
Proceedings of the SIGdial 2022 Conference, pages 312–324
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

312

Inferring Ranked Dialog Flows from Human-to-Human Conversations

Javier Miguel Sastre Martínez, Aisling Nugent
Accenture The Dock, R&D Global Innovation Center,
7 Hanover Quay, Grand Canal Dock, Dublin, Ireland

{j.sastre.martinez, a.nugent}@accenture.com

Abstract

We present a novel technique to infer ranked
dialog flows from human-to-human conversa-
tions that can be used as an initial conversation
design or to analyze the complexities of the
conversations in a call center. This technique
aims to identify, for a given service, the most
common sequences of questions and responses
from the human agent. Multiple dialog flows
for different ranges of top paths can be pro-
duced so they can be reviewed in rank order
and be refined in successive iterations until ad-
ditional flows have the desired level of detail.
The system ingests historical conversations and
efficiently condenses them into a weighted de-
terministic finite-state automaton, which is then
used to export dialog flow designs that can be
readily used by conversational agents. A proof-
of-concept experiment was conducted with the
MultiWoz data set, a sample output is presented
and future directions are outlined.

1 Introduction

Virtual assistants are an attractive solution to cus-
tomer service automation. While their language
understanding capabilities and general knowledge
of the world is limited in comparison with human
agents, they can provide relatively simple services
to an unlimited number of concurrent customers
when coupled with cloud technologies. Addition-
ally, they ensure an homogeneous experience, ac-
cording to their programming. It is common prac-
tice to program a virtual assistant to fall back to a
human agent whenever it detects it cannot provide a
service, combining the strengths of both human and
machine. Another usage of virtual assistants is to
suggest to human agents a list of potential answers
during a conversation with a customer, providing
the agent potential useful information from pre-
vious interactions with the customer or from the
customer profile, but letting the human decide the
final answer.

Nowadays there exists a wide range of platforms
for implementing virtual assistants, such as Google
DialogFlow,1 Amazon Lex,2 Microsoft Bot Frame-
work,3 and RASA.4 However, implementing a vir-
tual assistant or extending it to support new services
is not a trivial task. For the case of new services,
one has to imagine how the conversations for that
given service will be, or run a Wizard of Oz experi-
ment with potential customers to gather examples
of conversations. Once a conversational agent is
deployed, it is often necessary to review its perfor-
mance and adapt it to the actual conversations. For
the case of services that are already being provided
by human agents (e.g. in a call center), it is possible
to review the conversation recordings in order to
design a virtual assistant that will be better suited
when first deployed. However, manually reviewing
the call recordings can be time consuming.

In this paper we propose a technique to extract
the most common workflows or dialog flows hu-
man agents follow when providing a specific ser-
vice, once the calls are segregated by service.5 The
types of agent questions and responses are first
identified and labeled (e.g.“Where are you going?”
→ “Destination request”), for which we use pro-
prietary software. Once the dialog utterances are
replaced by the labels, hundreds of conversation
paths can be condensed and ranked in seconds as a
weighted finite-state automaton. Different ranges
of best paths in the automaton can then be exported
as a succession of manageable-size dialog flows
for their manual review (examples in the supple-
mentary material). The conversational designer can
then review them in rank order and decide when to
stop, taking into account the added value of each
successive dialog flow and the time available.

1https://cloud.google.com/dialogflow
2https://aws.amazon.com/lex/
3https://dev.botframework.com/
4https://rasa.com/
5A potential approach to segregation by service is dis-

cussed in Chatterjee and Sengupta (2020)

https://cloud.google.com/dialogflow
https://aws.amazon.com/lex/
https://dev.botframework.com/
https://rasa.com/

313

Start

A

B

C

D

B

E

End

A

C

Start

D

End

E

B

Figure 1: Example of 2 dialogs ABC and DBE (left)
leading to overgeneration of sequences ABE and DBC
(right) when only taking into account consecutive se-
quences of 2 dialog phases

2 Related Work

Bouraoui et al. (2019) present Graph2Bots, a tool
that also aims to assist conversational agent design-
ers. Similarly to us, they first identify types of
utterances or dialog turns, which they call dialog
phases. Then they build a graph with all possible
dialog phases as nodes, and all possible transitions
between consecutive dialog phases in the dialogs.
Frequencies of dialog phases and transitions can
then be used in order to filter out less frequent por-
tions of the graph. We have also experimented with
this kind of dialog phase graph and found several
inconveniences we aim to overcome, namely

1. big convoluted graphs that, although they can
be filtered, they are not partitioned so one can
examine successive and manageable subsets
of paths, one subset at a time,

2. the resulting graph represents concatenations
of consecutive subsequences of 2 dialog
phases from multiple dialogs, resulting in
paths that do not actually exist in the dataset
and produce confusion (Figure 1), and

3. the overgeneration of paths results in loops
(Figure 2), which prevent the dialog flows
from being loaded into conversational agent
platforms as initial designs.

Qiu et al. (2020) propose an unsupervised ap-
proach to dialog structure inference based on a
variational recurrent neural network with a struc-
tured attention layer that supports both 1 to 1 and

Start

A

B

B

A

End

A

Start

End

B

Figure 2: Example of 2 dialogs (left) leading to a loop
(right) when only taking into account consecutive se-
quences of 2 dialog phases

multiparty conversations. However the reported
times to train these models are in the order of hours,
which in our use case would be impractical.

Zhai and Williams (2014) and Paul (2012) com-
bine Hidden Markov Models and topic modeling to
model the dialog structures as conversation states
with probabilities to shift to other states, where
each state models the potential language or topics
in that state.

3 Rationale

This work builds on top of the output of a pro-
prietary suite of tools for the analysis of call
center conversations. This output comprises a
set of dialog transcripts segregated by intent (e.g.
booking a restaurant), where the utterances have
been labeled by speaker role (agent/customer),
classified into question/response/other, and then
grouped into clusters of semantically equivalent
questions/responses.6 For each group of questions
or responses, a canonical form of the question or
response is provided to serve as the normalized ver-
sion, analogous to the dialog phases in Bouraoui
et al. (2019). Our goals are:

1. to find the most frequent sequences of ques-
tions and responses human agents follow, and

2. to compile them into a succession of dia-
log flows containing ranges of top-ranked se-
quences so that a conversational designer can
visualize any number of them, starting from
the highest ranked ones.

Also, as additional requirements,

6Other utterance types (e.g. greetings) are ignored

314

1. the paths in these dialog flows should come
from actual dialogs and not be concatenations
of subsequences from different dialogs (e.g.
Figures 1 and 2), in order to avoid confusion
and loops,

2. the size of individual dialog flows (number
of paths) should be limited by means of a
parameter, and

3. the dialog flows should also include some ex-
amples of potential customer utterances that
may appear before and after each agent ques-
tion or response so that one can determine the
triggers of specific questions and responses as
well as potential customer responses.

We do not intend to determine exact types of cus-
tomer utterances but to provide a variety of ex-
amples since customer utterances tend to be more
varied than agent utterances: whereas customers
may request a service just a few times and may
have no prior knowledge of the service protocols,
agents deliver the same services multiple times to
multiple customers and must adhere to established
protocols and regulations.

4 Methodology

Overall, our proposed approach consists of 6 main
steps:

1. building a non-deterministic finite-state au-
tomaton (NFA) representing all possible se-
quences of normalized agent questions and
responses,

2. minimizing the NFA in order to obtain an
equivalent but compact deterministic finite-
state automaton (DFA),

3. annotating the DFA with question/response
frequencies as well as with customer utter-
ances

4. ranking the DFA paths and transitions and
pruning it to a desired number of paths

5. selecting a maximum number of customer ut-
terance examples before and after each agent
utterance, discarding the rest, and

6. exporting consecutive ranges of ranked paths
into separate dialog flows for their manual
review.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

A

B

C

A

D

C

B

D

C

a

b

c

d

e

f

g

h

i

j

k

l

Figure 3: Example of NFA representing 3 dialogs
aAbBcCd, eAfDgCh and iBjDkCl

4.1 Building the NFA
For simplicity, let A,B,C and D be types of either
agent questions or responses (their normalized ver-
sions or dialog phases). Let a, b, . . . l be specific
examples of customer utterances (non-normalized).
We build an NFA as depicted in Figure 3, with a
linear sequence of states (nodes) and transitions
(edges) for each dialog, where transitions are an-
notated with the normalized agent utterances and
states with the customer utterance examples. Note
we only consider agent questions and responses,
and other kinds of agent utterances are simply ig-
nored (e.g. greetings). Consecutive sequences of
customer utterances between 2 agent utterances are
simply concatenated and treated as a single utter-
ance. Consecutive sequences of agent utterances
with no customer utterances in between result in a
state that is annotated with no customer utterance
(a state may have no customer utterance).

Formally, an NFA is defined as a 5-tuple
(Q,Σ, δ, QI , F) with

• Q = {q0, q1, . . . , q|Q|−1}, as a finite set of
states,

• Σ = {σ0, σ1, . . . , σ|Σ|−1}, as an either finite
or potentially infinite input alphabet (normal-
ized agent utterances in our case),

• δ : Q × (Σ ∪ {ε}) → P(Q) as a finite and
partial transition function where ε /∈ Σ is the
empty symbol and P(·) represents the set of
all subsets of a given set,

• QI ⊆ Q as the set of initial states (represented
as nodes pointed by an arrow coming from

315

nowhere), and

• F ⊆ Q as the set of final states (represented
as double-circled nodes).

A path in the automaton is an alternation of states
and input symbols qi, σi, qi+1, σi+1, . . . starting
and ending with a state, where for every subse-
quence qj , σj , qj+1 there is a transition δ(qj , σ) =
qj+1. We say an automaton recognizes, represents
or accepts an input sequence σi . . . σi+n iff there
exists at least one path from an initial state to a
final state with the same sequence of input sym-
bols. We say an automaton is not deterministic
iff it contains at least 2 paths starting from an ini-
tial state and labeled with the same sequence of
input symbols (multiple states can be reached by
consuming the same input sequence). Note having
more than one initial state is sufficient for being
non-deterministic.

We define the partial map ζc : Q→ Γ of states to
customer utterances (Γ being the set of all customer
utterances) to capture the customer utterance that
may appear between 2 agent utterances, if any.

4.2 Minimizing the NFA
Minimizing an NFA results in an equivalent de-
terministic finite-state automaton (DFA) that rep-
resents the exact same set of input sequences but
with a minimum set of states (see Figure 4). While
this does not necessarily imply that the resulting au-
tomaton will have less transitions, this is usually the
case for the NFAs that we build. Note for the sake
of minimization, customer utterances are ignored
(we only care about producing the same sequences
of agent questions and responses). Formally, we
define a DFA as a 5-tuple (Q,Σ, δ, qI , F), where
each element is defined in the same manner than
for NFAs except for

• qI , which is a unique initial state instead of a
set of possible states, and

• δ : (Q × Σ) → Q, which does not allow for
empty symbols or more than one target state
for the same source state and input symbol.

NFA minimization can be achieved by reversing the
automaton, determinizing it, reversing it again and
determinizing it a second time (van de Snepscheut,
1985). Reversing an automaton can be achieved
by reversing the transitions, making initial states
final, and final states initial. Since the NFAs we
produce do not use empty input symbols, we can

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

A

B

C

A

D

C

B

D

C

s0

s3

s1 s2

s4

A B

D

C

B

D

Figure 4: Example of NFA representing 3 dialogs (left)
and DFA resulting from the NFA minimization (right)

use a simpler algorithm for determinizing them.
Let A be one of these NFAs, Algorithm 1 (in the
appendix) traverses all paths in A starting from its
initial states, generating a DFA A′ that contains a
single state for each set of states that can be reached
by consuming the same input sequence, and adding
the corresponding transitions between the states in
A′. It builds a map ζm of sets of states in A to states
in A′ to keep track of these correspondences and
to avoid generating more than one state in A′ for
the same set of states in A. The algorithm starts by
creating a single initial state qI in A′ corresponding
to the set of initial states QI in A, and places the
pair (QI , qI) in a queue E of states to explore. As
long as E is not empty, the next pair (Qs, rs) is
dequeued and Algorithm 2 (in the appendix) is
used to explore all the transitions coming from any
state in Qs, returning a map ζt of input symbols
σ to sets of target states Qt that can be reached
from any state in Qs by consuming σ. For each σ
and Qt, the corresponding state rt in A′ is either
created or retrieved from ζm if already existed, and
transition δ′(rs, σ) = rt is added to A′. Each time
a state rt is created for a given set of states Qt, rt
is made final iff there is at least one final state in
Qt. Finally, whenever a new rt is to be created due
to the lack of a map ζm(Qt), the map is added and
(Qt, rt) is enqueued for further exploration of A.

4.3 Annotating the DFA

Let A be an NFA and Amin the resulting DFA upon
minimization, since both machines are equivalent
they recognize the exact same sequences. In the
same way that during minimization we generate

316

states of a DFA that correspond to sets of states in
an NFA, there is a correspondence between states in
Amin and states in A, as well as between transitions
in Amin and transitions in A.

Given a map ζc of states in A to customer ut-
terances (1 or none per state), Algorithm 3 (in the
appendix) annotates the states in Amin with the
sets of all customer utterances of the correspond-
ing states in A (map ζ ′c), and annotates the tran-
sitions in Amin with the count of all equivalent
transitions in A (map ζ ′f). An example is given in
Figure 5. The algorithm also requires a topologi-
cal sort of Amin as an input,7 which can be com-
puted with Kahn’s (1962) algorithm. Algorithm 3
(in the appendix) explores both A and Amin syn-
chronously, while computing the map ζ−1

m of states
in Amin to states in A. It starts by mapping the
initial state of Amin to the set of initial states in
A. Then explores the states of Amin by following
the provided topological sort. For each state ss in
the sort, it retrieves the corresponding set of states
ζ−1
m (ss) = Qs, and annotates ss with the union of

customer utterances in Qs. Then for each transition
δ′(σ, ss) = st in Amin finds all the corresponding
transitions δ(σ, qs) = qt in A, adding all the states
qt found to the mapping ζ−1

m (st), and incrementing
the count of transitions ζ ′f (ss, σ, st) for each equiv-
alent transition found in A. The topological sort is
needed so that when exploring a next state ss in the
sort, we are sure the map ζ−1

m (ss) contains every
possible corresponding state qs in A, which will be
the case since A and Amin are equivalent.

Apart from transition counts or frequencies, tran-
sitions of Amin can also be annotated with proba-
bilities by normalizing the frequencies: for each set
of transitions outgoing from the same source state,
we compute the sum of frequencies of the transi-
tions in the set, then divide the frequencies of these
transitions by the sum. Log-probabilities can also
be added in order to optimize the computation of
top-scoring paths in the next section. A path score
is the aggregation of the transition weights in the
path, let it be the sum of frequencies, the product
of probabilities, or the sum of log-probabilities.

4.4 Ranking and pruning

Given an annotated DFA A and a maximum de-
sired number k of paths to keep (or carve), we use

7An ordering of all the states in Amin such that, for every
transition in Amin, target states always come after source
states in the ordering. This is the same problem as finding an
ordering in a dependency graph.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

A

B

C

A

D

C

B

D

C

s0

s3

s1 s2

s4

A, 2 B, 1

D, 1

C, 3

B, 1

D, 1

a

b

c

d

e

f

g

h

i

j

k

l

{a, e, i}

{b, f} {j}

{c, g, k}

{d, h, l}

Figure 5: Example of NFA representing 3 dialogs (left)
and equivalent DFA after state and transition annotation
(right)

a Viterbi-like (1967) algorithm to efficiently com-
pute the top-scoring paths, rank them (from 1st to
kth) and annotate the transitions in A with the set of
ranks of top paths they belong to. Transition rank
annotations are used in the export step to generate
the dialog flows for desired ranges of best paths.
States and transitions that do not belong to any top-
k path are removed in order to limit the execution
time of the algorithm. Whereas this also limits the
ranges of best paths that it will later be possible to
export, in practice this limit can be much higher
than the number of paths a conversational designer
would deem necessary (e.g. 500), while keeping
the execution time in the order of seconds. The al-
gorithm is divided in 4 parts, which we detail in the
following subsections: DFA preparation, forward
propagation of weights, backward propagation of
ranks, and DFA clean up. The first 3 parts also
make use of a topological sort that is to be previ-
ously computed; the same topological sort used for
the DFA annotation can be reused here. We use
DFA in Figure 6 as an example. Note customer
utterances are omitted since they are not relevant
for the sake of ranking and pruning (the algorithms
ignore map ζ ′c).

4.4.1 DFA preparation
The ranking and pruning algorithm computes the
best paths between an initial and a final state of a
DFA A. Whereas a DFA can only have a single
initial state, it may have more than one final state.
In order to take into account all possible paths in
the DFA, we modify A as illustrated in Figure 7 so
it contains a single and new final state sf , with ε-

317

s0

s1

s2 s3

s4

s5

s6

A, 1

B, 1

C, 1

D, 3

E, 1

F, 3

H, 1

G, 1

Figure 6: DFA with top-3 sequences ACEFG (1+1+1+
3+1=7), BEFG (1+1+3+1=6) and ADG (1+3+1=5)

s0

s1

s2 s3

s4

s5

s6

s7
A, 1

B, 1

C, 1

D, 3

E, 1

F, 3

H, 1

G, 1

ε, 0

ε, 0

Figure 7: DFA after carving preparation

transitions arriving to it from each former final state
and annotated with neutral weights (0 for frequen-
cies and log-probabilities or 1 for probabilities).
Strictly speaking, adding ε-transitions to A make
it non-deterministic, however they will be removed
during the clean up of A. Finally, the topological
sort of A is to be updated by appending sf at the
end. In Figure 7, it ends up being s0, s1, . . . , s7.

4.4.2 Forward propagation of weights

For each state st in a carving-prepared DFA A, Al-
gorithm 4 (in the appendix) computes the list Lt

of k best possible aggregated weights that can be
produced by reaching st from the initial state, and
annotates st with this list (map ζL(st) = Lt). An
example of the computed lists is given in Figure 8
(lists above or below the states). Each element of
Lt is a triplet (w, σ, ss), with w being a top aggre-
gated weight, and (σ, ss) the symbol and source
state of the previous transition that allowed for that
best weight (transition δ(σ, ss) = st). The algo-
rithm starts by initializing the lists Lt of all the
states as empty lists. Then initializes ζL(qI) with
triplet (winit, ε,⊥), a initial aggregated weight (0
for frequencies and log probabilities, 1 for proba-
bilities), and a non-transition (there is no transition
before qI). For each state ss in the provided topo-
logical sort, except the last state sf added during
carving preparation, the algorithm propagates the
corresponding top weights in ζL(ss) towards the

s0

s1

s2 s3

s4

s5

s6

s7

0, ε,⊥

1, A, s0

2, C, s1
1, B, s0

3, E, s2
2, E, s2

6, F, s3
5, F, s3
4, D, s1

4, H, s3
3, H, s3

7, G, s4
6, G, s4
5, G, s4

7, ε, s6
6, ε, s6
5, ε, s6

A, 1

B, 1

C, 1

D, 3

E, 1

F, 3

H, 1

G, 1

ε, 0

ε, 0

Figure 8: DFA after forward propagation

lists Lt of the corresponding target states st. Given
a list Ls of n ≤ k elements, the n weights are
combined with the weight of each transition from
ss, and the resulting aggregated weight is added
to the list Lt of the corresponding target state st
along with the corresponding transition symbol and
source state ss. Lists of top weights are sorted lists
of at most k triplets, so when a list overflows the
excess can be easily removed from its end. Thanks
to the topological sort, whenever propagating the
top weights of a state ss we make sure all possible
paths that reach ss from qI have been explored,
and the list contains the top weights only (excess
of weights will have been removed).

4.4.3 Backward propagation of ranks
Once the lists of top weights and last transitions
have been computed, we can proceed to rank the fi-
nal top weights in ζL(sf) and propagate these ranks
backwards, following the last transitions in the cor-
responding triplets of best weights. Algorithm 5
(in the appendix) starts by creating a list of sets
of ranks for state sf (map ζSR standing for state
ranks), one set of ranks per triplet in ζL(sf). The
first set of ranks is {1} (first rank), the second is
{2} (second rank), and so forth (see list below s7 in
Figure 9; we replaced top weights with rank sets to
save space). Then these ranks are propagated back-
wards by following a reverse of the topological sort,
excepting the initial state. Given a state st in the
topological sort, the algorithm first computes a map
ζBR (backwards ranks) of backwards transitions to
the list of all possible sets of ranks in ζL(st). For in-
stance, in Figure 9 the 3 top backwards transitions
of sf are the same, so ζBR contains in this case a
single map ζBR(ε, s6) = [{1}, {2}, {3}]. For each

318

s0

s1

s2 s3

s4

s5

s6

s7

{1, 2, 3}, ε,⊥

{1, 3}, A, s0

{1}, C, s1
{2}, B, s0

{1}, E, s2
{2}, E, s2

{1}, F, s3
{2}, F, s3
{3}, D, s1

⊥, H, s3
⊥, H, s3

{1}, G, s4
{2}, G, s4
{3}, G, s4

{1}, ε, s6
{2}, ε, s6
{3}, ε, s6

A, 1, {1, 3}

B, 1, {2}
C, 1, {1}

D, 3,

{3}

E, 1,

{1, 2}

F, 3, {1, 2}

H, 1,

⊥

G, 1,

{1, 2, 3}

ε, 0,⊥

ε, 0, {1, 2, 3}

Figure 9: DFA after backward propagation

map ζBR(σ, ss) = BR, transition δ(ss, σ) = st
is annotated with the union of all the sets of ranks
in BR (e.g. in Figure 9, transition δ(s6, ε) = s7
gets ranks {1, 2, 3}. Map ζTR is used to anno-
tate the transition ranks. Furthermore, for each
list of sets of ranks ζBR(σ, ss) = [R1, R2, . . .], the
list is propagated backwards towards ζSR(ss) by
computing the pairwise union of sets of ranks of
ζSR(ss) with ζBR(σ, ss). For instance, in Figure 9
list [1, 2, 3] below s7 gets propagated as is to the list
above s6, since s7 is the only contributor of ranks
for s6. States that get ranks are part of the top k
paths and are marked as useful (states to be keep
during clean up). For instance, no ranks get propa-
gated to s5 (symbol⊥ represents null), hence it will
not be marked and will be removed during clean
up. Ranks [{1}, {2}] above state s4 correspond to
transition δ(s3, F) = s4, hence get propagated to
state s3 (ranks below s3). However rank [{3}] of
s4 for transition δ(s1, D) = s4 gets propagated
to ranks of state s1. Rank [{1}] of s2 for transi-
tion δ(s1, C) also gets propagated to s1, resulting
in ranks [{1, 3}] (pairwise union of sets of ranks).
Once the algorithm ends, the ranks [{1}, {2}, {3}]
of s7 have travelled back through the top paths, an-
notating the corresponding transitions and states,
and arriving to state s0 as [{1, 2, 3}].

4.4.4 DFA clean up
Algorithm 6 (in the appendix) undoes the changes
done to the DFA during carving preparation, and
deletes every unmarked state (e.g. s5) and un-
ranked transition (e.g. δ(s3, H) = s5). The lists of
state top weights and ranks are no longer needed
and can be discarded; we just need to keep map ζTR

of transition ranks. Figure 10 illustrates the result-

s0

s1

s2 s3

s4 s6

A, 1, {1, 3}

B, 1, {2}
C, 1, {1}

D, 3,

{3}

E, 1,

{1, 2}

F, 3, {1, 2}

G, 1,

{1, 2, 3}

Figure 10: DFA after clean up

ing automaton for our example. In order to avoid
potential data corruption, the algorithm deletes the
states and transitions in a proper order, starting
with transitions in ζL(sf); these are ranked tran-
sitions but are added during carving preparation.
Then states ss are scanned in topological sort ex-
cept for sf . For each ss, transitions from ss with
no ranks are removed. Then ss is removed if it’s
not marked. Note that by following a topological
sort, all transitions incoming to and outgoing from
an unmarked state are removed before removing
the state. Finally, sf is removed unconditionally
without scanning it, since it has no outgoing transi-
tions and it was added during carving preparation.
We no longer need the topological sort, so it can be
discarded.

4.5 Selecting customer utterances
Due to the potential big number of customer ut-
terances that might be annotated on the remaining
DFA states, we want to select a limited number n
of different examples per state and delete the rest so
that the exported dialog flows are not overcrowded.
For each set of customer utterances, we first com-
pute the corresponding sentence embeddings (Cer
et al., 2018; Reimers and Gurevych, 2019; Yang
et al., 2020). Then we clusterize the sentences
into groups of semantically similar ones using DB-
SCAN (Ester et al., 1996). We select the n biggest
clusters and, for each one, we find the vector clos-
est to the cluster centroids. Finally, we retrieve
the sentences that correspond to those vectors, and
delete all the rest.

4.6 Exporting dialog flows
Once the DFA is pruned, the transitions ranked,
and the customer utterances filtered, generating a
dialog flow for an arbitrary range of best paths is
straightforward: we simply traverse the automaton
starting from the initial state and following every
transition that has at least one rank within the range,

319

until no more states are found. Transition rank sets
ζTR are sorted data structures (e.g. sorted lists or bi-
nary trees) so one can efficiently evaluate whether
the intersection of the set with the range of ranks
is empty or not. As states and transitions are tra-
versed, the corresponding nodes and edges of the
dialog flow can be exported to the desired format,
e.g. DOT (Gansner and North, 2000) in order to
create dialog flow visualizations, or some format
of a conversational agent platform.

5 Methodology extension

An inconvenience of the method described above
is that all the customer utterances that may start
a conversation get grouped together in the DFA
initial state (e.g. utterances a, e, and i of state s0
in Figure 5). We would like to split this group
into potential utterances that may precede each first
agent utterance, so that we can also determine what
triggered each first agent utterance. This can be
achieved by modifying the way in which the NFA
is built, as illustrated in Figure 11: we simply du-
plicate the first transition of each individual dialog,
leaving the new initial states with no customer ut-
terances. Upon minimization, the new first agent
utterances will only allow for grouping the first
customer utterances that are followed by the same
agent utterance. Upon exporting the dialog flows,
these first agent utterances are simply to be ignored.

q′0

q0

q1

q2

q3

q′4

q4

q5

q6

q7

q′8

q8

q9

q10

q11

A

A

B

C

A

A

D

C

B

B

D

C

a

b

c

d

e

f

g

h

i

j

k

l

s0

s5

s1 s2

s3 s4

s6

A, 2,
{1, 2}

B, 1,
{3}

A, 2, {1, 2} B, 1, {1}

D, 1, {3}

C, 3, {3}

B, 1,
{1}

D, 1,
{2}

∅

{a, e} {i}

{b, f}
{j}

{c, g, k}

{d, h, l}

Figure 11: NFA with duplicated first transitions (left)
and resulting NFA after minimization, annotation and
ranking (right)

6 Results

We have tested this methodology with a sample of
492 restaurant booking dialogs from MultiWOZ
(Han et al., 2020). On a MacBook Pro (2018), it
took 4.3 seconds to run the extended method from
NFA building (4083 states and 3591 transitions) to
DFA ranking and pruning (1704 states, 2176 tran-
sitions) for a big enough k so all paths (488) were
ranked and kept. Filtering the customer utterances
took 36.8 additional seconds, though taking into
account that this process included computing mul-
tilingual sentence embeddings (Yang et al., 2020)
for all the customer utterances, it could be consid-
erably reduced by using a GPU. Exporting a dialog
flow of 50 paths into SVG with GraphViz (Gansner
and North, 2000) took 2.5 seconds. Two flows are
shown as supplementary material, and a wide range
of flows has been provided as accompanying mate-
rials. Ranking criterion is frequency aggregation so
longer paths are produced. For simplicity, only the
top rank of each transition is shown. The process
factors out prefixes and suffixes of agent utterance
sequences, which to some extent allows for identi-
fying the most common full sequences. The flows
exactly reflect what is found in the data, which is
what we initially intended.

7 Conclusion and future work

This paper presented a novel and efficient method
for inferring ranked dialog flows from human-to-
human conversations in seconds. This method con-
verts the dialogs into summarised and digestible
artefacts, in the form of weighted finite-state au-
tomata with ranked transitions. The method is in-
tended to be used together with a semi-supervised
iterative process of identification of types of agent
utterances, hence the quick generation of the
ranked dialog flows is a must.

Future work includes 1) splitting the customer
bubbles across the entire dialog flows to have sep-
arate groups of examples of customer utterances
before each agent bubble, 2) to identify dialog sub-
structures such as subsequences of agent questions
and responses that may appear in any order, so they
can be replaced by a subautomaton call and allow
for further path collapsing, and 3) to allow for a
controlled amount of overgeneration/noise in the
automaton that maximizes the number of collapsed
paths (adding missing subsequences that allow for
further minimization).

320

8 Acknowledgements

We thank Paul A. Walsh and the SIGDIAL 2022
reviewers for their feedback.

References
Jean-Leon Bouraoui, Sonia Le Meitour, Romain Carbou,

Lina M. Rojas Barahona, and Vincent Lemaire. 2019.
Graph2Bots, unsupervised assistance for designing
chatbots. In Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue, pages 114–117,
Stockholm, Sweden. Association for Computational
Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Ajay Chatterjee and Shubhashis Sengupta. 2020. Intent
mining from past conversations for conversational
agent. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 4140–
4152, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and
Xiaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing, KDD’96, pages 226–231. AAAI Press.

Emden R. Gansner and Stephen C. North. 2000. An
open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exper.,
30(11):1203––1233.

Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian,
Chongxuan Huang, Dazhen Wan, Wei Peng, and Min-
lie Huang. 2020. Multiwoz 2.3: A multi-domain
task-oriented dialogue dataset enhanced with annota-
tion corrections and co-reference annotation. arXiv
preprint arXiv:2010.05594.

Arthur B. Kahn. 1962. Topological sorting of large
networks. Communications of the ACM, 5(11):558–
562.

Michael J. Paul. 2012. Mixed membership Markov
models for unsupervised conversation modeling. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
94–104, Jeju Island, Korea. Association for Compu-
tational Linguistics.

Liang Qiu, Yizhou Zhao, Weiyan Shi, Yuan Liang, Feng
Shi, Tao Yuan, Zhou Yu, and Song-Chun Zhu. 2020.
Structured attention for unsupervised dialogue struc-
ture induction. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1889–1899, Online. As-
sociation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Jan L. A. van de Snepscheut. 1985. Trace theory and
VLSI design, volume 200 of Lecture Notes in Com-
puter Science. Springer-Verlag. PhD thesis, Eind-
hoven University of Technology.

A. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernandez Abrego,
Steve Yuan, Chris Tar, Yun-hsuan Sung, Brian Strope,
and Ray Kurzweil. 2020. Multilingual universal sen-
tence encoder for semantic retrieval. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 87–94, Online. Association for Computational
Linguistics.

Ke Zhai and Jason D. Williams. 2014. Discovering
latent structure in task-oriented dialogues. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 36–46, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/2020.coling-main.366
https://doi.org/10.18653/v1/2020.coling-main.366
https://doi.org/10.18653/v1/2020.coling-main.366
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://aclanthology.org/D12-1009
https://aclanthology.org/D12-1009
https://doi.org/10.18653/v1/2020.emnlp-main.148
https://doi.org/10.18653/v1/2020.emnlp-main.148
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1007/BFb0031414
https://doi.org/10.1007/BFb0031414
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.3115/v1/P14-1004
https://doi.org/10.3115/v1/P14-1004

321

A Appendix

A.1 Algorithms

Algorithm 1 nfa_determinize(A)

Input: A = (Q,Σ, δ, QI , F), a NFA
Output: A′ = (Q′,Σ, δ′, qI , F

′), a DFA equiva-
lent to A

1: initialize A′ as a DFA with a single and initial
state qI and no final states or transitions

2: if QI ∩ F ̸= ∅ then
3: F ′ ← F ′ ∪ {qI}
4: end if
5: ζm(QI)← qI ▷ state equivalence map
6: E ← {(QI , qI)} ▷ equivalent-pairs queue
7: while E ̸= ∅ do
8: (Qs, rs)← dequeue(E)
9: ζt ← nfa_recognize_every_symbol(Qs)

10: for each (σ,Qt) : ζt(σ) = Qt do
11: rt ← ζm(Qt)
12: if rt =⊥ then
13: make new state rt ∈ Q′

14: if Qt ∩ F ̸= ∅ then
15: F ′ = F ′ ∪ {rt}
16: end if
17: ζm(Qt)← rt
18: E ← E ∪ (Qt, rt)
19: end if
20: δ′(rs, σ)← rt
21: end for
22: end while

Algorithm 2 nfa_recognize_every_symbol(Qs)

Input: Qs, a source set of states
Output: ζt : Σ → P(Q), a map of input sym-

bols to target sets of states such that ζt(σ) =⋃
qs∈Qs

δ(qs, σ)
1: initialize ζt as an empty map of Σ→ P(Q)
2: for each qs ∈ Qs do
3: for each (σ, qt) : δ(qs, σ) = qt do
4: if ζt(σ) =⊥ then
5: ζt(σ)← ∅
6: end if
7: ζt(σ)← ζt(σ) ∪ {qt}
8: end for
9: end for

Algorithm 3 dfa_annotate(A,Amin, ζc)

Input: A = (Q,Σ, δ, QI , F), a NFA
ζc : Q → C, map of states in A to cus-

tomer utterances
Amin = (Q′,Σ, δ′, q′I , F

′), DFA result of
minimizing A

Amin_sort : (Q × Q × . . .), a topological
sort of Amin

Output: ζ ′c : Q
′ → P(C), map of Amin states to

sets of customer utterances
ζ ′f : (Q′×Σ×Q′)→ N0, map of Amin

transitions to frequencies
1: ζ−1

m (qI)← QI ▷ Inverse equivalent state map
2: for each ss ∈ Amin_sort do
3: Qs ← ζ−1

m (ss)
4: ζ ′c(ss)←

⋃
qs∈Qs

{ζc(qs)}
5: for each (σ, st) : δ

′(ss, σ) = st) do
6: if ζ−1

m (st) =⊥ then
7: ζ−1

m (st)← ∅
8: end if
9: Qt ←

⋃
qs∈Qs

δ(qs, σ)

10: ζ−1
m (st)← ζ−1

m (st) ∪Qt

11: ζ ′f (ss, σ, st)← |Qt|
12: end for
13: end for

Algorithm 4 dfa_carving_forward_prop(A,
Asort, ε, ζw, winit, •,≺, k)

Input: A = (Q,Σ, δ, qI , F), carving-prep. DFA,
Asort : Q

|Q|−1, a topological sort of A
ε, a special symbol not in Σ to denote the

empty input
ζw : (Q × Σ ∪ {ε}) × Q) → W , map of

A transitions to weights
winit, the initial weight
•, the weight aggregation operator
≺, the weight comparison operator
k, the number of paths to carve

Output: ζL, a map of states st ∈ Q to sorted lists
of triplets (w, σ, ss) ∈ (W × (Σ ∪ {ε})×Q),
each representing a top-k best weight w pro-
duced by reaching st through a last transition
δ(ss, σ) = st

1: for each s ∈ Q do
2: ζL(s)← empty list
3: end for
4: append (winit, ε,⊥) to ζL(qI)

322

5: for each ss ∈ Asort except last do
6: Ls ← ζL(ss)
7: for each (σ, st) : δ(ss, σ) = st do
8: w ← ζw(ss, σ, st)
9: Lt ← ζL(st)

10: for each (ws, σ
′, sb) ∈ Ls do

11: wt ← ws • w
12: insert (wt, σ, ss) in Lt maintaining
≺ weight order

13: if size of Lt > k then
14: remove last triplet from Lt

15: end if
16: end for
17: end for
18: end for

Algorithm 5 dfa_carving_backward_prop(A,
Asort, ζL)

Input: A = (Q,Σ, δ, qI , F), carving-prep. DFA
Asort : Q

|Q|−1, topological sort of A
ζL, map of states to top backwards trans.

Output: A with states to keep marked
ζTR, map of transitions (ss, σ, st) in A

to sets of ranks in P(N)
1: sf ← last state in Asort

2: k′ ← |ζL(sf)| ▷ number of top paths found
3: for each i = 1 . . . k′ do ▷ init. sf rank sets
4: ζSR(sf)[i]← {i}
5: end for
6: for each st ∈ reverse(Asort) except last do
7: SRt ← ζSR(st)
8: if SRt ̸=⊥ then ▷ no ranks for st
9: continue ▷ skip st rank propagation

10: end if
11: mark st ▷ st is to be kept
12: L← ζL(st)
13: init. ζBR as an empty map of st backwards

transitions in (Σ, Q) to lists of rank sets
14: for each i ∈ 1 . . . |SRt| do
15: (w, σ, ss)← L[i]
16: if ζBR(σ, ss) =⊥ then
17: ζBR(σ, ss)← empty list
18: end if
19: append SRt[i] to ζBR(σ, ss)
20: end for

21: for each (σ, ss, BR) : ζBR(σ, ss) = BR
do

22: ζTR(ss, σ, st)←
⋃

R∈BR R
23: if ζSR(ss) =⊥ then
24: ζSR(ss) = ∅
25: end if
26: SRs ← ζSR(ss)
27: for each i = 1 . . . |SRt| − |SRs|) do
28: append ∅ to SRs

29: end for
30: for each i = 1 . . . |SRs| do
31: SRs[i] = SRs[i] ∪ SRt[i]
32: end for
33: end for
34: end for
35: mark qI

Algorithm 6 dfa_carving_cleanup(A,Asort, ζL,
ζTR)

Input: A = (Q,Σ, δ, qI , F), a DFA that under-
went carving backward propagation

Asort : Q
|Q|−1, topological sort of A

ζL, map of states to top back. transitions
ζTR, map of transitions to rank sets

Output: A after clean up
1: sf ← last state in Asort

2: for each (w, σ, ss) ∈ ζL(sf) do ▷ note σ = ε
3: remove transition δ(ss, σ) = sf
4: F ← F ∪ {ss}
5: end for
6: for each ss ∈ Asort do
7: if ss is marked then
8: for each (σ, st) : δ(ss, σ) = st and

ζTR(ss, σ, st) =⊥ do
9: remove transition δ(ss, σ) = st

10: end for
11: else remove ss from A along with all tran-

sitions from ss
12: end if
13: end for
14: remove sf from A

323

B Supplementary Material

Figure 12: Dialog flow for top 3 restaurant booking paths. Bubble colors are: purple for the dialog start (initial
state), blue for customer utterances (DFA states), and gray/green for agent questions/responses (DFA transitions).

324

Figure 13: Dialog flow for top restaurant booking paths 4 to 6. Bubble colors are: purple for the dialog start (initial
state), blue for customer utterances (DFA states), and gray/green for agent questions/responses (DFA transitions).

	Introduction
	Related Work
	Rationale
	Methodology
	Building the NFA
	Minimizing the NFA
	Annotating the DFA
	Ranking and pruning
	DFA preparation
	Forward propagation of weights
	Backward propagation of ranks
	DFA clean up

	Selecting customer utterances
	Exporting dialog flows

	Methodology extension
	Results
	Conclusion and future work
	Acknowledgements
	Appendix
	Algorithms

	Supplementary Material

