
Appendix

1 Initialization of REDA

We initialized REDA with the following editing
rate for SR, RS, RI, and RD respectively: 0.2, 0.2,
0.1, and 0.1. We applied Python rounding rule to
calculate and perform the number of edits needed
for each operation. That means, if the number of
edits is less than or equal to 0.5, it will be rounded
down to 0 and thus no editing operation will ap-
ply. To make our experiments more controlled and
doable, (1) we made RM only randomly perform
two of the other four editing operations with one
edit each; (2) and every editing operation will pro-
duce up to 2 non-duplicated augmented texts, if
the train set size is less than 50k; otherwise, there
will only be one augmented text instead. Every
augmented text was crossed paired with the other
text that was the pair to the text being augmented
with the original label kept for the augmented text
pair. That means, the augmented text pairs double
the number of augmented texts set for each text.
These settings also apply for the ablation study.

The synonym dictionary for English comes from
WordNet (Miller, 1995). The synonym dictionary
for Chinese comes from multiple reputable sources
through web scraping.

2 Model Training

Training Settings. We reused the three simple
models already constructed using Baidu’s deep
learning framework paddle1. We trained all the
models in Baidu Machine Learning CodeLab on its
AI Studio2 with Tesla V100 GPU and 32G RAM,
which the author could use up to 70 hours per week.

Basic Architecture. All the models begin with an
Embedding layer that outputs 128-dimensional
word embeddings. Then, the word embeddings for
the text pairs each go through an encoder so that

1
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/

examples/text_matching/simnet
2
https://aistudio.baidu.com/aistudio/index

the encoded embeddings for the text pairs have
same output dimensions and can be concatenated
along the last axis. The concatenated embeddings
run through a Linear layer, a Tanh activation
function, and another Linear layer that outputs
two dimensional logits. The details of the encoder
configurations used for the CBOW, CNN, and
LSTM models can be found at the footnote.3

Hyperparameters. The models were trained with
64 mini batches, a fixed .0005 learning rate, and
constantly 3 epochs. We used Adaptive Moment
Estimation (Adam) as the optimizer and cross
entropy as the loss function.

Notes. Unlike Wei and Zou (2019), (1) We did
not utilize pretrained word embeddings for our
models, which will make the effects of text per-
turbations complicated and less obvious. Plus, we
believe for a DA approach to be generally effective,
it should also work in a setting where resources for
pretrained word embeddings are limited or unavail-
able. (2) We did not use EarlyStopping or other
similar callbacks, because that might increase the
experimental costs to a point that obstructs training.
Also, the effect of such a callback should be trivial
as most of our models overfitted with 3 epochs.

References
George A. Miller. 1995. Wordnet: A lexical database

for english. Commun. ACM, 38(11):39–41.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382–6388, Hong Kong, China. As-
sociation for Computational Linguistics.

3
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/

paddlenlp/seq2vec/encoder.py

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/examples/text_matching/simnet
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/examples/text_matching/simnet
https://aistudio.baidu.com/aistudio/index
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/seq2vec/encoder.py
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/seq2vec/encoder.py

