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Abstract
Variational autoencoder (VAE) is a widely used generative model that gains great popularity for its capability in density
estimation and representation learning. However, when employing a strong autoregressive generation network,
VAE tends to converge to a degenerate local optimum known as posterior collapse. In this paper, we propose a
model named Scale-VAE to solve this problem. Scale-VAE does not force the KL term to be larger than a positive
constant, but aims to make the latent variables easier to be exploited by the generation network. Specifically, each
dimension of the mean for the approximate posterior distribution is multiplied by a factor to keep that dimension
discriminative across data instances. The same factors are used for all data instances so as not to change the
relative relationship between the posterior distributions. Latent variables from the scaled-up posteriors are fed into
the generation network, but the original posteriors are still used to calculate the KL term. In this way, Scale-VAE can
solve the posterior collapse problem with a training cost similar to or even lower than the basic VAE. Experimental
results show that Scale-VAE outperforms state-of-the-art models in density estimation, representation learning, and
consistency of the latent space, and is competitive with other models in generation.
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1. Introduction

As a widely used generative model, variational
autoencoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) gains great popularity for its
capability in density estimation and representation
learning. VAE defines the joint distribution between
the observed data and a set of latent variables, and
approximates the posterior of latent variables using
the amortized variational inference. Despite the
successful use in various challenging domains, a
notorious problem of VAE is that it often ignores
the latent variables completely, particularly when
employing the strong autoregressive generation
networks, such as LSTM (Hochreiter and Schmid-
huber, 2012) on text or PixelCNN (Van den Oord
et al., 2016) on images. In this case, VAE fails to
diversify the posteriors of different data by simply
using the single posterior distribution that is almost
identical to the prior to model all data instances,
which is termed the posterior collapse or the KL
(Kullback–Leibler divergence) vanishing problem
(Bowman et al., 2016).

Many convincing solutions have been proposed
to alleviate the problem of posterior collapse. One
thread of research is to weaken the generation net-
work by replacing it with a less autoregressive alter-
native (Semeniuta et al., 2017; Yang et al., 2017) or
removing some of the conditional information (Bow-
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man et al., 2016; Chen et al., 2016; Petit and Corro,
2021). However, these methods do not make full
use of the expressive generation network, which
may reduce the generative ability of the model. An-
other thread of research is to attribute the poste-
rior collapse to optimization challenges and design
various training strategies including KL annealing
(Bowman et al., 2016; Fu et al., 2019), β-VAE (Hig-
gins et al., 2016), Free-Bits (Kingma et al., 2016),
semi-amortized VAE (Kim et al., 2018), aggressive
training (He et al., 2018), and inference network pre-
training (Li et al., 2019). However, these methods
either do not address the essence of the problem,
have non-smooth optimizations (Chen et al., 2016),
or are very time consuming.

Some other studies attempt to boost the mutual
information (MI) between latent variables and input
data by adding additional terms to the objective
(Zhao et al., 2019; Zheng et al., 2019). However,
due to the intractability of approximating the MI-
involved objective, additional optimization methods
such as maximum-mean discrepancy or Gibbs in-
equality are required. Ma et al. (2019) introduced
mutual posterior-divergence regularization in the
objective, which is analytical and has a similar goal
with MI. However, the relative scale of the regular-
ization term and original objective requires deliber-
ate tuning.

Another important thread is to keep the KL term of
the objective as a positive constant. Some studies
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use other distributions instead of the Gaussian prior,
such as von Mises-Fisher distribution (Davidson
et al., 2018; Guu et al., 2018) or uniform distribu-
tion (Van den Oord et al., 2017; Zhao et al., 2018).
δ-VAE (Razavi et al., 2019) constrains the mean
and variance of the posterior to have a minimum
distance to the prior. However, forcing the same
constant KL for all data instances or setting the
parameters in a specific range may limit the model
performance. A batch normalization-based method
has achieved encouraging results (Zhu et al., 2020;
Shen et al., 2021). It can avoid the posterior col-
lapse problem by keeping the expectation of the
KL’s distribution positive. However, the theoretical
basis was not clearly stated, and keeping the KL
term positive is not a sufficient condition to avoid
posterior collapse. In addition, this method may
lead to semantic confusion in the latent space.

In this paper, we present a novel model named
Scale-VAE that can avoid the posterior collapse
effectively and efficiently. The contributions can be
summarized as follows:

• We analyze the causes of posterior collapse
in VAE and accordingly summarize several
directions to solve the problem.

• We propose a model named Scale-VAE in
which a factor is multiplied to each dimension
of the mean for the posterior distribution to
keep the variance of the mean in that dimen-
sion not close to zero. The scaled-up latent
variables are fed into the generation network,
but the original posteriors are still used to cal-
culate the KL term. In this way, the posterior
collapse problem is solved and the generative
ability of the model is guaranteed. Meanwhile,
the same factors are used for all the data in-
stances, which ensures the semantic consis-
tency and coherence of the latent space.

• We make connections between Scale-VAE and
previous work. Scale-VAE achieves the same
goal as MI-based methods but is more effec-
tive and efficient. It tries to increase the diver-
gence among the posterior distribution family
and tries to maximize the MI between latent
variables and input data.

• Extensive experiments have been conducted,
and the results clearly show that Scale-VAE
can outperform or be on par with state-of-the-
art models on density estimation, representa-
tion learning, and latent space property.

2. Background and Related Work

VAE (Kingma and Welling, 2014; Rezende et al.,
2014) aims to construct a smooth latent space
z ∈ Z by learning a generative model pθ(x, z)

to maximize the marginal likelihood log pθ(x) =
log

∫
Z
pθ(x|z)p(z)dz on the observed data p(X).

Typically, the prior p(z) is assumed as the multi-
variate Gaussian distribution N(0, I). Due to the
intractability of this marginal likelihood, an amor-
tized inference distribution qϕ(z|x) is utilized to ap-
proximate the true posterior. Then it turns out to
optimize the evidence lower bound (ELBO):

LELBO = Ep(X)[Eqϕ(z|x)[log pθ(x|z)]
−DKL[qϕ(z|x)∥p(z)]],

(1)

where qϕ(z|x) is parameterized as a multivariate
Gaussian distribution N(µ, σ2) by an inference net-
work (encoder) with parameters ϕ, and pθ(x|z) de-
notes the generation network (decoder) with pa-
rameters θ.

In practice, when applying autoregressive mod-
els as the decoder, e.g., LSTM that is a common
choice in modeling text, the posteriors qϕ(z|x) of
different data instances x ∈ X tend to collapse to
the prior p(z). In this case, the latent variables z
are independent of the data x, then VAE fails to
learn meaningful representations of the data and
the latent variables give no guidance to generation
process.

Now let’s focus on the cause of the posterior
collapse problem. From the perspective of informa-
tion bottleneck theory (Alemi et al., 2016), the latent
variable z fed into the decoder is obtained from the
posterior qϕ(z|x) = N(µ, σ2) using the reparame-
terization trick: first sample a noise variable ε from
the Gaussian distribution N(0, I); then compute
z through a linear transformation using µ and σ.
Thus, the mean µ and diagonal covariance matrix
σ2 transmit the information about the input data x.
According to Eq. 1, VAE is trained by jointly maxi-
mizing the reconstruction term Eqϕ(z|x)[log pθ(x|z)]
and minimizing the KL term DKL[qϕ(z|x)∥p(z)].
The KL term can be considered as an upper bound
on the amount of the transmitted information. Then,
there is a contradiction that the reconstruction term
encourages the latent variables to transmit more
information about the input data x, but the KL term
limits the amount of information that can be trans-
mitted.

In addition to this contradiction, during the early
stages of training, the latent variables z contain little
information about the input data x. This makes it
difficult for VAE to exploit the information in z. When
equipped with an expressive decoder, VAE tends to
give up difficult latent variables and rely entirely on
the decoder for generation, eventually converging
to a degenerate local optimum.

According to the above analysis, solving the pos-
terior collapse problem can be attempted from the
following directions.

First, weaken the decoder, forcing the model to
rely on latent variables for generation. Semeniuta
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et al. (2017) and Yang et al. (2017) implemented the
decoder by CNN instead of autoregressive mod-
eling. Bowman et al. (2016) randomly removed
some fraction of the conditioned-on word tokens
to weaken the decoder. Petit and Corro (2021)
introduced a regularization term based on frater-
nal dropout in the objective that forces the hidden
states computed by LSTM to be similar even if dif-
ferent word tokens in the input are masked. Chen
et al. (2016) fed a lossy representation of data to
the autoregressive decoder.

Second, alleviate the contradiction between the
reconstruction term and the KL term, or use a
looser constraint on the upper bound of the infor-
mation transmitted by latent variables. Bowman
et al. (2016) proposed the KL annealing method
that gradually increases the weight of KL term dur-
ing training. Fu et al. (2019) proposed to repeat
the process of increasing the KL weight multiple
times. Higgins et al. (2016) proposed β-VAE that
re-weights the KL term using a hyperparameter
β. Alemi et al. (2018) demonstrated that setting
β < 1 avoids the posterior collapse problem, but
setting β ̸= 1 results in an improper statistical
model. Kingma et al. (2016) proposed Free-Bits
that replaces the KL term with a hinge loss term
and stops optimization of the KL value when it is
smaller than a threshold. Pelsmaeker and Aziz
(2020) proposed the minimum desired rate tech-
nique to attain ELBO values at a pre-specified rate
that does not suffer from the gradient discontinuities
of Free-Bits. Davidson et al. (2018) and Guu et al.
(2018) replaced the Gaussian prior with the von
Mises-Fisher distribution so that the KL term is in-
dependent of the data instances. Song et al. (2022)
specified the prior as multiple Gaussian distribu-
tions to alleviate the control over information upper
bound transmitted in the latent variables. Havrylov
and Titov (2020) proposed Levenstein VAE in which
the generator disregarding latent variables will incur
large penalties.

Third, add MI-based terms to the objective in or-
der to enforce the relation between latent variables
and input data. Zheng et al. (2019) proposed Fisher
autoencoder that can implicitly control the MI be-
tween latent variables and input data by setting ap-
propriate Fisher information constraint. Zhao et al.
(2019) added a KL divergence term between the
aggregated posterior and prior on latent variables
to the objective and adjusted the scaling parame-
ters of this term and the original KL term to control
the MI. Ma et al. (2019) proposed to use a mutual
posterior-divergence regularization in the objective,
which has a similar goal with MI.

Fourth, reduce the difficulty of exploiting latent
variables, especially in the initial stages of training.
Dieng et al. (2019) proposed to add skip paths be-
tween the latent variables and the hidden layers

of decoder. He et al. (2018) proposed to update
the encoder with additional training loops before
updating the decoder. Li et al. (2019) proposed
to initialize the encoder of VAE with a pre-trained
one from an autoencoder, and then continue train-
ing with Free-Bits. Kim et al. (2018) proposed to
use amortized variational inference to initialize VAE
and run stochastic variational inference to refine
them. Zhu et al. (2020) proposed to apply batch
normalization to the parameters of the approximate
posteriors for latent variables and pointed out that
keeping the expectation of KL positive is sufficient
to prevent posterior collapse. Shen et al. (2021)
extended this method with dropout on the variances
of posteriors to learn a more diverse and less un-
certain latent space.

3. Scale-VAE

3.1. The Proposed Method

As discussed above, since the information about
input data in the latent variables is difficult to ex-
ploit, VAE benefits more easily from only relying on
the expressive decoder to reconstruct the data. In
the initial stages of training, there is a lot of noise
in the latent variables, which makes it difficult for
the model to use the information in them. As the
training progresses, under the pressure of the KL
term, the posterior distributions of different data in-
stances become so similar that the model cannot
distinguish effectively. So, the model abandons the
latent variables, causing posterior collapse.

Intuitively, if the difficulty of obtaining information
from latent variables can be reduced, the model
may be willing to take advantage of the latent vari-
ables and thus jump out of the degenerate local
optimum at the time of posterior collapse to achieve
better results. Furthermore, a VAE without poste-
rior collapse is not necessarily a good model, in
addition to learning effective representations, the
model should also be able to generate high-quality
results and learn a continuous and semantically
meaningful latent space.

Motivated by this, we propose Scale-VAE to
achieve the following three goals: making the dis-
tinction between the posteriors of different data
instances more significant to prevent posterior col-
lapse; learning a smooth latent space to guarantee
the generation quality; maintaining semantic con-
sistency and coherence of the learned latent space.

Given a data instance x ∈ X, the encoder
Encϕ(·) parametrizes the posterior distribution
qϕ(z|x) as a n-dimensional Gaussian distribution
N(µx, σ

2
x) with mean µx = (µx,1, µx,2, ..., µx,n)

and diagonal covariance σ2
x. Using Std[µX,d] to

denote the standard deviation for the dth dimen-
sion of the mean µx across the data instances X,
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we define the scale-up factor as:

f = (f1, f2, ..., fd, ..., fn), (2)

fd =
des_std
Std[µX,d]

, (3)

where f is a n-dimensional vector, fd is the dth
dimension, and des_std is a parameter for adjusting
the standard deviation.

The factor f is used to derive a scaled-up poste-
rior distribution:

q̂ϕ(z|x) = N(µ̂x, σ
2
x), (4)

µ̂x = (µ̂x,1, µ̂x,2, ..., µ̂x,d, ..., µ̂x,n), (5)
µ̂x,d = fd · µx,d. (6)

Then the objective to optimize in the framework
of Scale-VAE is:

Lscale = Ep(X)[Eq̂ϕ(z|x)[log pθ(x|z)]
−DKL[qϕ(z|x)∥p(z)]].

(7)

In contrast to the objective of VAE in Eq. 1,
the objective of Scale-VAE in Eq. 7 merely re-
places qϕ(z|x) in the reconstruction term with the
scaled-up posterior q̂ϕ(z|x). Under the distribu-
tions q̂ϕ(z|x) = N(µ̂x, σ

2
x), the standard deviation

Std[µ̂X,d] for each dimension of the mean µ̂x across
the data instances X is des_std. By setting a ap-
propriate parameter des_std, Scale-VAE can distin-
guish the latent variables of different data instances
and obtain effective information from them more
easily.

The KL term in the objective of Scale-VAE is the
same as for VAE. There are three considerations
for doing so. First, it prevents the model from push-
ing the posterior qϕ(z|x) even further into the prior
p(z). Second, the model does not force the KL term
to be larger than a certain positive constant, but
aims to make the whole objective reach the opti-
mum. Third, during inference stage, after sampling
a latent variable z from the prior p(z), we multiply
it by the factor f and then input it to the decoder
Decθ(·) for generation, which is consistent with the
training stage. The latent space used for genera-
tion is smooth without many discontinuous holes
due to large standard deviation of µ̂x.

Typically, the model is trained in mini-batches.
The factor f in Eq. 2 and Eq. 3 can only be com-
puted within a mini-batch. But in this case, the
factors used in each mini-batch are different, which
will cause clutter in the latent space. To solve this
problem, each mini-batch uses its own factor f only
in the initial f_epo training epochs, and thereafter
we record the factors f of all the mini-batches in
each training epoch and then take the average f̄
as the factor of the next training epoch.

Algorithm 1 shows the training procedure of
Scale-VAE.

Algorithm 1 Training Procedure of Scale-VAE
1: Initialize ϕ, θ, des_std and f_epo
2: i← 1
3: while not convergence do
4: for x in mini-batches do
5: µx, σ

2
x = Encϕ(x)

6: f = des_std/Std[µx]
7: if i ≤ f_epo then
8: µ̂x = f · µx

9: else
10: µ̂x = f̄ · µx

11: end if
12: Sample z ∼ N(µ̂x, σ

2
x)

13: Generate x from Decθ(z)
14: gϕ, θ ← −▽ϕ, θ Lscale(x; ϕ, θ)
15: Update ϕ, θ according to gϕ, θ
16: end for
17: f̄ = Average(f)
18: i← i+ 1
19: end while

3.2. Connections with Previous Work
To measure the diversity of posteriors, Ma et al.
(2019) proposed the mutual posterior diversity
(MPD) that is defined as:

MPD = Ep(X)[DKL[qϕ(z|x1)∥qϕ(z|x2)]], (8)

where x1, x2 ∼ P (X) are i.i.d. data instances.
Shen et al. (2021) refined it with symmetric KL di-
vergence, and it can be computed in an analytical
way under Gaussian distributions:

2MPD = 2Ep(X)[DSKL[qϕ(z|x1)∥qϕ(z|x2)]]

=
n∑

d=1

Ep(X)[
(µx1,d − µx2,d)

2

σ2
x1,d

]+

n∑
d=1

Ep(X)[σ
2
x,d]Ep(X)[

1

σ2
x,d

]− 1.

(9)

If σ2
x,d is upper bounded, MPD has one lower and

strict bound:

MPD ≥ 1

C

n∑
d=1

V arp(X)[µx,d], if σ2
x,d ≤ C,

(10)
for which a detailed proof can be found in Shen et al.
(2021). In Scale-VAE, the value of σ2

x,d is around 1
under the constraint of the KL term. So, the Scale-
VAE method is equivalent to increasing the MPD,
that is, increasing the divergence among the pos-
terior distribution family for better distinguish.

MPD can also be written as follows (Ma et al.,
2019):

MPD = Ep(X)[DKL[qϕ(z|x)∥qϕ(z)]
+DKL[qϕ(z)∥qϕ(z|x)]],

(11)
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where qϕ(z) = Ep(X)[qϕ(z|x)] is the aggregated
posterior.

We now come to the MI (Alemi et al., 2016) be-
tween input instances x and latent variables z under
the distribution qϕ(x, z):

Iq(x; z) =Ep(X)[DKL[qϕ(z|x)∥p(z)]]
−DKL[qϕ(z)∥p(z)]

(12)

= Ep(X)[DKL[qϕ(z|x)∥qϕ(z)]]. (13)
According to Eq. 11 and Eq. 13, MPD is a sym-

metric version of the KL-divergence in MI. So, the
Scale-VAE method is also equivalent to increasing
the MI between latent variables and input data.

Scale-VAE has some commonalities with the
batch normalization-based method (Zhu et al.,
2020; Shen et al., 2021). Batch normalized-VAE
(BN-VAE) regularizes µx,d with batch normalization:

µ̂x,d = γ
µx,d − µBd

σBd
+ β, (14)

where µBd and σBd denote the mean and standard
deviations of µx,d in a mini-batch. After this regular-
ization, the distribution of µx,d has the mean of β
and the standard deviation of γ, and the expectation
of KL has a lower bound E[KL] ≥ n · (γ2 + β2)/2.

However, keeping the expectation of KL term pos-
itive is not a sufficient condition to avoid posterior
collapse. For example, if we set γ = 0, β > 0,
E[KL] has a positive lower bound, but posterior
collapse still occurs. In addition, the regularization
is performed within each mini-batch, which results
in different degrees of scaling on the posteriors.

Compared to BN-VAE, Scale-VAE has the fol-
lowing differences. First, the motivation is not to
force the KL term to be larger than a certain positive
constant, but to use the scaled-up posteriors for
generation, thus making it easier for the model to
exploit the information in latent variables. Second,
all data instances use the same scale-up factor,
preventing clutter in the latent space. Third, the KL
term is still computed using the original posteriors;
the model can feel free to optimize the KL term,
and the scaling-up will help the model make better
use of the latent variables; this alleviates the con-
tradiction between the reconstruction term and the
KL term, so that the model can not only learn the
latent space that is smooth and tends to the prior,
but also improve the density estimation.

4. Experiments

4.1. Experimental Setup
Configurations. Both the encoder and decoder
are implemented with a one-layer LSTM. The hid-
den size is 1024. For all experiments we used a
Gaussian prior N(0, I). An affine transformation

of the 32-dimensional latent variable z is used as
the initial hidden state of the decoder, and z is also
concatenated with input for the decoder. The di-
mension of word embedding layer is 512. The LSTM
layer and embedding layer are initialized with uni-
form distributions on [−0.01, 0.01] and [0.1, 0.1], re-
spectively. Dropout layers with probability 0.5 are
applied to both the word embeddings and the last
output features of the decoder. We utilized the SGD
optimizer with 32 data instances per mini-batch and
started with a learning rate of 1.0 and decayed it
by 0.5 if the validation loss has not improved in 5
epochs. We stopped training after 5 learning rate
decays with the maximum number of epochs as 120.
We applied a linear annealing strategy to increase
the KL weight from 0 to 1 in the first 10 epochs.
Baselines. We compared Scale-VAE with various
models including those holding the state-of-the-art
performance on text modeling benchmarks: the
LSTM language model (LSTM-LM); VAE with an-
nealing (Bowman et al., 2016); VAE using default
cyclical annealing schedule in Fu et al. (2019); β-
VAE (Higgins et al., 2016) using parameter β to
re-weight the KL term; Free-Bits (Kingma et al.,
2016) that stops the optimization of KL term when
it is smaller than a threshold; δ-VAE (Razavi et al.,
2019) using a parameter to constrain the minimum
of KL term by setting the mean and variance of
posteriors in a specific range; SA-VAE (Kim et al.,
2018) combining amortized variational inference
and stochastic variational inference; Skip-VAE (Di-
eng et al., 2019) that adds direct paths between
latent variables and hidden layers of the decoder;
Agg-VAE (He et al., 2018) that trains the encoder
aggressively; MAE (Ma et al., 2019) using two pa-
rameters to control the diversity and smoothness
of the latent space; BN-VAE (Zhu et al., 2020) us-
ing batch normalization to control the lower bound
on the expectation of KL term; DU-VAE (Shen
et al., 2021) using batch normalization and variance
dropout to control the diversity and uncertainty of
the latent space.

4.2. Density Estimation
We conducted experiments on two benchmark
datasets: Yahoo and Yelp corpora (Yang et al.,
2017). We evaluated our method with the approx-
imate negative log-likelihood (NLL) estimated by
500 importance weighted samples (Burda et al.,
2016). It provides a tighter lower bound compared
to ELBO and shares the same information with
perplexity (PPL). We reported the value of the KL
term DKL[qϕ(z|x)∥p(z)]. We also computed the MI
Iq(x; z) (Alemi et al., 2016) as described in Eq. 13
under the distribution qϕ(x, z)

1 and the number of

1For Scale-VAE, Iq(x; z) is computed under the
scaled-up distribution q̂ϕ(x, z).
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Yahoo Yelp
Model NLL KL MI AU NLL KL MI AU
LSTM-LM 328.0 - - - 357.5 - - -
VAE 328.6 0.2 0.2 0.8 358.0 0.1 0.1 0.2
cyclical 330.5 2.1 2.1 2.3 359.3 2.1 2.0 4.2
β-VAE(0.4) 328.4 7.7 7.1 7.3 358.0 5.4 5.1 3.6
Free-Bits(0.1) 328.3 3.4 2.4 32.0 357.0 4.8 2.6 32.0
δ-VAE(0.1) 329.7 3.2 0.0 2.0 357.9 3.2 0.0 0.0
SA-VAE∗ 327.2 5.2 3.7 9.8 355.9 2.8 1.7 8.4
Skip-VAE∗ 328.5 2.3 1.3 8.1 357.6 1.9 1.0 7.4
Agg-VAE∗ 326.7 5.7 2.9 15.0 355.9 3.8 2.4 11.3
MAE∗(1, 0.2|2, 0.2) 332.1 5.8 3.5 28.0 362.8 8.0 4.6 32.0
BN-VAE(0.6) 326.9 6.5 5.8 32.0 356.6 6.5 5.7 32.0
BN-VAE(0.0, 0.7) 331.3 7.8 0.0 0.0 360.4 7.8 0.0 0.0
DU-VAE(0.6, 0.8|0.5, 0.8) 326.9 8.8 7.2 28.0 356.2 6.7 5.9 20.0
Scale-VAE(0.7, 1|0.7, 7) 325.0 7.1 8.3 32.0 353.7 5.4 8.2 32.0
Scale-VAE(0.9, 1|0.9, 7) 323.1 9.5 9.1 32.0 351.7 7.2 9.1 32.0
Scale-VAE(1.1, 1|1.1, 7) 321.3 8.4 9.2 32.0 349.9 6.7 9.2 32.0
Scale-VAE⋆(0.7, 1|1.1, 7) 325.9 6.4 7.9 32.0 350.7 8.1 9.2 32.0

Table 1: Density estimation performance on Yahoo and Yelp. The results are the mean values across 5
different random runs. ∗ indicates the results are referred from Kim et al. (2018), He et al. (2018) and
Shen et al. (2021). ⋆ indicates that KL annealing is not used. Hyperparameters are listed in brackets and
split by | if different on different datasets.

activate units (AU) (Burda et al., 2016) in the la-
tent space. The activity of a latent dimension d
is measured as Azd = Covx(Ezd∼q(zd|x)[zd]). If
Azd > 0.01, the dimension d is regarded as active.

Table 1 shows the results2. We use NLL as the
main metric in this part because it is the most di-
rect metric to evaluate the performance of density
estimation. Moreover, both the reconstruction and
the KL values are included in NLL, and this com-
bined value is important for VAE that needs to make
a trade-off between the reconstruction term and
the KL term. All Scale-VAE models with different
des_std and f_epo achieve better NLL than previ-
ous state-of-the-art models on both datasets. We
also experimented with Scale-VAE without KL an-
nealing, and the results show that it still does not
suffer from posterior collapse and achieves a better
NLL than previous models.

Scale-VAE also achieves the best results on KL,
MI, and AU, but we do not take the three metrics as
the most important criteria to judge the best model.
When the VAE suffers from posterior collapse, the
KL term usually tends toward 0, but a relatively
high KL does not guarantee that the VAE does not

2When initializing the LSTM layer and embed-
ding layer in DU-VAE with uniform distributions on
[−0.01, 0.01] and [0.1, 0.1], we did not get usable results
because the KL term is extremely large. Therefore, for
DU-VAE, we used the default initial values for LSTM lay-
ers and embedding layers in PyTorch (v1.12). To make
comparisons in the same configurations, we selected BN-
VAE as the representative of batch normalization-based
methods in subsequent experiments.

have posterior collapse. For example, in BN-VAE,
if setting γ = 0.0 and β = 0.7, we got a KL value
around nβ2/2 = 7.8, but posterior collapse still
occurs, and both MI and AU are zero, because the
mean values of posterior distributions for different
data instances are all β. So, it is important that
the different data instances have a proper degree
of discrimination in the latent space, rather than a
higher KL. A higher MI does indicate that there is
more information about the input data in the latent
variables. However, the model can obtain high MI
by making different data instances as far away from
each other as possible in the latent space, but this
will cause the latent space to become unsmooth.
Therefore, MI alone is also not enough to prove the
advantages of a model. For example, β-VAE has a
higher MI but a worse NLL than BN-VAE. A higher
AU indicates that more dimensions are active in the
latent variables, that is, discriminative to the data
instances. However, further evaluation is needed
to determine whether there is redundancy among
different dimensions. For example, Free-Bits has a
higher AU but a worse NLL than SA-VAE.

An advantage of BN-VAE is that it can solve pos-
terior collapse while maintaining a training cost sim-
ilar to VAE. Table 2 shows the comparison of the
training time to convergence of VAE, BN-VAE, and
Scale-VAE. The training cost of Scale-VAE is al-
most the same as or even lower than that of ba-
sic VAE and BN-VAE, because it only performs a
scale-up operation on the mean of the approximate
posterior, and this operation accelerates the model
to obtain information from latent variables.
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Yahoo Yelp
Model Hours Ratio Hours Ratio
VAE 3.50 1.00 4.90 1.00
BN-VAE 3.55 1.01 4.70 0.95
Scale-VAE 3.22 0.91 4.29 0.87

Table 2: Comparison of training time to conver-
gence. Ratio indicates the relative ratio to VAE.
The results are the mean values across 5 different
random runs with the best parameters in Table 1
for each model.

Now let’s discuss the effect of parameters
des_std and f_epo on Scale-VAE. des_std is to
control the degree of discrimination among the
scaled-up posterior distributions and f_epo is to
prevent clutter in the latent space. In the initial
f_epo training epochs, the standard deviation of the
mean values for the posterior distributions Std[µx]
varies greatly, so the average factor f̄ from the last
epoch cannot guarantee that Std[µ̂x] in this epoch
is des_std. After f_epo epochs, Std[µx] tends to
be stable, then f̄ of the last epoch can be used
to keep Std[µ̂x] around des_std, avoiding clutter in
the latent space.

Yelp dataset requires a larger f_epo than Yahoo
because the average length of data in Yelp is longer
and Std[µx] in the initial stages of training varies
more. We used f_epo = 7 for Yelp and f_epo = 1
for Yahoo. A larger des_std requires a larger f_epo
because it makes the factor f̄ more sensitive to
the changes in Std[µx]. As shown in Table 3, for
Yahoo dataset, when des_std is 0.3, 0.5, 0.7, ..., 1.1,
a f_epo of 1 is sufficient, but when des_std is 1.3,
f_epo needs to be set to 3. However, when f_epo
is already sufficient to ensure that the model can
pass the first few epochs with large changes in
Std[µx], increasing f_epo further does not have a
significant impact on the results. For example, for
Yahoo, when des_std is 0.7, setting f_epo to 3 or 5
will yield results similar to f_epo = 1.

In general, NLL will first decrease and then in-
crease with the increase of des_std. As shown
in Table 3, on Yahoo, the NLL values are
325.7, 325.0, 323.1, 321.3, 318.6 for des_std of
0.5, 0.7, 0.9, 1.1, 1.3, but when des_std is 1.5, NLL
is 326.5 and unstable. The possible reason is
that although a large des_std makes different data
instances more discriminative, it also affects the
model to establish connections between different
data instances. When des_std is 0.3, the model
gets good NLL but not very good AU, and the KL
term is relatively small, so the reconstruction term
may not be very good compared to the case of
similar NLL but large KL term like des_std = 0.7.

Scale-VAE Yahoo
des_std f_epo NLL KL MI AU
0.3 1 324.1 1.8 8.4 23.2
0.5 1 325.7 3.7 7.0 31.8
0.7 1 325.0 7.1 8.3 32.0
0.7 3 324.6 6.9 8.4 32.0
0.7 5 324.7 7.1 8.3 32.0
0.9 1 323.1 9.5 9.1 32.0
1.1 1 321.3 8.4 9.2 32.0
1.3 3 318.6 8.8 9.2 32.0
1.5 7 326.5 3.0 8.3 32.0

Table 3: Density estimation performance of Scale-
VAE with different hyperparameters on Yahoo and
Yelp. The results are the mean values across 5
different random runs.

#labeled-data 100 500 1K 2K 10K
VAE 72.0 75.9 76.5 78.6 80.0
β-VAE(0.4) 82.0 83.7 84.3 84.8 86.2
FB(0.1) 72.0 75.9 76.5 78.6 80.0
δ-VAE(0.1) 58.9 59.8 60.5 59.7 61.2
Agg-VAE∗ 75.1 77.2 78.5 79.3 80.1
MAE∗(2, 0.2) 61.5 61.7 62.4 63.6 63.7
BN-VAE(0.6) 85.4 88.7 89.8 90.2 90.4
DU-VAE(0.5, 0.8) 85.1 86.4 88.2 89.0 89.1
DU-VAE∗(0.5, 0.8) 88.9 89.6 90.4 90.5 90.8
Scale-VAE(0.7, 1) 87.7 89.8 90.7 91.3 91.2

Table 4: Classification accuracy with different
amounts of labeled data in Yelp. ∗ indicates the
results are referred from Shen et al. (2021). Hyper-
parameters are listed in brackets.

4.3. Representation Learning
We evaluated the quality of the learned representa-
tions by training a one-layer linear classifier using
the means of posterior distributions. We conducted
experiments on a downsampled version of Yelp sen-
timent dataset (Shen et al., 2017). Table 4 shows
the classification accuracy with different amounts of
labeled data. We did not reproduce the best results
of DU-VAE, so both our experimental result and
that in Shen et al. (2021) are listed. In the case of
100 labeled data, the result from Shen et al. (2021)
has the highest classification accuracy. Scale-VAE
achieves the highest classification accuracy with
all other amounts of labeled data.

4.4. Latent Space Property
As discussed in Section 3.2, in batch normalization-
based methods, the regularization is performed
within each mini-batch, which results in different de-
grees of scaling on the posteriors. We argued that
this may create clutter in the latent space. Scale-
VAE can avoid this problem. To verify this, we con-
ducted an intuitive comparison of latent spaces
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Figure 1: The visualization of the latent spaces learned by BN-VAE and Scale-VAE. The first row shows
the means of the posteriors for data instances generated by different Gaussian components in different
colors. The second row shows the contour plot of the aggregated posterior. The darker the color, the
higher the probability. (1), (2), and (3) correspond to the three modes of dividing the data instances into
mini-batches.

learned by BN-VAE and Scale-VAE on a synthetic
dataset.

Following He et al. (2018), we sampled 2-
dimensional latent variables z from a Gaussian
mixture distribution that has four mixture compo-
nents with mean values of (−2.0,−2.0), (−2.0, 2.0),
(2.0,−2.0), (2.0, 2.0) and unit variance. Then we
generated synthetic data instances from an one-
layer LSTM conditioned on these latent variables.
The hidden size is 100. An affine transformation
of the latent variable z is used as the initial hidden
state of the decoder, and z is also concatenated
with the output of LSTM at each time stamp to be di-
rectly mapped to vocabulary space. The dimension
of input embedding layer is 100. The LSTM layers
and the layer mapping z to vocabulary are initial-
ized with uniform distribution on [−1, 1] and [−5, 5],
respectively. We generated a dataset containing
20K instances of length 10 from a vocabulary of
size 1000 and divided it into training/validation/test
sets with ratio of 8/1/1.

In the synthetic experiments, both the encoder
and decoder are implemented with a one-layer
LSTM. The hidden size is 50. The dimensions of la-
tent variables z and embedding layers are 2 and 50,
respectively. The other experimental configurations
are the same as those in Section 4.1.

We used three modes to divide the data in-
stances into mini-batches. First, the data in-
stances generated by different Gaussian compo-
nents are randomly distributed in different mini-
batches, and the division of mini-batches remains
constant across all training epochs. Second, the
data instances generated by different Gaussian
components are randomly distributed in different
mini-batches, and the mini-batches are reparti-
tioned at each training epoch. Third, the data
instances in the same mini-batch come from the
same Gaussian component, and the division of the

mini-batches remains constant across all training
epochs. To visualize the learned latent spaces, we
plotted the mean of the approximate posterior for
different data instances x and the contour plot of
the aggregated posterior qϕ(z) = Ep(X)[qϕ(z|x)]3.

Figure 1 shows the results. Scale-VAE can dis-
tinguish data instances generated by four Gaus-
sian components in all three mini-batch partitioning
modes. However, BN-VAE can only work under the
first partitioning mode. In the second mode, BN-
VAE cannot distinguish the data instances clearly,
and in the third extreme mode, the latent space
learned by BN-VAE is a mess. This verifies our
view that the batch normalization-based methods
cause clutter in the latent space.

The aggregated posterior for Scale-VAE in
Figure 1 is the scaled-up posterior q̂ϕ(z) =
Ep(X)[q̂ϕ(z|x)]. In Scale-VAE, the scaled-up pos-
teriors are used in subsequent decoding, and the
means of these posteriors are the learned repre-
sentations for data instances, but the original pos-
teriors are still used to optimize the KL term in the
objective. During inference stage, when a latent
variable z is sampled from the prior p(z), it needs
to be multiplied by the factor f first before being
fed to the decoder for generation, which is consis-
tent with the training stage. Intuitively, to learn a
generative model well, the divergence between the
original aggregated posterior and the prior should
be kept small. To evaluate this point, under the
first mini-batch partitioning mode for the synthetic
dataset, we plotted the contour plots of the prior
N(0, I), the aggregated posterior in BN-VAE, and

3For Scale-VAE, the aggregated posterior is computed
using the scaled-up posteriors q̂ϕ(z) = Ep(X)[q̂ϕ(z|x)].
Compared to BN-VAE, the contour plot of Scale-VAE
covers a larger area. We have scaled it down for better
comparison.

14354



the original aggregated posterior in Scale-VAE. Fig-
ure 2 shows the results. It can be seen that the
aggregated posterior distribution of Scale-VAE is
closer to the prior distribution than that of BN-VAE.

Figure 2: The contour plots of the prior N(0, I), the
aggregated posterior in BN-VAE, and the original
aggregated posterior in Scale-VAE. All plots are
located in the same region ([-2, 2] × [-2, 2]) with
the same scale.

To further evaluate the smoothness of the latent
space and the quality and diversity of the gener-
ated sentences, we conducted the experiments as
follows. Firstly, two latent variables z1 and z2 are
obtained by sampling from the prior distribution
N(0, I). Then, linear interpolation is performed be-
tween z1 and z2 to obtain 5 latent variables. After
that, the above steps are repeated 1000 times, re-
sulting in 5000 latent variables. Finally, these latent
variables are used for greedy decoding, resulting
in 5000 sentences. The maximum sentence length
is set to 15. We conducted the above process with
10 random seeds using BN-VAE and Scale-VAE
trained on Yahoo in Section 4.2.

To evaluate the quality of the generated sen-
tences, we computed PPL of the sentences using
the LSTM-LM trained on Yahoo and calculated the
proportion of 2-grams, 3-grams, and 4-grams in the
sentences that appear in the Yahoo dataset. To
evaluate the diversity of the generated sentences,
we calculated the entropy of the sentences and the
proportion of different 1-grams, 2-grams, 3-grams
in the generated sentences. Table 5 shows the
results. Except for the proportion of 2-grams, BN-
VAE gets better results than Scale-VAE on other
quality metrics. We suspect there are two possi-
ble reasons: First, the diversity of sentences gen-
erated by Scale-VAE is much better than that of
BN-VAE as shown in Table 5. The higher the di-
versity, the greater the probability of error. Second,
Scale-VAE scales up the latent variables, so for
the same latent space, there will be more coordi-
nate points containing different meaningful informa-
tion. Taking the 1-dimensional space as an exam-
ple, if the interval is [0, 1], BN-VAE divides it into
(0, 0.1, 0.2, ..., 0.9, 1), but Scale-VAE may divide it
into (0, 0.01, 0.02, 0.03, ..., 0.98, 0.99, 1), which may
require more data instances to train the model.

Table 6 shows some generated sentences from
the prior distribution on the downsampled version
of Yelp dataset. The middle sentences were gen-

Model BN-VAE(0.6) Scale-VAE(1.1, 1)
PPL 260.44 274.93
Gram-2 97.77 98.08
Gram-3 87.24 84.19
Gram-4 68.10 60.24
Entropy 5.72 5.91
Dist-1(E-02) 0.82 1.33
Dist-2(E-05) 0.90 1.89
Dist-3(E-05) 1.69 4.40

Table 5: Quality and diversity evaluation results
of the generated sentences on Yahoo. Gram-2/3/4
denote the proportion of 2/3/4-grams in the gener-
ated sentences that appear in the Yahoo dataset.
Dist-1/2/3 denote the proportion of different 1/2/3-
grams in the generated sentences.

the owner is a friendly waitress and the food is amazing!
great selection and the oven specials are good!
the prices are great and the people are superb!
the rolls are really delicious!
the chips are crispy and delicious!
the staff is friendly and a few regulars.
the sales team is fast and good!
the bartenders are friendly , it ’s a treat.
the employees are friendly and extremely helpful.
the prices are fair and everyone is a happy customer.

Table 6: Sentences generated from the prior dis-
tribution on Yelp.

erated using the interpolation between the latent
variables of sentences at both ends, each word
token was obtained using probability sampling.

5. Conclusion

In this paper, we focus on the posterior collapse
problem in VAE on text modeling when employing a
autoregressive decoder. Starting from the analysis
of the causes, we summarize several directions
for solving the posterior collapse problem. Moti-
vated by reducing the difficulty of exploiting latent
variables by the decoder, we propose Scale-VAE.
Instead of forcing the KL term to be larger than a
certain positive constant, Scale-VAE enables the
decoder to make full use of the information in latent
variables, so as to freely balance the optimization
of the reconstruction term and the KL term, and
jump out of the degenerate local optimum when
posterior collapse occurs. We compare Scale-VAE
with state-of-the-art models. Experimental results
show that Scale-VAE gains the best result in den-
sity estimation and representation learning. It does
not cause clutter in the latent space and is able to
generate high-quality diverse sentences from the
smooth latent space.
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