Word-level Quality Estimation (QE) of Machine Translation (MT) aims to detect potential translation errors in the translated sentence without reference. Typically, conventional works on word-level QE are usually designed to predict the quality of translated words in terms of the post-editing effort, where the word labels in the dataset, i.e., OK or BAD, are automatically generated by comparing words between MT sentences and the post-edited sentences through a Translation Error Rate (TER) toolkit. While the post-editing effort can be used to measure the translation quality to some extent, we find it usually conflicts with human judgment on whether the word is well or poorly translated. To investigate this conflict, we first create a golden benchmark dataset, namely HJQE (Human Judgement on Quality Estimation), where the source and MT sentences are identical to the original TER-based dataset and the expert translators directly annotate the poorly translated words on their judgments. Based on our analysis, we further propose two tag-correcting strategies which can make the TER-based artificial QE corpus closer to HJQE. We conduct substantial experiments based on the publicly available WMT En-De and En-Zh corpora. The results not only show our proposed dataset is more consistent with human judgment but also confirm the effectiveness of the proposed tag-correcting strategies.For reviewers, the corpora and codes can be found in the attached files.
Generating adversarial examples for Neural Machine Translation (NMT) with single Round-Trip Translation (RTT) has achieved promising results by releasing the meaning-preserving restriction. However, a potential pitfall for this approach is that we cannot decide whether the generated examples are adversarial to the target NMT model or the auxiliary backward one, as the reconstruction error through the RTT can be related to either. To remedy this problem, we propose a new definition for NMT adversarial examples based on the Doubly Round-Trip Translation (DRTT). Specifically, apart from the source-target-source RTT, we also consider the target-source-target one, which is utilized to pick out the authentic adversarial examples for the target NMT model. Additionally, to enhance the robustness of the NMT model, we introduce the masked language models to construct bilingual adversarial pairs based on DRTT, which are used to train the NMT model directly. Extensive experiments on both the clean and noisy test sets (including the artificial and natural noise) show that our approach substantially improves the robustness of NMT models.
Complete Multi-lingual Neural Machine Translation (C-MNMT) achieves superior performance against the conventional MNMT by constructing multi-way aligned corpus, i.e., aligning bilingual training examples from different language pairs when either their source or target sides are identical. However, since exactly identical sentences from different language pairs are scarce, the power of the multi-way aligned corpus is limited by its scale. To handle this problem, this paper proposes “Extract and Generate” (EAG), a two-step approach to construct large-scale and high-quality multi-way aligned corpus from bilingual data. Specifically, we first extract candidate aligned examples by pairing the bilingual examples from different language pairs with highly similar source or target sentences; and then generate the final aligned examples from the candidates with a well-trained generation model. With this two-step pipeline, EAG can construct a large-scale and multi-way aligned corpus whose diversity is almost identical to the original bilingual corpus. Experiments on two publicly available datasets i.e., WMT-5 and OPUS-100, show that the proposed method achieves significant improvements over strong baselines, with +1.1 and +1.4 BLEU points improvements on the two datasets respectively.
Causal Emotion Entailment (CEE) aims to discover the potential causes behind an emotion in a conversational utterance. Previous works formalize CEE as independent utterance pair classification problems, with emotion and speaker information neglected. From a new perspective, this paper considers CEE in a joint framework. We classify multiple utterances synchronously to capture the correlations between utterances in a global view and propose a Two-Stream Attention Model (TSAM) to effectively model the speaker’s emotional influences in the conversational history. Specifically, the TSAM comprises three modules: Emotion Attention Network (EAN), Speaker Attention Network (SAN), and interaction module. The EAN and SAN incorporate emotion and speaker information in parallel, and the subsequent interaction module effectively interchanges relevant information between the EAN and SAN via a mutual BiAffine transformation. Extensive experimental results demonstrate that our model achieves new State-Of-The-Art (SOTA) performance and outperforms baselines remarkably.
Word alignment which aims to extract lexicon translation equivalents between source and target sentences, serves as a fundamental tool for natural language processing. Recent studies in this area have yielded substantial improvements by generating alignments from contextualized embeddings of the pre-trained multilingual language models. However, we find that the existing approaches capture few interactions between the input sentence pairs, which degrades the word alignment quality severely, especially for the ambiguous words in the monolingual context. To remedy this problem, we propose Cross-Align to model deep interactions between the input sentence pairs, in which the source and target sentences are encoded separately with the shared self-attention modules in the shallow layers, while cross-lingual interactions are explicitly constructed by the cross-attention modules in the upper layers. Besides, to train our model effectively, we propose a two-stage training framework, where the model is trained with a simple Translation Language Modeling (TLM) objective in the first stage and then finetuned with a self-supervised alignment objective in the second stage. Experiments show that the proposed Cross-Align achieves the state-of-the-art (SOTA) performance on four out of five language pairs.
Translation suggestion (TS), which provides alternatives for specific words or phrases given the entire documents generated by machine translation (MT), has been proven to play a significant role in post-editing (PE). There are two main pitfalls for existing researches in this line. First, most conventional works only focus on the overall performance of PE but ignore the exact performance of TS, which makes the progress of PE sluggish and less explainable; Second, as no publicly available golden dataset exists to support in-depth research for TS, almost all of the previous works conduct experiments on their in-house datasets or the noisy datasets built automatically, which makes their experiments hard to be reproduced and compared. To break these limitations mentioned above and spur the research in TS, we create a benchmark dataset, called WeTS, which is a golden corpus annotated by expert translators on four translation directions. Apart from the golden corpus, we also propose several methods to generate synthetic corpora which can be used to improve the performance substantially through pre-training. As for the model, we propose the segment-aware self-attention based Transformer for TS. Experimental results show that our approach achieves the best results on all four directions, including English-to-German, German-to-English, Chinese-to-English, and English-to-Chinese.
We report the result of the first edition of the WMT shared task on Translation Suggestion (TS). The task aims to provide alternatives for specific words or phrases given the entire documents generated by machine translation (MT). It consists two sub-tasks, namely, the naive translation suggestion and translation suggestion with hints. The main difference is that some hints are provided in sub-task two, therefore, it is easier for the model to generate more accurate suggestions. For sub-task one, we provide the corpus for the language pairs English-German and English-Chinese. And only English-Chinese corpus is provided for the sub-task two.We received 92 submissions from 5 participating teams in sub-task one and 6 submissions for the sub-task 2, most of them covering all of the translation directions. We used the automatic metric BLEU for evaluating the performance of each submission.
Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative neurological disease, which is monitored by a specialist using the Expanded Disability Status Scale (EDSS) and recorded in unstructured text in the form of a neurology consult note. An EDSS measurement contains an overall ‘EDSS’ score and several functional subscores. Typically, expert knowledge is required to interpret consult notes and generate these scores. Previous approaches used limited context length Word2Vec embeddings and keyword searches to predict scores given a consult note, but often failed when scores were not explicitly stated. In this work, we present MS-BERT, the first publicly available transformer model trained on real clinical data other than MIMIC. Next, we present MSBC, a classifier that applies MS-BERT to generate embeddings and predict EDSS and functional subscores. Lastly, we explore combining MSBC with other models through the use of Snorkel to generate scores for unlabelled consult notes. MSBC achieves state-of-the-art performance on all metrics and prediction tasks and outperforms the models generated from the Snorkel ensemble. We improve Macro-F1 by 0.12 (to 0.88) for predicting EDSS and on average by 0.29 (to 0.63) for predicting functional subscores over previous Word2Vec CNN and rule-based approaches.
This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP randomly replaces some words in the source sentence with their translation words in the target language. Specifically, we firstly perform lexicon induction with unsupervised word embedding mapping between the source and target languages, and then randomly replace some words in the input sentence with their translation words according to the extracted translation lexicons. CSP adopts the encoder-decoder framework: its encoder takes the code-mixed sentence as input, and its decoder predicts the replaced fragment of the input sentence. In this way, CSP is able to pre-train the NMT model by explicitly making the most of the alignment information extracted from the source and target monolingual corpus. Additionally, we relieve the pretrain-finetune discrepancy caused by the artificial symbols like [mask]. To verify the effectiveness of the proposed method, we conduct extensive experiments on unsupervised and supervised NMT. Experimental results show that CSP achieves significant improvements over baselines without pre-training or with other pre-training methods.
This paper proposes an approach for applying GANs to NMT. We build a conditional sequence generative adversarial net which comprises of two adversarial sub models, a generator and a discriminator. The generator aims to generate sentences which are hard to be discriminated from human-translated sentences ( i.e., the golden target sentences); And the discriminator makes efforts to discriminate the machine-generated sentences from human-translated ones. The two sub models play a mini-max game and achieve the win-win situation when they reach a Nash Equilibrium. Additionally, the static sentence-level BLEU is utilized as the reinforced objective for the generator, which biases the generation towards high BLEU points. During training, both the dynamic discriminator and the static BLEU objective are employed to evaluate the generated sentences and feedback the evaluations to guide the learning of the generator. Experimental results show that the proposed model consistently outperforms the traditional RNNSearch and the newly emerged state-of-the-art Transformer on English-German and Chinese-English translation tasks.
While the disfluency detection has achieved notable success in the past years, it still severely suffers from the data scarcity. To tackle this problem, we propose a novel semi-supervised approach which can utilize large amounts of unlabelled data. In this work, a light-weight neural net is proposed to extract the hidden features based solely on self-attention without any Recurrent Neural Network (RNN) or Convolutional Neural Network (CNN). In addition, we use the unlabelled corpus to enhance the performance. Besides, the Generative Adversarial Network (GAN) training is applied to enforce the similar distribution between the labelled and unlabelled data. The experimental results show that our approach achieves significant improvements over strong baselines.
Unsupervised neural machine translation (NMT) is a recently proposed approach for machine translation which aims to train the model without using any labeled data. The models proposed for unsupervised NMT often use only one shared encoder to map the pairs of sentences from different languages to a shared-latent space, which is weak in keeping the unique and internal characteristics of each language, such as the style, terminology, and sentence structure. To address this issue, we introduce an extension by utilizing two independent encoders but sharing some partial weights which are responsible for extracting high-level representations of the input sentences. Besides, two different generative adversarial networks (GANs), namely the local GAN and global GAN, are proposed to enhance the cross-language translation. With this new approach, we achieve significant improvements on English-German, English-French and Chinese-to-English translation tasks.
This article proposes a novel character-aware neural machine translation (NMT) model that views the input sequences as sequences of characters rather than words. On the use of row convolution (Amodei et al., 2015), the encoder of the proposed model composes word-level information from the input sequences of characters automatically. Since our model doesn’t rely on the boundaries between each word (as the whitespace boundaries in English), it is also applied to languages without explicit word segmentations (like Chinese). Experimental results on Chinese-English translation tasks show that the proposed character-aware NMT model can achieve comparable translation performance with the traditional word based NMT models. Despite the target side is still word based, the proposed model is able to generate much less unknown words.