Most existing event causality identification (ECI) methods rarely consider the event causal label information and the interaction information between event pairs. In this paper, we propose a framework to enrich the representation of event pairs by introducing the event causal label information and the event pair interaction information. In particular, 1) we design an event-causal-label-aware module to model the event causal label information, in which we design the event causal label prediction task as an auxiliary task of ECI, aiming to predict which events are involved in the causal relationship (we call them causality-related events) by mining the dependencies between events. 2) We further design an event pair interaction graph module to model the interaction information between event pairs, in which we construct the interaction graph with event pairs as nodes and leverage graph attention mechanism to model the degree of dependency between event pairs. The experimental results show that our approach outperforms previous state-of-the-art methods on two benchmark datasets EventStoryLine and Causal-TimeBank.
“随着社交媒体的快速发展,多模态数据呈爆炸性增长,如何从多模态数据中挖掘和理解情感信息,已经成为一个较为热门的研究方向。而现有的基于文本、视频和音频的多模态情感分析方法往往将不同模态的高级特征与低级特征进行融合,忽视了不同模态特征层次之间的差异。因此,本文采用以文本模态为中心,音频模态和视频模态为补充的方式,提出了多任务多模态交互学习的自监督动态融合模型。通过多层的结构,构建了单模态特征表示与两两模态特征的层次融合表示,使模型将不同层次的特征进行融合,并设计了从低级特征渐变到高级特征的融合策略。为了进一步加强多模态特征融合,使用了分布相似性损失函数和异质损失函数,用于学习模态的共性表征和特性表征。在此基础上,利用多任务学习,获得模态的一致性及差异性特征。通过在CMU-MOSI和CMU-MOSEI数据集上分别实验,实验结果表明本文模型的情感分类性能优于基线模型。”
Emotion inference in multi-turn conversations aims to predict the participant’s emotion in the next upcoming turn without knowing the participant’s response yet, and is a necessary step for applications such as dialogue planning. However, it is a severe challenge to perceive and reason about the future feelings of participants, due to the lack of utterance information from the future. Moreover, it is crucial for emotion inference to capture the characteristics of emotional propagation in conversations, such as persistence and contagiousness. In this study, we focus on investigating the task of emotion inference in multi-turn conversations by modeling the propagation of emotional states among participants in the conversation history, and propose an addressee-aware module to automatically learn whether the participant keeps the historical emotional state or is affected by others in the next upcoming turn. In addition, we propose an ensemble strategy to further enhance the model performance. Empirical studies on three different benchmark conversation datasets demonstrate the effectiveness of the proposed model over several strong baselines.
Detecting public sentiment drift is a challenging task due to sentiment change over time. Existing methods first build a classification model using historical data and subsequently detect drift if the model performs much worse on new data. In this paper, we focus on distribution learning by proposing a novel Hierarchical Variational Auto-Encoder (HVAE) model to learn better distribution representation, and design a new drift measure to directly evaluate distribution changes between historical data and new data.Our experimental results demonstrate that our proposed model achieves better results than three existing state-of-the-art methods.