Christoph Andreas Schmidt
2022
Multitask Learning for Grapheme-to-Phoneme Conversion of Anglicisms in German Speech Recognition
Julia Pritzen
|
Michael Gref
|
Dietlind Zühlke
|
Christoph Andreas Schmidt
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Anglicisms are a challenge in German speech recognition. Due to their irregular pronunciation compared to native German words, automatically generated pronunciation dictionaries often contain incorrect phoneme sequences for Anglicisms. In this work, we propose a multitask sequence-to-sequence approach for grapheme-to-phoneme conversion to improve the phonetization of Anglicisms. We extended a grapheme-to-phoneme model with a classification task to distinguish Anglicisms from native German words. With this approach, the model learns to generate different pronunciations depending on the classification result. We used our model to create supplementary Anglicism pronunciation dictionaries to be added to an existing German speech recognition model. Tested on a special Anglicism evaluation set, we improved the recognition of Anglicisms compared to a baseline model, reducing the word error rate by a relative 1 % and the Anglicism error rate by a relative 3 %. With our experiment, we show that multitask learning can help solving the challenge of Anglicisms in German speech recognition.