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Foreword

The 34th Pacific Asia Conference on Language, Information and Computation (PACLIC 34) is organized
by the VNU University of Science, October 24-26, 2020. This edition of the PACLIC series of confer-
ences, as its long tradition, also emphasizes the synergy of theoretical analysis and processing of natural
language, aiming to enhance the interaction between researchers working in different fields of language
study in the Asia-Pacific region as well as around the world.

For the first time in the history of PACLIC series organization, the conference is organized totally on-
line due to the COVID-19 pandemic. We received 112 submissions, out of which 40 were accepted for
oral presentations and 22 for poster presentations. The acceptance rate for oral presentations and poster
presentations are 36% and 19% respectively. In addition to oral and poster presentations, the conference
highlights four keynote talks and one satellite workshop. We are grateful to Alexander Waibel, Harald
Baayen, Yunyao Li, Valia Kordoni for accepting to give a keynote talk. We also thank Jong-Bok Kim,
Valia Kordoni and Thi Minh Huyen Nguyen for organizing the Workshop on Multi-word Expression in
Asian Languages during the conference. Six papers have been accepted to present at this workshop.

PACLIC 34 would not be made possible without the support from many people, especially in the world-
wide pandemic situation. We would like to express our sincere gratitude toward program committee
members and sub-reviewers whose professional reviews allowed us to maintain the high quality standard
of PACLIC. A special thank goes to Giang Son Tran from University of Science and Technology of Hanoi
for maintaining the conference website. We are deeply indebted to the local organizing committee Phuong
Le-Hong, The Quyen Ngo and My Linh Ha, as well as student staff members from VNU University of
Science. We would also like to thank The Association for Vietnamese Language and Speech Processing
(VLSP) for their financial and scientific support for the conference.

Le Minh Nguyen
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PACLIC 34 Program Committee Chairs
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Invited Talks

Alexander Waibel: Organic Machine Learning for ‘““Intelligent” Language Interfaces

There is good news and bad news in Speech and Language Processing: The good news is: Perfor-
mance rates have dramatically improved and reach human parity (at least on matched test conditions),
and Speech, Dialog, and Translation systems have gone mainstream and have become features of modern
Tech Interfaces. The bad news, however: they are still barely usable and certainly not “intelligent”. What
explains this discrepancy? Intelligence is the ability to respond to change and new situations. Rather than
batch learning in static conditions on aggregated data and testing in matched conditions, human intelli-
gence excels by learning and adapting continuously, incrementally and interactively, from mismatched
new testing data. They must exploit multimodal information and advance with very little or no data.
Learning must be a life-long process with local, personal data. We call this “Organic Machine Learning”.

In this talk, I share observations on where the technology is and where it isn’t and discuss some early
research results with OML. We develop architectures for OML learning and apply them to Al language
tasks such as Speech Translation and Speech Dialogs with Humanoid Robots.

Harald Baayen: How long you make your words crucially depends on their meanings

Traditional approaches to human lexical processing assume that words have static form and meaning
representations in the lexicon. Measures such as word frequency, number of neighbors, and word length
are typically used to probe how word forms are processed. Measures such as number of synonyms or
number of synonym sets in WordNet have been found to be useful for gauging semantic effects on lexical
processing. Effectively, in research on the mental lexicon, measures of word form play a dominant role.
For instance, the Chinese Lexical Database (Sun et al., 2018) makes available more than 200 measures of
word form, but no measures of words’ meanings. Thus, the role of meaning in lexical processing is still
not well understood.

A radically different approach to the mental lexicon is developed within the framework of the "Discrim-
inative Lexicon" (Baayen et al., 2019). Central to this framework are simple fully connected two-layer
networks (without hidden layers) that define mappings between high-dimensional numeric representations
of word forms and high-dimensional numeric representations of word meanings (using semantic vectors
aka word embeddings). These simple networks, formally equivalent to the mathematics underlying mul-
tivariate multiple regression, turn out to be surprisingly effective for predicting a wide range of lexical
phenomena. In this presentation, the focus will be on predicting the acoustic durations with which words’
are realized in speech production. Evidence from English, Vietnamese, and Mandarin Chinese will be
presented clarifying that how well a word’s form can be learned and predicted from its meaning is the
crucial factor shaping its acoustic duration. Since learnability measures substantially out-perform mea-
sures such as word frequency as predictors of acoustic duration, the theory of the Discriminative Lexicon
appears to provide a useful and productive new framework for understanding human lexical processing.

Yunyao Li: Towards Universal Natural Language Understanding

Understanding the semantics of the natural language is a fundamental task in artificial intelligence. En-
glish semantic understanding has reached a mature state and successfully deployed in multiple IBM Al
products and services, such as Watson Natural Language Understanding and Watson Compare and Com-
ply. However, scaling existing products/services to support additional languages remain an open chal-
lenge. In this talk, we will discuss the open challenges in supporting universal natural language under-
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standing. We will share our work in addressing these challenges in the past few years to provide the same
unified semantic representation across languages. We will also showcase how such universal semantic
understanding of natural languages can enable cross-lingual information extraction in concrete domains
(e.g. insurance and compliance) and show promise towards seamless scaling existing NLP capabilities
across languages with minimal efforts.

Valia Kordoni: Figurative Language in Big Data

This talk focuses on metaphor analysis in big data, mainly in the area of education, that is, in multi-genre
and heterogeneous course material, varying from video lectures, assignments, tutorial text to social web
text posted on MOOC blogs and fora. While metaphor has been tackled in Natural Language Processing
before, the focus of that research has never simultaneously been on the analysis of multilingual, multi-
genre and heterogeneous texts for applications like Machine Translation. The work we will be presenting
in this talk has been mainly carried out in TraMOOC (Translation for Massive Open Online Courses), an
EU-funded Horizon 2020 collaborative project which has developed reliable Neural Machine Translation
for Massive Open Online Courses (MOOC:s).
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Contextual Characters with Segmentation Representation for Named Entity
Recognition in Chinese

BLOUIN Baptiste
Aix-Marseille University, IrAsia
Aix-Marseille University, LIS
ENP-China
baptiste.blouin@lis-lab.fr

Abstract

Named Entity Recognition (NER) is a typi-
cal sequence labeling task. It remains chal-
lenging for Chinese, partly because of the lack
of clear typographic word boundaries. Deci-
sions have to be made regarding the choice
of basic units which constitute the sequence
to be labeled, and their vectorized represen-
tation. Recent approaches have shown that
character-based models lack the information
about larger units (words) which is useful for
NER, while word-based models may suffer
from the propagation of word segmentation er-
rors and a higher rate of Out-of-Vocabulary
(OOV) tokens. In this paper, we propose
a new representation of sinograms (Chinese
characters) enriched with word boundary in-
formation, for which different types of em-
beddings can be built. Experiments show that
our solution outperforms other state-of-the-art
models. We also took great care to propose
a fully retrainable pipeline, which is available
at https://github.com/enp-china/CCSR-NER .
It does not rely on pretrained models and can
be trained in few days on common hardware.

1 Introduction

The present work explores the task of Named Entity
Recognition (NER) in Mandarin Chinese, specifi-
cally for cases when relying on large pre-trained
models is not an option. This can occur when
one has to process domain specific data, or in our
case!, historical texts where language is quite dif-
ferent from the language of the corpora used to
pretrain publicly available models, especially words
and characters embeddings. The models we propose
can be trained in a reasonable time (days) from a rel-
atively small amount of raw data (few hundred mil-
lions of characters) on affordable hardware (such as
a single GTX 1080 ti).

"ENP China, https://www.enpchina.eu/ (ERC No 788476)

MAGISTRY Pierre
Aix-Marseille University, IrAsia
ENP-China
pierre@magistry.fr

Chinese script does not provide a clear and fre-
quent typographic marker for word boundaries. As
a result, when addressing the case of Chinese(s)
language(s) in NER, we have to face the issue of
word segmentation. Recent models proposed in
the literature can be divided into character-based,
word-based or hybrid models, but every work had
to take a stance regarding Chinese Word Segmenta-
tion (CWS). The importance and methods for CWS
have a long history in Chinese NLP, a recent work
Li et al. (2019) makes the strong claim that the neu-
ral era of NLP is turning CWS into an irrelevant
or even harmful step in a pipeline. However Li
et al. (2019) did not provide experimental results on
the NER task and our own experiments presented
in this paper tend to show that CWS can be either
harmful or beneficial, depending on how much care
is given to consistency in segmentation and to the
way word embeddings are built and used. Our main
findings are that off-the-shelf embeddings for Man-
darin Chinese must be used carefully, but it is pos-
sible to improve on the state-of-the-art by retrain-
ing everything from raw and labeled corpora, as we
achieve 77.27 (+2.84) of f-score on OntoNotes 4
(Hovy et al., 2006) and 80.64 (+1.04) on OntoNotes
5 with a model simpler than previous state-of-the-art
which requires dependency parsing.

The second focus of our study is a comparison be-
tween supervised and unsupervised CWS. When tar-
geting a specific downstream NLP task, we ran ex-
periments to decide whether we should follow a spe-
cific segmentation guideline by the mean of super-
vised machine learning, or if consistency brought by
an unsupervised system is enough to improve on the
downstream (here NER) task. This question is cru-
cial for us to face more ancient texts, for which train-
ing data for CWS may not be available. We show
that using CWS for the task of named entity recogni-
tion allows to provide useful information compared



to using only characters.

In summary, the contributions of this paper are as

follows:

e We propose a novel method to combine CWS
information and a character-level representa-
tion which can be used by a BiLSTM-CRF
(Lample et al., 2016) model to improve on Chi-
nese NER task.

e In an attempt to explain this improvement, we
study the impact of our new representation on
the OOV issue compared to other possible rep-
resentations.

e We investigate two different strategies of super-
vised and unsupervised CWS, to assess for the
need of manually segmented training corpus.

e The experimental results demonstrate that our
proposed method significantly outperforms the
current state-of-the-art performance on five dif-
ferent Chinese NER datasets. Our proposed so-
lution does not rely on any pre-trained models,
and can be fully trained from corpora of rela-
tively small size on affordable hardware.

2 Related works

Our work relates to existing methods on multiple
tasks, including NER, segmentation and embed-
dings.

2.1 Named Entity Recognition

Our model architecture is similar to that proposed by
Huang et al. (2015), which is a bidirectional recur-
rent neural network (BiLSTMs) with a subsequent
conditional random field (CRF) decoding layer. For
this kind of architecture we have to choose a level
of tokenization for the input. It can result in word-
based models, character-based models and hybrid
models. A word-based BiILSTM-CRF model ap-
plied to Chinese NER will suffer from segmenta-
tion errors. Zhang and Yang (2018) and Liu et al.
(2019) showed that using a hybrid model to inte-
grate words in character sequence leads to better re-
sults for character-based Chinese NER. The main
difference between those models is that Zhang and
Yang (2018) uses a DAG-structured LSTM to put
every potential words that match a lexicon into their
model, this requires them to process sentences one
by one, whereas Liu et al. (2019) add word infor-

mation into the input vector. This second approach
selects a single segmentation and choose one word
for each character without ambiguity.

Another approach to integrate the word segmenta-
tion information to the model was proposed by Cao
et al. (2018) which involves using multitask on Chi-
nese segmentation to transfer this information to the
NER task.

Jie and Lu (2019) propose a more complex ap-
proach which integrates dependency parses to the
LSTM and relies on pre-trained ELMo contextual
embeddings. They obtain promising results on the
OntoNotes 5 corpus, but they do not discuss the is-
sue of word segmentation (for which they use the
gold segmentation).

2.2 Word Segmentation

Word-level information can be introduced into a
NER system in various ways, as a first step of pro-
cessing or to build an external resource such as a
word embeddings lexicon. In any case, it relies on
a Chinese Word Segmentation (CWS) system and
training corpus in the supervised case. When using
pre-trained word embeddings, one implicitly relies
on the CWS system which has been used to pre-
pare the embeddings. In our case we conduct two
kinds of experiments, the first one is based on super-
vised CWS for which we use zpar (Zhang and Clark,
2007) trained on the Chinese Treebank!. Since train-
ing data for word segmentation is not available for
all domains, languages (to adapt to other sinitic lan-
guages, such as Cantonese) or more ancient docu-
ments, and can be time consuming or costly to ob-
tain, we also run experiments based on an unsuper-
vised CWS system using eleve (Magistry and Sagot,
2012) which requires only an unannotated corpus.
We use texts from the Chinese Wikipedia to train
the segmenter, which we sampled from the corpus
prepared by Majli§ and Zabokrtsky (2012) down to
a size we think consistent to what will be available
for future adaptations of our system.

2.3 Embeddings

Vectorized word representations (Turian et al., 2010;
Mikolov et al., 2013), especially known as word
embeddings, are a key element for multiple NLP

"https://catalog.1dc.upenn.edu/LDC2013T21



tasks including NER (Collobert et al., 2011). Today
there are three distinct embedding types. Classical
word embedding (Pennington et al., 2014; Mikolov
etal., 2013), character-level features (Ma and Hovy,
2016; Zhang and Yang, 2018) and contextualized
word embeddings (Peters et al., 2017; Zhang and
Yang, 2018). Contextualized word embeddings as
been shown to be effective for improving many natu-
ral language processing tasks including NER. In our
work we use FastText (Bojanowski et al., 2016a) to
generate our non-contextual embeddings and Flair
Akbik et al. (2018) for the contextual ones. We de-
cided not to use BERT (Devlin et al., 2018) because
in our situation we will have to train new embed-
dings on multiple historical subcorpora of a limited
size, which makes BERT either unusable or not af-
fordable. It remains worth noting that we outper-
form the systems tested in (Jie and Lu, 2019) which
rely on ELMo (Peters et al., 2018) and for which
the authors report it obtained performances similar
to BERT in preliminary experiments.

3 Datasets

The larger project for which we design our models
introduces constraints in terms of corpus size and
retrainability. We limit ourselves to a reasonable
amount of data. Nevertheless, for the experiments
presented in this paper, we rely on standard datasets
of Modern Chinese, widely used in the literature to
be able to provide a comprehensive evaluation.

We limit our raw data to a random sample of 324
millions tokens (243 millions sinograms) taken from
the Wikipedia in Mandarin Chinese. We make this
sample available for the sake of reproducibility.

For word segmentation, we finally used the Chi-
nese Treebank (CTB) ! and compare it to an unsu-
pervised word segmentation.’

For Named Entities, we use the OntoNotes4 Cor-
pus (Hovy et al., 2006) and follow the de facto stan-
dard split and entity types selection from Che et al.
(2013). We also evaluate our system against the
popular MSRA (Levow, 2006) Weibo NER (Peng

and Dredze, 2015) and corpus of resume in Chinese

2we also tried to use the dataset from Peking University
(PKU) and Microsoft Research (MSR) provided for the CWS
Bakeoff 2 (http://sighan.cs.uchicago.edu/bakeoff2005/) but it
did not make any noticeable differences.

Dataset Type Train Test Dev
Sent 157k 43k 4.3k
?;SaNSZ:;S“ Char 4919k 208.1k 200.5k
Entities 13.4k 7.7k  6.95k
Sent 383k 43k 6.3k
?;Z‘iastzss Char 1212k 145k 175k
Entities 64.1k 7.6k 9.2k
Weibo Sent 1.4k 0.27k 0.27k
Char 73.8k 14.8k 14.5k
4 classes ..
Entities 1.89k  0.42k 0.39k
Resume Sent 3.8k 0.48k 0.46k
2 classes Chz%r. 124.1k 15.1k 13.9k
Entities 1.34k  0.15k 0.16k
Sent 464k 4.4k -
1;40515;2% Chz}rA 2169.9k 172.6k -
Entities 74.8k 6.2k -

Table 1: Statistics of the datasets

(Zhang and Yang, 2018). Those four datasets repre-
sent three different domains, OntoNotes and MSRA
datasets are in the news domain, the Chinese re-
sume dataset contains resumes of senior executives
from listed companies in the Chinese stock market
and the Weibo NER dataset is drawn from the so-
cial media website Sina Weibo. Another difference
between those datasets is that MSRA , Weibo and
Chinese resume did not provide word segmentation
for all the sections, unlike OntoNotes4 which has a
gold-standard segmentation for the training, devel-
opment and test sections. We also provide results
on OntoNotes5 (Weischedel et al., 2013) to compare
our system with Jie and Lu (2019). We summarize
the datasets in Table 1.

4 Methods
4.1 Contextual Character Embeddings

Contextual word embeddings have shown to im-
prove state-of-the-art on several NLP tasks. One of
our contribution is to propose two new kinds of con-
textual embeddings at the character level which can
take into account word boundary information.
Referring to Akbik et al. (2018) paper which
introduces a word-level embeddings based on a
character-level language model, we introduce a sino-
gram embedding using their character language
model (LM). Where the LM allows the text to be
treated as a sequence of characters passed to an
LSTM which at each point in the sequence is trained



to predict the next character. In our system, we
train the LM to produce characters with segmenta-
tion information. Given a sequence of characters
( Coy,C1,...,Cn ) we learn P(C;|Cy,...,C;—1), an
estimate of the predictive distribution over the next
character given past characters. We utilize the hid-
den states of a forward-backward recurrent neural
network to create contextualized character embed-
dings. The final contextual character representation
is given by :

f
v _ | Cf
o=l |

Where C’if denote the hidden state at position % of
the forward LM and C%_ ; denote the hidden state at
position T' — ¢ of the backward LM.

4.2 Contextual Character with segmentation
information Embeddings

In this work, we investigate the different ways to in-
ject the CWS information into a NER pipeline. Sev-
eral approaches propose to directly use the word-
tokens as segmented by a CWS system, they showed
that discrepancies between the output of the CWS
and the NE annotation can be harmful for NER.
Out-of-Vocabulary (OOV) tokens is another com-
mon issue for NER. In order to tackle those issues,
we designed a new kind of sinogram representa-
tion which contains the information of the chosen
word segmentation at the character level. We de-
cide to use the BIES format to represent the CWS
(as introduced in Xue and Shen (2003), originally as
an intermediary step for CWS) and we train a lan-
guage model to produce embeddings of those char-
acter with BIES tag. As we use a BI-LSTM to pro-
cess the NER task and as we stay at a character level,
our new representation allows us to reconstruct the
entire word according to the BIES tag. But in the
case of a mismatching segmentation between NE
and word, the model can still learn to use this wrong
segmentation as the right delimiter of an entity.

4.3 Model Description

We use the Flair framework (Akbik et al., 2019)
to create our model (Figure 2.1). The main differ-
ence with other existing NER models is that we use
stacked embeddings to represent our input. With this
kind of architecture we can combine our different

kinds of embeddings. Character, word information
and bichar embeddings are concatenated to repre-
sent each character. The final character representa-
tion is given by

char

)

¢ = Ti?zchar

,r.lword

r

The fact that we use character as neural units allows
us to give word information associated to a charac-
ter. In our case, the word information is given by the
contextual character with segmentation embeddings.
We denote a Chinese sentence as s = {cy, ¢, ..., Cp }.

We use an extra linear layer between the input
layer and the LSTM’s to make the stacked represen-
tation trainable. Figure 1 shows the structure of our
model. The blue part of the model shows how we
use the embeddings. The symbol € indicates the
possibility to concatenate different kinds of embed-
dings. Using this approach, we can then add other
types of embeddings related to characters. The red
part is a BILSTM-CRF.

5 Experiments

We conducted several experiments to evaluate the
effectiveness of our approach across different do-
mains. In addition, we evaluate the importance
of the segmentation for our representations by us-
ing supervised and non-supervised segmentation ap-
proaches. We also investigate on the usefulness of
the bichar representation for Chinese Natural Lan-
guage Processing. Evaluations are reported using
standard metrics of precision (P), recall (R) and F1-
score (F).

5.1 Experimental Settings

We used the datasets presented in the sec-
tion 3, including the OntoNotes gold segmenta-
tion to evaluate the distance between our super-
vised/unsupervised segmentations and whether this
distance makes a difference to our overall process.
Embeddings. We used FastText (Bojanowski
etal., 2016b) to pretrain characters and bi-characters
embeddings on a subset of 7 millions sentences from
Chinese Wikipedia dump. for both of these repre-
sentations we used a context of bi-character.
Hyper-parameter. Table 2 shows the values of
hyper-parameters for our models, which were fixed
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Figure 1: Architecture of the model and representation of our embeddings

Parameter value Parameter value

Char emb size | 50 Bichar emb size | 50
LSTM hidden | 256 LSTM layer 1

Learning rate | 0.1 Anneal factor 0.5
Emb dropout | 0.05 batch size 16

Table 2: Hyper-parameter values.

without specific grid search adjustments for each in-
dividual dataset. Stochastic gradient descent (SGD)
is used for optimization, with an initial learning rate
of 0.1 and we divide its value by two if the f-score
does not increase on the development corpus during
5 epochs. In that case, we reload the previous best
model before dividing the learning rate.
Configurations. In order to evaluate the impor-
tance of the different representations, we have set up
8 configurations of embeddings.
e Char For this configuration we only use char-
acter embeddings. ( size : 50)
e Bichar For this configuration we only use bi-
character embeddings. ( size : 50)
e Bichar + Char For this configuration we
concatenate bi-character and character embed-

dings. ( size : 50 + 50)

e Char ctx For this configuration we only use

contextual character embeddings. ( size : 1024

)

o Char-seg unsup For this configuration we only

use contextual character with segmentation in-
formation embeddings where the segmentation
comes from the unsupervised segmenter. ( size
11024 )

e Bichar + Char-seg unsup For this configura-

tion we only concatenate bi-character embed-
dings to the previous configuration. ( size : 50
+1024)

e Char-seg ctb for this configuration we only

use contextual character with segmentation in-
formation embeddings where the segmentation
comes from the supervised segmenter trained
on the Chinese Treebank. ( size : 1024 )

e Bichar + Char-seg ctb or this configuration

we only concatenate bi-character embeddings
to the previous configuration. (size : 50 + 1024)



Models P R F
Wang et al. (2013) 76.43 72.32 74.32
Gold seg|Che et al. (2013) 77.71 72.51 75.02
Yang et al. (2017) 65.59 71.84 68.57
Zhang and Yang (2018) 76.35 71.56 73.88
Char baseline 70.08 60.53 64.95
Liu et al. (2019) 76.09 72.85 74.43

Input

Char 67.31 64.33 65.79
Bichar 72.25 72.18 72.21
No seg |Bichar + Char 74.11 72.75 73.42
Char ctx 76.79 75.66 76.22
Char-seg unsup CSU  77.54 7591 76.72
Bichar + CSU 76.3 76.77 76.53
Char-seg ctb CSC 77.81 76.21 77
Bichar + CSC 77.67 76.89 77.27°

Table 3: NER results for named entities on the OntoNotes
4 dataset. There are three blocks. The first two blocks
contain the previous state-of-the-art models where ”Gold
seg” means that they used the reference segmentation
proposed by the dataset and "No seg” means that they
used other approaches that do not rely on reference seg-
mentation. The last block lists the performance of our
proposed model.

5.2 Experimental results

OntoNotes. Table 3 shows the experimental re-
sults on OntoNotes 4 dataset. The first column (In-
put) shows the representations of input sentence that
was used. “Gold seg” means that they used the seg-
mentation provided by the corpus to represent the
word in the sentence, “No seg” means that we used
only the character as input and other approaches that
do not benefit from the reference segmentation to
provide information about the word level.

The first part of table 3 are the results of Wang
et al. (2013); Che et al. (2013); Yang et al. (2017)
. These three approaches rely on gold segmentation
at the word level, with character embeddings. Che
et al. (2013) achieve good performance with 75.02
F-score. Here we exceed this score without using
the gold segmentation.

The second part shows the performances of more
recent approaches (Zhang and Yang, 2018; Liu et al.,
2019) and a character baseline which is the orig-
inal character-based BILSTM-CRF model. Zhang
and Yang (2018) proposes a lattice LSTM to ex-

3This result is the average of 20 runs. The results of these
runs have a variance of 4.10~2

ploit word information in character sequence and
Liu et al. (2019) use a new word-character LSTM
model to add word information on the first or on the
last character of each word. These two approaches
show a significant improvement compared to the
character baseline, which illustrates the importance
of the word information in character sequence.

The last part of the table 3 shows the results of
our configurations. The first three rows show re-
sults where we only used the character information.
Through these results we show that bichar repre-
sentations are very efficient for Chinese. This may
be explained by the fact that bichars have a length
closer to the average word length and provide more
contextual information than single characters. The
last four rows show the results of using our con-
textual char-seg representations. Those configura-
tions achieve very good results, improving the state
of the art, beating both models that do not use gold
segmentation and even those that do. Firstly, these
results show that the information about the bound-
aries of a word is useful. Secondly, on this corpus,
we can see that there is only a slight difference be-
tween using supervised and unsupervised segmen-
tation. Which is very encouraging to address situa-
tions where we do not have adequate CWS training
data.

Weibo NER. Table 4 shows the experimental re-
sults on Weibo NER dataset. This dataset proposes
two kinds of annotations, named entities and nomi-
nal entities. For our experiments we only evaluated
the combination of these two annotations. Com-
pared to the other corpus, this one offers few an-
notated data, that is why different approaches have
been proposed. Peng and Dredze (2015, 2016); Cao
et al. (2018) use multitask learning and He and Sun
(2017) use semi-supervised learning. As a result of
these approaches, they use cross-domain or semi-
supervised additional data. In contrast, Zhang and
Yang (2018); Liu et al. (2019) and our model do not
need any additional data.

These results exhibit similar patterns as those on
OntoNotes. However in this case the unsupervised
CWS can even lead to higher scores. This may be
the result of Weibo Corpus being drawn from social
media. A CWS system trained on the CTB is better
suited for the news domain and less reliable in the
Weibo case.



Models P R F
Peng and Dredze (2015) - - 56.05
Peng and Dredze (2016) - - 58.99
He and Sun (2017) - - 58.23
He and Sun (2017) - - 54.82
Cao et al. (2018) - - 58.70
Zhang and Yang (2018) - - 58.79
Liu et al. (2019) - - 59.84
char baseline - - 52.88
Char 72.14 3469 46.85
Bichar 72.63 33.01 45.39
Bichar Char 69.73 49.04 57.58
Char ctx 66.67 52.63 58.82
Char-seg unsup 66.48 5598 60.78
Bichar + Char-seg unsup | 70.37 59.09 64.24
Char-seg ctb 71.25 55.74 62.55
Bichar + Char-segctb | 67.24 56.46 61.38

Table 4: Weibo NER results

Models P R F
Zhang and Yang (2018) | 94.81 94.11 94.46
Liu et al. (2019) 95.27 95.15 95.21
char baseline 93.26 93.44 93.35
Char 92.76  94.36 93.55
Bichar 93.64 94.79 94.21
Bichar Char 93.93 9497 94.45
Char ctx 94.39 95.03 94.71
Char-seg unsup 94.77 95.58 95.17
Bichar + Char-seg unsup | 94.56 94.91 94.73
Char-seg ctb 94.84 94.66 94.75
Bichar + Char-segctb | 95.07 95.83 9545

Table 5: Chinese resume results

Resume Table 5 shows the experimental results
on Resume dataset. These are consistent with the
observations made on OntoNotes and Weibo NER.
Our model achieves good results on this dataset, but
unlike the other corpora, very good results were al-
ready obtained by other systems. It does not allow
us to highlight our approach as much as the other
corpora.

MSRA Table 6 shows the experimental results on
MSRA dataset. The best results are obtained with
the unsupervised segmentation.

Ontonotes 5 To complete our evaluation, we run
our best model from the Ontonotes 4 experiment on
Ontonotes 5 to provide comparison with Jie and Lu
(2019). Results are shown Table 7. Note that the
comparison is somewhat unfair as Jie and Lu (2019)

Models P R F
Zhang et al. (2006) 9220 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28
Dong et al. (2016) 91.28 90.62 90.95
Cao et al. (2018) 91.73 89.58 90.64
Zhang and Yang (2018) | 93.57 92.79 93.18
Liu et al. (2019) 94.33 93.11 93.71
char baseline 89.61 86.98 88.37
Char 84.95 84.37 84.66
Bichar 87.3 83.74 8548
Bichar Char 90.13 89.74 89.93
Char ctx 90.6 88.58 89.58
Char-seg unsup 94.77 93.43 94.1
Bichar + Char-seg unsup | 94.93 93.38 94.15
Char-seg ctb 93.63 91.42 9251
Bichar + Char-seg ctb | 93.73 91.78 92.74
Table 6: MSRA results
Models P R F
Zhang and Yang (2018) | 76.34 77.01 76.67
Jie and Lu (2019)
BiLSTM-CRF 77.94 7533 76.61
BiLSTM-CRF + ELMo | 79.20 79.21 79.20
DGLSTM-CRF + ELMo | 78.86 81.00 79.92
without Gold dep. 79.59
Bichar + Char-seg ctb | 80.70 80.60 80.65

Table 7: Ontonotes 5 results. Jie and Lu (2019) provide
detailed results on gold segmentation and parsing only.
An F-measure of 79.59 is obtained with non-gold depen-
dencies, but the authors did not report experiments related
to the quality of the word segmentation.

rely on gold segmentation. Nevertheless, our system
obtains the highest results, without the need for a
dependency parser.

The embeddings we propose achieve state-of-the-art
results on a diversity domains such as news, social
media, and Chinese resume.

5.3 Out Of Vocabulary analysis

When using a model with word-level features, one
of the most common problems comes from unknown
words. Our approach which injects segmentation in-
formation at the characters level allows to rebuild the
words from characters and leads to fewer unknowns.

To do so, we used two types of segmentation,
word level and char-seg level, in a supervised and
unsupervised way to segment our Wikipedia sample.
Once our four Wikipedia samples were segmented,



embeddings | OntoNotes seg | OOV
Word ctb supervised ctb | 18.89 %
Word ctb gold 18.96 %
Word unsup unsupervised | 32.34 %
Word unsup gold 35.81 %
Char-seg ctb | supervised ctb | 0.67 %
Char-seg ctb gold 0.28 %
Char-seg unsup | unsupervised | 0.95 %
Char-seg unsup gold 1.78 %

Table 8: OOV statistics on OntoNotes 4 with supervised
and unsupervised segmentation.

we trained four different FastText to obtain 4 lexi-
cons for each of them. To evaluate the OOV rate on
OntoNotes, we segmented it in three different ways
in order to compare for each case the presence or
not of words in the lexicons generated by our em-
beddings. We segmented OntoNotes in a supervised
and unsupervised way with the same two models we
used to segment Wikipedia and in a last step we
left the ”gold” segmentation in words proposed by
OntoNotes. Results of this experiments are shown
in table 8.

For the embeddings column, we have two lev-
els of segmentation, in word and char-seg, and two
levels of supervision, “ctb” for the supervised part
trained on the Chinese TreeBank and “unsup” for the
unsupervised part. The OntoNotes seg column rep-
resents the three types of segmentation used to seg-
regate OntoNotes into words. Because OntoNotes
is segmented into words and because our lexicon
for our char-seg embeddings contains only charac-
ters with segmentation information, for a given word
coming from OntoNotes, we try to reconstruct the
char-seg sequence constituting this word from our
embedding lexicon. For example, for the word &k
B we are looking for char-seg #-B and F4-E in our
embedding lexicon. If a char-seg is missing, then the
whole word is missing too.

The results show our representations greatly de-
crease the unknown word rates. it allows us to have a
representation for most of the words. Moreover, un-
like traditional word representations, we do not have
fixed representations of our words, which makes it
easier to have representations for new words, but
which can then call into question the quality of our
representations.

6 Discussions

Annotation ambiguity. The named entity recog-
nition task combines a step of segmentation with
one of classification. We feel the need to question
some cases of ambiguity from the data. By us-
ing the guideline from OntoNotes we annotated in-
house data and we found it difficult in some cases
to choose between Geopolitical Entity (GPE) and
Location (LOC). This case of ambiguity has a di-
rect impact on our predictions. we noted that more
than % of LOC that has been detected is annotated
as a GPE, which is consistent with the difficulties
encountered in our annotation experiment.

Another issue arises from the conversion of the
OntoNotes 4 corpus from 18 classes to 4. Most no-
tably the entity types NORP (Nationality, Other, Re-
ligion, Political) and FAC (Facility). These classes
are discarded in the 4-classes version, but are typi-
cal cases of nested entities containing a GPE, LOC
or ORG, which is also discarded in the process, cre-
ating erroneous annotation.

Entity segmentation against word segmenta-
tion. Our results show that although staying at the
character level allows us to tackle the OOV issue, the
information brought by CWS is still what enables us
to reach the highest scores. In the cases when the
CTB segmentation guidelines are consistent with the
NER corpus, supervised segmentation performs bet-
ter. However NER with unsupervised segmentation
is close in these cases and can perform better in other
cases. So our answer to Li et al. (2019) could be that
Word Segmentation is actually necessary, but unsu-
pervised CWS may be enough.

7 Conclusion and future works

In this paper, we propose new sinogram embed-
dings which includes word information at the char-
acter level for Chinese NER. Our proposed approach
shows that adding CWS label to a character allows
to give word level information while reducing con-
siderably the number of OOV compared to a word
sequence. Our experiments on multiple datasets,
in different domains, show that our system outper-
forms previous state-of-the-art approaches. This
paves the road to NER in more challenging situa-
tions such as historical documents or less-resourced
situations.
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Abstract

This paper describes our study on using mu-
tilingual BERT embeddings and some new
neural models for improving sequence tag-
ging tasks for the Vietnamese language. We
propose new model architectures and eval-
uate them extensively on two named entity
recognition datasets of VLSP 2016 and VLSP
2018, and on two part-of-speech tagging
datasets of VLSP 2010 and VLSP 2013. Our
proposed models outperform existing meth-
ods and achieve new state-of-the-art results.
In particular, we have pushed the accuracy
of part-of-speech tagging to 95.40% on the
VLSP 2010 corpus, to 96.77% on the VLSP
2013 corpus; and the F; score of named en-
tity recognition to 94.07% on the VLSP 2016
corpus, to 90.31% on the VLSP 2018 corpus.
Our code and pre-trained models viBERT and
vELECTRA are released as open source to fa-
cilitate adoption and further research.

1 Introduction

Sequence modeling plays a central role in natural
language processing. Many fundamental language
processing tasks can be treated as sequence tag-
ging problems, including part-of-speech tagging and
named-entity recognition. In this paper, we present
our study on adapting and developing the multi-
lingual BERT (Devlin et al., 2019) and ELEC-
TRA (Clark et al., 2020) models for improving Viet-
namese part-of-speech tagging (PoS) and named en-
tity recognition (NER).

Many natural language processing tasks have
been shown to be greatly benefited from large net-

work pre-trained models. In recent years, these pre-
trained models has led to a series of breakthroughs
in language representation learning (Radford et al.,
2018; Peters et al., 2018; Devlin et al., 2019; Yang et
al., 2019; Clark et al., 2020). Current state-of-the-art
representation learning methods for language can be
divided into two broad approaches, namely denois-
ing auto-encoders and replaced token detection.

In the denoising auto-encoder approach, a small
subset of tokens of the unlabelled input sequence,
typically 15%, is selected; these tokens are masked
(e.g., BERT (Devlin et al., 2019)), or attended (e.g.,
XLNet (Yang et al., 2019)); and then train the net-
work to recover the original input. The network is
mostly transformer-based models which learn bidi-
rectional representation. The main disadvantage of
these models is that they often require a substantial
compute cost because only 15% of the tokens per ex-
ample is learned while a very large corpus is usually
required for the pre-trained models to be effective.
In the replaced token detection approach, the model
learns to distinguish real input tokens from plausi-
ble but synthetically generated replacements (e.g.,
ELECTRA (Clark et al., 2020)) Instead of masking,
this method corrupts the input by replacing some to-
kens with samples from a proposal distribution. The
network is pre-trained as a discriminator that pre-
dicts for every token whether it is an original or a
replacement. The main advantage of this method is
that the model can learn from all input tokens instead
of just the small masked-out subset. This is therefore
much more efficient, requiring less than 1/4 of com-
pute cost as compared to ROBERTa (Liu et al., 2019)
and XLNet (Yang et al., 2019).
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Both of the approaches belong to the fine-tuning
method in natural language processing where we
first pretrain a model architecture on a language
modeling objective before fine-tuning that same
model for a supervised downstream task. A major
advantage of this method is that few parameters need
to be learned from scratch.

In this paper, we propose some improvements
over the recent transformer-based models to push the
state-of-the-arts of two common sequence labeling
tasks for Vietnamese. Our main contributions in this
work are:

e We propose pre-trained language models
for Vietnamese which are based on BERT
and ELECTRA architectures; the models are
trained on large corpora of 10GB and 60GB un-
compressed Vietnamese text.

e We propose the fine-tuning methods by using
attentional recurrent neural networks instead of
the original fine-tuning with linear layers. This
improvement helps improve the accuracy of se-
quence tagging.

e QOur proposed system achieves new state-of-
the-art results on all the four PoS tagging and
NER tasks: achieving 95.04% of accuracy on
VLSP 2010, 96.77% of accuracy on VLSP
2013, 94.07% of F} score on NER 2016, and
90.31% of F; score on NER 2018.

e We release code as open source to facilitate
adoption and further research, including pre-
trained models viBERT and vVELECTRA.

The remainder of this paper is structured as fol-
lows. Section 2 presents the methods used in the
current work. Section 3 describes the experimental
results. Finally, Section 4 concludes the papers and
outlines some directions for future work.

2 Models

2.1 BERT Embeddings
2.1.1 BERT

The basic structure of BERT (Devlin et al., 2019)
(Bidirectional Encoder Representations from Trans-
formers) is summarized on Figure 1 where Trm are

Figure 1: The basic structure of BERT

transformation and Fj are embeddings of the k-th
token.

In essence, BERT’s model architecture is a mul-
tilayer bidirectional Transformer encoder based on
the original implementation described in (Vaswani
et al., 2017). In this model, each input token of a
sentence is represented by a sum of the correspond-
ing token embedding, its segment embedding and
its position embedding. The WordPiece embeddings
are used; split word pieces are denoted by ##. In our
experiments, we use learned positional embedding
with supported sequence lengths up to 256 tokens.

The BERT model trains a deep bidirectional rep-
resentation by masking some percentage of the in-
put tokens at random and then predicting only those
masked tokens. The final hidden vectors corre-
sponding to the mask tokens are fed into an out-
put softmax over the vocabulary. We use the whole
word masking approach in this work. The masked
language model objective is a cross-entropy loss on
predicting the masked tokens. BERT uniformly se-
lects 15% of the input tokens for masking. Of the se-
lected tokens, 80% are replaced with [MASK], 10%
are left unchanged, and 10% are replaced by a ran-
domly selected vocabulary token.

In our experiment, we start with the open-source
mBERT package'. We keep the standard hyper-
parameters of 12 layers, 768 hidden units, and 12
heads. The model is optimized with Adam (Kingma
and Ba, 2015) using the following parameters: 81 =
0.9, B2 = 0.999, ¢ = le — 6 and Lo weight decay of

"https://github.com/google-research/
bert/blob/master/multilingual .md
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Figure 2: Our proposed end-to-end architecture

0.01.
The output of BERT is computed as follows (Pe-
ters et al., 2018):

m
By =~ (onk + Z wihki> ;
k=1
where
e B is the BERT output of k-th token;
e FJ;. is the embedding of k-th token;
e m is the number of hidden layers of BERT;
e hy; is the i-th hidden state of of k-th token;
® v, wp, Wy, ..., Wy, are trainable parameters.

2.1.2 Proposed Architecture

Our proposed architecture contains five main lay-
ers as follows:

1. The input layer encodes a sequence of tokens
which are substrings of the input sentence, in-
cluding ignored indices, padding and separa-
tors;

2. A BERT layer;

3. A bidirectional RNN layer with either LSTM or
GRU units;

4. An attention layer;
5. A linear layer;

A schematic view of our model architecture is
shown in Figure 2.

2.2 ELECTRA

ELECTRA (Clark et al., 2020) is currently the lat-
est development of BERT-based model where a
more sample-efficient pre-training method is used.
This method is called replaced token detection. In
this method, two neural networks, a generator GG
and a discriminator D, are trained simultaneously.
Each one consists of a Transformer network (an en-
coder) that maps a sequence of input tokens & =
[x1,x2,...,z,] into a sequence of contextualized
vectors h(Z) = [h1,ha,...,hy]. For a given posi-
tion ¢t where z; is the masked token, the generator
outputs a probability for generating a particular to-
ken x; with a softmax distribution:

exp(z] ha(7):)
> exp(uf ha ()

For a given position ¢, the discriminator predicts
whether the token x; is “real”, i.e., that it comes from
the data rather than the generator distribution, with a
sigmoid function:

pG(xt\!f) =

mawza@ﬁm@@
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Figure 3: An overview of replaced token detection by the ELECTRA model on a sample drawn from VELECTRA

An overview of the replaced token detection in the
ELECTRA model is shown in Figure 3. The gener-
ator is a BERT model which is trained jointly with
the discriminator. The Vietnamese example is a real
one which is sampled from our training corpus.

3 Experiments

3.1 Experimental Settings
3.1.1 Model Training

To train the proposed models, we use a CPU (Intel
Xeon E5-2699 v4 @2.20GHz) and a GPU (NVIDIA
GeForce GTX 1080 Ti 11G). The hyper-parameters
that we chose are as follows: maximum sequence
length is 256, BERT learning rate is 2 — 05, learn-
ing rate is 1 — 3, number of epochs is 100, batch
size is 16, use apex and BERT weight decay is set to
0, the Adam rate is 1 Z—08. The configuration of our
model is as follows: number of RNN hidden units is
256, one RNN layer, attention hidden dimension is
64, number of attention heads is 3 and a dropout rate
of 0.5.

To build the pre-training language model, it is
very important to have a good and big dataset. This
dataset was collected from online newspapers” in
Vietnamese. To clean the data, we perform the fol-
lowing pre-processing steps:

e Remove duplicated news
e Only accept valid letters in Vietnamese

e Remove too short sentences (less than 4 words)

zvnexpress.net, dantri.com.vn, baomoi.com, zingnews.vn,
vitalk.vn, etc.

We obtained approximately 10GB of texts after
collection. This dataset was used to further pre-train
the mBERT to build our viBERT which better rep-
resents Vietnamese texts. About the vocab, we re-
moved insufficient vocab from mBERT because its
vocab contains ones for other languages. This was
done by keeping only vocabs existed in the dataset.

In pre-training VELECTRA, we collect more data
from two sources:

e NewsCorpus: 27.4 GB3
e OscarCorpus: 31.0 GB*

Totally, with more than 60GB of texts, we start
training different versions of VELECTRA. It is
worth noting that pre-training viBERT is much
slower than pre-training VELECTRA. For this rea-
son, we pre-trained ViBERT on the 10GB corpus
rather than on the large 60GB corpus.

3.1.2 Testing and evaluation methods

In performing experiments, for datasets without
development sets, we randomly selected 10% for
fine-tuning the best parameters.

To evaluate the effectiveness of the models, we
use the commonly-used metrics which are proposed
by the organizers of VLSP. Specifically, we measure
the accuracy score on the POS tagging task which is
calculated as follows:

_ #of_words_correcly_tagged

Acec =
#of_words_in_the_test_set

3https://github.com/binth/news—corpus
*nttps://tracesl.inria.fr/oscar/
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No. |

VLSP 2010

VLSP 2013

Existing models

1 MEM (Le-Hong et al., 2010) | 93.4 RDRPOSTagger (Nguyen et al., 2014) 95.1
2. BiLSTM-CNN-CRF (Ma and Hovy, 2016) 954
3. VnCoreNLP-POS (Nguyen et al., 2017) 95.9
4 jointWPD (Nguyen, 2019) 96.0
5 PhoBERT _base (Nguyen and Nguyen, 2020) 96.7
Proposed models
Model Name mBERT | viBERT | vVELEC | mBERT viBERT vELEC

1. +Fine-Tune 94.34 95.07 95.35 96.35 96.60 96.62
2. +BiLSTM 94.34 95.12 95.32 96.38 96.63 96.77
3. +BiGRU 94.37 95.13 95.37 96.45 96.68 96.73
4, +BiLSTM_Attn 94.37 95.12 95.40 96.36 96.61 96.61
5. +BiGRU_Attn 94.41 95.13 95.35 96.33 96.56 96.55

Table 1: Performance of our proposed models on the POS tagging task

and the F} score on the NER task using the fol-
lowing equations:

Pre * Rec

Fl=2% ——M
Pre + Rec

where Pre and Rec are determined as follows:

p NFE _true
re =
NFE_sys
NE true
Rec — _
e NE_ref

where NE_ref is the number of NEs in gold data,
NE_sys is the number of NEs in recognizing system,
and NE_true is the number of NEs which is correctly
recognized by the system.

3.2 [Experimental Results
3.2.1 On the PoS Tagging Task

Table 1 shows experimental results using differ-
ent proposed architectures on the top of mBERT
and viBERT and vELECTRA on two benchmark
datasets from the campaign VLSP 2010 and VLSP
2013.

As can be seen that, with further pre-training
techniques on a Vietnamese dataset, we could sig-
nificantly improve the performance of the model.
On the dataset of VLSP 2010, both viBERT and
VELECTRA significantly improved the performance
by about 1% in the Fj scores. On the dataset of

VLSP 2013, these two models slightly improved the
performance.

From the table, we can also see the performance
of different architectures including fine-tuning, Bil.-
STM, biGRU, and their combination with attention
mechanisms. Fine-tuning mBERT with linear func-
tions in several epochs could produce nearly state-
of-the-art results. It is also shown that building dif-
ferent architectures on top slightly improve the per-
formance of all mBERT, viBERT and VELECTRA
models. On the VLSP 2010, we got the accuracy
of 95.40% using biLSTM with attention on top of
vELECTRA. On the VLSP 2013 dataset, we got
96.77% in the accuracy scores using only biLSTM
on top of VELECTRA.

In comparison to previous work, our proposed
model - VELECTRA - outperformed previous ones.
It achieved from 1% to 2% higher than existing
work using different innovation in deep learning
such as CNN, LSTM, and joint learning techniques.
Moreover, VELECTRA also gained a slightly bet-
ter than PhoBERT _base, the same pre-training lan-
guage model released so far, by nearly 0.1% in the
accuracy score.

3.2.2 On the NER Task

Table 2 shows experimental results using different
proposed architectures on the top of mBERT, viB-
ERT and VELECTRA on two benchmark datasets
from the campaign VLSP 2016 and VLSP 2018.

17



No. VLSP 2016 VLSP 2018
Existing models
1. | TRE+BI (Le-Hong, 2016) 87.98 | VietNER 76.63
2. BiLSTM_CNN_CRF (Pham and Le-Hong, 2017a) 88.59 ZA-NER 74.70
3. BiLSTM (Pham and Le-Hong, 2017b) 92.02
4. NNVLP (Pham et al., 2017) 92.91
5. VnCoreNLP-NER (Vu et al., 2018) 88.6
6. VNER (Nguyen, 2019) 89.6
7. | ETNLP (Vuetal., 2019) 91.1
8. PhoBERT_base (Nguyen and Nguyen, 2020) 93.6
Proposed models

Model Name mBERT viBERT VELEC | mBERT | viBERT | VELEC
1. +Fine-Tune 91.28 92.84 94.00 86.86 88.04 89.79
2. +BiLSTM 91.03 93.00 93.70 86.62 88.68 89.92
3. +BiGRU 91.52 93.44 93.93 86.72 88.98 90.31
4. +BiLSTM_Attn | 91.23 92.97 94.07 87.12 89.12 90.26
5. +BiGRU_Attn 90.91 93.32 93.27 86.33 88.59 89.94

Table 2: Performance of our proposed models on the NER task. ZA-NER (Luong and Pham, 2018) is the best system
of VLSP 2018 (Huyen et al., 2018). VietNER is from (Nguyen et al., 2019)

These results once again gave a strong evidence
to the above statement that further training mBERT
on a small raw dataset could significantly improve
the performance of transformation-based language
models on downstream tasks. Training vVELECTRA
from scratch on a big Vietnamese dataset could
further enhance the performance. On two datasets,
VELECTRA improve the F} score by from 1% to
3% in comparison to ViBERT and mBERT.

Looking at the performance of different archi-
tectures on top of these pre-trained models, we ac-
knowledged that biLSTM with attention once a gain
yielded the SOTA result on VLSP 2016 dataset.
On VLSP 2018 dataset, the architecture of biGRU
yielded the best performance at 90.31% in the F}
score.

Comparing to previous work, the best proposed
model outperformed all work by a large margin on
both datasets.

3.3 Decoding Time

Figure 4 and 5 shows the averaged decoding time
measured on one sentence. According to our statis-
tics, the averaged length of one sentence in VLSP
2013 and VLSP 2016 datasets are 22.55 and 21.87
words, respectively.

For the POS tagging task measured on VLSP
2013 dataset, among three models, the fastest de-
coding time is of vVELECTRA model, followed by
viBERT model, and finally by mBERT model. This
statement holds for four proposed architectures on
top of these three models. However, for the fine-
tuning technique, the decoding time of mBERT is
faster than that of viBERT.

For the NER task measured on the VLSP 2016
dataset, among three models, the slowest time is
of VviBERT model with more than 2 millisec-
onds per sentence. The decoding times on mBERT
topped with simple fine-tuning techniques, or bi-
GRU, or biLSTM-attention is a little bit faster than
on VELECTRA with the same architecture.

This experiment shows that our proposed mod-
els are of practical use. In fact, they are currently
deployed as a core component of our commercial
chatbot engine FPT.ATI° which is serving effectively
many customers. More precisely, the FPT.AI plat-
form has been used by about 70 large enterprises,
and of over 27,000 frequent developers, serving
more than 30 million end users.°

*http://fpt.ai/
These numbers are reported as of August, 2020.
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Figure 4: Decoding time on PoS task — VLSP 2013

4 Conclusion

This paper presents some new model architectures
for sequence tagging and our experimental results
for Vietnamese part-of-speech tagging and named
entity recognition. Our proposed model VELECTRA
outperforms previous ones. For part-of-speech tag-
ging, it improves about 2% of absolute point in com-
parison with existing work which use different inno-
vation in deep learning such as CNN, LSTM, or joint
learning techniques. For named entity recognition,
the vVELECTRA outperforms all previous work by a
large margin on both VLSP 2016 and VLSP 2018
datasets.

Our code and pre-trained models are published as
an open source project for facilitate adoption and
further research in the Vietnamese language pro-
cessing community.” An online service of the mod-
els for demonstration is also accessible at https:
//fpt.ai/nlp/bert/. A variant and more ad-
vanced version of this model is currently deployed
as a core component of our commercial chatbot en-
gine FPT.AI which is serving effectively millions of
end users. In particular, these models are being fine-
tuned to improve task-oriented dialogue in mixed
and multiple domains (Luong and Le-Hong, 2019)
and dependency parsing (Le-Hong et al., 2015).
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Abstract

In this paper, we present a statistical and
machine learning approach to the acoustic
discrimination of a  cross-linguistically
unusual  phonological  contrast, initial
geminates vs. singletons in Pattani Malay. We
show that the only statistically significant
difference between geminates and singletons
is the duration of the consonant itself. No
differences in FO and intensity were observed
on the following vowel, contra earlier reports.
We further investigated the robustness of this
contrast using linear discriminant analysis.
Results show that discrimination is above
chance, but poor (~62%). The large overlap
between the two categories may be partly due
to the naturalistic nature of our speech
samples. However, we also found that the
contrast is neutralized in some minimal pairs.
This merger is surprising since initial
geminates are often the sole realization of
lexical and morphosyntactic contrasts. We
suggest that the singleton/initial geminate
contrast is now best characterized as a
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marginal contrast. We hypothesize that this
marginally contrastive status may be the result
of an on-going sound change, perhaps
connected with the more modest role that
initial geminates play in Pattani Malay
morphophonological alternations.

1 Introduction

Pattani Malay (PM), an Austronesian language
spoken in Southern Thailand (Uthai 2011), exhibits
a cross-linguistically unusual phonological ‘length’
contrast for all word-initial consonants, e.g., [mato]
‘eye’ vs [m:ato] ‘jewelry’. The long forms of initial
consonants, usually termed initial geminates (IGs),
have been reported to differ from singletons along
multiple acoustic dimensions. With regards to
duration, PM IGs have been reported to be, on
average, three times longer than their singleton
counterparts  (Abramson  1987).  Durational
differences are hardly a surprising finding since
closure duration is usually considered the most
reliable acoustic correlate of phonological length
cross-linguistically (Ladefoged and Maddieson
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1996). If previous work is representative, however,
the 1G/singleton duration ratio of 3:1 in PM would
be on the extreme side of the spectrum (Ladefoged
and Maddieson 1996).

Interestingly, duration is not the only cue that
distinguishes 1Gs from singletons in PM. IGs have
been reported to produce acoustic effects on the
following vowel as well. In particular, previous
research has reported that vowels following IGs
display longer duration, higher fundamental
frequency (FO), and higher intensity (Abramson
1987; Abramson 1998; Phuengnoi 2010). These FO
and intensity cues alone have been shown to be
reliable enough for native speakers to correctly
identify 1Gs vs singleton onsets; even in
environments  where  durational cues are
ambiguous, such as in absolute utterance-initial
position where closure duration cannot be
distinguished from preceding silence (Abramson
2003). Similar acoustic features in production and
perceptual results have been reported for another
closely related variety, Kelantan Malay (Hamzah
et al. 2019; Hamzah et al. 2020).

The concomitant manifestation of IGs in the
form of local durational differences and of effects
on intensity and FO of the following vowel has led
scholars to hypothesize that PM speakers may be
in the process of reanalyzing consonantal length as
a prosodic contrast based on stress/pitch accent, or
that the language may even be on its way to
tonogenesis (Abramson 2004).

The possibility that IGs may be the target of
ongoing sound change warrants by itself a fresh
look at the realization of this unusual phonological
contrast. However, we should be cautious in
considering previous work the last word on PM
IGs. For one thing, previous studies were based on
a limited number of speakers (4 for Abramson, 7
for Phuengnoi). Moreover, the difference between
IGs and singletons was studied only in words
produced in isolation or in words that appeared in a
carrier sentence. Finally, in previous studies,
speakers were explicitly instructed about the
production of the contrast in question. All these
factors combined may have led to an exaggeration
of the differences between 1Gs and singletons.

Given such limitations in previous studies, we
investigate again the acoustic correlates of IGs in
PM by comparing words with and without 1Gs, but
we do so in more ecologically valid speech, which
was elicited outside the lab using natural sounding

sentences. To characterize the differences between
IGs and singletons we make use of both statistical
and machine learning techniques.

Statistical analyses showed that IGs are longer
than their singleton counterparts, but the difference
is much smaller than reported by previous studies.
We also found no difference in FO and intensity on
the vowel following IGs vs singletons, contra the
reports of previous studies.

Additionally, to quantify the robustness of the
IG/singleton contrast and to find out which
dimensions best discriminate the two categories,
we performed classification using linear
discriminant analysis (LDA) with a variety of
models that employ different combinations of
acoustic features. We found that the model
performances are above chance, but still poor,
peaking at only about 62% accuracy for the best
feature combinations.

We speculate that the limited statistical
differences and low accuracy of the LDA may be
partly due to the naturalistic nature of the speech
materials we collected and to ongoing
neutralization of the contrast in some minimal
pairs. We conclude by discussing several
hypotheses concerning the mechanisms that may
be at the heart of the observed neutralization.

2 Acoustic Analyses

2.1 Methodology

14 native speakers of PM (6M; 8F) were asked to
pronounce 13 disyllabic minimal pairs differing
only for their word-initial onsets, which were
either geminate or singleton, as shown in Table 1.
Stimuli were presented orally with natural-
sounding Thai sentences containing the target
words. Participants were asked to translate the
sentence into PM. Each sentence was repeated six
times.

singleton gloss geminate gloss

(Cvev) (C:VCV)

pagi ‘morning’ | p.agi ‘early
morning’

paka ‘to p.aka ‘usable’

use/wear’

tanoh ‘land’ t:anoh ‘outside’

dapo ‘kitchen’ | d:apo ‘at the
kitchen’
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singleton gloss geminate gloss

(Cvev) (C:VCV)

kato? ‘hammer’ | k:ato? ‘frog’

kabo ‘Java k:abo ‘beetle’

kapok’

gayi ‘wage’ g aji ‘saw’

jale ‘path’ j:ale ‘to walk’

Juyi ‘to steal” | z:uyi ‘thief’

misa ‘mustache’ | m.isa ‘t0 grow a
moustache’

labo ‘profit’ l.abo ‘spider’

bule ‘moon’ b:ule ‘month’

buno ‘flower’ b:uno ‘to bloom’

Table 1. Stimuli

Audio was collected at 44.1 kHz in Praat
(Boersma and Weenink 2020). All recordings were
made in quiet rooms at the Prince of Songkla
University Pattani Campus.

Segmental boundaries were obtained in Praat
TextGrids by forced alignment using the Montreal
Forced Aligner (McAuliffe et al. 2017). The
TextGrids were inspected and manually corrected
when necessary. The corrected TextGrids
containing segmental boundaries and the audio
signals of each word were read back in
MATLAB® for analysis.

Eight acoustic measurements were collected:

(1) Duration of initial segments (ms)

(2) Duration of initial syllables (ms)

(3) FO mean of initial syllables (semitone)

(4) Intensity peak of initial syllables (dB)

(5) FO mean over initial 10% of vowel
following target consonants (semitone)

(6) Intensity mean over initial 10% of vowel
following target consonants (dB)

(7) Difference between semitone transformed
mean FO of initial and final syllable

(8) Ratio of mean RMS amplitude of initial to
final syllable

FO was calculated using a MATLAB®
implementation of Talkin’s robust algorithm for
pitch tracking (Talkin 1995) contained in the
Voicebox toolbox for MATLAB®. (Brookes
1997). FO was further processed within all trials
and separately by participant by removing all data
points with standard deviation scores greater than 2

from the mean; datapoints deviating +10 Hz from
neighboring samples were also excluded. When the
FO vector of a word contained less than 5
datapoints per each syllable, the contour was no
longer processed, as interpolation over the entire
word would not be reliable. In the other cases, FO
was subsequently interpolated using spline
interpolation and smoothed using a median filter.
FO was transformed by converting from Hz to

semitones according to the equation X
logi02
Hz \ .
10g10 (E) in Zhang (2018).
Sound Pressure Level (SPL) normalized

intensity was calculated by transforming the root
mean squared intensity of the signal to dB and
normalizing to human auditory threshold using the

formula 20 % log, %. In this formula P represents
the power of the signal and PO represents the
normalizing term for the auditory threshold of a
1000 Hz sine wave, equal to 2 x 10> (Huang et
al. 2001).

Statistical analyses were conducted by fitting
linear mixed effect regressions. We compared a
model where the fixed effect was the
presence/absence of IGs to an intercept-only
model. Random effects were subject, word, and
position of the word in the phrase (medial or final).
Random intercepts were present in the model for
each random effect. Random slopes were added
when they resulted in a better fit as determined via
a loglikelihood ratio test. Loglikelihood ratio tests
were, thus, used to assess statistical significance
and to determine the random effect structure.

2.2 Results

Consonant Duration: Comparing the initial
segment in the IG and no IG condition, we found
that 1Gs are significantly longer than singletons
(1) = 4.03, p = .04) with an effect size estimated
at 17 ms, as illustrated in Figure 1.

Syllable Duration: The presence of I1Gs does
not significantly affect the duration of the initial
syllable (y*(1) = 1.34, p= .24), as illustrated in
Figure 2.
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FO: The presence of I1Gs does not significantly
affect the mean FO of the initial syllable (¥°(1) =
0.16, p=.69), as illustrated in Figure 3.
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Figure 3. Comparison of mean FO of initial syllables
(semitones)

Intensity: 1Gs do not significantly affect the
maximum SPL normalized intensity of the initial
syllable (¥*(1) = 0.49, p= .48), as illustrated in
Figure 4.

no IG

1G "
» I\ pno IG (|\“.‘
70 1 1G [\
[ \ fr\
) { ) I\
565 }> / / : \l
260 \|/ i
2 \ [ 1
o W IC I
=55 | [
[
50 "
/ 1
45 / I
y
—— 1 .
no IG 1G 40 50 60 70 80

Intensity [dB]
Figure 4. Comparison of maximum SPL normalized
intensity of initial syllables (dB)

To further investigate whether the effects of 1Gs
on the following vowel may be limited to the
region immediately following the release, we also
examined mean FO and intensity over the first 10%
of the vowel, following previous work on Kelantan
Malay (Hamzah et al. 2020).

We found no significant differences between
mean FO over the initial 10% of the vowel
following 1Gs vs. singletons (x*(1) = 0.06, p= .79).
FO contours over the vowel are presented in Figure
5.

2
1G
no IG
—1.5
L
E 1
3]
v,
< 0.5
|5
0

Normalized Time
Figure 5. Comparison of time normalized FO trajectory
of initial vowel in semitone. Shaded areas represent +2
Standard Errors

We also found no significant difference
between mean SPL normalized intensity over the
initial 10% of a vowel following 1Gs vs. singletons
(x*(1) = 0.95, p=.33). The intensity contours of the
following vowel are presented in Figure 6.
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Finally, also following previous work
(Abramson 1998, Hamzah et al. 2020), we
examined whether differences between IGs and
singletons may be manifested more globally in the
FO difference and RMS amplitude ratios of the two
syllables. We found no differences for both FO
(x*(1) = 0.007, p=.93) and RMS amplitude (5*(1) =
0.07, p=.79), as illustrated in Figure 7.

10 4

[r)

RMS Amplitude [S1/52]
)

FO [normalized S1 - normalizedS2]

-10 0
no IG 1G

Figure 7. FO difference and RMS amplitude ratio

no IG IG

2.3  Summary

We found that the durations of 1Gs and singletons
are significantly different, but, unlike in previous
studies, the duration of IGs is not three times
longer than singletons. The durational differences
are estimated at about 17 ms. Furthermore, there is
a significant overlap between the two distributions.
Contrary to previous descriptions, the presence or
absence of 1Gs does not have a significant effect
on syllable duration, mean FO, or peak intensity of
the following vowel; no effect is observed even if
only 10% of the vowel is examined. We also
observed no significant differences in the FO

difference and amplitude ratios of the two
syllables.

In sum, we found only very small durational
differences between IGs and singletons and the
other acoustic measurements do not display

significant differences.

3 Linear Discriminant Analysis

To further address the question of whether the
singleton/IG contrast in PM is comparable in terms
of its magnitude to the singleton/geminate contrast
of other languages, we performed classification of
IGs vs. singletons using linear discriminant
analysis (LDA). In a nutshell, LDA is a
classification technique (and also a dimensionality
reduction technique) that uses linear combinations
of features to maximize the separation between
two or more categories. LDA is of interest here
because it has been successfully applied to the
study of wvarious phonetic contrasts, including
geminate vs non-geminate contrasts in both word-
medial, in Japanese (Idemaru and Guion-Anderson
2010) and Lebanese Arabic (Khattab and Al-
Tamimi 2014), and word-initial position, in
Salentino (Burroni and Maspong to appear). We
tried to extend this methodology to characterize the
word-initial geminate contrast of PM.

3.1  Methodology

We fitted LDA models using cross-validation to
evaluate the accuracy of our models. We randomly
assigned 80% of the data to a training set and the
remaining 20% to a test set. 10,000 such LDA
models were fitted for each combination of
predictors. The mean accuracy and standard
deviations reported here were taken over these
10,000 iterations.

To determine which acoustic dimensions were
more apt to discriminate the singleton/IG contrast,
we considered that duration of the first segment
(CDur) and ratio of the duration of the first
segment to the entire word (CDur / WordDur) are
the only two statistically significant differences
present in our data. We then tested whether adding
information concerning the duration (o; Dur), mean
FO (o; MeanFQ), and maximum intensity (o;
MaxInt) of the target syllable would improve LDA
classification. All features were z-scored by
participants before performing LDA, as this
procedure is known to improve LDA classification.
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3.2 Results

We found that the model performance is above
chance (that is, above 50%), but still quite poor, as
summarized in Table 2, peaking at only about 62%
accuracy for the best linear combination of
features: the duration of the first segment (CDur)
alone or in combination with the duration ratio of
the first segment to the entire word (CDur /
WordDur).

Model Structure Mean Standard
Accuracy  Deviation

CDur + 58.84% 2.18%
CDur/WordDur +
o;Dur + g;Maxint +
oiMeanF0
CDur + 58.20% 2.07%
CDur/WordDur +
o;iDur + g;MeanF0
CDur + 58.88% 2.20%
CDur/WordDur +
o;Dur + g;Maxint
CDur + 58.19% 2.10%
CDur/WordDur +
o;Dur
CDur + 61.40% 2.06%
CDur/WordDur
CDur/WordDur 59.84% 2.14%
CDur 62.36% 2.11%

Table 2. Accuracy of LDA models for different
combinations of features

Optimizing the hyperparameters of the model
does not greatly improve performance in the
identification of IGs as is clear from the confusion
matrix of the optimized model presented in Figure
8.

If we inspect the predicted boundary between
the two classes, as shown in Figure 9, the reason
for the low performance of the model becomes
clear: IGs and singletons are not linearly separable
in the investigated acoustic dimensions, thus, they
cannot be captured by an LDA classifier.

1 65.5% 34.5%
n
L
O
Q
£
=
2 37.3% 62.7%
1 2

. . Predicted Class
Figure 8. Confusion matrix showing the number of 1Gs

(class 1, top) and singletons (class 2, bottom) classified
correctly (gray diagonal) and incorrectly (orange
diagonal).

6'IG

no IG
> 4 —IG / singleton boundary

CDur (z-scor

C/Word (z-score)
Figure 9. Output of LDA showing large overlap
between categories

The low LDA accuracy for geminates contrasts
sharply with high accuracy reported for other
languages. For instance, for medial geminates in
Japanese, accuracy is at ~85-95% (ldemaru and
Guion-Anderson 2010) and, for IGs in Salentino,
accuracy is at ~80% (Burroni and Maspong to

appear).
3.3  Summary

In sum, the discrimination above chance shows
that there is indeed a contrast between words with
and those without 1Gs that can be picked up by a
simple model, such as an LDA classifier. This is in
line with previous phonetic and phonological
research on PM and justifies looking for contrasts
between words with and without 1Gs. On the other
hand, the low classification accuracy suggests that
the contrast is subtle.
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We now discuss what factors may be
responsible for the observed overlap between IGs
and singletons.

4 Discussion

We have three non-mutually exclusive hypotheses
to explain why the contrast between IGs and
singletons looks much less robust than previously
reported.

The first possibility that comes to our mind is
that the differences between the result of our study
and previous work is due to different methods of
data collection. Previous work (Abramson 1987;
Abramson 1998) examined IGs only in isolation
and in a carrier sentence. Our data, on the other
hand, presented 1Gs and their singleton
counterparts in naturalistic sentences. Accordingly,
the difference could be due to less carefully
articulated speech.

A second possibility is that the contrast may be
neutralized for some speakers. The size of our
dataset does not allow for a full quantitative
assessment of this claim; however, our impression
is that almost all speakers produce IGs that are
longer than singletons on average, as illustrated in
Figure 10.

A third possibility is that the contrast only
exists for a subset of minimal pairs. This means
that, for many lexical items, the contrast between
singletons and IGs is not realized.

Indeed, our data suggests that closure duration
of the initial consonants is distinct only for a subset
of minimal pairs, as illustrated in Figure 11.

Given this observation, we ask what
generalizations may explain the observed
neutralizations, as well as the non-neutralizations.

In the framework of Evolutionary Phonology
(EP), 1Gs have been hypothesized to be
diachronically unstable (Blevins 2004).
Furthermore, EP holds that the stability of phonetic
cues to IGs may be related to their wider role in the
grammar. IGs survive only in languages where
they represent the only cue to lexical contrasts and
produce “sentential minimal pairs”. In other words,
IGs survive only when they compete lexically with
singletons and cannot be disambiguated by context
(Blevins and Wedel 2009; Burroni and Maspong to

appear).
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Figure 10. Mean duration of singletons (left) and 1Gs
(right) by speaker (ms)

140
et T @i
130+ .
120 - .
kkatoq
110} /A. 5
) kabo kkabo
E 100} B0
g
g 90} 1labO
D mmisa
bulE i
80 T pto bbulE
dapo 7 ——® ddapo
70 f tanOh / / — 5
// ttanOh
¥afga /
paka —® ppaka
60 /7 1
gali
50 1abO
Singleton Geminate

Figure 11. Mean duration of singletons (left) vs 1Gs
(right) by word (ms)

Interestingly, PM seems a counterexample to
this generalization, as 1Gs are being lost in this
language, even though they are the unique
realization of morphosyntactic contrasts. For
instance, under an EP approach, the observed
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merger of [dapo] ‘kitchen’ and [d:apo] ‘at the
kitchen’ is expected, since these forms appear in
different positions and can be disambiguated by
context. Similarly, the non-merger of [kato?]
‘hammer’ and [K:ato?] ‘frog’ is expected since
these forms appear in the same context and the IG
or lack thereof is the only cue distinguishing them.
However, other mergers, such as [kabo] ‘Java
kapok (type of plant)’ and [k:abo] ‘beetle (type of
bug)’, are not expected, because context does not
allow for disambiguation, thus, the neutralizing 1G
would be one that is a unique cue to the contrast,
just like the non-merging one in [kato?]/[k:ato?].
However, the merger of [kabo]/[k:abo] may
suggest some role for word frequency effects.
Phillips (2006) explained that retrieving low-
frequency word is a challenge for the learner.
These difficulties, in turn, may lead to alterations
of the phonetic forms of low frequency words on
the model of unmarked patterns, that IGs may be
altered to singletons. At any rate, for another
counterexample to the EP claim that cues to IGs
are dependent on lexical competition, we refer the
reader to Burroni and Maspong (to appear). Since
lexical competition alone does not explain the
paradox of IGs merging with singletons in PM,
other factors need to be considered.

It has been reported that PM speakers no longer
make use of 1Gs for the purpose of morphological
derivation due to contact with Thai (Uthai 1993),
accordingly, it is possible that the contrastive
phonological status of 1Gs is being eroded in
connection with their reduced ‘functional’ role in
the grammar. If 1Gs and singletons will be merging
at evolutionary timescales, the loss of PM IG
contrasts would be a striking example of sound
change via lexical diffusion connected with a
reduced functional load, an information theoretic
measurement that has been argued to correlate with
geminate to singleton ratio (Tang and Harris 2014)
and resistance to merger (Wedel et al. 2013).
Further research is necessary to test the merits of
these hypotheses on the basis of a larger PM
dataset. Corpus frequencies also need to be
obtained in order to calculate information theoretic
measurements, such as functional load (Surendran
and Niyogi 2006).

At any rate, since the contrast between IGs and
singletons is only observed for some minimal
pairs, it may be best interpreted as a quasi-
phonemic or marginal contrast (Hall 2013;

Renwick and Ladd 2016). If this interpretation is
correct, our acoustic results would align with
recent work demonstrating that marginal
phonological contrasts may display large overlaps
when data is collected outside the lab, in more
naturalistic contexts (Cohn and Renwick 2019).

5 Conclusion

In this paper, we have shown that the only
significant difference between PM 1Gs and
singletons in naturalistic speech is the duration of
the consonants themselves. We have further shown
that an LDA model is able to discriminate between
syllables with and without IGs slightly above
chance level (~62%). This is much below usual
LDA performances for geminates in other
languages.

The striking difference between our findings
and earlier reports regarding the robustness of cues
to IGs in PM calls for an explanation. One
possibility is that previous experimental work may
have exacerbated the difference between 1Gs and
singletons. After all, highly controlled lab speech
is very different from less carefully articulated
naturalistic speech. I1Gs in PM could then be an
example showing that a more nuanced
characterization of phonological contrasts requires
an integrated analysis of both laboratory and more
naturalistic phonetic data, as advocated by Cohn
and Renwick (2019).

However, we have also shown that, although
speakers on average produce longer IGs than
singletons, they produce the contrast only for a
subset of minimal pairs. We have speculated that
an appropriate characterization of the subsets that
undergo and resist merger will require further
collection of information theoretic measurements,
such as functional load. One thing is relatively
clearer: 1Gs are moving towards a more marginally
contrastive role in the grammar of PM, a fact that
may be reflected in their phonetic realization.
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Abstract

This is a corpus-based study of four English
translations of Kumarajiva’s The Diamond
Sutra (401/2002). We sketched the four
translated English sutras made by both
individual translators and translation teams in
terms of the profile of their word and sentence
use and readability, using a range of corpus
tools. Our results reveal that there are major
differences between the individual translators
and the translation teams in terms of word
repertoire, sentence length and readability. The
translation teams produced the English
Buddhist texts as easy to read and strict with
key concept terms to facilitate their missionary
work. The individual translators’ renditions
tend to differ remarkably based on the
translators’ identities. Our study would shed
light on the future research on language studies
of English Buddhist texts and the dissemination
of Buddhism from East to West through
translation.

1 Introduction

Kumarajiva was a monk from Kucha (3E2% Qiiici
in Chinese), the current Aksu Prefecture in China.

He started to translate the Buddhist scriptures into
Chinese when he arrived in Chang’an (the present-
day Xi'an), China, in 401 CE and the translation
activity lasted till his death in 409 CE. With the
assistance of his translation team, he translated
over 30 sutras containing 313 volumes. Regarding
the scope, style, sophistication, popularity and
influence, Kumarajiva’s translated Buddhist
scriptures are often considered best in Chinese
history (Cheung, 2014, p. 93; Hung, 2005, p. 80).
The previous studies on Kumarajiva and his
team’s translation activity are situated in the field
of translation history. Ma (1999) and Wang (2006)
include their translation activity in the historical
research on the translation of Buddhist scriptures.
Wang (1984) elaborates Kumarajiva and his team’s
sophisticated translation process and Siu (2010)
depicts their translation institutes in Chang’an.
Kumarajiva’s translated Buddhist scriptures are
regarded as Buddhist classics in China. They were
retranslated into English by different translators
with the spread of Buddhism from East to West,
especially the renowned The Diamond Sutra.
Being able to access different translation versions
presents a rare chance to compare the divergent
images of the Buddhist philosophy in the English
world. Although they were produced from the
same source text, the diversity of these translated
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texts would exert uneven influences on the
audience varying from the mission of the religion
to the study of the philosophy. It is thus of great
value to investigate these English translations of
The Diamond Sutra.

2 Translation Versions

We sorted out the English translations of The
Diamond Sutra from Chinese (Table 1). The
translators can be roughly divided into two groups,
namely the individual translators and the
translation teams. For the individual translators,
they hold different professions like a physician
(William Gemmel'), professors (Samuel Beal? and
Daisetz Teitaro Suzuki®) and Buddhists (Bhikshu
Wai-Tao, Dwight Goddard* and Pia Giammasi®).
The translation teams, on the other hand, were
made up of Buddhist monks. It is apparent that
they produced the translated English sutras for the

international preachment of their temples.
First

N Published | Translator Tranglatlon Publisher
Title
Year
Vajra-chhedikd | Journal of
Samuel the “Kin Kong Royal
1 1864 Beal King,” or Asiatic
Diamond Sttra Society
The Diamond Iéz%aln
2| e | e | SweCi | o,
Prajna-paramita Tribner &
Co., Ltd.
Bh'.kShu The Diamond
Wai-Tao . .
3 1935 and Sutra: A Dwight
. Buddhist Goddard
Dwight Scripture
Goddard
Daisetz The Kongokyo Eastern
4 1935 Teitaro or Buddhist
Suzuki Vajracchedika Society
The Diamond
Sutra or The The
5 1947 A.F. Price Jewel of Buddhist
Transcendental Society
Wisdom
The Diamond -
. Sino-
Buddhi ra: A -
L?eC:(t * gltjethral Amerlc_an
6 el Translation | Explanation of BUdd.h'S.t
. . . Associatio
Society the Vajra prajna P
Paramita Sutra
Pia Diamond Sutra Primodia
! 2004 Giammasi Explained Media

1 Mattoon (2010)

2 Ockerbloom (n.d.)

3 Abe (1986)

4 Wai-Tao and Goddard (1935)
5 Giammasi (2004)

The Diamond
8 2005 Cheng Prajna-paramita Vairgca_na
Kuan Sutra (The Publishing
Diamond Sutra)
Chung Tai The Diamond Chung Tai
9 2009 Translation of Perfect Chan
Committee | Wisdom Sutra | Monastery
Fo Guang Fo Guang
Intesrzzrt]ion l_)lamond . Intesrizrt]ion
10 2016 al Prajnaparamita al
Translation sutra Translatio
Center n Center

Table 1: English Translations of The Diamond
Sutra from Chinese

3 Methodology

We focus on four English translations of The
Diamond Sutra from Chinese for this paper,
namely Gemmel (1912), Hsuan (2002)8, Giammasi
(2004) and Chung Tai Translation Committee
(2009) (Table 2). These texts were selected for
three reasons. First, they explicitly state in the texts
that their translations were rendered from the
Chinese version of Kumarajiva’s The Diamond
Sutra. Second, they are still in circulation today.
The translations made by Gemmel and Giammasi
are still reprinted and sold on Amazon. The other
two are distributed to the believers and disciples of
their temples. Third, TT1 and TT2 were produced
by the individual translators; TT3 and TT4 were
made by the Buddhist translation teams. These four
texts form the comparison groups as the Table 2
shows. We built a corpus of these four translated
English sutras after digitalizing them for further
analysis.

SHIRERBREL
Vajracchedika

Prajiiaparamita Sitra
The Diamond Sutra (Chin-

Kang-Ching) or Prajna-

Paramita translated by
William Gemmel in 1912
Diamond Sutra Explained
TT2 | translated by Pia Giammasi in
2004

Source Text ST

TT1
Group 1
(Individual Translators)

6 Hsuan (2002) is the second edition of the
translation made by Buddhist Text Translation
Society in 1974. The Buddhist Master Hsuan Hua
was put in the position of author. This kind of
arrangement follows the tradition of Buddhist
translation activity that the translated Buddhist
scripture is authored by the Buddhist Master who
chaired the translation activity. That Buddhist Master
is called F-7# zhii yi (Master Translator) in Chinese
(Wang, 1984).
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The Vajra Prajna Paramita
Sutra: A General Explanation

T3 translated by Buddhist Text

Group 2 Translation Society in 2002
(Translation Teams) The Diamond of Perfect

T4 Wisdom Sutra translated by

Chung Tai Translation
Committee in 2009

Table 2: The Selected Four English translations of
Kumarajiva’s The Diamond Sutra

In order to sketch the profile of these English
translations, we adopted four corpus tools to compare
the texts in three dimensions: word, sentence and
readability. The tools employed and their corresponding

25.36%; TT4: 27.44%), which suggests the
individual translators employ a wider range of
vocabulary than the translation teams. With respect
to the mean word length in words, the varieties in
each group do not show the same tendency (TT1:
5.03; TT2: 4.66; TT3: 4.52; TT4: 4.76). At the
sentential level, the individual translators (TT1:
333; TT2: 322) used fewer sentences than the
translation teams (TT3: 359; TT4: 377). But the
average length of the former (TT1: 21.23; TT2:
16.11) is greater than the latter (TT3: 15.17; TT4:
13.90).

functions are listed in Table 3. Indicators TT1 TT2 TT3 TT4
Tokens 7,068 5,189 5,447 5,243
Tools Functions Types 1,059 761 619 693
WordSmith 8.0 STTR, Mean Word Length, TTR 14.98% 14.67% 11.36% | 13.22%
i ) _ Sentences, Sentence Length STTR 30.20% 28.94% 25.36% | 27.44%
BFSU HugeMind Readability Readability Tests STTR std.d_ev 58.51 57.80 60.89 59.09
Analyzer 2.0 STTR basis 1,000 1,000 1,000 1,000
NVivo 12 Plus Word List, Word Cloud Mean Word
AntConc 3.5.7 Collocation Length 5.03 4.66 4.52 4.76
Table 3: Corpus Tools (characters)
Wosrt‘:].'ai'\‘lgth 271 253 2,63 2,60
By describing the four selected English Sentences 333 322 359 377
translations of Kumarajiva’s The Diamond Sutra mean (in words) 21.23 16.11 15.17 13.90
std.dev. 14.97 12.51 12.65 11.52

with the assistant of corpus tools, this study aims to
answer the following two research questions.
In terms of the profile of word, sentence and
readability:
1. What differences exhibit between the
individual translators and the translation teams,
if there are?
2. Are there any differences within each group
— i.e. the group of individual translators and
the group of translation teams (cf. Table 2)?

4 Results

4,1 STTR, Words and Sentences

We used the WordSmith Tools 8.0 (Scott, 2020) to
examine the lexical complexity and sentential
patterns of the four translations regarding the
STTR, word length, number of sentences and
sentence length (Table 4). As the text size of TT1
(7,068 tokens) is much larger than the other three.
The standard type-token ratio (STTR), which
calculates the type-token ratio (TTR) on every
1,000 words, is adopted here as one indicator to
compare the lexical diversity of these four texts.
The STTR of Group 1 (TT1l: 30.20%; TT2:
28.94%) is notably higher than Group 2 (TT3:

Table 4;: WordSmith Tools 8.0 Statistics List

4.2 Frequent Words and Collocations

The “word frequency query” function of NVivo 12
Plus (QSR International Pty Ltd, 2020) generated
the content-word lists with word frequencies for
each text and visualized the content words with
word clouds. We set the query criteria as “display
the 100 most frequent words with minimum length
of 3 letters”. The full top 100 frequent word lists of
each file with their counts and weighted
percentages are placed in the Appendices (A-D).
To concisely illustrate the main differences of the
four translations in terms of the frequently-
occurring words, four word clouds of the 30 most
frequent words are presented below (Figures 1-4).
Visually, a considerable number of the highly
frequently-used words in the four texts differ,
although the main characters “Subhuti” and
“Buddha” are consistently on the top of the lists.
These differences largely result from the
translators’ varied renditions of some repetitive
key terms in The Diamond Sutra, for example, “Z1
AR, 9% and “BiT R 2 4 =3 =42 (Table 5).
First, “fn sk rai1&” is the honorific title of
Buddha. Its literal translation from Sanskrit is
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“Tathagata” (Ding, 2016). TT1 does not
distinguish it from “f# f& (Buddha) that Gemmel
translated it as “Lord Buddha” too. The other three
follow the literal translation “Tathagata”, which is
different from “Buddha”. Second, “7% fa” is a key
concept in Buddhism and it has multiple meanings.
It can refer to the universe’s truth or law (Ding,
2016). TT1 substitutes it with “Law”, while the
other three adopts the literal translation
“D/dharma”. Third, “BiT#% % & —3i =312 a n&u
dud lud san mido san pu tT¥ is the transliteration of
Sanskrit “anuttara-samyak-sambodhi”, which was
also translated into Chinese as “# I~ IE4£1E4 wa
shang zhéng déng zhéng jué” (supreme perfect
enlightenment). It represents the highest wisdom of
all truth in Buddhism (Ding, 2016). TT2 and TT3
retain the transliteration. TT1 substitutes it with
“supreme spiritual wisdom”, and TT4 literally
translates it while providing the transliteration at
the first time.

) ]\"HO!I\!"I‘H]
wis Qmmele\ ormed
every mMu

replied
mmas utl
I livingmeTit] l]m> ip re
\pllliu
i\l} H}?‘

d“*“"‘ world<
addressed
disciples ‘,m&}“
l%Cl %l\ eclared

onou
tolehtened

Figure 1: Word Cloud of TT1
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Figure 2: Word Cloud of TT2
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Figure 3: Word Cloud of TT3
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Figure 4: Word Cloud of TT4

Terms TT1 TT2 TT3 TT4
fgfg Btg;ﬂ a Tathagata Tathagata Tathagata
7k fa Law Dharma dharma dharma

Fol % %

E_E ;iz unsurpassed

=557

3 nou supreme anuttara- Anuttaras enICiomgLe;f ent

dud lug | spiritual | samyaksam | amyaksa (agnuttara-

sin wisdom bodhi mbodhi
ar samyak-
mido sambodhi)
san pa
tT

Table 5: Translations of Key Terms

As The Diamond Sutra is the dialogue between
Buddha and his disciple Subhuti, we further
explore the wverbs collocated with these two
characters by virtue of AntConc 3.5.7 (Anthony,
2018). We set the span from 3L to 3R and the
collocate measure as MI + Log-likelihood (p>
0.05). We list the frequently collocated verbs with
high statistical scores in Tables 6-7. It can be seen
that TT1 has the varied verbs (addressed, declared,
enquired, etc.) collocated with Buddha and Subhuti,
while TT2, TT3 and TT4 use the simple verbs,
such as “said”, “told” and “called”.

Texts | Collocate Stat. Freq Freg(L) Freq(R)
saying 4.10404 46 1 45
el addressed 5.16544 37 3 34
declared 4.68002 15 0 15
enquired 4.66294 12 0 12
said 5.85739 14 4 10
T2 ™ ys | 43593 | 6 1 5
said 5.98352 23 12 1
T3 told 6.62989 7 0 7
TT4 said 5.62832 22 6 16

Table 6: Buddha’s Collocated Verbs

Texts | Collocate Stat. Freq Freg(L) Freg(R)
saying 5.33639 79 2 77
T addre;sed 5.57804 36 33 3
replied 5.47073 28 4 24
enquired 5.61757 17 12 5
said 4.92450 15 10 5
TT2 called 3.85050 15 13 2
replied 5.14001 11 0 11
TT3 said 4.78715 25 4 21
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called 3.95064 14 14 0

told 5.31321 7 7 0

TT4 said 4.92734 29 13 16
called 3.95688 14 12 2

Table 7: Subhuti’s Collocated Verbs
4.3 Readability Tests

Finally, we tested the readability of these four
translations via the BFSU HugeMind Readability
Analyzer 2.0. It is a corpus tool developed by the
FLERIC team of Beijing Foreign Studies
University (http://corpus.bfsu.edu.cn/TOOLS.htm).
It can do six different readability tests for the texts.
The calculation formulae are listed in the
Appendix E. Apart from the Flesch Reading Ease
test, the higher the score is, the less understandable
the text is (Coleman & Liau, 1975; Flesch, 1981;
Gunning, 1952; Kincaid, Fishburne, Rogers, &
Chissom, 1975; Mclaughlin, 1969; Smith & Senter,
1967). The scores of the four texts are listed in
Table 8. The results infer that Group 1 (TT1 and
TT2) are generally weaker than Group 2 (TT3 and
TT4) in readability except that the score of TT2 is
a little lower than TT4 in Gunning Fog Index test.
Especially, the score of TT1 has marked gap
between it and the other three texts.

Tests TT1 TT2 | TT3 | TT4
. aﬁgé‘:m;t’fg o | 1304 | 087 | 828 | 002
Co'elmngre‘;"ia“ 1342 | 1136 | 991 11.4
Flesch Reading 3947 | 5131 | 617 | 5253
Ease
FEL‘ZZC:& :ft;“:Tae'gt 1267 | 1013 | 8.42 9.41

Gunning Fog Index 39.71 3111 25.72 31.51
SMOG (Simple
Measure of 24.73 20.30 17.95 19.49

Gobbledygook)

Table 8: Readability Tests by BFSU HugeMind
Readability Analyzer 2.0

5 Individual Translators
Translation Teams

Versus

We have compared these four English translations
of Kumarajiva’s The Diamond Sutra using a range
of corpus tools. In response to our research
questions, results show that there are major
differences between the individual translators and
the translation teams. The individual translators
employed a wider range of vocabulary than the
translation teams. The former is inclined to use
fewer but longer sentences than the latter. In terms
of readability, the translated Buddhist texts made
by the translation teams are easier to read than the
ones rendered by the individual translators. For the
inner group comparison, the two translations done
by teamwork appear to be consistent with each
other in our corpus-based sketching except for the
rendition of “BiT#% % 4 =i =¥ 4% a nou dud lué
san mido san pu ti”. TT4 provides both the literal
translation and transliteration, and this seems to be
a strategy to stay faithful to the original while
facilitate the readers’ reading. Although TT1 and
TT2 show some similar tendencies as both belong
to the group of individual translators, they
markedly differ in word diction, i.e. the frequent
words and verb collocations. TT1’s readability
tests scores are much distinct from the other three.
This can be explained from the identities of these
translators. William Gemmel was a physician, who
had a “lifelong interest in history and archeology”
(Mattoon, 2010). Although Pia Giammasi is an
individual translator, she is the disciple of the
Buddhist Master Nan Huai-Chin (Giammasi, 2005).
Such a Buddhist background would situate herself
in line with the Buddhist groups, which is revealed
by her choices of the frequently used words.
Therefore, William Gemmel as a translator outside
the religious circle of Buddhism tends to enjoy the
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highest subjectivity when translating the Buddhist
sutra. Our description of the four texts by corpus
tools can also offer a glimpse of the mechanism
behind each group’s translating practice on the
Buddhist sutras. The Buddhist translation teams
employ sterile and plain words and shorter
sentences to reduce the difficulty of the Buddhist
texts availing the preachment. They are strict with
the key terms and concepts, which maintain a high
level of faithfulness to the original text. The
individual translators vary owing to their identities.

6 Conclusion

In this paper, we have compared four different
English translations of Kumarajiva’s The Diamond
Sutra with corpus tools and demonstrated the
differences between the individual translators and
translation teams. Our study showed that the two
groups clearly differ from each other in terms of
the profile of the words and sentences they used
and also in readability. The translated sutras
rendered by the translation teams tend to be easy
for reading while rigorous with the expressions of
key concepts. The individual translators performed
differently based on their own identities. However,
we only compared four texts and did not involve
the textual analysis of the Chinese source text as
both the classic Chinese and religious language of
Buddhist sutras are not supported by the
mainstream corpus tools. That is the area in which
subsequent studies can work on in the domain of
this special textual genre (cf. Lee & Wong, 2016;
Wong & Lee, 2018).
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Appendices

Appendix A. Top 100 Frequent Word List of
TT1

Weighted Percentage

Word ‘ Length ‘ Count ‘ %)
buddha 6 197 521
lord 4 179 474
subhuti 7 144 3.81
saying 6 96 2.54
disciple 8 66 1.75
law 3 62 1.64
worlds 6 62 1.64
honoured 8 48 1.27
wisdom 6 40 1.06
merit 5 38 1.01
spiritual 9 38 1.01
addressed 9 37 0.98
scripture 9 34 0.90
reality 7 33 0.87
phenomena 9 31 0.82
replied 7 31 0.82
thus 4 30 0.79
think 5 29 0.77
disciples 9 28 0.74
enlightened 11 28 0.74
merely 6 28 0.74
every 5 26 0.69
supreme 7 26 0.69
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Appendix B. Top 100 Frequent Word List of

TT2
Word ‘ Length ’ Count ‘ Wetgtited Percent?%
subhuti 7 135 5.30
tathagata 9 83 3.26
one 3 75 294
buddha 6 66 2.59
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dharma
honored
world
called
think
person
merit
form
samyaksambodhi
teaching
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great
anuttara
beings
bodhisattva
many
mind
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charity
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Appendix C. Top 100 Frequent Word List of

TT3

Word ‘ Length ‘ Count ‘ WWeighted Percent(a}%
subhuti 7 137 5.20
tathagata 9 91 3.45
one 3 71 2.69
world 5 70 2.66
buddha 6 55 2.09
honored 7 53 2.01
spoken 6 48 1.82
marks 5 43 1.63
living 6 42 1.59
beings 6 41 1.56
dharmas 7 38 1.44
called 6 36 1.37
mark 4 36 1.37
good 4 34 1.29
think 5 34 1.29
therefore 9 30 1.14
anuttarasamyaks 22 29 1.10
ambodhi

sutra 5 29 1.10
others 6 28 1.06
blessings 9 26 0.99
bodhisattva 11 26 0.99
dharma 6 25 0.95
self 4 23 0.87
virtue 6 23 0.87
heart 5 22 0.83
many 4 21 0.80
thought 7 21 0.80
view 4 21 0.80
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Appendix D. Top 100 Frequent Word List of

TT4
— ‘ - ‘ — ‘ Weighted Percentg)%s)z
subhuti 7 135 5.10
tathagata 9 82 3.10
one 3 76 2.87
world 5 66 2.49
buddha 6 63 2.38
honored 7 51 1.93
sentient 8 44 1.66
person 6 41 1.55
beings 6 36 1.36

think
called
therefore
complete

dharma

enlightenment

sutra
unsurpassed
good

self

life

teaches
attributes
dharmas
great
physical
span
attained
merit
bodhisattvas
bodhisattva
body
means
notions
charity
teaching
attain

non

perfect
thought
without
worlds
thoughts
even

sand
actually
eye

ganges
others
appearances
particles
rise

tiny

40

o 0 © o O,

13

11

-

10

g o ~ © o1 N

=P
= N

O O W o A~ B 0O O NN NW o 0NN O

=
A A O B

36
35
30
29
29
29
29
29
28
22
20
20
19
19
19
19
19
18
18
17
16
16
16
16
15
15
14
14
14
14
14
14
13
12
12
11
11
11
11
10
10
10
10

1.36
1.32
1.13
1.10
1.10
1.10
1.10
1.10
1.06
0.83
0.76
0.76
0.72
0.72
0.72
0.72
0.72
0.68
0.68
0.64
0.60
0.60
0.60
0.60
0.57
0.57
0.53
0.53
0.53
0.53
0.53
0.53
0.49
0.45
0.45
0.42
0.42
0.42
0.42
0.38
0.38
0.38
0.38



yes 3 10 0.38 free 4 6 0.23
follow 6 9 0.34 jewels 6 6 0.23
immeasurable 12 9 0.34 line 4 6 0.23
know 4 9 0.34 man 3 6 0.23
nothing 7 9 0.34 many 4 6 0.23
paramita 8 9 0.34

remember 8 9 0.34 Appendix E. Readability Tests Formulae

teach 5 9 0.34

thus 4 9 0.34 4.71 (M) + .5 (leq) — 21.43
wo 3 9 034 words ss:r_ltcne:cs

abide 5 o 0.30 Automated Readability Index
extremely 9 8 0.30 CLI = 0.0588L — 0.2068 — 15.8

fact 4 8 030 L is the average number of letters per 100 words
form 4 8 0.30 and S is the average number of sentences per 100
four 4 8 030 words.

gives 5 8 0.30 Coleman-Liau Index

merits 6 8 0.30 Flesch Reading Ease

neither ! 8 030 total words total syllables

practice 8 8 0.30 0.39 (m) +11.8 (m) — 15.59
real 4 8 0.30 Flesch—-Kincaid Readability Test

resolve 7 8 0.30

thirty 6 8 0.30 0.4 ( words ) +100 (cnmplex words )]
also 4 7 026 sentences words
attachment 10 7 0.26 Gunning Fog Index

awey ‘ ! 0.26 grade = 1.0430 /umber of polysyllables x —— 0 4 31201
buddhas 7 7 0.26 v number of sentences
comprehend 10 7 0.26 SMOG

dipankara 9 7 0.26

former 6 7 0.26

give 4 7 0.26

grains 6 7 0.26

men 3 7 0.26

mind 4 7 0.26

reality 7 7 0.26

recite 6 7 0.26

someone 7 7 0.26

verse 5 7 0.26

women 5 7 0.26

come 4 6 0.23

countless 9 6 0.23

faith 5 6 0.23
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Abstract

Non-sentential or fragmentary utterances
(NSU) constitute a significant part of the
productions in a conversation.  Although
seemingly incomplete in form, they convey
full pragmatic meaning in the context. In the
past, their classification had been approached
with supervised methods (Ferndndez et al.,
2007; Wong, 2018). Such approaches require
relatively large annotated data sets. We
explore an approach (Ratner et al., 2017a) that
allows the reduce significantly the amount
of annotated data needed thanks to strategic
use of linguistic knowledge. We explore this
method for classifying NSUs in Mandarin
conversation corpus. Our evaluation shows
that promising results can be obtained with a
minimal amount of annotated training data.

1 Introduction

In dialogue, besides well-formed complete sen-
tences, a sizeable amount of utterances are frag-
ments that could be understood without a problem
in their context. Traditional grammar attends mainly
to written texts and canonical sentence analysis. The
oral language has been often regarded as bad, spon-
taneous, and wrong, in summary not an appropriate
research object, as (Blanche-Benveniste, 1997) re-
grets it. But as interest in oral communication gets
more attention, terms like “fragments”, “Nonsenten-
tials” in (Barton, 1991) or “Non Sentential Utter-
ances” (hereafter NSU) in (Fernandez et al., 2007)
have also attracted more investigation.

The expressions in example 1 below may sound
familiar.

(1) What now?
Not you.
What’s for supper? - Ground Beef Tacos.

Even though they are generally short, such utter-
ances constitute an active part of the conversation.
They contribute to the efficiency of the conversa-
tion flow. The interpretation of NSU is essential for
linguistic theories that attempt to get serious about
language as it is produced in its most natural and
pervasive setting, and also for applications, like di-
alogue systems. It can be done in different ways,
as discussed in (Ginzburg, 2012, p:229). The anal-
ysis result can be implemented in human-machine
dialogue systems in various domains such as client
service or computer aided language teacher.

The percentage of NSU among other utterances
in conversation corpus is non negligible, 11.15 % in
(Ferndndez and Ginzburg, 2002), 9% in (Fernidndez
et al., 2007), 10.2 % in (Schlangen and Lascarides,
2003). We think the study of NSUs is useful because
of the high frequency mentioned above. What’s
more, the understanding of NSUs and their classifi-
cation from their context is not always easy. Even a
simple “what” can express various emotions and can
have different functions in a context. Apart from the
most common function as plain question, it can also
express Happiness, Surprise, Sadness, Anger, Dis-
gust or even Fear.

Second, the definition of NSUs can have an im-
pact on the classification of NSU, the inclusion and
exclusion of categories can be flexible according to
the theories and purpose of classification, the classi-
fication criteria could be syntactic leading, semantic
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leading or a mix of standards. The treatment of some
fragments like ‘Greetings’ and ‘Filler’ can make a
difference in the counts. We will see the detailed
discussion in section 2.

The paper is structured as follows. Section 2
presents the related work of utterance classification,
including Dialogue Acts and Non-Sentential Utter-
ances. Section 3 introduces the data and methodol-
ogy. Section 4 provides a qualitative and quantita-
tive description of our corpus and the results of the
manual labeling. Section 5 summarizes the labeling
functions used in this article. Section 6 talks about
the modelling and classification experiment in our
work. Section 7 is about the evaluation of the model.
Section 8 concludes the article.

2 Related Work

2.1 Non-Sentential Utterances

The NSU taxonomy proposed in (Ferndndez and
Ginzburg, 2002) is supposed to be the first “com-
prehensive, theoretically grounded classifications of
NSU in large-scale corpus”. The classification is
based on work grounded in British National Cor-
pus (BNC), the classification take into consideration
both a relatively complex syntax and the context dy-
namics. In (Ferndndez et al., 2007), several machine
learning experiments were carried out to get an op-
timal classification result. The features selected for
machine learning in this article is limited in a few
“meaningful” ones instead of many arbitrary ones.
The features selected for NSU classification came
from (i) the utterance itself, (ii) its antecedent, and
(iii) their relationship. It results in three sets of fea-
tures in total: NSU features, Antecedent features and
Similarity features. The NSU features include four
aspects, whether it is proposition or question, pres-
ence of wh-word, yes/no word, and different lexical
items. The antecedent features are similar to those
of NSU features, but it also looks at whether it is a
finished utterance. The similarity features is a com-
parison of the utterance and its antecedent, mainly
about the repeated words and POS tags and their
proportion. Another machine learning experimen-
tation work for classification of NSU is based on the
work of (Fernandez et al., 2007) with more advanced
features in (Dragone, 2015).

The taxonomy can be adapted for languages be-
sides English, following the work of (Ferndndez et
al., 2007), the work of (Wong and Ginzburg, 2013)
in classifying NSUs in Chinese adds seven subcate-
gories because of the particular behavior of modal
verbs in Chinese. The classification we choose
is (Wong, 2018), which is based on the work of
(Ferndndez et al., 2007) in adding some classes con-
sidering particular behaviors in Chinese Mandarin
with extended discussion of each category compared
with (Wong and Ginzburg, 2013).

2.2 Utterance Classification

NSU classification is an utterance classification task,
of the same kind as the better known Dialogue Act
tagging (Stolcke et al., 2000). Dialogue Act (DA) is
about the meaning at the illocutionary level defined
in (Austin, 1962), which is the intent or effect pro-
duced along with the things being said. In (Stolcke
et al., 2000), it is said that DAs can be considered
“as a tag set that classifies utterances according to
a combination of pragmatic, semantic, and syntactic
criteria.” The DA labels demonstrate the hidden in-
formation of the utterance for higher-level process-
ing. It can be used in the interpretation and gen-
eration and prediction of utterances and their func-
tions in dialogue systems, as stated in (Stolcke et al.,
2000). Therefore DA-tagging is a major applicative
task for NLP and Human-Machine Interaction.

Lexical and prosodic cues are both useful for the
dialogue act classification. It is observed that some
words are symbolic of some DAs. For example,
in (Stolcke et al., 2000), “92.4% of the uh-huh’s
occur in Backchannels, and 88.4% of the trigrams
‘(start) do you’ occur in Yes-No-Questions.” For
some shared patterns, the differentiation is by pro-
nunciation.

The methodology in DA classification bears sim-
ilarity with NSU classification. Nevertheless, DA
and NSU have differences in their theoretical frame-
works and distinctions in aspects such as label
uniqueness. NSU is an utterance that is not realized
by a full syntactic sentence but produces an effect
just like sentential utterances. All utterances can re-
ceive a DA label, but only those fragments with in-
complete syntactic structure and full semantic value
can be labeled as NSU.
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By many aspects such as their size as well as their
lack of completeness, NSUs can be confused with
disfluencies. Shriberg (Shriberg, 1996) talked about
several types of disfluency: filled pause, repetition,
substitution, insertion, deletion and speech error. In
(Tseng, 1999)’s exploration of modeling the disflu-
ency, there are features found to be useful in the de-
tection of disfluency on the syntactic side: the lin-
guistic length, the syntactic category, the construc-
tion types, the location of interruption, the repair
onset, and the repair offset. These features could
be useful in our examination of disfluency in our
corpus. In (Tseng, 2003) ’s research about repairs
and repetitions in spontaneous Mandarin, the editing
term (an indication of speech repair such as “well”
“I'mean” or filled pauses) is found to be useful in the
detection of repetition and repairs.

3 Methodology

A large quantity of training data is necessary for ma-
chine learning tasks. But labeled data are not easy to
get. Snorkel (Ratner et al., 2017b) provides a solu-
tion to this bottleneck by using labeling functions to
generate a large amount of labeled data. As stated
in (Ratner et al., 2017b), based on theories and ex-
periments, Snorkel has proven effective in training
high-accuracy machine learning models, even using
potentially lower-accuracy inputs. It has been re-
cently applied to high-level NLP such as discourse
parsing in (Badene et al., 2019).

Weakly supervised tools like Snorkel allows for
quickly labeling extensive data with minimal but ex-
pert manual involvement. The use of Snorkel is to
write some labeling functions (LF) to produce some
useful training data with labels. A labeling function
is a rule that attributes a label for some subset of
the training data set. Using Snorkel, it will train a
model that combines all the rules defined written to
estimate their accuracy, along with the overlaps and
conflicts among different labeling functions.

The workflow of Snorkel distinguishes from tradi-
tional machine learning approaches; it is based on a
data programming paradigm. Briefly, it is composed
of two phases, and the first is to produce estimated
labels using a generative model, the second is using
these labels to train the ultimate model, a discrimi-
native model.

Within this design philosophy, the system design
of Snorkel can be divided into three phases: first,
pre-processing of the data to have the reorganized
data for later use, such as word segmentation and
POS tagging. Second, writing labeling functions.
Labeling functions do not need to be entirely accu-
rate or exhaustive and can be correlated. Snorkel
will automatically estimate their accuracies and cor-
relations in a provably consistent way, as introduced
in (Ratner et al., 2016). Third, after the evaluation
and calibration of the LFs, we decide on an optimal
set of LFs to produce a set of labels to train a model.

4 Data and Manual labelling

Extensive conversational data are limited in num-
bers. We are interested in the real-time conver-
sational data in talking form transcribed in textual
form instead of texts generated in instant-messaging
tools. The data we used in this study is from
LDC’s CALLHOME Mandarin Chinese collection.
This is a telephonic conversation corpus, with audio
files and transcriptions. The language was in Man-
darin even though the participants are from different
provinces of China. The corpus includes 120 tran-
scripts in total, and each is a five or ten-minute seg-
ment from the telephone speech files. From the de-
scription on the website !, the transcripts are already
tokenized automatically using a tool called the Chi-
nese Lexical Analysis System (ICTCLAS). The re-
sults were further corrected manually.

In this paper, the corpus concerned is already seg-
mented. In long sentences, an NSU component may
appear in the middle, but we won’t label it as NSU
if it doesn’t stand independently. Suppose we deal
with a raw corpus not segmented yet. In that case,
we will decide the utterance boundary first based on
our research question(s) and the conversation con-
text, including syntax, prosody, and pragmatic ef-
fect. However, it’s also possible to define NSU and
describe it first and then extract them or locate them
in the corpus.

The original data includes the start time and end
time of every segment, the speaker, the textual con-
tent of the utterance. In the text transcription, there
are also examples of annotation as enrichment of in-
formation as illustrated in example 2.

"https://catalog.ldc.upenn.edu/LDC2008T17
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(2) Examples of annotation >
{text}: sound made by the talker.
{laugh} {breath_noise}
/text//: aside (talker addressing someone in
background) e.g.// £ Vi (English_Hello,)
TR4F . (Come say Hello, hello).//

e.g.

We processed the data and transformed it into
Pandas DataFrame (McKinney, 2010) in order to
manipulate it into Jupyter Notebooks (Pérez and
Granger, 2007). They are transformed as a table,
and the information is divided by columns. The
original information is separated into four columns:
Start time, End time, Speaker, and Text transcrip-
tion. Based on these, we added other columns (illus-
trated in figure 1):

e Conversation code: the original code of the file
e Duration : how long the utterance lasts

e Same Speaker: if the utterance is produced
by the speaker of the previous utterance
(BOOLEAN)

e Latency : a gap between two turns, the Start
time minus the previous End time (we only
consider the positive value cases)

e Overlap : the duration when more than one per-
son speaks (we only consider the positive value
cases)

e Word count: How many units are there in
the utterance (depending on the segmentation
method, one unit may not necessary correspond
to one Chinese character, and the punctuation
can be included as well)

e Tagged: the POS tagged text used in this study
is attributed by the tool Zpar (Zhang and Clark,
2011)

We have 33485 utterances in total in combining
120 files. Combined with the tagged results, we omit
the ones untagged, so we deal with 33431 utterances
(229 412 tokens).

http://shachi.org/resources/661

We selected around 5% of the whole data as a
sample to tag manually to know the difference be-
tween data with NSU tags and the complete data.
Only one annotator does the manual annotation for
convenience and cost. Then we have another anno-
tator to annotate 7% of the sample data (0.35% of
the whole data) to compare with the first annotator’s
result. We get a kappa score of 0.54 for all the NSU
categories and a kappa score of 0.57 for the four
most frequent NSU classes((PLAIN ACKNOWLEDG-
MENT, REPEATED ACKNOWLEDGEMENT, CHECK
QUESTION, and INTERJECTION), a kappa score
of 0.58 for the four first-level NSU classes (AC-
KNOWLEDGMENT,QUESTION, ANSWER and COM-
PLEMENT).

Through a qualitative analysis of the NSU cat-
egories in our corpus, we made some adjustments
of the classification in (Wong, 2018), the results are
shown in table 1.

5 Labelling Functions

When writing labeling functions, there are several
strategies: keyword matches, regular expressions,
arbitrary heuristics, and third-party models.

In our case, we use the first two strategies com-
bined with three types of cues: the Textual cues, the
Timing cues, and the Contextual cues. For each type
of signal, we look at the relevant features. There
are two variables in (Schlangen, 2005), the structural
features and the lexical/utterance-based features. In
(Fernandez et al., 2007), as mentioned in section 2,
there are three sets of features: NSU features, An-
tecedent features, and Similarity features. In (Drag-
one, 2015), the baseline feature set is the same as in
(Fernandez et al., 2007), but with extended features
at different levels: POS tags, phrase-level, depen-
dency features, turn-taking features, and similarity
features. We have chosen these features as presented
in the figure 2 based on the characteristics and avail-
able information of our corpus.

In our case, the features are used in the writing
of labeling functions. Based on the result of LF
performance, which is undoubtedly influenced by
the majority’s classes, the more frequently used fea-
tures are the keywords, such as feedback/ backchan-
nel word, followed by wh-question word and ques-
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Latency Overlap Same_speaker Speaker Start Text Word_count Tagged
fR_PN 1R_AD
T _AD IS VWV
NaN NaN False A 183.47 R 1 iR, G2 — -
RERIGIR, I #R_PN _PU
f5_W ?_PU
E WA_AD
NaN  0.27 False B 18493 B E IR 3 #HE 7 E WIRP
¥E_NN #iE
_W?_PU
0.08 0.00 False A 186.03 Ifg 2 1 If_VA ?_PU

Figure 1: Head of the pre-processed corpus dataframe

tion final particles. Features used to detect the Sen-
tential Utterances and Disfluency also have good
performance. Some features may be not so effec-
tive because of some shared words among different
NSUs, thus less frequent due to major classes’ ex-
istence. For instance, “M(um) is typical in PLAIN
ACKNOWLEDGEMENT. Still, it can also appear in
INTERJECTION or questions, so that we may need
a combination of features such as POS tag features
and other corpus-related cues.

Our labeling functions can be divided into three
types: Keyword-based LF combined with size-
related LF, POS tagging LF, Context-related LF.
For the three classification models, we set the size-
related limitation such as counted words and we
used frequent words for each NSU category in the
LF, and also frequent POS tag or tag combination,
such as demonstrated in figure 3. We also compare
the number or promotion of shared patterns between
the utterance and its precedent. For the SU class,
we also have LF targeting at disfluency with size-
related LF, such as Duration and Word_count, con-
textual cues (two consecutive utterances produced
by the same speaker) and POS tag cues.

6 Modelling and Classification

Our goal is to build a model to classify all the
NSU classes, we also build two extra classification
models for comparison, one with the four first-level

classes ACKNOWLEDGMENT,QUESTION, ANSWER
and COMPLEMENT, and another with the four most
frequent NSU classes(PLAIN ACKNOWLEDGMENT,
REPEATED ACKNOWLEDGEMENT, CHECK QUES-
TION, and INTERJECTION).

It should be noted the final set for each model only
includes the LFs without serious incorrectness. Oth-
erwise, it will only harm the model so that if an LF
has more incorrect than the correct cases, we tend
to exclude them, especially when the ratio is signif-
icant. Based on the result and after the error anal-
ysis, this problem could not be solved; we do not
have LFs for each NSU. For the main classes model,
we didn’t get a proper LF for the class REPEATED
ACKNOWLEDGEMENT, for the first-level classifica-
tion model, the ANSWER class, and COMPLE-
MENT class LF don not enter in the final set. For
all-class model, only PLAIN ACKNOWLEDGMENT,
CHECK QUESTION, and INTERJECTION) entered in
the final set.

The results are presented in table 3. For each
model, we run the experiment in three conditions:

e Baseline: with the definite majority class ac-
knowledgment (the most frequent one) with
58% in our sample data frequency;

e System: with all the classes in each model, no
use of punctuation (the training label difference
in these three conditions can be seen in table 2);
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NSU Class
A. Acknowledgement
1 | Plain Acknowledgement
2 | Repeated Acknowledgement
3% | Verbal Acknowledgement
4% | Helpful Acknowledgement
5% | Re-Affirmation
B. Questions
6 | Clarification Ellipsis
7 | Sluice
8* | Nominal Predication
9 | Check Question
C. Answers
10 | Short Answer
11 | Affirmative Answer
12 | Repeated Affirmative Answer
13* | Verbal Affirmative Answer
14* | Helpful Affirmative Answer
15 | Rejection
16* | Verbal Rejection
17 | Helpful Rejection
D. Complement
18 | Filler
19* | Correction
20* | Interjection
21 | Propositional Modifier
22 | Factive Modifier
23 | Bare Modifier Phrase
24 | Conjunction + Fragment

Table 1: Classification of NSU in (Wong, 2018)

Feature

NSU feature

Antecedent
features

Structural
features

Description

Presence of wh-question word

Presence of question final particle

Presence of propositional modifier word

Presence of feedback/backchannel word

Presence of interjection

Presene of factual modifier word

Presence of modal word

Presence of polar particle

Presence of heavy tags (noun, verb, ajective and adverb)
Presence of disfluency

Presence of repeated pattern(word/tag) in the utterance
Is the utterance a question or not?

Presence of wh-question word

Presence of question final particle

Presence of disfluency

Is the two consecutive utterance produced by the same
speaker?

Common pattern(word/tag) between the utterance and its
precedent

Figure 2: Features and description

e Topline: also with all the classes in each model,
including punctuation (provided by the tran-
script) as cues.

Snorkel’s Label Model can learn the dependency
among the LFs, and its output is an array of sin-
gle probabilistic training labels. As explained in
(Ratner et al., 2016), there are four types of depen-
dency among the LFs: “similar, fixing, reinforcing,
and exclusive.” A dependency graph will be calcu-
lated and established. Overall, the model will give
a more data-balanced decision for the data points
where there are conflicting LFs.

The Majority Label Voter of Snorkel takes the ma-
jority vote for each data point; each LF will cover a
portion of data. Its inadequacy is that each vote of
the LF are considered of equal efficiency, but this is
not the case. Snorkel’s Label Model deals with the
correlation among LFs when combining all the out-
puts of the LFs.

As we have mentioned the workflow of Snorkel
in section 3, Snorkel’s Label Model’s output is then
used to train the ultimate discriminative model, such
as a Scikit-Learn classifier.

The Label Model Accuracy is not always higher
than the Majority Vote Accuracy. In (Ratner et al.,
2017b), it’s explained that for very sparse label ma-
trices (almost no conflicts among LFs) or very dense
label matrices (a lot of conflicts among LFs) will
probably lead to this result. The F1 score is a Micro
average for the multiclass setting, that “calculates
metrics globally across classes, by counting the total
true positives, false negatives and false positives”, as
explained in (Sasaki, 2007).

7 Evaluation

So the result of a task to detect just the majority
class ACKNOWLEDGMENT from the Sentential Ut-
terace (SU) and the rest of the NSU classes is ac-
ceptable, but the abstain votes from the other NSU
classes can explain the gaps with the system con-
dition. The small difference among all these three
conditions can be attributed to the outcome of the fi-
nal labeling function sets. Because we omit the LFs
with apparent imprecision, we are left with an LF
set targeting classes for some major classes like AC-
KNOWLEDGMENT and a few effective others for the
rest.
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@labeling_function ()
def ackplain_pos(x) :
tags = [utt.split('_’)[1]
if x["Word_count"] < 2:
for tag in tags:
if tag not in
return ABSTAIN
return ACKPLAIN

for utt in x[’Tagged’].split ()]

[/NN’,’AD’,’VA’,’PU’]

Figure 3: Example of LF using unigram POS cues, PLAIN ACKNOWLEDGEMENT

Transcript Baseline ‘ System ‘ Topline

WEFE/ Uh-huh SuU Interjection Interjection
ZFHISK T/1t's coming out | SU Repeated Ack. | Repeated Ack.
FANEF? 1 All right ? SU Check Question | Check Question

Table 2: Comparison of training labels in baseline, system and topline situations in Majority class classification model

Baseline System Top-line
Majority Vote 72.70% 72.70%  73.70%
Accuracy
All-cl Label Model
s | vioee 72% 72%  75.30%
classification Accuracy
model F1 micro 0.75 0.78 0.82
Scikit-learn
classifier test 68.70% 74.30% 75.70%
accuracy
Majority Vote
80.00% 79.70% 84.00%
Accuracy
First-level Label Model 79% 77% 4%
classification Accuracy
model F1 micro 0.79 0.8 0.83
Scikit-learn
classifier test 74.30% 74.00% 76.00%
accuracy
Majority Vote
67.30% 74.30% 75.00%
Accuracy
Majority Label Model
class 67% 74%  74.30%
Accuracy
classification ¢y oo 0.77 0.82 0.77
model o
Scikit-learn
classifier test 67.70% 73.30% 74.70%

accuracy

Table 3: Performance of three models in three conditions

The all-class classification model’s performance
can be attributed to the number of classes and the
affiliation relation between them. The 24 tags are
mutually exclusive, but some can be grouped un-
der a first-level category. Besides, the SU class is
the opposite of all the other classes. With its rel-
atively high frequency, in a binary situation, when
we only need to distinguish SU and NSU. Still, in
our multi-class setting, one class’s negative classi-
fication is not yet realized in Snorkel. For some
classes, even though we have posed some limits on
the counted word number and duration, the LF still
targets many SU (including disfluency cases). Con-
sequently, there are many false-positives for some
LFs, especially for some minority categories, such
as for different sub-categories under ANSWER. Ex-
tremely unbalanced data as reference, they do not
have a single case present in the labeled data set.

Also, the similarity between ANSWER and AC-
KNOWLEDGEMENT makes it hard to classify
the ANSWER and its sub-classes. They have shared
words and sometimes similar scope of counted
words; the most credible way is by solving whether
the previous utterance is a question. But when we
do without the punctuation, the performance is not
so good, neither. Some INTERJECTION words are
also confused with the ACKNOWLEDGEMENT.

It’s exceptionally delicate when dealing with
some classed heavily depending on the semantic re-
lationship. For the all-class model, we haven’t come
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up with LFs for BARE MODIFIER PHRASE and COR-
RECTION who are hard to capture.

8 Conclusion

In this article, we present our work regarding non-
sentential utterances automatic classification. NSUs
are utterances partial syntactically but convey inte-
gral meaning semantically. We chose one classifi-
cation for Chinese Mandarin and test it with a tele-
phone conversation corpus, using a weak supervi-
sion method to build a model for automatic labeling.

From a broader perspective, the approach adopted
shows interesting results. It constitutes an efficient
way to combine domain experts (here linguists) with
state-of-the art machine learning techniques.

Future development For classes with barely any
coverage in the reference data set, such as the sub-
categories in ANSWER, we can put more data of
these classes for the model training and use some
data augmentation method so that we can test and
find the LF for these classes.

Dealing with classes easily confused with major-
ity class, such as INTERJECTION and ACKNOWL-
EDGEMENT, we may need audio-related information
to distinguish them, such as intensity and energy of
utterances. Prosodic information has appeal in sepa-
rating question from declarative with the rising tone
at the end for the Mandarin.

To find the semantic connection for a particular
utterance in cases, especially when there are no re-
peated patterns, we need tools to present the relat-
edness not only for two consecutive utterances but
with a flexible contextual window.
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Abstract

Sentence modeling is a vital feature engineer-
ing for document classification. Various fea-
ture extraction and summarization algorithms
have been adopted for efficient classification
of a sentence, e.g., dense word vectors and
neural network classifiers. Recently, the con-
cept of attention for machine translation has
been applied to various natural language pro-
cessing (NLP) tasks and has shown signifi-
cant performance. In this paper, we take a
look at the syntactic categories of the words,
to make up a metadata projection matrix that
assigns strong restrictions on determining the
attention weight. Unlike conventional atten-
tion models, which are considered as a divi-
sion of location-based approaches, our model
adds a selection layer to highlight categori-
cal metadata that may appear more than once.
The proposed algorithm shows improved per-
formance compared to the baselines with the
tasks in syntax-semantics, suggesting a possi-
bility of extension to other fields such as sym-
bolic music or bitstream analysis.

1 Introduction

Sentence modeling, which incorporates featuriza-
tion and embedding, has been widely studied from
short utterances to large-scale documents. Its use-
fulness and broad applicability have been proven
with various classification and regression tasks.
Also, in recent years, attention models have demon-
strated the significant performance of such ap-
proaches, along with deep learning techniques that
have shifted the paradigm of the standard recipes.

In applying the attention models, we noted that
the utility of the syntactic properties should be ex-
plored in a bit wide point of view. Like the notes
in music that have corresponding chords, the ob-
servable components of a sentence are assigned syn-
tactic categories after constituency parsing, such as
noun, verb, and adjective. They are interpreted as
a kind of metadata regarding each token', that may
appear more than once in the document. We want
to claim such information can be exploited in mak-
ing up the attention weight, not just being adopted
as input-level data. For instance, in an oxymoron
identification task (Cho et al., 2017), given a sen-
tence like “This is a sugar-free sweet tea.”, it may
be beneficial for the analysis to attend to sugar-free
and sweet with a similar concentration, mainly due
to their syntactic property being close to each other.

Although such syntactic properties can be repre-
sented in various ways such as tree structure and de-
pendency, we pay attention to part-of-speech (POS),
for some practicality. First of all, we already have
many computationally efficient tools that can extract
syntactic classes from the tokens of the sentence.
Next, even though the POS tagger is not entirely ac-
curate, the general tendency may provide sufficient
information for classification. This flexibility can be
supportive for the proposed model to analyze corpus
with non-formal sentences such as tweets.

The proposed model differs from the usual self-
attentive models in that it takes into account the in-
formation of syntactic categories while maintaining

"Henceforth, we interchangeably use (token-wise) categori-

cal data, categorical metadata, and categorical information, all
referring to the syntactic classes that each token belongs to.
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the original form of classification that uses word
vector sequencez. Furthermore, the model tells us
how much attention we should pay to the compo-
nents with specific syntactic properties, given the
overall summarization of a sentence. The contribu-
tion of this study is as follows:

* We suggest a modified version of the conven-
tional location-based attention model by insert-
ing a simple projection layer that contains in-
formation on the syntactic categories.

* We verify the utility of the proposed scheme
with widely used benchmarks and suggest fur-
ther usage.

2 Related Work

2.1 Sentence embedding

Embedding a sentence into numerics is an essen-
tial process in data-driven sentence classification.
Two major types of representation are widely used,
namely sparse and dense.

One of the most popular sparse word representa-
tions, bag-of-words (BoW) model, is a one-hot en-
coding of the words in the sentence and is most com-
monly used for its conceptual clarity. Another well
known sparse representation is the term frequency-
inverse document frequency (TF-IDF), which con-
veys the relative importance of the terms in each
document.

The main issue of BoW and TF-IDF is that they
can hardly give information about the context win-
dow of each term in a sentence. Thus, count-based
approaches for the local context window of words
have been studied, as in Lebret and Collobert (2013).
However, it can also be problematic because such
approaches can disproportionate weight to words
with large counts. They can also cause a dimen-
sional explosion.

To cope with the above, Mikolov et al. (2013) pro-
posed an algorithm that embeds a word into a low
dimensional dense vector that involves a local con-
text window. The real-vectorized words facilitate
similarity computation between the original words

’In other words, here we don’t adopt attachment such as
‘word/POS’.

Column-wise dot product with
hidden representation Random
initialization
1, RelU W

Inp ut S Word context vector
sentence s
ReLU
‘ - Attention layer
Softmas
oftmax G Z w1
i
Sequential @ @ a3 a1 a
word ®
embedding
v »
BIiLSTM »
Softmax
S axden ——— (Sigmoid)

Figure 1: Descriptive diagram of attention model pre-
sented in self-attentive sentence embedding (Lin et al.,
2017). The arrows in the figure indicate the flow of in-
formation. The triangles in the overall system denote the
fully connectedness to the dense layer, together with the
stated activation functions.

and can be used to represent sentences, e.g., by av-
eraging Le and Mikolov (2014). In Pennington et al.
(2014), the advantages of the approaches in Lebret
and Collobert (2013) and Mikolov et al. (2013) were
combined.

2.2 Modeling techniques in classification

In sentence classification, basic recipes such as naive
Bayes, decision trees, and logistic regression models
were conventionally used. Among such models, the
support vector machine (Cortes and Vapnik, 1995)
showed quite a practical accuracy.

However, ever since the computational break-
through that had taken place in the deep neural
network (DNN) system (Hinton et al., 2006), neu-
ral architectures have been adopted within the sen-
tence classification tasks, along with the emergence
of dense word vectors. Convolutional neural net-
work (CNN), which initially came up for the im-
age classification task (Krizhevsky et al., 2012),
was successfully applied to the sentence classifica-
tion task (Kim, 2014). Recurrent neural networks
(RNN) (Schuster and Paliwal, 1997; Graves, 2012),
which had been proposed to deal with sequential
data processing, also have shown significant perfor-
mance in sentence classification tasks through vari-
ous forms such as gated recurrent unit (GRU) (Tang
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etal., 2015) and bi-directional long short-term mem-
ory (BiLSTM) (Chen et al., 2017), comprehensively
summarizing sentences into dense vectors.

Lately, attention models have been applied to the
neural machine translation (Bahdanau et al., 2014)
in the way of multiplying the attention vector with
the decoder-encoder network matrix to generate a
particular target word from the source word. It can
be regarded as jointly training a weight vector aug-
mented to a feature or hidden layers to focus on a
specific part of the input feature. Driven by its con-
ceptual clarity, it was soon applied to areas such as
image captioning (Xu et al., 2015) and natural lan-
guage interface (Liu et al., 2016).

In Lin et al. (2017), the self-attentive embedding
(SA, Figure 1) was applied to the sentence classifica-
tion, by aggregating essential attributes of the hidden
layers into sentence vectors. A word context vector,
which is multiplied by the higher-level representa-
tion of hidden layers in BiLSTM, is used to create
attention (weight) layer with a sum equal to 1.

In detail, for X = X/ the input token sequence,
H = HF the hidden layers, weight 1/; and bias b,
the BiLSTM hidden layers are defined as:

Ht = tanh (Wt [Xt, Ht_1] + bt) (1)

As in the right top of Figure 1, each hidden layer
is multiplied with word context vector C' to yield a
softmax-ed attention vector o with ), oy = 1, as:

ol = softmax (HlL ®0) 2

where © denotes a column-wise dot product. o is

further multiplied to H¥ and is summed to be fed
to the final decision layer, as a representative hidden
layer output:

Hy=Y of ® Hf
t

3)

where ® denotes a column-wise multiplication of
the scalar weights. In the figure, L equals to the
maximum sentence length max_len and & denotes
the weighted sum of the hidden layers.

Note that this basic architecture covers most of
the sentence-level attention schemes that precede the
contemporary self-attention models (Vaswani et al.,
2017; Devlin et al., 2019). In this regard, at this

point, we consider this structure suffices as a base-
line to implement our scheme on, due to the as-
signment of attention weight being interpretable and
straightforward.

3 Proposed Method

In this section, we demonstrate the concept of Pay
Attention to Categories, or PAC structure, which
can adequately reflect the categorical metadata of
each token onto the attention model. It denotes
an insertion of a projection matrix that incorpo-
rates the information on syntactic classes, which
yields the modified attention weight that comes af-
terward. Materializing it accompanies three main
steps, namely (a) constructing word vector se-
quence, (b) feature extraction for the attention
source, and (c) projecting the weight that corre-
sponds with the category of each token (or here, syn-
tactic classes) to the attention layer.

(a) Word vector sequence can be constructed by
methodologies used in general. It is briefly de-
picted at the bottom of Figure 2, especially step (2),
where max_len denotes the upper limit of the sen-
tence length regarding word count. Summarizers
such as CNN and BiLSTM employ this as a feature,
using sigmoid (binary case) or softmax (multi-class)
as an activation function.

(b) Attention source utilizes various features ex-
tracted from the sentence. It can be TF-IDFs, av-
eraged word vectors, or the output layer of a CNN
or BILSTM summarizer. In this paper, (bigram) TF-
IDF and BiLSTM hidden layer output were adopted
based on the performance. They are fed to PAC
structure after passing a single dense layer with rec-
tified linear unit (ReLU) activation, as depicted in
the top of Figure 2.

(c) PAC structure consists of a layer carrying the
category-wise weight (shortly a weight layer), a pro-
jection matrix, and their multiplication (the attention
layer). The size of the weight layer (n,,) equals to the
number of the categories that appear throughout the
document.

In detail, let S be the attention source and
ReLU, hsig be activation functions. Then, for given
Ny, We get:

wy, = hsig(ReLU(5)) 4)
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Figure 2: A Descriptive diagram for the proposed system.

On the other hand, we have a fixed projection layer
which contains the syntactic information regarding
each token. The matrix Proj is of size (n,, L), and
each column tells the syntactic category each token
belongs to. In this study, it is represented by POS.
We multiply it with the former weight layer to obtain
the attention layer of width L:
o = matmul (w,, Proj) 5)
It consists of the weight corresponding to each word
of the sentence and is column-wisely multiplied to
either the hidden layers (PAC-Hidden) or the word
vector sequence (PAC-Word). The two strategies are
depicted in Figure 2, where x denotes a matrix mul-
tiplication and ® denotes a column-wise multipli-
cation of the attention layer to (1) the hidden layer
sequence as BiLSTM output (PAC-Hidden), or (2)
the original word vector sequence (PAC-Word). For
PAC-Word, the weighted word vector sequence be-
comes an input of BILSTM again.
More on the figure, to help the readers understand,
we specified the number of categories (n, = 9), as

shown in the weight layer w,,. The sequence of one-
hot encoded vectors of categorical metadata, Proj,
expressed in the form of a projection matrix, con-
veys the weight to the attention layer, concerning the
syntactic class that each column (of hidden layers or
word vector sequence) incorporates. For instance, if
the index regarding a word’s syntactic class is 2, as
in the case of the second and the second to the last,
it is multiplied by the value conveyed from as. Note
that this setting allows the repetition of the attention
weight. It is worth noting that the activation func-
tion of the weight layer is set to hard sigmoid as in
(4). We surmised that the hidden layer’s information
should be fully retained even after it is transferred to
the projection matrix. Here, hard sigmoid plays a vi-
tal role, minimizi