Conversational Recommender System (CRS), which aims to recommend high-quality items to users through interactive conversations, has gained great research interest recently. A CRS is usually composed of a recommendation module and a generation module. In the previous work, these two modules are loosely connected in the model training and are shallowly integrated during inference, where a simple switching or copy mechanism is adopted to incorporate recommended items into generated responses. Moreover, the current end-to-end neural models trained on small crowd-sourcing datasets (e.g., 10K dialogs in the ReDial dataset) tend to overfit and have poor chit-chat ability. In this work, we propose a novel unified framework that integrates recommendation into the dialog (RecInDial) generation by introducing a vocabulary pointer. To tackle the low-resource issue in CRS, we finetune the large-scale pretrained language models to generate fluent and diverse responses, and introduce a knowledge-aware bias learned from an entity-oriented knowledge graph to enhance the recommendation performance. Furthermore, we propose to evaluate the CRS models in an end-to-end manner, which can reflect the overall performance of the entire system rather than the performance of individual modules, compared to the separate evaluations of the two modules used in previous work. Experiments on the benchmark dataset ReDial show our RecInDial model significantly surpasses the state-of-the-art methods. More extensive analyses show the effectiveness of our model.
Lexically constrained generation requires the target sentence to satisfy some lexical constraints, such as containing some specific words or being the paraphrase to a given sentence, which is very important in many real-world natural language generation applications. Previous works usually apply beam-search-based methods or stochastic searching methods to lexically-constrained generation. However, when the search space is too large, beam-search-based methods always fail to find the constrained optimal solution. At the same time, stochastic search methods always cost too many steps to find the correct optimization direction. In this paper, we propose a novel method G2LC to solve the lexically-constrained generation as an unsupervised gradient-guided optimization problem. We propose a differentiable objective function and use the gradient to help determine which position in the sequence should be changed (deleted or inserted/replaced by another word). The word updating process of the inserted/replaced word also benefits from the guidance of gradient. Besides, our method is free of parallel data training, which is flexible to be used in the inference stage of any pre-trained generation model. We apply G2LC to two generation tasks: keyword-to-sentence generation and unsupervised paraphrase generation. The experiment results show that our method achieves state-of-the-art compared to previous lexically-constrained methods.
The lack of labeled data is one of the main challenges when building a task-oriented dialogue system. Existing dialogue datasets usually rely on human labeling, which is expensive, limited in size, and in low coverage. In this paper, we instead propose our framework auto-dialabel to automatically cluster the dialogue intents and slots. In this framework, we collect a set of context features, leverage an autoencoder for feature assembly, and adapt a dynamic hierarchical clustering method for intent and slot labeling. Experimental results show that our framework can promote human labeling cost to a great extent, achieve good intent clustering accuracy (84.1%), and provide reasonable and instructive slot labeling results.
Previous studies on Chinese semantic role labeling (SRL) have concentrated on a single semantically annotated corpus. But the training data of single corpus is often limited. Whereas the other existing semantically annotated corpora for Chinese SRL are scattered across different annotation frameworks. But still, Data sparsity remains a bottleneck. This situation calls for larger training datasets, or effective approaches which can take advantage of highly heterogeneous data. In this paper, we focus mainly on the latter, that is, to improve Chinese SRL by using heterogeneous corpora together. We propose a novel progressive learning model which augments the Progressive Neural Network with Gated Recurrent Adapters. The model can accommodate heterogeneous inputs and effectively transfer knowledge between them. We also release a new corpus, Chinese SemBank, for Chinese SRL. Experiments on CPB 1.0 show that our model outperforms state-of-the-art methods.
In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an architecture engineering way. Experiments demonstrate that on Chinese Proposition Bank (CPB) 1.0, SA-LSTM improves F1 by 2.06% than ordinary bi-LSTM with feature engineered dependency relation information, and gives state-of-the-art F1 of 79.92%. On English CoNLL 2005 dataset, SA-LSTM brings improvement (2.1%) to bi-LSTM model and also brings slight improvement (0.3%) when added to the state-of-the-art model.
Knowledge graph (KG) completion adds new facts to a KG by making inferences from existing facts. Most existing methods ignore the time information and only learn from time-unknown fact triples. In dynamic environments that evolve over time, it is important and challenging for knowledge graph completion models to take into account the temporal aspects of facts. In this paper, we present a novel time-aware knowledge graph completion model that is able to predict links in a KG using both the existing facts and the temporal information of the facts. To incorporate the happening time of facts, we propose a time-aware KG embedding model using temporal order information among facts. To incorporate the valid time of facts, we propose a joint time-aware inference model based on Integer Linear Programming (ILP) using temporal consistencyinformationasconstraints. Wefurtherintegratetwomodelstomakefulluseofglobal temporal information. We empirically evaluate our models on time-aware KG completion task. Experimental results show that our time-aware models achieve the state-of-the-art on temporal facts consistently.
Recognizing Textual Entailment (RTE) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate deep neural network methods for the RTE task. Previous neural network based methods usually try to encode the two sentences (premise and hypothesis) and send them together into a multi-layer perceptron to get their entailment type, or use LSTM-RNN to link two sentences together while using attention mechanic to enhance the model’s ability. In this paper, we propose to use the re-read mechanic, which means to read the premise again and again while reading the hypothesis. After read the premise again, the model can get a better understanding of the premise, which can also affect the understanding of the hypothesis. On the contrary, a better understanding of the hypothesis can also affect the understanding of the premise. With the alternative re-read process, the model can “think” of a better decision of entailment type. We designed a new LSTM unit called re-read LSTM (rLSTM) to implement this “thinking” process. Experiments show that we achieve results better than current state-of-the-art equivalents.