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Abstract

Data privacy is an important issue for

‘‘machine learning as a service’’ provid-

ers. We focus on the problem of mem-

bership inference attacks: Given a data

sample and black-box access to a model’s

API, determine whether the sample ex-

isted in the model’s training data. Our

contribution is an investigation of this

problem in the context of sequence-to-

sequence models, which are important in

applications such as machine translation

and video captioning. We define the mem-

bership inference problem for sequence

generation, provide an open dataset based

on state-of-the-art machine translation mod-

els, and report initial results on whether

thesemodels leakprivate informationagainst

several kinds of membership inference

attacks.

1 Motivation

There are many situations in which private entities

are worried about the privacy of their data. For

example, many companies provide black-box

training services where users are able to upload

their data and have customized models built

for them, without requiring machine learning

expertise. A common concern in these ‘‘machine

learning as a service’’ offerings is that the up-

loaded data be visible only to the client that

owns it.

Currently, these entities are in the position of

having to trust that service providers abide by the

terms of their agreements. Although trust is an

important component in relationships of all kinds,

it has its limitations. In particular, it falls short

of a well-known security maxim, originating in

a Russian proverb that translates as, Trust, but

∗Work done while visiting Johns Hopkins University.

verify.1 Ideally, customers would be able to verify

that their private data was not being slurped up

by the serving company, whether by design or

accident.

This problem has been formalized as the mem-

bership inference problem, first introduced by

Shokri et al. (2017) and defined as: ‘‘Given a

machine learning model and a record, determine

whether this record was used as part of the model’s

training dataset or not.’’ The problem can be

tackled in an adversarial framework: The attacker

is interested in answering this question with high

accuracy, whereas the defender would like this

question to be unanswerable (see Figure 1). Since

then, researchers have proposed many ways to

attack and defend the privacy of various types of

models. However, the work so far has only focused

on standard classification problems, where the

output space of the model is a fixed set of labels.

In this paper, we propose to investigate member-

ship inference for sequence generation problems,

where the output space can be viewed as a chained

sequence of classifications. Prime examples of

sequence generation includes machine translation

and text summarization: In these problems, the

output is a sequence of words whose length is un-

determined a priori. Other examples include speech

synthesis and video caption generation. Sequence

generation problems are more complex than clas-

sification problems, and it is unclear whether the

methods and results developed for membership

inference in classification problems will transfer.

For example, one might imagine that whereas a

flat classification model might leak private in-

formation when the output is a single label, a

recurrent sequence generation model might ob-

fuscate this leakage when labels are generated

successively with complex dependencies.

We focus on machine translation (MT) as the

example sequence generation problem. Recent

1Popularized by Ronald Reagan in the context of nuclear

disarmament.
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Figure 1: Membership inference attack.

advances in neural sequence-to-sequence models

have improved the quality of MT systems sig-

nificantly, and many commercial service pro-

viders are deploying these models via public

API’s. We pose the main question in the following

form:

Given black-box access to an MT model,

is it possible to determine whether a

particular sentence pair was in the

training set for that model?

In the following, we define membership infer-

ence for sequence generation problems (§2) and

contrast with prior work on classification (§3).

Next we present a novel dataset (§4) based on

state-of-the-art MT models.2 Finally, we propose

several attack methods (§5) and present a series

of experiments evaluating their ability to answer

the membership inference question (§6). Our

conclusion is that simple one-off attacks based

on shadow models, which proved successful in

classification problems, are not successful on

sequence generation problems; this is a result that

favors the defender. Nevertheless, we describe the

specific conditions where sequence-to-sequence

models still leak private information, and discuss

the possibility of more powerful attacks (§7).

2 Problem Definition

We now define the membership inference attack

problem for sequence-to-sequence models in de-

tail. Following tradition in the security research

literature, we introduce three characters:

2We release the data to encourage further research in

this new problem: https://github.com/sorami/

tacl-membership

Alice (the service provider) builds a sequence-

to-sequence model based on an undisclosed

dataset Atrain and provides a public API. For

MT, this API takes a foreign sentence f as input

and returns an English translation ê.

Bob (the attacker) is interested in discerning

whether a data sample was included in Alice’s

training data Atrain by exploiting Alice’s API.

This sample is called a ‘‘probe’’ and consists of

a foreign sentence f and its reference English

translation, e. Together with the API’s output

ê, Bob has to make a binary decision using a

membership inference classifier g(·), whose goal

is to predict:3

g(f, e, ê) =

{

in if probe ∈ Atrain

out otherwise
(1)

We term in-probes to be those probes where

the true class is in, and out-probes to be those

whose true class is out. Importantly, note that

Bob has access not only to f but also to e in

the probe. Intuitively, if ê is equivalent to e, then

Bob may believe that the probe was contained

in Atrain; however, it may also be possible that

Alice’s model generalizes well to new samples

and translates this probe correctly. The challenge

for Bob is to make this distinction; the challenge

for Alice is to prevent Bob from doing so.

Carol (the neutral third-party) is in charge of

setting up the experiment between Alice and Bob.

She decides which data samples should be used

as in-probes and out-probes and evaluates Bob’s

classification accuracy. Carol is introduced only

to clarify the exposition and to set up a fair

experiment for research purposes. In practical

scenarios, Carol does not exist: Bob decides his

own probes, and Alice decides her own Atrain.

2.1 Detailed Specification

In order to be precise about how Carol sets

up the experiment, we will explain in terms of

machine translation, but note that the problem

definition applies to any sequence-to-sequence

problem. A training set for MT consists of a

set of sentence pairs {(f
(d)
i , e

(d)
i )}. We use a

label d ∈ {ℓ1, ℓ2, . . .} to indicate the domain

3In the experiments, we will also consider extending

the information available to Bob. For example, if Alice

additionally provides the translation probabilities ρ in the

API, then Bob can exploit that in the classifier as g(f, e, ê, ρ).
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(the subcorpus or the data source), and an index

i ∈ {1, 2, . . . , I(d)} to indicate the sample id in

the domain (subcorpus). For example, e
(d)
i with

d = ℓ1 and i = 1might refer to the first sentence in

the Europarl subcorpus, while e
(d)
i with d = ℓ2

and i = 1 might refer to the first sentence in the

CommonCrawl subcorpus. I(d) is the maximum

number of sentences in the subcorpus with label d.

The distinction among subcorpora is not necessary

in the abstract problem definition, but is important

in practice when differences in data distribution

may reveal signals in membership.

Without loss of generality, in this section

assume that Carol has a finite number of samples

from two subcorpora d ∈ {ℓ1, ℓ2}. First, she

creates an out-probe of k samples from subcorpus

ℓ1:

Aout probe =

{

(f
(d)
i , e

(d)
i ) :

d = ℓ1, ℓ2

i = 1, . . . , k

}

(2)

Then Carol creates the data for Alice to train

Alice’s MT model, using subcorpora ℓ1 and ℓ2:

Atrain =

{

(f
(d)
i , e

(d)
i ) :

d = ℓ1, ℓ2

i = k + 1, . . . , I(d)

}

(3)

Importantly, the two sets are totally disjoint:

i.e., Aout probe ∩ Atrain = ∅. By definition,

out-probes are sentence pairs that are not in

Alice’s training data. Finally, Carol creates the

in-probe of k samples by drawing from Atrain,

i.e. Ain probe ⊂ Atrain, which is defined to be

samples that are included in training:

Ain probe =

{

(f
(d)
i , e

(d)
i ) :

d = ℓ1, ℓ2

i = k + 1, . . . , 2k

}

(4)

Note that both Ain probe and Aout probe are

sentence pairs that come from the same subcorpus;

the only difference is that the former is included

in Atrain whereas the latter is not.

There are several ways in which Bob’s data

can be created. For this work, we will assume

that Bob also has some data to train MT models,

in order to mimic Alice and design his attacks.

This data could either be disjoint from Atrain,

or contain parts of Atrain. We choose the latter,

which assumes that there might be some public

data that is accessible to both Alice and Bob. This

scenario slightly favors Bob. In the case of MT,

parallel data can be hard to come by, and datasets

like Europarl are widely accessible to anyone,

so presumably both Alice and Bob would use it.

However, we expect that Alice has an in-house

dataset (e.g., crawled data) that Bob does not have

access to. Thus, Carol creates data for Bob:

Ball =

{

(f
(d)
i , e

(d)
i ) :

d = ℓ1

i = 2k + 1, . . . , I(d)

}

(5)

Note that this dataset is like Atrain but with

two exceptions: All samples from subcorpora ℓ2
and all samples from Ain probe are discarded. One

can view ℓ2 as Alice’s own in-house corpus which

Bob has no knowledge of or access to, and ℓ1
as the shared corpus where membership inference

attacks are performed.

To summarize, Carol gives Atrain to Alice,

who uses it in whatever way she chooses to build

a sequence-to-sequence model M [Atrain,Θ]. The

model is trained on Atrain with hyperparameters

Θ (e.g., neural network architecture) known only

to Alice. In parallel, Carol gives Ball to Bob, who

uses it to design various attack strategies, resulting

in a classifier g(·) (see Section 5). When it is

time for evaluation, Carol provides both probes

Ain probe and Aout probe to Bob in randomized

order and asks Bob to classify each sample as in

or out. For each probe (f
(d)
i , e

(d)
i ), Bob is allowed

to make one call to Alice’s API to obtain ê
(d)
i .

As an additional evaluation, Carol creates a

third probe based on a new subcorpus ℓ3. We call

this the ‘‘out-of-domain (OOD) probe’’:

Aood =

{

(f
(d)
i , e

(d)
i ) :

d = ℓ3

i = 1, . . . , k

}

(6)

Both Aout probe and Aood should be classified

as out by Bob’s classifier. However, it has been

known that sequence-to-sequence models behave

very differently on data from domains/genre that

is significantly different from the training data

(Koehn and Knowles, 2017). The goal of having

two out probes is to quantify the difficulty or ease

of membership inference in different situations.

2.2 Summary and Alternative Definitions

Figure 2 summarizes the problem definition. The

probes Aout probe and Aood are by construction

outside of Alice’s training data Atrain, while

the probe Ain probe is included. Bob’s goal is to

produce a classifier that can make this distinction.
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Figure 2: Illustration of data splits for Alice and Bob.

There are k samples each for Ain probe, Aout probe, and

Aood. Alice’s training data Atrain excludes Aout probe

and ℓ3, while including Ain probe. Bob’s data Ball is a

subset of Alice’s data, excluding Ain probe and ℓ2.

He has at his disposal a smaller datasetBall, which

he can use in whatever way he desires.

There are alternative definitions of this mem-

bership inference problem. For example, one can

allow Bob to make multiple API calls to Alice’s

model for each probe. This enlarges the repository

of potential attack strategies for Bob. Or, one could

evaluate Bob’s accuracy not on a per-sample basis,

but allow for a coarser granularity where Bob

can aggregate inferences over multiple samples.

There is also a distinction between white-box

and black-box attacks: We focus on the black-

box case where Bob has no internal access to

the internal parameters of Alice’s model, but can

only guess at likely model architectures. In the

white-box case, Bob would have access to Alice’s

model internals, so different attacks would be

possible (e.g., backpropagation of gradients). In

these respects, our problem definition makes the

problem more challenging for Bob the attacker.

Finally, note that Bob is not necessarily always

the ‘‘bad guy’’. Some examples of who Alice and

Bob might be in MT are: (1) Organizations (Bob)

that provide bitext data under license restrictions

might be interested to determine whether their

licenses are being complied with in published

models (Alice). (2) The organizers (Bob) of an

annual bakeoff (e.g., WMT) might wish to confirm

that the participants (Alice) are following the rules

of not training on test data. (3) ‘‘MT as a service’’

providers may support customized engines if users

upload their own bitext training data. The provider

promises that the user-supplied data will not be

used in the customized engines of other users,

and can play both Alice and Bob, attacking its

own model to provide guarantees to the user. If it

is possible to construct a successful membership

inference mechanism, then many ‘‘good guys’’

would be able to provide the aforementioned

fairness (1, 2) and privacy guarantees (3).

3 Related Work

Shokri et al. (2017) introduced the problem of

membership inference attacks on machine learn-

ing models. They showed that with shadow models

trained on either realistic or synthetic datasets, Bob

can build classifiers that can discriminateAin probe

and Aout probe with high accuracy. They focus

on classification problems such as CIFAR image

recognition and demonstrate successful attacks on

both convolutional neural net models as well as

the models provided by Amazon ML.

Why do these attacks work? The main infor-

mation exploited by Bob’s classifier is the out-

put distribution of class labels returned by Alice’s

API. The prediction uncertainty differs for data

samples inside and outside the model training

data, and this can be exploited. Shokri et al.

(2017) propose defense strategies for Alice, such

as restricting the prediction vector to top-k classes,

coarsening the values of the output probabilities,

and increasing the entropy of the prediction vec-

tor. The crucial difference between their work and

ours, besides our focus on sequence generation

problems, is the availability of this kind of output

distribution provided by Alice. Although it is com-

mon to provide the whole distribution of out-

put probabilities in classification problems, this

is not possible in sequence generation problems

because the output space of sequences is expo-

nential in the output length. At most, sequence

models can provide a score for the output pre-

diction ê
(d)
i , for example with a beam search

procedure, but this is only one number and not

normalized. We do experiment with having Bob

exploit this score (Table 3), but it appears far infe-

rior to the use of the whole distribution available

in classification problems.

Subsequent work on membership inference has

focused on different angles of the problem. Salem

et al. (2018) investigated the effect of training the
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shadow model and datasets that match or do not

match the distribution of Atrain, and compared

training a single shadow model as opposed to

many. Truex et al. (2018) present a comprehensive

evaluation of different model types, training

data, and attack strategies. Borrowing ideas from

adversarial learning and minimax games, Hayes

et al. (2017) propose attack methods based on gen-

erative adversarial networks, while Nasr et al. (2018)

provide adversarial regularization techniques for

the defender. Nasr et al. (2019) extend the anal-

ysis to white-box attacks and a federated learning

setting. Pyrgelis et al. (2018) provide an empirical

study on location data. Veale et al. (2018) dis-

cuss membership inference and the related

model inversion problem, in the context of data

protection laws like GDPR.

Shokri et al. (2017) note a synergistic connec-

tion between the goals of learning and the goals of

privacy in the case of membership inference: The

goal of learning is to generalize to data outside

the training set (e.g., so that Aout probe and Aood

are translated well), while the goal of privacy is

to prevent leaking information about data in the

training set. The common enemy of both goals

is overfitting. Yeom et al. (2017) analyze how

overfitting by Alice’s increases the risk privacy

leakage; Long et al. (2018) showed that even

a well-generalized model holds such risks in

classification problems, implying that overfitting

by Alice is a sufficient but not necessary condition

for privacy leakage.

A large body of work exists in differential

privacy (Dwork, 2008; Machanavajjhala et al.,

2017). Differential privacy provides guarantees

that a model trained on some dataset Atrain will

produce statistically similar predictions as a model

trained on another dataset which differs in exactly

one sample. This is one way in which Alice can

defend her model (Rahman et al., 2018), but note

that differential privacy is a stronger notion and

often involves a cost in Alice’s model accuracy.

Membership inference assumes that content of

the data is known to Bob and only is concerned

whether it was used. Differential privacy also

protects the content of the data (i.e., the actual

words in (f
(d)
i , e

(d)
i ) should not be inferred).

Song and Shmatikov (2019) explored the mem-

bership inference problem of natural language

text, including word prediction and dialog gen-

eration. They assume that the attacker has access

to a probability distribution or a sequence of dis-

tributions over the vocabulary for the generated

word or sequence. This is different from our work

where the attacker gets only the output sequence,

which we believe is a more realistic setting.

4 Data and Evaluation Protocol

4.1 Data: Subcorpora and Splits

Based on the problem definition in Section 2, we

construct a dataset to investigate the possibility of

the membership inference attack on MT models.

We make this dataset available to the public to

encourage further research.4

There are various considerations to ensure the

benchmark is fair for both Alice and Bob: We need

a dataset that is large and diverse to ensure Alice

can train state-of-the-art MT models and Bob

can test on probes from different domains. We

used corpora from the Conference on Machine

Translation (WMT18) (Bojar et al., 2018). We

chose the German–English language pair because

it has a reasonably large amount of training

data, and previous work demonstrate high BLEU

scores.

We now describe how Carol prepares the data

for Alice and Bob. First, Carol selects four sub-

corpora for the training data of Alice, namely,

CommonCrawl, Europarl v7, News Com-

mentary v13, and Rapid 2016. A subset of

these four subcorpora are also available to Bob (ℓ1
in § 2.1). In addition, Carol gives ParaCrawl to

Alice but not Bob (ℓ2 in §2.1). We can think of it

as in-house data that the service provider holds.

For all these subcorpora, Carol first performs

basic preprocessing: (a) tokenization of both the

German and English sides using the Moses tok-

enizer, (b) de-duplication of sentence pairs so that

only unique pairs are present, and (c) randomly

shuffling all sentences prior to splitting into probes

and MT training data.5

Figure 3 illustrates how Carol splits subcorpora

for Alice and Bob. For each subcorpus, Carol splits

4https://github.com/sorami/tacl-

membership
5These are design decisions that balance between simple

experimentation vs. realistic condition. Carol doing a

common tokenization removes some of the MT-specific

complexity for researchers who want to focus on the Alice

or Bob models. However, in a real-world public API, Alice’s

tokenization is likely to be unknown to Bob. We decided on a

middle ground to have Carol perform a common tokenization,

but Alice and Bob do their own subword segmentation.
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Figure 3: Illustration of actual MT data splits. Atrain

does not contain Aout probe, and Ball is a subset of

Atrain with Ain probe and ParaCrawl excluded.

them to create probesAin probe andAout probe, and

Atrain and Ball. Carol sets k = 5, 000, meaning

each probe set per subcorpus has 5,000 samples.

For each subcorpus, Carol selects 5,000 samples to

create Aout probe. She then uses the rest as Atrain

and select 5,000 from it as Ain probe. She excludes

Ain probe and ParaCrawl from Atrain to create

a dataset for Bob, Ball.
6 In addition, Carol has

four other domains to create out-of-domain probe

set Aood, namely, EMEA and Subtitles 18

(Tiedemann, 2012), Koran (Tanzil), and TED

(Duh, 2018). These subcorpora are equivalent to

ℓ3 in § 2.1. The size ofAood is 5,000 per subcorpus,

same as Ain probe and Aout probe. The number of

samples for each set is summarized in Table 1.

4.2 Alice MT Architecture

Alice uses her dataset Atrain (consisting of

four subcorpora and ParaCrawl) to train her

own MT model. Because Paracrawl is noisy,

Alice first applies dual conditional cross-entropy

filtering (Junczys-Dowmunt, 2018), retaining the

top 4.5 million lines. Alice then trains a joint

BPE subword model (Sennrich et al., 2016) using

32,000 merge operations. No recasing is applied.

Alice’s model is a six-layer Transformer

(Vaswani et al., 2017) using default parameters in

Sockeye (Hieber et al., 2017).7 The model was

6We prepared two different pairs of Ain probe and

Aout probe. Thus Ball has 10k fewer samples than Atrain,

and not 5k fewer. For the experiment we used only one pair,

and kept the other for future use.
7Three-way tied embeddings, model and embedding size

512, eight attention heads, 2,048 hidden states in the feed

forward layers, layer normalization applied before each self-

attention layer, and dropout and residual connections applied

afterward, word-based batch size of 4,096.

trained until perplexity on newstest2017

(Bojar et al., 2017) had not improved for five

consecutive checkpoints, computed every 5,000

batches.

The BLEU score (Papineni et al., 2002) on

newstest2018 was 42.6, computed using

sacreBLEU (Post, 2018) with the default settings.8

4.3 Evaluation Protocol

To evaluate membership inference attacks on

Alice’s MT models, we use the following

procedure: First, Bob asks Alice to translate f .

Alice returns her result ê to Bob. Bob also has

access to the reference e and use his classifier

g(f, e, ê) to infer whether (e, f) was in Alice’s

training data. The classification is reported to

Carol, who computes ‘‘attack accuracy’’. Given a

probe set P containing a list of (f, e, ê, l), where l

is the label (in or out), this accuracy is defined as:

accuracy(g, P ) =
1

|P |

P
∑

[g(f, e, ê) = l] (7)

If the accuracy is 50%, then the binary

classification is same as random, and Alice is

safe. An accuracy slightly above 50% can be

considered a potential breach of privacy.

5 Membership Inference Attacks

5.1 Shadow Model Framework

Bob’s initial approach for attack is to use ‘‘shadow

models’’, similar to Shokri et al. (2017). The

idea is that Bob creates MT models with his

data to mimic (shadow) the behavior of Alice’s

MT model, then train a membership inference

classifier on these shadow models. To do so,

Bob splits his data Ball into his own version of

in-probe, out-probe, and training set in multiple

ways to train MT models. Then he translates these

probe sentences with his own shadow MT models,

and use the resulting (f, e, ê) with its in or out

label to train a binary classifier g(f, e, ê). If Bob’s

shadow models are sufficiently similar to Alice’s

in behavior, this attack can work.

Bob first selects 10 sets of 5,000 sentences

per subcorpus in Ball. He then chooses two sets

and uses one as in-probe and the other as out-

probe, and combines in-probe and the rest (Ball

minus 10 sets) as a training sets. We use notations

8Version 1.2.12, case-sensitive, ‘‘13a’’ tokenization for

comparability with WMT.
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Aout probe Ain probe Atrain Ball Aood

ParaCrawl 5,000 5,000 4,518,029 0 N/A

CommonCrawl 5,000 5,000 2,389,123 2,379,123 N/A

Europarl 5,000 5,000 1,865,271 1,855,271 N/A

News 5,000 5,000 273,702 263,702 N/A

Rapid 5,000 5,000 1,062,214 1,052,214 N/A

EMEA N/A N/A N/A N/A 5,000

Koran N/A N/A N/A N/A 5,000

Subtitles N/A N/A N/A N/A 5,000

TED N/A N/A N/A N/A 5,000

TOTAL 25,000 25,000 10,108,339 5,550,310 20,000

Table 1: Number of sentences per set and subcorpus. For each subcorpus,Atrain

includes Ain probe and does not include Aout probe. Ball is a subset of Atrain,

excluding Ain probe and ParaCrawl. Aood is for evaluation only, and only

Carol has access to it.

Figure 4: Illustration of how Bob splits Ball for each

shadow model. Blue boxes are the in-probe Bin probe

and training dataBtrain, where small box is the in-probe

and small and large boxes combined is the training data.

Green box indicates the out-probe Bout probe. Bob uses

models from splits 1 to 3 as a train, 4 as a validation,

and 5 as a test sets for his attack.

B1+
in probe

B1+
out probe

, and B1+
train for the first group

of in-probe, out-probe, and training sets. Bob then

swaps the in-probe and out-probe to create another

group. We notate this as B1−
in probe, B

1−
out probe, and

B1−
train. With 10 sets of 5,000 sentences, Bob can

create 10 different groups of in-probe, out-probe,

and training sets. Figure 4 illustrates the data

splits.

For each group of data, Bob first trains a shadow

MT model using the training set. He then uses this

model to translate sentences in the in-probe and

out-probe sets. Bob has now a list of (f, e, ê) from

different shadow models, and he knows for each

sample if it was in or out of the training data for

the MT model used to translate that sentence.

5.2 Bob MT Architecture

Bob’s model is a 4-layer Transformer, with no

tied embedding, model/embedding size 512, 8

attention heads, 1,024 hidden states in the feed

forward layers, word-based batch size of 4,096.

The model is optimized with Adam (Kingma and

Ba, 2015), regularized with label smoothing (0.1),

and trained until perplexity on newstest2016

(Bojar et al., 2016) had not improved for 16

consecutive checkpoints, computed every 4,000

batches. Bob has BPE subword models with

vocab size 30k for each language. The mean

BLEU scores of the ten shadow models on news-

test2018 is 38.6±0.2 (compared with 42.6 for

Alice).

5.3 Membership Inference Classifier

Bob extracts features from (f, e, ê) for a binary

classifier. He uses modified 1- to 4-gram preci-

sions and smoothed sentence-level BLEU score

(Lin and Och, 2004) as features. Bob’s intuition

is that if an unusually large number of n-grams

in ê matches e, then it could be a sign that this

was in the training data and Alice memorized it.

Bob calculates n-gram precision by counting the

number of n-grams in translation that appear in the

reference sentence. In the later investigation Bob

also considers the MT model score as an extra

feature.
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Algorithm 1: Construction of A Membership

Inference Classifier

Data: Ball

Result: g(·)
Split Ball into multiples groups of (Bi

in probe,

Bi
out probe, B

i
train) ;

foreach i in 1+, 1−, 2+, 2−, 3+, 3− do

Train a shadow model Mi using Bi
train ;

Translate Bi
in probe, B

i
out probe with Mi ;

end

Use Bi
in probe, B

i
out probe, and their

translations to train g(·) ;

Bob tries different types of classifiers, namely,

Perceptron (P), Decision Tree (DT), Naı̈ve Bayes

(NB), Nearest Neighbors (NN), and Multi-layer

Perceptron (MLP). DT uses GINI impurity for

the splitting metrics, and the max depth to be 5.

Our NB uses Gaussian distribution. For NN we

set the number of neighbors to be 5 and use

Minkowski distance. For MLP, we set the size of

the hidden layer to be 100, the activation function

to be ReLU, and the L2 regularization term α to

be 0.0001.

Algorithm 1 summarizes the procedure to

construct a membership inference classifier g(·)
using Bob’s dataset Ball. For training the binary

classifiers, Bob uses models from data splits 1

to 3 for training, 4 for validation, and 5 for his

own internal testing. Note that the final evaluation

of the attack is done using the translations of

Ain probe and Aout probe with Alice’s MT model,

by Carol.

6 Attack Results

We now present a series of results based on

the shadow model attack method described in

Section 5. In Section 6.1 we will observe that Bob

has difficulty attacking Alice under our definition

of membership inference. In Sections 6.2 and

6.3 we will see that Alice nevertheless does leak

some private information under more nuanced

conditions. Section 6.4 describes the possibility

of attacks beyond sentence-level membership.

Section 6.5 explores the attacks using external

resources.

6.1 Main Result

Table 2 shows the accuracy of the membership

inference classifiers. There are 5 different types

Alice Bob:train Bob:valid Bob:test

P 50.0 50.0 50.0 50.0

DT 50.4 51.4 51.2 51.1

NB 50.4 51.2 51.1 51.0

NN 49.9 61.6 50.5 50.0

MLP 50.2 50.8 50.8 50.8

Table 2: Accuracy of membership inference per

classifier type, Perceptron (P), Decision Tree (DT),

Naı̈ve Bayes (NB), Nearest Neighbors (NN), and

Multi-layer Perceptron (MLP). Alice column shows

the accuracy of attack on Alice probes Ain probe

and Aout probe. Bob columns show the accuracy on

the classifiers’ train, validation, and test set. Note

that, following the evaluation protocol explained in

Section 4.3, only Carol the evaluator can observe

the accuracy of the attacks on Alice model.

of classifiers, as described in Section 5.3. The

numbers in the Alice column shows the attack

accuracy on Alice probesAin probe andAout probe;

these are the main results. The numbers in Bob

columns show the results on the Bob classifiers’

train, validation, and test sets, as described in

Section 5.3.

The results of the attacks on the Alice model

show that it is around 50%, meaning that the attack

is not successful and the binary classification is

almost the same as a random choice.9 The ac-

curacy is around 50% for Bob:valid, meaning that

Bob also has difficulty attacking his own sim-

ulated probes, therefore the poor performance on

Ain probe and Aout probe is not due to mismatches

between Alice’s model and Bob’s model.

The accuracy is around 50% for Bob:train as

well, revealing that the classifier g(·) is under-

fitting.10 This suggests that the current features

do not provide enough information to distinguish

in-probe and out-probe sentences. Figure 5 shows

9Some numbers are slightly over 50%, which may be

interpreted as small leak of privacy. Although the desired

accuracy levels depend on the application, for the MT

scenarios described in Section 2.2 Bob would need much

higher accuracies. For example, if Bob is a bakeoff organizer,

he might want accuracy above 60% in order to determine

whether to manually check the submission. However, if

Bob is providing ‘‘MT as a service’’ with strong privacy

guarantees, he may need to provide the client with accuracy

higher than 90%.
10The higher accuracy for k-NN is an exception, but is due

to having the exact same datapoint in the model as the input,

which always becomes the nearest neighbor. When the k

value is increased, the accuracy on in-sample data decreased.
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Figure 5: Confusion matrices of the attacks on Alice model per classifier type.

Alice Bob:train Bob:valid Bob:test

P 49.7 49.2 49.3 49.4

DT 50.4 51.5 51.1 51.2

NB 50.1 50.2 50.1 50.2

NN 50.2 67.1 50.2 50.0

MLP 50.4 51.2 51.2 51.1

Table 3: Membership inference accuracy when MT

model score is added as an extra classifier feature.

the confusion matrices of the classifier output

on Alice probes. We see that for all classifiers,

whatever prediction they make is incorrect half of

the time.

Table 3 shows the result when MT model score

is added as an extra feature for classification. The

result indicates that this extra information does

not improve the attack accuracy. In summary,

these results suggest that Bob is not able to reveal

membership information at the sentence/sample

level. This result is in contrast to previous work on

membership inference in ‘‘classification’’ prob-

lems, which demonstrated high accuracy with

Bob’s shadow model attack.

Additionally, note that although accuracies are

close to 50%, the number of Bob:test tend to be

slightly higher than Alice’s for some classifiers.

This may reflect the fact that Bob:test is a matched

condition using the same shadow MT architecture,

while Alice probes are from a mismatched con-

dition using an unknown MT architecture. It is

important to compare both numbers in the exper-

iments: accuracy on Alice probes is the real eval-

uation and accuracy on Bob:test is a diagnostic.

6.2 Out-of-Domain Subcorpora

Carol prepared OOD subcorpora, Aood, that are

separate from Atrain and Ball. The membership

inference accuracy of each subcorpus is shown

in Table 4. The accuracy for OOD subcor-

pora are much higher than that of original in-

domain subcorpora. For example, the accuracy

with Decision Tree was 50.3% and 51.1% for

ParaCrawl and CommonCrawl (in-domain),

whereas accuracy was 67.2% and 94.1% forEMEA

and Koran (out-of-domain). This suggests that

for OOD data Bob has a better chance to infer the

membership.

In Table 4 we can see that Perceptron has

accuracy 50% for all in-domain subcorpora and

100% for all OOD subcorpora. Note that the OOD

subcorpora only have out-probes. By definition

none of the samples from OOD subcorpora are in

the training data. We get such accuracy because

our Perceptron is always predicting out, as we can

see in Figure 5. We believe this behavior is caused

by applying Perceptron to inseparable data, and

this particular model happened to be trained to

act this way. To confirm this we have trained

variations of Perceptrons by shuffling the training

data, and observed that the resulting models had

different output ratios of in and out, and in some

cases always predicting in for both in and OOD

subcorpora.

Figure 6 shows the distribution of sentence-

level BLEU scores per subcorpus. The BLEU

scores tend to be lower for OOD subcorpora,

and the classifier may exploit this information to

distinguish the membership better. But note that

EMEA (out-of-domain) and CommonCrawl (in-

domain) have similar BLEU scores, but vastly

different membership accuracies, so the classifier

may also be exploiting n-gram match distributions.

Overall, these results suggest that Bob’s accu-

racy depends on the specific type of probe being

tested. If there is a wide distribution of domains,

there is a higher chance that Bob may be able to

reveal membership information. Note that in the

actual scenario Bob will have no way of knowing

what is OOD for Alice, so there is no signal that

is exploitable for Bob. This section is meant as

an error analysis that describes how membership

inference classifiers behave differently in case the

probe is OOD.
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ParaCrawl CommonCrawl Europarl News Rapid EMEA Koran Subtitles TED

P 50.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0

DT 50.3 51.1 49.7 50.7 50.0 67.2 94.1 80.2 67.1

NB 50.1 51.2 49.9 50.6 50.2 69.5 96.1 81.7 70.5

NN 49.4 50.7 50.3 49.7 49.2 43.3 52.6 48.7 49.9

MLP 49.6 50.8 49.9 50.3 50.7 73.6 97.9 84.8 85.0

Table 4: Membership inference accuracy per subcorpus. The right-most 4 columns are results for

out-of-domain subcorpora. Note that ParaCrawl is out-of-domain for Bob and his classifier,

although it is in-domain for Alice and her MT model.

Figure 6: Distribution of sentence-level BLEU per subcorpora for Ain probe (blue boxes), Aout probe (green, left

five boxes), and Aood (green, right four boxes).

6.3 Out-of-Vocabulary Words

We also focused on the samples that contain the

words that never appear in the training data of

the MT model used for translation, that is, out-of-

vocabulary (OOV) words. For this analysis, we

focus only on vocabulary that does not exist in the

training data of Bob’s shadow MT models, rather

than Alice’s, since Bob does not have access

to her vocabulary. By definition there are only

out-probes in OOV subsets.

For Bob’s shadow models, 7.4%, 3.2%, and

1.9% of samples in the probe sets had one or

more OOV words in source, reference, or both

sentences, respectively. Table 5 shows the mem-

bership inference accuracy of the OOV subsets

from the Bob test set, which is generally very high

(>70%). This implies that sentences with OOV

words are translated idiosyncratically compared

with the ones without OOV words, and the classi-

fier can exploit this.

6.4 Alternative Evaluation: Grouping Probes

Section 6.1 showed that it is generally difficult

for Bob to determine membership for the strict

definition of one sentence per probe. What if we

OOV in src OOV in ref OOV in both

P 100.0 100.0 100.0

DT 73.9 74.1 68.0

NB 77.4 77.0 70.3

NN 49.9 49.2 49.3

MLP 89.0 85.8 80.4

Table 5: Membership inference accuracy on the

sentences in Bob:test containing out-of-vocabulary

(OOV) words for theMT model used for translation.

loosen the problem, letting the probe be a group

of sentences?

We create probes of 500 sentences each to

investigate this hypothesis. Bob randomly samples

500 sentences with the same label from Bob’s

training set to form a probe group. To create suf-

ficient training data for his classifier, Bob repeats

sampling and creates 6,000 groups. Bob uses

sentence BLEU bin percentage and corpus BLEU

as features for classification. For each group, Bob

counts the sentence BLEU for each bin. The bin

size is set to 0.01. Bob also uses all 500 translations

together to calculate the group’s corpus BLEU

score. Bob trains the classifiers using these fea-

tures, and applies it to Bob’s validation and test
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Bob Alice

train valid test original adjusted

P 71.6 69.4 68.1 50.0 59.0

DT 70.4 65.6 64.4 52.0 61.0

NB 72.9 67.5 70.0 50.0 50.0

NN 77.4 66.9 62.5 51.0 50.0

MLP 73.0 68.8 70.0 50.0 52.0

Table 6: Attack accuracy on probe groups. In

addition to the original Alice set, we have the

adjusted set where the feature values are adjusted

by subtracting the mean BLEU difference be-

tween Alice and Bob models.

sets, and Alice sets. These sets are evenly split into

groups of 500, not sampled as done in training.

Table 6 shows the accuracy on probe groups.

We can see that the accuracy is much higher

than 50%, not only for Bob’s training set but

also for his validation and test sets. However,

for Alice, we found that classifiers were almost

always predicting in, resulting the accuracy to be

around 50%. This is due to the fact that classifiers

were trained on shadow models that have lower

BLEU scores than Alice. This suggests that we

need to incorporate the information about the

Alice / Bob MT performance difference.

One way to adjust the difference is to di-

rectly manipulate the input feature values. We

adjusted the feature values, compensating by the

difference in mean BLEU scores, and accuracy

on Alice probes increased to 60% for P and DT

as shown in the ‘‘adjusted’’ column of Table 6.

If the classifier took advantage of the absolute

values in its decision, the adjustment may provide

improvements. If that is not the case, then im-

provements are less likely. Before the adjustment,

all classifiers were predicting everything to be in

for Alice probes. Classifiers like NB and MLP

apparently did not change how often they predict

in even after the normalization, whereas classifiers

like P and DT did. In a real scenario this BLEU

difference can be reasonably estimated by Bob,

since he can use Alice’s translation API to calcu-

late the BLEU score on a held-out set, and com-

pare it with his shadow models.

Another possible approach to handle the prob-

lem of classifiers always predicting in is to con-

sider the relative size of classifier output score.

We can rank the samples by the classifier output

scores, and decide top N% to be in and rest to

Figure 7: How the attack accuracy on Alice set changes

when probe groups are sorted by Perceptron output

score and the threshold to classify them as in is varied.

be out. Figure 7 shows how the accuracy changes

when varying the in percentage. We can see that

the accuracy can be much higher than the original

result, especially if Bob can adjust the threshold

based on his knowledge of in percentage in the

probe.

This is the first strong general result for Bob,

suggesting the membership inference attacks are

possible if probes are defined as groups of sen-

tences.11 Importantly, note that the classifier

threshold adjustment is performed only for the

classifiers in this section, and is not relevant for

the classifiers in Section 6.1 to 6.3.

6.5 Attacks Using External Resources

Our results in Section 6.1 demonstrate the dif-

ficulty of general membership inference attacks.

One natural question is whether attacks can be im-

proved with even stronger features or classifiers, in

particular by exploiting external resources beyond

the dataset Carol provided to Bob. We tried two

different approaches: one using a Quality Esti-

mation model trained on additional data, and

another using a neural sequence model with a

pre-trained language model.

Quality Estimation (QE) is a task of predicting

the quality of a translation at the sentence or

word level. One may imagine that a QE model

might produce useful feature to tease apart in and

out because in translations may have detectable

improvements in quality. To train this model, we

used the external dataset from the WMT shared

task on QE (Specia et al., 2018). Note that for

our language pair, German to English, the shared

task only had a labeled dataset for the SMT

11We can imagine an alternative definition of this group-

level membership inference where Bob’s goal is to predict

the percentage of overlap with respect to Alice’s training

data. This assumes that model trainers make corpus-level

decisions about what data to train on. Reformulation of a

binary problem to a regression problem may be useful for

some purposes.
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Alice Bob:train Bob:valid Bob:test

P 50.0 49.9 50.0 50.0

DT 50.3 51.4 51.1 51.1

NB 50.4 51.2 51.1 51.0

NN 49.8 66.1 50.0 50.1

MLP 50.4 51.0 51.0 50.8

BERT 50.0 50.0 50.0 50.0

Table 7: Membership inference accuracies for clas-

sifiers with Quality Estimation sentence score as

an extra feature, and a BERT classifier.

system. Our models are NMT, so the estimation

quality may not be optimally matched, but we

believe this is the best data available at this

time. We applied the Predictor-Estimator (Kim

et al., 2017) implemented in an open source QE

framework OpenKiwi (Kepler et al., 2019). It

consists of a predictor that predicts each token

of the target sentence given the target context

and the source, and estimator that takes features

produced by the predictor to estimate the labels;

both are made of LSTMs. We used this model

as this is one of the best models seen in the

shared tasks, and it does not require alignment

information. The model metrics on the WMT18

dev set, namely, Pearson’s correlation, Mean

Average Error, and Root Mean Squared Error

for sentence-level scores, are 0.6238, 0.1276, and

0.1745, respectively.

We used the sentence score estimated by the QE

model as an extra feature for classifiers described

in Section 6.1. The results are shown in Table 7.

We can see that this extra feature did not provide

any significant influence to the accuracy. In a

more detailed analysis, we find that the reason is

that our in and out probes both contain a range of

translations from low to high quality translations,

and our QE model may not be sufficiently fine-

grained to tease apart any potential differences.

In fact, this may be difficult even for a human

estimator.

Another approach to exploit external resources

is to use a language model pre-trained on a large

amount of text. In particular, we used BERT

(Devlin et al., 2019), which has shown competitive

results in many NLP tasks. We used BERT directly

as a classifier, and followed a fine-tuning setup

similar to paraphrase detection: For our case the

inputs are the English translation and reference

sentences, and the output is the binary membership

label. This setup is similar to the classifiers we

described in Section 5.3, where rather than train-

ing Perceptron or Decision Tree on manually

defined features, we directly applied BERT-based

sequence encoders on the raw sentences.

We fine-tuned the BERTBase,CasedEnglish

model with Bob:train. The results are shown

in Table 7. Similar to previous results, the

accuracy is 50% so the attack using BERT as

classifier was not successful. Detailed exam-

ination of the BERT classifier probabilities show

that they are scattered around 0.5 for all cases,

but in general are quite random for both Bob and

Alice probes. This result is similar to the other

simpler classifiers in Section 6.1.

In summary, from these results we can see that

even with external resources and more complex

classifiers, sentence-level attack is still very diffi-

cult for Bob. We believe this attests to the inherent

difficulty of the sentence-level membership infer-

ence problem.

7 Discussions and Conclusions

We formalized the problem of membership infer-

ence attacks on sequence generation tasks, and

used machine translation as an example to investi-

gate the feasibility of a privacy attack.

Our results in Section 6.1 and Section 6.5 show

that Alice is generally safe and it is difficult for

Bob to infer the sentence-level membership. In

contrast to attacks on standard classification prob-

lems (Shokri et al., 2017), sequence generation

problems maybe be harder to attack because the

input and output spaces are far larger and complex,

making it difficult to determine the quality of

the model output or how confident the model is.

Also, the output distribution of class labels is an ef-

fective feature for the attacker for standard clas-

sification problems, but is difficult to exploit in

the sequence case.

However, this does not mean that Alice has no

risk of leaking private information. Our analyses

in Sections 6.2 and 6.3 show that Bob’s accuracy

on out-of-domain and out-of-vocabulary data is

above chance, suggesting that attacks may be

feasible in conditions where unseen words and

domains cause the model to behave differently.

Further, Section 6.4 shows that for a looser defini-

tion of membership attack on groups of sentences,

the attacker can win at a level above chance.
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Our attack approach was a simple one, using

shadow models to mimic the target model. Bob

can attempt more complex strategies, for example,

by using the translation API multiple times per

sentence. Bob can manipulate a sentence, for

example, by dropping or adding words, and ob-

serve how the translation changes. We may also

use the metrics proposed by Carlini et al. (2018) as

features for Bob; they show how recurrent models

might unintentionally memorize rare sequences

in the training data, and propose a method to

detect it. Bob can also add ‘‘watermark sentences’’

that have some distinguishable characteristics to

influence the Alice model, making attack easier.

To guard against these attacks, Alice’s protection

strategy may include random subsampling of

training data or additional regularization terms.

Finally, we note some important caveats when

interpreting our conclusions. The translation qual-

ity of the Alice and Bob MT models turned out to

be similar in terms of BLEU. This situation favors

Bob, but in practice Bob is not guaranteed to be

able to create shadow models of the same standard,

nor verify how well it performs compared with

the Alice model. We stress that when one is to

interpret the results, one must evaluate both on

Bob’s test set and Alice probes side-by-side, like

those shown in Tables 2, 3, and 7, to account for

the fact that Bob’s attack on his own shadow model

translations is likely an optimistic upper-bound on

the real attack accuracy on Alice’s model.

We believe our dataset and analysis is a good

starting point for research in these privacy ques-

tions. Although we focused on MT, the formula-

tion is applicable to other kinds of sequence

generation models such as text summarization

and video captioning; these will be interesting as

future work.
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Ondřej Bojar, Rajen Chatterjee, Christian

Federmann, Yvette Graham, Barry Haddow,

Matthias Huck, Antonio Jimeno Yepes, Philipp

Koehn, Varvara Logacheva, Christof Monz,

Matteo Negri, Aurelie Neveol, Mariana Neves,

Martin Popel, Matt Post, Raphael Rubino,

Carolina Scarton, Lucia Specia, Marco Turchi,

Karin Verspoor, and Marcos Zampieri. 2016.

Findings of the 2016 conference on machine

translation. In Proceedings of the First Confer-

ence on Machine Translation, pages 131–198,

Berlin, Germany. Association for Computa-

tional Linguistics.

Ondřej Bojar, Christian Federmann, Mark Fishel,

Yvette Graham, Barry Haddow, Philipp Koehn,

and Christof Monz. 2018. Findings of the 2018

conference on machine translation (WMT18).

In Proceedings of the Third Conference on

Machine Translation: Shared Task Papers,

pages 272–303, Belgium, Brussels. Association

for Computational Linguistics.

Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar
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Miguel Vera, and André F. T. Martins. 2019.

OpenKiwi: An open source framework for qual-

ity estimation. In Proceedings of the 57th

Annual Meeting of the Association for Com-

putational Linguistics: System Demonstrations,

pages 117–122, Florence, Italy. Association for

Computational Linguistics.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon

Na. 2017. Predictor-estimator using multilevel

task learning with stack propagation for neural

quality estimation. In Proceedings of the

Second Conference on Machine Translation,

pages 562–568, Copenhagen, Denmark. Asso-

ciation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:

A method for stochastic optimization. CoRR,

abs/1412.6980.

Philipp Koehn and Rebecca Knowles. 2017. Six

challenges for neural machine translation. In

Proceedings of the First Workshop on Neural

Machine Translation.

Chin-Yew Lin and Franz Josef Och. 2004.

Automatic evaluation of machine translation

quality using longest common subsequence and

skip-bigram statistics. In Proceedings of the

42nd Meeting of the Association for Com-

putational Linguistics (ACL’04), Main Volume,

pages 605–612, Barcelona, Spain.

Yunhui Long, Vincent Bindschaedler, Lei Wang,

Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl A.

Gunter, and Kai Chen. 2018. Understand-

ing membership inferences on well-generalized

learning models. CoRR, abs/1802.04889.

Ashwin Machanavajjhala, Xi He, and Michael

Hay. 2017. Differential privacy in the wild: A

tutorial on current practices & open challenges.

In Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD

’17, pages 1727–1730, New York, NY. ACM.

Milad Nasr, Reza Shokri, and Amir Houmansadr.

2018. Machine learning with membership

privacy using adversarial regularization. In Pro-

ceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security,

CCS ’18, pages 634–646, New York, NY. ACM.

Milad Nasr, Reza Shokri, and Amir Houmansadr.

2019. Comprehensive privacy analysis of deep

learning: Passive and active white-box infer-

ence attacks against centralized and federated

learning. In 2019 IEEE Symposium on Security

and Privacy (SP).

Kishore Papineni, Salim Roukos, Todd Ward, and

Wei-Jing Zhu. 2002, Jul. BLEU: a method for

automatic evaluation of machine translation. In

Proceedings of 40th Annual Meeting of the

Association for Computational Linguistics,

pages 311–318, Philadelphia, PA. Association

for Computational Linguistics.

Matt Post. 2018, Oct. A call for clarity in reporting

BLEU scores. In Proceedings of the Third

Conference on Machine Translation: Research

Papers, pages 186–191, Belgium, Brussels.

Association for Computational Linguistics.

Apostolos Pyrgelis, Carmela Troncoso, and

Emiliano De Cristofaro. 2018. Knock knock,

who’s there? Membership inference on aggre-

gate location data. CoRR, abs/1708.06145.

Md Atiqur Rahman, Tanzila Rahman, Robert

Laganiere, Noman Mohammed, and Yang Wang.

2018. Membership inference attack against dif-

ferentially private deep learning model. Trans-

actions on Data Privacy, 11:61–79.

Ahmed Salem, Yonghui Zhang, Mathias Humbert,

Mario Fritz, and Michael Backes. 2018. Ml-

leaks: Model and data independent membership

62



inference attacks and defenses on machine

learning models. CoRR, abs/1806.01246.

Rico Sennrich, Barry Haddow, and Alexandra

Birch. 2016. Neural machine translation of rare

words with subword units. In Proceedings of

the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long

Papers), pages 1715–1725, Berlin, Germany.

Association for Computational Linguistics.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov.

2017. Membership inference attacks against

machine learning models. In 2017 IEEE Sym-

posium on Security andPrivacy (SP), pages 3–18.

Congzheng Song and Vitaly Shmatikov. 2019.

Auditing data provenance in text-generation

models. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, KDD ’19,

pages 196–206. New York, NY, ACM.

Lucia Specia, Varvara Logacheva, Frederic Blain,

Ramon Fernandez, and André Martins. 2018.
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