Maali Tars


2023

pdf
Machine Translation for Low-resource Finno-Ugric Languages
Lisa Yankovskaya | Maali Tars | Andre Tättar | Mark Fishel
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

This paper focuses on neural machine translation (NMT) for low-resource Finno-Ugric languages. Our contributions are three-fold: (1) we extend existing and collect new parallel and monolingual corpora for 20 languages, (2) we expand the 200-language translation benchmark FLORES-200 with manual translations into nine new languages, and (3) we present experiments using the collected data to create NMT systems for the included languages and investigate the impact of back-translation data on the NMT performance for low-resource languages. Experimental results show that carefully selected limited amounts of back-translation directions yield the best results in terms of translation scores, for both high-resource and low-resource output languages.

2022

pdf
MTee: Open Machine Translation Platform for Estonian Government
Toms Bergmanis | Marcis Pinnis | Roberts Rozis | Jānis Šlapiņš | Valters Šics | Berta Bernāne | Guntars Pužulis | Endijs Titomers | Andre Tättar | Taido Purason | Hele-Andra Kuulmets | Agnes Luhtaru | Liisa Rätsep | Maali Tars | Annika Laumets-Tättar | Mark Fishel
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

We present the MTee project - a research initiative funded via an Estonian public procurement to develop machine translation technology that is open-source and free of charge. The MTee project delivered an open-source platform serving state-of-the-art machine translation systems supporting four domains for six language pairs translating from Estonian into English, German, and Russian and vice-versa. The platform also features grammatical error correction and speech translation for Estonian and allows for formatted document translation and automatic domain detection. The software, data and training workflows for machine translation engines are all made publicly available for further use and research.

pdf
Teaching Unseen Low-resource Languages to Large Translation Models
Maali Tars | Taido Purason | Andre Tättar
Proceedings of the Seventh Conference on Machine Translation (WMT)

In recent years, large multilingual pre-trained neural machine translation model research has grown and it is common for these models to be publicly available for usage and fine-tuning. Low-resource languages benefit from the pre-trained models, because of knowledge transfer from high- to medium-resource languages. The recently available M2M-100 model is our starting point for cross-lingual transfer learning to Finno-Ugric languages, like Livonian. We participate in the WMT22 General Machine Translation task, where we focus on the English-Livonian language pair. We leverage data from other Finno-Ugric languages and through that, we achieve high scores for English-Livonian translation directions. Overall, instead of training a model from scratch, we use transfer learning and back-translation as the main methods and fine-tune a publicly available pre-trained model. This in turn reduces the cost and duration of training high-quality multilingual neural machine translation models.

2021

pdf
Extremely low-resource machine translation for closely related languages
Maali Tars | Andre Tättar | Mark Fišel
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)

An effective method to improve extremely low-resource neural machine translation is multilingual training, which can be improved by leveraging monolingual data to create synthetic bilingual corpora using the back-translation method. This work focuses on closely related languages from the Uralic language family: from Estonian and Finnish geographical regions. We find that multilingual learning and synthetic corpora increase the translation quality in every language pair for which we have data. We show that transfer learning and fine-tuning are very effective for doing low-resource machine translation and achieve the best results. We collected new parallel data for Võro, North and South Saami and present first results of neural machine translation for these languages.