Shaoting Zhang
2023
Alleviating Exposure Bias via Multi-level Contrastive Learning and Deviation Simulation in Abstractive Summarization
Jiawen Xie
|
Qi Su
|
Shaoting Zhang
|
Xiaofan Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Most Transformer based abstractive summarization systems have a severe mismatch between training and inference, i.e., exposure bias. From diverse perspectives, we introduce a simple multi-level contrastive learning framework for abstractive summarization (SimMCS) and a tailored sparse decoder self-attention pattern (SDSA) to bridge the gap between training and inference to improve model performance. Compared with previous contrastive objectives focusing only on the relative order of probability mass assigned to non-gold summaries, SimMCS additionally takes their absolute positions into account, which guarantees that the relatively high-quality (positive) summaries among them could be properly assigned high probability mass, and further enhances the capability of discriminating summary quality beyond exploiting potential artifacts of specific metrics. SDSA simulates the possible inference scenarios of deviation in the training phase to get closer to the ideal paradigm. Our approaches outperform the previous state-of-the-art results on two summarization datasets while just adding fairly low overhead. Further empirical analysis shows our model preserves the advantages of prior contrastive methods and possesses strong few-shot learning ability.
MidMed: Towards Mixed-Type Dialogues for Medical Consultation
Xiaoming Shi
|
Zeming Liu
|
Chuan Wang
|
Haitao Leng
|
Kui Xue
|
Xiaofan Zhang
|
Shaoting Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Most medical dialogue systems assume that patients have clear goals (seeking a diagnosis, medicine querying, etc.) before medical consultation. However, in many real situations, due to the lack of medical knowledge, it is usually difficult for patients to determine clear goals with all necessary slots. In this paper, we identify this challenge as how to construct medical consultation dialogue systems to help patients clarify their goals. For further study, we create a novel human-to-human mixed-type medical consultation dialogue corpus, termed MidMed, covering four dialogue types: task-oriented dialogue for diagnosis, recommendation, QA, and chitchat. MidMed covers four departments (otorhinolaryngology, ophthalmology, skin, and digestive system), with 8,309 dialogues. Furthermore, we build benchmarking baselines on MidMed and propose an instruction-guiding medical dialogue generation framework, termed InsMed, to handle mixed-type dialogues. Experimental results show the effectiveness of InsMed.
Search
Co-authors
- Xiaofan Zhang 2
- Jiawen Xie 1
- Qi Su 1
- Xiaoming Shi 1
- Zeming Liu 1
- show all...