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Abstract
Filler-gap dependencies are among the most
challenging syntactic constructions for com-
putational models at large. Recently, Wilcox
et al. (2018) and Wilcox et al. (2019b) pro-
vide some evidence suggesting that large-scale
general-purpose LSTM RNNs have learned
such long-distance filler-gap dependencies. In
the present work we provide evidence that
such models learn filler-gap dependencies only
very imperfectly, despite being trained on mas-
sive amounts of data. Finally, we compare the
LSTM RNN models with more modern state-
of-the-art Transformer models, and find that
these have poor-to-mixed degrees of success,
despite their sheer size and low perplexity.

1 Introduction

A flurry of recent work has shown that mod-
ern large-scale and general-purpose Long Short-
Term Memory (LSTM) Recurrent Neural Net-
works (RNN) achieve impressive results as com-
putational psycholinguistic models of human lan-
guage processing, such as Linzen et al. (2016),
Gulordava et al. (2018), Linzen and Leonard
(2018), van Schijndel and Linzen (2018), Futrell
et al. (2018), and Wilcox et al. (2019a)), to list
only a few. Some of this work has focused on
long-distance dependencies like (1), involving a
linkage between a wh-phrase and a gap. This is
one of the phenomena that Markovian language
models have always been inherently bad at.

(1) I know whoi the gardener reported the butler
said the hostess believed her aunt suspected
you delivered a challenge to i at the party.
(Wilcox et al., 2019b)

However, such long-distance dependencies
are accompanied by morphosyntactic constraints
which have not previously been tested, in particu-
lar, agreement constraints like those in (2).

(2) a. It was the lawyer who I think you said
was/*were upset.

b. It was the lawyers who I think you said
*was/were upset.

c. They wondered which lawyer I think you
said was/*were upset.

d. They wondered which lawyers I think you
said *was/were upset.

There are two different dependencies at work in
the these examples. One is between the filler
phrase who and the gap (i.e. the missing subject of
the embedded verb) and another between the head
noun lawyer(s) and the wh-phrase adjacent to it.
It is not possible to claim that LSTM RNN models
have learned English filler-gap dependencies with-
out showing that the associated morphosyntactic
constraints have also been learned. At the time of
this writing, LSTM RNNs are no longer the state-
of-the-art English language models. Transformer
(attention-based) models have obtained lower test-
time perplexity. In the present work we focus on
whether any of these neural language models have
truly learned long-distance agreement (filler-gap)
dependencies like those in (1) and (2).

The structure of the paper is as follows. First we
show that the same general-purpose LSTM RNN
models that Wilcox et al. (2019b) have claimed
to successfully cope with filler-gap dependencies
have not learned the morphosyntactic constraints
associated to such constructions, illustrated in (2).
Next, we compare these results with those of three
more recent transformer-based architectures that
have obtained better perplexity results, namely
Transformer-XL (Dai et al., 2019), BERT (Devlin
et al., 2018), XLNet (Yang et al., 2019), and Ope-
nAI GPT-2 (Radford et al., 2019).1

1All our materials, code, and analysis are available at
https://github.com/RuiPChaves/Transformers-FillerGap-
dependencies.

https://github.com/RuiPChaves/Transformers-FillerGap-dependencies
https://github.com/RuiPChaves/Transformers-FillerGap-dependencies


We acknowledge that these models are not di-
rectly comparable, and that the present results
should be taken with some caution because the
architectures are different (transformer vs. recur-
rent), as are the training objectives (masked lan-
guage modeling vs. non-masked language mod-
eling), evaluation methods (use of sentences pre-
fix + suffix vs. only prefix for language models),
and the training datasets. Nonetheless, we argue
that such a preliminary comparison is useful in
that is sheds some light on how well extremely
large neural models of English cope with perhaps
of the most historically vexing syntactic phenom-
ena in computational linguistics. As we shall see,
there is a wide range of variation in how accurately
the models cope with filler-gap dependencies, with
LSTM RNNs fairing among the worse. Our re-
sults are consistent with those reported by Gold-
berg (2019), which suggest that BERT is better
than LSTM RNNs at English subject-verb agree-
ment (Marvin and Linzen, 2018).

2 LSTM RNNs

Wilcox et al. (2019b) found evidence suggesting
that LSTM RNNs can maintain filler-gap depen-
dencies across up to at least four clausal bound-
aries like the one in (1). Two models were
used for these experiments. One was Gulordava
et al. (2018), henceforth the Gulordava model,
which was trained on 90 million tokens of En-
glish Wikipedia, and has two hidden layers of 650
units each. The second model was Jozefowicz
et al. (2016), henceforth the Google model, which
was trained on the One Billion Word Benchmark
(Chelba et al., 2013), has two hidden layers with
8196 units each, and uses the output of a character-
level Convolutional Neural Network as input to
the LSTM. One of the trademark properties of
filler-gap dependencies is that the morphosyntac-
tic properties imposed on the gap site are pre-
served by the filler phrase, as already illustrated in
(2). Here, the plural noun must be matched with
the plural verb form and the singular noun with the
singular verb. In what follows we examine how
well these dependencies are learned by the Gulor-
dava and Google models.

2.1 Experiment 1: agreement in clefts

Following basically the same experimental ap-
proach as Wilcox et al. (2018), we created 20 cleft
items using a 2⇥2⇥4 factorial design, for a total
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Figure 1: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (LSTM RNNs)

of 320 sentences. All the conditions for an item
are illustrated in (3). Like Wilcox et al., we ex-
tracted the softmax activation of the critical verbs
were/was, given the prefix sentence, using basi-
cally the same code as Wilcox et al. (2018), made
available at https://osf.io/zpfxm/.

(3) a. It was the lawyer(s) who I think was/were
... [Nsg/pl , LEVEL1, Vsg/pl]

b. It was the lawyer(s) who I think you said
was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. It was the lawyer(s) who I think you said
you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. It was the lawyer(s) who people believe I
think you said you thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

Finally, we converted the softmax values into sur-
prisal (i.e. the negative log probability), following
Wilcox et al. (2019b). See see Hale (2001) and
Levy (2008) for more discussion.

The results were rather weak, as shown by Fig-
ure 1. Had the RNNs succeeded at this task, then
the conditions where the noun and verb agree (i.e.
Npl-Vpl and Nsg-Vsg) would be lower in surprisal
than the conditions where the agreement is mis-
matched (i.e. Npl-Vsg and Nsg-Vpl). This was
generally not the case in either model. Finally, in
the larger Google model surprisal increased with
the level of embedding, so that the correct verb
form is more unexpected in level 4 than the incor-
rect verb forms in levels 1 and 2.

https://osf.io/zpfxm/
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Figure 2: Surprisal of the gap-agreeing verb in ‘which’
interrogatives across embedding levels (LSTM RNNs)

There is a general increase of surprisal as
clausal embedding increases, which in our view
may simply reflect the fact that multiple occur-
rences of embedded declarative clauses under
verbs of indirect discourse are rare. Overall, the
results suggest that these models have not learned
the morphosyntax of filler-gap dependencies.

2.2 Experiment 2: agreement in indirect
interrogatives

In order to assess if these results are specific to the
cleft construction, we converted the 20 items into
embedded interrogatives, effectively inverting the
order of the wh-phrase and the agreeing nominal
head, as (4) illustrates.

(4) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The outcome was the same, as Figure 2 illus-
trates, suggesting that our results are robust and
not specific to the type of filler-gap construction
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Figure 3: Surprisal of the gap-agreeing verb in ‘it’
clefts across embedding levels (Transformer-XL)

chosen. We conclude that the Gulordava and
Google models have not truly learned the mor-
phosyntax of filler-gap dependencies. In what fol-
lows we examine how more recent transformer-
based models fair at the same tasks.

3 Transformer-XL

Transformer-XL (Dai et al., 2019) has 24 mil-
lion parameters, an average attention span of
640 tokens, and 16 10-word transformer layers.
Transformer-XL is supposed to learn dependen-
cies that are about 80% longer than those learned
by RNNs but as Figure 3 shows, it did only
marginally better than the Google and the Gulor-
dava models when processing the same agreement
in clefts dataset from Experiment 1.

In fact, only in embedding level 1 was the sur-
prisal of agreeing N-V pairs statistically lower
than their non-agreeing counterparts (for Npl-Vpl
vs. Nsg-Vpl we have t = -2.39, p = 0.021, and
for Nsg-Vsg vs. Npl-Vsg we have t = -1.83, p =
0.068). For all other levels of embedding there
was no statistical difference in surprisal (p > 0.4),
except for level 3 where Npl-Vpl vs. Nsg-Vpl (t =
-2.13, p = 0.039). The model does equally bad
on the indirect interrogatives dataset from Experi-
ment 2, as Figure 4 illustrates.

3.1 Experiment 3: Filler-gap surprisal in
subject-inverted interrogatives

For completeness, we also tested Transformer-
XL’s ability to maintain a filler-gap dependency
without the interacting factor of subject-verb
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Figure 4: Surprisal of gap-agreeing verb in ‘which’ in-
terrogatives across embedding levels (Transformer-XL)

agreement. We created 20 items, in a 2 ⇥ 2 ⇥ 4
design, for a total of 320 sentences, as illustrated
in (5). We extracted the softmax value of the
masked post-gap region item (below, the preposi-
tion at). This experiment serves as the counterpart
of the experiments in Wilcox et al. (2019b) show-
ing LSTM RNNs can maintain filler-gap depen-
dencies across up to at least four clausal bound-
aries (diacritic ‘*’ not included in the input).

(5) a.*What did we talk about it at the party?
[WH-NOGAP, LEVEL1]

b. What did we talk about at the party?
[WH-GAP, LEVEL1]

c. Did we talk about it at the party?
[NOWH-NOGAP, LEVEL1]

d.*Did we talk about at the party?
[NOWH-GAP, LEVEL1]

The results confirm that Transformer-XL has a
poor representation for filler gap dependencies, as
seen in Figure 5. Already at one level of embed-
ding the surprisal of the (ungrammatical) nowh-
gap condition is lower than the grammatical nh-
gap counterpart, whereas it should be the other
way around. In levels 2 through 4 there is no sta-
tistical difference between any of the four condi-
tions.

3.2 Experiment 4: Filler-gap surprisal in
uninverted indirect interrogatives

In order to determine if the results of Experi-
ment 3 scale to other filler-gap constructions, we
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Figure 5: Surprisal of the post-gap region in inverted
interrogatives at embedding level 1 (Transformer-XL)

constructed non-inversion counterparts of the 20
items, illustrated in (6). As before, we extracted
the softmax activation of the critical verbs at the
end of the item, after the sentence prefix is pro-
cessed. The results were similar in that in no level
of embedding the correct surprisal pattern was ob-
served. See the materials for details.

(6) a. People wondered what we talked about it
at ... [WH-NOGAP, LEVEL1]

b. People wondered what we talked about
at ... [WH-GAP, LEVEL1]

c. People wondered if we talked about it at
... [NOWH-NOGAP, LEVEL1]

d. People wondered if we talked about at
... [NOWH-GAP, LEVEL1]

We conclude that the English Transformer-XL
model does much worse than the English LSTM
RNNs in coping with filler-gap dependencies.

4 BERT

Google’s Bidirectional Encoder Representations
from Transformers (BERT) is a transformer-based
model that learns bidirectional encoder word rep-
resentations via a masked language model training
objective, using 340 million parameters, 768 hid-
den layers, 24 transformer blocks, and 1020 word
context windows.

Using the same agreement in filler-gap depen-
dencies dataset used in Experiment 1, we probe
whether BERT assigns relative probability to plu-
ral and singular verb forms in such a way that this
consistent with the agreement information of the
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Figure 6: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (BERT)

nominal antecedent at the top of the filler-gap de-
pendency. Like Goldberg (2019) and Wolf (2019),
we masked the verb and then extracted the softmax
values for both was and were, as shown in (7).

(7) a. It was the lawyer(s) who I think [MASK]
upset. [Nsg/pl , LEVEL1]

b. It was the lawyer(s) who I think you said
[MASK] upset. [Nsg/pl , LEVEL2]

c. It was the lawyer(s) who I think you
said you thought [MASK] upset. [Nsg/pl ,
LEVEL3]

d. It was the lawyer(s) who people believe I
think you said you thought [MASK] up-
set. [Nsg/pl , LEVEL4]

The results are much better than those obtained by
LSTM RNNs on the same items, as Figure 6 illus-
trates. The surprisal of the agreeing conditions is
systematically lower than that of the non-agreeing
conditions in all embeddings (all ps < 0.0001).

In the next experiment, the 20 items were con-
verted the which interrogative counterparts, analo-
gously to Experiment 2 above, where the agreeing
verb were masked, as seen in (8).

(8) a. Someone wondered which lawyer(s) I
think [MASK] upset. [Nsg/pl , LEVEL1]

b. Someone wondered which lawyer(s) I
think you said [MASK] upset. [Nsg/pl ,
LEVEL2]

c. Someone wondered which lawyer(s) I
think you said you thought [MASK] up-
set. [Nsg/pl , LEVEL3]
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Figure 7: Surprisal of the gap-agreeing verb in ‘which’
questions across embedding levels (BERT)

d. Someone wondered which lawyer(s)
who people believe I think you said
you thought [MASK] upset. [Nsg/pl ,
LEVEL4]

The results are in Figure 7, and are only weak in
embedding level 4, where neither condition is sta-
tistically different in the V-sg (t = 0.91, p = 0.36)
nor in the V-pl (t = 1.93, p = 0.06) conditions.

If BERT’s ability to maintain filler-gap depen-
dencies in memory is too superficial and eager,
then it may ignore the presence of a local subject,
and not recognize that a subject gap is grammatri-
cally impossible, as in (9).

(9) a.*It was the boys who I think she/he were
lost [Npl , Vpl , LEVEL1]

b.*It was the boy who I think we/they was
lost. [Nsg , Vsg , LEVEL1]

For example, if the model attempts to link boys

to the copula verb in (9a) despite the local sub-
ject pronoun, then the surprisal of were should be
higher than that of was. Similarly, if the model
attempts to link boy to the copula verb in (9b) de-
spite the local subject pronoun, then the surprisal
of was should be lower than that of were. The
presence of the pronoun makes the subject gap im-
possible, and BERT should be sensisitive to that.

We therefore inserted a pronoun in the gap site
of the 20 items used in the experiment immedi-
ately above, and made sure the verb agreed with
the fronted phrase, not the pronoun. What we
found was a complete reversal of the surprisal val-
ues. As Figure 8 shows, BERT suspends the filler-
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Figure 8: Surprisal of the (dis)agreeing verb in ‘it’
clefts across 4 levels of embedding (BERT)

gap linkages in the copula of examples like (9).
We conclude that BERTs processing of filler-gap
dependencies is not trivially shallow.

As in Experiments 3 and 4 above, we also ex-
amined BERT’s ability to maintain a filler-gap de-
pendency without the interacting factor of subject-
verb agreement. Using the same items as in §3.1
and §3.2, illustrated in (10), we extracted the soft-
max value of the masked post-gap region item (be-
low, the preposition at).

(10) a.*What did we talk about it at the party?
[WH-NOGAP, LEVEL1]

b. What did we talk about at the party?
[WH-GAP, LEVEL1]

c. Did we talk about it at the party?
[NOWH-NOGAP, LEVEL1]

d.*Did we talk about at the party?
[NOWH-GAP, LEVEL1]

As Figure 9 shows, BERT is able to repre-
sent the filler gap dependency up to four levels
of clausal embedding. Surprisal is highest when
there is a gap but no wh-phrase, and lower when
(i) there is no gap and no wh-phrase and (ii) when
there is a gap and a wh-phrase. The low sur-
prisal obtained for the case where there is no gap
and wh-phrase is more difficult to interpret, since
the model’s input has access to information about
clausal boundaries. In that sense, the surprisal is
lower than one would expect.

BERT faired equally well with the uninverted
indirect interrogative counterparts of (5), shown in

(11), which were identical to the items used in Ex-
periment 4 above; see §3.2.

(11) a.*People wondered what we talked about it
at the party. [WH-NOGAP, LEVEL1]

b. People wondered what we talked about
at the party. [WH-GAP, LEVEL1]

c. People wondered if we talked about it at
the party. [NOWH-NOGAP, LEVEL1]

d.*People wondered if we talked about at
the party. [NOWH-GAP, LEVEL1]

BERT’s masked language objective has an ad-
vantage over RNN models in that it has access to
input after the masked critical item, e.g. the string
the party in (5). We therefore ran a 2 ⇥ 2 ⇥ 4
variant of Experiment 6 in which the masked crit-
ical items were adverbs like yesterday, repeatedly,
again, and then, in sentence-final position:

(12) a.* What did we talk about it yesterday?
[WH-NOGAP, LEVEL1]

b. What did we talk about yesterday?
[WH-GAP, LEVEL1]

c. Did we talk about it yesterday?
[NOWH-NOGAP, LEVEL1]

d.* Did we talk about yesterday?
[NOWH-GAP, LEVEL1]

The results were radically different, as the sur-
prisal was essentially inverted as shown in Figure
10. This pattern remained the same in deeper em-
bedding levels, suggesting that BERT’s ability to
maintain filler-gap dependencies is brittle.

Finally, we also ran a variant of this experi-
ment where the 20 items were converted into em-
bedded interrogatives, without inversion. Again,
the masked critical items were the adverbs in
sentence-final position:

(13) a.* People wondered what we talked about it
repeatedly.
[WH-NOGAP, LEVEL 1]

b. People wondered what we talked about
repeatedly.

[WH-GAP, LEVEL 1]

c. People wondered if we talked about it re-
peatedly.
[NOWH-NOGAP, LEVEL 1]
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Figure 9: Surprisal of the post-gap region in subject-inversion interrogatives across embedding levels (BERT)
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Figure 10: Surprisal of the sentence-final adverb in
subject-inversion interrogatives, embedding 1 (BERT)

d.* People wondered if we talked about
repeatedly.

[NWH-GAP, LEVEL 1]

Now, the condition with the highest surprisal was
nwh-ngap, suggesting that the model does not ex-
pect sentence-final adverbs to follow pronouns in
the absence of a filler-gap dependency. The first
level of embedding is shown in Figure 11. BERT’s
modelling of filler-gap dependencies is better than
all other models surveyed so far but still brittle.

5 XLNet

XLNet (Yang et al., 2019) is like BERT in that
it uses a masked model training objective and
learns bidirectional contexts. Although XLNet is
claimed to achieve better results than BERT in a
number of tasks, we found that it performed worse
in the same experiments ran on BERT, failing to
provide clear evidence that filler-gap dependencies
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Figure 11: Surprisal of the sentence-final adverb in un-
inverted indirect interrogatives at embedding 1 (BERT)

are attended to. For example, XLNet did much
worse with clefts items, like those illustrated in
(8). As can be seen in Figure 12, there is a signifi-
cant overlap across subject-verb agreeing and non-
agreeing conditions. Had the model learned about
agreement in filler-gap dependencies, the surprisal
of V-pl (were) in the N-pl condition should be sig-
nificantly lower than that of V-pl in the N-sg con-
dition. Similarly, the surprisal of V-sg in the N-pl
condition should be significantly higher than that
of V-sg (was) in the N-sg condition.

Similarly poor results were found for the in-
terrogative subject-agreement items, like those in
(7), as Figure 13 indicates. As in the case of
Transformer-XL, there is little evidence that the
model attends to filler-gap dependencies at all.

6 GPT-2

Unlike Google’s BERT, the OpenAI GPT-2 model
uses the same training objective as LSTM RNNs.
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Figure 12: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (XL-Net)

It is therefore possible to simply take the soft-
max activation of the word of interest after the
sentence is processed. Preliminary evaluations on
subject-verb agreement data by Wolf (2019) indi-
cate that an earlier version of GPT-2 was worse
than BERT on the Linzen et al. (2016) dataset but
better in the more complex Marvin and Linzen
(2018) dataset. In what follows, we report our
findings for the more recent 345 million parameter
version of GPT-2, hf. GPT-2 medium.

We begin with the 20 cleft items from Experi-
ment 1, illustrated in (3), and repeated in (14). As
before, we extracted the softmax activation of the
words was and were across all conditions and con-
verted the values to surprisal.

(14) a. It was the lawyer(s) who I think was/were
... [Nsg/pl , LEVEL1, Vsg/pl]

b. It was the lawyer(s) who I think you said
was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. It was the lawyer(s) who I think you said
you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. It was the lawyer(s) who people believe I
think you said you thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The GPT-2 medium results are shown in Figure
14, and are clearly superior to BERT’s. For all
levels of embedding, the agreeing conditions re-
ceived statistically lower surprisal than that of the
non-agreeing conditions. Notice how the differ-
ential across the conditions tends to diminish with
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Figure 13: Surprisal of the gap-agreeing verb in
‘which’ questions across embedding levels (XLNet)
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Figure 14: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (GPT-2)

deeper clausal embeddings, suggesting that the de-
pendency is lost in deeper embeddings.

The dataset from Experiment 2 – consisting of
which embedded interrogative like those in (4), re-
peated here as (15) – yielded virtually the same
results, as shown in Figure 15. This suggests that
GPT-2 small is cross-constructionally robust up
four levels of clausal embedding.

(15) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
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Figure 15: Surprisal of the gap-agreeing verb in
‘which’ questions across levels of embedding (GPT-2)

[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

For completeness, we also examined GPT-2’s
ability to maintain a filler-gap dependency with-
out the interacting factor of subject-verb agree-
ment in both clefts and interrogatives, analogously
to what was done in Experiments 3 and 4. The
same items were used, and as in the LSTM RNN
and Transformer-XL cases we extracted the soft-
max activation of the word at the end of the item,
after the prefix string is processed.

As Figure 16 shows, GPT-2 medium performed
moderately well for the 20 cleft items (same data
as Experiment 3), though the results were not as
strong as BERT’s. One major difference is that
the surprisal of the wh-gap condition was system-
atically higher than that of the nwh-ngap condi-
tion. Ideally, the two should overlap. The rela-
tively high surprisal of the wh-ngap condition is
arguably due to the model maintaining expecta-
tions that the gap is further downstream in the sen-
tence. Still, the results overall suggest that the
filler-gap dependency is attended do.

The subject inversion counterpart of the 20
items (same data as Experiment 4) led to results
closer to BERTs, whereby the surprisal of the wh-
gap condition overlapped with that of nwh-ngap
condition (all p > 0.3), as seen in Figure 17.
In both of these experiments, the results were the
same in subsequent embeddings.
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Figure 16: Surprisal of the post-gap region in unin-
verted indirect interrogatives in embedding 1 (GPT-2)
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Figure 17: Surprisal of the post-gap region in inverted
interrogatives across in embedding 1 (GPT-2)

7 Discussion

Filler-gap dependencies still pose challenges for
general-purpose large-scale state-of-the-art neural
architectures. We show LSTM RNNs fair very
poorly, despite the results of Wilcox et al. (2018)
and Wilcox et al. (2019b). More modern models
like Transformer-XL and XLNet do even worse.

However, BERT and GPT-2 perform rather
well, although not without some mixed results.
For example, the performance differs significantly
across different kinds of filler-gap dependency,
which suggests that the models are somewhat brit-
tle even though they are extremely large, and
trained on enormous amounts of data.
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