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Abstract

Topic modeling analyzes documents to learn

meaningful patterns of words. However, exist-

ing topic models fail to learn interpretable

topics when working with large and heavy-

tailed vocabularies. To this end, we develop

the embedded topic model (ETM), a generative

model of documents that marries traditional

topic models with word embeddings. More spe-

cifically, the ETM models each word with a

categorical distribution whose natural param-

eter is the inner product between the word’s

embedding and an embedding of its assigned

topic. To fit the ETM, we develop an effi-

cient amortized variational inference algo-

rithm. The ETM discovers interpretable topics

even with large vocabularies that include rare

words and stop words. It outperforms exist-

ing document models, such as latent Dirichlet

allocation, in terms of both topic quality and

predictive performance.

1 Introduction

Topic models are statistical tools for discovering

the hidden semantic structure in a collection of

documents (Blei et al., 2003; Blei, 2012). Topic

models and their extensions have been applied

to many fields, such as marketing, sociology,

political science, and the digital humanities.

Boyd-Graber et al. (2017) provide a review.

Most topic models build on latent Dirichlet

allocation (LDA) (Blei et al., 2003). LDA is a

hierarchical probabilistic model that represents

each topic as a distribution over terms and re-

presents each document as a mixture of the top-

ics. When fit to a collection of documents, the

topics summarize their contents, and the topic

∗Work done while at Columbia University and the

University of Cambridge.

proportions provide a low-dimensional represen-

tation of each document. LDA can be fit to large

datasets of text by using variational inference

and stochastic optimization (Hoffman et al., 2010,

2013).

LDA is a powerful model and it is widely used.

However, it suffers from a pervasive technical

problem—it fails in the face of large vocabularies.

Practitioners must severely prune their vocabular-

ies in order to fit good topic models—namely,

those that are both predictive and interpretable.

This is typically done by removing the most and

least frequent words. On large collections, this

pruning may remove important terms and limit

the scope of the models. The problem of topic

modeling with large vocabularies has yet to be

addressed in the research literature.

In parallel with topic modeling came the idea of

word embeddings. Research in word embeddings

begins with the neural language model of Bengio

et al. (2003), published in the same year and

journal as Blei et al. (2003). Word embeddings

eschew the ‘‘one-hot’’ representation of words—a

vocabulary-length vector of zeros with a single

one—to learn a distributed representation, one

where words with similar meanings are close in

a lower-dimensional vector space (Rumelhart and

Abrahamson, 1973; Bengio et al., 2006). As for

topic models, researchers scaled up embedding

methods to large datasets (Mikolov et al., 2013a,b;

Pennington et al., 2014; Levy and Goldberg, 2014;

Mnih and Kavukcuoglu, 2013). Word embeddings

have been extended and developed in many ways.

They have become crucial in many applications

of natural language processing (Maas et al., 2011;

Li and Yang, 2018), and they have also been

extended to datasets beyond text (Rudolph et al.,

2016).

In this paper, we develop the embedded topic

model (ETM), a document model that marries LDA

and word embeddings. The ETM enjoys the good

properties of topic models and the good properties
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Figure 1: Ratio of the held-out perplexity on a document

completion task and the topic coherence as a function

of the vocabulary size for the ETM and LDA on the

20NewsGroup corpus. The perplexity is normalized

by the size of the vocabulary. While the performance

of LDA deteriorates for large vocabularies, the ETM

maintains good performance.

of word embeddings. As a topic model, it discovers

an interpretable latent semantic structure of the

documents; as a word embedding model, it pro-

vides a low-dimensional representation of the

meaning of words. The ETM robustly accommo-

dates large vocabularies and the long tail of lan-

guage data.

Figure 1 illustrates the advantages. This figure

shows the ratio between the perplexity on held-out

documents (a measure of predictive performance)

and the topic coherence (a measure of the quality

of the topics), as a function of the size of the

vocabulary. (The perplexity has been normalized

by the vocabulary size.) This is for a corpus of

11.2K articles from the 20NewsGroup and for

100 topics. The red line is LDA; its performance

deteriorates as the vocabulary size increases—the

predictive performance and the quality of the

topics get worse. The blue line is the ETM; it main-

tains good performance, even as the vocabulary

size become large.

Like LDA, the ETM is a generative probabilistic

model: Each document is a mixture of topics and

each observed word is assigned to a particular

topic. In contrast to LDA, the per-topic conditional

probability of a term has a log-linear form that

involves a low-dimensional representation of the

vocabulary. Each term is represented by an embed-

ding and each topic is a point in that embedding

space. The topic’s distribution over terms is pro-

portional to the exponentiated inner product of the

Figure 2: A topic about Christianity found by the ETM

on The New York Times. The topic is a point in the

word embedding space.

Figure 3: Topics about sports found by the ETM on The

New York Times. Each topic is a point in the word

embedding space.

topic’s embedding and each term’s embedding.

Figures 2 and 3 show topics from a 300-topic ETM

of The New York Times. The figures show each

topic’s embedding and its closest words; these

topics are about Christianity and sports.

Representing topics as points in the embedding

space allows the ETM to be robust to the presence

of stop words, unlike most topic models. When

stop words are included in the vocabulary, the

ETM assigns topics to the corresponding area of

the embedding space (we demonstrate this in

Section 6).

As for most topic models, the posterior of the

topic proportions is intractable to compute. We

derive an efficient algorithm for approximating

the posterior with variational inference (Jordan

et al., 1999; Hoffman et al., 2013; Blei et al.,

2017) and additionally use amortized inference

to efficiently approximate the topic proportions

(Kingma and Welling, 2014; Rezende et al., 2014).
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The resulting algorithm fits the ETM to large

corpora with large vocabularies. This algorithm

can either use previously fitted word embeddings,

or fit them jointly with the rest of the parameters.

(In particular, Figures 1 to 3 were made using the

version of the ETM that uses pre-fitted skip-gram

word embeddings.)

We compared the performance of the ETM to LDA,

the neural variational document model (NVDM)

(Miao et al., 2016), and PRODLDA (Srivastava and

Sutton, 2017).1 The NVDM is a form of multinomial

matrix factorization and PRODLDA is a modern

version of LDA that uses a product of experts

to model the distribution over words. We also

compare to a document model that combines

PRODLDA with pre-fitted word embeddings. The ETM

yields better predictive performance, as measured

by held-out log-likelihood on a document comple-

tion task (Wallach et al., 2009b). It also discovers

more meaningful topics, as measured by topic

coherence (Mimno et al., 2011) and topic diver-

sity. The latter is a metric we introduce in this

paper that, together with topic coherence, gives a

better indication of the quality of the topics. The

ETM is especially robust to large vocabularies.

2 Related Work

This work develops a new topic model that extends

LDA. LDA has been extended in many ways, and

topic modeling has become a subfield of its own.

For a review, see Blei (2012) and Boyd-Graber

et al. (2017).

A broader set of related works are neural topic

models. These mainly focus on improving topic

modeling inference through deep neural networks

(Srivastava and Sutton, 2017; Card et al., 2017;

Cong et al., 2017; Zhang et al., 2018). Specifically,

these methods reduce the dimension of the text

data through amortized inference and the variatio-

nal auto-encoder (Kingma and Welling, 2014;

Rezende et al., 2014). To perform inference in the

ETM, we also avail ourselves of amortized inference

methods (Gershman and Goodman, 2014).

As a document model, the ETM also relates to

works that learn per-document representations as

part of an embedding model (Le and Mikolov,

2014; Moody, 2016; Miao et al., 2016; Li et al.,

2016). In contrast to these works, the docu-

1Code is available at https://github.com/

adjidieng/ETM.

ment variables in the ETM are part of a larger

probabilistic topic model.
One of the goals in developing the ETM is to

incorporate word similarity into the topic model,

and there is previous research that shares this goal.

These methods either modify the topic priors

(Petterson et al., 2010; Zhao et al., 2017b; Shi

et al., 2017; Zhao et al., 2017a) or the topic

assignment priors (Xie et al., 2015). For example,

Petterson et al. (2010) use a word similarity graph

(as given by a thesaurus) to bias LDA towards

assigning similar words to similar topics. As

another example, Xie et al. (2015) model the per-

word topic assignments of LDA using a Markov

random field to account for both the topic pro-

portions and the topic assignments of similar

words. These methods use word similarity as a

type of ‘‘side information’’ about language; in

contrast, the ETM directly models the similarity (via

embeddings) in its generative process of words.

However, a more closely related set of works

directly combine topic modeling and word

embeddings. One common strategy is to convert

the discrete text into continuous observations

of embeddings, and then adapt LDA to generate

real-valued data (Das et al., 2015; Xun et al.,

2016; Batmanghelich et al., 2016; Xun et al.,

2017). With this strategy, topics are Gaussian

distributions with latent means and covariances,

and the likelihood over the embeddings is modeled

with a Gaussian (Das et al., 2015) or a Von-Mises

Fisher distribution (Batmanghelich et al., 2016).

The ETM differs from these approaches in that

it is a model of categorical data, one that goes

through the embeddings matrix. Thus it does not

require pre-fitted embeddings and, indeed, can

learn embeddings as part of its inference process.

The ETM also differs from these approaches in

that it is amenable to large datasets with large

vocabularies.

There are few other ways of combining LDA

and embeddings. Nguyen et al. (2015) mix the

likelihood defined by LDA with a log-linear model

that uses pre-fitted word embeddings; Bunk and

Krestel (2018) randomly replace words drawn

from a topic with their embeddings drawn from

a Gaussian; Xu et al. (2018) adopt a geometric

perspective, using Wasserstein distances to learn

topics and word embeddings jointly; and Keya

et al. (2019) propose the neural embedding alloca-

tion (NEA), which has a similar generative process

to the ETM but is fit using a pre-fitted LDA model as
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a target distribution. Because it requires LDA, the

NEA suffers from the same limitation as LDA. These

models often lack scalability with respect to the

vocabulary size and are fit using Gibbs sampling,

limiting their scalability to large corpora.

3 Background

The ETM builds on two main ideas, LDA and word

embeddings. Consider a corpus of D documents,

where the vocabulary contains V distinct terms.

Let wdn ∈ {1, . . . , V } denote the nth word in the

dth document.

Latent Dirichlet Allocation. LDA is a probabi-

listic generative model of documents (Blei et al.,

2003). It posits K topics β1:K , each of which is a

distribution over the vocabulary. LDA assumes each

document comes from a mixture of topics, where

the topics are shared across the corpus and the

mixture proportions are unique for each document.

The generative process for each document is the

following:

1. Draw topic proportion θd ∼ Dirichlet(αθ).

2. For each word n in the document:

(a) Draw topic assignment zdn ∼ Cat(θd).

(b) Draw word wdn ∼ Cat(βzdn).

Here, Cat(·) denotes the categorical distribu-

tion. LDA places a Dirichlet prior on the topics,

βk ∼ Dirichlet(αβ) for k = 1, . . . , K.

The concentration parameters αβ and αθ of the

Dirichlet distributions are fixed model hyperpa-

rameters.

Word Embeddings. Word embeddings provide

models of language that use vector representations

of words (Rumelhart and Abrahamson, 1973;

Bengio et al., 2003). The word representations

are fitted to relate to meaning, in that words with

similar meanings will have representations that

are close. (In embeddings, the ‘‘meaning’’ of a

word comes from the contexts in which it is used

[Harris, 1954].)

We focus on the continuous bag-of-words

(CBOW) variant of word embeddings (Mikolov

et al., 2013b). In CBOW, the likelihood of each

word wdn is

wdn ∼ softmax(ρ⊤αdn). (1)

The embedding matrix ρ is a L× V matrix whose

columns contain the embedding representations

of the vocabulary, ρv ∈ R
L. The vector αdn is

the context embedding. The context embedding is

the sum of the context embedding vectors (αv for

each word v) of the words surrounding wdn.

4 The Embedded Topic Model

The ETM is a topic model that uses embedding

representations of both words and topics. It

contains two notions of latent dimension. First,

it embeds the vocabulary in an L-dimensional

space. These embeddings are similar in spirit to

classical word embeddings. Second, it represents

each document in terms of K latent topics.

In traditional topic modeling, each topic is a

full distribution over the vocabulary. In the ETM,

however, the kth topic is a vector αk ∈ R
L in the

embedding space. We callαk a topic embedding—

it is a distributed representation of the kth topic in

the semantic space of words.

In its generative process, the ETM uses the topic

embedding to form a per-topic distribution over

the vocabulary. Specifically, the ETM uses a log-

linear model that takes the inner product of the

word embedding matrix and the topic embedding.

With this form, the ETM assigns high probability

to a word v in topic k by measuring the agreement

between the word’s embedding and the topic’s

embedding.

Denote the L × V word embedding matrix by

ρ; the column ρv is the embedding of term v.

Under the ETM, the generative process of the dth

document is the following:

1. Draw topic proportions θd ∼ LN (0, I).

2. For each word n in the document:

a. Draw topic assignment zdn ∼ Cat(θd).

b. Draw the word wdn ∼ softmax(ρ⊤

αzdn).

In Step 1, LN (·) denotes the logistic-normal

distribution (Aitchison and Shen, 1980; Blei and

Lafferty, 2007); it transforms a standard Gaussian

random variable to the simplex. A draw θd from

this distribution is obtained as

δd ∼ N (0, I); θd = softmax(δd). (2)

(We replaced the Dirichlet with the logistic normal

to easily use reparameterization in the inference

algorithm; see Section 5.)
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Steps 1 and 2a are standard for topic modeling:

They represent documents as distributions over

topics and draw a topic assignment for each

observed word. Step 2b is different; it uses the

embeddings of the vocabulary ρ and the assigned

topic embedding αzdn to draw the observed word

from the assigned topic, as given by zdn.

The topic distribution in Step 2b mirrors the

CBOW likelihood in Eq. 1. Recall CBOW uses the

surrounding words to form the context vector αdn.

In contrast, the ETM uses the topic embedding αzdn

as the context vector, where the assigned topic zdn
is drawn from the per-document variable θd. The

ETM draws its words from a document context,

rather than from a window of surrounding words.

The ETM likelihood uses a matrix of word

embeddings ρ, a representation of the vocabulary

in a lower dimensional space. In practice, it can

either rely on previously fitted embeddings or

learn them as part of its overall fitting procedure.

When the ETM learns the embeddings as part of the

fitting procedure, it simultaneously finds topics

and an embedding space.

When the ETM uses previously fitted embed-

dings, it learns the topics of a corpus in a particular

embedding space. This strategy is particularly

useful when there are words in the embedding

that are not used in the corpus. The ETM can

hypothesize how those words fit in to the topics

because it can calculate ρ⊤v αk even for words v

that do not appear in the corpus.

5 Inference and Estimation

We are given a corpus of documents {w1, . . . ,

wD}, where the dth document wd is a collection

of Nd words. How do we fit the ETM to this

corpus?

The Marginal Likelihood. The parameters of

the ETM are the word embeddings ρ1:V and the

topic embeddings α1:K ; each αk is a point in

the word embedding space. We maximize the log

marginal likelihood of the documents,

L(α, ρ) =

D
∑

d=1

log p(wd |α, ρ). (3)

The problem is that the marginal likelihood

of each document—p(wd |α, ρ)—is intractable to

compute. It involves a difficult integral over the

topic proportions, which we write in terms of the

untransformed proportions δd in Eq. 2,

p(wd |α, ρ) =

∫

p(δd)

Nd
∏

n=1

p(wdn | δd, α, ρ) dδd.

(4)

The conditional distribution p(wdn | δd, α, ρ) of

each word marginalizes out the topic assignment

zdn,

p(wdn | δd, α, ρ) =
K
∑

k=1

θdkβk,wdn
. (5)

Here, θdk denotes the (transformed) topic propor-

tions (Eq. 2) and βk,v denotes a traditional

‘‘topic,’’ that is, a distribution over words,

induced by the word embeddings ρ and the topic

embedding αk,

βkv = softmax(ρ⊤αk)
∣

∣

v
. (6)

Eqs. 4, 5, 6 flesh out the likelihood in Eq. 3.

Variational Inference. We sidestep the intrac-

table integral in Eq. eq:integral with variational

inference (Jordan et al., 1999; Blei et al., 2017).

Variational inference optimizes a sum of per-

document bounds on the log of the marginal

likelihood of Eq. 4.

To begin, posit a family of distributions of the

untransformed topic proportions q(δd ; wd, ν).
This family of distributions is parameterized by ν.

We use amortized inference, where q(δd ; wd, ν)
(called a variational distribution) depends on both

the document wd and shared parameters ν. In

particular, q(δd ; wd, ν) is a Gaussian whose mean

and variance come from an ‘‘inference network,’’

a neural network parameterized by ν (Kingma and

Welling, 2014). The inference network ingests

a bag-of-words representation of the document

wd and outputs the mean and covariance of δd.

(To accommodate documents of varying length,

we form the input of the inference network by

normalizing the bag-of-word representation of the

document by the number of words Nd.)

We use this family of distributions to bound

the log of the marginal likelihood in Eq. 4. The

bound is called the evidence lower bound (ELBO)
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and is a function of the model parameters and the

variational parameters,

L(α, ρ, ν) =
D
∑

d=1

Nd
∑

n=1

Eq[ log p(wnd | δd, ρ, α) ]

−
D
∑

d=1

KL(q(δd;wd, ν) || p(δd)). (7)

The first term of the ELBO (Eq. 7) encourages

variational distributions q(δd ; wd, ν) that place

mass on topic proportions δd that explain the

observed words and the second term encourages

q(δd ; wd, ν) to be close to the prior p(δd).
Maximizing the ELBO with respect to the model

parameters (α, ρ) is equivalent to maximizing

the expected complete log-likelihood,
∑

d log
p(δd,wd |α, ρ).

The ELBO in Eq. 7 is intractable because the

expectation is intractable. However, we can form

a Monte Carlo approximation of the ELBO,

L̃(α, ρ, ν) =
1

S

D
∑

d=1

Nd
∑

n=1

S
∑

s=1

log p(wnd | δ
(s)
d , ρ, α)

−
D
∑

d=1

KL(q(δd;wd, ν) || p(δd)), (8)

where δ
(s)
d ∼ q(δd;wd, ν) for s = 1 . . . S. To

form an unbiased estimator of the ELBO and its

gradients, we use the reparameterization trick

when sampling the unnormalized proportions

δ
(1)
d , . . . , δ

(S)
d (Kingma and Welling, 2014; Titsias

and Lázaro-Gredilla, 2014; Rezende et al., 2014).

That is, we sample δ
(s)
d from q(δd;wd, ν) as

ǫ
(s)
d ∼ N (0, I) and δ

(s)
d = µd + Σ

1
2

dǫ
(s)
d , (9)

where µd and Σd are the mean and covariance of

q(δd;wd, ν) respectively, which depend implicitly

on ν and wd via the inference network. We use a

diagonal covariance matrix Σd.

We also use data subsampling to handle large

collections of documents (Hoffman et al., 2013).

Denote by B a minibatch of documents. Then

the approximation of the ELBO using data sub-

sampling is

L̃(α, ρ, ν) =
D

|B|

∑

d∈B

Nd
∑

n=1

S
∑

s=1

log p(wnd | δ
(s)
d , ρ, α)

−
D

|B|

∑

d∈B

KL(q(δd;wd, ν) || p(δd)).

(10)

Algorithm 1 Topic modeling with the ETM

Initialize model and variational parameters

for iteration i = 1, 2, . . . do

Compute βk = softmax(ρ⊤αk) for each topic k

Choose a minibatch B of documents

for each document d in B do

Get normalized bag-of-word representat. xd

Compute µd = NN(xd ; νµ)
Compute Σd = NN(xd ; νΣ)
Sample θd using Eq. 9 and θd = softmax(δd)
for each word in the document do

Compute p(wdn | θd, ρ, α) = θ⊤d β·,wdn

end for

end for

Estimate the ELBO using Eq. 10 and Eq. 11

Take gradients of the ELBO via backpropagation

Update model parameters α1:K (ρ if necessary)

Update variational parameters (νµ, νΣ)

end for

Given that the prior p(δd) and q(δd;wd, ν) are

both Gaussians, the KL admits a closed-form

expression,

KL(q(δd;wd, ν) || p(δd)) =

1

2

{

tr(Σd) + µ⊤
d µd − log det(Σd)−K

}

. (11)

We optimize the stochastic ELBO in Equation 10

with respect to both the model parameters (α, ρ)
and the variational parameters ν. We set the

learning rate with Adam (Kingma and Ba, 2015).

The procedure is shown in Algorithm 1, where we

set the number of Monte Carlo samples S = 1
and the notation NN(x ; ν) represents a neural

network with input x and parameters ν.

6 Empirical Study

We study the performance of the ETM and compare

it to other unsupervised document models. A good

document model should provide both coherent

patterns of language and an accurate distribution

of words, so we measure performance in terms

of both predictive accuracy and topic interpret-

ability. We measure accuracy with log-likelihood

on a document completion task (Rosen-Zvi et al.,

2004; Wallach et al., 2009b); we measure topic

interpretability as a blend of topic coherence and

diversity. We find that, of the interpretable models,

the ETM is the one that provides better predictions

and topics.

In a separate analysis (Section 6.1), we study

the robustness of each method in the presence
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Dataset Minimum DF #Tokens Train #Tokens Valid #Tokens Test Vocabulary

20Newsgroups

100 604.9 K 5,998 399.6 K 3,102
30 778.0 K 7,231 512.5 K 8,496
10 880.3 K 6,769 578.8 K 18,625
5 922.3 K 8,494 605.9 K 29,461
2 966.3 K 8,600 622.9 K 52,258

New York Times

5,000 226.9 M 13.4 M 26.8 M 9,842
200 270.1 M 15.9 M 31.8 M 55,627
100 272.3 M 16.0 M 32.1 M 74,095
30 274.8 M 16.1 M 32.3 M 124,725
10 276.0 M 16.1 M 32.5 M 212,237

Table 1: Statistics of the different corpora studied. DF denotes document frequency, K denotes

a thousand, and M denotes a million.

of stop words. Standard topic models fail in

this regime—because stop words appear in many

documents, every learned topic includes some

stop words, leading to poor topic interpretability.

In contrast, the ETM is able to use the information

from the word embeddings to provide interpretable

topics.

Corpora. We study the 20Newsgroups corpus

and the New York Times corpus; the statistics of

both corpora are summarized in Table 1.

The 20Newsgroup corpus is a collection of

newsgroup posts. We preprocess the corpus

by filtering stop words, words with document

frequency above 70%, and tokenizing. To form

the vocabulary, we keep all words that appear in

more than a certain number of documents, and we

vary the threshold from 100 (a smaller vocabulary,

whereV = 3,102) to 2 (a larger vocabulary, where

V = 52,258). After preprocessing, we further

remove one-word documents from the validation

and test sets. We split the corpus into a training

set of 11,260 documents, a test set of 7,532
documents, and a validation set of 100 documents.

The New York Times corpus is a larger collec-

tion of news articles. It contains more than 1.8

million articles, spanning the years 1987–2007.

We follow the same preprocessing steps as for

20Newsgroups. We form versions of this corpus

with vocabularies ranging from V = 9,842 to

V = 212,237. After preprocessing, we use 85%
of the documents for training, 10% for testing, and

5% for validation.

Models. We compare the performance of the

ETM against several document models. We briefly

describe each below.

We consider latent Dirichlet allocation (LDA)

(Blei et al., 2003), a standard topic model that

posits Dirichlet priors for the topics βk and topic

proportions θd. (We set the prior hyperparameters

to 1.) It is a conditionally conjugate model,

amenable to variational inference with coordinate

ascent. We consider LDA because it is the most

commonly used topic model, and it has a similar

generative process as the ETM.

We also consider the neural variational docu-

ment model (NVDM) (Miao et al., 2016). The NVDM

is a multinomial factor model of documents; it

posits the likelihood wdn ∼ softmax (β⊤θd),
where the K-dimensional vector θd ∼ N (0, IK)
is a per-document variable, and β is a real-

valued matrix of size K × V . The NVDM uses

a per-document real-valued latent vector θd
to average over the embedding matrixβ in the logit

space. Like the ETM, the NVDM uses amortized

variational inference to jointly learn the approxi-

mate posterior over the document representation

θd and the model parameter β.

NVDM is not interpretable as a topic model;

its latent variables are unconstrained. We study

a more interpretable variant of the NVDM which

constrains θd to lie in the simplex, replacing its

Gaussian prior with a logistic normal (Aitchison

and Shen, 1980). (This can be thought of as a

semi-nonnegative matrix factorization.) We call

this document model ∆-NVDM.
We also consider PRODLDA (Srivastava and

Sutton, 2017). It posits the likelihood wdn ∼
softmax(β⊤θd) where the topic proportions θd are

from the simplex. Contrary to LDA, the topic-matrix

β s unconstrained.

PRODLDA shares the generative model with

∆-NVDM but it is fit differently. PRODLDA uses
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Skip-gram embeddings ETM embeddings

love family woman politics love family woman politics

loved families man political joy children girl political

passion grandparents girl religion loves son boy politician

loves mother boy politicking loved mother mother ideology

affection friends teenager ideology passion father daughter speeches

adore relatives person partisanship wonderful wife pregnant ideological

NVDM embeddings ∆-NVDM embeddings

love family woman politics love family woman politics

loves sons girl political miss home life political

passion life women politician young father marriage faith

wonderful brother man politicians born son women marriage

joy son pregnant politically dream day read politicians

beautiful lived boyfriend democratic younger mrs young election

PRODLDA embeddings

love family woman politics

loves husband girl political

affection wife boyfriend politician

sentimental daughters boy liberal

dreams sister teenager politicians

laugh friends ager ideological

Table 2: Word embeddings learned by all document models (and skip-gram) on the New York Times

with vocabulary size 118,363.

amortized variational inference with batch

normalization (Ioffe and Szegedy, 2015) and

dropout (Srivastava et al., 2014).

Finally, we consider a document model that

combines PRODLDA with pre-fitted word embed-

dings ρ, by using the likelihood wdn ∼ softmax

(ρ⊤θd). We call this document model PRODLDA-

PWE, where PWE stands for Pre-fitted Word

Embeddings.

We study two variants of the ETM, one where

the word embeddings are pre-fitted and one where

they are learned jointly with the rest of the

parameters. The variant with pre-fitted embed-

dings is called the ETM-PWE.

For PRODLDA-PWE and the ETM-PWE, we first

obtain the word embeddings (Mikolov et al.,

2013b) by training skip-gram on each corpus. (We

reuse the same embeddings across the experiments

with varying vocabulary sizes.)

Algorithm Settings. Given a corpus, each

model comes with an approximate posterior

inference problem. We use variational inference

for all of the models and employ SVI (Hoffman

et al., 2013) to speed up the optimization. The

minibatch size is 1,000 documents. For LDA, we

set the learning rate as suggested by Hoffman et al.

(2013): the delay is 10 and the forgetting factor is

0.85.

Within SVI, LDA enjoys coordinate ascent

variational updates; we use five inner steps to

optimize the local variables. For the other models,

we use amortized inference over the local variables

θd. We use 3-layer inference networks and we

set the local learning rate to 0.002. We use ℓ2
regularization on the variational parameters (the

weight decay parameter is 1.2× 10−6).

Qualitative Results. We first examine the

embeddings. The ETM, NVDM, ∆-NVDM, and

PRODLDA all learn word embeddings. We illustrate

them by fixing a set of terms and showing

the closest words in the embedding space (as

measured by cosine distance). For comparison,

we also illustrate word embeddings learned by the

skip-gram model.

Table 2 illustrates the embeddings of the differ-

ent models. All the methods provide interpretable

embeddings—words with related meanings are

close to each other. The ETM, the NVDM, and

PRODLDA learn embeddings that are similar to those

from the skip-gram. The embeddings of ∆-NVDM

are different; the simplex constraint on the local

variable and the inference procedure change the

nature of the embeddings.
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LDA

time year officials mr city percent state

day million public president building million republican

back money department bush street company party

good pay report white park year bill

long tax state clinton house billion mr

NVDM

scholars japan gansler spratt assn ridership pryce

gingrich tokyo wellstone tabitha assoc mtv mickens

funds pacific mccain mccorkle qtr straphangers mckechnie

institutions europe shalikashvili cheetos yr freierman mfume

endowment zealand coached vols nyse riders filkins

∆-NVDM

concerto servings nato innings treas patients democrats

solos tablespoons soviet scored yr doctors republicans

sonata tablespoon iraqi inning qtr medicare republican

melodies preheat gorbachev shutout outst dr senate

soloist minced arab scoreless telerate physicians dole

PRODLDA

temptation grasp electron played amato briefly giant

repressed unruly nuclei lou model precious boarding

drowsy choke macal greg delaware serving bundle

addiction drowsy trained bobby morita set distance

conquering drift mediaone steve dual virgin foray

PRODLDA-PWE

mercies cheesecloth scoreless chapels distinguishable floured gillers

lockbox overcook floured magnolias cocktails impartiality lacerated

pharm strainer hitless asea punishable knead polshek

shims kirberger asterisk bogeyed checkpoints refrigerate decimated

cp browned knead birdie disobeying tablespoons inhuman

ETM-PWE

music republican yankees game wine court company

dance bush game points restaurant judge million

songs campaign baseball season food case stock

opera senator season team dishes justice shares

concert democrats mets play restaurants trial billion

ETM

game music united wine company yankees art

team mr israel food stock game museum

season dance government sauce million baseball show

coach opera israeli minutes companies mets work

play band mr restaurant billion season artist

Table 3: Top five words of seven most used topics from different document models on 1.8M

documents of the New York Times corpus with vocabulary size 212,237 and K = 300 topics.

We next look at the learned topics. Table 3 dis-

plays the seven most used topics for all methods,

as given by the average of the topic proportions

θd. LDA and both variants of the ETM provide

interpretable topics. The rest of the models do

not provide interpretable topics; their matrices β

are unconstrained and thus are not interpretable

as distributions over the vocabulary that mix to
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Figure 4: Interpretability as measured by the exponentiated topic quality (the higher the better) vs. predictive

performance as measured by log-likelihood on document completion (the higher the better) on the 20NewsGroup

dataset. Both interpretability and predictive power metrics are normalized by subtracting the mean and dividing

by the standard deviation across models. Better models are on the top right corner. Overall, the ETM is a better

topic model.

form documents. ∆-NVDM also suffers from this

effect although it is less apparent (see, e.g., the

fifth listed topic for ∆-NVDM).

Quantitative Results. We next study the

models quantitatively. We measure the quality

of the topics and the predictive performance of

the model. We found that among the models with

interpretable topics, the ETM provides the best

predictions.

We measure topic quality by blending two

metrics: topic coherence and topic diversity.

Topic coherence is a quantitative measure of the

interpretability of a topic (Mimno et al., 2011). It is

the average pointwise mutual information of two

words drawn randomly from the same document,

TC =
1

K

K
∑

k=1

1

45

10
∑

i=1

10
∑

j=i+1

f(w
(k)
i , w

(k)
j ),

where {w
(k)
1 , . . . , w

(k)
10 } denotes the top-10 most

likely words in topic k. We choose f(·, ·) as

the normalized pointwise mutual information

(Bouma, 2009; Lau et al., 2014),

f(wi, wj) =
log

P (wi,wj)

P (wi)P (wj)

− logP (wi, wj)
.

Here,P (wi, wj) is the probability of wordswi and

wj co-occurring in a document and P (wi) is the

marginal probability of word wi. We approximate

these probabilities with empirical counts.

The idea behind topic coherence is that a

coherent topic will display words that tend to

occur in the same documents. In other words,

the most likely words in a coherent topic should

have high mutual information. Document models

with higher topic coherence are more interpretable

topic models.

We combine coherence with a second metric,

topic diversity. We define topic diversity to be the

percentage of unique words in the top 25 words of

all topics. Diversity close to 0 indicates redundant

topics; diversity close to 1 indicates more varied

topics.

We define the overall quality of a model’s

topics as the product of its topic diversity and

topic coherence.

A good topic model also provides a good

distribution of language. To measure predictive

power, we calculate log likelihood on a document

completion task (Rosen-Zvi et al., 2004; Wallach

et al., 2009b). We divide each test document into

two sets of words. The first half is observed: it

induces a distribution over topics which, in turn,

induces a distribution over the next words in the

document. We then evaluate the second half under

this distribution. A good document model should

provide high log-likelihood on the second half.

(For all methods, we approximate the likelihood

by setting θd to the variational mean.)

We study both corpora and with different vo-

cabularies. Figures 4 and 5 show interpretability

of the topics as a function of predictive power. (To

ease visualization, we exponentiate topic quality

and normalize all metrics by subtracting the mean

and dividing by the standard deviation across
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Figure 5: Interpretability as measured by the exponentiated topic quality (the higher the better) vs. predictive

performance as measured by log-likelihood on document completion (the higher the better) on the New York Times

dataset. Both interpretability and predictive power metrics are normalized by subtracting the mean and dividing

by the standard deviation across models. Better models are on the top right corner. Overall, the ETM is a better

topic model.

methods.) The best models are on the upper right

corner.

LDA predicts worst in almost all settings. On

the 20NewsGroups, the NVDM’s predictions are in

general better than LDA but worse than for the other

methods; on the New York Times, the NVDM gives

the best predictions. However, topic quality for the

NVDM is far below the other methods. (It does not

provide ‘‘topics’’, so we assess the interpretability

of its β matrix.) In prediction, both versions of the

ETM are at least as good as the simplex-constrained

∆-NVDM. More importantly, both versions of the

ETM outperform the PRODLDA-PWE; signaling the

ETM provides a better way of integrating word

embeddings into a topic model.

These figures show that, of the interpretable

models, the ETM provides the best predictive

performance while keeping interpretable topics.

It is robust to large vocabularies.

6.1 Stop Words

We now study a version of the New York Times

corpus that includes all stop words. We remove

infrequent words to form a vocabulary of size

10,283. Our goal is to show that the ETM-PWE

provides interpretable topics even in the presence

of stop words, another regime where topic models

typically fail. In particular, given that stop words

appear in many documents, traditional topic

models learn topics that contain stop words,

regardless of the actual semantics of the topic.

This leads to poor topic interpretability. There are

extensions of topic models specifically designed

TC TD Quality

LDA 0.13 0.14 0.0182

∆-NVDM 0.17 0.11 0.0187

PRODLDA-PWE 0.03 0.53 0.0159

ETM-PWE 0.18 0.22 0.0396

Table 4: Topic quality on the New York

Times data in the presence of stop words.

Topic quality here is given by the product

of topic coherence and topic diversity

(higher is better). The ETM-PWE is robust

to stop words; it achieves similar topic

coherence than when there are no stop

words.

to cope with stop words (Griffiths et al., 2004;

Chemudugunta et al., 2006; Wallach et al., 2009a);

our goal here is not to establish comparisons with

these methods but to show the performance of the

ETM-PWE in the presence of stop words.

We fit LDA, the ∆-NVDM, the PRODLDA-PWE,

and the ETM-PWE with K = 300 topics. (We do

not report the NVDM because it does not provide

interpretable topics.) Table 4 shows the topic

quality (the product of topic coherence and topic

diversity). Overall, the ETM-PWE gives the best

performance in terms of topic quality.

While the ETM has a few ‘‘stop topics’’ that

are specific for stop words (see, e.g., Figure 6),

∆-NVDM and LDA have stop words in almost every

topic. (The topics are not displayed here for space

constraints.) The reason is that stop words co-

occur in the same documents as every other word;
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Figure 6: A topic containing stop words found by the

ETM-PWE on The New York Times. The ETM is robust

even in the presence of stop words.

therefore traditional topic models have difficulties

telling apart content words and stop words. The

ETM-PWE recognizes the location of stop words

in the embedding space; its sets them off on their

own topic.

7 Conclusion

We developed the ETM, a generative model of doc-

uments that marries LDA with word embeddings.

The ETM assumes that topics and words live in

the same embedding space, and that words are

generated from a categorical distribution whose

natural parameter is the inner product of the word

embeddings and the embedding of the assigned

topic.

The ETM learns interpretable word embeddings

and topics, even in corpora with large vocabular-

ies. We studied the performance of the ETM against

several document models. The ETM learns both

coherent patterns of language and an accurate

distribution of words.
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