
CUNY-PKU Parser at SemEval-2019 Task 1:
Cross-lingual Semantic Parsing with UCCA

Weimin Lyu†, Sheng Huang‡, Abdul Rafae Khan†, Shengqiang Zhang‡ , Weiwei Sun‡, Jia Xu†�
Computer Science Department, †Graduate Center and �Hunter College, City University of New York

{wlyu,akhan4}@gradcenter.cuny.edu, Jia.Xu@hunter.cuny.edu

‡Institute of Computer Science and Technology, Peking University
{huangsheng,ws,sq.zhang}@pku.edu.cn

Abstract

This paper describes the systems of the
CUNY-PKU team in “SemEval 2019 Task 1:
Cross-lingual Semantic Parsing with UCCA”1.
We introduce a novel method by applying a
cascaded MLP and BiLSTM model. Then, we
ensemble multiple system-outputs by repars-
ing. Our system won the second places in
German-20K-Closed track, and third place in
English-20K-Closed track.

1 Introduction

We participate in Cross-lingual Semantic Parsing
at SemEval 2019, and our submission systems are
based on TUPA (Hershcovich et al., 2017a, 2018).
A shared task summary paper (Hershcovich et al.,
2019) by competition organizers summaries the
results.

We built three single parser using BiLSTM (Bi-
directional LSTM) and Multi-Layer Perceptron
(MLP) with TUPA (Hershcovich et al., 2017a,
2018). Most importantly, we introduce a new
training method Cascaded BiLSTM by first pre-
training the BiLSTM model and then training an-
other MLP model based on pre-trained BiLSTM
model. The cascaded BiLSTM parser enhances
the parsing accuracy on all tasks. We also com-
plete a Self-Attentive Constituency Parser (Kitaev
and Klein, 2018a,b) as comparison. Finally, we
ensemble different parsers with a reparsing strat-
egy (Sagae and Lavie, 2006). In particular, we in-
troduce an algorithm based on dynamic program-
ming to perform inference for the UCCA repre-
sentation. This decoder can also be utilized as a
core engine for a single parser.

We will describe our systems in detail, includ-
ing three single parsers in Section 2 and a voter in

1https://competitions.codalab.org/
competitions/19160

Section 3. We focus on two novel technical con-
tributions: the Cascaded BiLSTM model and the
Reparsing strategy. In Section 4 we will present
experimental setup and results.

2 Single Parsers

2.1 TUPA Parsers

The TUPA parser (Hershcovich et al., 2017a)
builds on discontinuous constituency and depen-
dency graph parsing and makes some improve-
ments especially for the UCCA representation.
The English parsing is based on Hershcovich
et al. (2017a), while French and German parsing
is based on Hershcovich et al. (2018).

It has been shown that the choice of model
plays an important role in transition-based pars-
ing (Hershcovich et al., 2017b). For TUPA, we
built parsers with different models: MLP, BiL-
STM, and also train MLP based on BiLSTM, viz.
Cascaded BiLSTM. The three single parsers are
described as the following:

The MLP parser (Hershcovich et al., 2017b)
applies a feedforward neural network with dense
embedding features to predict optimal transitions
given particular parser states. This parser adopts a
similar architecture to Chen and Manning (2014).

The BiLSTM parser (Hershcovich et al.,
2018) applies a bidirectional LSTM to learn con-
textualized vector-based representations for words
that are then utilized for encoding a parser state,
similarly to Kiperwasser and Goldberg (2016).
The red box in Figure 1 shows the architecture
of BiLSTM model, indicating that the represen-
tations after BiLSTM are fed into a Multiple-layer
perceptron.

The Cascaded BiLSTM parser combines the
above two parsing models, which contains a multi-
stage training process. First, we use BiLSTM
TUPA model to train 100 epochs, then retrain

https://competitions.codalab.org/competitions/19160
https://competitions.codalab.org/competitions/19160


Figure 1: Illustration of the multi-stage Cascaded BiL-
STM model. Top: parser state. Bottom: BiLTSM with
two MLP architectures. The red box represents BiL-
STM (Hershcovich et al., 2018), and the blue box rep-
resents retraining a MLP model after implementing the
BiLSTM architecture.

the model using MLP TUPA model for another
50 epochs. It’s really interesting that the per-
formances remains as good as BiLSTM TUPA
model, even slightly better. Figure 1 shows the
architecture of Cascaded BiLSTM model.

2.2 Phrase Constituency Parser

We also built a Constituency Parser as compari-
son, which uses a self-attentive architecture that
makes explicit the manner considering informa-
tion propagating between different locations in the
sentences (Kitaev and Klein, 2018a,b). The con-
stituency parser uses parsing tree structures as in-
put and output. Therefore, we convert the phrase
structure tree format into UCCA XML formation
and vice versa.

3 The Reparsing System

The reparsing system (voter) takes multiple single
parser (as in Section 2) results as input and pro-
duces a single, hopefully, improved UCCA graph
as output. Briefly, each input UCCA graph is en-
coded to a chart of scores for standard CKY de-
coding. In this step, we utilize a number of auxil-
iary labels to encode remote edges and discontinu-
ous constructions. These scores are summed up to
get a new chart, which is used for CKY decoding
for an immediate tree representation as the voting
result. An immediate tree is then enhanced with
reference relationships. Finally, a UCCA graph is

built via interpreting auxiliary labels.

Span representation Graph nodes in a UCCA
graph naturally create a hierarchical structure
through the use of primary edges. Following this
tree structure, we give the definition of span of
nodes.

Definition 1. The span of node x is:
1. empty if x is an implicit node;
2. [p, p+1) if x is a leaf node but not an implicit

node, where p is the position of the lexical unit
corresponding to x;

3. the union of spans of x’s children, otherwise.

Assuming that each span of nodes is consecu-
tive (we will deal with nonconsecutive spans in
Section 3). We encode the label of edge from x’s
parent to x as the label of span of x. If there
are some implicit nodes in x’s children, the la-
bels of edges from x to them are also encoded
by the label of the span of x. If the span of x is
the same as x’s parent, the label of this span will
be encoded ordered. This process is well-defined
due to the acyclic graph structure. Each parser is
assigned a weight to indicate its contribution to
reparsing. The spans with labels encoded from a
UCCA graph are assigned the same score accord-
ing to which parser they come from. Thus, there
is a set of scored spans for each UCCA graph.
Following the parsing literature, we call this set a
chart. We merge multiple charts produced by dif-
ferent parsers to a single chart simply by adding
the corresponding scores.

Handling Remote Edges A remote edge with
label L from node x to node y is equal to a pri-
mary edge with label L from x to an implicit node,
which is referred to node y. Hence, if we can find
the relationships of references, the remote edges
are able to be recovered.

Since all primary edges from nodes to their par-
ent are encoded in labels of spans, each node could
be represented as part of the label of a span. We
encode each reference of a remote edge as a pair of
two nodes with a score. After building all primary
edges through dynamic programming, we search
for available references with the maximum score
in each implicit node greedily and leverage these
references to recover remote edges.

Handling Discontinuous Spans Discontinuous
spans are removed by repeating the following
steps:



x

L

y

x

F

y z

L

Figure 2: Remove nonconsecutive spans

Step 1. Find a node x with a nonconsecutive
span with the minimum starting point and min-
imum height, supposed its consecutive sub-span
with minimum starting point is [a, b).

Step 2. Find a node y with a consecutive span
with starting point b and maximum height, sup-
posed the primary edge from y’s parent to y is e.

Step 3. Create a node z with a special type MIR-
ROR and create a primary edge with the label of e
from y’s parent to z. Remove the primary edge
e and create a primary edge with a special label
FAKE from x to y.

After each iteration, the span of y is added to
x, and the sum of the length of nonconsecutive
spans decreases. Each primary edge in an origi-
nal UCCA graph can only be removed once. To
that end, the running time of this algorithm is lin-
ear in the number of lexical units. If all references
of MIRROR nodes are correctly predicted, the ex-
pected UCCA graph will be obtained. In this way,
remote edges can be handled.

4 Experiments

4.1 Data Statistics

The semantic parsing task is carried out in three
languages: English, German and French, includ-
ing three training data sets and parallel four test
data sets. For English data, we use the Wikipedia
UCCA corpus (henceforth Wiki) as training and
development data, testing on English UCCA Wiki
corpus as the in-domain test. Meanwhile, English
UCCA 20K Leagues corpus serves as an out-of-
domain test set. For German data, we use 20K
Leagues corpus for train, development, and test
sets. For French data, they provide only limited
training data, along with development and test data
sets.

Table 1 shows the sentences number of data sets
for all three languages. For both closed track and
open track, we only use official train data provided
by organizer2.

2https://competitions.codalab.org/
competitions/19160

Tracks Training Dev Test
En-Wiki 4113 514 515
En-20K 0 0 492
Ge-20K 5211 651 632
Fr-20K 15 238 239

Table 1: Sentence number in training, dev, and test sets
for English, German and French UCCA data sets.

4.2 TUPA Parsers

We build MLP and BiLSTM systems using
TUPA (Hershcovich et al., 2017b). For Cascaded
BiLSTM model, we retrain the MLP model based
on the pre-trained BiLSTM model, which forms
a cascaded BiSLTM. For closed tracks, we train
models based on the gold-standard UCCA anno-
tation from official resources. We train all three
models and ensemble the results based on the vot-
ing system. For open tracks, We use the same
training data as closed tracks, but only train on
BiLSTM model.

Table 2 shows the results for four models in
closed tracks. The italicized values are our offi-
cial submission. However, we have made some
improvement after the Evaluation Phrase, and the
bold results are our best results. The first three
models are single systems and the fourth model
(Ensembled) ensembles different frameworks by
reparsing systems. The baseline represents the
baseline that competition provides for reference.

By using feedforward Neural Network and em-
bedding features, MLP models get the lowest
scores. BiLSTM models achieve better results
than MLP models in F1 scores, both in the in-
domain and out-of-domain data sets. However, the
combination of BiSLTM and MLP models (Cas-
caded BiLSTM model) performs best among the
three models in all results of single systems. For
MLP model and BiLSTM model, we only train
100 epoches. For Cascaded BiLSTM model, we
first train 100 epoches for BiLSTM model, then
another 50 epoches for MLP model.

Our in-house reparsing system ensembles the
above parsers as described in Section 3. We can
see that ensemble results are better at closed track.

5 Summary

Our submission systems mainly contain a BiL-
STM, an MLP, and a cascaded BiLSTM parser, as
well as a voted system of above.

https://competitions.codalab.org/competitions/19160
https://competitions.codalab.org/competitions/19160


Tracks MLP BiLSTM(Submit) Cascaded BiLSTM Ensembled baseline

closed
En-Wiki 0.650 0.718 0.721 0.728 0.728
En-20K 0.617 0.669 0.673 0.681 0.672
Ge-20K 0.699 0.797 0.797 0.797 0.731

Table 2: F1 scores for closed tracks in SemEval Task 1 2019 competition. The italic text represents our official
submission in competition and the bold text represents our best F1 scores.

Contributions and Acknowledgements

Weimin Lyu: built all TUPA Parsers, a self-
attentive Parser, convert UCCA graph as con-
stituency tree, verify the voting systems, and
draft the paper. Sheng Huang and Shengqiang
Zhang: built the reparsing system and UCCA-
Dependency graph transformer. Abdul Rafae
Khan: built cross-lingual parsers by generating
synthetic data with machine translation. Wei-
wei Sun: extensively supervised PKU team, and
Jia Xu: closely supervised CUNY team, in algo-
rithms and experiments. We thank the initial work
of Mark Perelman. This research was partially
funded by National Science Foundation (NSF)
Award No. 1747728 and National Science Foun-
dation of China (NSFC) Award No. 61772036
and 61331011 and partially supported by the Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology) and the Computer Sci-
ence Department at CUNY Graduate Center as
well as CUNY Hunter College.

References
Danqi Chen and Christopher Manning. 2014. A fast

and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017a. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017b. A transition-based directed acyclic graph
parser for ucca. arXiv preprint arXiv:1704.00552.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. arXiv preprint arXiv:1805.00287.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-lingual
semantic parsing with ucca. arXiv preprint
arXiv:1903.02953.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Nikita Kitaev and Dan Klein. 2018a. Constituency
parsing with a self-attentive encoder. arXiv preprint
arXiv:1805.01052.

Nikita Kitaev and Dan Klein. 2018b. Multilingual
constituency parsing with self-attention and pre-
training. arXiv preprint arXiv:1812.11760.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers.

http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/N06-2033
http://aclweb.org/anthology/N06-2033

