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Abstract

Decoding strategies play a crucial role in nat-
ural language generation systems. They are
usually designed and evaluated in open-ended
text-only tasks, and it is not clear how different
strategies handle the numerous challenges that
goal-oriented multimodal systems face (such
as grounding and informativeness). To answer
this question, we compare a wide variety of dif-
ferent decoding strategies and hyper-parameter
configurations in a Visual Dialogue referential
game. Although none of them successfully bal-
ance lexical richness, accuracy in the task, and
visual grounding, our in-depth analysis allows
us to highlight the strengths and weaknesses of
each decoding strategy. We believe our find-
ings and suggestions may serve as a starting
point for designing more effective decoding al-
gorithms that handle the challenges of Visual
Dialogue tasks.

1 Introduction

The last few years have witnessed remarkable
progress in developing efficient generative lan-
guage models. The choice of the decoding strategy
plays a crucial role in the quality of the output (see
Zarrief} et al. (2021) for an exhaustive overview). It
should be noted that decoding strategies are usually
designed for and evaluated in text-only settings.
The most-used decoding strategies can be grouped
into two main classes. On the one hand, decoding
strategies that aim to generate text that maximizes
likelihood (like greedy and beam search) are shown
to generate generic, repetitive, and degenerate out-
put. Zhang et al. (2021) refer to this phenomenon as
the likelihood trap, and provide evidence that these
strategies lead to sub-optimal sequences. On the
other hand, stochastic strategies like pure sampling,
top-k sampling, and nucleus sampling (Holtzman
et al., 2020) increase the variability of generated
texts by taking random samples from the model.
However, this comes at the cost of generating words
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that are not semantically appropriate for the con-
text in which they appear. Recently, Meister et al.
(2022) used an information-theoretic framework
to propose a new decoding algorithm (typical de-
coding), which samples tokens with an information
content close to their conditional entropy. Typical
decoding shows promising results in human evalu-
ation experiments but, given its recent release, it is
not clear yet how general this approach is.

Multimodal vision & language systems have re-
cently received a lot of attention from the research
community, but a thorough analysis of different
decoding strategies in these systems has not been
carried out. Thus, the question arises of whether the
above-mentioned decoding strategies can handle
the challenges of multimodal systems. i.e., gen-
erate text that not only takes into account lexical
variability, but also grounding in the visual modal-
ity. Moreover, in goal-oriented tasks, the informa-
tiveness of the generated text plays a crucial role
as well. To address these research questions, in
this paper we take a referential visual dialogue task,
GuessWhat?! (De Vries et al., 2017), where two
players (a Questioner and an Oracle) interact so
that the Questioner identifies the secret object as-
signed to the Oracle among the ones appearing in
an image (see Figure 1 for an example). Apart from
well-known issues, such as repetitions in the output,
this task poses specific challenges for evaluating de-
coding techniques compared to previous work. On
the one hand, the generated output has to be coher-
ent with the visual input upon which the conversa-
tion takes place. As highlighted by Rohrbach et al.
(2018); Testoni and Bernardi (2021b), multimodal
generative models often generate hallucinated en-
tities, 1.e., tokens that refer to entities that do not
appear in the image upon which the conversation
takes place. On the other hand, the questions must
be informative, i.e., they must help the Questioner
to incrementally identify the target object.

We show that the choice of the decoding strat-
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Questioner Oracle
Is it a vase? Yes
Is it partially visible? No
Is it in the left corner? No
Is it the turquoise and purple one? Yes

Figure 1: Example of a GuessWhat game from De Vries
etal. (2017)

egy and its hyper-parameter configuration heavily
affects the quality of the generated output. Our
results highlight the specific strengths and weak-
nesses of decoding strategies that aim at generating
sequences with the highest probability vs. strate-
gies that randomly sample words. We find that
none of the decoding strategies currently available
is able to balance task accuracy and linguistic qual-
ity of the output. However, we also show which
strategies perform better at important challenges,
such as incremental dialogue history, human evalu-
ation, hallucination rate, and lexical diversity. We
believe our work may serve as a starting point
for designing decoding strategies that take into ac-
count all the challenges involved in Visual Dia-
logue tasks.

2 Task & Dataset

GuessWhat?! (De Vries et al., 2017) is a simple
object identification game in English where two
participants see a real-world image from MSCOCO
(Lin et al., 2014) containing multiple objects. One
player (the Oracle) is secretly assigned one object
in the image (the target) and the other player (the
Questioner) has to guess it by asking a series of
binary yes-no questions to the Oracle. The task
is considered to be successful if the Questioner
identifies the target. The dataset for this task was
collected from human players via Amazon Mechan-
ical Turk. The authors collected 150K dialogues
with an average of 5.3 binary questions per dia-
logue. Figure 1 shows an example of a GuessWhat
game from the dataset.

3 Model and Decoding Strategies

We use the model and pre-trained checkpoints of
the Questioner agent made available by Testoni and
Bernardi (2021c) for the GuessWhat?! task. This
model is based on the GDSE architecture (Shekhar
et al., 2019). It uses a ResNet-152 network (He
et al., 2016) to encode the images and an LSTM
network to encode the dialogue history. A multi-
modal shared representation is generated and then
used to train both the question generator (which
generates a follow-up question given the dialogue
history) and the Guesser module (which selects
the target object among a list of candidates at the
end of the dialogue) in a joint multi-task learning
fashion. Testoni and Bernardi (2021c) added an
internal Oracle module to the GDSE architecture,
which guides a cognitively-inspired beam search re-
ranking strategy (Confirm-it) at inference time: this
strategy promotes the generation of questions that
aim at confirming the model’s intermediate conjec-
tures about the target. In our work, at inference
time the Questioner agent always interacts with the
baseline Oracle agent proposed in De Vries et al.
(2017).

We analyse the effect of a large number of de-
coding strategies as well as hyper-parameter config-
uration for each strategy: as highlighted by Zhang
etal. (2021), it is crucial to evaluate different hyper-
parameter configurations when comparing multiple
decoding strategies. Among the ones that maxi-
mize the likelihood of the sequence, we consider
plain beam search (with a beam size of 3) and
greedy search. We also consider Confirm-it, the
cognitively-inspired beam search re-ranking strat-
egy proposed in Testoni and Bernardi (2021c¢) for
promoting the generation of questions that aim at
confirming the model’s intermediate conjectures
about the target. This strategy re-ranks the set
of candidate questions from beam search and se-
lects the one that helps the most in confirming the
model’s hypothesis about the target. As for stochas-
tic strategies, we analyse pure sampling, top-k
sampling (with different £ values), and nucleus
sampling (with different p values), a strategy pro-
posed in Holtzman et al. (2020) which selects the
highest probability tokens whose cumulative prob-
ability mass exceeds a given threshold p. We also
consider typical decoding (with different 7 values),
a recently proposed strategy (Meister et al., 2022)
based on an information-theoretic framework. We
refer to the respective papers for additional details
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on decoding strategies. We let the model generate 5
questions! at test time and average the results over
five random seeds.

4 Metrics

We are interested in evaluating different decoding
strategies against a set of metrics that reflect the
complexity of the different skills required to suc-
cessfully solve multimodal referential games.

Linguistic Quality: We compute the percentage
of games with at least one repeated question, the
overall number of unique words used by the model
and, in line with the observations in Testoni and
Bernardi (2021a), the number of rare words gen-
erated by the model, defined as those words that
appear fewer than 20 times in the training set.

Visual Grounding: To quantify the rate of ob-
ject hallucination in the generated dialogues, we
compute the CHAIR metric (Rohrbach et al., 2018;
Testoni and Bernardi, 2021b). This metric, origi-
nally proposed for image captioning, detects hal-
lucination by checking each object mentioned in a
generated image caption against the ground-truth
MSCOCO objects for that image. The metric con-
sists of two distinct variants: CHAIR-i, or per-
instance variant (number of hallucinated objects
divided by the total number of objects mentioned
in each dialogue), and CHAIR-s, or per-sentence
variant (number of dialogues with at least one hallu-
cination divided by the total number of dialogues).>

Informativeness: To study the informativeness
of the generated questions, we report the raw ac-
curacy of the model in guessing the target object
after each dialogue turn and at the end of the di-
alogue. A game is considered successful if the
model identifies the target object assigned to the
Oracle. Similarly, we also report the accuracy of
human annotators when guessing the target by read-
ing machine-generated dialogues.

5 Results

5.1 Quantitative Results

Table 1 shows the performance of different decod-
ing strategies against accuracy and dialogue quality,
as described by the metrics in Section 4. 3 Confirm-

"Except for the accuracy per turn metric in Section 5.3,
where the dialogues consisted of 10 questions.

2Testoni and Bernardi (2021b) first adapted the CHAIR
metric for Visual Dialogue. However, the authors did not
investigate the effect of different decoding strategies.

SHere we only report the best-performing configuration
for each decoding strategy (see SM for all configurations).

it is by far the best decoding strategy in terms of
accuracy and hallucination rate. However, it uses
a restricted vocabulary compared to other strate-
gies. A similar issue is observed for greedy and
beam search. We find nucleus sampling (with a p-
value of 0.3, much lower than the one used by the
authors in Holtzman et al. (2020)) to effectively in-
crease the lexical variety compared to beam search,
without damaging accuracy and hallucination rate.
Typical decoding, top-k and pure sampling, instead,
clearly decrease repetitions and increase the vocab-
ulary richness by generating tokens that are not
related to the source input, as indicated by the high
hallucination rate. It thus looks like there exists a
trade-off between informativeness / visual ground-
ing and linguistic quality.

5.2 Effect of Hyper-Parameter Choice
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Figure 2: Different hyper-parameter values and their
effect on the accuracy, hallucinations, and repetitions in
typical decoding and nucleus sampling.

We study the effect of hyper-parameter configu-
rations in stochastic strategies. Specifically, we try
various p-values for nucleus sampling and 7-values
for typical decoding.* As shown in Figure 2, both
typical and nucleus sampling peak in accuracy with
the parameter configurations that also lead to the
most repetitions and fewest hallucinations. Con-
versely, both strategies show the lowest accuracy
with the highest hallucination rate. These results
confirm the detrimental effect of hallucinations on
the performance of the model. It is interesting to
note the robustness of typical decoding in generat-
ing few repetitions regardless of the 7 value. In line
with the findings in Zhang et al. (2021), this anal-
ysis confirms the importance of hyper-parameter

*Results for top-k are in SM.
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. % games with | Vocabulary Rare
Accuracy (%) T | CHAIR-i| | CHAIR-s | . )
repetitions | Size T Words 1
Confirm-it 51.39 15.09 28.48 30.33 858 34
Beam Search (beam size = 3) 47.05 18.33 31.08 38.49 731 27
Nucleus Sampling (p = 0.3) 46.92 17.96 33.60 32.35 1016 78
Greedy Search 46.58 17.75 32.97 35.63 834 46
Typical Decoding (7 = 0.7) 45.45 21.84 37.81 16.18 1703 247
Top-k Sampling (k =5) 45.10 22.84 37.71 14.93 1462 171
Pure Sampling 43.13 26.55 43.23 8.32 2609 793

Table 1: Comparison between decoding strategies and their best-performing (in terms of accuracy) hyper-parameters.

The decoding strategies are sorted by accuracy.

configurations and the peculiar trade-off between
informativeness, repetitions, and visual grounding:
so far it has not been possible to find a single con-
figuration that optimizes all three at the same time.

5.3 Per-turn Accuracy
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Figure 3: The accuracy per dialogue turn for four differ-
ent decoding strategies for dialogues of length 10.

One crucial ability in GuessWhat?! is asking
informative questions that incrementally help in
identifying the target: for this reason, we check the
accuracy of the model after each new question is
asked. Figure 3 shows accuracy per dialogue turn
for a set of representative strategies: Nucleus sam-
pling (p=0.3), Typical Decoding (7=0.7), Confirm-
it, and pure sampling. To get a broader picture,
we let the model generate 10 questions in this set-
ting. Confirm-it stands out by showing the largest
incremental increase of accuracy throughout the
dialogue, indicating that it generates more effective
follow-up questions. Pure sampling, on the other
hand, seems to suffer from the very beginning of
the dialogue and its accuracy stabilizes soon. It
is worth noting that the accuracy of typical decod-
ing gets closer to that of nucleus sampling towards

Human Accuracy (%) 1
Confirm-it 72.5
Typical Sampling (7 = 0.7) 68.0
Nucleus Sampling (p = 0.3) 67.5
Pure Sampling 59.5

Table 2: Human Guess Accuracy based on dialogue
generated from different decoding strategies.

the end of the dialogue, with the latter leveling off
sooner. We conjecture that Confirm-it outperforms
other techniques because it takes into account the
probability of the Guesser at inference time, so it
is guided to generate questions that change these
probabilities and thus avoid generic questions.

5.4 Human Evaluation

We asked 8 human annotators to guess the target
object in a sample of GuessWhat?! games when
reading dialogues generated by our model with dif-
ferent decoding strategies. Each participant anno-
tated 100 games (25 per strategy) and the decoding
strategy was not revealed during the annotation. As
shown in Table 2, humans reach the highest accu-
racy when reading dialogues generated by Confirm-
it, followed by typical decoding and nucleus sam-
pling, while pure sampling falls behind. These
results, which do not mirror the accuracy result in
Table 1, allow us to disentangle the weaknesses
of the Guesser (i.e., the classification module that
predicts the target) from the actual informativeness
of the dialogues. Compared to the model, human
annotators seem to better exploit the lexical rich-
ness of typical decoding and nucleus sampling. We
refer to the SM for additional information about the
annotation procedure, in line with the best-practice
guidelines in van der Lee et al. (2021).
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6 Related Work

In the field of multimodal NLG, ZarrieB and
Schlangen (2018) propose trainable decoding for
referring expression generation. The authors pro-
pose a two-stage optimization set-up where a small
network processes the RNN’s hidden state before
passing it to the decoder, using BLEU score as a
reward for the decoder. We did not analyse this
approach in our paper because we focus only on
decoding strategies that do not require any change
in the architecture or training of the model. We
leave for future work an analysis of trainable de-
coding approaches. Inspired by the findings in
Holtzman et al. (2020), Massarelli et al. (2020)
propose a hybrid decoding strategy for open-ended
text generation which combines the non-repetitive
nature of sampling strategies with the consistency
of likelihood-based approaches. The authors show
that their approach generated less repetitive and
more verifiable text. The design of hybrid decod-
ing strategies for multimodal tasks is out of the
scope of this paper, but is an interesting subject to
pursue in future work.

7 Discussion and Conclusion

Decoding algorithms are a key component of nat-
ural language generation systems. They are usu-
ally designed for and evaluated in text-only tasks.
We believe multimodal (vision & language) and
goal-oriented tasks pose unique and under-studied
challenges to current decoding strategies. In this
paper, we ran an in-depth analysis of several de-
coding strategies (and their hyper-parameter con-
figurations) for a model playing a referential visual
dialogue game. We found that decoding algorithms
that lead to the highest accuracy in the task and the
lowest hallucination rate, at the same time gener-
ate highly repetitive text and use a restricted vo-
cabulary. Our analyses reveal the crucial role of
hyper-parameter configuration in stochastic strate-
gies, an issue that poses several questions about
the trade-off between lexical variety, hallucination
rate, and task accuracy. While nucleus sampling
partially balances the above-mentioned issues, hu-
man annotators seem to better exploit the richness
of the dialogues generated by typical decoding. Fi-
nally, our results demonstrate that a beam search
re-ranking algorithm (Confirm-it) generates more
effective follow-up questions throughout the dia-
logue turns. We believe that taking into account
the model’s intermediate predictions about the ref-

erent, like Confirm-it does, represents a promising
direction that should be applied also to stochastic
strategies in future work, aiming at preserving their
lexical richness while reducing hallucinations.

Our results demonstrate that none of the decod-
ing strategies currently at disposal effectively take
into account both task accuracy and dialogue qual-
ity at the same time. We also highlight peculiar
features of each strategy that may guide future re-
search with the goal of designing decoding strate-
gies that properly confront the crucial challenges
of multimodal goal-oriented dialogues.
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A Supplementary Material
A.1 Effect of Hyper-parameters

Figures 4, 5, and 6 illustrate how hyper-parameter
choice affects the accuracy, the hallucinations, and
the repetitions. Top-k sampling (Figure 4) shows
decreased accuracy and repetitions, and increased
hallucinations, as the k-value gets higher. The same
general pattern can be observed with the gradual
increase of the p-value in nucleus sampling (Figure
6). On the other hand, typical decoding accuracy
peaks at 7 = 0.7 (Figure 5). This is also the point
at which the repetitions are at their highest and the
hallucinations are at their lowest. Both very high
and very low 7-values cause lower accuracy, fewer
repetitions, and an increase of hallucinations.
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Figure 4: Hyper-parameter choices’ effect on the accu-
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A.2 Experiments

Table 3 presents our results in detail for all the pa-
rameter configurations we considered. We have
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Figure 6: Hyper-parameter choices’ effect on the accu-
racy, hallucinations, and repetitions in nucleus sampling.

computed accuracy percentage, CHAIR-i, CHAIR-
s, percentage of games with repeated questions, vo-
cabulary size and number of rare words for each de-
coding method and its respective hyper-parameter
configurations. These results are sorted by decreas-
ing accuracy. The 3 best results of each metric are
in bold.

A.3 Human Annotation Details

Bl 0: person

1: person
B 2: backpack
I 3: motorcycle

is it a person? <no>
is it a sign? <no> is it a bike? <yes>
is it the front one? <yes> the whole scooter? <yes>

Figure 7: Example of the games displayed to the partic-
ipants for the annotation task. Participants had to select
one target object among the list of candidate objects on
the right. The machine-generated dialogue is in the red
box.

The annotation was done by 8 human annotators
on a sample of GuessWhat?! games. They were
recruited within our organization on a voluntary
basis and they did not receive any payment for the
annotation. Written informed consent was obtained
from all the participants. Participants were 4 males
and 4 females with high educational level and from
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% Accuracy 1 | CHAIR- | CHAIR-s | % games with | Vocabulary Rare
repetitions J Size T Words 1

mean std | mean std | mean std | mean std | mean std | mean std
CI 51.39 | 0.00 | 15.09 | 0.00 | 28.48 | 0.00 | 30.33 | 0.00 858 0.0 34 0.0
BS (beam =3) | 47.05 | 0.00 | 18.33 | 0.00 | 31.08 | 0.00 | 38.49 | 0.00 731 0.0 27 0.0
NS (p=0.3) 46.92 | 0.17 | 17.96 | 0.09 | 33.60 | 0.14 | 32.35 | 0.21 | 1016 8.3 78 5.5
NS (p=0.2) 4690 | 0.11 | 17.65 | 0.06 | 34.79 | 0.12 | 46.41 | 0.18 919 7.1 59 4.5
NS (p=0.4) 46.73 | 027 | 1838 | 0.17 | 3427 | 0.28 | 29.16 | 0.25 | 1097 | 11.9 88 6.4
NS (p=0.1) 46.63 | 0.02 | 17.76 | 0.01 | 3298 | 0.01 | 35.66 | 0.06 839 1.6 46 1.9
NS (p=0.5) 46.62 | 0.17 | 19.10 | 0.09 | 35.03 | 0.10 | 25.73 | 0.26 | 1192 | 18.0 103 34
GS 46.58 | 0.00 | 17.75 | 0.00 | 32.97 | 0.00 | 35.63 | 0.00 834 0.0 46 0.0
NS (p=0.6) 46.13 | 0.38 | 20.04 | 0.15 | 35.69 | 0.35 | 22.35 | 0.26 | 1303 | 12.7 126 94
NS (p=0.7) 4585 | 0.19 | 21.14 | 0.11 | 36.82 | 0.31 | 19.11 | 0.26 | 1451 9.0 162 9.5
TD (7 =0.7) 4545 | 032 | 21.84 | 0.15 | 37.81 | 0.23 | 16.18 | 0.29 | 1703 | 13.0 247 | 12.6
NS (p=0.8) 4538 | 0.14 | 22.20 | 0.16 | 37.97 | 0.30 | 15.80 | 0.19 | 1643 | 23.0 219 | 129
TD (1 =0.6) 4529 | 0.28 | 22.08 | 0.16 | 38.17 | 0.30 | 1575 | 0.17 | 1723 | 21.9 248 | 18.3
TD (7 =0.8) 4516 | 0.18 | 22.21 | 0.20 | 37.93 | 0.29 | 1532 | 028 | 1712 | 10.8 244 | 13.6
TD (7 =0.5) 4512 | 0.15 | 22.60 | 0.17 | 38.69 | 0.36 | 14.89 | 0.22 | 1745 7.3 262 8.7
Top-k (k =5) 4510 | 027 | 22.84 | 0.21 | 37.71 | 0.26 | 1493 | 0.10 | 1462 | 12.6 171 52
TD (t=0.4) 4483 | 0.17 | 23.11 | 0.13 | 39.11 | 044 | 13.94 | 024 | 1755 | 19.0 265 | 12.2
TD (7 =0.9) 44.61 | 0.16 | 23.74 | 0.18 | 39.59 | 0.19 | 12.41 025 | 1919 | 135 334 9.1
Top-k (k=10) | 44.61 | 0.24 | 24.03 | 0.29 | 39.62 | 0.26 | 11.96 | 0.16 | 1692 | 13.8 235 | 10.5
NS (p=091) | 4460 | 0.15 | 23.92 | 0.13 | 39.79 | 0.23 | 1221 | 0.13 | 1948 | 223 342 | 14.0
NS (p=0.9) 4456 | 023 | 23.82 | 0.07 | 39.62 | 0.17 | 12.44 | 0.10 | 1912 | 20.2 332 | 13.6
TD(r=091) | 4445 | 0.27 | 2392 | 0.14 | 39.82 | 0.31 | 12.18 | 0.19 | 1945 | 11.7 345 | 16.1
TD (7 =0.3) 4438 | 031 | 24.07 | 0.21 | 39.88 | 0.22 | 13.14 | 023 | 1791 | 14.8 278 | 13.7
NS (p=0.95) | 4438 | 0.12 | 2493 | 0.15 | 41.08 | 0.24 | 10.56 | 0.05 | 2129 | 11.3 438 | 114
TD (r=0.95) | 44.09 | 0.21 | 24.83 | 0.24 | 40.82 | 0.28 | 10.51 | 0.20 | 2117 | 18.9 435 | 17.1
Top-k (k=20) | 43.89 | 0.10 | 25.12 | 0.30 | 41.00 | 0.39 | 10.39 | 0.17 | 1879 | 23.1 305 | 17.5
TD (7 =0.2) 4336 | 020 | 25.19 | 0.16 | 40.82 | 0.34 | 12.11 | 0.09 | 1815 | 21.5 287 | 10.7
PS 43.13 | 028 | 26.55 | 0.25 | 43.23 | 0.36 832 | 0.17 | 2609 9.3 793 | 114
TD (7 =0.1) 4285 | 0.15 | 2625 | 0.14 | 41.54 | 0.09 | 11.12 | 0.11 | 1825 | 184 286 | 13.5

Table 3: Comparison between decoding strategies and their hyper-parameters (CI = Confirm-it, BS = Beam Search,
NS = Nucleus Sampling, GS = Greedy Search, TD = Typical Decoding, Top-k = Top-k Sampling, PS = Pure
Sampling).
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different ethnic groups. Before the beginning of
the annotation task, each annotator was briefed on
the GuessWhat?! gameplay and purpose, and was
asked to annotate some sample games in order to
get familiar with the annotation process. We used
the makesense.ai online software for image
recognition. Each image had a minimum of 3 and
a maximum of 6 candidate objects. The annotators
could see both the bounding box and the category
for each candidate object in the image. They could
also see the full dialogue between the Questioner
and the Oracle. The annotators then had to pick
the object they believed was the right one, based
on the information given by the dialogue. Figure
7 provides an example of the games we asked the
participants to annotate. Overall, we extracted 200
images from the GuessWhat?! test set and gener-
ated one dialogue per decoding strategy per image.
In total, we thus generated 800 dialogues. Each
human participant annotated 25 images per decod-
ing strategy. To prevent biases, the participants
were not given any information about the decoding
strategy that each image represented.

A.4 Comparison of Decoding Strategies

Table 4 shows a comparison between generated
dialogues of various decoding strategies (see Figure
8 for the image the dialogues refer to).

Figure 8: The image for game 147344.
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makesense.ai

Turn Speaker Confirm-it Nucleus Sampling Typical Decoding Pure Sampling
0 Questioner is it a bird? is it a bird? is it a bird? is it a bird?
Oracle yes yes yes yes
1 Questioner | is it on the left side? | is it on the left side? is it on the air? is it close?
Oracle yes yes yes yes
. is it on the left side is it one of the L. . L. .
Questioner ) R . is it 1 of the 3 on the right? is it squatting?
2 of the group? first birds?
Oracle no yes no yes
Questi is it in the middle? is it the first one is it one of the three birds is it one of the three
uestioner | is itin the middle?
3 from the left? that are next to each other? | all the way to the right?
Oracle yes no yes yes
. is it one of the three | is it the second one .. ..
Questioner . is it further left? is it 1st?
4 on the right? from the left?
Oracle no no yes no

Table 4: Comparison between dialogues generated by various decoding strategies for the image reported in Figure 8.
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