Geng Tu


2023

pdf
Probing Graph Decomposition for Argument Pair Extraction
Yang Sun | Bin Liang | Jianzhu Bao | Yice Zhang | Geng Tu | Min Yang | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2023

Argument pair extraction (APE) aims to extract interactive argument pairs from two passages within a discussion. The key challenge of APE is to effectively capture the complex context-aware interactive relations of arguments between the two passages. In this paper, we elicit relational semantic knowledge from large-scale pre-trained language models (PLMs) via a probing technique. The induced sentence-level relational probing graph can help capture rich explicit interactive relations between argument pairs effectively. Since the relevance score of a sentence pair within a passage is generally larger than that of the sentence pair from different passages, each sentence would prefer to propagate information within the same passage and under-explore the interactive relations between two passages. To tackle this issue, we propose a graph decomposition method to decompose the probing graph into four sub-graphs from intra- and inter-passage perspectives, where the intra-passage graphs can help detect argument spans within each passage and the inter-passage graphs can help identify the argument pairs between the review and rebuttal passages. Experimental results on two benchmark datasets show that our method achieves substantial improvements over strong baselines for APE.

pdf
Context or Knowledge is Not Always Necessary: A Contrastive Learning Framework for Emotion Recognition in Conversations
Geng Tu | Bin Liang | Ruibin Mao | Min Yang | Ruifeng Xu
Findings of the Association for Computational Linguistics: ACL 2023

Emotion recognition in conversations (ERC) aims to detect the emotion of utterances in conversations. Existing efforts generally focus on modeling context- and knowledge-sensitive dependencies. However, it is observed that the emotions of many utterances can be correctly detected without context or external knowledge. In such cases, blindly leveraging the context and external knowledge may impede model training. Based on this, we propose a novel framework based on contrastive learning (CL), called CKCL (including the contrastive learning scenarios among Context and Knowledge), to distinguish the above utterances for better vector representations. The CKCL framework defines context- and knowledge-independent utterances, as the positive sample, whose predicted results are unchanged even masking context and knowledge representations, otherwise, the negative sample. This can obtain a latent feature reflecting the impact degree of context and external knowledge on predicted results, thus effectively denoising irrelevant context and knowledge during training. Experimental results on four datasets show the performance of CKCL-based models is significantly boosted and outperforms state-of-the-art methods.