Abstract
In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.- Anthology ID:
 - W18-3507
 - Volume:
 - Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
 - Month:
 - July
 - Year:
 - 2018
 - Address:
 - Melbourne, Australia
 - Venue:
 - SocialNLP
 - SIG:
 - Publisher:
 - Association for Computational Linguistics
 - Note:
 - Pages:
 - 37–44
 - Language:
 - URL:
 - https://aclanthology.org/W18-3507
 - DOI:
 - 10.18653/v1/W18-3507
 - Cite (ACL):
 - Sopan Khosla. 2018. EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier. In Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media, pages 37–44, Melbourne, Australia. Association for Computational Linguistics.
 - Cite (Informal):
 - EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier (Khosla, SocialNLP 2018)
 - PDF:
 - https://preview.aclanthology.org/remove-xml-comments/W18-3507.pdf