers in attending to regions
that are associated with the verbs depicted in the
image. In Figure 2 we can observe that our model
predicts fixations that vary with the different uses
of a given verb (riding bike vs. riding horse).

6 Conclusions

We showed that a model that labels images with
verbs is able to predict which image regions hu-
mans attend when performing the same task. The
model therefore captures aspects of human intu-
itions about how verbs are depicted. This is an
encouraging result given that our verb prediction
model was not designed to model human behavior,
and was trained on an unrelated image descrip-
tion dataset, without any access to eye-tracking
data. Our result contradicts the existing literature
(Das et al., 2016), which found no above-baseline
correlation between human attention and model
attention in a VQA task.
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Abstract

Automatic colorization is the process of
adding color to greyscale images. We condi-
tion this process on language, allowing end
users to manipulate a colorized image by feed-
ing in different captions. We present two dif-
ferent architectures for language-conditioned
colorization, both of which produce more
accurate and plausible colorizations than a
language-agnostic version. Through this
language-based framework, we can dramati-
cally alter colorizations by manipulating de-
scriptive color words in captions.

1 Introduction

Automatic image colorization (Cheng et al., 2015;
Larsson et al., 2016; Zhang et al., 2016; Iizuka
et al., 2016; Deshpande et al., 2017)—the process
of adding color to a greyscale image—is inherently
underspecified. Unlike background scenery such
as sky or grass, many common foreground objects
could plausibly be of any color, such as a person’s
clothing, a bird’s feathers, or the exterior of a car.
Interactive colorization seeks human input, usually
in the form of clicks or strokes on the image with a
selected color, to reduce these ambiguities (Levin
et al., 2004; Huang et al., 2005; Endo et al., 2016;
Zhang et al., 2017). We introduce the task of col-
orization from natural language, a previously unex-
plored source of color specifications.

Many use cases for automatic colorization in-
volve images paired with language. For example,
comic book artwork is normally first sketched in
black-and-white by a penciller; afterwards, a col-
orist selects a palette that thematically reinforces
the written script to produce the final colorized art.
Similarly, older black-and-white films are often col-
orized for modern audiences based on cues from
dialogue and narration (Van Camp, 1995).

FAuthors contributed equally

Language is a weaker source of supervision for
colorization than user clicks. In particular, lan-
guage lacks ground-truth information about the
colored image (e.g., the exact color of a pixel or
region). Given a description like a blue motorcy-
cle parked next to a fleet of sedans, an automatic
colorization system must first localize the motorcy-
cle within the image before deciding on a context-
appropriate shade of blue to color it with. The chal-
lenge grows with abstract language: a red color
palette likely suits an artistic rendering of the boy
threw down his toy in a rage better than it does the
boy lovingly hugged his toy.

We present two neural architectures for
language-based colorization that augment an exist-
ing fully-convolutional model (Zhang et al., 2016)
with representations learned from image captions.
As a sanity check, both architectures outperform a
language-agnostic model on an accuracy-based col-
orization metric. However, we are more interested
in whether modifications to the caption properly
manifest themselves in output colorizations (e.g.,
switching one color with another); crowdsourced
evaluations confirm that our models properly local-
ize and color objects based on captions (Figure 1).

2 Model

This section provides a quick introduction to color
spaces (Sec. 2.1) and then describes our baseline
colorization network (Sec. 2.2) alongside two mod-
els (Sec. 2.3) that colorize their output on represen-
tations learned from language.

2.1 Images and color spaces

An image is usually represented as a three dimen-
sional tensor with red, green and blue (RGB) chan-
nels. Each pixel’s color and intensity (i.e., light-
ness) are jointly represented by the values of these
three channels. However, in applications such as
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Figure 1: Three pairs of images whose colorizations are conditioned on corresponding captions by our FILM
architecture. Our model can localize objects mentioned by the captions and properly color them.

colorization, it is more convenient to use represen-
tations that separately encode lightness and color.
These color spaces can be obtained through mathe-
matical transformations of the RGB color space; in
this work, following Zhang et al. (2016), we use
the CIE Lab space (Smith and Guild, 1931). Here,
the first channel (L) encodes only lightness (i.e.,
black-and-white). The two color channels a and
b represent color values between green to red and
blue to yellow, respectively. In this formulation, the
task of colorization is equivalent to taking the light-
ness channel of an image as input and predicting
the two missing color channels.

2.2 Fully-convolutional networks for
colorization

Following Zhang et al. (2016), we treat coloriza-
tion as a classification problem in CIE Lab space:
given only the lightness channel L of an image (i.e.,
a greyscale version), a fully-convolutional network
predicts values for the two color channels a and b.
For efficiency, we deviate from Zhang et al. (2016)
by quantizing the color channels into a 25×25 grid,
which results in 625 labels for classification. To
further speed up training, we use a one-hot encod-
ing for the ab channels instead of soft targets as
in Zhang et al. (2016); preliminary experiments
showed no qualitative difference in colorization
quality with one-hot targets. The contribution of
each label to the loss is downweighted by a factor
inversely proportional to its frequency in the train-
ing set, which prevents desaturated ab values. Our
baseline network architecture (FCNN) consists of
eight convolutional blocks, each of which contains
multiple convolutional layers followed by batch
normalization (Ioffe and Szegedy, 2015).1 Next,
we propose two ways to integrate additional text

1See Zhang et al. (2016) for complete architectural de-
tails. Code and pretrained models are available at https:
//github.com/superhans/colorfromlanguage.

ab Accuracy Human Experiments

Model acc@1 acc@5 plaus. qual. manip.

FCNN 15.4 45.8 20.4 32.6 N/A
CONCAT 17.9 50.3 39.0 34.1 77.4

FILM 23.7 60.5 40.6 32.1 81.2

Table 1: While FILM is the most accurate model in ab
space, its outputs are about as contextually plausible
as CONCAT’s according to our plausibility task, which
asks workers to choose which model’s output best de-
picts a given caption (however, both models signifi-
cantly outperform the language-agnostic FCNN). This
additional plausibility does not degrade the output, as
shown by our quality task, which asks workers to distin-
guish an automatically-colorized image from a real one.
Finally, our caption manipulation experiment, in which
workers are guided by a caption to select one of three
outputs generated with varying color words, shows that
modifying the caption significantly affects the outputs
of CONCAT and FILM.

input into FCNN.

2.3 Colorization conditioned on language

Given an image I paired with a unit of text T, we
first encode T into a continuous representation
h using the last hidden state of a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997). We
integrate h into every convolutional block of the
FCNN, allowing language to influence the compu-
tation of all intermediate feature maps.

Specifically, say Zn is the feature map of the
nth convolutional block. A conceptually simple
way to incorporate language into this feature map
is to concatenate h to the channels at each spatial
location i, j in Zn, forming a new feature map

Z′ni,j = [Zni,j ;h]. (1)

While this method of integrating language with
images (CONCAT) has been successfully used for
other vision and language tasks (Reed et al., 2016;
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Figure 2: FILM applies feature-wise affine transforma-
tions (conditioned on language) to the output of each
convolutional block in our architecture.

Feichtenhofer et al., 2016), it requires consider-
ably more parameters than the FCNN due to the
additional language channels.

Inspired by recent work on visual question an-
swering, we also experiment with a less parameter-
hungry approach, feature-wise linear modula-
tion (Perez et al., 2018, FILM), to fuse the language
and visual representations. Since the activations
of FILM layers have attention-like properties when
trained on VQA, we also might expect FILM to
be better at localizing objects from language than
CONCAT on colorization (see Figure 4 for heatmap
visualizations).

FILM applies a feature-wise affine transforma-
tion to the output of each convolutional block,
where the transformation weights are conditioned
on language (Figure 2). Given Zn and h, we first
compute two vectors γn and βn through linear
projection,

γn = Wnγh βn = Wnβh, (2)

where Wnγ and Wnβ are learned weight matrices.
The modulated feature map then becomes

Z′ni,j = (1 + γn) ◦ Zni,j + βn, (3)

where ◦ denotes the element-wise product. Com-
pared to CONCAT, FILM is parameter-efficient, re-
quiring just two additional weight matrices per fea-
ture map.

3 Experiments

We evaluate FCNN, CONCAT, and FILM using ac-
curacy in ab space (shown by Zhang et al. (2016)
to be a poor substitute for plausibility) and with
crowdsourced experiments that ask workers to
judge colorization plausibility, quality, and the

colorization flexibly reflects language manipula-
tions. Table 1 summarizes our results; while there
is no clear winner between FILM and CONCAT,
both rely on language to produce higher-quality
colorizations than those generated by FCNN.

3.1 Experimental setup

We train all of our models on the 82,783 images
in the MSCOCO (Lin et al., 2014) training set, each
of which is paired with five crowdsourced cap-
tions. Training from scratch on MSCOCO results in
poor quality colorizations due to a combination of
not enough data and increased image complexity
compared to ImageNet (Russakovsky et al., 2015).
Thus, for our final models, we initialize all convolu-
tional layers with a FCNN pretrained on ImageNet;
we finetune both FILM and CONCAT’s convolu-
tional weights during training. To automatically
evaluate the models, we compute top-1 and top-
5 accuracy in our quantized ab output space2 on
the MSCOCO validation set. While FILM achieves
the highest ab accuracy, FILM and CONCAT do
not significantly differ on crowdsourced evaluation
metrics.

3.2 Human experiments

We run three human evaluations of our models on
the Crowdflower platform to evaluate their plausi-
bility, overall quality, and how well they condition
their output on language. Each evaluation is run
using a random subset of 100 caption/image pairs
from the MSCOCO validation set,3 and we obtain
five judgments per pair.

Plausibility given caption: We show workers
a caption along with three images generated by
FCNN, CONCAT, and FILM. They choose the im-
age that best depicts the caption; if multiple im-
ages accurately depict the caption, we ask them to
choose the most realistic. FCNN does not receive
the caption as input, so it makes sense that its out-
put is only chosen 20% of the time; there is no
significant difference between CONCAT and FILM
in plausibility given the caption.

Colorization quality: Workers receive a pair of
images, a ground-truth MSCOCO image and a gen-
erated output from one of our three architectures,

2We evaluate accuracy at the downsampled 56×56 resolu-
tion at which our network predicts colorizations. For human
experiments, the prediction is upsampled to 224×224.

3We only evaluate on captions that contain one of ten
“color” words (e.g., red, blue purple).
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Figure 3: The top row contains successes from our caption manipulation task generated by FILM and CONCAT,
respectively. The second row shows examples of how captions guide FILM to produce more accurate colorizations
than FCNN (failure cases outlined in red). The final row contains, from left to right, particularly eye-catching
colorizations from both CONCAT and FILM, a case where FILM fails to localize properly, and an image whose
unnatural caption causes artifacts in CONCAT.

and are asked to choose the image that was not
colored by a computer. The goal is to fool workers
into selecting the generated images; the “fooling
rates” for all three architectures are comparable,
which indicates that we do not reduce colorization
quality by conditioning on language.

Caption manipulation: Our last evaluation mea-
sures how much influence the caption has on the
CONCAT and FILM models. We generate three dif-
ferent colorizations of a single image by swapping
out different colors in the caption (e.g., blue car,
red car, green car). Then, we provide workers with
a single caption (e.g., green car) and ask them to
choose which image best depicts the caption. If our
models cannot localize and color the appropriate
object, workers will be unable to select an appro-
priate image. Fortunately, CONCAT and FILM are
both robust to caption manipulations (Table 1).

4 Discussion

Both CONCAT and FILM can manipulate image
color from captions (further supported by the top
row of Figure 3). Here, we qualitatively examine
model outputs and identify potential directions for
improvement.

Language-conditioned colorization depends on
correspondences between language and color statis-
tics (stop signs are always red, and school buses
are always yellow). While this extra information
helps us produce more plausible colorizations com-
pared to language-agnostic models (second row
of Figure 3), it biases models trained on natural
images against unnatural colorizations. For exam-
ple, the yellow sky produced by CONCAT in the
bottom right of Figure 3 contains blue artifacts be-
cause skies are usually blue in MSCOCO. Addition-
ally, our models are limited by the lightness chan-
nel L of the greyscale image, which prevents dra-
matic color shifts like black-to-white. Smaller ob-
jects are also problematic; often, colors will “leak”

767



Figure 4: Examples of intermediate layer activations while generating colorized images using the FILM network.
These activation maps correspond to the mean activation immediately after the FILM layers of the sixth, seventh,
and eighth blocks. Interestingly, the activations after the FILM layer of Block 6 always seems to focus on the object
that is to be colorized, while those of Block 8 focus almost exclusively on the background. The activation maps
do not significantly differ when color words in the caption are manipulated; therefore, we show maps only for the
first color word in these examples.

into smaller objects from larger ones, as shown
by FILM’s colorizations of purple plants (Figure 3,
bottom-middle) and yellow tires (middle-left).

Figure 4 shows activation maps from interme-
diate layers generated while colorizing images us-
ing the FILM network. Each intermediate layer is
captured immediately after the FILM layer and is
of dimension h × w × c (e.g., 112 × 112 × 64,
28× 28× 512, etc.), where h is the height of the
feature map, w is its width, and c is the number
of channels.4 On inspection, the first few activa-
tion maps correspond to edges and are not visually
interesting. However, we notice that the sixth acti-
vation map usually focuses on the principal subject
of the image (such as a car or a horse), while the
eighth activation map focused everywhere but on
that subject (i.e., entirely on the background). This
analysis demonstrates that the FILM layer emulates
visual attention, reinforcing similar observations
on visual QA datasets by Perez et al. (2018).

5 Future Work

While these experiments are promising, that there
are many avenues to improve language-conditioned
colorization. From a vision perspective, we would
like to more accurately colorize parts of objects
(e.g., a person’s shoes); moving to more complex ar-

4We compute the mean across the c dimension and scale
the resulting h× w feature map between the limits [0, 255].

chitectures such as variational autoencoders (Desh-
pande et al., 2017) or PixelCNNs (Guadarrama
et al., 2017) might help here, as could increasing
training image resolution. We also plan on using
refinement networks (Shrivastava et al., 2017) to
correct for artifacts in the colorized output image.
On the language side, moving from explicitly spec-
ified colors to abstract or emotional language is
a particularly interesting. We plan to train our
models on dialogue/image pairs from datasets such
as COMICS (Iyyer et al., 2017) and visual story-
telling (Huang et al., 2016); these models could
also help learn powerful joint representations of
vision and language to improve performance on
downstream prediction tasks.
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Abstract

Wit is a form of rich interaction that is often
grounded in a specific situation (e.g., a com-
ment in response to an event). In this work,
we attempt to build computational models that
can produce witty descriptions for a given im-
age. Inspired by a cognitive account of hu-
mor appreciation, we employ linguistic word-
play, specifically puns, in image descriptions.
We develop two approaches which involve re-
trieving witty descriptions for a given image
from a large corpus of sentences, or generat-
ing them via an encoder-decoder neural net-
work architecture. We compare our approach
against meaningful baseline approaches via
human studies and show substantial improve-
ments. We find that when a human is sub-
ject to similar constraints as the model regard-
ing word usage and style, people vote the im-
age descriptions generated by our model to be
slightly wittier than human-written witty de-
scriptions. Unsurprisingly, humans are almost
always wittier than the model when they are
free to choose the vocabulary, style, etc.

1 Introduction
“Wit is the sudden marriage of ideas which before
their union were not perceived to have any rela-
tion.” – Mark Twain. Witty remarks are often
contextual, i.e., grounded in a specific situation.
Developing computational models that can emu-
late rich forms of interaction like contextual hu-
mor, is a crucial step towards making human-AI
interaction more natural and more engaging (Yu
et al., 2016). E.g., witty chatbots could help re-
lieve stress and increase user engagement by being
more personable and human-like. Bots could au-
tomatically post witty comments (or suggest witty
responses) on social media, chat, or messaging.

The absence of large scale corpora of witty cap-
tions and the prohibitive cost of collecting such a
dataset (being witty is harder than just describing

(a) Generated: a poll (pole)
on a city street at night.
Retrieved: the light knight
(night) chuckled.
Human: the knight (night)
in shining armor drove away.

(b) Generated: a bare (bear)
black bear walking through a
forest.
Retrieved: another reporter is
standing in a bare (bear) brown
field.
Human: the bear killed the
lion with its bare (bear) hands.

Figure 1: Sample images and witty descriptions from 2
models, and a human. The words inside ‘()’ (e.g., pole
and bear) are the puns associated with the image, i.e.,
the source of the unexpected puns used in the caption
(e.g., poll and bare).

an image) makes the problem of producing con-
textually witty image descriptions challenging.

In this work, we attempt to tackle the challeng-
ing task of producing witty (pun-based) remarks
for a given (possibly boring) image. Our approach
is inspired by a two-stage cognitive account of hu-
mor appreciation (Suls, 1972) which states that a
perceiver experiences humor when a stimulus such
as a joke, captioned cartoon, etc., causes an incon-
gruity, which is shortly followed by resolution.

We introduce an incongruity in the perceiver’s
mind while describing an image by using an un-
expected word that is phonetically similar (pun)
to a concept related to the image. E.g., in Fig. 1b,
the expectations of a perceiver regarding the image
(bear, stones, etc.) is momentarily disconfirmed
by the (phonetically similar) word ‘bare’. This
incongruity is resolved when the perceiver parses
the entire image description. The incongruity fol-
lowed by resolution can be perceived to be witty.1

1Indeed, a perceiver may fail to appreciate wit if the pro-
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We build two computational models based on
this approach to produce witty descriptions for an
image. First, a model that retrieves sentences con-
taining a pun that are relevant to the image from a
large corpus of stories (Zhu et al., 2015). Second,
a model that generates witty descriptions for an
image using a modified inference procedure dur-
ing image captioning which includes the specified
pun word in the description.

Our paper makes the following contributions:
To the best of our knowledge, this is the first work
that tackles the challenging problem of produc-
ing a witty natural language remark in an every-
day (boring) context. We present two novel mod-
els to produce witty (pun-based) captions for a
novel (likely boring) image. Our models rely on
linguistic wordplay. They use an unexpected pun
in an image description during inference/retrieval.
Thus, they do not require to be trained with witty
captions. Humans vote the descriptions from the
top-ranked generated captions ‘wittier’ than three
baseline approaches. Moreover, in a Turing test-
style evaluation, our model’s best image descrip-
tion is found to be wittier than a witty human-
written caption2 55% of the time when the human
is subject to the same constraints as the machine
regarding word usage and style.

2 Related Work
Humor theory. General Theory of Verbal Hu-
mor (Attardo and Raskin, 1991) characterizes lin-
guistic stimuli that induce humor but implement-
ing computational models of it requires severely
restricting its assumptions (Binsted, 1996).
Puns. Zwicky and Zwicky (1986) classify puns
as perfect (pronounced exactly the same) or im-
perfect (pronounced differently). Similarly, Pepi-
cello and Green (1984) categorize riddles based on
the linguistic ambiguity that they exploit – phono-
logical, morphological or syntactic. Jaech et al.
(2016) learn phone-edit distances to predict the
counterpart, given a pun by drawing from auto-
matic speech recognition techniques. In contrast,
we augment a web-scraped list of puns using an
existing model of pronunciation similarity.
Generating textual humor. JAPE (Binsted and
Ritchie, 1997) also uses phonological ambiguity
to generate pun-based riddles. While our task in-
volves producing free-form responses to a novel

cess of ‘solving’ (resolution) is trivial (the joke is obvious) or
too complex (they do not ‘get’ the joke).

2 This data is available on the author’s webpage.

stimulus, JAPE produces stand-alone “canned”
jokes. HAHAcronym (Stock and Strapparava,
2005) generates a funny expansion of a given
acronym. Unlike our work, HAHAcronym oper-
ates on text, and is limited to producing sets of
words. Petrovic and Matthews (2013) develop
an unsupervised model that produces jokes of the
form, “I like my X like I like my Y, Z” .
Generating multi-modal humor. Wang and Wen
(2015) predict a meme’s text based on a given
funny image. Similarly, Shahaf et al. (2015)
and Radev et al. (2015) learn to rank cartoon cap-
tions based on their funniness. Unlike typical, bor-
ing images in our task, memes and cartoons are
images that are already funny or atypical. E.g.,
“LOL-cats” (funny cat photos), “Bieber-memes”
(modified pictures of Justin Bieber), cartoons with
talking animals, etc. Chandrasekaran et al. (2016)
alter an abstract scene to make it more funny. In
comparison, our task is to generate witty natural
language remarks for a novel image.
Poetry generation. Although our tasks are differ-
ent, our generation approach is conceptually simi-
lar to Ghazvininejad et al. (2016) who produce po-
etry, given a topic. While they also generate and
score a set of candidates, their approach involves
many more constraints and utilizes a finite state
acceptor unlike our approach which enforces con-
straints during beam search of the RNN decoder.

3 Approach
Extracting tags. The first step in producing a con-
textually witty remark is to identify concepts that
are relevant to the context (image). At times, these
concepts are directly available as e.g., tags posted
on social media. We consider the general case
where such tags are unavailable, and automatically
extract tags associated with an image.

We extract the top-5 object categories pre-
dicted by a state-of-the-art Inception-ResNet-v2
model (Szegedy et al., 2017) trained for image
classification on ImageNet (Deng et al., 2009). We
also consider the words from a (boring) image de-
scription (generated from Vinyals et al. (2016)).
We combine the classifier object labels and words
from the caption (ignoring stopwords) to produce
a set of tags associated with an image, as shown in
Fig. 2. We then identify concepts from this collec-
tion that can potentially induce wit.
Identifying puns. We attempt to induce an incon-
gruity by using a pun in the image description. We
identify candidate words for linguistic wordplay
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Figure 2: Our models for generating and retrieving image descriptions containing a pun (see Sec. 3).

by comparing image tags against a list of puns.

We construct the list of puns by mining the web
for differently spelled words that sound exactly the
same (heterographic homophones). We increase
coverage by also considering pairs of words with 0
edit-distance, according to a metric based on fine-
grained articulatory representations (AR) of word
pronunciations (Jyothi and Livescu, 2014). Our
list of puns has a total of 1067 unique words (931
from the web and 136 from the AR-based model).

The pun list yields a set of puns that are as-
sociated with a given image and their phonolog-
ically identical counterparts, which together form
the pun vocabulary for the image. We evaluate our
approach on the subset of images that have non-
empty pun vocabularies (about 2 in 5 images).

Generating punny image captions. We intro-
duce an incongruity by forcing a vanilla image
captioning model (Vinyals et al., 2016) to decode
a phonological counterpart of a pun word associ-
ated with the image, at a specific time-step dur-
ing inference (e.g., ‘sell’ or ‘sighed’, showed in
orange in Fig. 2). We achieve this by limiting the
vocabulary of the decoder at that time-step to only
contain counterparts of image-puns. In following
time-steps, the decoder generates new words con-
ditioned on all previously decoded words. Thus,
the decoder attempts to generate sentences that
flow well based on previously uttered words.

We train two models that decode an image de-
scription in forward (start to end) and reverse
(end to start) directions, depicted as ‘fRNN’ and
‘rRNN’ in Fig. 2 respectively. The fRNN can de-
code words after accounting for the incongruity
that occurs early in the sentence and the rRNN is
able to decode the early words in the sentence af-
ter accounting for the incongruity that can occur
later. The forward RNN and reverse RNN gener-
ate sentences in which the pun appears in each of

the first T and last T positions, respectively.3

Retrieving punny image captions. As an al-
ternative to our approach of generating witty re-
marks for the given image, we also attempt to
leverage natural, human-written sentences which
are relevant (yet unexpected) in the given con-
text. Concretely, we retrieve natural language
sentences4 from a combination of the Book Cor-
pus (Zhu et al., 2015) and corpora from the NLTK
toolkit (Loper and Bird, 2002). The retrieved
sentences each (a) contains an incongruity (pun)
whose counterpart is associated with the image,
and (b) has support in the image (contains an im-
age tag). This yields a pool of candidate captions
that are perfectly grammatical, a little unexpected,
and somewhat relevant to the image (see Sec. 4).
Ranking. We rank captions in the candidate pools
from both generation and retrieval models, accord-
ing to their log-probability score under the image
captioning model. We observe that the higher-
ranked descriptions are more relevant to the image
and grammatically correct. We then perform non-
maximal suppression, i.e., eliminate captions that
are similar5 to a higher-ranked caption to reduce
the pool to a smaller, more diverse set. We report
results on the 3 top-ranked captions. We describe
the effect of design choices in the supplementary.

4 Results
Data. We evaluate witty captions from our ap-
proach via human studies. 100 random images
(having associated puns) are sampled from the val-

3For an image, we choose T = {1, 2, ..., 5} and beam
size = 6 for each decoder. This generates a pool of 5 (T) ∗ 6
(beam size) ∗ 2 (forward + reverse decoder) = 60 candidates.

4To prevent the context of the sentence from distracting
the perceiver, we consider sentences with < 15 words. Over-
all, we are left with a corpus of about 13.5 million sentences.

5Two sentences are similar if the cosine similarity be-
tween the average of the Word2Vec (Mikolov et al., 2013)
representations of words in each sentence is ≥ 0.8.
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idation set of COCO (Lin et al., 2014).
Baselines. We compare the wittiness of descrip-
tions generated by our model against 3 qualita-
tively different baselines, and a human-written
witty description of an image. Each of these evalu-
ates a different component of our approach. Reg-
ular inference generates a fluent caption that is
relevant to the image but is not attempting to be
witty. Witty mismatch is a human-written witty
caption, but for a different image from the one be-
ing evaluated. This baseline results in a caption
that is intended to be witty, but does not attempt to
be relevant to the image. Ambiguous is a ‘punny’
caption where a pun word in the boring (regular)
caption is replaced by its counterpart. This cap-
tion is likely to contain content that is relevant to
the image, and it contains a pun. However, the pun
is not being used in a fluent manner.

We evaluate the image-relevance of the top
witty caption by comparing against a boring ma-
chine caption and a random caption (see supple-
mentary).
Evaluation annotations. Our task is to gener-
ate captions that a layperson might find witty. To
evaluate performance on this task, we ask people
on Amazon Mechanical Turk (AMT) to vote for
the wittier among the given pair of captions for
an image. We collect annotations from 9 unique
workers for each relative choice and take the ma-
jority vote as ground-truth. For each image, we
compare each of the generated 3 top-ranked and
1 low-ranked caption against 3 baseline captions
and 1 human-written witty caption.6

Constrained human-written witty captions. We
evaluate the ability of humans and automatic
methods to use the given context and pun words
to produce a caption that is perceived as witty. We
ask subjects on AMT to describe a given image
in a witty manner. To prevent observable struc-
tural differences between machine and human-
written captions, we ensure consistent pun vocab-
ulary (utilization of pre-specified puns for a given
image). We also ask people to avoid first person
accounts or quote characters in the image.
Metric. 3, we report performance of the gener-
ation approach using the Recall@K metric. For

6This results in a total of 4 (captions) ∗2 (generation +
retrieval) ∗4 (baselines + human caption) = 32 comparisons
of our approach against baselines. We also compare the wit-
tiness of the 4 generated captions against the 4 retrieved cap-
tions (see supplementary) for an image (16 comparisons). In
total, we perform 48 comparisons per image, for 100 images.

Figure 3: Wittiness of top-3 generated captions vs.
other approaches. y-axis measures the % images for
which at least one of K captions from our approach
is rated wittier than other approaches. Recall steadily
increases with the number of generated captions (K).

K = 1, 2, 3, we plot the percentage of images
for which at least one of the K ‘best’ descriptions
from our model outperformed another approach.
Generated captions vs. baselines. As we see in
Fig. 3, the top generated image description (top-
1G) is perceived as wittier compared to all base-
line approaches more often than not (the vote is
>50% at K = 1). We observe that as K in-
creases, the recall steadily increases, i.e., when we
consider the top K generated captions, increas-
ingly often, humans find at least one of them to
be wittier than captions produced by baseline ap-
proaches. People find the top-1G for a given image
to be wittier than mismatched human-written im-
age captions, about 95% of the time. The top-1G is
also wittier than a naive approach that introduces
ambiguity about 54.2% of the time. When com-
pared to a typical, boring caption, the generated
captions are wittier 68% of the time. Further, in a
head-to-head comparison, the generated captions
are wittier than the retrieved captions 67.7% of the
time. We also validate our choice of ranking cap-
tions based on the image captioning model score.
We observe that a ‘bad’ caption, i.e., one ranked
lower by our model, is significantly less witty than
the top 3 output captions.

Surprisingly, when the human is constrained to
use the same words and style as the model, the
generated descriptions from the model are found
to be wittier for 55% of the images. Note that in a
Turing test, a machine would equal human perfor-
mance at 50%7. This led us to speculate if the con-

7Recall that this compares how a witty description is con-
structed, given the image and specific pun words. A Turing
test-style evaluation that compares the overall wittiness of a
machine and a human would refrain from constraining the
human in any way.
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(a) Generated: a bored
(board) bench sits in front of
a window.
Retrieved: Wedge sits on
the bench opposite Berry,
bored (board).
Human: could you please
make your pleas (please)!

(b) Generated: a loop
(loupe) of flowers in a glass
vase.
Retrieved: the flour (flower)
inside teemed with worms.
Human: piece required for
peace (piece).

(c) Generated: a woman sell
(cell) her cell phone in a city.
Retrieved: Wright (right)
slammed down the phone.
Human: a woman sighed
(side) as she regretted the
sell.

(d) Generated: a bear that is
bare (bear) in the water.
Retrieved: water glistened
off her bare (bear) breast.
Human: you won’t hear a
creak (creek) when the bear
is feasting.

(e) Generated: a loop
(loupe) of scissors and a pair
of scissors.
Retrieved: i continued
slicing my pear (pair) on the
cutting board.
Human: the scissors were
near, but not clothes (close).

(f) Generated: a female ten-
nis player caught (court) in
mid swing.
Retrieved: i caught (court)
thieves on the roof top.
Human: the man made a
loud bawl (ball) when she
threw the ball.

(g) Generated: a bored
(board) living room with a
large window.
Retrieved: anya sat on the
couch, feeling bored (board).
Human: the sealing (ceil-
ing) on the envelope resem-
bled that in the ceiling.

(h) Generated: a parking
meter with rode (road) in the
background.
Retrieved: smoke speaker
sighed (side).
Human: a nitting of color
didn’t make the poll (pole)
less black.

Figure 4: The top row contains selected examples of human-written witty captions, and witty captions generated
and retrieved from our models. The examples in the bottom row are randomly picked.

straints placed on language and style might be re-
stricting people’s ability to be witty. We confirmed
this by evaluating free-form human captions.
Free-form Human-written Witty Captions. We
ask people on AMT to describe an image (using
any vocabulary) in a manner that would be per-
ceived as funny. As expected, when compared
against automatic captions from our approach, hu-
man evaluators find free-form human captions to
be wittier about 90% of the time compared to 45%
in the case of constrained human witty captions.
Clearly, human-level creative language with un-
constrained sentence length, style, choice of puns,
etc., makes a significant difference in the witti-
ness of a description. In contrast, our automatic
approach is constrained by caption-like language,
length, and a word-based pun list. Training mod-
els to intelligently navigate this creative freedom
is an exciting open challenge.
Qualitative analysis. The generated witty cap-
tions exhibit interesting features like alliteration
(‘a bare black bear ...’) in Fig. 1b and 4c. At
times, both the original pun (pole) and its counter-

part (poll) make sense for the image (Fig. 1a). Oc-
casionally, a pun is naively replaced by its counter-
part (Fig. 4a) or rare puns are used (Fig. 4b). On
the other hand, some descriptions (Fig. 4e and 4h)
that are forced to utilize puns do not make sense.
See supplementary for analysis of retrieval model.

5 Conclusion
We presented novel computational models in-
spired by cognitive accounts to address the chal-
lenging task of producing contextually witty de-
scriptions for a given image. We evaluate the mod-
els via human-studies, in which they significantly
outperform meaningful baseline approaches.
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Abstract

Word vector models learn about semantics
through corpora. Convolutional Neural Net-
works (CNNs) can learn about semantics
through images. At the most abstract level,
some of the information in these models must
be shared, as they model the same real-world
phenomena. Here we employ techniques pre-
viously used to detect semantic representa-
tions in the human brain to detect semantic
representations in CNNs. We show the accu-
mulation of semantic information in the layers
of the CNN, and discover that, for misclassi-
fied images, the correct class can be recovered
in intermediate layers of a CNN.

1 Introduction

As we study semantics through the lens of a cor-
pus, it can be easy to forget that concepts exist in-
dependently of language. Animals with no lan-
guage system still form representations of con-
cepts, based on their interactions with the world
(e.g. vision, touch, taste). In this paper, we
bridge the gap between the study of semantics
in computer vision and computational linguistics.
We take inspiration from previous work on brain-
based representations of meaning, and measure the
semantic information through the layers of a Con-
volutional Neural Network (CNN) trained to de-
tect objects in images.

Our work is not the first to draw connections be-
tween computer vision and distributional seman-
tics. Indeed, joint models of semantics based
on images and text have been developed, and
word vectors have been grounded in the visual
space (Silberer and Lapata, 2012, 2014; Bruni
and Baroni, 2013). However, we believe that our
work is the first to explore the convergence of se-
mantic embeddings built from text and images,
specifically studying the hidden representations of

CNNs, and how the accumulation of semantic ev-
idence builds as a function of network depth.

2 Methods
The representations created by CNNs have dif-
fering numbers of dimensions, and even within a
CNN, the size of layers may differ (see Section 2.2
for more details on CNNs). In addition, the size of
word vectors also varies. We need a method to de-
tect similarities across embedding spaces, regard-
less of their dimensionality.

A solution, similarity-encoding, was proposed
in parallel by two recent papers (Anderson et al.,
2016; Xu et al., 2016), which calculates the simi-
larity of embedding spaces using the correlation
of elements within a space, rather than directly
comparing the embeddings between spaces.

Similarity-encoding compares the correlation
matrices of embedding spaces. For example, if
the word vectors have dimension p, our matrix of
word vectors will be Rk×p(where k is the number
of concepts). The resulting correlation matrix will
beW ∈ Rk×k, and will represent the pairwise cor-
relation of all concepts in word space. Similarly,
for a given layer of a CNN with dimension q, we
can create a matrix of embeddings for the same k
concepts (Rk×q), and compute a correlation ma-
trix in image space: I ∈ Rk×k. Thus, we have
taken embedding spaces for the same set of k con-
cepts and created new spaces of dimension k based
on the correlation between concepts. Because the
correlation spaces share the same dimension, we
can directly compare the correlation matrices of
word vectors (W ) with the correlation matrices of
image embeddings (I).

To compare the correlation spaces, we could
simply calculate the correlation between matrices
W and I , which would be a Representational Sim-
ilarity Analysis (RSA), as proposed by Kriegesko-
rte et al. (2008). RSA has the advantage of being a
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fairly simple and straightforward method for com-
paring the representations across two embedding
spaces. However, RSA has the disadvantage that it
produces one aggregate number for a pair of corre-
lation matrices, and does not show which concepts
contributed most to a high or low score. We will
need this added flexibility to explore misclassified
images in Section 3.3.

Both Anderson et al. (2016) and Xu et al. (2016)
extend RSA with an additional analysis step, in-
spired by some of the first work searching for se-
mantics in the brain (Mitchell et al., 2008). An-
derson et al. (2016) present a pictorial overview of
the procedure in Figure 2 of their paper.

In similarity-encoding, we choose two elements
from the concept list (c1 and c2), and calculate the
correlation of their embeddings to every other k−2
concept in each embedding space (word or image).
This creates a vector for each of the two held out
concepts with length k − 2, and is equivalent to
selecting the corresponding rows of the full corre-
lation matricesW and I , but omitting the columns
which correspond to c1 and c2. We then compare
the correlation patterns of c1 and c2 in word space
(vectors wc1 and wc2) to the correlations in image
space (vectors ic1 and ic2) by checking if:

corr(wc1 , ic1) + corr(wc2 , ic2) (1)

(the correlation of correctly matched concepts: c1
to c1 and c2 to c2) is greater than:

corr(wc1 , ic2) + corr(wc2 , ic1) (2)

(the correlation of incorrectly matched concepts).
Xu et al. (2016) call this the 2 vs. 2 test. If the
correctly matched vectors are more correlated than
the incorrectly matched vectors, then the test is
considered to have passed. We perform the 2 vs. 2
test for all possible pairs of concepts, 13,695 tests
in total. The 2 vs. 2 accuracy is the percentage of
2 vs. 2 tests passed, and chance 2 vs. 2 accuracy is
50%. We compute significance for the 2 vs. 2 test
by performing a permutation test: permuting the
rows of embeddings in one space, and re-running
the full similarity-encoding methodology.

2.1 Word Vectors
We chose four word vector models from recent
work. SkipGram vectors are from a neural net-
work trained to predict co-occurring words. We
used the 300 dimensional model trained on Google
news (English) (Mikolov et al., 2013). RNN is a

recurrent neural network trained to predict the next
word in a sequence. It has 640 dimensions, and
was trained on transcriptions of English broad-
cast news(Mikolov et al., 2011). Glove is a
regression-based model that incorporates both lo-
cal and global co-occurrence information. This
300-dimensional model was trained on the En-
glish Wikipedia and Gigaword 5 corpora com-
bined (Pennington et al., 2014). Cross-lingual
word vectors project embeddings from multiple
languages into a shared space. We used the
German-English model (512 dimensions), trained
on WMT-2011 (Faruqui and Dyer, 2014).

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) can be
trained to perform image classification (Goodfel-
low et al., 2016). In general, the input is three
continuous valued matrices, representing the RGB
values of an image. The network convolves the in-
put with a set of learned filters (typically 2D). The
output of the convolution is fed to another layer of
the network, which performs additional operations
(e.g. more convolutions, pooling). Each layer of
the network produces a hidden representation that
is used by subsequent layers, ending in a final clas-
sification layer.

There has been a proliferation of neural net-
work architectures for image classification; we ex-
plore three CNNs: VGG 16, ResNet 50 and In-
ception V3. We chose these networks based on
availability (pre-trained models are readily down-
loadable), for their performance on image classi-
fication tasks, and for their diversity in structural
complexity. All CNNs used here were trained on
ImageNet (Deng et al., 2009).

VGG 16 is one of the two deepest networks
described in Simonyan and Zisserman (2014). It
has a very simple linear architecture. We mea-
sured the 2 vs. 2 accuracy against all convolu-
tional and dense layers of the network. Incep-
tion V3 (Szegedy et al., 2015), has a more com-
plicated architecture, including Inception blocks
which act as multi-resolution feature extractors,
applying differently sized filters in parallel. We
measured the 2 vs. 2 accuracy at the concat
(mixed) layers, which appear at the end of incep-
tion blocks. ResNet 50 (He et al., 2015) uses
residual modules, which use linear shortcut con-
nections to allow earlier representations to filter up
as required. Residual modules allow the networks
to become very deep without the typical problems
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in training associated with deep networks. We
measured the 2 vs. 2 accuracy at the activation lay-
ers both within and at the end of residual blocks.

Illustrations of the architectures for each of
these networks appear in the supplementary mate-
rial (Figures 1-3), annotated to show the layers we
used for our experiments. We used the Keras im-
plementation of all networks (Chollet et al., 2015).

2.3 Concept Selection
Each of the CNNs described in Section 2.2 was
trained on ImageNet, a collection of over a million
images, each annotated for the presence of one of
1000 concepts. These concepts can be fairly high-
level single words (e.g. stove, sandwich) or ex-
tremely specific multi-word concepts (e.g. Ger-
man short-haired pointer, tobacco shop). We se-
lected all concepts for which a match was found
in all four of the word vector models from Sec-
tion 2.1, resulting in 166 concepts. From this set
of 166 concepts, we randomly chose 5 images an-
notated with the given concept in the ImageNet
validation set, for a total of 830 images.

We then computed each network’s activation on
each of the 830 images. These images are divided
into 5 groups, such that each of the 166 concepts
occurs exactly once per group. We ran the 2 vs.
2 test separately for each of the 5 groups, and re-
port the average across the 5 runs to account for
variability across images.

3 Results
3.1 Word Vector Comparison
Figure 1 shows the performance of several word
vector models against the layers of VGG 16. The
first point represents the performance using corre-
lation at the pixel level only, and no CNN-derived
representation. The performance of SkipGram,
Glove and the Cross-lingual vectors are very sim-
ilar, and are within a percentage or two across all
layers. The RNN model we tested did not per-
form as well, on average about 5% lower in the
first convolutional layers, and 10% lower in the
highest hidden layers. These results are similar
to those seen in Xu et al. (2016) when compar-
ing word vectors to brain activity. Because the
performance is very similar for the three top per-
forming word vectors, our analyses proceeds with
SkipGram vectors only.

Note that the 2 vs. 2 accuracy improves as we
move up the layers of the CNN. This is evidence
that, though trained on very different data sources,

the semantic representations in CNNs and word
vectors are quite similar, and the similarities grow
stronger as the CNN gets closer to its final classi-
fication layer. Though the starting points are dif-
ferent (text vs. images) the final result of the CNN
is similar to word vectors built from corpora, im-
plying that a shared embedding space can emerge
from each data source independently.

The very early layers of CNNs have been shown
to represent low level features like edges, curves
and other simple shapes (Mahendran and Vedaldi,
2016), so we did not expect early layers to have
any significant relation to word vectors. We were
surprised to find that even the very first layer of the
VGG 16 gives above chance 2 vs. 2 accuracy using
SkipGram vectors (p < 0.001). Upon inspection,
we found that the correlation for matched vectors
(the value for Eq. 1) was just slightly larger than
the correlation for mismatched vectors (the value
of Eq. 2), implying that the network has only weak
evidence for semantic relationships at the early
layers of the CNN. Figure 4 in the supplemen-
tary material shows this effect in greater detail.
Note that the first layer of VGG 16 improves upon
the pixel level accuracy, implying that even simple
CNN features provide useful signal.

We also noted that some macroscopic distinc-
tions between the concepts can likely be inferred
from the low level features of images alone. For
example, man made objects tend to have more
straight lines and natural objects are more curved.
Thus, it is logical that the early layers of a CNN
could distinguish between some pairs of objects
using only the most basic of visual features.

3.2 CNN Comparison
Figures 1-3 show 2 vs. 2 accuracy for SkipGram
vectors against the layers of VGG 16, ResNet 50
and Inception V3 networks. In general, the pat-
tern is similar: as the depth of the layers increases,
so too does the 2 vs. 2 accuracy. However, there
are a few interesting exceptions to this pattern.
In ResNet 50 we see a drop in accuracy in sev-
eral places, most notably between activation lay-
ers 16 and 17. Upon inspection of the architec-
ture diagram, we noted that several of the early
residual blocks were not improving 2 vs. 2 ac-
curacy, and relied mostly on residual connections
(see Supp. Figure 3), implying some of the depth
in ResNet 50 may be unnecessary.

We see maximum 2 vs. 2 accuracy in later layers
of CNNs, but not always at the last layer. Incep-
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Figure 1: 2 vs. 2 accuracy for 4
word vector models and layers of
VGG 16. BnCm: mth conv. layer
of the nth block.

Figure 2: 2 vs. 2 accuracy for
SkipGram and layers of Incep-
tion V3.

Figure 3: 2 vs. 2 accuracy
for SkipGram and layers of
ResNet 50.

tion V3 shows maximum accuracy of 0.90 at layer
Mixed9, several layers before the final classifica-
tion layer. ResNet 50 has maximum accuracy of
0.93 at the last layer, and VGG 16 peaks at the
final layer with 0.94 accuracy. This implies that
there may be a way to improve Inception V3 us-
ing, for example, a skip connection from the high-
est scoring layer to the final classification layer.

3.3 Misclassifications
We wondered if mistakes made in the ImageNet
classification task could be detected, or even com-
pensated for, using word vectors. Within one set
of 166 images, we selected those images misclas-
sified by VGG 16 such that they were misclassi-
fied into classes with a matching word vector (36
images). Could word vectors determine where in
the network these misclassifications emerge? For
this, we developed a variant of the 2 vs. 2 test: the
1 vs. 2 test. For every misclassified image, there
is a true and a predicted concept class (ctrue and
cpredicted, guaranteed to be different, since the im-
age was misclassified). We selected the word vec-
tors corresponding to ctrue and cpredicted and com-
pute their correlation to all word vectors for which
there was a corresponding correctly classified im-
age. This creates vectors wtrue and wpredicted

which represent correlations in word space. We
also compute the correlations of the hidden repre-
sentations for the misclassified image to the hid-
den representations of the correctly classified im-
ages to create a vector imisclassified. The 1 vs. 2
test is considered to have passed if imisclassified is
more correlated to wtrue than to wpredicted. The 1
vs. 2 accuracy is the fraction of 1 vs. 2 tests passed,
and chance is again 50%. The 1 vs. 2 test allows
us to test if the classification mistake made at the

final layer of the CNN is present through all of the
hidden layers of the CNN.

Figure 4 shows the results for this experiment
using layers from VGG 16. We see that in B4C1
and B5C1, the correlation of the hidden represen-
tations are, on average, significantly closer to the
correlations of the correct rather than the predicted
word vector (p = 0.048). But, during the last fully
connected layer, this difference disappears, lead-
ing to the misclassification of the image. This im-
plies that, for at least some of the misclassified im-
ages, the information required to make the correct
prediction exists in the hidden representations, but
the classification layer is not using it for the final
prediction.

Figure 4: Results for the 1 vs. 2 test. For some layers of
VGG 16, the correct class of misclassified images can
be recovered (black dots).

4 Conclusion and Future Work

In this paper, we used methodology originally de-
veloped to analyze brain images to study semantic
representations in CNNs. Our results point to sev-
eral interesting possibilities for future work. The
techniques explored here could be use to com-
bat adversarial attacks on CNNs, detect misclas-
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sifications, or possibly guide the improvement of
CNN architectures, and eventually help to unite
the study of semantics in computer vision and
computational linguistics.
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Abstract

We present an empirical analysis of state-of-
the-art systems for referring expression recog-
nition – the task of identifying the object
in an image referred to by a natural lan-
guage expression – with the goal of gaining
insight into how these systems reason about
language and vision. Surprisingly, we find
strong evidence that even sophisticated and
linguistically-motivated models for this task
may ignore linguistic structure, instead rely-
ing on shallow correlations introduced by unin-
tended biases in the data selection and annota-
tion process. For example, we show that a sys-
tem trained and tested on the input image with-
out the input referring expression can achieve
a precision of 71.2% in top-2 predictions. Fur-
thermore, a system that predicts only the ob-
ject category given the input can achieve a pre-
cision of 84.2% in top-2 predictions. These
surprisingly positive results for what should
be deficient prediction scenarios suggest that
careful analysis of what our models are learn-
ing – and further, how our data is constructed
– is critical as we seek to make substantive
progress on grounded language tasks.

1 Introduction

There has been increasing interest in modeling nat-
ural language in the context of a visual grounding.
Several benchmark datasets have recently been in-
troduced for describing a visual scene with nat-
ural language (Chen et al., 2015), describing or
localizing specific objects in a scene (Kazemzadeh
et al., 2014; Mao et al., 2016), answering natural
language questions about the scenes (Antol et al.,
2015), and performing visually grounded dialogue
(Das et al., 2016). Here, we focus on referring
expression recognition (RER) – the task of identi-
fying the object in an image that is referred to by a
natural language expression produced by a human
(Kazemzadeh et al., 2014; Mao et al., 2016; Hu

et al., 2016; Rohrbach et al., 2016; Yu et al., 2016;
Nagaraja et al., 2016; Hu et al., 2017).

Recent work on RER has sought to make
progress by introducing models that are better ca-
pable of reasoning about linguistic structure (Hu
et al., 2017; Nagaraja et al., 2016) – however, since
most of the state-of-the-arts systems involve com-
plex neural parameterizations, what these models
actually learn has been difficult to interpret. This
is concerning because several post-hoc analyses of
related tasks (Zhou et al., 2015; Devlin et al., 2015;
Agrawal et al., 2016; Jabri et al., 2016; Goyal et al.,
2016) have revealed that some positive results are
actually driven by superficial biases in datasets or
shallow correlations without deeper visual or lin-
guistic understanding. Evidently, it is hard to be
completely sure if a model is performing well for
the right reasons.

To increase our understanding of how RER sys-
tems function, we present several analyses inspired
by approaches that probe systems with perturbed in-
puts (Jia and Liang, 2017) and employ simple mod-
els to exploit and reveal biases in datasets (Chen
et al., 2016a). First, we investigate whether sys-
tems that were designed to incorporate linguistic
structure actually require it and make use of it. To
test this, we perform perturbation experiments on
the input referring expressions. Surprisingly, we
find that models are robust to shuffling the word
order and limiting the word categories to nouns and
adjectives. Second, we attempt to reveal shallower
correlations that systems might instead be leverag-
ing to do well on this task. We build two simple
systems called Neural Sieves: one that completely
ignores the input referring expression and another
that only predicts the category of the referred ob-
ject from the input expression. Again, surprisingly,
both sieves are able to identify the correct object
with surprising precision in top-2 and top-3 predic-
tions. When these two simple systems are com-
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bined, the resulting system achieves precisions of
84.2% and 95.3% for top-2 and top-3 predictions,
respectively. These results suggest that to make
meaningful progress on grounded language tasks,
we need to pay careful attention to what and how
our models are learning, and whether our datasets
contain exploitable bias.

2 Related Work
Referring expression recognition and generation
is a well studied problem in intelligent user in-
terfaces (Chai et al., 2004), human-robot interac-
tion (Fang et al., 2012; Chai et al., 2014; Williams
et al., 2016), and situated dialogue (Kennington
and Schlangen, 2017). Kazemzadeh et al. (2014)
and Mao et al. (2016) introduce two benchmark
datasets for referring expression recognition. Sev-
eral models that leverage linguistic structure have
been proposed. Nagaraja et al. (2016) propose a
model where target and supporting objects (i.e. ob-
jects that are mentioned in order to disambiguate
the target object) are identified and scored jointly.
The resulting model is able to localize supporting
objects without direct supervision. Hu et al. (2017)
introduce a compositional approach for the RER
task. They assume that the referring expression
can be decomposed into a triplet consisting of the
target object, the supporting object, and their spa-
tial relationship. This structured model achieves
state-of-the-art accuracy on the Google-Ref dataset.
Cirik et al. (2018) propose a type of neural modular
network (Andreas et al., 2016) where the compu-
tation graph is defined in terms of a constituency
parse of the input referring expression.

Previous studies on other tasks have found that
state-of-the-art systems may be successful for rea-
sons different than originally assumed. For exam-
ple, Chen et al. (2016b) show that a simple logistic
regression baseline with carefully defined features
can achieve competitive results for reading com-
prehension on CNN/Daily Mail datasets (Hermann
et al., 2015), indicating that more sophisticated
models may be learning realtively simple correla-
tions. Similarly, Gururangan et al. (2018) reveal
bias in a dataset for semantic inference by demon-
strating a simple model that achieves competitive
results without looking at the premise.

3 Analysis by Perturbation
In this section, we would like to analyze how
the state-of-the-art referring expression recognition
systems utilize linguistic structure. We conduct

experiments with perturbed referring expressions
where various aspects of linguistic structure are
obscured. We perform three types of analyses: the
first one studying syntactic structure (Section 3.2),
the second focusing on the importance of word cat-
egories (Section 3.3), and the final one analyzing
potential biases in the dataset (Section 3.4).

3.1 Analysis Methodology

To perform our analysis, we take two state-of-the-
art systems CNN+LSTM-MIL (Nagaraja et al.,
2016) and CMN (Hu et al., 2017) and train them
from scratch with perturbed referring expressions.
We note that the perturbation experiments ex-
plained in next subsections are performed on all
train and test instances. All experiments are done
on the standard train/test splits for the Google-Ref
dataset (Mao et al., 2016). Systems are evaluated
using the precision@k metric, the fraction of test
instances for which the target object is contained
in the model’s top-k predictions. We provide fur-
ther details of our experimental methodology in
Section 4.1.

3.2 Syntactic Analysis by Permuting Word
Order

In English, word order is important for correctly
understanding the syntactic structure of a sentence.
Both models we analyze use Recurrent Neural Net-
works (RNN) (Elman, 1990) with Long Short-Term
Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997). Previous studies have shown that
reccurrent architectures can perform well on tasks
where word order and syntax are important: for
example, tagging (Lample et al., 2016), parsing
(Sutskever et al., 2014), and machine translation
(Bahdanau et al., 2014). We seek to determine
whether recurrent models for RER depend on syn-
tactic structure.
Premise 1: Randomly permuting the word order
of an English referring expression will obscure its
syntactic structure.
We train CMN and CNN+LSTM-MIL with shuf-
fled referring expressions as input and evaluate
their performance.

Model No Perturbation Shuffled ∆

CMN .705 .675 -.030
LSTM+CNN-MIL .684 .630 -.054

Table 1: Results for Shuffling Word Order for Referring
Expressions. ∆ is the difference between no perturbation and
shuffled version of the same system.
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Figure 1: Overview of Neural Sieves. Sieve I filters object types having multiple instances. Sieve II filters objects of one
category mentioned in referring expression. Objects of the same category have the same color frames. Best seen in color.

Table 1 shows accuracies for models with and
without shuffled referring expressions. The column
with ∆ shows the difference in accuracy compared
to the best performing model without shuffling.
The drop in accuracy is surprisingly low. Thus, we
conclude that these models do not stongly depend
on the syntactic structure of the input expression
and may instead leverage other, shallower, correla-
tions.

3.3 Lexical Analysis by Discarding Words

Following the analysis presented in Section 3.2, we
are curious to study what other aspects of the input
referring expression may be essential for state-of-
the-art performance. If syntactic structure is largely
unimportant, it may be that spatial relationships can
be ignored. Spatial relationships between objects
are usually represented by prepositional phrases
and verb phrases. In contrast, simple descriptors
(e.g. green) and object types (e.g. table) are most
often represented by adjectives and nouns, respec-
tively. By discarding all words in the input that are
not nouns or adjectives, we hope to test whether
spatial relationships are actually important to state-
of-the-art models. Notably, both systems we test
were specifically designed to model object relation-
ships.
Premise 2: Keeping only nouns and adjectives
from the input expression will obscure the relation-
ships between objects that the referring expression
describes.

Table 2 shows accuracies resulting from train-
ing and testing these models on only the nouns
and adjectives in the input expression. Our first
observation is that the accuracies of models drop
the most when we discard the nouns (the rightmost
column in Table 2). This is reasonable since nouns

Models Noun & Adj (∆) Noun (∆) Adj (∆)

CMN .687 (-.018) .642 (-.063) .585 (-.120)
LSTM+CNN-MIL .644 (-.040) .597 (-.087) .533 (-.151)

Table 2: Results with discarded word categories. Numbers in
parentheses are ∆, the difference between the best performing
version of the original model.

define the types of the objects referred to in the
expression. Without nouns, it is extremely difficult
to identify which objects are being described. Sec-
ond, although both systems we analyze model the
relationship between objects, discarding verbs and
prepositions, which are essential in determining
the relationship among objects, does not drastically
effect their performance (the second column in Ta-
ble 2). This may indicate the superior performance
of these systems does not specifically come from
their modeling approach for object relationships.

3.4 Bias Analysis by Discarding Referring
Expressions

Goyal et al. (2016) show that some language and
vision datasets have exploitable biases. Could there
be a dataset bias that is exploited by the models for
RER?
Premise 3: Discarding the referring expression
entirely and keeping only the input image creates
a deficient prediction problem: achieving high-
peformance on this task indicates dataset bias.

We train CMN by removing all referring ex-
pressions from train and test. We call this model
“image-only” since it ignores the referring expre-
sion and will only use the input image. We compare
the CMN “image-only” model with the state-of-the-
art configuration of CMN and a random baseline.
Table 3 shows precision@k results. The “image-

Model P@1 P@2 P@3 P@4 P@5

CMN .705 .926 .979 .993 .998
CMN “image-only” .411 .731 .885 .948 .977
Random Baseline .204 .403 .557 .669 .750

Table 3: Results with discarded referring expressions. Sur-
prisingly, the top-2 prediction (73.1%) of the “image-only”
model is better than the top prediction of the state-of-the-art
(70.5%).

only” model is able to surpass the random baseline
by a large margin. This result indicates that the
dataset is biased, likely as a result of the data selec-
tion and annotation process. During the construc-
tion of the dataset, Mao et al. (2016) annotate an
object box only if there are at least 2 to 4 objects
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of the same type in the image. Thus, only a subset
of object categories ever appear as targets because
some object types rarely occur multiple times in
an image. In fact, out of 90 object categories in
MSCOCO, 43 of the object categories are selected
as target objects less than 1% of the time they oc-
cur in images. This potentially explains the relative
high performance of the “image-only” system.

3.5 Discussion

The previous analyses indicate that exploiting bias
in the data selection process and leveraging shal-
low linguistic correlations with the input expression
may go a long way towards achieving high perfor-
mance on this dataset. First, it may be possible
to simplify the decision of picking an object to a
much smaller set of candidates without even con-
sidering the referring expression. Second, because
removing all words except for nouns and adjectives
only marginally hurt performance for the systems
tested, it may be possible to further reduce the set
of candidates by focusing only on simple proper-
ties like the category of the target object rather than
its relations with the environment or with adjacent
objects.

4 Neural Sieves
We introduce a simple pipeline of neural networks,
Neural Sieves, that attempt to reduce the set of
candidate objects down to a much smaller set that
still contains the target object given an image, a set
of objects, and the referring expression describing
one of the objects.

Sieve I: Filtering Unlikely Objects. Inspired by
the results from Section 3.4, we design an “image-
only” model as the first sieve for filtering unlikely
objects. For example in Figure 1, Sieve I filters out
the backpack and the bench from the list of bound-
ing boxes since there is only one instance of these
object types. We use a similar parameterization of
one of the baselines (CMNLOC) proposed by Hu
et al. (2017) for Sieve I and train it by only pro-
viding spatial and visual features for the boxes, ig-
noring the referring expression. More specifically,
for visual features rvis of a bounding boxes of an
object, we use Faster-RCNN (Ren et al., 2015).
We use 5-dimensional vectors for spatial features
rspat = [xmin

WV
, ymin

HV
, xmax

WV
, ymax

WV
, Ar
AV

] where Ar is
the size and [xmin, ymin, xmax, ymax] are coordi-
nates for bounding box r and AV , WV , HV are the
area, the width, and the height of the input image

V . These two representations are concatenated as
rvis,spat = [rvisrspat] for a bounding box r.

We parameterize Sieve I with a list of bounding
boxes R as the input with parameter set ΘI as
follows:

sI = W score
I rvis,spat (1)

fI(R; ΘI) = softmax(sI) (2)

Each bounding box is scored using a matrixW score
I .

Scores for all bounding boxes are then fed to soft-
max to get a probability distribution over boxes.
The learned parameter ΘI is the scoring matrix
W score

I .

Sieve II: Filtering Based on Objects Categories
After filtering unlikely objects based only on the
image, the second step is to determine which ob-
ject category to keep as a candidate for prediction,
filtering out the other categories. For instance, in
Figure 1, only instances of suitcases are left as can-
didates after determining which type of object the
input expression is talking about. To perform this
step, Sieve II takes the list of object candidates
from Sieve I and keeps objects having the same
object category as the referred object. Unlike Sieve
I, Sieve II uses the referring expression to filter
bounding boxes of objects. We again use the base-
line model of CMNLOC from the previous work
(Hu et al., 2017) for the parametrization of Sieve
II with a minor modification: instead of predicting
the referred object, we make a binary decision for
each box of whether the object in the box is the
same category as the target object.

More specifically, we parameterize Sieve II as
follows:

r̂vis,spat = W vis,spat
II rvis,spat (3)

zII = r̂vis,spat � fatt(T ) (4)

ẑII = zII/ || zII ||2 (5)

sII = W score
II ẑs2 (6)

fII(T,R; ΘII) = sigmoid(sII) (7)

We encode the referring expression T into an em-
bedding with fatt(T ) which uses an attention mech-
anism (Bahdanau et al., 2014) on top of a 2-layer
bidirectional LSTM (Schuster and Paliwal, 1997).

We project bounding box features rvis,spat to the
same dimension as the embedding of referring ex-
pression (Eq 3). Text and box representations are
element-wise multiplied to get zII as a joint repre-
sentation of the text and bounding box (Eq 4). We
L2-normalize to produce ẑII (Eq 5, 6). Box scores
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Model precision@k Accuracy

CMN 1 .705
CMN 2 .926
CMN 3 .979

LSTM+CNN-MIL 1 .684
LSTM+CNN-MIL 2 .907
LSTM+CNN-MIL 3 .972

Neural Sieve I 1 .401
Neural Sieve I 2 .712
Neural Sieve I 3 .866

Neural Sieve I + II 1 .488
Neural Sieve I + II 2 .842
Neural Sieve I + II 3 .953

Table 4: Precision@k accuracies for Neural Sieves and state-
of-the-art systems. Note that even without using the referring
expression, Sieve I is able to reduce the number of candidate
boxes to 3 for 86.6% of the instances. When we further predict
the type of objects with Sieve II, the number of candidate
boxes is reduced to 2 for 84.2% of the instances.

sII are calculated with a linear projection of the
joint representation (Eq 6) and fed to the sigmoid
function for a binary prediction for each box. The
learned parameters ΘII are W vis,spat

II ,W score
II , and

parameters of the encoding module fatt.

4.1 Filtering Experiments
We are interested in determining how accurate
these simple nueral sieves can be. High accuracy
here would give a possible explanation for the high
performance of more complex models.

Dataset. For our experiments, we use Google-
Ref (Mao et al., 2016) which is one of the standard
benchmarks for referring expression recognition. It
consists of around 26K images with 104K annota-
tions. We use their Ground-Truth evaluation setup
where the ground truth bounding box annotations
from MSCOCO (Lin et al., 2014) are provided to
the system as a part of the input. We used the split
provided by Nagaraja et al. (2016) where splits
have disjoint sets of images. We use precision@k
for evaluating the performance of models.

Implementation Details. To train our models,
we used stochastic gradient descent for 6 epochs
with an initial learning rate of 0.01 and multiplied
by 0.4 after each epoch. Word embeddings were
initialized using GloVe (Pennington et al., 2014)
and finetuned during training. We extracted fea-
tures for bounding boxes using the fc7 layer out-
put of Faster-RCNN VGG-16 network (Ren et al.,
2015) pre-trained on MSCOCO dataset (Lin et al.,
2014). Hyperparameters such as hidden layer size
of LSTM networks were picked based on the best

validation score. For perturbation experiments, we
did not perform any grid search for hyperparame-
ters. We used hyperparameters of the previously
reported best performing model in the literature.
We released our code for public use1.

Baseline Models. We compare Neural Sieves
to the state-of-the-art models from the literature.
LSTM + CNN - MIL Nagaraja et al. (2016) score
target object-context object pairs using LSTMs for
processing the referring expression and CNN fea-
tures for bounding boxes. The pair with the high-
est score is predicted as the referred object. They
use Multi-Instance Learning for training the model.
CMN (Hu et al., 2017) is a neural module network
with a tuple of object-relationship-subject nodes.
The text encoding of tuples is calculated with a
two-layer bi-directional LSTM and an attention
mechanism (Bahdanau et al., 2014) over the refer-
ring expression.

4.2 Results
Table 4 shows the precision scores. The referred
object is in the top-2 candidates selected by Sieve
I 71.2% of the time and in the top-3 predictions
86.6% of the time. Combining both sieves into a
pipeline, these numbers further increase to 84.2%
for top-2 predictions and to 95.3% for top-3 predic-
tions. Considering the simplicity of Neural Sieve
approach, these are surprising results: two simple
neural network systems, the first one ignoring the
referring expression, the second predicting only
object type, are able to reduce the number of candi-
date boxes down to 2 on 84.2% of instances.

5 Conclusion
We have analyzed two RER systems by variously
perturbing aspects of the input referring expres-
sions: shuffling, removing word categories, and fi-
nally, by removing the referring expression entirely.
Based on this analysis, we proposed a pipeline of
simple neural sieves that captures many of the easy
correlations in the standard dataset. Our results sug-
gest that careful analysis is important both while
constructing new datasets and while constructing
new models for grounded language tasks. The tech-
niques used here may be applied more generally to
other tasks to give better insight into what our mod-
els are learning and whether our datasets contain
exploitable bias.

1https://github.com/volkancirik/neural-sieves-refexp
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Abstract

Extraction of spatial relations from sentences
with complex/nesting relationships is very
challenging as often needs resolving inherent
semantic ambiguities. We seek help from vi-
sual modality to fill the information gap in
the text modality and resolve spatial seman-
tic ambiguities. We use various recent vision
and language datasets and techniques to train
inter-modality alignment models, visual rela-
tionship classifiers and propose a novel global
inference model to integrate these components
into our structured output prediction model for
spatial role and relation extraction. Our global
inference model enables us to utilize the vi-
sual and geometric relationships between ob-
jects and improves the state-of-art results of
spatial information extraction from text.

1 Introduction

Significant progress has been made in spatial
language understanding by mapping natural lan-
guage text to spatial ontologies (Kordjamshidi and
Moens, 2015). The research results show that spa-
tial entities can be extracted with a good accu-
racy, however, spatial relation extraction is still
challenging (Kordjamshidi et al., 2017a; Puste-
jovsky et al., 2015). Particularly, when the sen-
tences convey more than one relationship, finding
the right links between the spatial objects and spa-
tial prepositions becomes difficult. For example,
the spatial meaning of There is a car in front of the
house on the left, can be interpreted in different
ways: (A car in front of the house) on the left or
A car in front of (the house on the left). This issue
is related to the well-known prepositional phrase
attachments (pp-attachments) syntactic ambiguity
which is problematic for our goal of spatial seman-
tic extraction too. The previous research shows
some of these ambiguities can be resolved by si-
multaneously reasoning from the associated image

(Christie et al., 2016; Delecraz et al., 2017). Con-
sider the scene in Figure 1, we can easily resolve
the ambiguity and choose the correct interpreta-
tion with the help of the associated image.

Although we do not directly tackle the task of
pp-attachment here, resolving this issue will help
our task to find the accurate link between the spa-
tial prepositions (i.e. spatial indicators) and spa-
tial objects/roles (trajector and landmark). The
spatial semantic links can go beyond the syntac-
tic links/attachments, therefore merely fixing the
preposition attachments is not sufficient for our
task. We exploit the image to find the right prepo-
sition that describes the relationships between the
spatial roles, for example on the left can be a rela-
tionship between the house and implicit landmark
picture as well as a car and implicit landmark
picture. There are many recent works on com-
bining vision and language for domains such as
image captioning (Karpathy and Fei-Fei, 2017),
visual image retrieval (Hu et al., 2016), visual
question answering (Krishna et al., 2017; Faghri
et al., 2017), activity recognition (Gupta and Ma-
lik, 2015; Yatskar et al., 2016; Yang et al., 2016),
visual relation extraction (Lu et al., 2016; Xu
et al., 2017; Haldekar et al., 2017; Peyre et al.,
2017; Liao et al., 2017) and object localization
(Kazemzadeh et al., 2014; Schlangen et al., 2016).
We aim at exploiting models from visual modality
to boost the models trained by the text modality
and improve spatial role labeling task (SpRL) (Ko-
rdjamshidi et al., 2011). The most related work
to ours is (Kordjamshidi et al., 2017a) in which
they connected phrases to ground-truth labeled
segments using word embedding similarity to gen-
erate additional visual features, whereas, in this
work, we train actual inter-modality alignment
models to include visual information in our model.
The challenges are 1) existing textual datasets for
SpRL does not have enough examples to train such
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Figure 1: A captioned scene from CLEF IAPR TC-12
dataset: There is a car in front of the house on the left.

visual models, therefore, such models need to be
trained on external datasets and later incorporated
in our multi-modal setting, 2) Aligning text enti-
ties with image entities is a complex and challeng-
ing task itself. Each modality in isolation repre-
sents spatial relations imperfectly, however, each
one can reflect different types of spatial relation
better than the other. If we can handle the men-
tioned challenges and combine the two modalities
then vision modality fills the information gap of
the text modality and improves the information ex-
traction.

To overcome the above challenges, we 1)
trained two visual models namely word-segment
alignment, trained on ImageClef Referring Ex-
pression Dataset1 to connect the two modali-
ties, and preposition classifier, trained on Visual
Genome dataset (Krishna et al., 2017) to help in
link disambiguation, and 2) generated a unified
graph, based on both image and text data and pro-
posed a global machine learning model to exploit
the information from the companion images.

The contribution of this paper includes a) ex-
ploiting the visual information to solve the SpRL
task and improving the state-of-the-art results sig-
nificantly b) forming a global inference model that
imposes the consistency constraints on the deci-
sions made based on the two modalities c) exploit-
ing external vision and language datasets to inject
external knowledge into our models d) augment-
ing an existing dataset which is annotated by spa-
tial semantics with the image segment alignments,
this dataset will help the evaluation of the exist-
ing methods for combining vision and language
for fine-grained spatial semantic extractions.

2 Model Description

Given a piece of text, S, here a sentence - split into
number of phrases, and an accompanying image,

1http://tamaraberg.com/referitgame/

I segmented into number of segments represented
by bounding boxes, the goal is to identify the tex-
tual phrases that have spatial roles and detect the
relationships between them. The spatial roles in-
cluded in this task are defined as:

(a) Spatial indicators (sp): these are triggers in-
dicating the existence of spatial information
in a sentence;

(b) Trajectors (tr): these are the entities whose
location are described;

(c) Landmarks (lm): these are the reference ob-
jects for describing the location of the trajec-
tors.

In the textual description of Figure 1, the location
of car (trajector) has been described with respect
to house (landmark) using the preposition in front
of. Furthermore, spatial relationships and their
types are defined as follows:

(a) Spatial relations: these indicate a link
between the three above mentioned roles
(sp.tr.lm), forming spatial triplets.

(b) Coarse-grained relation types: these indi-
cate the coarse-grained type of relations in
terms of spatial calculi formalisms including
region, direction, and distance types.

(c) Fine-grained relation types: these indi-
cate the fine-grained type of relations in
terms of each specific spatial calculi formal-
ism. Region connection calculi (RCC8) types
(e.g. disconnected (DC), externally con-
nected (EC), etc.), a closed set of directional
relations (e.g. left, right), and an open set of
distal relations (e.g. close, far) are defined for
regional, directional, and distal relationships
respectively.

For example, given the sentence and its accom-
panying image in Figure 1, the goal is to iden-
tify the spatial relations, 〈[A car]tr, [in front of ]sp,
[the house]lm〉 and 〈[the house]tr, [on the left]sp,
[None]lm〉 and also determine their coarse-grained
types (direction and direction respectively) and
fine-grained types (front and left respectively).

We formulate this problem as a structured out-
put prediction problem. Given a set of input-out
pairs as training examples, E = {(xi, yi) ∈ X ×
Y : i = 1..N}, a scoring function g(x, y;W ) =
〈W,φ(x, y)〉 will be learned. Where W is the
weight vector and 〈, 〉 is dot product between two
vectors. This function is a linear discriminant
function defined over combined feature represen-
tation of inputs and outputs denoted by φ(x, y)
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(Tsochantaridis et al., 2005). However, for this
work we use a piece-wise training model in which
independent models are trained per concepts in
the output and the predictions are done based on
global inference (Punyakanok et al., 2005).

We construct a graph using the phrases
{p1, ..., pn} and bounding boxes {b1...bm}, and
link these nodes to make composed concepts (like
relations, roles, etc.). We associate a classifier to
each concept in the graph and encode the domain
knowledge as global constraints over these con-
cepts. We use global reasoning by imposing these
constraints over various (node and edge) classi-
fiers to produce the final outputs. The input of our
structured output prediction model is the afore-
mentioned graph and the output is the concepts
assigned to the nodes and edges of this graph. In
the following we describe the information that we
use from each modality (i.e. text and image) and
from inter-modality relationships and describe the
relevant classifiers, features and constraints.

2.1 Text

We use binary classifiers to identify spatial roles
and relations. The spatial roles of trajector,
landmark and spatial indicator are denoted by tr,
lm, and sp. sp.tr.lm, sp.tr.lm.γ, and sp.tr.lm.λ
denote spatial relations, coarse-grained relation
types, and fine-grained relation types respectively.
Additionally, we denote candidate fine-grained
types related to coarse-grained type γ by Λγ .
Features: We use phrase-based features
φphrase(pi) for role classifiers in which pi is
the identifier of ith phrase in the sentence which
include several linguistically motivated features
such as lexical form of the words in the phrases,
lemmas, pos-tags, etc. In addition, motivated
by features used in (Roberts and Harabagiu,
2012) and (Kordjamshidi et al., 2017a), we
use a combination of phrase-based features like
concatenation of headwords of the roles, concate-
nation of their pos, and other relative features such
as distance between roles, dependency relations,
sub-categorization, etc., to represent the relations
and this is referred to as φtexttriplet(pi, pj , pk).
Constraints: The constraints over spatial con-
cepts expressed in text are as follows,∑

i

∑
k spitrjlmk ≥ trj Each tr candidate at

least should appear in
one relation∑

i

∑
j spitrjlmk ≥ lmk Each lm candidate at

least should appear in
one relation

∑
j

∑
k spitrjlmk = spi Each sp candidate

should appear in one
relation∑

j trj ≥ spi For each sp we should
have at-least one tr∑

k lmk ≥ spi For each sp we should
have at-least one
lm. Including null
landmarks

spitrjlmkγ ≤ spitrjlmk is-a constraints be-
tween relations and
coarse-grained types

spitrjlmkλ ≤ spitrjlmkγ
λ∈Λγ

is-a constraints be-
tween coarse-grained
and corresponding
fine-grained types.

2.2 Image

In the image modality, we have two types of
classifiers, 1) for localization of an object in the
image given a referring expression, and 2) for ex-
traction of spatial relations, called Word-Segment
Alignment and Preposition Classifier respectively.
Word-Segment alignment: motivated by
(Schlangen et al., 2016), we trained a set of binary
object localization classifiers to link words and
image segments. These per word classifiers are
trained using ImageClef Referring Expression
Dataset.
Preposition classifier: is a multi-class classifier
that takes two bounding boxes and returns the
spatial relation (preposition here) between them.
This classifier is trained on a subset of visual
genome dataset (Krishna et al., 2017) described
in section 3.1, this classifier provides the external
knowledge from visual resources and help in
disambiguation of ambiguous links (i.e. finding
the correct link between spatial preposition and
spatial roles).
Features: A deep convolutional neural network,
“GoogLeNet” is used to extract features for
bounding boxes that are used by Word-Segment
Alignment, for details see (Schlangen et al., 2016).
For the Preposition Classifier we use bounding
box features φbox(b) = [l, xmin, ymin, wb, hb]
where l is the label of the box, (xmin, ymin) is
the top-left point of the box, wb, hb are the width
and height of the box respectively. In addition
we use pair features φvisualpair (bi, bj) including,
label of each box, distance between the center of
the two boxes, a vector from the center of first
box to the center of second box, aspect ratio of
each box, word to vector representation of each
box’s label, the normalized area of each box,
intersection, union, intersection over union of the
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two boxes, and four directional (above, below, left
and right) features calculated with reference to
the two boxes. Box and pair features are adopted
from (Ramisa et al., 2015).

2.3 Inter-Modality
An essential part of having a global inference
over multimodal data is to have the connections
between the two modalities. Word-Segment Align-
ment classifier is used to align the headword of
each phrase p in the sentence to its corresponding
bounding box b in the image and this alignment is
denoted by p → b. A binary feature isAligned
(that indicates if the phrase is connected to an
object in the image) is added to the features of
classifiers in the text side.
Constraints: Given two bounding boxes b1 and
b2 we say that the preposition α is supported
by the image and write iSupαb1b2 if α is ranked
among top N prepositions according to Prepo-
sition Classifier scores. Using this indicator we
define the following inter-modality constraint.
iSupαb1b2 ≤ spitrjlmk

pi→b1,pj→b2,α=pi

For aligned pairs, the visual
relation should support the
textual relation

2.4 Global Reasoning
We obtain the output of each classifier in the
model holistically by global reasoning that is by
considering global correlations among classifiers,
when calculating outputs. This goal is achieved by
optimizing an objective function that is the sum-
mation of classifiers’ discriminant functions,
∑

i∈Csp
〈Wsp, φspi〉.spi +

∑

i∈Ctr
〈Wtr, φtri〉.tri+

∑

i∈Clm

〈Wlm, φlmi〉.lmi+

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmk 〉.spitrj lmk+

∑

γ∈Γ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkγ〉.spitrj lmkγ+

∑

λ∈Λ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkλ〉.spitrj lmkλ+

∑

α∈Prep

∑

(i,j)∈CiSup

〈WiSupα , φiSupαij 〉.iSup
α
ij .

Each classifier is shown as a binary variable (e.g.
tri for trajector classifier). Λ, Γ, Prep are the can-
didates for fine-grained relations, coarse-grained
relations, and prepositions from text respectively.
Cl denotes the candidates for label l.
The following model variations are designed us-
ing combination of text and image modalities for

experimentation.
Baseline Model (BM): Independent classifiers are
trained only on the textual features described in
Section 2.1. This is a learning only model and
each classifier makes independent predictions.
Baseline + Constraints (BM+C): The output of
the classifiers obtained from the BM model are
adjusted by global inference over textual con-
straints defined in Section 2.1.
Ground-truth alignments (GT): This setting is
very similar to the BM + C model except the
isAligned feature (see Section 2.3) added to con-
sider the ground-truth alignments.
Alignment Classifier (AC): Similar to the GT
model, but instead of ground-truth information we
use Word-Segment Alignment classifier to align
bounding boxes with the phrases in the sentence.
GT + Preposition (GT+P): In this setting,
ground-truth alignments alongside Preposition
classifier is used to enforce all constraints in the
global inference over the two modalities.
AC + Preposition (AC+P): Same as GT+P model
but with Word-Segment Alignment classifiers in-
stead of ground-truth alignments.

3 Experimental Setup

We report the experimental results of our model
and compare it with the state-of-the-art (Kord-
jamshidi et al., 2017a) model, referred here as M0
model. A role prediction is considered correct if
there is a phrase overlap between the ground-truth
and predicted roles and each relation is counted as
correct when all three arguments are correct. All
the base classifiers described in Section 2.1 are
sparse perceptrons. We use Saul (Kordjamshidi
et al., 2015, 2016) to implement the models and
solve the global inference of Section 2.4. The code
is publicly available here. 2

3.1 DataSets

CLEF 2017 mSpRL dataset: This dataset is a
subset of IAPR TC-123 Benchmark which is an-
notated for the SpRL task (Kordjamshidi et al.,
2017c, 2012). It contains 613 images with de-
scriptions including 1, 213 sentences. The stan-
dard split of the dataset contains 761 training and
939 testing spatial relations (Kordjamshidi et al.,
2017b). Furthermore, we added new annotations

2https://github.com/HetML/SpRL/tree/
paper2

3http://www.imageclef.org/SIAPRdata
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Visual Genome CLEF
P R F1 P R F1

above 47.24 21.59 29.63 87.50 22.58 35.90
behind 65.02 22.65 33.56 80.00 22.22 34.78
in 80.99 54.96 65.48 83.80 79.87 81.79
in front of 31.65 6.67 11.02 80.00 16.33 27.12
on 79.76 95.75 87.03 38.39 91.49 54.09

(a) Preposition classifier results on Visual genome and CLEF datasets

P R F1
M0 68.34 57.93 62.71
BM 65.64 60.23 62.82
BM+C 70.04 66.55 68.25
GT 66.37 75.14 70.48
GT+P 67.14 74.80 70.76
AC 71.39 66.55 68.89
AC+P 71.69 66.10 68.78

(b) Spatial relations results on CLEF test set
Table 1: Experimental results, where P and R denote precision and recall respectively.

to this dataset to align phrases in the text with the
segments of the related images using brat tool.4

The alignments are used only for evaluations and
are publicly available. 5

Visual Genome dataset (VG): Visual Genome
dataset has seven main components (Krishna et al.,
2017), one of them is relationships component
which contains the relationships (prepositions) be-
tween two bounding boxes. The dataset contains
108077 images and the relationships component
contains 2316104 relation instances. We used
a subset the relationships that correspond to the
most frequent prepositions in CLEF dataset. We
used 80% for training (811661 instances) and 20%
for testing (202916 instances).
ReferItGame Dataset: It contains 120, 000 re-
ferring expressions and covers 99.5 percent of the
regions of SAIAPRTC-12 dataset which is a seg-
mented and annotated version of the IAPR TC-12
dataset (Kazemzadeh et al., 2014).

3.2 Experimental Results
Word-Segment Alignment: We implemented
and trained classifiers per words as described in
Section 2.2 for the most frequent words in Refer-
ItGame dataset using (Schlangen et al., 2016)
approach. We evaluated the trained model on
both ReferitGame and CLEF testset, and obtained
64% and 45% accuracy respectively. This trained
model is used to align words and segments in
CLEF dataset. The end-to-end evaluation re-
sults show that the models trained by this external
dataset are helpful though those are not highly ac-
curate for every referring word.
Preposition Classifier: As described in Sec-
tion 2.2, these are trained on a subset of Vi-
sual Genome dataset described in Section 3.1 and
evaluated on both Visual Genome and CLEF test
sets. Table 1a shows five best prepositions result
whereas the result for other prepositions is less

4http://brat.nlplab.org/
5http://www.cs.tulane.edu/˜pkordjam/

SpRL.htm#data

than 20% F1.
Spatial Relations: The experimental results in
Table 1b show that our baseline model (BM) is
as good as the state-of-the-art model (M0). Incor-
porating isAligned feature (in GT and AC mod-
els) further improves the results because having
the phrases visualized in the image increases the
confidence scores of the spatial role and relation
classifiers and leads to a higher recall. The global
inference over constraints in BM+C significantly
improves the performance of BM (about 5% F1).
GT+P results show that inter-modality constraints
help in improving the results (about 2% F1) which
indicates some of the visual relations successfully
confirmed and boosted their corresponding rela-
tions in the text modality. However, this improve-
ment is limited which is expected considering the
low performance of Preposition Classifier. The
GT+P results indicate the significance of the vi-
sual information in our model when the correct
alignments are provided. The alignment classifiers
in the AC model also slightly improve the BM+C.
However, as it is visible in AC+P results, when we
have both noisy alignments and noisy visual rela-
tions the results drop slightly compared to AC.

4 Conclusion

Our global inference model exploits visual modal-
ity classifiers including object localization by re-
ferring expressions and spatial relation classifiers
between visual objects, as well as classifiers that
extract spatial roles and relation from text. The
global inference imposes consistency over the two
modalities and identifies the spatial relations in
text in accordance with their counterparts in the
image. The experimental results show the effec-
tiveness of the visual information in resolving the
ambiguity of spatial semantics of text. There is
still a large room to improve the modality align-
ments and relation extraction from images to ob-
tain better gains from visual information.
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Abstract
A major challenge for video captioning is
to combine audio and visual cues. Exist-
ing multi-modal fusion methods have shown
encouraging results in video understanding.
However, the temporal structures of multi-
ple modalities at different granularities are
rarely explored, and how to selectively fuse the
multi-modal representations at different lev-
els of details remains uncharted. In this pa-
per, we propose a novel hierarchically aligned
cross-modal attention (HACA) framework to
learn and selectively fuse both global and lo-
cal temporal dynamics of different modali-
ties. Furthermore, for the first time, we vali-
date the superior performance of the deep au-
dio features on the video captioning task. Fi-
nally, our HACA model significantly outper-
forms the previous best systems and achieves
new state-of-the-art results on the widely used
MSR-VTT dataset.

1 Introduction

Video captioning, the task of automatically gener-
ating a natural-language description of a video, is a
crucial challenge in both NLP and vision commu-
nities. In addition to visual features, audio features
can also play a key role in video captioning. Fig-
ure 1 shows an example where the caption system
made a mistake analyzing only visual features. In
this example, it could be very hard even for a hu-
man to correctly determine if the girl is singing or
talking by only watching without listening. Thus
to describe the video content accurately, a good
understanding of the audio signature is a must.

In the multi-modal fusion domain, many ap-
proaches attempted to jointly learn temporal fea-
tures from multiple modalities (Wu et al., 2014a),
such as feature-level (early) fusion (Ngiam et al.,
2011; Ramanishka et al., 2016), decision-level
(late) fusion (He et al., 2015), model-level fu-
sion (Wu et al., 2014b), and attention fusion (Chen

Ground	Truth:	 A	girl	is	singing.
A	girl	sings	to	a	song.

Video	Only:	 A	woman	is	talking	in	a	room.
Video	+	Audio: A	girl	is	singing	a	song.

Figure 1: A video captioning example.

and Jin, 2016; Yang et al., 2017), etc. But these
techniques do not learn the cross-modal atten-
tion and thus fail to selectively attend to a certain
modality when producing the descriptions.

Another issue is that little efforts have been ex-
erted on utilizing temporal transitions of the dif-
ferent modalities with varying analysis granulari-
ties. The temporal structures of a video are inher-
ently layered since the video usually contains tem-
porally sequential activities (e.g. a video where a
person reads a book, then throws it on the table.
Next, he pours a glass of milk and drinks it). There
are strong temporal dependencies among those ac-
tivities. Meanwhile, to understand each of them
requires understanding many action components
(e.g., pouring a glass of milk is a complicated ac-
tion sequence). Therefore we hypothesize that it
is beneficial to learn and align both the high-level
(global) and low-level (local) temporal transitions
of multiple modalities.

Moreover, prior work only employed hand-
crafted audio features (e.g. MFCC) for video cap-
tioning (Ramanishka et al., 2016; Xu et al., 2017;
Hori et al., 2017). While deep audio features have
shown superior performance on some audio pro-
cessing tasks like audio event classification (Her-
shey et al., 2017), their use in video captioning
needs to be validated.
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Figure 2: Overview of our HACA framework. Note that in the encoding stage, for the sake of simplicity, the
step size of high-level LSTM in both hierarchical attentive encoders is 2 here, but in practice usually they are set
much longer. In the decoding stage, we only show the computations of the time step t (the decoders have the same
behavior at other time steps).

In this paper, we propose a novel hierarchically
aligned cross-modal attentive network (HACA)
to learn and align both global and local contexts
among different modalities of the video. The goal
is to overcome the issues mentioned above and
generate better descriptions of the input videos.
Our contributions are fourfold: (1) we invent
a hierarchical encoder-decoder network to adap-
tively learn the attentive representations of mul-
tiple modalities, including visual attention, audio
attention, and decoder attention; (2) our proposed
model is capable of aligning and fusing both the
global and local contexts of different modalities
for video understanding and sentence generation;
(3) we are the first to utilize deep audio features for
video captioning and empirically demonstrate its
effectiveness over hand-crafted MFCC features;
and (4) we achieve the new state of the art on the
MSR-VTT dataset.

Among the network architectures for video cap-
tioning (Yao et al., 2015; Venugopalan et al.,
2015b), sequence-to-sequence models (Venu-
gopalan et al., 2015a) have shown promising re-
sults. Pan et al. Pan et al. (2016) introduced a
hierarchical recurrent encoder to capture the tem-
poral visual features at different levels. Yu et al.
(2016) proposed a hierarchical decoder for para-
graph generation, and most recently Wang et al.
(2018) invented a hierarchical reinforced frame-
work to generate the caption phrase by phrase.
But none had tried to model and align the global

and local contexts of different modalities as we do.
Our HACA model does only learn the representa-
tions of different modalities at different granulari-
ties, but also align and dynamically fuse them both
globally and locally with hierarchically aligned
cross-modal attentions.

2 Proposed Model

Our HACA model is an encoder-decoder frame-
work comprising multiple hierarchical recurrent
neural networks (see Figure 2). Specifically, in
the encoding stage, the model has one hierarchical
attentive encoder for each input modality, which
learns and outputs both the local and global rep-
resentations of the modality. (In this paper, vi-
sual and audio features are used as the input and
hence there are two hierarchical attentive encoders
as shown in Figure 2; it should be noted, how-
ever, that the model seamlessly extends to more
than two input modalities.)

In the decoding stage, we employ two cross-
modal attentive decoders: the local decoder and
the global decoder. The global decoder attempts
to align the global contexts of different modalities
and learn the global cross-modal fusion context.
Correspondingly, the local decoder learns a local
cross-modal fusion context, combines it with the
output from the global decoder, and predicts the
next word.
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2.1 Feature Extractors
To exploit visual and audio cues, we use the pre-
trained convolutional neural network (CNN) mod-
els to extract deep visual features and deep au-
dio features correspondingly. More specifically,
we utilize the ResNet model for image classifica-
tion (He et al., 2016) and the VGGish model for
audio classification (Hershey et al., 2017).

2.2 Attention Mechanism
For a better understanding of the following sec-
tions, we first introduce the soft attention mech-
anism. Given a feature sequence (x1,x2, ...,xn)
and a running recurrent neural network (RNN), the
context vector ct at time step t is computed as a
weighted sum over the sequence:

ct =
n∑

k=1

αtkxk , (1)

These attention weights {αtk} can be learned by
the attention mechanism proposed in (Bahdanau
et al., 2014), which gives higher weights to cer-
tain features that allow better prediction of the sys-
tem’s internal state.

2.3 Hierarchical Attentive Encoder
Inspired by Pan et al. (2016), the hierarchical at-
tentive encoder consists of two LSTMs and the in-
put to the low-level LSTM is a sequence of tem-
poral features {f eLi } and i ∈ {1, ..., n}:

oeLi ,heL
i = eL(f

eL
i ,heL

i−1) , (2)

where eL is the low-level encoder LSTM, whose
output and hidden state at step i are oeLi and
heL
i respectively. As shown in Figure 2, differ-

ent from a stacked two-layer LSTM, the high-level
LSTM here operates at a lower temporal resolu-
tion and runs one step every s time steps. Thus
it learns the temporal transitions of the segmented
feature chunks of size s. Furthermore, an attention
mechanism is employed between the connection
of these two LSTMs. It learns the context vec-
tor of the low-level LSTM’s outputs of the current
feature chunk, which is then taken as the input to
the high-level LSTM at step j. In formula,

f eHj =
sj∑

k=s(j−1)+1

αjko
eL
k , (3)

oeHj ,heH
j = eH(f eHj ,heH

j−1) , (4)

where eH denotes the high-level LSTM whose
output and hidden state at j are oeHj and heH

j .
Since we are utilizing both the visual and au-

dio features, there are two hierarchical attentive
encoders (v for visual features and a for audio
features). Hence four sets of representations are
learned in the encoding stage: high-level and low-
level visual feature sequences ({ovHj } and {ovLi }),
and high-level and low-level audio feature se-
quences ({oaHj } and {oaLi }).

2.4 Globally and Locally Aligned
Cross-modal Attentive Decoder

In the decoding stage, the representations of differ-
ent modalities at the same granularity are aligned
separately with individual attentive decoders. That
is, one decoder is employed to align those high-
level features and learn a high-level (global) cross-
modal embedding. Since the high-level features
are the temporal transitions of larger chunks and
focus on long-range contexts, we call the corre-
sponding decoder as global decoder (dG). Simi-
larly, the companion local decoder (dL) is used to
align the low-level (local) features that attend to
fine-grained and local dynamics.

At each time step t, the attentive decoders learn
the corresponding visual and audio contexts using
the attention mechanism (see Figure 2). In addi-
tion, our attentive decoders also uncover the at-
tention over their own previous hidden states and
learn aligned decoder contexts cdLt and cdGt :

cdLt =
t−1∑

k=1

αdL
tk h

dL
k , cdGt =

t−1∑

k=1

αdG
tk hdG

k . (5)

Paulus et al. (2017) also show that decoder atten-
tion can mitigate the phrase repetition issue.

Each decoder is equipped with a cross-modal
attention, which learns the attention over contexts
of different modalities. The cross-modal attention
module selectively attends to different modalities
and outputs a fusion context cft :

cft = tanh(βtvWvc
v
t+βtaWac

a
t+βtdWdc

d
t+b),

(6)
where cvt , cat , and cdt are visual, audio and decoder
contexts at step t respectively; Wv, Wa and Wd

are learnable matrices; βtv, βta and βtd can be
learned in a similar manner of the attention mech-
anism in Section 2.2.

The global decoder dG directly takes as the in-
put the concatenation of the global fusion con-
text cfGt and the word embedding of the generated
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word wt−1 at previous time step:

odGt ,hdG
t = dG([c

fG
t , emb(wt−1)],h

dG
t−1). (7)

The global decoder’s output odGt is a latent embed-
ding which represents the aligned global tempo-
ral transitions of multiple modalities. Differently,
the local decoder dL receives the latent embedding
odGt , mixes it with the local fusion context cfLt ,
and then learns a uniform representation odLt to
predict the next word. In formula,

odLt ,hdL
t = dL([c

fL
t , emb(wt−1),o

dG
t ],hdL

t−1).
(8)

2.5 Cross-Entropy Loss Function

The probability distribution of the next word is

p(wt|w1:t−1) = softmax(Wp[o
dL
t ]), (9)

where Wp is the projection matrix. w1:t−1 is the
generated word sequence before step t. θ be the
model parameters and w∗

1:T be the ground-truth
word sequence, then the cross entropy loss

L(θ) = −
T∑

t=1

log p(w∗
t |w∗

1:t−1, θ). (10)

3 Experimental Setup

Dataset and Preprocessing We evaluate our
model on the MSR-VTT dataset (Xu et al., 2016),
which contains 10,000 videos clips (6,513 for
training, 497 for validation, and the remaining
2,990 for testing). Each video contains 20 human
annotated reference captions collected by Amazon
Mechanical Turk. To extract the visual features,
the pretrained ResNet model (He et al., 2016) is
used on the video frames which are sampled at
3fps. For the audio features, we process the raw
WAV files using the pretrained VGGish model as
suggested in Hershey et al. (2017)1.

Evaluation Metrics We adopt four diverse au-
tomatic evaluation metrics: BLEU, METEOR,
ROUGE-L, and CIDEr-D, which are computed us-
ing the standard evaluation code from MS-COCO
server (Chen et al., 2015).

1https://github.com/tensorflow/models/
tree/master/research/audioset

Models BLEU-4 METEOR ROUGE-L CIDEr
Top-3 Results from MSR-VTT Challenge 2017

v2t navigator 40.8 28.2 60.9 44.8
Aalto 39.8 26.9 59.8 45.7
VideoLAB 39.1 27.7 60.6 44.1

State Of The Arts
CIDEnt-RL 40.5 28.4 61.4 51.7
Dense-Cap 41.4 28.3 61.1 48.9
HRL 41.3 28.7 61.7 48.0

Our Models
ATT(v) 39.6 27.4 59.7 45.8
CM-ATT(va) 41.7 28.6 61.2 48.2
CM-ATT(vad) 41.9 29.1 61.5 48.0
HACA(w/o align) 42.8 29.0 61.8 48.9
HACA 43.4 29.5 61.8 49.7

Table 1: Results on the MSR-VTT dataset.

Training Details All the hyperparameters are
tuned on the validation set. The maximum num-
ber of frames is 50, and the maximum number of
audio segments is 20. For the visual hierarchical
attentive encoders (HAE), the low-level encoder
is a bidirectional LSTM with hidden dim 512 (128
for the audio HAE), and the high-level encoder is
an LSTM with hidden dim 256 (64 for the audio
HAE), whose chunk size s is 10 (4 for the audio
HAE). The global decoder is an LSTM with hid-
den dim 256 and the local decoder is an LSTM
with hidden dim 1024. The maximum step size
of the decoders is 16. We use word embedding
of size 512. Moreover, we adopt Dropout (Sri-
vastava et al., 2014) with a value 0.5 for regular-
ization. The gradients are clipped into the range
[-10, 10]. We initialize all the parameters with
a uniform distribution in the range [-0.08, 0.08].
Adadelta optimizer (Zeiler, 2012) is used with
batch size 64. The learning rate is initially set as 1
and then reduced by a factor 0.5 when the current
CIDEr score does not surpass the previous best
for 4 epochs. The maximum number of epochs is
set as 50, and the training data is shuffled at each
epoch. Schedule sampling (Bengio et al., 2015) is
employed to train the models. Beam search of size
5 is used during the test time inference.

4 Results

4.1 Comparison with State Of The Arts

In Table 1, we first list the top-3 results from
the MSR-VTT Challenge 2017: v2t navigator (Jin
et al., 2016), Aalto (Shetty and Laaksonen, 2016),
and VideoLAB (Ramanishka et al., 2016). Then
we compare with the state-of-the-art methods on
the MSR-VTT dataset: CIDEnt-RL (Pasunuru and
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Features BLEU-4 METEOR ROUGE-L CIDEr
video only 39.6 27.4 59.7 45.8
video + MFCC 40.3 28.5 60.8 47.5
video + VGGish 41.7 28.6 61.2 48.2

Table 2: Performance of the cross-modal attention
model with various audio features.

Bansal, 2017), Dense-Cap (Shen et al., 2017), and
HRL (Wang et al., 2018). Our HACA model sig-
nificantly outperforms all the previous methods
and achieved the new state of the art on BLEU-4,
METEOR, and ROUGE-L scores. Especially, we
improve the BLEU-4 score from 41.4 to 43.1. The
CIDEr score is the second best and only lower than
that of CIDEnt-RL which directly optimizes the
CIDEr score during training with reinforcement
learning. Note that all the results of our HACA
method reported here are obtained by supervised
learning only.

4.2 Result Analysis

We also evaluate several baselines to validate the
effectiveness of the components in our HACA
framework (see Our Models in Table 1). ATT(v) is
a generic attention-based encoder-decoder model
that specifically attends to the visual features only.
CM-ATT is a cross-modal attentive model, which
contains one individual encoder for each input
modality and employs a cross-modal attention
module to fuse the contexts of different modalities.
CM-ATT(va) denotes the CM-ATT model consist-
ing of visual attention and audio attention, while
CM-ATT(vad) has an additional decoder attention.

As presented in Table 1, our ATT(v) model
achieves comparable results with the top-ranked
results from MSR-VTT challenge. Comparing be-
tween ATT(v) and CM-ATT(va), we observe a
substantial improvement by exploiting the deep
audio features and adding cross-modal attention.
The results of CM-ATT(vad) further demonstrates
that decoder attention was beneficial for video
captioning. Note that to test the strength of the
aligned attentive decoders, we provide the results
of HACA(w/o align) model, which shares almost
same architecture with the HACA model, except
that it only has one decoder to receive both the
global and local contexts. Apparently, our HACA
model obtains superior performance, which there-
fore proves the effectiveness of the context align-
ment mechanism.

Figure 3: Learning curves of the CIDEr scores on the
validation set. Note that greedy decoding is used during
training, while beam search is employed at test time,
thus the testing scores are higher than the validation
scores here.

4.3 Effect of Deep Audio Features
In order to validate the superiority of the deep au-
dio features in video captioning, we illustrate the
performance of different audio features applied in
the CM-ATT model in Table 2. Evidently, the deep
VGGish audio features work better than the hand-
crafted MFCC audio features for the video cap-
tioning task. Besides, it also shows the importance
of understanding and describing a video with the
help of audio features.

4.4 Learning Curves
For a more intuitive view of the model capacity,
we plot the learning curves of the CIDEr scores
on the validation set in Figure 3. Three models are
presented: HACA, HACA(w/o align), and CM-
ATT. They are trained on same input modalities
and all paired with visual, audio and decoder at-
tentions. We can observe that the HACA model
performs consistently better than others and has
the largest model capacity.

5 Conclusion

We introduce a generic architecture for video cap-
tioning which learns the aligned cross-modal at-
tention globally and locally. It can be plugged
into the existing reinforcement learning methods
for video captioning to further boost the perfor-
mance. Moreover, in addition to the deep visual
and audio features, features from other modalities
can also be incorporated into the HACA frame-
work, such as optical flow and C3D features.
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