
6 Supplemental Material

6.1 Previous Works on Temporal
Embeddings

We first introduce some notations to facilitate our
discussion of time-specific embeddings in the re-
maining part. Suppose that the size of word vo-
cabulary W is |W | and word embeddings are of
dimension m. The embedding matrix at time t is
denoted as V(t) 2 Rm⇥|W |, and vw,t 2 Rm is the
vector of word w at time t.

Existing approaches on time-specific embed-
dings can be divided into three categories: align-
ment of independently trained embedding, joint
training of embeddings at different times and con-
textualized representations as time-sensitive sense
embeddings. The first type of approaches include
(Kulkarni et al., 2015), (Hamilton et al., 2016) and
(Zhang et al., 2016). They pre-trained multiple
sets of embeddings {V(t)}t for different times t
independently. Then one set of embedding is pro-
jected to the space of another set so that two sets
of embeddings are comparable.

Kulkarni et al. assumes that word vector spaces
at different times are equivalent under linear trans-
formations, and learns an alignment matrix be-
tween two sets of embeddings (Kulkarni et al.,
2015). Furthermore, it assumes the local struc-
ture preservation in embeddings across time, and
use word neighbors to learn the transformation ma-
trix R for a word w from time t1 to t2. Suppose
that vw,t is the embedding of word w at time t, and
kNN(·) gives the nearest words in the vector space.

Rw,t1,t2 = argmin

Q

X

wi2kNN(vw,t)

kQvwi,t1 � vwi,t2k
2
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Based on the same assumption of space equiv-
alence under the linear transformation, Hamilton
et al. finds an alignment matrix R(t) 2 Rm⇥m

consisting of basis vectors so that the mean square
error between the transformed embedding at time t
and embedding at time t+ 1 is minimized (Hamil-
ton et al., 2016).

R(t)
= argmin

QTQ=I
kQV(t) �V(t+1)kF .

Zhang et al. finds the linear transformation using
anchor words whose meaning remains stable across
time (Zhang et al., 2016). It requires expert knowl-
edge to find these stable words, which limits its
application to general corpora.

Different from aligning independently pre-
trained embeddings, joint learning of time-stamped
embeddings are shown to better capture semantic
changes across time. (Bamler and Mandt, 2017;
Yao et al., 2018). Bamler and Mandt uses a proba-
bilistic language model to capture latent trajectories
of word vectors across time (Bamler and Mandt,
2017). Their model is based on Bayesian skip-
gram model, a probabilistic variant of word2vec. It
learns embeddings V(t) and context embeddings
U(t) at each time t. To align word embeddings
across time, they add Gaussian assumption on the
evolution of embeddings from time t to t+1. They
assume that the probability of U(t+1) conditioned
on U(t), p(U(t+1)|U(t)

), follows Gaussian distri-
bution. This Gaussian constraint prevents embed-
dings from growing large and enforces smooth vec-
tor trajectories.

Yao et al. used matrix factorization to learn an
embedding matrix V(t) and a context embedding
matrix U(t) from PPMI matrix Y(t) with alignment
constraints (Yao et al., 2018).
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where terms kV(t�1) � V(t)k2F and kU(t�1) �
U(t)k2F are alignment constraints on embeddings
in neighboring time periods.

The third category of temporal embedding mod-
els are built upon pre-trained language models such
as BERT (Devlin et al., 2018). These models are
pre-trained on large corpus to learn representations
for words in a given context, which can be taken as
the sense embedding. Time-specific word seman-
tics are treated as different senses of words, and
thus are represented by the contextualized repre-
sentations (Hu et al., 2019; Giulianelli et al., 2020).

6.2 Model and Optimization Problem
A model of static word embeddings is proposed by
Arora et al., and provides a unified understanding
of a group of embedding models including point-
wise mutual information (PMI) method, word2vec
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Figure 2: The trajectory of word embeddings over time.

and GloVe (Arora et al., 2016). It reveals that all
these models train embeddings to estimate word
co-occurrences in the training corpus. Suppose
that Ps(w1, w2) is the co-occurrence probability of
words w1 and w2 in context window of size s, vw1

and vw2 are word vectors. Their model states that

log Ps(w1, w2) =
kvw1 + vw2k22

2d
� 2 logZ + � ± ✏,

(12)

where d is the embedding dimension, Z is a con-
stant, � = log

⇣
s(s�1)

2

⌘
and ✏ is an error term. We

consider the window size s to be a constant. Since
the coefficient 1

d can be absorbed as a constant scale
of the word vectors, the model suggests the approx-
imation of the logarithm of word co-occurrence
probability below:

logP(w1, w2) =
1

2

kvw1 + vw2k22 + ⌧,

where constant ⌧ = �2 logZ + �.
We propose a model for condition-specific word

embeddings in condition c, where c can be time or
location.

logPc(w1, w2) =
1

2

kvw1,c + uw2,ck22 + ⌧.

Since we assume that vw,c = vw � qc + dw,c,
we can substitute vw1,c with vw1 �qc+dw1,c, and
substitute uw2,c with uw2 � qc + d0

w2,c. We then
have

log Pc(w1, w2)

=

1

2

k(vw1 � qc + dw1,c) + (uw2 � qc + d0
w2,c)k

2
+ ⌧,

=

1

2

�
kvw1 � qc + dw1,ck

2
+ kuw2 � qc + dw2,ck

2�

+ (vw1 � qc + dw1,c)
T
(uw2 � qc + d0

w2,c) + ⌧,

=

1

2

(kvw1,ck
2
+ kuw2,ck

2
+ 2⌧)+

(vw1 � qc + dw1,c)
T
(uw2 � qc + d0

w2,c). (13)

Here 1
2kvw1,ck2 can be taken as the bias re-

lated to words w1 under condition c. Similar
to GloVe, we introduce a bias term bw1,c, and
bw1,c =

1
2kvw1,ck2 + ⌧ . Similarly, we define bias

b0w2,c =
1
2kvw2,ck2 + ⌧ .

The logarithm of co-occurrence probability is:

logPc(w1, w2)

= (vw1 � qc + dw1,c)
T
(v0

w2
� qc + d0

w2,c)

+ bw1,c + b0w2,c. (14)

Our model has two sets of basic word vectors
{vw} and {uw}, two sets of deviation embeddings
{dw,c} and {d0

w,c}, and two sets of bias terms
{bw,c} and {b0w.c} for the vocabulary and context
vocabulary respectively. All of these parameters
are trained to minimize the difference between the
real word co-occurrences and the estimated values.

Figure 3: The trajectory of word embeddings over loca-
tions.

6.3 Word Embedding Trajectory
The trajectories of word windows and policies
across time are shown in Fig. 2 (a) and (b). As
we can see, windows was commonly used as an
opening in houses to allow light and air before



the 20th century since its embedding has neighbors
such as glass and walls. Recently it also refers to an
operating system developed by Microsoft given its
neighbors files and load. As for the word policies,
it was relevant to campaigns and reforms in 1990,
since many campaigns and reforms were launched
in that cold-war era. Its meaning has shifted to be
relevant to economic over time.

In Fig. 3, we plot the location-specific neigh-
bors of word program. We note that program is a
polysemous words with senses including project,
software and curriculum. People in one region use
it to refer to a sense that is different from another
sense used in another region. The different senses
can be inferred from its region-specific neighbors.
For example, the program is meant as projects or
business in Canada, while it is also related to com-
puter software in USA. East Africa and India use it
to refer to curriculum in the education domain.


