Ritika.
Also published as: Ritika
2024
DIMSIM: Distilled Multilingual Critics for Indic Text Simplification
Sneha Mondal
|
Ashish Agrawal
|
Ritika
|
Preethi Jyothi
|
Aravindan Raghuveer
Findings of the Association for Computational Linguistics: ACL 2024
Self-correction techniques have recently emerged as a promising framework to improve the quality of responses generated by large language models (LLMs). Few-shot prompted LLMs act as critics to produce feedback for an input, which is further fed to a refiner (also an LLM) to produce an output. However, these critique-refine steps require multiple expensive LLM calls. To circumvent this large inference cost, we borrow inspiration from prior work on knowledge distillation and propose the use of critique distillation to train critic models. These are smaller sequence-to-sequence models that are trained on input-critique pairs generated by an LLM. We focus on the problem of text simplification for three Indian languages: Hindi, Bengali and Marathi. This task is a good fit for self-correction style techniques. It also hasn’t been systematically explored for Indian languages before. We train two separate critics that focus on lexical and structure complexity, and show that it is surprisingly more effective than using an LLM directly as a critic in both 0-shot and few-shot settings. We also show the benefits of training multilingual critics, as opposed to monolingual critics. Extensive human evaluations show that on average, raters find 80% of DIMSIM’s output to be simple and easy to read.
2022
CoCoa: An Encoder-Decoder Model for Controllable Code-switched Generation
Sneha Mondal
|
Ritika.
|
Shreya Pathak
|
Preethi Jyothi
|
Aravindan Raghuveer
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Code-switching has seen growing interest in recent years as an important multilingual NLP phenomenon. Generating code-switched text for data augmentation has been sufficiently well-explored. However, there is no prior work on generating code-switched text with fine-grained control on the degree of code-switching and the lexical choices used to convey formality. We present CoCoa, an encoder-decoder translation model that converts monolingual Hindi text to Hindi-English code-switched text with both encoder-side and decoder-side interventions to achieve fine-grained controllable generation. CoCoa can be invoked at test-time to synthesize code-switched text that is simultaneously faithful to syntactic and lexical attributes relevant to code-switching. CoCoa outputs were subjected to rigorous subjective and objective evaluations. Human evaluations establish that our outputs are of superior quality while being faithful to desired attributes. We show significantly improved BLEU scores when compared with human-generated code-switched references. Compared to competitive baselines, we show 10% reduction in perplexity on a language modeling task and also demonstrate clear improvements on a downstream code-switched sentiment analysis task.