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Abstract

Temporal relations between events is a valu-
able source of information which can be used
in a large number of natural language pro-
cessing applications such as question answer-
ing, summarization, and information extrac-
tion. Supervised temporal relation classifica-
tion requires large corpora which are difficult,
time consuming, and expensive to produce.
Active learning strategies are well-suited to
reduce this effort by efficiently selecting the
most informative samples for labeling. This
paper presents novel active learning strategies
based on support vector machines (SVM) for
temporal relation classification. A large num-
ber of empirical comparisons of different ac-
tive learning algorithms and various kernel
functions in SVM shows that proposed active
learning strategies are effective for the given
task.

1 Introduction

The identification of temporal relations between
events, in texts, is a valuable information for many
natural language processing (NLP) tasks, such as
summarization, question answering, and informa-
tion extraction. In question answering, one expects
the system to answer questions such as “when an
event occurred”, or “what is the chronological or-
der of some desired events”. In text summarization,
especially in the multi-document type, knowing the
order of events is important for correctly merging
related information.

Most existing algorithms for temporal relation
learning are supervised, they rely on manual annota-

tions of corpora. Producing such annotated corpora
has shown to be a time consuming, hard, and expen-
sive task (Mani et al., 2006). In this paper we ex-
plore active learning techniques as a way to control
and speed up the annotation process.

In the active learning framework, the learner has
control over choosing the instances that will consti-
tute the training set. A typical active learning algo-
rithm begins with a small number of annotated data,
and selects one or more informative instances from
a large set of unlabeled instances, named the pool.
The chosen instance(s) are then labeled and added
to other annotated data, and the model is updated
with this new information. These steps are repeated
until at least one termination condition is satisfied.

While there have been numerous applications
of active learning to NLP researches (Settles and
Craven, 2008; Xu et al., 2007), it has not been ap-
plied, to our knowledge, to temporal relation classi-
fication.

This paper presents a novel active learning strat-
egy for SVM-based classification algorithm. The
proposed algorithm considers three measures: un-
certainty, representativeness, and diversity to select
the instances that will be annotated. The method
we propose is generic, it could be applied to any
SVM based classification problem. Temporal rela-
tion classification has been selected, in this paper,
for illustration purpose. Our experiments show that
state-of-the-art results can be reproduced with a sig-
nificantly smaller part of training data.

The remainder of this paper is organized as fol-
lows: Section 2 is about temporal relation classifica-
tion and its related work. Section 3 describes some
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of existing active learning methods. Our proposed
method will be presented in Section 4. Section 5
briefly presents the characteristics of the corpora that
we have used. Section 6 demonstrates the evaluation
of the proposed algorithm. Finally, Section 7 con-
cludes the paper and presents some possible future
work.

2 Temporal Relation Classification with
SVM

For a given ordered pair (x1, x2), where x1 and
x2 are time expressions or events, a temporal in-
formation processing system identifies the type of
relation that temporally links x1 to x2. For ex-
ample in “If all the debt is converted (event1) to
common, Automatic Data will issue (event2) about
3.6 million shares; last Monday (time1), the com-
pany had (event3) nearly 73 million shares out-
standing.”, taken from document wsj 0541 of Time-
Bank (Pustejovsky et al., 2003), there are two tem-
poral relations between pairs (event1, event2) and
(time1, event3). The task of a temporal relation ex-
traction system is to automatically tag these pairs
with relations BEFORE and INCLUDES, respec-
tively.

Several researchers have focused on temporal re-
lation learning (Chklovski and Pantel, 2005; Lapata
and Lascarides, 2006; Bethard et al., 2007; Cham-
bers et al., 2007; Bethard and Martin, 2008; Mir-
roshandel and Ghassem-Sani, 2010; Puscasu, 2007)
among which SVM has shown good performances.
In this section, we describe two of the most success-
ful SVM-based methods.

Inderjeet Mani was the first to propose an SVM-
based temporal relation classification model which
is based on a linear kernel (Mani et al., 2006). His
system (referred to as (kMani)) uses five temporal
attributes that have been tagged in the standard cor-
pora (Pustejovsky et al., 2003) plus the string of
words that constitute the events, as well as their part
of part of speech tags.

The other successful SVM-based temporal classi-
fication method uses a polynomial convolution tree
kernel, named argument ancestor path distance ker-
nel (AAPD), and outperforms Mani’s method (Mir-
roshandel et al., 2010). In this model, the algorithm
adds event-event syntactic properties to the simple

event features described above. In order to use syn-
tactic properties, a convolution tree kernel is applied
to the parse trees of sentences containing event pairs.
Through this process, useful syntactic features can
be gathered for classification by SVM. The two ker-
nels are then polynomially combined.

3 Active Learning

Supervised methods usually need a large number of
annotated samples in the training phase. In most
applications including temporal relation classifica-
tion, the preparation of such samples is a hard, time
consuming, and expensive task (Mani et al., 2006).
On the other hand, all these annotated samples may
not be useful, because some samples contain lit-
tle (or even no) new information. Active learning
algorithms overcome this problem by adding only
the most informative instances labeled by an oracle
(e.g., a human expert) to the learning model. Three
scenarios have been proposed for the selection of in-
stances: 1) membership query synthesis, 2) stream-
based selective sampling, and 3) pool-based sam-
pling (Settles, 2010).

In membership query synthesis, the model it-
self generates some instances rather than using real-
world unlabeled instances (Angluin, 2004).

In stream-based selective sampling, instances are
presented in a stream and the learner decides, based
on its specific control measure, whether or not to
query its label (Atlas et al., 1990; Cohn et al., 1994).

In pool based sampling, which is the scenario that
we have chosen), a large number of unlabeled in-
stances are collected to form the pool U . The algo-
rithm begins with a small number of labeled data
L, and then chooses one or more informative in-
stances from U . The chosen instance(s) are labeled
and added to L. A new model is then learned and
the process iterated (Lewis and Gale, 1994).

3.1 Sample Selection Strategies

In all active learning strategies, the informative-
ness of each unlabeled instance is evaluated by the
learner, and the most informative instance(s) are
labeled. Different informativeness measures have
been proposed: 1) uncertainty sampling, 2) query by
committee, 3) expected model change, 4) expected
error reduction, 5) variance reduction, and 6) den-
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sity weighted methods (Settles, 2010).
Uncertainty sampling is the simplest and the most

commonly used selection strategy. In this strategy,
instances for which the prediction of the label is the
most uncertain are selected by the learner (Lewis
and Gale, 1994).

In query by committee, there is a committee of
models trained on the current labeled data L based
on different hypotheses. For each unlabeled in-
stance, committee models vote for their label. The
most informative instance is one with the largest dis-
agreement on the votes (Seung et al., 1992). In the
expected model change, the most informative in-
stance is the one which causes the most change to
the model (Settles et al., 2008). In expected error re-
duction, the learner selects instances which reduce
expected error of model as much as possible (Roy
and McCallum, 2001). In density weighted meth-
ods, selected instances must be both uncertain and
representative in order to decrease the effect of out-
liers which may cause some problems especially in
uncertainty sampling and query by committee strate-
gies (Settles and Craven, 2008).

4 Proposed Algorithm

In this section, we present an active learning method
based on SVM. There have been other efforts in
using active learning in combination with SVM
(Brinker, 2003; Xu et al., 2007), our contribution
is the design of new uncertainty measures used for
sample selection. In addition, the way representa-
tiveness and diversity measures are computed and
combined are novel.

The algorithm is pool-based. At each iteration, k
(k ≥ 1) instances are selected from a pool U . To
select the more informative instance(s), three mea-
sures are used: uncertainty, representativeness and
diversity. In the next subsections, we begin with
an overview of multi-class classification with SVM,
then introduce our three measures and describe the
active learning algorithm.

4.1 Multi-class classification

In SVM binary classification, positive and negative
instances are linearly partitioned by a hyper-plane
(with maximum marginal distance to instances) in
the original or a higher dimensional feature space.

In order to classify a new instance x, its distance
to the hyper-plane is computed and x is assigned to
the class that corresponds to the sign of the com-
puted distance. The distance between instance x
and hyper-planeH , supported by the support vectors
x1 . . . xl, is computed as follows (Han and Kamber,
2006):

d(x,H) =
l∑

k=1

ykαkxkx
T + b0 (1)

where yk is the class label of support vector xk;
αk and b0 are numeric parameters that are deter-
mined automatically.

For multi-class classification with m classes, in
one-versus-one case, a set H of m(m−1)

2 hyper-
planes, one for every class pair is defined. The
hyper-plane that separates class i and j will be noted
Hi,j . We note Hi ⊂ H the set of the m − 1 hyper-
planes that separate class i from the others.

In order to classify a new instance x, its distance
to each hyper-plane Hi,j is computed and x is as-
signed to class i or j. At the end of this process,
for every instance x, every class i has accumulated
a certain number of votes, noted Vi(x) (number of
time a classifier has attributed the class i to instance
x). The final class of x, noted C(x) will be the one
that has accumulated the highest number of votes.

C(x) = argmax
1≤i≤m

Vi(x) (2)

4.2 Uncertainty

Uncertainty is one of the most important measures
of informativeness of an instance. If the learner
is uncertain about an instance, that shows that the
learning model is not able to deal with the instance
properly. As a result, knowing the correct label of
this uncertain instance will improve the quality of
learning model.

In the process described in subsection 4.1, there
are two places where uncertainty can be measured.
In the first case, a decision is taken based on the dif-
ference of two distances. The smaller the difference,
the less reliable the decision is. In the second case, a
decision is taken based on the result of a vote. If the
outcome of the vote does not show a clear majority,
the decision will be less reliable.
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Four measures of uncertainty are presented below,
the first and second are based on distances while the
third and fourth are based on the result of the vote
procedure.

4.2.1 Nearest to One Hyper-Plane (NOH)
Uncertainty of an instance x is defined here as the

distance to its closest class separating hyper-planes.

ϕ(x) = min
H∈HC(x)

|d(x,H)| (3)

4.2.2 Nearest to All Hyper-Planes (NAH)
NAH defines the uncertainty of instance x as the

sum of its distances to all its class separating hyper-
planes.

ϕ(x) =
∑

H∈HC(x)

|d(x,H)| (4)

4.2.3 Least Votes Margin (LVM)
LVM estimates the uncertainty of an instance by

the difference between the two highest votes for this
instance.

ϕ(x) = Vi(x)− Vj(x) (5)

where i is the class that has collected the highest
number of votes and j the class that has collected the
second higher number of votes.

4.2.4 Votes Entropy (VE)
VE is based on the entropy of the distribution of

the vote outcome:

ϕ(x) = −
∑

1≤i≤m
P (Vi(x)) logP (Vi(x)) (6)

where P (Vi(x)) is simply estimated as its relative
frequency Vi(x)/m.

4.3 Representativeness
Representativeness is another important measure for
choosing samples in active learning. In figure 1,
sample 1 is the nearest instance to decision bound-
ary, it is therefore the instance that will be selected
using uncertainty criterion. But it should be clear
that this sample is not appropriate for selection, an-
notation, and addition to the training data, because it
is in fact an outlier and non representative instance.

1

2

3

Figure 1: The weakness of uncertainty measure for deal-
ing with outliers. Circles and triangles represent labeled
instances while squares represent unlabeled instances.

This simple example shows that uncertainty mea-
sure alone is not suited to fight against outliers and
noisy samples. In order to prevent the learner to se-
lect such instances, a representativeness measure ψ
is used. It simply computes the average distance be-
tween an instance and all other instances in the pool:

ψ(x) =
1

N

∑

x′∈U

∣∣dist(x, x′)
∣∣ (7)

where N is the number of instances in the pool,
and dist is the distance between two samples which
can be computed by simply applying a kernel func-
tion on them:

dist(xi, xj) = kernel(xi, xj) (8)

As it is shown in equation 7, the samples which
are more similar to other samples of the pool will be
considered to be more representative.

In order to take into account representativeness
in the active learning algorithm, the distance be-
tween every sample pairs of the pool must be com-
puted. This computation is a costly process, but
these distances can be computed only once for the
whole active learning algorithm. Algorithm 1 de-
scribes how representativeness and uncertainty mea-
sures have been combined.

4.4 Diversity

Diversity is the third measure that is used for in-
stance selection. Instances that are both unreliable
and representative may be very close to each other
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Figure 2: The necessity of applying diversity measure to
select samples from the whole problem space.

and it might be interesting, in order to better cover
the problem space, to select instances that are differ-
ent from each other. This is done by taking diversity
into account.

Figure 2 illustrates the effect of considering the
diversity measure on a simple problem. In this prob-
lem, the learner chooses 4 instances for each iter-
ation. Based on uncertainty and representativeness
measures, samples 1, 2, 3, and 5 should be selected.
However, 1, 2 and 3 are very similar, and only one of
such samples may be enough for learning. Besides,
selecting 7 and 8 will lead to a better covering of the
problem space.

In our algorithm, diversity is taken into account
after uncertainty and representativeness were. First,
BI instances are chosen, based on uncertainty and
representativeness. A distance matrix is then con-
structed, based on the distance measure of equa-
tion 8. The BI instances are then grouped into BF

(BF < BI ) clusters, using hierarchical clustering
and the centroid of each cluster is selected for label-
ing. This process is explained in algorithm 1.

4.5 Proposed Algorithm
The pseudo-code of our active learning algorithm is
shown in Algorithm 1. This algorithm first trains
the model based on the initial labeled data, and ap-
plies a combination of uncertainty and representa-
tiveness measures to select BI samples from the
pool. Then hierarchical clustering is applied to the
extracted samples to select BF most diverse sam-
ples. Chosen samples are then labeled and added to
the training labeled set. This process is iterated until

Algorithm 1 THE PROPOSED ACTIVE LEARNING

α: Uncertainty coefficient
L: Labeled set
U : Unlabeled pool
ϕ(x): Uncertainty measure
ψ(x): Representativeness measure
BI : Initial query batch size
BF : Final query batch size

while termination condition is not satisfied do
θ = train(L); TI = ∅;
for i = 1 to BI do

// Find most uncertain and representative in-
stance
x̂ = argmaxx∈U [αϕ(x) + (1− α)ψ(x)];
TI = TI ∪ {x̂};

end for
Apply Hierarchical clustering on TI to extract
set TF of BF diverse samples;
U = U − TF ;
L = L ∪ TF ;

end while

at least one termination condition is satisfied. In our
experiments, the algorithm stops when all instances
of the pool were selected and labeled.

Our algorithm may seem much more costly than
the original SVM algorithm. However, it is easy to
show, similar to (Brinker, 2003), that it only multi-
ply by a coefficient of N/BF (N is the final number
of labeled instances) the total computational com-
plexity of original SVM.

5 Corpus Description

Two standard corpora were used for our expri-
ments: TimeBank (v. 1.2)(Pustejovsky et al., 2003)
and Opinion (www.timeml.org). TimeBank
is composed of 183 newswire documents and
64 077 words, and Opinion comprises 73 docu-
ments with 38 709 words. These two datasets
have been annotated with TimeML (Pustejovsky et
al., 2004). There are 14 temporal relation types
(SIMULTANEOUS, IDENTITY, BEFORE, AFTER,
IBEFORE, IAFTER, INCLUDES, IS INCLUDED,
DURING, DURING INV, BEGINS, BEGUN BY,
ENDS, ENDED BY) in the TLink class of TimeML.
Similar to (Mani et al., 2006; Chambers et al., 2007),
we used a normalized version of these 14 temporal
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relation types, which contains only the following six
temporal relations:

SIMULTANEOUS ENDS BEGINS
BEFORE IBEFORE INCLUDES
In order to convert 14 relations into 6, the inverse

relations were omitted (e.g., BEFORE and AFTER),
and IDENTITY and SIMULTAENOUS, as well as
IS INCLUDED and DURING were collapsed, re-
spectively.

Relation Type OTC
IBEFORE 131

BEGINS 160

ENDS 208

SIMULTANEOUS 1528

INCLUDES 950

BEFORE 3170

TOTAL 6147

Table 1: The normalized TLink class distribution in OTC.

In our experiments, as in several previous work,
we merged the two datasets to generate a single
corpus called OTC. Table 1 shows the normalized
TLink class distribution (only for Event-Event rela-
tions) for OTC corpora.

6 Experimental Results

The algorithm described above was evaluated on
OTC corpus with our four uncertainty measures with
and without representativeness and diversity. We
used random instance selection (i.e., passive learn-
ing) as the baseline strategy.

Several kernels can be used for such experiments.
As explained in section 2, we decided to use the ker-
nel proposed in (Mani et al., 2006), which we will
refer to as Mani’s kernel, and the Argument Ances-
tor Path Distance (AAPD) polynomial kernel pro-
posed in (Mirroshandel et al., 2010). AAPD polyno-
mial is the state of the art pattern-based algorithm,
which exclusively combines gold standard features
of events and grammatical structures of sentences.

All evaluations are based on a 5-fold cross valida-
tion. The original corpora was randomly partitioned
into 5 parts, out of which, a single part was retained
for testing the model, and the remaining 4 parts were
used for the training and applying our instance se-
lection strategies. This process was then repeated

5 times (the folds), with each of the 5 parts being
used exactly once as the test data. To perform the
experiments, we started from initial labeled set with
100 randomly selected samples, and in each itera-
tion, 25 samples were selected, labeled, and added
to the previously labeled set.

6.1 Uncertainty Measure Alone
Figures 3 and 4 show the result of applying our
four uncertainty measures for “instance selection”
in OTC, using Mani’s (Figure 3) and AAPD kernels
(Figure 4).
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Figure 3: Learning curves for different uncertainty in-
stance selection strategies applied to OTC using Mani’s
kernel.
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Figure 4: Learning curves for different uncertainty in-
stance selection strategies applied to OTC using AAPD
kernel.

The figures show that all proposed uncertainty in-
stance selection strategies are effective and lead to
learning curves that are above the baseline. Vote
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based measures have outperformed distance based
ones. Among the two distance based measures, NAH

led to better results than NOH, showing that averag-
ing (aggregation) over the distances to the different
separating hyperplanes is more robust than taking
into account only the distance to the closest one.

The two vote based methods led to very close re-
sults, which seems to indicate that the system usu-
ally hesistates between two classes (and not more)
when trying to classify an instance.

6.2 Combining Uncertainty and
Representativeness Measures

Representativeness has been introduced in order to
fight against outliers. Such outliers have two differ-
ent origins. The first one is data sparseness: some
temporal relation events are poorely represented in
the data. Eliminating such instances will degrade the
results on the corresponding class but will introduce
less noise in the data. The second origin of outliers
is the difficulty of problem, even for human anno-
tators (Pustejovsky et al., 2003). This causes some
mistakes in annotation and generates some outliers.
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Figure 5: Accuracy improvement when adding represen-
tativeness measure to the uncertainty instance selection
in Mani’s kernel.

In the second series of experiments, we combined
a representativeness measure with different uncer-
tainty instance selection strategies to tackle outliers’
side effects. In our different experiments, the best
value for uncertainty coefficient (α) was 0.65. Fig-
ure 5 (resp. 6) shows the accuracy improvement
when adding representativeness to uncertainty with
Mani’s (resp. AAPD) kernel. We have chosen to

OTC, AAPD Kernel
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Figure 6: Accuracy improvement when adding represen-
tativeness measure to the uncertainty instance selection
in AAPD kernel.

represent just the improvement rather than the learn-
ing accuracy, because the learning curves were not
easy to compare.

The results show that distance based measures are
more sensitive to outliers than vote based ones. Fig-
ures 5 and 6 also show that the representativeness
measure has less impact on AAPD kernel than it has
on Mani’s kernel. This is because AAPD kernel is
more resistant to outliers than Mani’s kernel.
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Figure 7: Accuracy improvement when adding diversity
in the instance selection with Mani’s kernel.

6.3 Combining Uncertainty,
Representativeness and Diversity

In the last series of experiments, diversity was added
to the instance selection procedure. In each iteration,
first 80 instances of the pool were selected by com-
bination of uncertainty and representativeness mea-
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Figure 8: Accuracy improvement when adding diversity
in the instance selection with AAPD kernel.

sures. Next, a hierarchical clustering method was
used to select the final 25 instances. The accuracy
improvement, as it is shown in Figures 7 and 8, is
moderate.

The reasons why introducing diversity did not
have a greater impact on the results is not clear. That
may be due to the way diversity was introduced in
our model. It could also come from the distribution
of the data: if instances that are both unreliable and
representative are not close to each other, selecting
instances that are different from each other for better
coverage of the problem space is not an issue. More
work has to be done to investigate that point.

The final learning curves, when uncertainty, rep-
resentativeness, and diversity were all considered,
are shown in figures 9 and 10. As shown, vote-based
uncertainty measures still obtain better results than
distance based measures.

7 Conclusion

In this paper, we have addressed the problem of ac-
tive learning based on support vector machines for
temporal relation classification. Three different kind
of measures have been used for selecting the most
informative instances: uncertainty, representative-
ness and diversity. The results showed that the three
measures improved the learning curve although di-
versity had a moderate effect.

Future work will focus on three points, the first
one is trying other sample selection strategies, as
query by committee, the second will focus on com-
bining the two families of uncertainty measures that

we have proposed: distance based and vote based.
The third one is about diversity. As mentioned
above, we do not know if this phenomenon is not
well handeled by the model or if it is not an issue for
the problem at hand.
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Figure 9: Learning curves for combined uncertainty, rep-
resentative and diversity measures with Mani’s kernel.
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Figure 10: Learning curves for combined uncertainty,
representative and diversity measures with AAPD kernel.
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