Multi-party dialogues are more difficult for models to understand than one-to-one two-party dialogues, since they involve multiple interlocutors, resulting in interweaving reply-to relations and information flows. To step over these obstacles, an effective way is to pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying. However, due to the lack of explicitly annotated discourse labels in multi-party dialogue corpora, previous works fail to scale up the pre-training process by putting aside the unlabeled multi-party conversational data for nothing. To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model by unsupervised latent variable inference methods. Experiments on multiple downstream tasks show that our pre-trained model outperforms strong baselines by large margins and achieves state-of-the-art (SOTA) results, justifying the effectiveness of our method. The official implementation of this paper is available at https://github.com/EricLee8/MPD_EMVI.
Writing assistants are valuable tools that can help writers improve their writing skills. We introduce Effidit (Efficient and Intelligent Editing), a digital writing assistant that facilitates users to write higher-quality text more efficiently through the use of Artificial Intelligence (AI) and Natural Language Processing (NLP) technologies. We significantly expand the capacities of a writing assistantby providing functions in three modules: text completion, hint recommendation, and writing refinement. Based on the above efforts, Effidit can efficiently assist users in creating their own text. Effidit has been deployed to several Tencent products and publicly released at https://effidit.qq.com/.
Data artifacts incentivize machine learning models to learn non-transferable generalizations by taking advantage of shortcuts in the data, andthere is growing evidence that data artifacts play a role for the strong results that deep learning models achieve in recent natural language processing benchmarks.In this paper, we focus on task-oriented dialogue and investigate whether popular datasets such as MultiWOZ contain such data artifacts.We found that by only keeping frequent phrases in the trainingexamples, state-of-the-art models perform similarly compared to the variant trained with full data, suggesting they exploit these spurious correlationsto solve the task. Motivated by this, we propose a contrastive learning based framework to encourage the model to ignore these cues and focus on learning generalisable patterns. We also experiment with adversarial filtering to remove easy training instances so that the model would focus on learning from the harder instances. We conduct a number of generalization experiments — e.g., cross-domain/dataset and adversarial tests — to assess the robustness of our approach and found that it works exceptionally well.
Response generation for task-oriented dialogues implicitly optimizes two objectives at the same time: task completion and language quality. Conditioned response generation serves as an effective approach to separately and better optimize these two objectives. Such an approach relies on system action annotations which are expensive to obtain. To alleviate the need of action annotations, latent action learning is introduced to map each utterance to a latent representation. However, this approach is prone to over-dependence on the training data, and the generalization capability is thus restricted. To address this issue, we propose to learn natural language actions that represent utterances as a span of words. This explicit action representation promotes generalization via the compositional structure of language. It also enables an explainable generation process. Our proposed unsupervised approach learns a memory component to summarize system utterances into a short span of words. To further promote a compact action representation, we propose an auxiliary task that restores state annotations as the summarized dialogue context using the memory component. Our proposed approach outperforms latent action baselines on MultiWOZ, a benchmark multi-domain dataset.
Dialogue policy optimization often obtains feedback until task completion in task-oriented dialogue systems. This is insufficient for training intermediate dialogue turns since supervision signals (or rewards) are only provided at the end of dialogues. To address this issue, reward learning has been introduced to learn from state-action pairs of an optimal policy to provide turn-by-turn rewards. This approach requires complete state-action annotations of human-to-human dialogues (i.e., expert demonstrations), which is labor intensive. To overcome this limitation, we propose a novel reward learning approach for semi-supervised policy learning. The proposed approach learns a dynamics model as the reward function which models dialogue progress (i.e., state-action sequences) based on expert demonstrations, either with or without annotations. The dynamics model computes rewards by predicting whether the dialogue progress is consistent with expert demonstrations. We further propose to learn action embeddings for a better generalization of the reward function. The proposed approach outperforms competitive policy learning baselines on MultiWOZ, a benchmark multi-domain dataset.
This paper presents our strategies in SemEval 2020 Task 4: Commonsense Validation and Explanation. We propose a novel way to search for evidence and choose the different large-scale pre-trained models as the backbone for three subtasks. The results show that our evidence-searching approach improves model performance on commonsense explanation task. Our team ranks 2nd in subtask C according to human evaluation score.