
A Appendices

A.1 Pivot Translation
Recent state-of-the-art NMT models are heavily
dependent on a large number of bilingual language
resources. Large-sized bilingual text datasets
are usually readily available between common
and other languages; however, for language pairs
that are used less frequently, few or no bilingual
resources may be available.

Pivot translation was proposed to overcome
the resource limitations for certain language
pairs. Recent state-of-the-art NMT models heavily
depend on a large number of bilingual language
resources. Large-sized bilingual text data sets are
usually readily available between the lingua francas
and other languages. However, for less-frequently
used language pairs, only a limited amount or even
none of the bilingual resources are available. Pivot
translation was proposed to overcome resource
limitations for certain language pairs due to the lack
of bilingual language resources. Instead of a direct
translation between two languages for which few
or no bilingual resources are available, the pivot
translation approach makes use of a third language
(namely the pivot language). This third language
is more appropriate because of the availability of
more bilingual corpora and/or its relatedness to
either the source or the target language.

Pivot translation has long been studied in
statistical machine translation (Wu and Wang,
2007; Utiyama and Isahara, 2007; Paul et al., 2009),
supervised NMT (Cheng et al., 2017; Liu et al.,
2018; Kim et al., 2019), and UNMT (Leng et al.,
2019) as a means of improving the performance of
low/zero-resource translations.

Formally, for the translation from language S to
T , the chosen pivot language is denoted as P . The
translation schema can be described as follows:

S → P1 → ...→ PK → T , (10)

where K is the number of pivot languages.
Recently, the development of UNMT seems to

have lessened the importance of pivot translation.
UNMT no longer requires bilingual parallel data
between two languages, so the low/zero-resource
translation problem for less-common language
pairs is partially solved; however, the performance
of UNMT between some distant languages in
different language groups or families is still not
promising, which leads researchers to reconsider
pivot translation based on UNMT.

en-fr-ro

en→ro ro→en fr→ro ro→fr
UNMT 34.45 32.42 25.26 27.99

MUNMT 34.44 32.60 25.31 27.91
+ RAT-D 34.71 33.01 25.42 28.04
+ RAT-ID 35.83 33.52 25.66 28.25

MUNMT + RNMT 36.39 33.85 25.53 28.57
+ RAT-D 36.43 34.55 25.50 28.59
+ RAT-ID 36.65 34.07 25.78 28.63

Table 5: Comparison of the proposed different RAT
implementations.

A.2 RAT-D and RAT-ID
In this paper, the RAT method is proposed to seek
the consistency of the outputs of the two translation
directions, S → T and R → T , when their
input is parallel. In addition to the implementation
described in this paper, the output distribution of
S → T andR → T can also be directly computed
as the agreement loss between S → T andR → T .
For convenience, we call this implementation RAT-
D, and we call the implementation described in this
paper RAT-ID.

As the two translations t̃S and t̃R from the
parallel sentence pair 〈s, r〉 should be the same, it
is clear that their probability distributions d̃S =
P(·|s; θS→T ) and d̃R = P(·|r; θR→T ) should
ideally be consistent. We would like to minimize
the distance of d̃S and d̃R so that the agreement
is learned by the model. The Jensen–Shannon
divergence (JSD) (Fuglede and Topsoe, 2004) is
then used to compute the difference in the two
distributions as the loss for RAT-D training. This
is a symmetrized and smoothed version of the
Kullback–Leibler divergence (KLD):

LRAT-D(S, T ,R) = JSD(d̃S ||d̃R) =
1

2
(KLD(d̃S ||M) + KLD(d̃R||M)),

(11)

where M = 1
2(d̃S + d̃R), and the KLD of

distribution Q from P is defined as:

KLD(P ||Q) =
∑
i

Pi log(
Pi
Qi

). (12)

Autoregressive NMT models generate trans-
lations from left-to-right and stop when an
EOS token is generated or the generation
exceeds the maximum length. This leads to
some length inconsistency between the two
translation sequences and makes the distributions
incompatible for Equation 11. Therefore, in the



training phase, we force the translation model
to generate a sequence of length J , which is
determined as follows:

J =
1

2
((αJS + β) + (αJR + β)), (13)

where JS and JR are the lengths of the
source language and reference language sentences,
respectively; we set α = 1.3 and β = 5 following
previous work (Conneau and Lample, 2019).

Differences RAT-D and RAT-ID are the same in
principle; both attempt to move two independent
output distributions closer to the (weighted)
average distribution through the agreement
mechanism. The difference is that RAT-D is
applied to the two output distributions directly;
the two models are required to generate fixed-
length distributions before calculating the loss,
and there is no interaction between the models in
the generation process. The latter point causes
an error propagation problem, whereby different
errors made in the two translation processes
make the context in each translation increasingly
different, resulting in two distributions that differ
significantly. RAT-ID addresses this issue by
obtaining an agreed-upon output prediction at each
step, which ensures the context remains consistent
in the two model generation processes.

It is shown that the effect of RAT-D is not
significant compared to that of RAT-ID, which
validates our belief that error propagation caused
inconsistent context in the generation we analyzed.


