Piotr Przybyła


2022

pdf
Using NLP to quantify the environmental cost and diversity benefits of in-person NLP conferences
Piotr Przybyła | Matthew Shardlow
Findings of the Association for Computational Linguistics: ACL 2022

The environmental costs of research are progressively important to the NLP community and their associated challenges are increasingly debated. In this work, we analyse the carbon cost (measured as CO2-equivalent) associated with journeys made by researchers attending in-person NLP conferences. We obtain the necessary data by text-mining all publications from the ACL anthology available at the time of the study (n=60,572) and extracting information about an author’s affiliation, including their address. This allows us to estimate the corresponding carbon cost and compare it to previously known values for training large models. Further, we look at the benefits of in-person conferences by demonstrating that they can increase participation diversity by encouraging attendance from the region surrounding the host country. We show how the trade-off between carbon cost and diversity of an event depends on its location and type. Our aim is to foster further discussion on the best way to address the joint issue of emissions and diversity in the future.

2021

pdf
Investigating Text Simplification Evaluation
Laura Vásquez-Rodríguez | Matthew Shardlow | Piotr Przybyła | Sophia Ananiadou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
HOMADOS at SemEval-2021 Task 6: Multi-Task Learning for Propaganda Detection
Konrad Kaczyński | Piotr Przybyła
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Among the tasks motivated by the proliferation of misinformation, propaganda detection is particularly challenging due to the deficit of fine-grained manual annotations required to train machine learning models. Here we show how data from other related tasks, including credibility assessment, can be leveraged in multi-task learning (MTL) framework to accelerate the training process. To that end, we design a BERT-based model with multiple output layers, train it in several MTL scenarios and perform evaluation against the SemEval gold standard.

2020

pdf
Multi-Word Lexical Simplification
Piotr Przybyła | Matthew Shardlow
Proceedings of the 28th International Conference on Computational Linguistics

In this work we propose the task of multi-word lexical simplification, in which a sentence in natural language is made easier to understand by replacing its fragment with a simpler alternative, both of which can consist of many words. In order to explore this new direction, we contribute a corpus (MWLS1), including 1462 sentences in English from various sources with 7059 simplifications provided by human annotators. We also propose an automatic solution (Plainifier) based on a purpose-trained neural language model and evaluate its performance, comparing to human and resource-based baselines.

2016

pdf
NaCTeM at SemEval-2016 Task 1: Inferring sentence-level semantic similarity from an ensemble of complementary lexical and sentence-level features
Piotr Przybyła | Nhung T. H. Nguyen | Matthew Shardlow | Georgios Kontonatsios | Sophia Ananiadou
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2013

pdf
Question Analysis for Polish Question Answering
Piotr Przybyła
51st Annual Meeting of the Association for Computational Linguistics Proceedings of the Student Research Workshop