James Michaelov


2023

pdf
Rarely a problem? Language models exhibit inverse scaling in their predictions following few-type quantifiers
James Michaelov | Benjamin Bergen
Findings of the Association for Computational Linguistics: ACL 2023

How well do language models deal with quantification? In this study, we focus on ‘few’-type quantifiers, as in ‘few children like toys’, which might pose a particular challenge for language models because the sentence components with out the quantifier are likely to co-occur, and ‘few’-type quantifiers are rare. We present 960 English sentence stimuli from two human neurolinguistic experiments to 22 autoregressive transformer models of differing sizes. Not only do all the models perform poorly on ‘few’-type quantifiers, but overall the larger the model, the worse its performance. This inverse scaling is consistent with previous work suggesting that larger models increasingly reflect online rather than offline human processing, and we argue that the decreasing performance of larger models may challenge uses of language models as the basis for natural language systems.

2022

pdf bib
Collateral facilitation in humans and language models
James Michaelov | Benjamin Bergen
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Are the predictions of humans and language models affected by similar things? Research suggests that while comprehending language, humans make predictions about upcoming words, with more predictable words being processed more easily. However, evidence also shows that humans display a similar processing advantage for highly anomalous words when these words are semantically related to the preceding context or to the most probable continuation. Using stimuli from 3 psycholinguistic experiments, we find that this is also almost always also the case for 8 contemporary transformer language models (BERT, ALBERT, RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J, and XGLM). We then discuss the implications of this phenomenon for our understanding of both human language comprehension and the predictions made by language models.

2020

pdf
How well does surprisal explain N400 amplitude under different experimental conditions?
James Michaelov | Benjamin Bergen
Proceedings of the 24th Conference on Computational Natural Language Learning

We investigate the extent to which word surprisal can be used to predict a neural measure of human language processing difficulty—the N400. To do this, we use recurrent neural networks to calculate the surprisal of stimuli from previously published neurolinguistic studies of the N400. We find that surprisal can predict N400 amplitude in a wide range of cases, and the cases where it cannot do so provide valuable insight into the neurocognitive processes underlying the response.