Yeonsu Kwon
2023
Open-WikiTable : Dataset for Open Domain Question Answering with Complex Reasoning over Table
Sunjun Kweon
|
Yeonsu Kwon
|
Seonhee Cho
|
Yohan Jo
|
Edward Choi
Findings of the Association for Computational Linguistics: ACL 2023
Despite recent interest in open domain question answering (ODQA) over tables, many studies still rely on datasets that are not truly optimal for the task with respect to utilizing structural nature of table. These datasets assume answers reside as a single cell value and do not necessitate exploring over multiple cells such as aggregation, comparison, and sorting. Thus, we release Open-WikiTable, the first ODQA dataset that requires complex reasoning over tables. Open-WikiTable is built upon WikiSQL and WikiTableQuestions to be applicable in the open-domain setting. As each question is coupled with both textual answers and SQL queries, Open-WikiTable opens up a wide range of possibilities for future research, as both reader and parser methods can be applied. The dataset is publicly available.
FactKG: Fact Verification via Reasoning on Knowledge Graphs
Jiho Kim
|
Sungjin Park
|
Yeonsu Kwon
|
Yohan Jo
|
James Thorne
|
Edward Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In real world applications, knowledge graphs (KG) are widely used in various domains (e.g. medical applications and dialogue agents). However, for fact verification, KGs have not been adequately utilized as a knowledge source. KGs can be a valuable knowledge source in fact verification due to their reliability and broad applicability. A KG consists of nodes and edges which makes it clear how concepts are linked together, allowing machines to reason over chains of topics. However, there are many challenges in understanding how these machine-readable concepts map to information in text. To enable the community to better use KGs, we introduce a new dataset, FactKG: Fact Verificationvia Reasoning on Knowledge Graphs. It consists of 108k natural language claims with five types of reasoning: One-hop, Conjunction, Existence, Multi-hop, and Negation. Furthermore, FactKG contains various linguistic patterns, including colloquial style claims as well as written style claims to increase practicality. Lastly, we develop a baseline approach and analyze FactKG over these reasoning types. We believe FactKG can advance both reliability and practicality in KG-based fact verification.
Search
Co-authors
- Yohan Jo 2
- Edward Choi 2
- Sunjun Kweon 1
- Seonhee Cho 1
- Jiho Kim 1
- show all...