Marinela Parović

Also published as: Marinela Parovic


2023

pdf
Cross-Lingual Transfer with Target Language-Ready Task Adapters
Marinela Parovic | Alan Ansell | Ivan Vulić | Anna Korhonen
Findings of the Association for Computational Linguistics: ACL 2023

Adapters have emerged as a modular and parameter-efficient approach to (zero-shot) cross-lingual transfer. The established MAD-X framework employs separate language and task adapters which can be arbitrarily combined to perform the transfer of any task to any target language. Subsequently, BAD-X, an extension of the MAD-X framework, achieves improved transfer at the cost of MAD-X’s modularity by creating ‘bilingual’ adapters specific to the source-target language pair. In this work, we aim to take the best of both worlds by (i) fine-tuning *task* adapters adapted to the target language(s) (so-called *‘target language-ready’ (TLR)* adapters) to maintain high transfer performance, but (ii) without sacrificing the highly modular design of MAD-X. The main idea of ‘target language-ready’ adapters is to resolve the training-vs-inference discrepancy of MAD-X: the task adapter ‘sees’ the target language adapter for the very first time during inference, and thus might not be fully compatible with it. We address this mismatch by exposing the task adapter to the target language adapter during training, and empirically validate several variants of the idea: in the simplest form, we alternate between using the source and target language adapters during task adapter training, which can be generalized to cycling over any set of language adapters. We evaluate different TLR-based transfer configurations with varying degrees of generality across a suite of standard cross-lingual benchmarks, and find that the most general (and thus most modular) configuration consistently outperforms MAD-X and BAD-X on most tasks and languages.

2022

pdf
BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer
Marinela Parović | Goran Glavaš | Ivan Vulić | Anna Korhonen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Adapter modules enable modular and efficient zero-shot cross-lingual transfer, where current state-of-the-art adapter-based approaches learn specialized language adapters (LAs) for individual languages. In this work, we show that it is more effective to learn bilingual language pair adapters (BAs) when the goal is to optimize performance for a particular source-target transfer direction. Our novel BAD-X adapter framework trades off some modularity of dedicated LAs for improved transfer performance: we demonstrate consistent gains in three standard downstream tasks, and for the majority of evaluated low-resource languages.

2021

pdf
Parameter Space Factorization for Zero-Shot Learning across Tasks and Languages
Edoardo M. Ponti | Ivan Vulić | Ryan Cotterell | Marinela Parovic | Roi Reichart | Anna Korhonen
Transactions of the Association for Computational Linguistics, Volume 9

Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task–language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task–language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at github.com/cambridgeltl/parameter-factorization.